A unifying framework for mean-field theories of asymmetric kinetic Ising systems
Financiación H2020 / H2020 Funds
Resumen: Kinetic Ising models are powerful tools for studying the non-equilibrium dynamics of complex systems. As their behavior is not tractable for large networks, many mean-field methods have been proposed for their analysis, each based on unique assumptions about the system’s temporal evolution. This disparity of approaches makes it challenging to systematically advance mean-field methods beyond previous contributions. Here, we propose a unifying framework for mean-field theories of asymmetric kinetic Ising systems from an information geometry perspective. The framework is built on Plefka expansions of a system around a simplified model obtained by an orthogonal projection to a sub-manifold of tractable probability distributions. This view not only unifies previous methods but also allows us to develop novel methods that, in contrast with traditional approaches, preserve the system’s correlations. We show that these new methods can outperform previous ones in predicting and assessing network properties near maximally fluctuating regimes.
Idioma: Inglés
DOI: 10.1038/s41467-021-20890-5
Año: 2021
Publicado en: Nature communications 12, 1 (2021), 1197 [12 pp]
ISSN: 2041-1723

Factor impacto JCR: 17.694 (2021)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 6 / 74 = 0.081 (2021) - Q1 - T1
Factor impacto CITESCORE: 23.2 - Biochemistry, Genetics and Molecular Biology (Q1) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 4.846 - Chemistry (miscellaneous) (Q1) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/892715/EU/Data-driven Inference of Models from Embodied Neural Systems In Vertebrate Experiments/DIMENSIVE
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-05-18-14:08:08)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-05-13, última modificación el 2023-05-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)