A clinical decision web to predict ICU admission or death for patients hospitalised with Covid-19 using machine learning algorithms
Resumen: The purpose of the study was to build a predictive model for estimating the risk of ICU admission or mortality among patients hospitalized with COVID-19 and provide a user-friendly tool to assist clinicians in the decision-making process. The study cohort comprised 3623 patients with confirmed COVID-19 who were hospitalized in the SALUD hospital network of Aragon (Spain), which includes 23 hospitals, between February 2020 and January 2021, a period that includes several pandemic waves. Up to 165 variables were analysed, including demographics, comorbidity, chronic drugs, vital signs, and laboratory data. To build the predictive models, different techniques and machine learning (ML) algorithms were explored: multilayer perceptron, random forest, and extreme gradient boosting (XGBoost). A reduction dimensionality procedure was used to minimize the features to 20, ensuring feasible use of the tool in practice. Our model was validated both internally and externally. We also assessed its calibration and provide an analysis of the optimal cut-off points depending on the metric to be optimized. The best performing algorithm was XGBoost. The final model achieved good discrimination for the external validation set (AUC = 0.821, 95% CI 0.787–0.854) and accurate calibration (slope = 1, intercept = −0.12). A cut-off of 0.4 provides a sensitivity and specificity of 0.71 and 0.78, respectively. In conclusion, we built a risk prediction model from a large amount of data from several pandemic waves, which had good calibration and discrimination ability. We also created a user-friendly web application that can aid rapid decision-making in clinical practice.
Idioma: Inglés
DOI: 10.3390/ijerph18168677
Año: 2021
Publicado en: International journal of environmental research and public health 18, 16 (2021), 8677 [20 pp.]
ISSN: 1661-7827

Factor impacto JCR: 4.614 (2021)
Categ. JCR: PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH rank: 45 / 182 = 0.247 (2021) - Q1 - T1
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 100 / 279 = 0.358 (2021) - Q2 - T2
Categ. JCR: PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH rank: 71 / 210 = 0.338 (2021) - Q2 - T2

Factor impacto CITESCORE: 4.5 - Medicine (Q2) - Environmental Science (Q2)

Factor impacto SCIMAGO: 0.814 - Pollution (Q1) - Health, Toxicology and Mutagenesis (Q1)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Area Medicina (Dpto. Medicina, Psiqu. y Derm.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-07-05-12:45:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-09-30, última modificación el 2024-07-05


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)