Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system
Estadísticas de uso
Gráficos
Sonochemical route for mesoporous silica-coated magnetic nanoparticles towards pH-triggered drug delivery system
Fuentes-García J.A.
;
Alavarse A.C.
;
de Castro C.E.
;
Giacomelli F.C.
;
Ibarra M.R.
(Universidad de Zaragoza)
;
Bonvent J.-J.
;
Goya G.F.
(Universidad de Zaragoza)
Resumen:
This work reports a pH-triggered release system based on core@shell mesoporous magnetic nanoparticles (MNP@mSiO2) obtained using a simple and rapid ultrasound-assisted method. Performed characterization reveals magnetic cores of Fe2.9Mn0.1O4 (38 ± 6 nm) and specific loss power values adequate for hyperthermia (463 W/g), surrounded by a mesoporous silica shell (10 ± 2 nm) with large surface area (269 m2 g-1) functionalized with hydroxyl groups (-OH). MNP@mSiO2 were loaded with DOX and amino-silane grops, providing pH-triggered DOX release at acidic environments, driving by dipolar intermolecular interactions. The experimental DOX release kinetics at pH 5.5, 6.6 and 7.4 were determined and adjusted to Gompertz dissolution model (Nash–Sutcliffe efficiency coefficient (NSE>0.9)), where the only strongly pH-dependent variable is the percentage of DOX released. The pH-triggered response observed in the system was ~20% of the DOX loaded into the MNP@mSiO2 is released at pH 6.6 or 7.4, whereas up to 80 wt% is released at pH 5.5. Time to 50% of release and dissociation rate of the system remaining constant, suggesting no-pH influence on these parameters. The biological assays highlight negligible hemolytic effect and cytocompatibility of the hybrid material, pointing out the potential use of MNP@mSiO2 as a magnetic driven drug delivery system with pH-triggered drug release kinetics at acidic environments. These results probe the feasibility of sonochemical methods in the elaboration of biocompatible and controlled properties nanomaterials for drug release applications, with the advantage of accurately responses predictions by mathematical model and using minimal processing steps or laboratory equipment. © 2021 The Authors
Idioma:
Inglés
DOI:
10.1016/j.jmrt.2021.08.014
Año:
2021
Publicado en:
Journal of Materials Research and Technology
15 (2021), 52-67
ISSN:
2238-7854
Factor impacto JCR:
6.267 (2021)
Categ. JCR:
METALLURGY & METALLURGICAL ENGINEERING
rank: 8 / 79 = 0.101
(2021)
- Q1
- T1
Categ. JCR:
MATERIALS SCIENCE, MULTIDISCIPLINARY
rank: 99 / 345 = 0.287
(2021)
- Q2
- T1
Factor impacto CITESCORE:
5.9 -
Materials Science
(Q1)
Factor impacto SCIMAGO:
0.964 -
Biomaterials
(Q1) -
Metals and Alloys
(Q1) -
Ceramics and Composites
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/MICIU/PID2019-106947RB-C21
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Física Materia Condensada
(
Dpto. Física Materia Condensa.
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.
Exportado de SIDERAL (2023-05-18-15:28:28)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-11-15, última modificación el 2023-05-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks