Plane augmentation of plane graphs to meet parity constraints
Financiación H2020 / H2020 Funds
Resumen: A plane topological graph G=(V, E) is a graph drawn in the plane whose vertices are points in the plane and whose edges are simple curves that do not intersect, except at their endpoints. Given a plane topological graph G=(V, E) and a set CG of parity constraints, in which every vertex has assigned a parity constraint on its degree, either even or odd, we say that G is topologically augmentable to meet CG if there exists a set E' of new edges, disjoint with E, such that G'=(V, E¿E') is noncrossing and meets all parity constraints. In this paper, we prove that the problem of deciding if a plane topological graph is topologically augmentable to meet parity constraints is NP-complete, even if the set of vertices that must change their parities is V or the set of vertices with odd degree. In particular, deciding if a plane topological graph can be augmented to a Eulerian plane topological graph is NP-complete. Analogous complexity results are obtained, when the augmentation must be done by a plane topological perfect matching between the vertices not meeting their parities. We extend these hardness results to planar graphs, when the augmented graph must be planar, and to plane geometric graphs (plane topological graphs whose edges are straight-line segments). In addition, when it is required that the augmentation is made by a plane geometric perfect matching between the vertices not meeting their parities, we also prove that this augmentation problem is NP-complete for plane geometric paths. For the particular family of maximal outerplane graphs, we characterize maximal outerplane graphs that are topological augmentable to satisfy a set of parity constraints. We also provide a polynomial time algorithm that decides if a maximal outerplane graph is topologically augmentable to meet parity constraints, and if so, produces a set of edges with minimum cardinality.
Idioma: Inglés
DOI: 10.1016/j.amc.2020.125513
Año: 2020
Publicado en: Applied Mathematics and Computation 386 (2020), 125513 1-17
ISSN: 0096-3003

Factor impacto JCR: 4.091 (2020)
Categ. JCR: MATHEMATICS, APPLIED rank: 7 / 265 = 0.026 (2020) - Q1 - T1
Factor impacto SCIMAGO: 0.971 - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/E41-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-63791-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2021-09-02-10:10:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Estadística e Investigación Operativa



 Registro creado el 2021-08-20, última modificación el 2021-09-02


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)