Multivariate Affine Fractal Interpolation
Resumen: Fractal interpolation functions capture the irregularity of some data very effectively in comparison with the classical interpolants. They yield a new technique for fitting experimental data sampled from real world signals, which are usually difficult to represent using the classical approaches. The affine fractal interpolants constitute a generalization of the broken line interpolation, which appears as a particular case of the linear self-affine functions for specific values of the scale parameters. We study the p convergence of this type of interpolants for 1 = p < 8 extending in this way the results available in the literature. In the second part, the affine approximants are defined in higher dimensions via product of interpolation spaces, considering rectangular grids in the product intervals. The associate operator of projection is considered. Some properties of the new functions are established and the aforementioned operator on the space of continuousfunctions defined on a multidimensional compact rectangle is studied.
Idioma: Inglés
DOI: 10.1142/S0218348X20501364
Año: 2020
Publicado en: Fractals 28, 7 (2020), [14 pp]
ISSN: 0218-348X

Factor impacto JCR: 3.665 (2020)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 19 / 108 = 0.176 (2020) - Q1 - T1
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 23 / 73 = 0.315 (2020) - Q2 - T1

Factor impacto SCIMAGO: 0.654 - Applied Mathematics (Q1) - Multidisciplinary (Q1) - Modeling and Simulation (Q1) - Geometry and Topology (Q1)

Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2021-12-01-12:16:03)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Matemática Aplicada



 Registro creado el 2021-12-01, última modificación el 2021-12-01


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)