Resumen: In this paper, we study the metric dimension problem in maximal outerplanar graphs. Concretely, if β(G) denotes the metric dimension of a maximal outerplanar graph G of order n, we prove that 2≤β(G)≤⌈2n5⌉ and that the bounds are tight. We also provide linear algorithms to decide whether the metric dimension of G is 2 and to build a resolving set S of size ⌈2n5⌉ for G. Moreover, we characterize all maximal outerplanar graphs with metric dimension 2. Idioma: Inglés DOI: 10.1007/s40840-020-01068-6 Año: 2021 Publicado en: Bulletin of the Malaysian Mathematical Sciences Society 44 (2021), 2603–2630 ISSN: 0126-6705 Factor impacto JCR: 1.397 (2021) Categ. JCR: MATHEMATICS rank: 81 / 333 = 0.243 (2021) - Q1 - T1 Factor impacto CITESCORE: 2.4 - Mathematics (Q2)