Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Rapid detection of cardiac pathologies by neural networks using ECG signals (1D) and sECG images (3D)
Estadísticas de uso
Gráficos
Rapid detection of cardiac pathologies by neural networks using ECG signals (1D) and sECG images (3D)
Aguiar-Salazar, E.
;
Villalba-Meneses, F.
;
Tirado-Espín, A.
;
Amaguaña-Marmol, D.
;
Almeida-Galárraga, D.
Resumen:
Usually, cardiac pathologies are detected using one-dimensional electrocardiogram signals or two-dimensional images. When working with electrocardiogram signals, they can be represented in the time and frequency domains (one-dimensional signals). However, this technique can present difficulties, such as the high cost of private health services or the time the public health system takes to refer the patient to a cardiologist. In addition, the variety of cardiac pathologies (more than 20 types) is a problem in diagnosing the disease. On the other hand, surface electrocardiography (sECG) is a little-explored technique for this diagnosis. sECGs are three-dimensional images (two dimensions in space and one in time). In this way, the signals were taken in one-dimensional format and analyzed using neural networks. Following the transformation of the one-dimensional signals to three-dimensional signals, they were analyzed in the same sense. For this research, two models based on LSTM and ResNet34 neural networks were developed, which showed high accuracy, 98.71% and 93.64%, respectively. This study aims to propose the basis for developing Decision Support Software (DSS) based on machine learning models. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/computation10070112
Año:
2022
Publicado en:
Computation
10, 7 (2022), 112 [14 pp]
ISSN:
2079-3197
Factor impacto CITESCORE:
3.3 -
Mathematics
(Q2) -
Computer Science
(Q2)
Factor impacto SCIMAGO:
0.386 -
Computer Science (miscellaneous)
(Q2) -
Theoretical Computer Science
(Q3) -
Modeling and Simulation
(Q3) -
Applied Mathematics
(Q3)
Tipo y forma:
Artículo (Versión definitiva)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2023-09-13-13:19:05)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-10-06, última modificación el 2023-09-14
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks