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RESUMEN 
 

El objetivo de este trabajo es llevar a cabo un análisis termoeconómico a una planta de 

tratamiento de purines sometida a digestión anaerobia con diferentes tipos de co-

sustratos (co-digestión).  

La planta sobre la que versará dicho análisis es la proyectada en 2009 por Sarga, 

antiguamente Sodemasa, para el municipio de Capella (Huesca), la cual dispone de 

dos de los tratamientos más habituales para este tipo de plantas, como son el proceso 

de digestión anaerobia y el proceso de tratamiento biológico. 

En primer lugar, mediante el programa de cálculo EES (Engineering. Equation Solver), 

se ha llevado a cabo un análisis exergético de los flujos que forman parte de cada uno 

de los procesos de la planta objeto de estudio: flujos de purín, de valorización de 

fangos, energéticos y flujos de los distintos sustratos añadidos a la digestión para 

mejorar la eficacia de la planta. 

Tras una extensa búsqueda bibliográfica sobre el estado del arte de la co-digestión, se 

han estudiado tres tipos diferentes de sustratos: co-digestión con paja de trigo, con 

glicerina y con una mezcla de residuos industriales, de matadero y vegetales, además 

de analizarse también el caso en el que no se lleve a cabo ningún tipo de co-digestión. 

Una vez determinada la exergía contenida en cada uno de los casos analizados, se ha 

realizado una análisis termoeconómico con el objeto de determinar cuáles son los 

procesos de la planta que mayores costes exegéticos inducen en el resto de procesos, 

así como tratar de explicar las diferencias existentes que tienen lugar dentro de un 

mismo proceso en función del caso que este siendo analizado. 

Finalmente, se ha llevado a cabo un análisis exergético comparativo, desde el punto 

de vista del transporte del purín hasta las tierras agrícolas, de dos situaciones 

diferentes: una en la que no se contempla la existencia de la planta de tratamiento de 

purines en la zona de Capella (Huesca), lo que conlleva transportar el purín desde las 

explotaciones ganaderas porcinas de la zona, hasta áreas alejadas para no 

sobrepasar el límite permitido de nutrientes en las tierras arables, y otra situación en la 

que sí se analiza la existencia de dicha planta. 
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1. INTRODUCCIÓN. 

La exergía se define como la máxima cantidad de trabajo que en su sistema puede 

realizar llevándolo hasta el estado de equilibrio con el medio que le rodea (estado de 

referencia externo) en una secuencia de procesos reversibles [1]. En definitiva es una 

propiedad termodinámica que indica la energía disponible, una medida de calidad de 

energía en los sistemas. Al contrario que ocurre durante las trasformaciones de masa 

o energía en las cuales amabas son conservadas, la exergía es destruida en forma de 

irreversibilidad. 

Así, el método exergético (o análisis exergético) es una técnica basada  en la energía, 

y por tanto es una medida de la cantidad de trabajo o calidad de diferentes formas de 

energía en relación con un ambiente de referencia dado. El balance exergético 

aplicado a un proceso o plantas nos permite saber cuánta de la exergía empleada ha 

sido consumida por el proceso. Las pérdidas de exergía, denominada 

irreversibilidades, nos indican de manera cuantitativa las ineficiencias del proceso. 

Estos balances son fruto de la combinación de las dos Leyes principales de la 

Termodinámica: la Primera Ley nos dice que la energía ni se crea ni se destruye, 

mientras que por la Segunda Ley introduce el término de la entropía.  

La Termoeconomía puede definirse como una teoría general de ahorro de energía que 

conecta la física con la economía mediante la Segunda Ley de la Termodinámica [2], 

proporcionando métodos para: 

- Evaluar la cantidad y calidad de las perdidas energéticas. 

- Evaluar el coste de las perdidas en términos de consumo de recursos. 

- Aplicar a diferentes niveles de decisión sobre sistemas energéticos. 

Por otro lado, la Termoeconomía está empezando a jugar un papel importante en el 

análisis  de parques eco-industriales expresando en las mismas unidades los flujos de 

materia y de energía, es decir, la posibilidad de la aplicación de la Termoeconomía a la 

Ecología Industrial o simbiosis industrial. La Ecología Industrial es un área 

multidisciplinar cuyo objetivo es organizar los sistemas industriales de una forma 

similar a los ecosistemas naturales, e implica una interacción entre industrias (flujos de 

materia, energía e información) y una relación sostenible con el medio ambiente y la 

sociedad. Un objetivo fundamental de esta relación entre industrias es el cierre de 

ciclos de materia, lo que implica la utilización de los residuos de una industria como 

materias primas para otras, tal y como ocurre en los ecosistemas naturales, 

permitiendo reducir tanto el consumo de recursos como la producción de residuos [3]. 
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2. PLANTAS DE TRATAMIENTO DE PURINES. 

El gran desarrollo de la industria agroalimentaria y la intensificación de las 

explotaciones ganaderas en los últimos años, han propiciado la producción de grandes 

cantidades de residuos orgánicos. Esto resulta un problema cuando se produce una 

excesiva concentración en determinadas áreas, superando la capacidad de 

asimilación de nutrientes del suelo o sobrepasando los límites establecidos por la 

Directiva 91/676/CEE relativa a la protección de las aguas contra la contaminación 

producida por nitratos. 

En este contexto, las tecnologías utilizadas para el tratamiento adecuado de los 

purines pueden ser de varios tipos: biológicas, físicas o físico-químicas, digestión 

anaerobia o evaporación a través de calor procedente de la cogeneración. Las más 

empleadas actualmente son los procesos de digestión anaerobia o los tratamientos 

físicos seguidos de un tratamiento biológico de nitrificación-desnitrificación [4]. 

Teniendo en cuenta las tecnologías más utilizadas hoy en día a la hora de gestionar 

las deyecciones porcinas, para llevar a cabo el análisis termoeconómico objeto de este 

trabajo, se ha seleccionado una planta que combina tratamiento biológico de 

nitrificación-desnitrificación con digestión anaerobia. Otro de aspecto que ha sido 

tenido en cuenta para la selección de la planta sobre la que versar el presente trabajo, 

ha sido la cantidad de información disponible de la misma. 

Por lo tanto, aplicando las distintas tecnologías a los purines de cerdo se puede 

conseguir el cierre de materia, es decir, el objetivo principal de la Ecología Industrial, al 

obtenerse por un lado, un gas con alto contenido en metano, y por otro lado, tanto 

abono orgánico que puede ser utilizado en los cultivos agrícolas como líquido 

depurado apto  para fertirrigación. Además, estos productos finales de los purines de 

cerdo, obtenidos tras un adecuado tratamiento, son homogéneos en su composición, 

libre de olores y de alta calidad, eliminándose, además, un residuo de elevada 

problemática. 

 

2.1.- Características de la planta de tratamiento de purines seleccionada. 

La planta sobre la que versarán todos los cálculos termoeconómicos objeto del 

presente trabajo es la planta de tratamiento de purín en Capella (Huesca) [5], la cual 

fue proyectada en 2009 por Sodemasa (a día de hoy Sarga) si bien, a fecha del 

presente trabajo, todavía no ha sido construida.  
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En el anexo I se hace una explicación detallada de la planta seleccionada, tanto de los 

procesos como de los distintos flujos, así de los datos técnicos de funcionamiento de 

la misma. No obstante, a continuación se describe brevemente la planta, comenzando 

con los principales procesos o etapas de los que consta dicha planta, los cuales se 

son los siguientes: 

 

- 1. Desbaste. En este proceso se produce la primera separación entre la parte 

sólida y la parte líquida, siendo la parte sólida enviada al digestor para la 

producción de biogás.  

 

- 2. Decantación primaria. En este proceso la parte líquida proveniente del 

clarificado es sometida a una decantación para separar los sólidos que pudiera 

contener, siendo éstos enviados al digestor para la producción de biogás. 

 
 

- 3. Tratamiento biológico. En este proceso se reduce el nitrógeno amoniacal 

mediante dos etapas consecutivas: nitrificación y desnitrificación. 

 
- 4. Decantación secundaria. Al igual que en la decantación primaria, el flujo  

proveniente del tratamiento biológico es sometido a una nueva decantación 

para separar los sólidos que todavía pudiera contener, siendo éstos enviados 

al digestor para la producción de biogás.  

 
- 5. Digestor. A partir de la parte solida del purín, es decir, de los lodos, en este 

proceso se lleva a cabo una digestión anaerobia con el objetivo producir un gas 

con alto contenido en metano. Una estrategia que permite optimizar esta 

digestión anaerobia es la digestión conjunta (co-digestión) del purín con uno o 

más sustratos diferentes (co-sustratos), tal y como se verá más adelante. 

 
- 6. Pulmón/Centrifugadora. En este proceso se lleva a cabo la concentración del 

fango. La parte líquida (digerido líquido) se recirculará hacia el tratamiento 

biológico ya que contiene todavía un alto contenido de nitrógeno amoniacal.  

 
- 7. Cogeneración. En este proceso se trasforma el gas producido tras la 

digestión anaerobia tanto en energía eléctrica como en energía térmica, la cual 

será empleada para cubrir las necesidades de la propia planta. En cuanto a la 

energía eléctrica sobrante, ésta se venderá a la empresa distribuidora. 
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Por otro lado, según consta en la memoria elaborada por Sodemasa [5], la 

composición del purín no tratado en la zona de Capella (Huesca) es la siguiente: 

PARÁMETROS Ud. VALORES 

DQO ppm 50.000 

DBO ppm 30.000 

Materia Seca % 4 

Materia en Suspensión %MS 70 

Nitrógeno Total 
N Amoniacal 
N. Orgánico 

ppm 
ppm 
ppm 

7.000 
5.000 
2.000 

Fósforo Total ppm 1.500 

Tabla 1. Caracterización del purín no tratado de la zona de Capella (Huesca). 

 

Finalmente, los resultados a obtener en función de los rendimientos de los distintos 

procesos son los siguientes [5]: 

 

- El rendimiento del tratamiento bilógico será el siguiente: 

o Reducción de nitrógeno total: 80% (reducción del nitrógeno amoniacal: 

95%) 

o Reducción del fosforo total: 70% 

o Concentración DQO: 4.000 ppm 

 

- El rendimiento de la digestión anaerobia considerando el purín espesado como 

único sustrato será el siguiente: 

o Producción de biogás: 666.667 m3/año (60%CH4). 

o Poder calorífico del biogás: 3.988.000 kWh/año 

o Producción de electricidad (rendimiento eléctrico, 38%): 1.515.440 

kWh/año, trabajando la planta durante 8.000 horas al año. 

o Producción de energía térmica (rendimiento térmico, 40%): 1.595.200 

kWh/año, trabajando la planta durante 8.000 horas al año (un 40% del 

calor generado irá destinado a calentar el fluido térmico de la 

calefacción de los digestores, mientras que el resto se utilizará para 

distintos usos de la propia planta). 
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2.2.- Co-digestión en las plantas de tratamiento de purines. 

La digestión anaerobia, también denominada biometanización, es un proceso biológico 

que ocurre en ausencia de oxigeno, en el cual gracias a la acción de varios grupos de 

bacterias, la materia orgánica se descompone, dando como resultado dos productos 

principales: biogás y digestato. Sin embargo, la producción de metano que se obtiene 

en el proceso no es muy elevada [6]. En concreto, en la planta objeto de análisis se 

producirían 6,6 m3 CH4 por tonelada de purín [5]. 

Para aumentar la producción de biogás es factible añadir otros sustratos a los residuos 

ganaderos, tales como residuos orgánicos agroindustriales (co-digestión). La principal 

ventaja de la co-digestión radica en el aprovechamiento de la sinergia de las mezclas, 

compensado las carencias de cada uno de los sustratos por separado [7].  

En el Anexo II se ha llevado a cabo un análisis en profundidad del estado del arte de la 

co-digestión anaerobia de residuos ganaderos y agroindustriales, observándose el 

incremento en la producción de metano al añadirse a la digestión del purín una serie 

de sustratos, tales como: residuos de la industria hortofrutícola, residuos de naranja, 

cultivos energéticos, residuos animales, residuos de la industria láctea, residuos de la 

fabricación del biodiesel así como FORSU (Fracción Orgánica de Residuos Sólidos 

Urbanos). No obstante, tras dicho estudio también se ha podido comprobar que la 

producción de metano en la co-digestión puede presentar diferencias significativas en 

función no solo del co-sustrato utilizado y de la cantidad de éstos, sino también del 

pre-tratamiento y de las sinergias entre los residuos, entre otros aspectos. 

En el presente trabajo, y tras el estudio del estado del arte de la co-digestión 

anaerobia, se han seleccionado los siguientes casos de estudio: 

- Caso I. Análisis del funcionamiento de la planta seleccionada sin co-digestión. 

- Caso II. Análisis del funcionamiento de la planta seleccionada con co-digestión 

de paja de trigo, donde se considerará que la adición de un 1% de paja al 

purín, permite incrementar la producción de metano en un 10 % [8]. 

- Caso III. Análisis del funcionamiento de la planta seleccionada con co-digestión 

de glicerina, donde se considerará que la adición de un 4% de glicerina al 

purín, permite incrementar la producción de biogás un 150% [9] y [10]. 

- Caso IV. Análisis del funcionamiento de la planta seleccionada con co-

digestión de residuos industriales, residuos de matadero y residuos de 

vegetales, donde se considerará que la co-digestión de un 66% de purín de 

cerdo, un 17% de residuos industriales, un 12% de residuos de matadero y 5% 

de residuos vegetales, produce 84 m3CH4/Tn de mezcla (en [11] cita a [12]).
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3. ANÁLISIS EXERGETICO DE LOS DISTINTOS FLUJOS DE LA PLANTA DE 
TRATAMIENTO DE PURINES DE CAPELLA. 

Una vez estudiados los principales procesos de tratamiento existentes en la planta 

objeto de estudio, han podido ser identificados los distintos flujos de materia y energía 

que forman parte de dicha de tratamiento. En la figura 1 que se muestra a 

continuación, se puede observar, de una manera esquematizada, es decir, agrupando 

algunos de los procesos de la planta, tanto los procesos como los distintos flujos que 

componen la planta de tratamiento de purín estudiada. 

 
Figura 1. Esquema de los distintos procesos y flujos que forman parte de la planta de tratamiento de purines 
de Capella (Elaboración propia). 
 

 

En cuanto a flujos representados en la figura 1, indicar lo siguiente:  

- los flujos de 1 a 11 son los flujos de purín;  

- los flujos de 13 a 19 son los flujos energéticos (los flujos del 13 al 17 son flujos 

de autoconsumo eléctrico de la propia planta, el flujo 18 indica el autoconsumo 

energético en la digestión, tanto eléctrico como térmico, y el flujo 19 es la 

energía sobrante generada y exportable al exterior, tanto eléctrica como 

térmica);  

- el flujo 12 es el flujo asociado al proceso de valoración de fangos (biogás);  

- el flujo 20, es el flujo del sustrato o sustratos añadidos al tratamiento en caso 

de existir co-digestión.  
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Para llevar a cabo el análisis exergético pretendido en el presente capítulo, una de las 

mayores dificultades que ha presentado el presente trabajo ha sido caracterizar cada 

uno de los parámetros de los distintos flujos que influyen en dicho análisis exergético, 

fundamentalmente los parámetros relativos a los flujos de purín, debido, 

principalmente, a la escasa información al respecto que figuraba en la memoria de la 

planta objeto de estudio [5]. Ante esta dificultad, se contactó directamente con 

Sodemasa, actualmente Sarga, con el objetivo de obtener un mayor conocimiento 

tanto del funcionamiento en general de la planta proyectada como de los parámetros 

más relevantes desde el punto de vista exergético. No obstante, teniendo en cuenta 

que la planta objeto de estudio a fecha del presente trabajo no está todavía construida, 

dichos técnicos no disponían de información real relativa por ejemplo al rendimiento de 

los distintos procesos (eliminación de materia orgánica o de nitrógeno y fosforo, entre 

otros aspectos), si bien, cae señalar, que la visión general del funcionamiento de una 

planta de tratamiento de purines facilitada por los mismos resultó vital para la 

realización del presente trabajo. Por lo tanto, para completar la caracterización de los 

flujos de purín, se realizó una amplia búsqueda de información con el objeto de 

recopilar toda la información necesaria para llevar a cabo el análisis exergético 

pretendido. En el anexo III se ha analizado detalladamente la caracterización de cada 

uno de los flujos, calculándose sus paramentaros más importantes desde el punto de 

vista exergético. 

 

3.1.- Ambiente de referencia. 

Para llevar a cabo un análisis exergético, lo primero que debe definirse es un ambiente 

de referencia. 

En primer lugar, cabe señalar que la exergía de cualquier sustancia puede ser 

separada en exergía física y exergía química. La exergía física representa el trabajo 

que se puede obtener por el llevar el sistema hasta las condiciones de temperatura y 

presión del ambiente de referencia, manteniendo su composición constante. Por otro 

lado, la exergía química representa el trabajo que se puede obtener por llevar una 

sustancia al equilibrio químico con el ambiente de referencia a temperatura y presión 

constante. Esta exergía química tiene dos contribuciones: la exergía de reacción, 

resultante de las reacciones necesarias para producir un compuesto a parir de las 

sustancia existentes en el ambiente de referencia; y la exergía de concentración, 

resultado de la diferencia de concentración de una sustancia con la concentración en 
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el ambiente de referencia. Por lo tanto, la exergía de cualquier sustancia o proceso 

tiene que ser calculada con respecto a un ambiente de referencia.  

Determinar un ambiente de referencia para llevar a cabo un análisis exergético es 

complejo, ya que hay discrepancias por parte de distintos investigadores a la hora de 

elegir uno u otro sistema de referencia para este análisis (Gaggioli and Petit [13], 

Sussman [14], Ahrendt [15], Van Gool [16], Szargut [17], Szargut et al. [18]). 

Según varios investigadores [19] y [20], en el caso del recurso hidrológico el ambiente 

natural de referencia elegido es el agua de mar. En el ciclo hidrológico, el mar es la 

referencia natural a la cual van a parar las corrientes de los ríos, diluyéndose el agua 

dulce en la masa de agua salada, alcanzándose de esta forma el equilibrio 

termodinámico y perdiendo toda posibilidad de producir trabajo (Tª, presión, 

velocidad,…). 

El agua de mar se puede suponer compuesta por agua pura y por una mezcla de 

materia inorgánica disuelta en forma de sales. Además, existen otros compuestos de 

nitrógeno y fosforo, así como de materia orgánica, también presentes en el agua de 

mar pero en bajas concentraciones. 

Por lo tanto, el ambiente de referencia elegido para el agua en el análisis realizado en 

el presente trabajo será el agua del mar Mediterráneo, considerándose que solamente 

está compuesto por sales disueltas en el agua pura [20], ya que de esta manera se 

pretende remarcar la diferencia entre el agua contaminada debido a las secreciones 

porcinas (con presencia principalmente de materia orgánica, nitratos y fosfatos) y el 

agua de mar (Ver anexo III). 

Por otro lado, el ambiente estable de referencia para otro tipo de sustancias distintas 

del agua, como compuestos gaseosos y fluidos térmicos estudiados en el presente 

trabajo, queda definido según el ambiente de referencia de Szargut [17] para las 

siguientes condiciones: 

- To, temperatura del ambiente de referencia, 298,15K. 

- Po, presión del ambiente de referencia, 1,01325 bar. 

 

3.2.- Exergía de los flujos de purín. 
 

La exergía de los flujos de purín estará compuesta por las dos componentes, 

indicadas anteriormente: la componente física y la química de la exergía. De este 

modo, la exergía de estos flujos va a quedar definida por su masa y por seis 

parámetros: temperatura, presión, composición, concentración, velocidad y altitud [19]. 
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Considerándose un fluido incompresible, la exergía especifica puede ser calculada 

mediante la siguiente expresión [17]: 

 
   
 
                                                                                                                                             (Ec.1) 
 

 

 

       

En la ecuación 1, el primer término corresponde a la componente térmica de la 

exergía, el segundo representa la componente mecánica, el quinto la componente 

cinética, mientras que el último hace referencia a la componente potencial (todas estas 

componentes determinan la exergía física). Los términos tercero y cuarto representan 

las componentes de formación y de concentración, componentes que determinan la 

exergía química. 

En el presente trabajo no se tendrán en cuenta las componentes físicas para el cálculo 

de la exergía de los flujos de purín (exergía térmica, exergía mecánica, exergía 

cinética y exergía potencial), al no ser significativas las variaciones de temperatura, 

presión, velocidad y altitud en las plantas de tratamiento de purines.  

Por lo tanto, el cálculo de la exergía para los flujos de purín en los distintos procesos 

vendrá definido únicamente por exergía química de sus componentes, los cuales, 

según la caracterización de los purines de cerdo de la zona de Capella llevado a cabo 

por Sodemasa [5], contienen tres tipos básicos de sustancias, además del agua: las 

cargas formadas por compuestos de carbono (DQO-DBO5), las cargas formadas por 

compuestos de nitrógeno (N-NH4-N-NH3-Norg), así como los compuestos de fosforo, 

sobretodo en forma de fosfato (P2O5). Para dicho cálculo de exergía se seguirá la 

metodología expuesta en [22]. 

  bpurín = bMI + bMO + bN + bP   (Ec.2) 

donde: 

o bMI, representa la exergía de la materia inorgánica compuesta por el agua pura 
y la contribución de las sales disueltas, calculada como exergía de 
concentración al considerarse sustancias presentes en el ambiente de 
referencia. 

o bMO, bN y bP, representan la exergía química de la materia orgánica y de los 
compuestos de nitrógeno y fosforo presentes en purín, ambos calculados como 
exergía química de formación al no considerarse presentes en el ambiente de 
referencia. 

 

Exergía térmica 
Exergía mecánica 

Exergía química Exergía 
concentración 

Exergía 
potencialExergía 

cinética 
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La exergía de la materia inorgánica, tanto del agua pura como de las sales, vendrá 

definida como la exergía química de concentración: 

bch,c=R To Σi xi ln(ai/ao)   (Ec.3) 

donde: 

o R, constante cuyo valor es 8,314 kJ/molK. 
o To, la temperatura para el ambiente de referencia (298,15K). 
o xi, representa la concentración molar de cada elemento de la mezcla. 
o ai, representa la actividad de la especie en la mezcla. 
o ao, representa la actividad de la especie en el ambiente de referencia. 

 

El cálculo de las actividades de las sales disueltas en el agua se debe llevar a cabo 

mediante las siguientes expresiones [23]:  

ai=γi mi     (Ec.4) 

donde: 

o mi, representa la molalidad de cada sustancia. La molalidad (moles de soluto 
por cada kilogramo de agua) de cada especie disuelta en el agua, puede 
obtenerse a partir de la salinidad del agua [24]: 

mi=wi ቀ
૚

࢏ࡹࡼ
ቁ ቆ

૚૙૙૙
૚ష࡯
૚૙૙૙

ቇ (Ec.5) 

Donde wi es la fracción másica del compuesto en la disolución, PMi es el peso 
molecular del compuesto i y C representa la salinidad. 

 

o γi, representa el coeficiente de activación. Este coeficiente puede obtenerse a 
partir de las siguientes expresiones:  
 

ln γi=
࢏ࢠ࡭ି

૛ √ࡵ

૚ାࡵ√࢏׎࡮
    (Ec.6)   ࡵ ൌ

૚

૛
∑ ࢏࢏࢓ ࢏ࢠ

૛ (Ec.7) 

 
Donde z es la valencia del ión, ׎i es diámetro efectivo del ión, I es la fuerza 
iónica del electrolito y A y B dos constantes, cuyo valor para el agua a 25ºC es 
de 0,51kg1/2mol1/2 y 3,287 109 kg1/2m-1mol-1/2 respectivamente [23]. 
 

 

Al conocerse la salinidad para el ambiente de referencia definido en el presente trabajo 

(36.700 ppm), podría obtenerse la actividad de referencia para los iones cloro y sodio, 

sabiendo que su valencia es 1 y que el diámetros efectivo del ión es de 3 10-10 y 4,5 

10-10m respectivamente (arCl=0,3845; arNa=0,4232). Por otro lado, en el caso del agua 

pura, en el cálculo de su actividad se puede considerar que el agua pura es un 

componente de la mezcla, por lo que aplicando la ecuación 8 y teniendo en cuenta que 

mtot representa la molalidad de los solutos (Na y Cl en nuestro caso), se obtiene un 

valor de 0,9778. 

arH2O= 1-0,017mtot    (Ec.8) 
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En el presente trabajo, al desconocerse la salinidad del agua presente en los purines 

de la planta de Capella (Huesca), no podrá calcularse la actividad en la mezcla ni, por 

lo tanto, la exergía de concentración de la materia inorgánica. Así pues, ante la 

imposibilidad de conseguir tal información, se considerará un valor para la exergía de 

concentración de la materia inorgánica junto con el agua de 2,5 kJ/kg purín, valor 

promedio obtenido en el estudio de las aguas de una potabilizadora y dos depuradoras 

de Zaragoza [22]. 

 

La exergía de la materia orgánica presente en el purín se calculará utilizando el 

estudio llevado a cabo por Tai [25], en el que representando la materia orgánica como 

CaHbOc (a, b y c son la cantidad de átomos de carbono, hidrogeno y oxigeno en la 

molécula), obtuvo relaciones entre los parámetros medidos para determinar la materia 

orgánica en los flujos (TOD: Total Oxygen Demand –Demanda Química de Oxigeno, 

DQO; TOC: Total Organic Carbon –Carbono Orgánico Total, COT) y su exergía 

química, las cuales se indican a continuación: 

bMO (J/l) =13,6 x TOD (mg/l)   (Ec.9) 

bMO (J/l) =45 x TOC (mg/l)   (Ec.10) 

 

En el caso de los compuestos de nitrógeno y fosforo, la aplicación de la aplicación 

de la ecuación 11 nos daría la exergía de formación a partir de las energías estándar 

de los elementos que dan lugar al compuesto. 

b0
ch (kJ/mol)= Σi yi (∆Gfi +Σenebch,ne)  (Ec.11) 

 

Para determinar la exergía del nitrógeno tomaremos la cantidad de nitrógeno total, es 

decir el nitrógeno Kjeldahl, ya que éste incluye tanto el nitrógeno amoniacal como el 

orgánico. No obstante, para determinar la exergía especifica de formación del 

nitrógeno, lo consideraremos como amonio (ܰܪସ
ା), ya que esta forma del nitrógeno 

representa un mayor porcentaje en el total, según la caracterización de los purines que 

figura en la memoria de la planta de Sodemasa [5]. Por lo tanto, de acuerdo con 

Szargut [23], la exergía de formación del nitrógeno es bch,N= 322,1 kJ/mol, mientras 

que la del fosforo, el cual está presente en el compuesto P2O5, es bch,P= 382,95 kJ/mol. 
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Por lo tanto, teniendo en cuenta lo expuesto en el presente apartado, la exergía 

especifica tanto de la materia orgánica como del nitrógeno y del fósforo, se 

determinará por medio de las siguientes expresiones: 

bMO (kJ/kg purín) =
૚૜,૟ ሺ

ࡶ
ࢍ࢓

ሻ · ࡻࡽࡰ ሺ
ࢍ࢓
࢒
ሻ

ሺ ࢔í࢛࢘࢖࣋
ࢍ࢑

૜࢓
ሻ

  (Ec.12) 

 

bP (kJ/kg purín) =
૞ࡻ૛ࡼ,ࢎࢉ࢈
࢕  ሺ

ࡶ࢑
࢒࢕࢓

ሻ · ࡼ ሺ
ࢍ࢓
࢒
ሻ

૞ሺࡻ૛ࡼࡹࡼ
ࢍ
࢒࢕࢓

ሻ·࢛࣋࢘࢖í࢔ ሺ
ࢍ࢑

૜࢓
ሻ
  (Ec.13) 

 

bN (kJ/kg purín) =
૝ࡴࡺ,ࢎࢉ࢈
࢕  ሺ

ࡶ࢑
࢒࢕࢓

ሻ · ࡷࢀࡺ ሺ
ࢍ࢓
࢒
ሻ

૝ሺࡴࡺࡹࡼ
ࢍ
࢒࢕࢓

ሻ·࢛࣋࢘࢖í࢔ ሺ
ࢍ࢑

૜࢓
ሻ
  (Ec.14) 

 

3.2.- Exergía asociada a los flujos en procesos de valorización del purín 

concentrado. Biogás. 

Mediante el proceso de digestión anaerobia de los fangos de la planta de tratamiento 

de purines seleccionada, se obtiene un gas con un alto contenido en metano (60%) 

denominado biogás, el cual puede ser empleado como combustible. 

La obtención de la exergía asociada a la corriente de biogás viene dada por la suma 

de la componente física y química, suponiendo el combustible gaseoso como una 

mezcla ideal de gases. Con estas suposiciones se ha aplicado la metodología 

desarrollada por Valero y Lozano [26] para determinar la exergía química del biogás: 

bch (kJ/mol) = Σxi (b
o

chi + R To lnxi)   (Ec.15) 

Donde: 

o xi, representan la fracción molar de la sustancia en la mezcla. 
o To, la temperatura para el ambiente de referencia (298,15K). 
o R, constante cuyo valor es 8,314 kJ/molK. 
o bo

chi, exergía de formación de la sustancia de la mezcla. 
 

Por otro lado, la componente de la exergía física se calculara de la siguiente manera: 

bfísica (kJ/kg) = Σxi ((hi – ho) - To (si-so))  (Ec.16) 

Donde: 

o h y s representan la entalpia y entropía del fluido a la temperatura y presión de 
trabajo (300K y 1,5bar). 

o ho, so y To representan los valores de entalpia, entropía y temperatura para el 
ambiente de referencia (298,15K y 1,01325bar). 
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3.3.- Exergía asociada a flujos de energía. 

Dentro de los flujos de energía, se consideran los procesos de transferencia de 

electricidad y de calor.  

- Flujos eléctricos: su contenido energético es igual a su contenido en exergía. 

 

- Flujos de calor: 

B (kW) = E·((h1 – h2) - To (s1-s2)/ (h1 – h2))  (Ec.17) 

Donde: 

o E, representa el valor energético de la corriente de calor. 
o To, representa la temperatura a la cual tiene lugar el proceso de calor. 
o s1, entropía del agua a la salida del motor. 
o s2, entropía del agua de retorno.   
o h1, entalpia del agua a la salida del motor. 
o h2, entalpia del agua de retorno.   

 

3.4.- Exergía asociada a los flujos de residuos en el proceso de tratamiento (Co-

digestión). 

Como ya se ha comentado anteriormente, en el presente trabajo se van a analizar tres 

casos diferentes de co-digestión: uno con paja de trigo, otro con glicerina y otro con 

una mezcla de residuos industriales (grasa), residuos de matadero y residuos 

vegetales (paja de trigo). 

 

3.4.1.- Exergía asociada a los flujos de paja de trigo. 

 
La composición elemental de la paja de trigo es: un 45,6% de Carbono, un 5,7% de 

hidrogeno, un 40% de oxigeno, un 0,7% de nitrógeno, 0,09 de azufre y un 7,9% de 

cenizas,  presentando un poder calorífico de 14.472 kJ/kg [27]. 

Según Kotas [28], la exergía química de los combustibles sólidos y líquidos se puede 

calcular asumiendo un coeficiente entre el valor de exergía química contenida y su 

poder calorífico. 

࣐ ൌ
ࢎࢉ࢈
૙

ࡵ࡯ࡼ
                 (Ec.18) 

 
Este coeficiente puede ser calculado a partir del análisis elemental en base seca y 

fracciones másicas mediante la siguiente expresión: 
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࣐ ൌ ૚, ૙૝૜ૠ ൅ ૙, ૚ૡૡ૛ ൉
ࢎ

ࢉ
൅  ૙, ૙૟૚૙ ൉

࢕

ࢉ
൅  ૙, ૙૝૙૝ ൉

࢔

ࢉ
           (Ec.19) 

 

3.4.2.- Exergía asociada a los flujos de glicerina. 
 
La glicerina o glicerol se genera en grandes cantidades como co-producto del proceso 

de fabricación de biodiesel, siendo su exergía 22.300kJ/kg [29]. 

 

3.4.3.- Exergía asociada a los flujos de grasa. 
 
La molécula que representa a la mayoría de los ácidos grasos presentes en la 

naturaleza es C12H32O2, la cual tiene un peso molecular de 282g/mol y poder calorífico 

de 38.874kJ/kg [30]. 

Al igual que en el caso de la paja de trigo, la exergía química de la grasa puede ser 

calculada mediante la ecuación 18. 

En este caso, el coeficiente puede ser calculado a partir del análisis elemental en base 

seca y fracciones másicas, según la ecuación 19. Para el caso de las grasas, los 

valores de hidrogeno, carbono, nitrógeno y oxigeno son 0,113, 0,766, 0 y 0,113 

respectivamente. 

 

3.4.4.- Exergía asociada a los flujos de residuos de matadero. 

 
La composición de los efluentes de los mataderos, los cuales contienen, aparte de una 

cantidad importante de agua, sangre, estiércol, pelos, grasas, huesos, proteínas y 

otros contaminantes solubles, depende del proceso de producción, de la separación 

en la descarga de materias como sangre, intestinos y desechos del suelo, variando 

incluso dicha composición de un día a otro [31]. En el Anexo III se detalla la 

composición utilizada para el cálculo de la exergía de dichos residuos. 

La exergía de los flujos de residuos se matadero se calculara igual que la de los flujos 

de purín, es decir, mediante las ecuaciones 2, 12, 13 y 14. 

 

3.5.- Resultados del análisis exergético. 

 
Mediante la aplicación del programa informático EES (Engineering. Equation Solver), 

programa que permite resolver numéricamente miles de ecuaciones no lineales, 
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disponiendo de una amplia base de datos de propiedades termodinámicas y de 

transporte para cientos de sustancias, se han simulado los cuatro casos de estudio: 

- Caso I. Análisis del funcionamiento de la planta seleccionada sin co-digestión. 

- Caso II. Análisis del funcionamiento de la planta seleccionada con co-digestión 

de paja de trigo. 

- Caso III. Análisis del funcionamiento de la planta seleccionada con co-digestión 

de glicerina. 

- Caso IV. Análisis del funcionamiento de la planta seleccionada con co-

digestión de residuos industriales, residuos de matadero y residuos de 

vegetales. 

A continuación se muestran los resultados obtenidos relativos a la exergía contenida 

en cada uno de los flujos de la planta de tratamiento de purines de Capella: flujos de 1 

a 11 son los flujos de purín; flujos de 13 a 19 son los flujos energéticos; flujo 12 es el 

flujo asociado al proceso de valoración de fangos (biogás); flujo 20, es el flujo del 

sustrato o sustratos añadidos al tratamiento en caso de existir co-digestión.  

 

 FLUJO 
SIN CO-DIGESTIÓN 

 
Exergía, kW 

CO-DIGESTIÓN 
con paja de trigo

 
Exergía, kW 

CO-DIGESTIÓN 
con glicerina 

 
Exergía, kW 

 
CO-DIGESTIÓN 
con residuos 

 
Exergía, kW 

1 1687 1687 1687 1687 

2 1347 1347 1347 1347 

3 710,1 710,1 710,1 710,1 

4 420,1 420,1 420,1 420,1 

5 159,2 159,2 159,2 159,2 

6 636,6 636,6 636,6 636,6 

7 260,9 260,9 260,9 260,9 

8 339,9 339,9 339,9 339,9 

9 631,8 760,6 741,2 6774 

10 370,8 499,6 480,3 6513 

11 260,9 260,9 260,9 260,9 

12 584,6 643,1 1462 6514 

13 0,18 0,18 0,18 0,18 

14 0,25 0,25 0,25 0,25 

15 110,8 110,8 110,8 110,8 

16 0,25 0,25 0,25 0,25 

17 19,5 19,5 19,5 19,5 

18 70,37 76,71 90,43 287,8 

19 21,06 37,06 335,1 2063 

20 - 198,5 1084 16320 

Tabla 2. Resultados exegéticos de los flujos de los cuatro casos analizados. 
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Por lo tanto, a la vista de los resultados del análisis exergético se puede obtener las 

siguientes conclusiones: 

- Algunos de los flujos de purín de la planta (1, 2, 3, 4, 5, 6, 7, 8 y 11) no 

cambian su contenido exergético pese a llevarse a cabo los distintos tipos de 

co-digestión. Esta invariabilidad se debe a que la adición de co-sustratos a la 

digestión anaerobia, donde se encuentra el purín concentrado, no afecta al 

línea del clarificado (suponiéndose también invariable para los cálculos el flujo 

11,  flujo de recirculación del digerido clarificado). Por otro lado, en cuanto a los 

flujos energéticos de consumo de la planta (del 13 al 18), tan solo varia el flujo 

18 relativo al consumo del digestor, ya que algunos co-sustratos para poder ser 

digeridos es necesario someterlos a una pre-tratamiento, tal y como se ha 

explicado en el Anexo III. 

- Los flujos del 1 al 8, todos ellos flujos de purín, presentan un alto contenido 

exergético, principalmente debido a la materia orgánica (tablas 80, 83, 87 y 91), 

sin verse éstos alterados por la adición de co-sustratos a la digestión. 

- Los flujos 9 y 10, flujos de purín, correspondientes al digerido y al digerido 

sólido respectivamente, también presentan un alto contenido exergético debido 

a la materia orgánica presente en su composición. En este caso, estos flujos se 

ven afectados por la adición de co-sustratos, comprobándose que pese a que 

hay un mayor aporte de exergía en el caso III con los co-sustratos respecto 

caso II (flujo 20), la exergía de estos flujos disminuye debido al mejor 

rendimiento de la digestión anaerobia con glicerina que con paja de trigo.  

- Del mismo modo, el flujo 11, flujo de purín, correspondiente al digerido 

clarificado también contiene un alto contenido exergético sin verse afectado por 

la co-digestión, ya que se ha considerado que al ser líquido clarificado con un 

alto contenido en agua, apenas se ve modificada su composición con la adición 

de co-sustratos a la digestión. 

- La exergía del flujo 12, flujo de biogás, aumenta conforme aumenta la exergía 

de los sustratos añadidos (flujo 20). La exergía contenida en dicho flujo se 

debe fundamentalmente a su componente química (tablas 81, 84, 88 y 92). 

- La exergía contenida en los flujos energéticos debidos al consumo de la propia 

planta (flujos del 13 al 18) es muy pequeña comparándola con la exergía de los 

flujos anteriores, salvo en el caso del flujo 15, debida al alto consuno eléctrico 

del biorreactor en el tratamiento biológico. 

- La exergía del flujo 19, flujo energético correspondiente a la energía sobrante 

de la planta, aumenta conforme aumenta la exergía de los sustratos añadidos 
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(flujo 20). Como se puede observar en las tablas 82 y 85, en el caso de que no 

exista ningún tipo de co-digestión o se produzca una co-digestión con paja de 

trigo, la exergía de dicho flujo se debe fundamentalmente al calor sobrante, ya 

que en estos casos, la energía eléctrica generada por la planta está destinada 

prácticamente en su totalidad a cubrir las necesidades de la misma. Por otro 

lado, tanto en la co-digestión con glicerina como con mezcla de distintos 

residuos, tal y como se puede observar en las tablas 89 y 93, la exergía del 

flujo 19 de debe principalmente a la energía eléctrica sobrante generada por la 

misma. 

 

Por otro lado, una vez analizada la exergía contenida en cada uno de los flujos, y 

teniendo en cuenta la distribución de los mismos (Figura 1), a continuación se va a 

estudiar la irreversibilidad de cada uno de los procesos de los que está compuesta la 

planta analizada. 

La irreversibilidad es la magnitud física que representa la energía perdida o destruida 

(destrucción de exergía) en los procesos físicos.  

Irreversibilidad = Exergía de entrada (Binput) - Exergía de salida (Boutput)>0 

 

A continuación se muestran las irreversibilidades que presentaron los distintos 

procesos en cada uno de los casos analizados.  

PROCESO 
SIN CO-

DIGESTIÓN 
CO-DIGESTIÓN 

con paja de trigo 
CO-DIGESTIÓN 

con glicerina 
CO-DIGESTIÓN 
con residuos 

Desbaste 0,3 0,3 0,3 0,3 

Decantación Primaria 0,5 0,5 0,5 0,5 

Tratamiento Biológico 661,7 661,7 661,7 661,7 

Decantación Sec. 5,1 5,1 5,1 5,1 

Digestión 91,4 108,9 208,6 4557,2 

Pulmón/Centrifuga 19,8 19,9 19,8 20,8 

Cogeneración 362,2 398,4 905,5 4032,2 

Tabla 3. Irreversibilidades presentes en los distintos procesos para cada uno de los casos analizados en 
la planta de tratamiento de purines de Capella (unidades expresadas en kW). 

 

A la vista de los resultados, podemos observar que los procesos con mayores 

irreversibilidades son: la digestión, la cogeneración y el tratamiento biológico: 
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- En el caso de la digestión y de la cogeneración, estas irreversibilidades tienen 

lugar porque estos equipos no son perfectos, y conforme aumenta la 

producción de biogás con la co-digestión, lógicamente aumenta su 

irreversibilidad.  

- El caso del tratamiento biológico es diferente, ya que dicho proceso está 

proyectado para que sea irreversible, es decir, para conseguir una disminución 

de nitrógeno y de materia orgánica (DQO). Dicho proceso esta dimensionado 

para reducir el nitrógeno sobrante, ya que si hay un excedente de este 

nutriente debe ser trasportado a largas distancias para poder ser aplicado en el 

suelo, lo que conlleva un alto coste en trasporte. 

 

Por otro lado, se puede comprobar que la irreversibilidad en este proceso se 

mantiene constante independientemente del caso analizado, lo cual es debido 

a que la adición de sustratos para la co-digestión influye directamente en el 

proceso de la digestión, al producirse un mayor biogás, y por lo tanto también 

en la cogeneración, y mínimamente en la decantación centrifuga, al 

incrementarse por un lado el digerido a decantar (flujo 9) pero también el 

digerido sólido obtenido (Flujo 10). El líquido clarificado tras la decantación 

centrifuga (flujo 11), el cual se recircula hacia el tratamiento biológico, puede 

verse mininamente alterado por la adición de sustratos, si bien, al estar 

formado principalmente por agua, se ha considerado invariable en el presente 

trabajo, motivo por el cual no se refleja ninguna variación en el tratamiento 

biológico. 
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4. ANÁLISIS TERMOECONOMICO DE LA PLANTA DE TRATAMIENTO DE 
PURINES DE CAPELLA. 

El análisis termoeconómico combina el análisis termodinámico y el económico 

aplicando el concepto del coste (originariamente una propiedad económica) a la 

exergía (una propiedad termodinámica). La mayoría de los expertos en esta materia 

están de acuerdo en que la exergía es la propiedad termodinámica más adecuada 

para asociarla al coste, ya que contiene información de la Segunda Ley de la 

Termodinámica y tiene en cuenta la calidad de la energía [32], [33], [34] y [35]. En el 

anexo IV se ha llevado a cabo una recopilación de los principales fundamentos 

termoeconómicos.  

 

4.1. Estructura productiva. 

Lo primero que hay que analizar para estudiar la estructura productiva de la planta de 

tratamiento de purines de Capella es el objetivo final de dicha planta. El objetivo de 

cualquier planta de tratamiento de purines, desde el punto de vista productivo (ya que 

el objetivo principal de las plantas de tratamiento de purines es acabar con la 

contaminación generada por las deyecciones ganaderas), y para lo cual se añaden 

sustratos a la digestión, es, principalmente, obtener un gas con alto contenido en 

metano (sin co-digestión el gas obtenido apenas genera energía eléctrica a cubrir las 

demandas de la propia planta), a partir de los lodos del purín. Además, en este 

proceso de tratamiento de purines también se obtiene, por un lado, fertilizante sólido, 

que puede ser utilizado en los cultivos agrícolas, y, por otro lado, líquido depurado 

apto para la fertirrigación de las fincas adyacentes a la planta, ya que ambos 

productos contienen nutrientes idóneos para abonar los cultivos agrícolas. 

Por otro lado, cada componente de la planta tiene un propósito productivo que 

contribuye a alcanzar el objetivo final de producción de la planta. En el Anexo I se ha 

explicado en profundidad el funcionamiento de cada uno de los componentes, no 

obstante, a continuación se va a explicar brevemente el objetivo productivo de cada 

uno de los componentes indicados en la figura 1. 

 

- 1. Desbaste. El objetivo de esta etapa es separar la parte sólida de la líquida 

una vez recepcionado el purín, siendo la parte sólida enviada al digestor para 

la producción de biogás.  
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- 2. Decantación primaria. Al igual que el desbaste, el objetivo de esta etapa es 

volver separar nuevamente la parte sólida de la líquida del flujo clarificado 

proveniente del desbaste, siendo la parte sólida enviada al digestor para la 

producción de biogás. 

 
- 3. Tratamiento biológico. El objetivo de esta etapa es reducir el nitrógeno 

amoniacal mediante dos etapas consecutivas: nitrificación y desnitrificación. 

 
- 4. Decantación secundaria. Al igual que en la decantación primaria, el objetivo 

de esta etapa es volver separar nuevamente la parte sólida en el flujo 

proveniente del tratamiento biológico, para enviarla al digestor. 

 
La parte líquida (clarificado, flujo 5), se utilizará para fertirrigación de las fincas 

próximas a la planta, ya que dicho clarificado proporciona un aporte importante 

de nutrientes. Por lo tanto, teniendo en cuenta que los nutrientes, nitrógeno y 

fosforo, son utilizados como fertilizantes, pero que la materia orgánica 

contenida en este flujo no tiene un destino final útil, para el análisis 

termoeconómico se considerará al flujo 5 como suma de dos flujos: flujo de 

nutrientes considerados como producto útil (flujo 5) y flujo de materia orgánica 

considerado como producto no aprovechable (flujo 22), requiriendo, por lo 

tanto, este flujo 22 un equipo disipativo (llamado más adelante “disipativo 

balsa”). 

 
- 5. Digestor. El objetivo del digestor es producir un gas con alto contenido en 

metano, a partir de la parte solida del purín. 

 
- 6. Pulmón/Centrifugadora. El objetivo de esta etapa es la concentración del 

fango. La parte líquida (digerido líquido) se recirculará hacia el tratamiento 

biológico ya que contiene todavía un alto contenido de nitrógeno amoniacal.  

 
La parte sólida (digerido sólido), al poseer un alto contenido en nutrientes, se 

utilizara como fertilizante, sustituyendo al abono mineral requerido por el suelo. 

Por lo tanto, al igual que ocurría con el clarificado tras la decantación 

secundaria, teniendo en cuenta que los nutrientes, nitrógeno y fosforo, son 

utilizados como fertilizantes, pero que la materia orgánica contenida en este 

flujo no tiene un destino final útil, para el análisis termoeconómico se 

considerará al flujo 10 como suma de dos flujos: flujo de nutrientes 

considerados como producto útil (flujo 10) y flujo de materia orgánica 

considerado como producto no aprovechable (flujo 23), requiriendo, por lo 
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tanto, este flujo 23 un equipo disipativo, (llamado más adelante “disipativo 

digerido”). 

 
- 7. Cogeneración. El objetivo de esta etapa es trasformar el gas con alto 

contenido en metano proveniente del digestor tanto en energía eléctrica como 

en energía térmica. 

 

 

Una vez analizado el objetivo de cada uno de los procesos, a continuación se indican 

las definiciones Fuel-Producto de los procesos tanto productivos como disipativos:  

 

 
PROCESO 

 

 
FUEL 

 

 
PRODUCTO 

 

1. DESBASTE 

   

 
 
Diferencia entre el purín virgen y 
la parte líquida de éste, más la 
energía eléctrica para accionar la 
reja automática circular de este 
proceso. 
 
 
 
 
 
B1-B2+B13 
 

 
 
Exergía del purín 
concentrado. 
 
 
 
 
 
 
 
 
B8 

 
2.DECANTACIÓN PRIMARIA 

 

 
 
 

 
 
Diferencia de exergía entre el 
clarificado proveniente del 
desbaste inicial y la parte líquida 
de éste, más la energía eléctrica  
consumida por la bomba 
destinada a impulsar los fangos 
hacia el digestor. 
 
 
B2-B3+B14 

 
 
Exergía del purín 
concentrado. 
 
 
 
 
 
 
 
B6 
 

 
 

3.TRATAMIENTO BIOLÓGICO 
 

 
 

 
 
Exergía del clarificado 
proveniente de la decantación 
primaria, del digerido líquido 
proveniente de la digestión y la 
energía eléctrica necesaria para 
el funcionamiento tanto para las 
bombas como del Biorreactor. 
 
 
 
B3+B11+B15 
 

 
 
Exergía del clarificado con 
bajo contenido en nitrógeno 
amoniacal. 
 
 
 
 
 
 
 
B4 
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4.DECANTACIÓN SECUNDARIA 
 

 
 

 
 
Diferencia entre la exergía del 
clarificado proveniente del 
tratamiento biológico y la de la 
Materia Orgánica y nutrientes, 
más la energía eléctrica necesaria 
para el funcionamiento de una 
bomba. 
 
 
 
B4-B22-B5+B16 
 

 
 
Exergía del purín 
concentrado. 
 
 
 
 
 
 
 
 
B7 

 
 

5.DIGESTIÓN 
 
 

 
 
 

 

 
 
Diferencia entre la exergía de los 
lodos de purín provenientes de los 
diferentes procesos y la del 
digerido, más la de los sustratos 
añadidos para mejorar la 
digestión y la energía tanto 
eléctrica como termina para llevar 
a cabo dicha digestión. 
 

 
 

B6+B7+B8-B9+B20+B18 
 

 
 
Exergía del biogás producido.
 
 
 
 
 
 
 
 
 
 
B12 

 
 

6.CENTRIFUGADORA 
 
 

 
 

 
 
Diferencia entre la exergía del 
digerido y  la del digerido líquido, 
más la energía eléctrica necesaria 
para el funcionamiento de los 
equipos de la decantación 
centrifuga 
 
 
 
B9-B11+B17 
 

 
 
Exergía de los nutrientes 
aprovechables como 
fertilizantes y la de la materia 
orgánica no aprovechable. 
 
 
 
 
 
B10+B21 

 
7.COGENERACIÓN 

 

 

 
Exergía del biogás. 
 
 
 
 
 
 
 
 
B12 
 

 
Exergía de todos los flujos de 
energía de la planta, tanto de 
autoconsumo como 
exportables. 
 
 
 
 
 
B13+B14+B15+B16+B17+B
18+B19 
 

 
 

8. DISIPATIVO DIGERIDO 
 

 
 
 

 
 
Exergía en la materia orgánica no 
aprovechable. 
 
 
 
 
 
B21 

 
 
 
 
 
 
 
 
 
B23 
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9. DISIPATIVO BALSA 

 
 

 
 
Exergía en la materia orgánica no 
aprovechable. 
 
 
 
 
B22 

 
 
 
 
 
 
 
 
B24 

Tabla 4. Definiciones Fuel-Producto de los distintos procesos de la planta de tratamiento de Capella 
(Huesca). 

 

Una vez analizadas las definiciones Fuel-Producto para cada uno de los procesos por 

separado, así como el objetivo de dichos procesos, en la figura 2 que se muestra a 

continuación, se ilustra, de una manera esquematizada, la estructura productiva de la 

planta de tratamiento objeto de estudio. 

 

 
Figura 2. Estructura productiva de la planta de tratamiento de purines de Capella. 
 

Teniendo en cuenta la estructura productiva definida para la planta de tratamiento de 

purines objeto de estudio (figura 2), a continuación se muestra el modelo de cálculo la 

tabla F-P para la planta de tratamiento de purines analizada en el presente trabajo. La 

tabla Fuel-Producto es la representación matricial de la interdependencia del proceso 

productivo de un sistema, siendo los “input” de cada proceso sus recursos y los 

“output” sus productos. En el anexo IV se han mostrado las tablas F-P para cada uno 

de los cuatro casos analizados. 
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Tabla 5. Modelo de cálculo de la tabla F-P según la estructura productiva de la planta de tratamiento estudiada definida en la 
Figura 2.  

 

Finalmente, y a modo de resumen, indicar que el Fuel de la planta de tratamiento de 

purines objeto de estudio es el purín de entrada (B1) y los sustratos utilizados en caso 

de co-digestión (B20), mientras que el producto final útil de la planta es la energía 

sobrante generada por la planta (B19), así como los nutrientes procedentes tanto del 

digerido (B10) como del clarificado (B5). 

El proceso de tratamiento de purines genera también un producto no aprovechable, el 

cual será considerado como residuo. Este residuo es la materia orgánica tanto del 

digerido (B21) como del clarificado (B22).  

En figura 3 que se muestra a continuación, se puede observar, de una manera 

esquematizada, el Fuel y el Producto final de la planta de tratamiento de purín objeto 

de estudio, indicados en el párrafo anterior. 

 

 
Figura 3. Fueles y Productos de la planta de tratamiento de purines de Capella. 

 

A continuación se indica la exergía contenida en estos flujos para cada uno de los 

casos analizados, calculada y analizada en el Anexo III. 
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Flujo 

B1 
(kW) 

 
Fuel 

B20 
(kW) 

 
Fuel 

B19 (kW) 
Producto 

Aprovechable

B10 (kW) 
Producto 

Aprovechable

B5 (kW) 
Producto 

Aprovechable

B21 (kW) 
Producto no 

Aprovechable 

B22 (kW) 
Producto no 

Aprovechable

Sin co-
digestión 

1.687 - 21,06 19,7 49,3 350,8 105 

Co-dig.  
Paja de 

trigo 
1.687 198,5 37,06 19,7 49,3 479,5 105 

Co-dig.  
Glicerina 1.687 1.084 335,1 19,7 49,3 460,2 105 

Co-dig.  
Residuos 1.687 16.320 2.063 19,7 49,3 6.492 105 

Tabla 6. Resumen de la exergía contenida tanto en los distintos Fueles como en los Productos y residuos de la 
planta de Capella. 

 
 

Como se puede observar en la tabla anterior, los procesos de tratamiento de purines, 

vistos desde un punto de vista termodinámico, pueden ser considerados como anti-

exergéticos, ya que, por un lado, se produce una disminución de exergía entre el 

estado inicial de entrada y final de salida, y, por otro lado, se genera un residuo con un 

alto contenido exergético, como es la materia orgánica tras la decantación secundaria 

y centrifuga. 

 

4.2.- Análisis de la asignación de costes de los residuos.  

No hay reglas generales para el tratamiento de los componentes disipativos, aunque 

en general deben ser tratados como residuos y el coste de las irreversibilidades 

asociadas con su operación debe ser imputada como fuel de los procesos de la planta 

que entran en su proceso de formación [36]. 

Para analizar el estudio de los costes exergéticos de los productos, en el presente 

trabajo se han planteado dos criterios de asignación de costes de los residuos. 

 

 CRITERIO 1. 

Según este criterio, todo el residuo procedente del digerido, B23 

(componente 8 –Disipativo Digerido-), sería asignado al proceso de 

digestión, mientras que el residuo procedente del clarificado, B24 

(componente 9 –Disipativo Balsa-), sería asignado al tratamiento biológico 

únicamente. Por lo tanto, según este criterio, la matriz de los coeficientes de 

distribución de los residuos, ‹RP›, quedaría de la siguiente manera: 
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Tabla 7. Coeficientes de distribución de residuos según el criterio 1.  

 

 CRITERIO 2. 

En el presente trabajo se propone un nuevo criterio de asignación de los 

costes de los residuos en base a la exergía que se “quita” del clarificado, es 

decir, de la exergía tanto que se destruye como de la que pasa a la línea de 

fangos, ya que de esta manera, aparte de la influencia de la eficacia del 

tratamiento biológico, también podrá verse la influencia de la eficacia tanto 

del desbaste como de la decantación primaria, cuyo objetivo es separar los 

fangos de la corriente liquida del purín. Por lo tanto, la asignación quedaría 

de la siguiente manera: 

 Residuo procedente del clarificado, B22: 

- Desbaste: B1-B2 

- Decantación 1ª: B2-B3 

- Tratamiento Biológico: B3+B11-B4 

- Decantación 2ª: B4-B5-B22 

Residuo procedente del digerido, B21: 

En el caso del digerido, se podría asignar todo al digestor, pero, por 

coherencia con el clarificado, se seguiría el mismo proceso, es decir: 

- Digestor: B6+B7+B8+B20-B9. 

- Pulmón/Centrifuga: B9-B10-B21. 

 

Por lo tanto, según este criterio, el modelo de cálculo de la matriz de los 

coeficientes de distribución de los residuos, ‹RP›, quedaría de la siguiente 

manera (en el Anexo IV se muestra la matriz RP para cada uno de los cuatro 

casos analizados): 
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Tabla 8. Modelo de cálculo de loa coeficientes de distribución de residuos según el criterio 1.  

 

Teniendo en cuenta que el análisis de los residuos es sensible a la eficacia de los 

distintos equipos/procesos, para llevar a cabo el análisis termoeconómico pretendido 

en el presente capitulo, se considerará el nuevo modelo de cálculo desarrollado en el 

presente trabajo y definido según el criterio 2.  

 

4.3. Análisis de resultados termoeconómicos. 

A continuación se van ir mostrando y analizando los resultados termoeconómicos 

obtenidos: eficiencia exegética, costes exergéticos unitarios y descomposición de 

costes exergéticos unitarios. 

4.3.1.- Eficiencia exegética de los procesos. 

La eficiencia exergética es definida según Valero y cols. [37] como la proporción del 

valor exergético de los productos (P) en relación con la exergía contenida en el fuel 

(F). 

η =ࡼ
ࡲ
                                 (Ec. 20) 

En la tabla 9 se muestran los resultados obtenidos relativos a la eficiencia exergética 

de los distintos procesos de la planta de tratamiento para cada unos de los casos 

analizados.  

PROCESO 
SIN CO-

DIGESTIÓN 
CO-DIGESTIÓN 

con paja de trigo 
CO-DIGESTIÓN 

con glicerina 
CO-DIGESTIÓN 
con residuos 

Desbaste 99,9% 99,9% 99,9% 99,9% 

Decantación Primaria 99,9% 99,9% 99,9% 99,9% 

Tratamiento Biológico 38,8% 38,8% 38,8% 38,8% 

Decantación Sec. 98% 98% 98% 98% 

Digestión 86,4% 85,5% 87,5% 58,8% 

Pulmón/Centrifuga 94,9% 96,1% 96% 99,6% 

Cogeneración 38% 38% 38% 38% 

Tabla 9. Eficiencia exergética de los distintos procesos para cada uno de los casos analizados en la 
planta de tratamiento de purines de Capella (Huesca). 



ANÁLISIS TERMOECNÓMICO DE UNA PLANTA DE TRATAMIENTO DE PURINES 

28 
 

A la vista de los resultados, se puede comprobar que el proceso menos eficaz, desde 

el punto de vista exergético, es el tratamiento biológico, ya que como ya se ha 

explicado anteriormente, dicho proceso está concebido para eliminar materia orgánica 

y nitrógeno, seguido de la cogeneración. 

Por otro lado, también se puede observar que el rendimiento del digestor en la co-

digestión con mezcla de residuos es muy bajo en comparación con el que presenta el 

resto de casos analizados. Dicha diferencia puede deberse a que en este caso, la 

materia orgánica de los sustratos añadidos, en concreto de los residuos industriales, 

considerada para el cálculo exergético puede estar sobre valorada, ya que se han 

tenido que realizar ciertas suposiciones al desconocerse qué tipo de grasas habían 

sido empleadas para el experimento en el que se determinó la cantidad de metano 

producido por tonelada de mezcla de residuos [11].  

 

4.3.2.- Coste exergético unitario. 

El coste exergético unitario se define como la cantidad de recursos, medidos en 

términos de exergía, necesarios para obtener una unidad de producto, lo que permite 

establecer de forma objetiva el precio de los productos en cada proceso. Por tanto, el 

análisis de costes en el presente trabajo nos va a permitir identificar de forma objetiva 

el posible ahorro que conlleva incorporar una co-digestión en una planta de 

tratamiento de purines. 

Los costes exergéticos unitarios de los productos se determinaran mediante las 

siguientes expresiones [37]: 

ࡼ࢑
כ ൌ

כࡼ

ࡼ
       (Ec.21) 

Donde: 

o P*, representa el vector de los costes exergéticos de los productos, kW. 
o P, representa el vector de los productos de los procesos (n × 1), kW. 
o kP*, representa el coste exergético unitario de los productos. 

 
 

P* = (UD-‹FP›-‹RP›)-1·Fe            (Ec.22) 

Donde: 

o UD, representa la matriz de identidad (n × n). 
o ‹FP›, representa la matriz de coeficientes de distribución (n × n).  
o Fe, representa el vector de los recursos externos de los componentes (n × 1), kW. 
o ‹RP›, representa la matriz de coeficientes de distribución de los residuos (n × n).  
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En la tabla 10 se muestran los costes exergéticos unitarios de los productos obtenidos 

en cada uno de los procesos de la planta mediante las ecuaciones 21 y 22 (en el 

Anexo IV se pueden observar las operaciones anteriores detalladas para cada uno de 

los cuatro casos analizados). 

PROCESO 
SIN CO-

DIGESTIÓN 
CO-DIGESTIÓN 

con paja de trigo 
CO-DIGESTIÓN 

con glicerina 
CO-DIGESTIÓN 
con residuos 

1.Desbaste 1,91 1,77 1,29 1,29 

2.Decantación Primaria 1,90 1,77 1,29 1,29 

3.Tratamiento Biológico 15,26 12,98 5,03 5,01 

4.Decantación Sec. 16,49 14,02 5,43 5,41 

5.Digestión 13,43 11,37 2,81 3,27 

6.Pulmón/Centrifuga 9,58 6,91 2,22 1,13 

7.Cogeneración 35,30 29,88 7,39 8,59 

8.Disipativo Digerido 9,58 6,91 2,22 1,13 

9.Disipativo Balsa 15,26 12,98 5,03 5,01 

Tabla 10. Costes exergéticos unitarios de los productos para cada uno de los cuatro casos analizados. 
 
 

A la vista de los resultados, podemos observar que los mayores costes exergéticos 

unitarios tienen lugar en el caso en el que no exista co-digestión alguna en el 

tratamiento de los purines.  

Por un lado, se puede observar una tendencia decreciente de los costes en todos los 

procesos conforme se incrementa la producción de biogás, tanto en la co-digestión 

con paja de trigo como en el caso de la glicerina. En la co-digestión de paja de trigo, 

cuya producción de biogás es de 733.333m3/año, los costes disminuyen respecto al 

caso base, y con co-digestión de glicerina, cuya producción de biogás es de 

1.666.667m3/año, los costes disminuyen respecto a la co-digestión de paja de trigo. 

Dicha disminución de los costes exergéticos unitarios es debida, fundamentalmente, a 

los siguientes aspectos termoeconómicos: 

 

- La mayor producción de biogás y, por lo tanto, de producto final útil 

(energía sobrante, B19), permite que los costes debidos a los residuos 

generados, los cuales incluso en el caso de la materia orgánica del 

digerido aumentan con la co-digestión (tabla 6), sean más repartidos, 

traduciéndose este hecho en una disminución de los costes exergéticos de 

cada uno de los procesos. 

- Al llevarse a cabo la co-digestión, se introduce a la digestión una serie de 

sustratos, (B20), los cuales al ser producto del exterior tienen coste 

exergético unitario igual a uno. Por lo tanto, cuanto mayor sea este flujo 
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(tabla 6), y teniendo en cuenta que la eficacia de los equipos es similar en 

el caso sin co-digestión y con co-digestión de paja y glicerina, menores son 

los costes exergéticos de los productos de la digestión. 

 

Por otro lado, se puede observar que en el caso de la co-digestión con mezcla de 

residuos, pese a que la producción de biogás es de 7.428.400m3/año, esta tendencia 

decreciente de los costes exergéticos en todos los procesos no se mantiene. En 

concreto, en el proceso de la digestión estos costes aumentan con respecto al caso de 

la glicerina, lo cual es debido a la baja eficiencia exergética de dicho proceso (tabla 9) 

y, por lo tanto, este aumento de los costes en el digestor induce que también que 

aumenten los costes en la cogeneración, ya que este proceso va seguido de la 

digestión. Sin embargo, llama la atención que los costes en el proceso 6 

(pulmón/centrifuga), proceso que también esta seguido de la digestión, bajan con 

respecto a la glicerina. Si observamos la estructura productiva definida para la planta 

de tratamiento de purines objeto de estudio (figura 2), se puede observar la influencia 

directa que tiene el flujo 20 en este proceso, por lo tanto, al tener el flujo 20 coste 

exergético uno, como se comentado en el párrafo anterior, y contener una gran 

cantidad de exergía (16.320kW, tabla 6), este hecho se traduce en que el coste 

exergético unitario del proceso 6 se aproxime mas a uno, produciéndose, por lo tanto, 

una disminución con respecto a los otros casos en los que el contenido exergético del 

flujo 20 es menor. Del mismo modo, esta disminución de los costes en el 

pulmón/centrifuga induce que también disminuyan los costes en componente disipativo 

del digerido. 

En el resto de los procesos de la co-digestión con mezcla de residuos (desbaste, 

decantación primaria, tratamiento biológico, decantación secundaria y en el disipativo 

de la balsa), los costes se mantienen prácticamente igual que en el caso de la 

glicerina, ya que al tener estos componentes, en mayor o menor medida, relación tanto 

con la digestión como con el pulmón/centrifuga, en los que aumentan y disminuyen los 

coses respectivamente, tal y como se ha explicado,  una influencia compensa a la otra, 

traduciéndose en un equilibrio de los costes en estos equipos. 

 

Finalmente, en la tabla 11 que se muestra a continuación se resumen las variaciones 

de los costes exergéticos unitarios de los productos de los casos analizados con co-

digestión con respecto al caso base, es decir, sin co-digestión. 
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 Prod. 
Biogás 

Costes exergéticos unitarios 

Desb. 
Dec. 

1ª 
Trat. 
Biol. 

Dec. 
2ª 

Dig. 
Pulmón/ 
Centrif. 

Cogen. 
D. 

Digerido 
D. 

Balsa 

Co-dig.  
Paja de 

trigo 
+10% -7% -7% -14% -14% -15% -27% -15% -27% -15% 

Co-dig.  
Glicerina +150% -32% -32% -67% -67% -79% -77% -79% -77% -67% 

Co-dig.  
Residuos +1000% -32% -32% -67% -67% -76% -88% -76% -88% -67% 

Tabla 11. Variaciones de los costes exergéticos unitarios de los productos de los casos analizados con 
co-digestión con respecto al caso base. 

 

4.3.3.- Descomposición de los costes exergéticos unitarios. 

Según Usón y col [38], el análisis de la descomposición de los costes puede llevarse a 

cabo mediante los siguientes métodos: 

o Descomposición de costes en base a la irreversibilidad y al efecto de los 

residuos [39]. 

o Descomposición de costes en base al origen de los recursos. 

 

La descomposición de los costes de la planta de tratamiento analizada será estudiada 

en base tanto la irreversibilidad de los diferentes procesos como el efecto de los 

residuos, siguiendo las siguientes ecuaciones [39]: 

 

 ‹P*› = (UD-‹FP›)-1·‹I› + (UD-‹FP›)-1·‹R*›         (Ec.23) 

Donde: 

o UD, representa la matriz de identidad (n × n). 
o ‹FP›, representa la matriz de coeficientes de distribución (n × n).  
o ‹I›, representa la matriz diagonal de la irreversibilidad de los procesos  (n × n). 
o ‹R*›, representa la matriz de los costes exergéticos de los residuos (n × n).  

 

ࡼ࢑
כ ൌ

כࡼ

ࡼ
       (Ec.23) 

Donde: 

o P*, representa los costes exergéticos de los productos. 
o P, representa los productos de los procesos, kW. 
o kP, representa el coste exergético unitario de los productos. 

 

En las gráficas 1, 2, 3 y 4 se muestran a continuación, se pueden observar los 

resultados de la descomposición de los costes exergéticos unitarios de los productos 
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obtenidos en cada uno de los procesos de la planta mediante las ecuaciones 23 y 24 

(en el Anexo IV se pueden observar las operaciones anteriores detalladas). 

 

 Análisis de los costes exergéticos unitarios para el caso sin co-digestión. 

 

 
Grafica 1.Descomposición de los costes exergéticos unitarios de los productos de cada uno de los 
procesos de la planta de tratamiento de purín analizada para el caso sin co-digestión. 

 

Según la gráfica 1, se pude observar que los mayores costes exergéticos unitarios son 

inducidos por el residuo tanto del clarificado como del digerido sólido, es decir, por la 

exergía contenida en la materia orgánica no aprovechable. Otro proceso que 

contribuye al incremento de estos costes pero en menor medida, es el tratamiento 

biológico, ya que como se ha explicado anteriormente, dicho proceso presenta una 

elevada irreversibilidad debido a esta concebido para eliminar tanto materia orgánica 

como nitrógeno, evitándose con ello un problema medioambiental por un exceso de 

nutrientes. Finalmente, también se observa una mínima contribución en los costes por 

parte de la cogeneración y de la digestión, al no ser perfectos estos equipos. 

Por otro lado, se puede comprobar que el proceso con mayor coste inducido por los 

residuos es la cogeneración.  
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 Análisis de los costes exergéticos unitarios para el caso de co-digestión 
con paja de trigo. 
 
 

 
Grafica 2.Descomposición de los costes exergéticos unitarios de los productos de cada uno de los 
procesos de la planta de tratamiento de purín analizada para el caso de co-digestión con paja de trigo. 

 

Según los resultados mostrados en la gráfica 2, se puede observar que la contribución 

de los equipos a la formación de los costes en este caso es muy similar al caso sin co-

digestión, es decir, en el caso de co-digestión con paja de trigo los mayores costes son 

inducidos por los residuos, seguidos, pero en una muy inferior proporción, por el 

tratamiento biológico, la cogeneración y la digestión. Además, también puede 

observarse que en este caso, pese a ser mayores las irreversibilidades de los 

procesos (tabla 3), todos los costes de los productos se han reducido respecto al caso 

sin co-digestión, ya que, por un lado, la producción de producto final útil es mayor y, 

por otro lado, se ha introducido un producto del exterior con coste exergético uno 

como es la paja de trigo. 

Por otro lado, al igual que ocurría en el caso base, el proceso con mayor coste 

inducido por los residuos es la cogeneración y en concreto por el residuo procedente 

del digerido. 
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 Análisis de los costes exergéticos unitarios para el caso de co-digestión 
con glicerina. 
 

 
Grafica 3.Descomposición de los costes exergéticos unitarios de los productos de cada uno de los 
procesos de la planta de tratamiento de purín analizada para el caso de co-digestión con glicerina. 
 

A la vista de los resultados presentes en la gráfica 3, se puede observar que los costes 

debidos al producto no aprovechable del digerido han disminuido considerablemente 

en comparación con el caso sin co-digestión y con co-digestión de paja, ya que en 

este caso la exergía de dicho residuo, como se puede observar en la tabla 6, 

disminuye respecto al caso de co-digestión con paja de trigo, al ser más optima la 

digestión con este sustrato. Por otro lado, los costes debidos al debidos al producto no 

aprovechable del clarificado también han disminuido pero en menor proporción. 

Finalmente, también puede observarse que en este caso, pese a ser mayores las 

irreversibilidades de los procesos (tabla 3), todos los costes de los productos se han 

reducido respecto al caso sin co-digestión y con co-digestión de paja, ya que, por un 

lado, la producción de producto final útil es mayor y, por otro lado, se ha introducido un 

producto del exterior con coste exergético uno como es la glicerina, cuyo contenido 

exergético es mayor en la paja de trigo. 
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 Análisis de los costes exergéticos unitarios para el caso de co-digestión 
con mezcla de residuos industriales, de matadero y vegetales. 

 

Finalmente, a continuación se muestran los resultados obtenidos para el caso de co-

digestión con mezcla de diversos residuos, en los que se podrá observar una 

discrepancia en la tendencia de los costes respecto a los casos anteriores. 

 

 
Grafica 4.Descomposición de los costes exergéticos unitarios de los productos de cada uno de los 
procesos de la planta de tratamiento de purín analizada para el caso de co-digestión con mezcla de 
residuos industriales, de matadero y vegetales. 
 

En la gráfica 4 anteriormente mostrada, se puede observar la influencia que tiene la 

digestión en prácticamente todos los procesos de la planta, ya que la menor eficacia 

de la misma en este caso respecto a los otros casos estudiados, induce unos mayores 

costes exergéticos en los procesos. Pese a que la digestión induce unos mayores 

costes exergéticos en los procesos, se puede observar que salvo en la propia 

digestión y en la cogeneración, los costes totales se mantienen constantes en el resto 

de los procesos, e incluso disminuyen en el pulmón/centrifuga y en componente 

disipativo del digerido debido, como se ha explicado anteriormente, a la introducción 

de un flujo con alto contenido exergético y con coste exergético unitario, como es el 

flujo de los sustratos, producto del exterior. 

Por lo tanto, a la vista de los resultados obtenidos para este caso, co-digestión con 

mezcla de residuos, se puede concluir que si bien los cálculos exergéticos no son muy 
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precisos, al no conocerse la caracterización exacta de los sustratos añadidos, desde el 

punto de vista termoeconómico su análisis resulta muy interesante, puesto que se 

puede apreciar por un lado, la repercusión de la baja eficacia de la digestión  y, por 

otro lado, la influencia en los procesos al introducir un flujo con alto contenido 

exergético procedente del exterior para una estructura productiva como la definida 

para la planta objeto de estudio (figura 2). 

 

Por otro lado, y finalmente, a continuación se analizará también la descomposición de 

los costes de la planta de tratamiento estudiada en base al origen de los recursos, 

según la metodología expuesta en el Anexo IV [39]. Este nuevo enfoque de análisis de 

los costes, desarrollado por Usón. S y col, resulta muy interesante en Ecología 

Industrial debido a los distintos tipos de fueles que entran a la planta. En el caso objeto 

de este trabajo entra, por un lado, purín virgen y, por otro lado, sustratos que son 

añadidos a la digestión anaerobia para llevar a cabo la co-digestión. 

En la tabla 12 que se muestra a continuación, se puede observar la descomposición 

de los costes exergéticos de la planta según el origen de los recursos, es decir, el 

coste exergético debido al purín y el coste exergético debido a los sustratos añadidos 

en los casos de co-digestión para cada uno de los procesos. 

 

 
Tabla 12. Análisis de la descomposición de los  costes exergéticos unitarios de los productos en base al origen de los 
recursos para cada uno de los casos analizados. 

 
 

A la vista de los resultados podemos observar que, por un lado, en el caso con co-

digestión, al no haberse añadido ningún tipo de co-sustrato, todos los costes provienen 

del purín. Por otro lado, en el caso de co-digestión con paja de trigo, se puede 

observar que la influencia en el coste exergético unitario de los co-sustratos no es muy 

relevante respecto a la influencia en el mismo que genera el purín, empezando a ser 

algo significativo dicho coste de los co-sustratos en el caso del co-digestión con 

glicerina. Finalmente, en el caso de co-digestión con mezcla de residuos, la influencia 
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en el coste exergético unitario de los co-sustratos es incluso superior a la del purín en 

todos los procesos menos en el desbaste y decantación primaria, siendo claramente 

superior en el caso de la cogeneración. 
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5. ANÁLISIS EXERGETICO DE SITUACIONES ALTERNATIVAS. 

A la vista de los resultados obtenidos tras el análisis exergético realizado en el 

presente trabajo, se ha podido comprobar que, desde un punto de vista 

termodinámico, las plantas de tratamiento de purines pueden ser consideradas con 

anti-exergéticas, ya que, por una lado, se genera un residuo con alto contenido 

exergético y, por otro lado, se produce una disminución de exergía entre el estado 

inicial de entrada y final de salida. No obstante, pese a que dichas plantas generan 

una pérdida de exergía, de no existir, los purines tendrían que ser transportados a 

grandes distancias desde las explotaciones ganaderas para no generar problemas 

medioambientales, lo que conllevaría, indudablemente, un alto coste exergético debido 

a dicho transporte. 

En el presente capitulo se va a realizar un análisis exergético desde el punto de vista 

del coste exergético del transporte del purín en diferentes situaciones: 

- SITUACIÓN 1. Suponiendo la no existencia de una planta de tratamiento de 

purines en la zona de Capella (Huesca). Esta situación conllevaría 

transportar el purín desde las explotaciones ganaderas porcinas de la zona, 

hasta áreas alejadas para no sobrepasar el límite permitido de nutrientes en 

las tierras arables. Por otro lado, también se analizará el abono mineral que 

puede ser sustituido por el purín en esta situación, ya que la producción de 

abono mineral acarrea un coste exergético. 

- SITUACIÓN 2. Suponiendo la existencia de una planta de tratamiento de 

purines en la zona de Capella (Huesca). Esta situación conllevaría 

transportar el purín desde las explotaciones ganaderas porcinas de la zona, 

hasta la planta de tratamiento y, posteriormente, transportar el abono 

orgánico generado hasta las tierras arables, analizándose también, la 

cantidad de abono mineral que puede ser sustituido. 

- SITUACIÓN 3. Suponiendo la existencia de la planta de tratamiento de 

purines pero sin la existencia del tratamiento biológico, ya que es dicho 

proceso es el que más irreversibilidad presenta, al destruir materia orgánica 

y eliminar parte de los nutrientes del purín, para de esta manera no tener 

que transportar el purín a zonas alejadas para no contaminar las tierras 

arables próximas. Esta situación no será analizada, ya que al disponer la 

planta objeto de estudio de diversas recirculaciones (flujo 7 y el 11) su 

cálculo necesitaría un nuevo diseño de la planta, lo cual queda fuera del 

alcance del presente trabajo. 
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5.1.- Análisis exergético del transporte. 

En el Anexo V se ha analizado detalladamente los litros de combustible líquido (gasoil) 

que serían necesarios en caso de no existir la planta de tratamiento y, por lo tanto, 

tener que trasportar los purines mediante vehículos agrícolas a zonas alejadas de las 

explotaciones ganaderas con el objeto de no superar la presión ganadera para el tipo 

de producción agrícola de la zona. En el mencionado anexo también se han analizado 

los litros de combustibles necesarios para transportar el purín hasta la planta de 

tratamiento y, posteriormente, transportar el digerido sólido hasta las tierras agrícolas 

(no se ha considerado el transporte del agua que va a balsa destinada a fertirrigación 

ya que, al contener un bajo porcentaje de nutrientes, ésta es empleada en las fincas 

adyacentes a la planta, tanto para tierras arables como hortofrutícolas). 

El cálculo de la exergía química del gasoil se ha realizado mediante la expresión 

propuesta por Kotas [28] para la obtención del coeficiente φ, que relaciona el poder 

calorífico inferior del combustible mencionado y su exergía, tal y como ocurría en el 

caso de las grasas y de la paja de trigo:  

࣐ ൌ ૚, ૙૝૙૚૙ ൅ ૙, ૚ૠ૛ૡ ൉
ࢎ

ࢉ
൅  ૙, ૙૝૜૛ ൉

࢕

ࢉ
൅  ૙, ૛૚૟ૢ ൉

࢙

ࢉ
· ሺ૚ െ ૛, ૙૟૛ૡ ·

ࢎ

ࢉ
ሻ   (Ec.25) 

 

Donde h, c, s y o representan las fracciones másicas en base seca de cada unos de 

estos elementos en el combustible. 

࣐ ൌ
࢒࢏࢕࢙ࢇࢍ,ࢎࢉ࢈
૙

ࡵ࡯ࡼ
    (Ec.26) 

 

Por lo tanto, aplicando la ecuación 26, y teniendo en cuenta los litros de gasoil 

necesarios en cada una de las situaciones analizadas (Anexo V), obtenemos los 

siguientes resultados exergéticos: 

  Combustible, l/año Exergía, kW 

SITUACIÓN 1: Transporte granja/TA 100.800 123,8 

SITUACIÓN 2:   Transporte granja/ planta 
 

                  Transporte planta/TA 

7.200 
 

890 

8,8 
 
1 

Tabla 13. Análisis exergético del transporte en cada una de las situaciones analizadas, es 
decir, sin y con planta de tratamiento de purines en la zona de Capella (Huesca). 
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5.2.- Análisis de resultados. 

En el presenta capitulo se ha llevado cabo un análisis comparativo desde el punto de 

vista del coste exergético del transporte del purín de dos situaciones diferentes: sin la 

existencia de la planta de tratamiento y suponiendo su existencia en el municipio de 

Capella (Huesca).  

A la vista de los resultado, el coste exergético invertido en transportar el purín virgen 

desde una explotación ganadera hasta las tierras arables (situación 1), en una zona 

con alta concentración de explotaciones porcinas como es la zona de Capella,  es muy 

superior al coste exergético necesario para el transporte del purín hasta la planta de 

tratamiento más el transporte del abono orgánico hasta tierras arables (situación 2), 

puesto que dicho purín virgen tiene que ser desplazado lejos de las explotaciones 

ganaderas para no sobresaturar y, por lo tanto, contaminar el suelo de las 

explotaciones agrícolas próximas a las granja (Tabla 13).  

Por otro lado, cabe señalar que el purín virgen al no estar sometido a ningún 

tratamiento, posee una gran cantidad de nutrientes y, por lo tanto, podría sustituir a 

una mayor cantidad de abono mineral que el digerido sólido tras la digestión, 

suponiendo, por lo tanto, un ahorro exergético al no tener que producirse abono 

mineral. No obstante, en zonas de alta concentración ganadera, como es la zona de 

Capella (Figura 12), las tierras arables difícilmente pueden absorben tanta cantidad de 

nutrientes aunque el purín sea almacenado adecuadamente en fosas de desafectación 

para un uso progresivo del mismo (actualmente existe en dicho municipio fosas de 

almacenamiento pero debido a la sobresaturación de purín, se ha visto la necesidad 

de crear la planta de tratamiento de purines proyectada y estudiada en el presente 

trabajo). 
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6. CONCLUSIONES. 
 

6.1.- Síntesis. 

El presente trabajo ha abarcado el análisis tanto el proceso global como las distintas 

etapas que se llevan a cabo dentro de la planta de tratamiento proyectada para la 

localizada de Capella (Huesca), con especial interés en la etapa de valorización del 

purín concentrado, ya que el objetivo de cualquier planta de tratamiento de purines, 

desde el punto de vista productivo (el objetivo principal de las plantas de tratamiento 

de purines es acabar con la contaminación generada por las deyecciones ganaderas), 

es obtener biogás mediante un tratamiento de digestión anaerobia de dichos fangos 

(posteriormente el biogás es usado en el proceso de cogeneración). Además, en el 

proceso de tratamiento de purines también se obtiene, por un lado, fertilizante sólido, 

producto de la digestión anaerobia, que puede ser utilizado en los cultivos agrícolas, y, 

por otro lado, líquido depurado apto para la fertirrigación de las fincas adyacentes a la 

planta, producto de un tratamiento biológico al que se ve sometida la parte líquida del 

purín (ambos productos contienen nutrientes idóneos para abonar los cultivos 

agrícolas). 

Para aumentar la producción de biogás es factible, y muy habitual, añadir distintos 

sustratos a los residuos ganaderos, tales como residuos orgánicos agroindustriales 

(co-digestión). La principal ventaja de la co-digestión radica en el aprovechamiento de 

la sinergia de las mezclas, compensado las carencias de cada uno de los sustratos por 

separado. En el presente trabajo se ha analizado la co-digestión con tres tipos 

diferente de sustratos: co-digestión con paja de trigo, co-digestión con glicerina y co-

digestión con una mezcla de residuos industriales, de matadero y vegetales, con el 

objetivo de analizar la influencia de distintos sustratos en el funcionamiento de la 

planta, así como comparar estas situaciones con respecto a la caso en el que no se 

lleve a cabo ningún tipo de co-digestión. 

El análisis exergético llevado a cabo en el presente trabajo ha permitido determinar 

que, los distintos procesos de tratamiento de las purines, vistos desde un punto de 

vista termodinámico, pueden considerarse como anti-exergéticos, ya que se produce 

una disminución de exergía entre el estado inicial de entrada y final de salida. En el 

caso de la digestión y de la cogeneración, las irreversibilidades tienen lugar porque 

dichos equipos no son perfectos, y conforme aumenta la producción de biogás, 

aumenta su irreversibilidad. Sin embargo, el tratamiento biológico está proyectado 

para que sea irreversible, es decir, para conseguir una disminución de nitrógeno y de 

materia orgánica (DQO), estando dimensionado para reducir el nitrógeno sobrante, 
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para, de esta manera, no sobresaturar el terreno arable de la zona con dicho nutriente. 

Además, dicho análisis también permite conocer que el tratamiento de purines 

analizado en el presente trabajo da lugar a un residuo con un alto contenido 

exergético, como es la materia orgánica todavía presente tras la decantación 

secundaria y centrifuga, es decir, en el líquido depurado apto para fertirrigación y en el 

digerido sólido, utilizado también para la fertilización de las tierras agrícolas. 

Por otro lado, tras el análisis termoeconómico, en el que ha tenido que ha tenido que 

definirse una compleja estructura productiva así como realizarse un exhaustivo estudio 

sobre el reparto de los costes de los residuos en los distintos procesos, dada la 

peculiaridad de la planta de tratamiento –gran número de flujos, proceso anti-

exergético y residuo con alto contenido exergético-,  se puede comprobar que los 

mayores costes exergéticos unitarios de los productos para cada uno de los procesos 

de la planta tienen lugar en el caso en el que no lleve a cabo co-digestión alguna, 

disminuyéndose dichos costes conforme se mejora la producción de energía con la 

adición de sustratos. Dicha disminución es debida, fundamentalmente, a que, por un 

lado, la mayor producción de biogás permite que los costes debidos a los residuos 

generados sean más repartidos y, por otro lado, a que al llevarse a cabo la co-

digestión, se introducen en la digestión una serie de sustratos, los cuales al ser 

producto del exterior tienen coste exergético unitario igual a uno, por lo que, cuanto 

mayor sea el contenido exergético de estos sustratos, teniendo en cuenta que la 

eficacia de los equipos es similar en todos los casos, menores serán los costes 

exergéticos de los productos. 

Finalmente, analizado el coste exergético invertido en transportar directamente el purín 

virgen desde una explotación ganadera hasta las tierras arables (suponiendo que no 

exista planta de tratamiento), en una zona con alta concentración de explotaciones 

porcinas como es la zona de Capella,  se puede comprobar que dicho coste es muy 

superior al coste exergético necesario para el transporte del purín desde la explotación 

ganadera hasta la planta de tratamiento más el transporte del abono orgánico desde la 

planta de tratamiento hasta tierras arables (en el caso de que exista planta de 

tratamiento), puesto que dicho purín virgen tiene que ser desplazado muy lejos de las 

explotaciones ganaderas para no sobresaturar y, por lo tanto, contaminar el suelo de 

las explotaciones agrícolas próximas a las granja. 
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6.2.- Aportaciones. 

Se ha realizado un gran esfuerzo para tratar de caracterizar cada uno de los 

parámetros de los distintos flujos que influyen en el análisis exergético, 

fundamentalmente los parámetros relativos a los flujos de purín, dada la poca 

información disponible, contactándose directamente con Sodemasa, empresa 

proyectista de la planta objeto de estudio, y realizándose una amplia revisión 

bibliográfica sobre la composición de dichos flujos tras someterse a los distintos 

procesos presentes en la planta objeto de estudio. Dicho esfuerzo ha permitido crear 

una metodología para el cálculo de la exergía para las plantas de tratamiento de 

purines. 

Por otro lado, se ha llevado a cabo una revisión en profundidad de la co-digestión, 

digestión anaerobia de purín de con distintos sustratos, analizándose tanto las 

peculiaridades de cada tipo de sustrato así como sus potenciales beneficios respecto 

al aumento de la producción de biogás, mostrándose diferentes ejemplos de plantas 

de tratamiento de purines que llevan a cabo co-digestión en su proceso productivo. 

Además, teniendo en cuenta la peculiaridad de las plantas de tratamiento de purines 

(gran número de flujos, proceso anti-exergético y residuo con alto contenido 

exergético), se ha definido una estructura productiva que permite ser adaptada para el 

análisis termoeconómico de otras plantas con características similares a la objeto de 

estudio de este trabajo. 

Del mismo modo, se ha planteado un nuevo criterio de reparto de residuos 

proporcional a la no solo a la exergía que se destruye, sino también a la exergía que 

pasa a la línea de fangos, para de esta manera poder estudiar la influencia de los 

equipos en los distintos procesos de la planta. 

Para analizar los costes de los productos de los diferentes procesos con los que 

cuenta la planta de tratamiento estudiada, se ha mostrado un análisis detallado de la 

descomposición de los mismos bajo dos criterios: teniendo en cuenta las 

irreversibilidades y el efecto de los residuos, y teniendo en cuenta el origen de 

recursos. 

 

6.3.- Perspectivas. 

En cuanto a las consideraciones con respecto a los cálculos, y su posible error 

sistemático, conveniente destacar que para realizar el análisis exergético de los 

distintos flujos de la planta de tratamiento estudiada, ha sido necesario, en algunos 
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casos, emplear valores, ratios y rendimientos de procesos encontrados en bibliografía, 

resultando crucial conocer la composición exacta de los flujos, ya que éstos incorporan 

un contenido exergético muy alto y por tanto afecta a la exactitud de los resultados 

finales. Por lo tanto, una vez que la planta de tratamiento estudiada este construida y 

puedan conocerse los valores exactos, podrían obtenerse valores más precisos 

teniendo en cuenta la metodología desarrollada en el presente trabajo, así como 

aplicar dicha metodología a otras plantas de tratamiento. 

Pueden destacarse como futuras línea de investigación las siguientes propuestas: 

monitorización de una planta de tratamiento de purines para el análisis de distintas 

malfunciones o distintos tipos de co-sustratos, análisis y comparación de distintas 

plantas con las mismas o distintas tecnologías… 

Por otro lado, teniendo en cuenta que tanto purín virgen como el purín tratado tras una 

digestión anaerobia posee una cantidad de nutrientes importante y, por lo tanto, puede 

ser utilizado como abono orgánico, se podría llevar a cabo un análisis exergético 

teniendo en cuenta el abono mineral que puede ser sustituido y la exergía necesaria 

para producir dicho abono mineral. 
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7. NOMENCLATURA. 
 

A continuación se va a indicar la nomenclatura más relevante utilizada en el presente 

trabajo. 

 

a Actividad de la especie 

b Exergía especifica, kJ/kg (salvo que se indique unidad diferente) 

bch Exergía química, kJ/kg (salvo que se indique unidad diferente) 

bo
ch Exergía química de formación, kJ/kg (salvo que se indique unidad diferente) 

bch,c Exergía química de concentración, kJ/kg (salvo que se indique unidad diferente) 

bfísica Exergía física, kJ/kg (salvo que se indique unidad diferente) 

B Exergía, kW 

c Salinidad, ppm 

E Valor energético de las corrientes de calor, kW 

F Fuel, kW 

F Vector de fuel (nx1), kW 

F* Coste exergético del fuel, kW 

F* Vector del coste exergético del fuel (nx1), kW 

Fe Vector  de los recursos externos de los componentes (nx1), kW 

‹FP› Matriz de distribución de coeficientes (nxn) 

∆G Energía libre de Giibs, kJ/kg 

h Entalpía, kJ/kg 

I Vector que contiene la irreversibilidad de los componentes (nx1), kW 

k* Coste exergético unitario 

m Molalidad de una sustancia, moles/kg agua 

n Número de componentes del sistema 

nf Número de recursos externos 

P Producto, kW 

P* Coste exergético del producto, kW 

P* Vector del coste exergético del producto (nx1), kW 

PCI Poder calorífico inferior, KJ/kg 

PM Peso molecular, g/mol 

P0 Presión del ambiente de referencia, 1,01325 bar 

R* Vector del coste exergético de los residuos (nx1), kW 

R Constante gases ideales, 8,314kJ/molK 

‹RP› Matriz de los coeficientes de distribución de los residuos (nxn) 

s Entropía, kJ/kgK 
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T Temperatura, K 

To Temperatura del ambiente de referencia, 298,15K 

UD Matriz identidad (nxn) 

x Concentración molar 

y Coeficientes de distribución  

 

 

Símbolos griegos 

 

߮ Coeficiente que relaciona la exergía con el PCI 

η Rendimiento 

 Densidad, kg/m3 ߩ

Ψ Coeficientes de distribución de los costes de los residuos 

 

 

Subíndices y superíndices 

 

i Componente genérico 

j Componente genérico 

k Tipo de recurso externo 

NKT Nitrógeno Kjeldahl 

MO Materia orgánica 

MI Materia inorgánica 

P Fósforo 

r Residuo 

s Producto final 
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ANEXO I. ANÁLISIS DE LA PLANTA DE TRATAMIENTO DE CAPELLA: 
DESCRIPCIÓN DETALLADA Y DATOS TÉCNICOS. 

 

1.1.- Descripción de los distintos procesos. 

La línea de tratamiento de la planta seleccionada dispone de los siguientes procesos: 

- Recepción, descarga, desbaste y homogeneización del purín. 

- Filtración inicial de parte de la fracción sólida 

- Decantación/Espesamiento 1º de fangos. 

- Tratamiento biológico del líquido clarificado del purín (nitrificación- 

desnitrificación). 

- Digestión anaerobia de los fangos espesados y generación de biogás. 

- Cogeneración de electricidad y calor con el biogás producido. 

- Almacenamiento de fracción sólida (digestato). 

- Almacenamiento del efluente líquido final. 

 

Teniendo en cuenta la información disponible en la memoria de la planta de 

tratamiento de Capella [5], a continuación se van a ir analizando cada uno de los 

procesos antes mencionados detalladamente. 

 

1.1.1.- Recepción, descarga y almacenamiento de las materias primas. 

La materia prima de la planta de tratamiento será el purín porcino procedente de las 

explotaciones de la zona de Capella.  

En la primera etapa del tratamiento, el purín se decepcionará, se descargará y se 

almacenará de manera previa a su introducción al proceso.  

El canal de desbaste inicial estará compuesto por una reja de gruesos de 1,5 cm de 

luz de paso, en la que se separarán los sólidos de mayor tamaño.  De igual modo, el 

purín transportado mediante colectores será depositado en una arqueta de recepción y 

desbaste inicial. 

El líquido se impulsará mediante gravedad hacia la fosa de recepción, depósito de 

forma rectangular impermeabilizado, con capacidad suficiente para garantizar el 

almacenamiento del purín durante un periodo de 3,3 días. Este depósito estará 

equipado con dos agitadores para homogeneizar el purín procedente de las distintas 

granjas de la zona.  
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1.1.2.- Filtración inicial de parte de la fracción sólida. 

El purín almacenado en la fosa de recepción será conducido a través de un tamiz con 

malla de 0,65 mm de luz de paso donde se producirá la separación de parte de los 

sólidos, que pasarán a ser introducidos al tanque de fangos que se dimensionará para 

un tiempo de retención de 12 horas, mientras que la fracción líquida será conducida, 

por gravedad, al decantador primario. 

 

1.1.3.- Decantación/Espesamiento 1º de fangos. 

El purín, previamente tamizado, se separará de su parte sólida mediante un sistema 

de decantación (decantación primaria) que podrá ser potenciado con la adición de 

floculantes y coagulantes. De esta manera se tratará de evitar la entrada de materia en 

suspensión al proceso biológico, así como aportar materia orgánica al proceso de 

digestión anaerobia. 

Los sólidos será bombeados e introducidos de nuevo en el tanque de fangos donde se 

mezclarán con los lodos biológicos procedentes del decantador 2º y con los sólidos 

procedentes de la rampa de separación de sólidos. Por su parte, la fracción líquida 

será conducida por gravedad a la cámara anoxia donde iniciará su tratamiento 

biológico. 

 

1.1.4.- Tratamiento biológico del líquido clarificado del purín. 

El tratamiento biológico de la fracción líquida del purín tiene como principal objetivo la 

obtención de un efluente depurado susceptible de ser empleado como líquido de 

fertirrigación. Teniendo en cuenta la alta concentración de nitrógeno amoniacal en el 

purín, éste será el elemento principal a eliminar. La reducción del nitrógeno total se 

conseguirá mediante un tratamiento biológico con nitrificación-desnitrificación. 

La línea de tratamiento contará con dos procesos principales: 

- Tratamiento biológico. Nitrificación-desnitrificación. 

- Decantación secundaria. 

 

TRATAMIENTO BIOLOGICO 

En el tratamiento biológico se producirá la reducción del nitrógeno total mediante dos 

etapas consecutivas: nitrificación y desnitrificación. Para ello se dispondrán de dos 

áreas físicamente independientes, de tal manera que en la primera se llevará a cabo el 
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proceso biológico aerobio y el de nitrificación (conversión del nitrógeno amoniacal en 

nitratos), mientras que en la segunda se conseguirán las condiciones requeridas de 

escasez de oxígeno que favorecen la desnitrificación (conversión de los nitratos en 

nitrógeno gas). El líquido clarificado será conducido por gravedad desde el decantador 

primario a la cámara de anoxia, dimensionada para un tiempo de retención de 4,4 

días, donde se mezclará con el efluente procedente del reactor biológico. 

Desde la cámara de anoxia, la mezcla será bombeada al proceso biológico, donde se 

producirá una reducción de la materia orgánica (DBO5) y el proceso de nitrificación. 

Este proceso se llevará a cabo en un reactor biológico, donde un motor de hélice 

situado en la parte superior del mismo será el encargado de garantizar el flujo vertical 

del licor, dirigido hacia la chimenea por medio de un embudo también situado en la 

parte superior. El licor retornará por gravedad hacia la cámara de anoxia, donde se 

producirá la desnitrificación final. 

 

DECANTACIÓN SECUNDARIA 

El licor mixto procedente del tratamiento biológico se conducirá desde la cámara de 

anoxia hacia la concentración o decantación secundaria, diseñada para un tiempo de 

retención de 39,1 horas. Parte de los fangos se bombearan hacia el tanque de fangos 

y otra parte se recirculan. El efluente clarificado será conducido por gravedad hacia la 

balsa de fertirrigación. 

 

1.1.5.- Digestión anaerobia de los fangos espesados y generación de Biogás. 

Los fangos obtenidos de la decantación del purín serán sometidos a un proceso de 

digestión anaerobia con el objetivo principal de obtener biogás para su posterior 

aprovechamiento energético. 

 

Las principales etapas que componen el proceso son los siguientes: 

- Alimentación a digestión 

- Digestión anaerobia 

- Separación de fases del digestato 

- Producción de biogás 
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ALIMENTACIÓN A DIGESTIÓN 

La fracción sólida del purín obtenida en las diversas etapas de separación de fases del 

proceso, será conducida al tanque de fangos donde se almacenará un tiempo de 12 

horas para posteriormente ser impulsada mediante bombeo al mezclador de sustratos. 

 

DIGESTIÓN ANAEROBIA 

La digestión se basa en un proceso de almacenamiento y circulación, donde se 

utilizaran dos digestores, a través de los cuales circulará el fango de manera continua. 

La alimentación a los digestores se realizará mediante el purín separado y decantado 

en la entrada de la planta, así como mediante los fangos recirculados del proceso 

biológico. En los digestores la materia orgánica fermenta. Una vez alcanza cierto nivel, 

el fango digerido (digestato) se vaciará por bombeo al depósito pulmón. 

El aporte de energía calorífica necesario para mantener estable la temperatura en el 

proceso de digestión (80ºC) se conseguirá mediante un sistema de intercambiador de 

calor externo, en el que el fluido térmico calentado con parte de la energía térmica 

producida en la cogeneración, transferirá el calor al circuito de fangos de digestión. 

Una estrategia que permite optimizar esta digestión anaerobia es la digestión conjunta 

(co-digestión) del purín con uno o más sustratos diferentes (co-sustratos), tal y como 

se verá en el Anexo II. 

 

SEPARACIÓN DE FASES DEL DIGESTATO 

El digestato se conducirá por bombeo desde los digestores hacia un depósito pulmón.  

La concentración del fango se realizará mediante un sistema de decantación por 

centrífuga con adición opcional de polielectrolito. Se alimentará mediante una bomba 

de caudal constante, para asegurar el adecuado funcionamiento de la centrífuga. 

La parte sólida del digestato se transportará a la zona de almacenamiento. La fase 

líquida clarificada se recirculará, por gravedad, a la cámara anoxia, para introducirse 

en el tratamiento biológico. 
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PRODUCCIÓN DE BIOGÁS 

El biogás es un producto que se obtiene a partir de la fermentación de la materia 

orgánica, y está constituido mayoritariamente por metano (60% aprox.) y dióxido de 

carbono (30% aprox.).  

El biogás almacenado en la parte superior de los digestores se transportará mediante 

tubería hacia el sistema de depuración de gases antes de ser valorizado 

energéticamente en el sistema de cogeneración. 

 

1.1.6.- Cogeneración. 

El biogás se convertirá en energía eléctrica y térmica dentro de la planta de 

cogeneración. 

- La energía eléctrica generada se empleará en cubrir las necesidades de la 

planta eléctricas de la planta. La sobrante se exportará a la red de servicio 

pública de la compañía eléctrica distribuidora.  

- Una parte de la energía térmica obtenida se empleará en el proceso de 

calentamiento de los digestores. El calor residual queda disponible en planta. 

 

RECUPERACIÓN TÉRMICA 

Existirán dos fuentes de calor debidas al funcionamiento del motor: 

- Circuito interno del motor: destinado a recuperar el calor contenido en el 

circuito de agua interno de refrigeración del motor. 

- Intercambiador de calor: destinado a aprovechar el calor contenido en los 

gases de escape para calentar el fluido térmico de la calefacción de los 

digestores. 

 

El circuito primario del conjunto de intercambiadores de los motores recorrerá 

diferentes elementos del bloque motor de forma que la potencia total entregada sea la 

suma de la refrigeración de las camisas, refrigeración aceite y refrigeración intercooler 

1. La temperatura de salida de agua será de 90 ºC. Se dispone de aerorrefrigeradores 

para el caso de no aprovechamiento de esta energía térmica asegurando el correcto 

funcionamiento del sistema de refrigeración del motor. 
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Los gases de combustión del motor se conducirán hasta el intercambiador de calor, de 

flujo cruzado a contracorriente, con el fin de obtener un mejor aprovechamiento 

energético. 

Los gases de escape entrarán al intercambiador a una temperatura entre 372 y 425 

ºC. A la salida del intercambiador, los gases de combustión ya a baja temperatura, 

serán conducidos a la atmósfera. 

 

1.2.- Análisis de los parámetros de diseño. 

A continuación se indican los parámetros de diseño adoptados en el cálculo de los 

principales elementos de la planta [5]: 

DESCRIPCIÓN VALOR UNIDAD 

Purín 60.000 m3/año 

DIGESTIÓN 
Purín a digestión 

35.020 tm/año 

ALMACENAMIENTO A FRACCIÓN SÓLIDA
Purín digerido a almacenamiento 

4.436 m3/año 

TRATAMIENTO BIOLOGICO
Influente 

164 m3/día 

Tabla 14. Parámetros de diseño de la planta según proyecto [5]. 

 
 

1.3.- Consumos energéticos de la planta. 

En la tabla 15 que se muestran a continuación, se indican los consumos eléctricos de 

los distintos equipos para el correcto funcionamiento de la planta.  

 

PROCESO EQUIPO kWe 

DESBASTE 1 Reja automatic circular 0,18 

DECANTACIÓN 1ª 1 Bomba 0,25 

TRATAMIENTO 
BIOLOGICO 

1 Biorreactor  
3 Bombas  

110 
0,75 

DECANTACIÓN 2ª 1 Bomba 0,25 

DIGESTIÓN 

1 Motor principal  
1 Retrovariador  
1Rasca-sólidos  
1Motor ventilador  

15 
4 

0,25 
0,25 

PULMON/CENTRIFUGA 
2 Cargadores de sólidos  
2 Mezcladores  
2 Agitadores  

5 
15 
11 

Tabla 15. Consumos eléctricos de los equipos de la planta de Capella (Huesca) [5]. 
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En cuanto al consumo de energía térmica, se considerará que el 40% del calor 

producido por la planta se destinará al calentamiento de los digestores en el proceso 

de la digestión anaerobia [5].  
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ANEXO II. ESTADO DEL ARTE DE LA CO-DIGESTIÓN ANAEROBIA DE 
RESIDUOS GANADEROS Y AGROINDUSTRIALES. 

 

La digestión anaerobia, también denominada biometanización, es un proceso biológico 

que ocurre en ausencia de oxigeno, en el cual gracias a la acción de varios grupos de 

bacterias, la materia orgánica se descompone, dando como resultado dos productos 

principales: biogás y digestato. 

Los residuos ganaderos son, en la mayoría de países, los residuos orgánicos que se 

producen mayor cantidad (en España se producen del orden de cincuenta millones de 

toneladas de purines [40])  y la digestión anaerobia es un proceso idóneo para llevar a 

cabo el tratamiento de estos residuos. 

No obstante, la producción de metano que se obtiene en el proceso no es muy 

elevada: 11,8m3 CH4/t residuo con purín de porcino, 17,7m3 CH4/t residuo con purín de 

vacuno y 54,4m3 CH4/t residuo con gallinaza [41]. 

Para aumentar la producción de biogás es factible añadir otros residuos 

biodegradables a los residuos ganaderos, tales como residuos orgánicos 

agroindustriales (co-digestión). La principal ventaja de la co-digestión radica en el 

aprovechamiento de la sinergia de las mezclas, compensado las carencias de cada 

uno de los sustratos por separado. Además de incrementar el potencial de producción 

de biogás, la adición de co-sustratos fácilmente biodegradables confiere una 

estabilidad adicional al sistema. Este efecto puede deberse a un aumento en la 

biomasa activa resultando en una mayor resistencia a fenómenos de inhibición. 

También las partes inorgánicas de algunos de estos co-sustratos, como es el caso de 

las arcillas y compuestos de hierro, han mostrado un efecto positivo frente a los 

procesos de inhibición por amonio o sulfhídrico [42]. Además, unifica la gestión de 

estos residuos al compartir instalaciones de tratamiento, reduciendo los costes de 

inversión y explotación.  

Dinamarca cuenta con un larga experiencia en la explotación de plantas de 

biometanización, pasando de 9 plantas centralizadas construidas en 1987 sólo para el 

tratamiento de residuos ganaderos, a 30 plantas en el año 2000, que utilizan un 

sistema de co-digestión de mezclas de diferentes de residuos orgánicos, incluyendo 

lodos biológicos y FORSU (Fracción Orgánica de Residuos Sólidos Urbanos), con una 

proporción mayoritaria de residuos ganaderos. La producción media de las plantas 

danesas que utilizan mezclas fue, para el mes de marzo de 2000, de 41,8 m3 de 

biogás/t de residuo tratado, con una valor medio en la planta de Vegger de 143 m3 de 

biogás/t residuos. Mediante datos de 1999, se comprobó que la producción en las 
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plantas que trabajaban únicamente con residuos ganaderos fue siempre inferior a 

26,6m3 de biogás/t, con un valor medio de 14,5m3 de biogás/t [9]. 

La evaluación de la experiencia danesa se considera positiva, ya que contribuye al 

reciclaje de los residuos orgánicos, contribuye a la producción de energía renovable y 

a disminuir las emisiones de CO2, ofrece una alternativa económica para muchos 

residuos de la industria alimentaria y lodos de pequeñas plantas depuradoras, 

contribuye a disminuir los costes de inversión en instalaciones de tratamiento 

colectivo, permite controlar la calidad de los productos que se aplican al suelo, y crea 

un marco de control y gestión en la zona de influencia de cada planta. Estas pueden 

considerarse centros de gestión integral e integrada de residuos orgánicos. 

Junto a Dinamarca existen otros países como Alemania, Austria y Suecia que se 

pueden considerar punteros en Europa en la obtención de biogás mediante co-

digestión anaerobia de residuos ganaderos y agroindustriales. 

Suecia se ha convertido en el líder mundial en la utilización de biogás como energía 

renovable para aplicaciones de transporte. Según datos de 2004, aproximadamente 

4.500 vehículos funcionan ya con combustible gas, incluyendo la mayoría de 

autobuses urbanos de sus principales ciudades. El 45% del combustible de estos 

vehículos procede del biogás mientras que el restante 55% procede del gas natural. 

Para el año 2020 se prevé que aproximadamente 200.000 vehículos estén operando 

con biogás. 

Las últimas implementaciones realizadas en Suecia, aparte de la mayor incorporación 

de co-sustratos de reacción, están enfocadas en el aumento de los índices de 

producción mediante pre-tratamientos térmicos, aplicados sobre todo a subproductos 

animales ó residuos ricos en líquidos. 

El aprovechamiento energético de los residuos ganaderos tiene un doble efecto 

positivo: reducciones de las emisiones de gases de efecto invernadero y reducciones 

de las emisiones equivalentes de vida a la fuente fósil que se sustituye. Este doble 

efecto solo se consigue si se optimiza tanto la producción como el uso de la energía 

obtenida en forma de biogás. 

 

2.1.- Co-digestión de residuos ganaderos y residuos de la industria aceitera. 

Experimentalmente se ha comprobado que la co-digestión de alpechín con purín de 

porcino es un método económicamente rentable al no ser necesario el aporte de 

nutrientes ó la adición de reactivos químicos para mejorar la capacidad tampón [43]. 
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Sin embargo, es necesario conocer la cantidad óptima de purín para realizar la co-

digestión de forma efectiva. Un modelo cinético desarrollado para el proceso de co-

digestión de mezclas de alpechín y purín de cerdo establece que el proceso resulta 

estable cuando se tratan de mezclas que contienen entre el 10 y el 25% de purín [44].  

 

2.2.- Co-digestión de residuos ganaderos y residuos de la industria 

hortofrutícola. 

Los restos de frutas y vegetales se generan en grandes cantidades tanto en mercados 

como en industrias transformadoras, como por ejemplo, la industria de zumos. La 

composición de estos residuos hace que tengan un alto potencial para producir 

metano, pero deben ser usados con cuidado, alimentándolos al proceso a un ritmo 

controlado. En la tabla 16 se recoge el potencial de producción de metano de 

diferentes frutas y vegetales, obtenidos mediante ensayos BMP – Biochemical 

Methane Potencial– [45].  

Sustrato 
Sólidos Volátiles 

 (% de Sólidos Totales) 
Producción de Metano 
(m3/t SV alimentado) 

Mango 95,7 496 

Plátano 91,2 292 

Naranja 93,5 479 

Mandarina 94,6 471 

Limón 96,8 473 

Piña 93,9 356 

Patata 90,9 267 

Tabla 16. Producción de metano en residuos de frutas y vegetales. 

 

En esta línea de investigación, Molinuevo-Salces et al [46] también comprobaron que 

la co-digestión con una mezcla de restos de vegetales procesados (judías verdes, 

maíz, zanahorias y puerros -25:25:25:25% en MS-) al 50%, mejoraba en 3 veces la 

producción de metano con tiempos de retención de 25 días. 

 

Existen algunas plantas que operan a escala industrial en las que se co-digieren 

residuos ganaderos con restos de residuos vegetales y frutas, siendo los restos de 

patatas los residuos agroindustriales que más se utilizan. En la tabla 17 se reúne la 

información obtenida sobre dichas plantas. 
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PLANTA DESCRIPCIÓN 

 
Miralcamp 
 
(Lérida-España) 
 

 
Purín de cerdo 
 
Co-sustratos: aceite de soja, fangos de depuradora, residuos de 
mermeladas y residuos de patata. 
 
50 t mezcla/día (3,5% m.s.), TRH de 30 días, 35ºC 
 
40 m3 biogás/t mezcla, > 65% de CH4 

 
Vila-Sana 
 
(Lérida-España) 
 

 
Purín de cerdo (80%) 
 
Co-sustratos (20%): Residuos orgánicos de la zona como derivados de 
alcohol, derivados de aceites vegetales, lodos de depuradora de aguas 
industriales, derivados de frutas, cebolla y leche. 
 
30,7 t mezcla/día, TRH de 15 días, 52-55ºC 
 
71,4 m3 biogás/t mezcla 

Tabla 17. Plantas industriales de biometanización que co-digieren residuos ganaderos y residuos 
hortofrutícolas [9]. 
 
 

2.3.- Co-digestión de residuos ganaderos y residuos de naranja. 

La utilización de residuos cítricos en la co-digestión anaerobia podría contribuir a 

solucionar el problema de gestión de estos residuos en zonas de elevada producción 

(principalmente el Levante español). Sin embargo, la presencia de aceites esenciales 

en la corteza dificulta el proceso por su efecto inhibidor. Estudios de laboratorio [47], 

han mostrado que el efecto inhibidor depende de la concentración de aceites 

esenciales, ya que se reduce este efecto cuando la concentración en el digestor baja 

de 0,075 g/L. la concentración de aceites esenciales puede reducirse aplicando pre-

tratamientos al residuo de naranja. 

Existen datos sobre la co-digestión anaerobia de estiércol de vacuno y restos de 

procesado de naranja obtenidos en un estudio realizado a escala piloto en 1995 en 

India [48], en la que se estudiaba el efecto del pre-tratamiento con diferentes hongos 

sobre la producción del biogás. Se comprobó que el pre-tratamiento realizado aumento 

la biodegradabilidad de los compuestos poliméricos presentes y, de esta manera, el 

contenido de azucares y proteínas. Una alimentación de residuos del procesado de 

naranja con un 8% (peso seco) de residuo pre-tratado, aumento los niveles de 

producción de biogás, alcanzándose una producción de 500-600 m3 biogás/t SV 

(equivalente a 450-540 m3 biogás/t residuo de naranja). 
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2.4.- Co-digestión de residuos ganaderos y cultivos energéticos. 

Los cultivos energéticos presentan propiedades que los hacen muy buenos sustratos 

en la obtención de biogás mediante digestión anaerobia, hasta el punto de que existen 

plantas industriales que realizan la digestión anaerobia solamente con estos cultivos. 

La cantidad de biogás generado de un sustrato en particular depende fuertemente de 

la composición del sustrato. La composición típica de un cultivo energético (paja de 

trigo, de maíz,…), está compuesta por carbohidratos, proteínas, grasas y agua. En la 

tabla 18 se recogen valores de producción de biogás de los diferentes cultivos 

energéticos según datos de Tekniska Verken, empresa constructora de una de las 

mayores plantas de tratamiento anaerobio de cultivos energéticos (ubicada en 

Linköping, Suecia). 

 

COMPONENTE 
Producción de biogás 

(m3N/t) 
Contenido en CH4 

(%) 

Grasas 1390 69 

Proteínas 650 78 

Carbohidratos 850 50 

Tabla 18. Biogás producido durante la completa degradación de 1 kg de sustrato 
(Tekniska Verken) [49]. 

 

Estimaciones realizadas sobe la capacidad de algunos cultivos para producir 

electricidad, muestran que con 1 ha de maíz (alrededor de 50tn) puede producirse 

entre 2-2,5kWe, 1ha de pasto (alrededor de 25tn) entre 0,8-1,2kWe, mientras que una 

vaca (alrededor de 18,25tn/año) genera alrededor de 0,2kWe [50]. 

Por otro lado, la paja de cereales también es un buen co-sustrato para la digestión 

anaerobia, ya que una co-digestión de purín de cerdo con un 1% de paja, permite 

incrementar la producción de metano en un 10% [8].  

 

En la tabla 19 se recogen los datos técnicos de algunas de las plantas que operan a 

escala industrial y utilizan como sustratos para la digestión anaerobia, residuos 

ganaderos y cultivos energéticos. En estas plantas el biogás se quema en motores de 

cogeneración, obteniendo electricidad y calor, mientras que la fracción líquida del 

digestato se emplea como fertilizante. 
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ROHKRAFT 

(baja Austria) 
ARCHEA 

(Alemania) 

JUHNDE BIOENERGY 
VILLAGE 

(Alemania) 

CO-SUSTRATOS 

Purín de cerdo (30%) con 
lixiviados de los silos 

cultivos. 
Cultivos energéticos y 

restos vegetales (70%). 

Purín de cerdo; 12,5% 
Hierba fresca; 12,5% 

Silo; 75% 

Vacuno; 51% 
Silo hierba y maíz; 42% 

Maíz grano; 7% 

CAPACIDAD DE 
TRATAMIENTO 

50 t/día 10 t/día 55-60  t/día 

PRODUCCIÓN DE 
BIOGÁS 

11008  m3/día 
(220 m3/t) 

>2000  m3/día 
(>200  m3/t) 

7200-8400  m3/día 
(131-140  m3/t) 

CONTENIDO EN 
CH4 DEL BIOGAS 

 52-55% 50% 

PRODUCCIÓN 
ENERGÉTICA 

Elect: 8030 MWh/año 
Calor: 8223 MWh/año 

Elect:240 kW 
Calor: desconocido 

Elect: 680 kW 
Calor: 700 kW 

Tabla 19. Datos técnicos de plantas de biometanización que  co-digieren residuos ganaderos y cultivos 
energéticos [9]. 
 
 

2.5.- Co-digestión de residuos ganaderos y residuos animales. 

Los subproductos animales y los residuos de matadero presentan propiedades que los 

hacen aptos para ser usados como co-sustratos en la co-digestión anaerobia con 

residuos ganaderos (alto contenido graso). 

La Unión Europea exige la pasteurización o la esterilización de los residuos 

procedentes de matadero cuando estos vayan a ser utilizados en tierras agrícolas. 

Respecto a la existencia de plantas industriales que obtienen biogás a partir de la co-

digestión anaerobia de residuos ganaderos y animales, Dinamarca aparece como el 

país que cuenta con un mayor número de plantas, con la particularidad de que en ellas 

se co-digiere residuos ganaderos y mezclas de residuos animales procedentes de 

mataderos y de la industria del procesado de pescado. Suecia, Alemania, Polonia y 

España cuentan también con plantas en operación en los que el proceso de co-

digestión anaerobia se realiza con este tipo de residuos. En España existe una planta 

ubicada en la Junquera (Lérida).  

 

2.5.1.- Co-digestión con residuos ganaderos y residuos de matadero. 

Son numerosas las investigaciones realizadas sobre digestión anaerobia de residuos 

animales generados en mataderos, aunque usados como único sustrato en el proceso.  

Respecto a la higienización exigida en la UE para los residuos de matadero, en [51] se 

estudió el efecto de este pre-tratamiento en una mezcla de residuos animales 

procedentes de mataderos (harinas de carne, rumen, estómago y contenido 

estomacal) y residuos alimentarios. Se observó que con este pre-tratamiento la 
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producción de biogás es 4 veces mayor cuando se higieniza la mezcla a tratar (1140 

m3/tSV frente a 310 m3/tSV obtenido con mezcla sin higienizar).  

Según las investigaciones llevadas a cabo por Hejnfelt et al. 2009 [52], la co-digestión 

de purín con un 5% de subproductos de matadero de cerdo mejora la producción de 

metano en un 40% respecto al purín sólo. 

A continuación, en la tabla 20 se muestra la producción de metano a partir de la 

digestión anaerobia de diferentes subproductos animales. 

TIPOLOGÍA PRODUCCIÓN DE CH4 (m
3/t) 

Sangre 58 

Intestino y su contenido 33 

Harinas de car y huesos 305 

Subproductos animales 
pasteurizados 

225 

Subproductos animales no 
pasteurizados 

56 

Mezclas de matadero 160 

Residuos de matadero 130 

Tabla 20. Producción de metano a partir de la digestión anaerobia de 
diferentes subproductos animales [9]. 

 

En los mataderos, los animales son faenados para separar las partes comestibles y los 

efluentes, los cuales contienen sangre, estiércol, pelos, grasas, huesos, proteínas y 

otros contaminantes solubles. Dichos efluentes tienen un problema adicional, la gran 

variabilidad en la composición y en la concentración, las cuales pueden variar aparte 

de un día para otro, en el curso de un mismo día. La composición media de efluente 

procedente de faena de cerdo es: ST 4000mg/l; SV 2000mg/l; DQO 2500mg/l; DBO5 

1000mg/l; nitrógeno total 250mg/l; fósforo 25mg/l; aceites y grasa 150mg/l [53].  

Por otro lado, las sinergias de los residuos matadero con otros sustratos tal como 

residuos industriales y restos de restaurante, de frutas y de desechos vegetales 

también mejoraba la producción de metano. Se comprobó que una mezcla con un 66% 

de purín de cerdo, un 17% de residuos industriales (87% grasas y 13% residuos de la 

industria alimenticia), un 12% de residuos de matadero (50% fangos, 25% rumen y 

25% estiércol) y un 5% de restos de restaurantes, de frutas y de derechos vegetales 

llegaba a producir un 84,46m3 CH4/tn de mezcla [11]. 
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Como ya se ha indicado, son numerosas las plantas que operan a escala industrial 

que obtienen biogás a partir de mezclas de residuos ganaderos y residuos de 

matadero. En la tabla 21 se recogen los datos técnicos de algunas de ellas. 

 
JUNEDA-LÉRIDA 

(España) 
LAHOLM 
(Suecia) 

PAWLOWKO 
(Polonia) 

CONSTRUCTOR TRACJUSA Laholm Biogas AB  

CO-SUSTRATOS 
Cerdo 

Lodos de depuradora 
de matadero 

Ganaderos; 60% (79% 
cerdo, 21% vacuno) 

Matadero; 40% 

Ganaderos; 87% 
(cerdo) 

Matadero; 13% 

PRE-TRATAMIENTO Trituración y desarenado 
Higienización 
(70ºC, 1 hora) 

Higienización 
(70ºC, 1 hora) 

CAPACIDAD DE 
TRATAMIENTO 

300 t/día 150 m3 mezcla/día  

PRODUCCIÓN DE 
BIOGÁS 

6000-7500 m3/día 
(20-25 m3/t mezcla) 

9000  m3/día 
(60  m3/ m3 mezcla) 

1200  m3/día + 
199  m3 (almacen.) 

CONTENIDO EN CH4 
DEL BIOGÁS 

>65% 75% 65% 

PRODUCCIÓN 
ENERGÉTICA 

16,3 MW 20-30 GWh/año 
1,4 (Elect) + 2,6 
(calor) GWh/año 

Tabla 21. Datos técnicos de plantas de biometanización que  co-digieren residuos ganaderos y residuos 
de matadero  [8]. 
 
 

2.5.2.- Co-digestión con residuos ganaderos y residuos pesqueros. 

También son numerosos los datos experimentales obtenidos en investigaciones 

realizadas a escala de laboratorio sobre el proceso de digestión anaerobia utilizando 

como sustrato residuos de la industria pesquera, ya sea como sustrato único o con 

otros sustratos como residuos ganaderos. 

En la tabla 22 se recogen datos de producción de biogás a partir de diferentes 

residuos de la industria pesquera y con diferentes condiciones de operación. 

ALIMENTACIÓN 
COMPOSICIÓN 
ALIMENTACIÓN

OPERACIÓN PROD. GAS % CH4 

Residuos de 
matadero, 
industriales y 
estiércol de 
cerdo 

9,7-10,3% ST 
 

C/N: 8-11 

CSTR 
 

35ºC 

800-1000m3 CH4/t 
SV 

68,2-70,5 

97% estiércol de 
cerdo, 2% 
residuo de aceite 
de pescado, 1% 
bentonita 

 
30ºC 

 
HRT: 15 d 

184 m3 CH4/t SV 65 

Tabla 22. Producción de biogás a partir de diferentes residuos pesqueros en procesos de co-
digestión con otros sustratos [12] y [54]. 

 
 
En la tabla 23 que se muestra a continuación, se recogen los datos técnicos de plantas 

ubicadas en Dinamarca que operan a escala industrial y en la que co-digieren residuos 

ganaderos y residuos procedentes de la industrial del pescado. En todas, además de 
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purines y residuos de pescado, se co-digieren otros residuos, como residuos lácteos, 

farmacéuticos y, en muchas de las plantas analizadas, residuos de matadero. 

 

 HEGNDAL-HEMMET 
(Dinamarca) 

VESTER HJERMITSLEV 
(Dinamarca) 

BLABJERG 
(Dinamarca) 

CONSTRUCTOR 
Jenny and Kent Skaaning 

 
Vester Hjermitslev 

Energiselskab 
Blabjerg Biogas 

A.m.b.a. 

CO-SUSTRATOS 
Ganaderos; 95% (cerdo) 
Pesqueros grasos; 5% 

 

Ganaderos;  76% (cerdo y 
vacuno) 

Pesqueros (lodos flotantes) y 
residuos de curtidos; 24% 

Ganaderos; 72%  
(cerdo y  vacuno) 

Pesqueros, 
orgánicos de 

alimentos, lodos de 
depuradora, etc; 

28% 

PRE-
TRATAMIENTO 

 
 

4,5 horas a 57ºC 
(tras digestión) 

MGRT 8 horas a 
53,5 ºC 

 
CAPACIDAD DE 
TRATAMIENTO 

52,7 t/día 54 t/día 309  t/día 

PRODUCCIÓN 
DE BIOGÁS 

3560  m3/día 
(67,6 m3/t mezcla) 

2740  m3/día 
(50,7 m3/t) 

8500  m3/día 
(27,5  m3/t mezcla) 

PRODUCCIÓN 
ENERGÉTICA 

350  kW 1610  kW 7840  kW 

Tabla 23. Datos técnicos de plantas industriales de biometanización que co-digieren residuos ganaderos y 
residuos del proceso de pescado [9]. 
 
 

2.6.- Co-digestión de residuos ganaderos y residuos de la industria láctea. 

No se ha encontrado demasiada información sobre la utilización de este tipo de co-

sustrato. En la planta de Vila-sana (España) se añade leche como co-sustrato, junto 

con otros residuos orgánicos, como restos de fruta [9]. 

 

2.7.- Co-digestión de residuos ganaderos y residuos de la fabricación de 

biodiesel. 

La glicerina es un producto de la fabricación del biodiesel. El mercado de la glicerina 

es limitado, por lo que, cuando la capacidad de producción de biodiesel aumente, la 

glicerina terminará siendo un subproducto de relativamente bajo valor, aumentando el 

coste de la producción de biodiesel. La utilización de la glicerina como materia prima 

en otras industrias puede ayudar a que la producción de biodiesel sea más factible 

económicamente. 

Una de las posibles aplicaciones para este residuo es la co-digestión anaeróbica con 

otros residuos orgánicos, con el objetivo de aumentar el potencial del biogás. La 

glicerina presenta un pH adecuado para la digestión anaerobia y además es muy 

biodegradable. 
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Se han encontrado datos de plantas que operan a escala industrial en las que la 

glicerina se añade como tercer co-sustrato al proceso de digestión anaerobia para 

compensar el efecto inhibitorio que causa el nitrógeno amoniacal producido como 

consecuencia de un elevado contenido de nitrógeno en los residuos tratados. El 

elevado contenido en carbono de la glicerina permite aumentar la relación C/N en la 

mezcla, evitando fenómenos de inhibición debidos al nitrógeno. 

Estudios experimentales realizados demuestran que la adición de glicerina en 

procesos de co-digestión anaerobia aumenta la producción de biogás. Esta es una de 

las principales conclusiones obtenidas por Amon et al. (2006) [55], que optimizaron la 

digestión anaerobia de purín de cerdo con silo de maíz, utilizando un suplemento de 

glicerina. Los ensayos permitieron concluir que la producción de biogás es 

especialmente alta con adiciones de glicerina de 3-6%, mientras que a 

concentraciones de glicerina de 8% y 15% se observa una inhibición debida a la 

presencia de grandes cantidades de ácidos propiónico y butírico. Sin embargo a 

escala industrial, se tiene constancia de que en la planta de biogás de Hashoej en 

Dinamarca, alimentan un reactor con un 9% de glicerina produciendo altos caudales 

de biogás. 

En otro reciente estudio llevado a cabo por Astals et al [10] sobre el incremento de la 

producción de biogás con co-digestión de glicerina, se concluyo que la co-digestión del 

purín con un 4% de glicerina, aumentaba la producción de biogás en un 400%. 

 

En la tabla 24 se recogen datos técnicos de dos plantas en las que se trabajó con 

residuos de glicerina en el proceso de co-digestión con residuos ganaderos y otros 

residuos orgánicos. La planta Skovbaekgaar, en Dinamarca, es la única que, hasta el 

momento, obtiene biogás a partir de la co-digestión de residuos ganaderos (de 

vacuno, en concreto) y glicerina procedente de la fabricación de biodiesel. No se 

conocen datos sobre la proporción en la que se añaden los co-sustratos pero se 

comprueba como la adición de glicerina al proceso produjo un aumento considerable 

de la producción de biogás (del 186%). 
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SKOVBAEKGAARG BIOGAS 

PLANT 
HOLSTED (Dinamarca) 

BIOENERGIE AHDEN 
GmH&Co. 

KG BIOGAS PLANT 
BUREN-AHDEN (Alemania) 

GESTOR 
La propia granja productora de 

purín 

Construcción: Biogas Nord 

Seguimiento: University Southern 
of Denmark 

CO-SUSTRATOS 

Ganaderos; (vacuno: 450 
animales) 

Glicerina (biodiesel): 1000 m3/año 
Ocasionalmente, grasas vegetales 

(avena): 100 t/año máximo. 

Ganaderos; 28,5% (cerdo) 
Otros; 71,5% (residuos de 

comida) 
(Se ha añadido glicerina y 
mezclas de glicerina/agua) 

CAPACIDAD DE 
TRATAMIENTO 

No disponible 38  m3/día 

PRODUCCIÓN DE 
BIOGÁS 

3000-3500  m3/día sin adición de 
glicerina 

10000 m3/día con glicerina 
Dato no disponible 

CONTENIDO EN CH4 
DEL BIOGAS 

52-55% 65-70% 

PRODUCCIÓN 
ENERGÉTICA 

5000-8000  kWh/día 750 kW 

Tabla 24. Datos técnicos de plantas industriales de biometanización que co-digieren residuos 
ganaderos y residuos de glicerina [9]. 

 
 
 

2.8.- Co-digestión de residuos ganaderos y otros residuos orgánicos. 

En la tabla 25 que se muestra a continuación, se muestran los datos técnicos de 

plantas de biometanización que co-digieren residuos ganaderos con aguas residuales 

y lodos. 

 
BIOVAKKA-VEHNNA

(Finlandia) 
SPILAMBERTO MÓDENA

(Italia) 
NISTELRODE

(Holanda) 

CONSTRUCTOR 
Biovakka 

 
Huber Tecnology (Hans 

Huber A.G.) 
Blabjerg Biogas 

A.m.b.a. 

CO-SUSTRATOS 

Ganaderos; 71,4% 
(cerdo y vacuno) 

Los industriales; 7,1% 
Lodos EDAR; 21,4% 

 

Ganaderos;  80% (cerdo y 
vacuno) 

Otros; 20% (lodos de aguas 
residuales) 

Ganaderos; 81,5%  (72,6% 
avícola y 27,4% cerdo) 

Otros; 18,5% (lodo 
floculado procedente del 

industria cárnica y del 
pescado) 

PRE-
TRATAMIENTO 

Residuo ganadero: 
homogeneización a 12 
mm e higienización a 

70ºC durante 1h 

Dato no disponible 
Dato no disponible 

 

CAPACIDAD DE 
TRATAMIENTO 

329  t/día 600 m3/día 9,1  t/día 

PRODUCCIÓN DE 
BIOGÁS 

1534  m3/día 
(4,7 m3/t) 

Dato no disponible 
650  m3/día 
(71,4  m3/t) 

CONTENIDO EN 
CH4 DEL BIOGAS 

60-65% Dato no disponible 64% 

PRODUCCIÓN 
ENERGÉTICA 

4-5 MkW Dato no disponible 146  kW (340 MWh/año) 

Tabla 25. Datos técnicos de plantas de biometanización que co-digieren residuos ganaderos con aguas 
residuales y lodos [9]. 
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Por otro lado, en cuando a la co-digestión con FORSU (Fracción Orgánica de 

Residuos Sólidos Urbanos), según un estudio llevado a cabo por Ruihong Zhang et. Al 

[56], la co-digestión de estiércol con FORSU (50/50) mejora la producción de metano 

en un 40% respecto al purín sólo. 

En la tabla 26 que se muestra a continuación, se muestran los datos técnicos de 

plantas de biometanización que co-digieren residuos ganaderos con FORSU. 

 
IM BRAHM 

ESSEN (Alemania) 
BALLYTOBIM 

(Irlanda) 
STUDSGAAR 
(Dinamarca) 

LEMVING 
(Dinamarca) 

CONSTRUCTOR 
 

Krieg & Fischer 
Ingenieure GMBH 

 
Heming Municipal 

Utilities 
Lemving 
A.m.b.a. 

CO-SUSTRATOS 

Ganaderos: Purín 
de cerdo. 

Otros: Residuos de 
cocina, grasas y 

grano. 
 

Ganaderos; 64 % 
(cerdo) 

Otros; 36% (45% 
orgánicos de la 

industria alimentaria 
y 55% orgánicos de 

hogares) 

Ganaderos; 86,5% 
(22% vacuno y 

78% cerdo). 
Otros; 13,5% 

(industria 
alimentaria y 

residuos de los 
hogares). 

Ganaderos; 83% 
(40% vacuno, 59% 
cerdo y 1% otros). 

Otros; 17% 
(residuo 

alimentario y 
fangos EDAR) 

PRE-
TRATAMIENTO 

Ganadero: 
homogeneización. 

Separación de 
plásticos, piedras u 

otros. 

Higienización del 
residuo 

agroindustrial (70ºC, 
1h) 

Dato no disponible Dato no disponible 

CAPACIDAD DE 
TRATAMIENTO 

Dato no disponible 22  t/día 266  t/día 437  t/día 

PRODUCCIÓN DE 
BIOGÁS 

500  m3 biogás/t 
residuo 

600  m3/día 
(27,3  m3/t) 

15616  m3/día 
(58,7  m3/t) 

14795  m3/día 
(33,9  m3/t) 

CONTENIDO EN 
CH4 DEL BIOGAS 

Dato no disponible Dato no disponible Dato no disponible >65% 

PRODUCCIÓN 
ENERGÉTICA 

380 kW Dato no disponible Dato no disponible  

Tabla 26. Datos técnicos de plantas de bi9ometanización que co-digieren residuos ganaderos con FORSU 
[9]. 

 
 

2.9.- Conclusiones. 

Tal y como se ha podido comprobar en el presente anexo, la co-digestión anaerobia 

puede incrementar la producción de metano en los digestores anaerobios entre un 50 

y un 200% en función de las condiciones de operación y de los co-sustratos 

empleados, motivo por el cual el número de plantas industriales de co-digestión está 

aumentando. No obstante, como se ha visto, la co-digestión depende de varios 

parámetros dentro de la propia mezcla a tratar, como son la cantidad de nutrientes, la 

relación C/N, pH, compuestos tóxicos e inhibidores, % materia orgánica biodegradable 

y %materia de materia seca. 

Por otro lado, otro de los aspectos que influyen en la producción final de metano tras la 

co-digestión, es el pre-tratamiento al cual es sometido el sustrato (reducción del 

tamaño de la partícula, espesamiento, calentamiento, control de pH, eliminación de 
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metales, eliminación de gérmenes patógenos…). La finalidad de esta operación es 

introducir el residuo los más homogéneo posible y sin elementos que puedan dañar al 

digestor. 

En definitiva, a la vista de la información recopilada en el presente anexo, se puede 

comprobar que la producción de metano en la co-digestión puede presentar 

diferencias significativas en función no solo del co-sustrato utilizado y de la cantidad de 

éstos, sino también del pre-tratamiento, de las sinergias entre los residuos y del tipo de 

digestor. 

 

2.10.- Casos de estudio. 

Para llevar a cabo el análisis termoeconómico pretendido en el presente trabajo, se 

han seleccionado los siguientes casos de co-digestión teniendo: 

- Co-digestión con paja. La co-digestión de purín de cerdo con un 1% de paja, 

suponiéndose paja de trigo, permite incrementar la producción de metano en 

un 10% [8]. 

- Co-digestión con glicerina. La co-digestión de purín de cerdo con un 4% de 

glicerina permite incrementar la producción de metano en un 150% (valor 

estimado en base a distintos estudios [9] y [10]). 

- Co-digestión con mezcla de residuos industriales, de matadero y vegetales. La 

mezcla con un 66% de purín de cerdo, un 17% de residuos industriales 

(87%grasas y 13% residuos de la industria alimenticia), un 12% de residuos de 

matadero (50% fangos, 25% rumen y 25% estiércol) y un 5% de restos de 

restaurantes, de frutas y de derechos vegetales llegaba a producir un 

84,46m3CH4/tn de mezcla [11]. No obstante, en cuanto a la composición de 

esta mezcla considerada para los cálculos, comentar lo siguiente: 

 Se ha considerado que todos los residuos industriales eran 

grasas, al desconocerse el tipo de residuo de la industria 

alimenticia empleado para la co-digestión en este ensayo. 

 Del mismo modo, al desconocerse el porcentaje exacto de 

restos de restaurante, de fruta y de desechos vegetales 

empleados para el ensayo, se ha considerado que el 5% era 

paja de trigo.  
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ANEXO III. CARACTERIZACIÓN DE LOS FLUJOS DE LOS DISTINTOS 
PROCESOS DE LA PLANTA DE TRATAMIENTO DE PURINES 
OBJETO DE ESTUDIO. 

 
 

En el presente anexo se van a tratar de caracterizar cada uno de los flujos de los 

cuatro casos de estudio, con el objeto en primer lugar, de calcular la exergía de los 

mismos para, posteriormente, llevar a cabo el análisis termoeconómico objeto de este 

trabajo, si bien en primer lugar se detallará el ambiente de referencia elegido para 

llevar a cabo el análisis exergético pretendido. 

 

Ambiente de referencia 

El ambiente de referencia elegido para el agua para el análisis realizado en el presente 

trabajo será el agua del mar Mediterráneo, cuya salinidad es de 36.700 ppm, 

considerándose exclusivamente por agua pura e iones de cloro y sodio, al ser estos 

los elementos mayoritarios. 

Elemento Peso Ppm 

Hidrógeno (H2O) 1,00797 110.000 

Oxigeno (H2O) 15,9994 883.000 

Sodio (NaCl) 22,9898 10.800 

Cloro (NaCl) 35,453 19.400 

Magnesio (Mg) 24,312 1.290 

Azufre (S) 32,064 904 

Potasio (K) 39,102 392 

Calcio (Ca) 40,08 411 

Bromo (Br) 79,909 67,3 

Tabla 27. Composición del agua de mar [57]. 

 

 

Por otro lado, el ambiente estable de referencia para otro tipo de sustancias distintas 

del agua, como compuestos gaseosos y fluidos térmicos estudiados en el presente 

trabajo, queda definido según el ambiente de referencia de szargut [17] para las 

siguientes condiciones: 

- To, temperatura del ambiente de referencia, 298,15K. 

- Po, presión del ambiente de referencia, 1,01325 bar. 
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Una vez establecido el ambiente de referencia en base al cual se realizará el análisis 

exergético del presente trabajo, a continuación se van a ir analizando cada uno de los 

distintos flujos de la planta objeto de estudio, los cuales se indican a continuación: 

 

- Flujos de purín. Para caracterizar los flujos de purín se debe analizar la 

composición de éstos, es decir, calcular la cantidad de DQO, de nitrógeno y de 

fósforo total presente en cada uno de ellos. 

 

o La demanda química de oxígeno (DQO). La DQO es un parámetro que 

mide la cantidad de sustancias susceptibles de ser oxidadas por medios 

químicos que hay disueltas o en suspensión en una muestra líquida, es 

decir, en el ensayo de este parámetro se emplea un agente químico 

fuertemente oxidante en medio ácido para la determinación del 

equivalente en oxigeno de la materia orgánica al oxidarse. 

 

o El nitrógeno total. El contenido total de nitrógeno está compuesto por 

nitrógeno orgánico y amoniacal. El contenido del nitrógeno orgánico se 

determina mediante con el método Kjeldahl. En este método de análisis 

la nuestra acuosa se hierve con el objeto de eliminar el amoniaco, para 

dar paso al proceso de digestión en el que el nitrógeno orgánico se 

transforma en amoniaco. El nitrógeno Kjeldahl total se determina del 

mismo modo que el nitrógeno orgánico, con la diferencia de que no se 

elimina el amoniaco presente antes del proceso de digestión. Por lo 

tanto, el nitrógeno Kjeldahl total incluye ambas formas del nitrógeno, el 

amoniacal y el orgánico [58]. 

o El fosforo total. La forma de encontrar el fósforo en el purín de cerdos 

es P2O5 [5] Y [59]. 

 
Figura 4. Esquema de los flujos de purín que forman parte de la planta de tratamiento de purines de 
Capella. 
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- Flujos asociados con los procesos de 

valorización de los fangos. Para 

caracterizar este tipo de flujos se analizará la 

cantidad de biogás producido en cada uno 

de los casos a analizar. 

 

 
Figura 5. Flujo asociado con el 
proceso de valorización de 
fangos. 

 

- Flujos energéticos. Para caracterizar los flujos energéticos (eléctricos y 

térmicos) se debe analizar la energía consumida por la planta para su correcto 

funcionamiento, así como, si una vez suplicadas las propias necesidades, 

analizar si se genera energía sobrante para destinarla a la venta. 

 
Figura 6. Esquema de los flujos energéticos  que forman parte de la planta de tratamiento de purines 
de Capella. 

 

 
- Flujos de residuos añadidos en el 

proceso de tratamiento. Para caracterizar 

este tipo de flujos se analizara la 

composición de cada uno de los sustratos a 

añadir en cada caso para llevar a cabo la co-

digestión. 

 

 
Figura 7. Flujos de residuos 
para co-digestión. 
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3.1.- Análisis de los flujos de la planta de Capella sin co-digestión. 

A continuación se van a ir analizando los distintos flujos de los distintos procesos para 

el  funcionamiento de la planta de Capella sin co-digestión, es decir, sin añadir ningún 

sustrato que mejore la producción de biogás respecto a los datos de diseño. 

 

3.1.1.- Flujos de purín. 

En la memoria del proyecto de la planta de Capella elaborada por Sodemasa [5], se 

recoge la siguiente información respecto a cada unos de los distintos flujos de purín 

que componen la planta de tratamiento: 

FLUJOS DE PURÍN m3/año Tn/año 
Sólidos en 

Suspensión (tn/año) 

1 60.000 61.095 1.680 

2 55.909 55.531 1302 

3 40.037 40.309 456 

4 70.564 70.564 856 

5 55.564 55.564 226 

6 15.495 15.600 846 

7 15.057 15.000 360 

8 4.468,91 4.090,91 378 

9 34.300 34.691 1109 

10 3.105 4.436 979 

11 30.255 30.255 130 

Tabla 28. Datos relativos a los caudales de los flujos de purín reflejados en la memoria de la 
planta [5]. 

 

 Análisis de la Demanda Química de Oxígeno (DQO). 

Para calcular la DQO de cada unos de los flujos, en la memoria del proyecto de la 

planta figura la siguiente información [5]: 

Flujo DQO (kg/año) DQO (mg/l) 

1 
(Purín virgen) 

3.000.000 50.000 

5 
(Clarificado a balsa) 

222.256 4.000 

Tabla 29. Datos relativos a la DQO. 

 

Para poder calcular la cantidad de la DQO presente en el resto de flujos de purín, en 

primer lugar se determinará la cantidad de DQO que es eliminada con el biogás, es 
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decir, por el flujo 12, teniendo en cuenta que la DQO eliminada en el biogás se corres-

pondería con la DQO obtenida en forma de metano (DQO del CO2 es nula), lo cual 

significa 2,857kg DQO/m3 CH4, ó 0,35m3 CH4/kg DQO eliminada [60]. 

Flujo Metano (m3) DQO (kg/año) 

12 400.000 1.142.800 

Tabla 30. Demanda Química de Oxigeno eliminada con el biogás. 

 

Por lo tanto, al ser la DQO un parámetro conservativo, es decir, la suma de las DQO 

de entrada debe ser igual a la suma de las DQO de salida [60], se determinará la 

cantidad de ésta en cada uno de los flujos de purín restantes en función de los sólidos 

en suspensión presentes en cada uno de los flujos, al ser estos valores conocidos y al 

encontrarse la mayor parte de la materia orgánica en dichos sólidos. Por otro lado, se 

debe tener el cuenta que tanto en el digestor como el tratamiento biológico se elimina 

entre un 40 y 60% de la DQO [5] (según información facilitada por Sodemasa, en el 

digestor de la planta de Capella se elimina un 50% de la DQO). 

Flujo DQO (kg/año) DQO (mg/l) 

1 
(Purín virgen) 

3.000.000 50.000 

2 2.454.573 43.903 

3 1.233.855 30.611 

4 741.710 10.511 

5 
(Líquido a balsa) 

222.256 4.000 

6 1.220.718 78.251 

7 519.454 34.630 

8 545.427 133.326 

9 1.142.800 32.942 

10 742.820 167.452 

11 399.980 13.220 

Tabla 31. Demanda Química de Oxígeno calculada en cada uno de los flujos 
de purín (se obtiene una reducción de la DQO en el tratamiento biológico del 
40% aproximadamente). 

 

 Análisis del nitrógeno total (NKT) 

Para calcular el nitrógeno total de cada uno de los flujos, en la memoria del proyecto 

de la planta figura la siguiente información [5]: 

 



ANÁLISIS TERMOECNÓMICO DE UNA PLANTA DE TRATAMIENTO DE PURINES 

78 
 

Flujo NKT (kg/año) NKT (mg/l) 

1 
(Purín virgen) 

420.000 7.000 

3 
(Efluente Dec.1ª) 

197.514 4.900 

5 
(Líquido a balsa) 

77.790 1.400 

Tabla 32. Datos relativos al nitrógeno total.  
 

Para poder calcular la cantidad de nitrógeno total presente en el resto de flujos de 

purín, se considerará, por un lado, que el digerido (flujo tras la digestión, Flujo 9) 

contiene 4kg de nitrógeno total por cada kg de materia fresca [61] y [62]. 

Flujo NKT (kg/año) NKT (mg/l) 

9 
(Digerido) 

138.764 4000 

Tabla 33. Datos relativos al cálculo del nitrógeno total en el flujo 9. 

 

Por otro lado, según Siebert [63], en un estudio llevado a cabo a varios sustratos 

orgánicos se pudo concluir que en los digeridos sólidos (Flujo 10), el nitrógeno total 

representa el 2,9% de la materia seca. 

Flujo  (Tn) Materia Seca (tn) NKT (kg/año) en la  MS 

10 
(Sólido a almacenaje) 

3.105 
776,25* 
(25%) 

22.511 

Tabla 34. Datos relativos al cálculo del nitrógeno total en la Materia Seca del flujo 10. (*El 25% del sólido 
a almacenaje es Materia Seca [4]). 

 

Por lo tanto, el nitrógeno total restante procedente del flujo 9, es decir, el nitrógeno 

total del flujo 9 menos el contenido en la materia seca, se distribuirá proporcionalmente 

al caudal entre el flujo 11 y de la parte acuosa del flujo 10. 

Flujo (Tn) NKT (kg/año) 

11 30.255 107.945 

10 
(agua) 

2.328,75 8.306 

Tabla 35. Datos relativos al cálculo del nitrógeno total en el flujo 
11 y en el agua del flujo 10. 

 

Finalmente, teniendo en cuenta el caudal volumétrico de los flujos 10 y 11, se 

determinará el nitrógeno total el mg/l en cada uno de estos flujos: 
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Flujo  (m3) NKT (kg/año) NKT (mg/l) 

10 4.435 
30.817 

(22.511+8.306) 
6.947 

11 30.255 107.945 3.567 

Tabla 36. Datos relativos al cálculo del nitrógeno total en el flujo 11 y en flujo 10. 

 

En la figura 7 se puede observar, a modo 

de resumen,  la distribución del Nitrógeno 

del flujo procedente de la digestión 

anaerobia (flujo 9) una producida la 

decantación centrifuga y, por lo tanto, 

separada la parte solida (flujo 10) de la 

líquida (flujo 11) del digerido. 

 

Figura 7. Distribución del Nitrógeno tras la 
decantación centrifuga. 

Por lo tanto, al ser el nitrógeno total un parámetro conservativo, se determinará la 

cantidad de este parámetro en cada uno de los flujos de purín restantes, teniéndose 

en cuenta su reducción tanto en el digestor como el tratamiento biológico [4]. 

Flujo NKT (kg/año) NKT (mg/l) 

1 
(Purín virgen) 

420.000 7.000 

2 291.114 5.207 

3 
(Efluente Dec.1ª) 

197.514 4.900 

4 100.290 1.421 

5 
(Líquido a balsa) 

77.790 1.400 

6 93.600 6.000 

7 22.500 1.500 

8 128.886 31.505 

9 
(Digerido) 

138.764 4000 

10 30.817 6.947 

11 107.945 3.567 

Tabla 37. Nitrógeno total en cada uno de los flujos de purín. (Según los 
cálculos anteriores, en el digestor se produce un reducción de 56%, mientras 
que en el tratamiento biológico la reducción es del 66%, reducciones dentro 
de los rangos establecidos en [4]). 
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 Análisis del fósforo total. 

Para calcular el fósforo total de cada unos de los flujos, en la memoria del proyecto de 

la planta figura la siguiente información: 

Flujo Fósforo (kg/año) Fósforo (mg/l) 

1 
(Purín virgen) 

90.000 1.500 

5 
(Líquido a balsa) 

25.000 450 

Tabla 38. Datos relativos al fósforo total. Datos obtenidos en la memoria 
de la planta. 

 

Para poder calcular la cantidad de fósforo presente en el resto de flujos de purín 

procederemos se forma similar al cálculo del nitrógeno total, considerándose por un 

lado, que el digerido (flujo tras la digestión, Flujo 9) contendrá 2kg de fosforo total por 

cada kg de materia fresca [61] y [62], por lo tanto obtenemos: 

Flujo Fósforo (kg/año) Fósforo (mg/l) 

9 
(Digerido) 

68.600 1.977 

Tabla 39. Datos relativos al cálculo del fósforo en el flujo 9. 

 

Del mismo modo, según Siebert [63], en un estudio llevado a cabo a varios sustratos 

orgánicos se pudo concluir que de los digeridos sólidos (Flujo 10), el fósforo estaba 

presente en el 1,3% de la materia seca, por lo tanto, aplicado este dato a la planta 

objeto de este trabajo, obtenemos lo siguiente: 

Flujo  (Tn) Materia Seca (tn) 
Fósforo (kg/año) en la  

MS 

10 
(Sólido a almacenaje) 

3.105 
776,25 
(25%) 

10.091 

Tabla 40. Datos relativos al cálculo del fósforo en la Materia Seca del flujo 10. 

 

Por lo tanto, el fósforo restante procedente del flujo 9, es decir, el fósforo del flujo 9 

menos el contenido en la materia seca, se distribuirá proporcionalmente al caudal del 

flujo 11 y de la parte acuosa del flujo 10. 

Flujo (Tn) Fósforo (kg/año) 

11 30.255 54.328 

10 
(agua) 

2.328,75 4.181 

Tabla 41. Datos relativos al cálculo del fósforo en el flujo 11 y 
en el agua del flujo 10. 
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Finalmente, teniendo en cuenta el caudal volumétrico de los flujos 10 y 11, se 

determinará el fósforo el mg/l en cada uno de estos flujos: 

Flujo  (m3) Fósforo (kg/año) Fósforo (mg/l) 

10 
(Sólido a almacenaje) 

4.435 
14.272 

(10.091+4.181) 
3.217 

11 30.255 54.328 1.795 

Tabla 42. Datos relativos al cálculo del fósforo total en el flujo 11 y en flujo 10. 

 

En figura 8 se puede observar, a modo 

de resumen,  la distribución del Fósforo 

del flujo procedente de la digestión 

anaerobia (flujo 9) una producida la 

decantación centrifuga y, por lo tanto, 

separada la parte solida (flujo 10) de la 

líquida (flujo 11) del digerido. 

 

 

Figura 8. Distribución del Fósforo tras la 
decantación centrifuga. 

Por lo tanto, al ser el fósforo un parámetro conservativo, se determinara la cantidad de 

este parámetro en cada uno de los flujos de purín restantes, teniéndose en cuenta su 

reducción en el tratamiento biológico y que no se reduce nada en el digestor [4]  

Flujo Fósforo (kg/año) Fósforo (mg/l) 

1 
(Purín virgen) 

90.000 1.500 

2 45.250 809 

3 
(Efluente Dec.1ª) 

29.650 735 

4 33.250 471 

5 
(Líquido a balsa) 

25.000 450 

6 15.600 1000 

7 8.250 550 

8 44.750 10.938 

9 
(Digerido) 

68.600 1.977 

10 14.272 3.217 

11 54.328 1.795 

Tabla 43. Fósforo total en cada uno de los flujos de purín. (Según los cálculos 
anteriores, en el tratamiento biológico la reducción es del 60%, reducción 
dentro de los rangos establecidos en [4]). 
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3.1.2.- Flujos asociados con los procesos de valorización de los fangos. Biogás. 

Se ha estimado la composición del biogás a partir de los datos aportados en la 

memoria de la planta (60% CH4 y 35%CO2) [5]. 

Datos Biogás 

Composición volumétrica            % 

CH4                                                   60 

CO2                                                  35 

H2S                                                   2 

N2                                                      1 

H2                                                    0,5 

O2                                                    0,5 

Tabla 44. Datos de la composición del 
biogás estimados a partir de los datos de 
la memoria de la planta. 

 

Para llevar los cálculos exergéticos, se considerara que el gas entra al motor a una 

temperatura de 300K y que éste es comprimido hasta 1,5bar.  

 

Por otro lado, en la memoria del proyecto de la planta figura la siguiente información 

relativa al biogás producido: 

Biogás producido 
(m3/año) 

Metano producido (m3/año)
(60% del biogás) 

Poder calorífico 
Energía anual 

producida 

666.667 400.000 
3.988.000 kWh/año 
(9,97 kWh/m3 CH4) 

189 KWe/año 
 (Rto eléctrico:38%) 

 
 200 KWc/año 

 (Rto térmico:40%) 
Tabla 45. Datos relativos a la energía generada por la planta de Capella [4]. 
 

3.1.3.- Flujos energéticos. 

Los flujos energéticos pueden ser de dos tipos; flujos eléctricos y flujos térmicos. 

 

 Flujos eléctricos. 
 

Los flujos eléctricos pueden ser debidos, por un lado, a los consumos eléctricos 

necesarios para el funcionamiento de la planta (flujos del 13 al 17), y, por otro lado, al 

flujo de la energía eléctrica sobrante de la planta y destinada a la venta de la misma 

(flujo 19). 
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 Consumos de la planta. 

Los flujos debidos a los consumos eléctricos de la planta para su correcto 

funcionamiento son los siguientes: 

Flujo KW PROCESO Equipo 

13 0,18 DESBASTE 1 Reja automatic circular 

14 0,25 DEC. 1ª 1 Bomba 

15 110,75 
TRATAMIENTO 

BIOLOGICO 
1 Biorreactor (110 kW) 
3 Bombas (3x0,25kW) 

16 0,25 DEC. 2ª 1 Bomba 

17 19,5 PULMÓN/CENTRIFUGA 

1 Motor principal (15kW) 
1 Retrovariador (4kW) 
1Rasca-sólidos (0,25kW) 
1Motor ventilador (0,25kW) 

18e 57 DIGESTOR 
2 Cargadores de sólidos (2x2,5kW) 
2 Mezcladores (15kW) 
2 Agitadores (11kW) 

Tabla 46. Datos relativos a los consumos eléctricos de la planta de Capella [5]. 
 
 
 
 Energía eléctrica exportable  de la planta. 

Tal y como puede verse en la tabla 45, la planta de Capella está diseñada para que 

genere 189kW eléctricos sin practicarse ningún tipo de co-digestión. Por lo tanto, 

teniendo en cuenta que los auto-consumos eléctricos para el correcto funcionamiento 

de la planta sin co-digestión son de 188kW, se puede comprobar que este caso tan 

sólo sobraría 1kW para la venta. 

Flujo kW 

19e
(Electricidad  exportable) 

1 

Tabla 47. Electricidad destina a venta. 
 
 

 Flujos térmicos. 
 

Los flujos térmicos, al igual que los eléctricos, pueden ser debidos, por un lado, a los 

auto-consumos térmicos necesarios para el funcionamiento de la planta, calentamiento 

de los digestores (flujo 18), y, por otro lado, al flujo de la energía térmica sobrante de 

la planta y destinada o bien a ser exportada o bien al almacenaje de la misma (flujo 

19). 
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En cuanto a las temperaturas de operación de la planta, temperatura de la salida del 

agua y temperatura a la cual deben mantenerse los digestores para llevar a cabo la 

digestión anaerobia, son las siguientes [5]: 

Temperatura ºC 

Temperatura de salida del agua 90 

Temperatura de los digestores 80 

Tabla 48. Datos relativos a las temperaturas de operación 
de la planta. 

 

Finalmente, teniendo en cuenta que según estimaciones realizadas por Sodemasa en 

la memoria del proyecto (autoconsumo térmico:40%), los flujos térmicos serían los 

siguientes: 

Flujo kW 

18c
(Autoconsumo 

térmico) 
80 

19c
(Calor 

exportable) 
120 

Tabla 49. Datos relativos a los flujos térmicos de 
la planta de Capella.  

 

3.2.- Análisis de los flujos de la planta de Capella con co-digestión. 
 

Para caracterizar los flujos en los casos de co-digestión, procederemos de la misma 

manera que en el caso sin co-digestión, viéndose algunos de ellos inalterados, ya que 

la co-digestión afecta solamente a la digestión anaerobia. Los flujos que se verán 

afectados por la adición de sustratos a la digestión anaerobia respecto al caso sin co-

digestión, son los siguientes: 

 

- Flujos de purín: Flujo 9 y Flujo 10. 

La variación en estos flujos se deberá, por un lado, a la variación de la Demanda 

Química de Oxigeno tanto introducida al digestor como eliminada con el biogás. 

Por otro lado, los caudales de estos flujos también se verán modificados, debido, 

igualmente, a la adición de los sustratos y a la mayor producción de biogás, por lo 

que tanto, los valores específicos (mg/l) de nitrógeno y de fósforo de estos flujos 

también se verán alterados. 
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- Flujos asociados con los procesos de valorización de los fangos: Flujo 

12. 

La co-digestión conlleva un aumento en la producción de biogás. 

 

- Flujos energéticos: Flujo 18 y 19. 

Por un lado, el incremento de la parte eléctrica del flujo 18 (autoconsumo) será 

debido a que ciertos sustratos, para ser añadidos a la digestión, deben de ser 

previamente pre-tratados, requiriendo la instalación de maquinaria específica, la 

cual necesita un cierto consumo eléctrico. Por otro lado, el incremento térmico de 

dicho flujo se deberá a una mayor demanda de calor al incrementarse los 

compuestos a calentar. 

Al incrementarse la producción de metano, lógicamente aumentará la producción 

de energía eléctrica y térmica, por lo que se verá incrementado el flujo 19 en cada 

uno de los casos analizados. 

 

- Flujos de residuos añadidos en el proceso de tratamiento: Flujo 20 

Se añadirá un nuevo flujo respecto al caso sin co-digestión correspondiente a los 

sustratos añadidos en cada uno de los casos. 

 

A continuación se indica el esquema de los flujos que se van a ver afectados en la co-

digestión:  

 
Figura 9. Esquema de los flujos que se ven afectados en caso co-digestión. 

 

 



ANÁLISIS TERMOECNÓMICO DE UNA PLANTA DE TRATAMIENTO DE PURINES 

86 
 

3.2.1.- Co-digestión con paja de trigo. 

Tal y como se ha indicado en el Anexo II, la co-digestión de 1kg de paja por cada 

100kg de purín incrementa la producción de metano en un 10% [8]. Por lo tanto, 

teniendo en cuenta que en la planta de Capella entran al digestor 35.020 tn de purín, 

en este caso se considerará una adición de 350,2tn de paja de trigo, obteniéndose, por 

lo tanto, 440.000m3 de metano. 

 DATOS DE PARTIDA DE LA CO-DIGESTIÓN CON PAJA DE TRIGO 
(1kg paja/100 kg purín - .incremento de un 10% en la producción de 
CH4) 

Entrada al digestor: 
                               35.020 tn de purín 
                               350,2 tn de paja de trigo (Flujo 22)

Producción de CH4: 440.000 m3 (733.333 m3 de biogás) 

Poder calorífico: 4.386.800 kWh 

Energía eléctrica producida: 208 kW 

Energía térmica  producida: 220 kW 

Tabla 50. Datos relativos a la co-digestión de paja de trigo. 
 

Teniendo en cuenta la composición elemental de la paja de trigo (45,6% de Carbono, 

5,7% de hidrogeno, 40% de oxigeno, 0,7% de nitrógeno, 0,09 de azufre y 7,9% de 

cenizas) [27], podemos determinar la DQO de la paja sabiendo que 1kg de paja 

contiene 1,105kg de DQO (DQO determinada mediante la composición elemental de la 

paja) 

Flujo (Tn) DQO (kg/año) 

20 350,2 386.971 

Tabla 51. Cálculo de DQO correspondiente al flujo de paja de 
trigo que se introduce al digestor. 

 

De forma similar al cálculo de la DQO eliminada con el biogás realizado en el caso sin 

co-digestión,  calcularemos la DQO del flujo 12 para este caso (2,857kg DQO/m3 CH4, 

ó 0,35m3 CH4/kg DQO eliminada [60]). 

Flujo Metano (m3) DQO (kg/año) 

12 440.000 1.257.080 

Tabla 52. Demanda Química de Oxigeno eliminada en el biogás en la 
co-digestión con paja de trigo. 

 

Conociendo la DQO eliminada con el biogás y la DQO que entra al digestor, por 

diferencia entre ellas, se podrá calcular la del flujo 9 y, por lo tanto, la del flujo 10. 
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DQO que entra al digestor: 

Flujo 6: 1.220.718 kg 

Flujo 7: 519.454  kg 

Flujo 8: 545.427 kg 

Flujo 20: 386.971 kg 

Tabla 53. Demanda Química de 
Oxigeno que entra al digestor en la 
co-digestión con paja de trigo. 

 

Por otro lado, teniendo en cuenta la mayor producción de biogás (733.333m3), el cual 

pesa 792tn, el peso de la paja añadida (350,2tn) y estimando que se mantiene 

constate la densidad de de los flujos 9 y 10, los caudales de dichos flujos en este caso, 

serán los siguientes: 

Flujo Tn m3 

9 
(Digerido) 

34.578 
(35.020 tn purín+350,2tn paja – 792tn biogás) 

35.283 

10 3.519 
5.028 

(35.283m3 flujo 9-30.255m3 flujo 11) 

Tabla 54. Caudales de los flujos 9 y 10 en la co-digestión con paja de trigo.  
 

En definitiva, la DQO de los flujos 9 y 10 en el caso de co-digestión con paja de trigo 

será la mostrada a continuación: 

Flujo DQO (kg/año) DQO (mg/l) 

9 
(Digerido) 

1.415.491 40.118 

10 1.015.511 201.971 

Tabla 55. Demanda Química de Oxigeno de los flujos 9 y 10 
en la co-digestión con paja de trigo. En este caso, la 
reducción de la DQO en el digestor sería  del  47%. 

 
 

Por otro lado, teniendo en cuanta la variación en los caudales de los flujos 9 y 10, se 

obtendrán los siguientes valores específicos de Nitrógeno y Fósforo total: 

Flujo NKT (kg/año) NKT (mg/l) P (kg/año) P (mg/l) 

9 
(Digerido) 

138.764 3.932 68.600 1.944 

10 30.817 6.129 14.272 2.838 

Tabla 56. Nitrógeno y fósforo total de los flujos 9 y 10 en la co-digestión con 
paja de trigo.  

 

En cuanto a la energía eléctrica consumida por la planta para el funcionamiento de la 

misma, ésta se verá incrementada respecto al caso sin co-digestión, en 5kW, ya que 
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antes de introducir la paja al digestor se debe realizar un pre-tratamiento consistente 

en la trituración de la misma, por lo que se instalará en la propia planta una máquina 

trituradora. A continuación se indican los flujos eléctricos para este caso de co-

digestión con paja de trigo, teniéndose en cuenta la incorporación de la máquina 

trituradora y el aumento de electricidad generada respecto al caso sin co-digestión. 

Flujo kW 

18e
(Autoconsumo 

eléctrico) 
62 

19e
(Electricidad exportable)

15 
(208 -188-5) 

Tabla 57. Flujos eléctricos en la co-digestión con paja de 
trigo. 

 

Del mismo modo, los flujos térmicos serán los siguientes:   

Flujo kW 

18c 
(Autoconsumo térmico) 

88 

19c 
(Calor exportable) 

132 

Tabla 58. Flujos térmicos en la co-digestión con paja de 
trigo (40% autoconsumo [5]). 

 

3.2.2.- Co-digestión con glicerina. 

Tal y como se ha indicado en el Anexo II, la co-digestión con un 4% de glicerina 

incrementa la producción de biogás en un 150% aproximadamente, [9] y [10]. Por lo 

tanto, teniendo en cuenta que en la planta de Capella entran al digestor 35.020tn de 

purín, en este caso se considerará una adición de 1.400tn de glicerina, obteniéndose, 

por lo tanto, 3.333.335m3 de biogás. 

 

 DATOS DE PARTIDA DE LA CO-DIGESTIÓN CON GLICERINA 
(4% GLICERINA - .incremento de un 150% en la producción de 
biogás) 

Entrada al digestor: 
                               35.020 tn de purín 
                               1.400  tn de glicerina  (Flujo 22) 

Producción de CH4: 1.000.000  m3 (1.666.667  m3 de biogás) 

Poder calorífico: 19.940.000  kWh 

Energía eléctrica producida: 473  kW 

Energía térmica  producida: 500 kW 

Tabla 59. Datos relativos a la co-digestión de glicerina 
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Teniendo en cuenta que  la DQO de la glicerina es de1.360g/kg [64], la DQO del flujo 

20 sería el siguiente: 

Flujo (Tn) DQO (kg/año) 

20 1.400 1.946.000 

Tabla 60. DQO correspondiente al flujo de glicerina que se 
introduce al digestor. 
 

 

De forma similar al cálculo de la DQO eliminada con el biogás realizado en el caso sin 

co-digestión,  calcularemos la DQO del flujo 12 para este caso (2,857kg DQO/m3 CH4, 

ó 0,35m3 CH4/kg DQO eliminada [61]). 

Flujo Metano (m3) DQO (kg/año) 

12 1.000.000 2.857.000 

Tabla 61. Demanda Química de Oxigeno eliminada en el biogás en la 
co-digestión con glicerina. 

 

Por lo tanto, conociendo la DQO eliminada con el biogás y la DQO que entra al 

digestor, por diferencia entre ellas, se podrá calcular la del flujo 9 y, por lo tanto, la del 

flujo 10. 

DQO que entra al digestor: 

Flujo 6: 1.220.718 kg 

Flujo 7: 519.454  kg 

Flujo 8: 545.427 kg 

Flujo 20: 1.946.000 kg 

Tabla 62. Demanda Química de 
Oxigeno que entra al digestor en la 
co-digestión con glicerina. 

 

Por otro lado, teniendo en cuenta la mayor producción de biogás (1.666.667m3), el 

cual pesa 1.800Tn, el peso de la glicerina añadida (1.400tn) y estimando que se 

mantiene constate la densidad de de los flujos 9 y 10, los caudales de dichos flujos en 

este caso, serán los siguientes: 

Flujo Tn m3 

9 
(Digerido) 

34.620 
(35.020 tn purín+1.400tn glic – 1.800tn biogás) 

35.326 

10 3.550 
5.071 

(35.326m3 flujo 9-30.255m3 flujo 11) 

Tabla 63. Caudales de los flujos 9 y 10 en la co-digestión con glicerina.  
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En definitiva, la DQO de los flujos 9 y 10 en el caso de co-digestión con paja de trigo 

será la mostrada a continuación: 

Flujo DQO (mg/l) DQO (kg/año) 

9 40.552 1.374.600 

10 192.194 974.620 

Tabla 64. Demanda Química de Oxigeno de los flujos 9 y 10 
en la co-digestión con glicerina. En este caso, la reducción 
de la DQO en el digestor sería  del  67%. 

 

Por otro lado, teniendo en cuanta la variación en los caudales de los flujos 9 y 10, se 

obtendrán los siguientes valores específicos de nitrógeno y fósforo total: 

Flujo NKT (kg/año) NKT (mg/l) P (kg/año) P (mg/l) 

9 
(Digerido) 

138.764 3.928 68.600 1.491 

10 30.817 6.077 14.272 2.814 

Tabla 65. Nitrógeno y fósforo total de los flujos 9 y 10 en la co-digestión con 
glicerina.  

 

Teniendo en cuenta que la glicerina no necesita un pre-tratamiento especifico, a 

continuación se indican los flujos eléctricos para este caso de co-digestión con 

glicerina, teniéndose en cuenta la incorporación de la máquina trituradora y el aumento 

de electricidad generada respecto al caso sin co-digestión. 

 

Flujo kW 

19e
(Electricidad exportable)

285 
(473 -188) 

Tabla 66. Flujo eléctrico exportable en la co-digestión 
con glicerina. 

 

Del mismo modo, los flujos térmicos serán los siguientes:   

Flujo kW 

17c
(Autoconsumo) 

200 

19c
(Calor exportable) 

300 

Tabla 67. Flujos térmicos en la co-digestión con glicerina 
(40% autoconsumo [5]). 
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3.2.3.- Co-digestión con mezcla de residuos. 

Tal y como se ha indicado en el Anexo II, la co-digestión de un 66% de purín de cerdo, 

un 17% de residuos industriales (grasa), un 12% de residuos de matadero y 5% de 

residuos vegetales (paja de trigo), puede producir 84m3CH4/tn de mezcla 

aproximadamente [11]. Por lo tanto, teniendo en cuenta que en la planta de Capella 

entran al digestor 35.020tn de purín, en este caso se considerará una adición de 

9.020tn de residuos industriales, de 6.367tn de residuos de matadero y de 2.653tn de 

residuos vegetales, obteniéndose, por lo tanto, 4.457.040m3 de CH4. 

 DATOS DE PARTIDA DE LA CO-DIGESTIÓN CON GLICERINA 
(66% purín; 17% Res. Ind.; 12% Res. Matadero; 5% Res. Veg) 

Entrada al digestor:
                               35.020 tn de purín 
                               9.020  tn de Res. Industrial   
                               6.367 tn de Res. Matadero   
                               2.653 tn de Res. Vegetales  

Producción de CH4: 4.457.040 m3 (7.428.400 m3 de biogás) 

Poder calorífico: 44.436.689  kWh 

Energía eléctrica producida: 2.110 kW 

Energía térmica  producida: 2.221 kW 

Tabla 68. Datos relativos a la co-digestión de mezcla de residuos 
industriales, de matadero y de vegetales.  

 

En cuanto a los parámetros relevantes de cada uno de los sustratos añadidos para 

poder determinar posteriormente su exergía, a continuación se indican las 

consideraciones oportunas: 

 

- En cuanto a los residuos industriales, se consideran que todos ellos son 

grasas. Por lo tanto, teniendo en cuenta la composición de las grasas, 

podemos determinar la DQO de las mismas (3kg DQO/kg grasa), no obstante 

dicho valor corresponde con grasas sólida por lo que se estimará un 80% de 

dicho valor al desconocerse el tipo y estado de las grasas utilizadas. 

Flujo (Tn) DQO (kg/año) 

20_grasas 9.020 21.648.000 

Tabla 69. DQO correspondiente al flujo de grasa que se 
introduce al digestor. 

 

- En cuanto a los residuos matadero, la composición de los efluentes de 

matadero porcino es la siguientes [31]: 
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FLUJO 20_matadero Ud. VALORES 

DQO mg/l 2.500 

DBO mg/l 1.250 

Materia en Suspensión mg/l 700 

Nitrógeno Total mg/l 150 

Fósforo Total mg/l 25 

Tabla 70. Caracterización de los efluentes porcinos de matadero. 

 

Flujo (Tn) DQO (kg/año) 

20_matadero 6.367 15.917 

Tabla 71. DQO correspondiente al flujo de residuos de 
matadero que se introduce al digestor. 

 

 

- Finalmente, en cuanto a los residuos vegetales, se consideran que todos ellos 

son paja de trigo. Por lo tanto, teniendo en cuenta la composición de la paja, 

podemos determinar la DQO de las misma igual que en el caso de la co-

digestión con paja de trigo (1,105kg DQO/kg paja). 

Flujo (Tn) DQO (kg/año) 

20_paja 2.653 2.931.565 

Tabla 72. DQO correspondiente al flujo de paja de trigo que se 
introduce al digestor. 

 

De forma similar al cálculo de la DQO eliminada con el biogás realizado en el caso sin 

co-digestión,  calcularemos la DQO del flujo 12 para este caso (2,857kg DQO/m3 CH4, 

ó 0,35m3 CH4/kg DQO eliminada [60]). 

Flujo Metano (m3) DQO (kg/año) 

12 4.457.040 12.733.763 

Tabla 73. Demanda Química de Oxigeno eliminada en el biogás en la 
co-digestión con mezcla de residuos. 

 

Por lo tanto, conociendo la DQO eliminada con el biogás y la DQO que entra al 

digestor, por diferencia entre ellas, se podrá calcular la del flujo 9 y, por lo tanto, la del 

flujo 10. 
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DQO que entra al digestor: 

Flujo 6: 1.220.718 kg 

Flujo 7: 519.454  kg 

Flujo 8: 545.427 kg 

Flujo 20_grasas: 21.648.000 kg 

Flujo 20_matadero: 15.917 kg 

Flujo 20_paja: 2.931.565 kg 

Tabla 74. Demanda Química de 
Oxigeno que entra al digestor en la 
co-digestión con mezcla de residuos. 

 

Teniendo en cuenta la mayor producción de biogás (7.428.400m3), el cual pesa 

8.022tn, el peso de la mezcla añadida (18.040tn) y estimando que se mantiene 

constate la densidad de de los flujos 9 y 10, los caudales de dichos flujos en este caso, 

serán los siguientes: 

Flujo Tn m3 

9 
(Digerido) 

45.038 
(35.020 tn purín+18.040 tn mezcla – 8.022tn biogás)

45.957 

10 10.991 
15.702 

(45.957m3 flujo 9-30.255m3 flujo 11) 

Tabla 75. Caudales de los flujos 9 y 10 en la co-digestión con mezcla de residuos.  
 

En definitiva, la DQO de los flujos 9 y 10 en el caso de co-digestión con paja de trigo 

será la mostrada a continuación: 

Flujo DQO (mg/l) DQO (kg/año) 

9 307.838 14.147.319 

10 875.515 13.747.339 

Tabla 76. Química de Oxigeno de los flujos 9 y 10 en la co-
digestión con mezcla de residuos. En este caso, la reducción 
de la DQO en el digestor sería  del  47%. 

 

Por otro lado, teniendo en cuanta la variación en los caudales de los flujos 9 y 10, se 

obtendrán los siguientes valores específicos de nitrógeno y fósforo total: 

Flujo NKT (kg/año) NKT (mg/l) P (kg/año) P (mg/l) 

9 
(Digerido) 

138.764 3.019 68.600 1.492 

10 30.817 1.962 14.272 909 

Tabla 77. Nitrógeno y fósforo total de los flujos 9 y 10 en la co-digestión con 
mezcla de residuos.  
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A continuación se indican los flujos eléctricos para este caso de co-digestión con la 

mezcla de residuos industriales, de matadero y de vegetales, teniéndose en cuenta 

tanto la incorporación de una máquina trituradora de paja (45kW) como de un 

higienizador (0,25kW), así como el aumento de la electricidad generada respecto al 

caso sin co-digestión. 

Flujo kW 

18e
(Autoconsumo 

eléctrico) 
102,25 

19e
(Electricidad exportable)

1876,75 
(2110 -188-45-0,25) 

Tabla 78. Flujos eléctricos en la co-digestión con mezcla 
de residuos. 

 

Del mismo modo, los flujos térmicos serán los siguientes:   

Flujo kW 

18c 
(Autoconsumo térmico) 

1110,5 

19c 
(Calor exportable) 

1110,5 

Tabla 79. Flujos térmicos en la co-digestión con mezcla 
de residuos. Al incorporar el higienizador, el 
autoconsumo térmico de la planta aumentará al 50% 
(dato facilitado por Sodemasa). 

 

 

3.3.- Resumen de resultados. 

A continuación se muestran, a modo de resumen, los parámetros más importantes de 

cada uno de los flujos que forman parte de la planta de Capella (Huesca) para los 

cuatro casos analizados, es decir, Caso base (sin co-digestión), con co-digestión de 

paja de trigo, de glicerina y de mezcla de diversos residuos. 
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- CASO I. Tratamiento de purines sin Co-Digestión. 

FLUJOS DE PURÍN 

Flujo 
m 

(kg/s) 
Densidad 
(kg/m3) 

DQO 
(mg/l) 

NKT 
(mg/l) 

P 
(mg/l) 

bMI 
(kJ/kg)

bMO 
(kJ/kg)

bNKT 

(kJ/kg) 
bP 

(kJ/kg) 
B 

(KW) 

1 2,121 1018 50000 7000 1500 2,5 667,8 123 1,814 1687 

2 1,928 993,2 43903 5207 809 2,5 601,1 93,81 1,003 1347 

3 1,39 993,3 30611 4900 735 2,5 419,1 88,28 0,9112 710,1 

4 2,45 1000 10511 1421 471 2,5 142,9 25,43 0,58 420,1 

5 1,929 1000 4000 1400 450 2,5 54,4 25,05 0,5541 159,2 

6 0,538 993,3 78251 6000 1000 2,5 1071 108,1 1,24 636,6 

7 0,5228 1004 34630 1500 550 2,5 469,2 26,74 0,6747 260,9 

8 0,1552 1092 133326 31505 10938 2,5 1660 516,1 12,33 339,9 

9 1,191 988,7 32942 4000 1978 2,5 453,1 72,39 2,463 631,8 

10 0,1078 700 167452 6947 3217 2,5 3254 177,6 5,659 370,8 

11 1,051 1000 13220 3567 1795 2,5 179,8 63,83 2,21 260,9 

Tabla 80. Propiedades de los distintos flujos de purín para el caso sin co-digestión. 

 

 

FLUJO DE BIOGÁS 

Flujo 
m 

(m3/s) 
BFísica 
(kW) 

BQuímica 
(kW) 

B 
(KW) 

12 0,02315 1,34 583,3 584,6 

Tabla 81. Propiedades del flujo de valorización de fangos 
para el caso sin co-digestión. 

 

 

FLUJOS ENERGÉTICOS 

Flujo 
E 

(kWe) 
E 

(kWc) 
B  

(kWe) 
B 

(kWc) 
B 

(KW) 

13 0,18 - 0,18 - 0,18 

14 0,25 - 0,25 - 0,25 

15 110,8 - 110,8 - 110,8 

16 0,25 - 0,25 - 0,25 

17 19,5 - 19,5 - 19,5 

18 57 80 57 13,37 70,37 

19 1 120 1 20,06 21,06 

Tabla 82. Propiedades de los flujos energéticos para el 
caso sin co-digestión. 
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- CASO II. Tratamiento de purines con Co-Digestión con paja de trigo. 

FLUJOS DE PURÍN 

Flujo 
m 

(kg/s) 
Densidad 
(kg/m3) 

DQO 
(mg/l) 

NKT 
(mg/l) 

P 
(mg/l) 

bMI 
(kJ/kg)

bMO 
(kJ/kg)

bNKT 

(kJ/kg) 
bP 

(kJ/kg) 
B 

(KW) 

1 2,121 1018 50000 7000 1500 2,5 667,8 123 1,814 1687 

2 1,928 993,2 43903 5207 809 2,5 601,1 93,81 1,003 1347 

3 1,39 993,3 30611 4900 735 2,5 419,1 88,28 0,9112 710,1 

4 2,45 1000 10511 1421 471 2,5 142,9 25,43 0,58 420,1 

5 1,929 1000 4000 1400 450 2,5 54,4 25,05 0,5541 159,2 

6 0,538 993,3 78251 6000 1000 2,5 1071 108,1 1,24 636,6 

7 0,5228 1004 34630 1500 550 2,5 469,2 26,74 0,6747 260,9 

8 0,1552 1092 133326 31505 10938 2,5 1660 516,1 12,33 339,9 

9 1,201 980 40118 3932 1944 2,5 556,7 71,8 2,443 760,6 

10 0,1222 699,9 201971 6129 2838 2,5 3925 156,7 4,993 499,6 

11 1,051 1000 13220 3567 1795 2,5 179,8 63,83 2,21 260,9 

Tabla 83. Propiedades de los distintos flujos de purín para el caso de co-digestión con paja de trigo. 

 

FLUJO DE BIOGÁS 

Flujo 
m 

(m3/s) 
BFísica 
(kW) 

BQuímica 
(kW) 

B 
(KW) 

12 0,02546 1,474 641,6 643,1 

Tabla 84. Propiedades del flujo de valorización de fangos 
para el caso de co-digestión con paja de trigo. 

 

FLUJOS ENERGÉTICOS 

Flujo 
E 

(kWe) 
E 

(kWc) 
B  

(kWe) 
B 

(kWc) 
B 

(KW) 

13 0,18 - 0,18 - 0,18 

14 0,25 - 0,25 - 0,25 

15 110,8 - 110,8 - 110,8 

16 0,25 - 0,25 - 0,25 

17 19,5 - 19,5 - 19,5 

18 62 88 62 14,71 76,71 

19 15 132 15 22,06 37,06 

Tabla 85. Propiedades de los flujos energéticos para el 
caso de co-digestión con paja de trigo. 

 

FLUJO DE SUSTRATO 

Flujo m (kg/s)  ࣐ ࢎࢉ࢈
૙   

(kJ/kg) 
B 

(KW) 

20 0,01216 1,128 16.325 198,5 

Tabla 86. Propiedades del flujo de sustrato para el caso de 
co-digestión con paja de trigo. 
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- CASO III. Tratamiento de purines con Co-Digestión con glicerina. 

FLUJOS DE PURÍN 

Flujo 
m 

(kg/s) 
Densidad 
(kg/m3) 

DQO 
(mg/l) 

NKT 
(mg/l) 

P 
(mg/l) 

bMI 
(kJ/kg)

bMO 
(kJ/kg)

bNKT 

(kJ/kg) 
bP 

(kJ/kg) 
B 

(KW) 

1 2,121 1018 50000 7000 1500 2,5 667,8 123 1,814 1687 

2 1,928 993,2 43903 5207 809 2,5 601,1 93,81 1,003 1347 

3 1,39 993,3 30611 4900 735 2,5 419,1 88,28 0,9112 710,1 

4 2,45 1000 10511 1421 471 2,5 142,9 25,43 0,58 420,1 

5 1,929 1000 4000 1400 450 2,5 54,4 25,05 0,5541 159,2 

6 0,538 993,3 78251 6000 1000 2,5 1071 108,1 1,24 636,6 

7 0,5228 1004 34630 1500 550 2,5 469,2 26,74 0,6747 260,9 

8 0,1552 1092 133326 31505 10938 2,5 1660 516,1 12,33 339,9 

9 1,193 972,7 38911 3928 1941 2,5 544 72,26 2,457 741,2 

10 0,1233 700,1 192194 6077 2814 2,5 3734 155,3 4,95 480,3 

11 1,051 1000 13220 3567 1795 2,5 179,8 63,83 2,21 260,9 

Tabla 87. Propiedades de los distintos flujos de purín para el caso de co-digestión con glicerina. 

 

FLUJO DE BIOGÁS 

Flujo 
m 

(m3/s) 
BFísica 
(kW) 

BQuímica 
(kW) 

B 
(KW) 

12 0,05787 3,351 1458 1462 

Tabla 88. Propiedades del flujo de valorización de 
fangos para el caso de co-digestión con glicerina. 

 

FLUJOS ENERGÉTICOS 

Flujo 
E 

(kWe) 
E 

(kWc) 
B  

(kWe) 
B 

(kWc) 
B 

(KW) 

13 0,18 - 0,18 - 0,18 

14 0,25 - 0,25 - 0,25 

15 110,8 - 110,8 - 110,8 

16 0,25 - 0,25 - 0,25 

17 19,5 - 19,5 - 19,5 

18 57 200 57 33,43 90,43 

19 285 300 285 50,14 335,1 

Tabla 89. Propiedades de los flujos energéticos para el 
caso de co-digestión con glicerina. 

 

FLUJO DE SUSTRATO 

Flujo m (kg/s) ࢎࢉ࢈
૙   

(kJ/kg) 
B 

(KW) 

20 0,04861 22300 1084 

Tabla 90. Propiedades del flujo de sustrato 
para el caso de co-digestión con glicerina. 
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- CASO IV. Tratamiento de purines con Co-Digestión con mezcla de 
residuos industriales, de matadero y de vegetales. 

FLUJOS DE PURÍN 

Flujo 
m 

(kg/s) 
Densidad 
(kg/m3) 

DQO 
(mg/l) 

NKT 
(mg/l) 

P 
(mg/l) 

bMI 
(kJ/kg)

bMO 
(kJ/kg)

bNKT 

(kJ/kg) 
bP 

(kJ/kg) 
B 

(KW) 

1 2,121 1018 50000 7000 1500 2,5 667,8 123 1,814 1687 

2 1,928 993,2 43903 5207 809 2,5 601,1 93,81 1,003 1347 

3 1,39 993,3 30611 4900 735 2,5 419,1 88,28 0,9112 710,1 

4 2,45 1000 10511 1421 471 2,5 142,9 25,43 0,58 420,1 

5 1,929 1000 4000 1400 450 2,5 54,4 25,05 0,5541 159,2 

6 0,538 993,3 78251 6000 1000 2,5 1071 108,1 1,24 636,6 

7 0,5228 1004 34630 1500 550 2,5 469,2 26,74 0,6747 260,9 

8 0,1552 1092 133326 31505 10938 2,5 1660 516,1 12,33 339,9 

9 1,564 980 307838 3019 1492 2,5 4272 55,13 1,875 6774 

10 0,3816 700 875515 1962 909 2,5 17011 50,16 1,599 6513 

11 1,051 1000 13220 3567 1795 2,5 179,8 63,83 2,21 260,9 

Tabla 91. Propiedades de los distintos flujos de purín para el caso de co-digestión con mezcla de residuos. 

FLUJO DE BIOGÁS 

Flujo 
m 

(m3/s) 
BFísica 
(kW) 

BQuímica 
(kW) 

B 
(KW) 

12 0,2579 14,93 6499 6514 

Tabla 92. Propiedades del flujo de valorización de 
fangos para el caso de co-digestión con mezcla de 
residuos. 

FLUJOS ENERGÉTICOS 

Flujo 
E 

(kWe) 
E 

(kWc) 
B  

(kWe) 
B 

(kWc) 
B 

(KW) 

13 0,18 - 0,18 - 0,18 

14 0,25 - 0,25 - 0,25 

15 110,8 - 110,8 - 110,8 

16 0,25 - 0,25 - 0,25 

17 19,5 - 19,5 - 19,5 

18 102,25 1110,5 102,25 185,6 287,8 

19 1877 1110,5 1877 185,6 2063 

Tabla 93. Propiedades de los flujos energéticos para el 
caso de co-digestión con mezcla de residuos. 

FLUJO DE SUSTRATO 

Flujo m (kg/s) ࣐ ࢎࢉ࢈
૙   

(kJ/kg) 
B 

(KW) 

20_grasas 0,3132 1,216 47278 14807 

20_paja de trigo 0,09212 1,128 16325 1504 

Tabla 94. Propiedades del flujo de sustrato. 

FLUJO DE SUSTRATO 

Flujo 
m 

(kg/s) 
DQO 
(mg/l) 

NKT 
(mg/l) 

P 
(mg/l) 

bMI 
(kJ/kg)

bMO 
(kJ/kg)

bNKT 

(kJ/kg)
bP 

(kJ/kg) 
B 

(KW) 

20_matadero 0,2211 2500 150 25 2,5 34,1 2,692 0,03087 37,38 

Tabla 95. Propiedades del flujo de sustrato para co-digestión para el caso de co-digestión con mezcla de 
residuos.  
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ANEXO IV.     ANÁLISIS TERMOECONOMICO. 
 
 

4.1.- Introducción. 

En primer lugar, antes de profundizar en el análisis termoeconómico se van a definir 

los siguientes conceptos básicos [36]: 

 Producto (P). El producto de un proceso es el flujo o flujos de interés para el 

cual tiene lugar dicho proceso, es decir, es el objetivo para el cual se diseña y 

opera el equipo o sistema. 

 Fuel (F). Se denomina Fuel a todo recurso empleado en generar la utilidad 

deseada. 

 Residuo (R). Se denominan residuos aquellos flujos que no tienen ninguna 

utilidad, pero que su existencia produciría perjuicios en la instalación o en el 

entorno, y por lo tanto es necesario un consumo adicional de recursos 

energéticos y económicos, para que dichos flujos sean eliminados y/o 

convertidos en flujos de pérdidas. Este coste puede formarse en el propio 

equipo en el que se produce el flujo, pero también a lo largo de una cadena de 

flujos y equipos del proceso de producción que generan el residuo. 

 

4.2.- Análisis de la formación de costes. 

En el presente apartado se va a tratar de detallar el análisis de la formación de los 

costes, revisándose tanto los principales aspectos termoeconómicos como los 

métodos para estudiar la descomposición de los mismos [38]. 

 

4.2.1.- Revisión de los principales aspectos termoeconómicos. 

La Termoeconomía es una metodología para el análisis de los sistemas energéticos 

basada en la Teoría del Coste Exergético y en una formulación mediante operadores 

matriciales [65]. El método propone dos posibles representaciones del sistema de 

estudio: del Fuel o recurso al Producto (FP) o del Producto al Fuel o recurso (PF), si 

bien en el presente apartado solo se explicará la primera representación. 

El sistema se describe mediante una estructura productiva, la cual está construida de 

acuerdo al objetivo o propósito de cada uno de los procesos. Esta estructura tiene que 

estar compuesta por n procesos (mas el proceso 0, el cual es el ambiente), 

conectados por flujos caracterizados por su exergía. Un flujo que va desde el proceso i 

al proceso j es representado por Bij. Cada proceso consume recursos de otros 
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procesos o del ambiente (fuel, F), para producir productos útiles para otros 

componentes o para el ambiente (producto, P). Por lo tanto:  

࢏ࡲ ൌ෍࢏࢐࡮

࢔

࢐ୀ૙

                                                                             ሺܿܧ. 27ሻ 

࢏ࡼ ൌ෍࢏࢐࡮

࢔

࢐ୀ૙

                                                                              ሺܿܧ. 28ሻ 

 

El coste exergético de un flujo Bij (indicado por ܤ௜௝
כ ) es la cantidad de recursos de 

exergía necesaria para producirlo. El coste exergético unitario es un flujo es el 

cociente entre su coste exergético y su exergía. 

࢐࢏࢑
כ ൌ

࢐࢏࡮
כ

࢐࢏࡮
                                                                                    ሺܿܧ. 29ሻ 

 

Además, el coste del fuel y del producto de cada proceso es representado como F* y 

P*, respectivamente. La representación FP está basada en la distribución de los 

coeficientes yij, los cuales indican la proporción de la producción del componente j 

usado como recurso para el componente i. 

࢐࢏࢟ ൌ
࢏࢐࡮
࢐ࡼ

                                                                                    ሺܿܧ. 30ሻ 

 

El fuel de un proceso o bien del ambiente (componente 0) o de otro proceso. Además, 

si se considera la ecuación 27, se obtiene: 

࢏ࡲ ൌ ࢏૙࡮ ൅෍࢏࢐࡮

࢔

࢐ୀ૚

ൌ ࢏૙࡮ ൅෍࢟࢐࢏

࢔

࢐ୀ૚

.ܿܧሺ                                ࢐ࡼ 31ሻ 

 

En notación matricial, la ecuación 31 se convierte en: 

ࡲ ൌ ࢋࡲ ൅ .ܿܧሺ                                                                     ࡼۄࡼࡲۃ 32ሻ 
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Donde la matriz FP contiene a los elementos yij. El coste de un fuel es la suma de los 

costes de sus procesos procedentes tanto del ambiente como de otros procesos. 

Además, todos los flujos que forman parte del producto de un proceso tienen el mismo 

coste unitario. Cabe señalar que el coste de los flujos que provienen del ambiente es 

igual a su exergía. 

࢏ࡲ
כ ൌ ࡮ ൅෍࢏࢐࡮

כ

࢔

࢐ୀ૚

࢏࢐࡮ ൌ ࢏૙࡮
כ ൅෍࢟࢐࢏

࢔

࢐ୀ૚

࢐ࡼ
.ܿܧሺ                         כ 33ሻ 

כࡲ ൌ ࢋࡲ ൅ .ܿܧሺ                                                                  כࡼۄࡼࡲۃ 34ሻ 

 

Además de los procesos que tienen un propósito productivo, hay otros componentes 

cuyo objetivo es disponer adecuadamente los residuos (componentes disipativos) [37]. 

Por lo tanto, dado que su producto no es un flujo útil, su coste tiene que ser cargado a 

los componentes responsables de dicho residuo. Esta distribución de los residuos se 

hace mediante los coeficientes Ψ: 

શ࢐࢘ ൌ
࢐࢘ࡾ
כ

૙࢘ࡾ
כ                                                                                  ሺܿܧ. 35ሻ 

 

Donde ܴ௥଴
כ  es el coste correspondiente al componente disipativo r, y ܴ௥௝

כ  es la parte del 

coste cargado al componente j. Por consiguiente, un vector R* puede ser calculado en 

aquellos componentes en los que haya carga del coste de los residuos. 

כࡾ ൌ .ܿܧሺ                                                                            כࡼۄࡼࡾۃ 36ሻ 

 

Donde la matriz RP contiene a los elementos Ψ. 

Finalmente, el coste de los productos de cada componente debe de incluir el coste de 

su fuel y el coste de los residuos cargado al mismo. 

כࡼ ൌ כࡲ ൅ .ܿܧሺ                                                                           כࡾ 37ሻ 

 

4.2.2.- Descomposición de costes en base a la irreversibilidad y al efecto de los 

residuos. 

En [39], se desarrollo una descomposición de los costes considerando la 

irreversibilidad de los diferentes componentes y el efecto de los residuos. 
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Si la ecuación 32 es sustituida en la ecuación 37, se puede ver como el coste de los 

productos está formado por dos efectos: el proceso productivo y el efecto de los 

residuos. 

כࡼ ൌ ሺࡰࢁ െ ࢋࡲሻି૚ۄࡼࡲۃ ൅ ሺࡰࢁ െ .ܿܧሺ                 כࡾሻି૚ۄࡼࡲۃ 38ሻ  

 

Además, en cada componente productivo, el fuel es igual al producto más la 

irreversibilidad: 

ࡲ ൌ ࡼ ൅ .ܿܧሺ                                                                                  ࡵ 39ሻ 

 

La ecuación 39 es sustituida en la ecuación 32 obteniendo: 

ࡼ ൅ ࡵ ൌ ࢋࡲ  ൅ .ܿܧሺ                                                             ࡼۄࡼࡲۃ 40ሻ 

 

Después de alguna transformación, la ecuación 40 se convierte en: 

ࡼ ൅ ሺࡰࢁ െ ࡵሻି૚ۄࡼࡲۃ ൌ ሺࡰࢁ െ .ܿܧሺ                      ࢋࡲሻି૚ۄࡼࡲۃ 41ሻ 

 

Finalmente, la descomposición es obtenida sustituyendo la ecuación  41 en la 

ecuación 38. 

כࡼ ൌ ࡼ ൅ ሺࡰࢁ െ ࡵሻି૚ۄࡼࡲۃ ൅ ሺࡰࢁ െ .ܿܧሺ            כࡾሻି૚ۄࡼࡲۃ 42ሻ 

 

La ecuación 42 indica que el coste de los productos es igual a su exergía más la 

irreversibilidad que aparece en los diferentes componentes y el efecto de los residuos. 

En un proceso ideal, sin irreversibilidad y sin residuos, el coste de todos los productos 

debería ser igual a su exergía. Sin embargo, dado que los procesos son reales, el 

coste de los productos se incrementa. 

 

4.2.3.- Descomposición de costes en base al origen de los recursos. 

En un estudio llevado a cabo por Usón, S. y col [38], se propuso un nuevo enfoque a 

cerca de la descomposición de los costes. Este nuevo enfoque es muy interesante en 

la Simbiosis Industrial, debido a las diferentes fuentes de energía y materiales que son 

procesadas. 

Si sustituimos en la ecuación 37 las ecuaciones 34 y 36, obtenemos: 
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כࡼ ൌ ࢋࡲ ൅ כࡼۄࡼࡲۃ ൅ .ܿܧሺ                                             כࡼۄࡼࡾۃ 43ሻ 

 

Lo cual es equivalente a: 

כࡼ ൌ ሺࡰࢁ െ ۄࡼࡲۃ െ .ܿܧሺ                                         ࢋࡲሻି૚ۄࡼࡾۃ 44ሻ 

 

Las ecuaciones previas muestran el coste de todos los productos de la planta en 

relación al fuel que entra en la misma. 

El fuel que entra a la planta puede ser descompuesto en la suma de diferentes 

términos, nf, cada uno correspondiente a diferentes clases de energía (por ejemplo, 

carbón, biomasa, gas natural,…) o recursos materiales (por ejemplo, piedra caliza). 

ࢋࡲ ൌ ෍ ࢋࡲ
࢑

ࢌ࢔

࢑ୀ૚

                                                                           ሺܿܧ. 45ሻ 

 

Finalmente, la descomposición de los costes de todos los productos de una planta en 

una suma de los términos correspondientes a los diferentes fueles se puede obtener 

mediante la combinación de las ecuaciones 44 y 45. 

כࡼ ൌ ෍כࡼ
ࢌ࢔

࢑ୀ૚

                                                                              ሺܿܧ. 46ሻ 

Dónde: 

࢑כࡼ ൌ ሺࡰࢁ െ ۄࡼࡲۃ െ ሻି૚ۄࡼࡾۃ ࢋࡲ
࢑                                    ሺ ܿܧ. 47ሻ 

 

4.3.- Resultados relativos a los costes exergéticos unitarios de los productos. 

A continuación se van a mostrar las tablas F-P, así como el cálculo de las matrices 

necesarias para obtener los resultados de la descomposición de los costes exergéticos 

unitarios para cada uno de los cuatro casos analizados.  
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- CASO I. Tratamiento de purines sin Co-Digestión. 

 

TABLA F-P: CASO BASE 

PROCESOS (kw) F1 F2 F3 F4 F5 F6 F7 F8 F9 F0 PRODUCTO 

Ambiente P0 340 636,9 710,1 0 0 0 0 0 0 0 1687 

Desbaste P1 0 0 71,666 0 166,35 101,88 0 0 0 0 339,9 

Dec. 1ª P2 0 0 134,22 0 311,56 190,81 0 0 0 0 636,6 

Trat. Biol. P3 0 0 0 265,71 0 0 0 0 105 49,39 420,1 

Dec. 2ª P4 0 0 55,009 0 127,68 78,202 0 0 0 0 260,9 

Digestión P5 0 0 0 0 0 0 584,6 0 0 0 584,6 

Pulmón/ 
Centrifuga 

P6 0 0 0 0 0 0 0 350,8 0 19,76 370,56 

Cogen. P7 0,18 0,25 110,8 0,25 70,37 19,5 0 0 0 21,06 222,41 

D. Digerido P8 0 0 0 0 0 0 0 0 0 350,8 350,8 

D. Balsa P9 0 0 0 0 0 0 0 0 0 105 105 

FUEL F 340,18 637,15 1081,8 265,96 675,97 390,4 584,6 350,8 105 546,01  

Tabla 96. Tabla F-P para el caso base, es decir, sin ningún tipo de co-digestión (kW). 
 
 

‹FP› P1 P2 P3 F4 F5 F6 F7 F8 F9 

F1 0 0 0 0 0 0 0,00080 0 0 

F2 0 0 0 0 0 0 0,00112 0 0 

F3 0,21084 0,21084 0 0,21084 0 0 0,49817 0 0 

F4 0 0 0,63249 0 0 0 0,00112 0 0 

F5 0,48941 0,48941 0 0,48941 0 0 0,31639 0 0 

F6 0,29974 0,29974 0 0,29974 0 0 0,08767 0 0 

F7 0 0 0 0 1 0 0 0 0 

F8 0 0 0 0 0 0,94667 0 0 0 

F9 0 0 0,24994 0 0 0 0 0 0 

Tabla 97. Matriz FP para el caso base, es decir, sin ningún tipo de co-digestión (kW). 
 
 

‹RP› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0,18957 

2 0 0 0 0 0 0 0 0 0,35511 

3 0 0 0 0 0 0 0 0 0,30716 

4 0 0 0 0 0 0 0 0 0,14815 

5 0 0 0 0 0 0 0 0,6986 0 

6 0 0 0 0 0 0 0 0,3013 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 98. Matriz RP para el caso base, es decir, sin ningún tipo de co-digestión. 
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‹P*› 1 2 3 4 5 6 7 8 9 

1 650,305 0 0 0 0 0 0 0 0 

2 0 1215,09 0 0 0 0 0 0 0 

3 0 0 6414,91 0 0 0 0 0 0 

4 0 0 0 4303,74 0 0 0 0 0 

5 0 0 0 0 7851,78 0 0 0 0 

6 0 0 0 0 0 3550,52 0 0 0 

7 0 0 0 0 0 0 7851,78 0 0 

8 0 0 0 0 0 0 0 3361,1 0 

9 0 0 0 0 0 0 0 0 1603,34 

Tabla 99. Matriz P* para el caso base, es decir, sin ningún tipo de co-digestión (kW). 
 

FE P0 

F1 340 

F2 636,9 

P3 710,1 

F4 0 

F5 0 

F6 0 

F7 0 

F8 0 

F9 0 

Tabla 100. Vector FE para el 
caso base (kW). 

 

‹I› 1 2 3 4 5 6 7 8 9 

I1 0,28 0 0 0 0 0 0 0 0 

I2 0 0,55 0 0 0 0 0 0 0 

I3 0 0 661,7 0 0 0 0 0 0 

I4 0 0 0 5,06 0 0 0 0 0 

I5 0 0 0 0 91,37 0 0 0 0 

I6 0 0 0 0 0 19,84 0 0 0 

I7 0 0 0 0 0 0 362,19 0 0 

I8 0 0 0 0 0 0 0 0 0 

I9 0 0 0 0 0 0 0 0 0 

Tabla 101. Matriz I para el caso base, es decir, sin ningún tipo de co-digestión (kW). 
 

‹R*› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 303,950 

2 0 0 0 0 0 0 0 0 569,370 

3 0 0 0 0 0 0 0 0 492,489 

4 0 0 0 0 0 0 0 0 237,537 

5 0 0 0 0 0 0 0 2348,2 0 

6 0 0 0 0 0 0 0 1012,9 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 102. Matriz R* para el caso base, es decir, sin ningún tipo de co-digestión (kW). 
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 Desbaste Dec. 1ª 
Trat. 
Biol. 

Dec. 2ª Digestión 
Pulmón/ 
Centrif. 

Cogen. 8 9 R8 R9 TOTAL 

1.Desb. 0,00082 1,4E-06 0,00111 1,3E-05 0,00043 0 0,00171 0 0 0,01109 0,89803 1,91322 

2. Dec. 1ª 5,5E-07 0,00086 0,00082 1,0E-05 0,00032 0 0,00126 0 0 0,00822 0,89720 1,90872 

3.Trat. Biol. 0,00059 0,00116 2,46006 0,01069 0,24841 0 0,98472 0 0 6,38441 4,17989 15,2699 

4.Dec. 2ª 0,00060 0,00118 2,50743 0,03031 0,25377 0 1,00598 0 0 6,52219 5,17427 16,4957 

5.Digestor 0,00053 0,00105 0,80226 0,00969 0,31014 0 0,60987 0 0 7,97091 2,72653 13,4310 

6.Pulmón/ 
Cent. 

0,00042 0,00084 0,64086 0,00774 0,09674 0,05354 0,38347 0 0 5,21985 2,17801 9,58151 

7.Cogen. 0,00141 0,00277 2,10874 0,02549 0,81522 0 3,23152 0 0 20,9513 7,16663 35,3031 

8.Dig. 0,00042 0,00084 0,64086 0,00774 0,09674 0,05354 0,38347 0 0 5,21985 2,17801 9,58151 

9.Balsa 0,00059 0,00116 2,46006 0,01069 0,24841 0 0,98472 0 0 6,38441 4,17989 15,2699 

Tabla 103. Descomposición de los costes exergéticos unitarios de los productos para cada uno de los procesos de la planta de 
tratamiento de purines de Capella, en el caso en el que no se produzca co-digestión alguna. 
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- CASO II. Tratamiento de purines con Co-Digestión de paja de trigo. 

 

TABLA F-P: CO-DIGESTIÓN CON PAJA DE TRIGO 

PROCESOS (kw) F1 F2 F3 F4 F5 F6 F7 F8 F9 F0 PRODUCTO 

Ambiente P0 340 636,9 746,16 0 93,3540 69,078 0 0 0 0 1885,5 

Desbaste P1 0 0 61,759 0 159,854 118,28 0 0 0 0 339,9 

Dec. 1ª P2 0 0 115,66 0 299,391 221,53 0 0 0 0 636,6 

Trat. Biol. P3 0 0 0 265,71 0 0 0 0 105 49,39 420,1 

Dec. 2ª P4 0 0 47,404 0 122,700 90,794 0 0 0 0 260,9 

Digestión P5 0 0 0 0 0 0 643,1 0 0 0 643,1 

Pulmón/ 
Centrifuga 

P6 0 0 0 0 0 0 0 479,5 0 19,76 499,26 

Cogen. P7 0,18 0,25 110,8 0,25 76,71 19,5 0 0 0 37,06 244,75 

D. Digerido P8 0 0 0 0 0 0 0 0 0 479,5 479,5 

D. Balsa P9 0 0 0 0 0 0 0 0 0 105 105 

FUEL F 340,18 637,15 1081,8 265,96 752,01 519,2 643,1 479,5 105 690,71  

Tabla 104. Tabla F-P para el caso de co-digestión con paja de trigo. 
 
 
 

‹FP› P1 P2 P3 F4 F5 F6 F7 F8 F9 

F1 0 0 0 0 0 0 0,00073 0 0 

F2 0 0 0 0 0 0 0,00102 0 0 

F3 0,18169 0,18169 0 0,18169 0 0 0,45270 0 0 

F4 0 0 0,63249 0 0 0 0,00102 0 0 

F5 0,47029 0,47029 0 0,47029 0 0 0,31342 0 0 

F6 0,34800 0,34800 0 0,34800 0 0 0,07967 0 0 

F7 0 0 0 0 1 0 0 0 0 

F8 0 0 0 0 0 0,96042 0 0 0 

F9 0 0 0,24994 0 0 0 0 0 0 

Tabla 105. Matriz FP para el caso de co-digestión con paja de trigo (kW). 
 
 
 

‹RP› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0,18957 

2 0 0 0 0 0 0 0 0 0,35511 

3 0 0 0 0 0 0 0 0 0,30716 

4 0 0 0 0 0 0 0 0 0,14815 

5 0 0 0 0 0 0 0 0,7209 0 

6 0 0 0 0 0 0 0 0,2790 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 106. Matriz RP para el caso de co-digestión con paja de trigo. 
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‹P*› 1 2 3 4 5 6 7 8 9 

1 603,87 0 0 0 0 0 0 0 0 

2 0 1128,59 0 0 0 0 0 0 0 

3 0 0 5455,65 0 0 0 0 0 0 

4 0 0 0 3660,14 0 0 0 0 0 

5 0 0 0 0 7313,37 0 0 0 0 

6 0 0 0 0 0 3454,00 0 0 0 

7 0 0 0 0 0 0 7313,37 0 0 

8 0 0 0 0 0 0 0 3317,2 0 

9 0 0 0 0 0 0 0 0 1363,58 

Tabla 107. Matriz P* para el caso de co-digestión con paja de trigo (kW). 
 

FE P0 

F1 340 

F2 636,9 

P3 746,1 

F4 0 

F5 93,3 

F6 69,0 

F7 0 

F8 0 

F9 0 

Tabla 108. Vector FE para el 
caso de co-digestión con paja de 
trigo (kW). 

 

‹I› 1 2 3 4 5 6 7 8 9 

I1 0,28 0 0 0 0 0 0 0 0 

I2 0 0,55 0 0 0 0 0 0 0 

I3 0 0 661,7 0 0 0 0 0 0 

I4 0 0 0 5,06 0 0 0 0 0 

I5 0 0 0 0 108,91 0 0 0 0 

I6 0 0 0 0 0 19,94 0 0 0 

I7 0 0 0 0 0 0 398,35 0 0 

I8 0 0 0 0 0 0 0 0 0 

I9 0 0 0 0 0 0 0 0 0 

Tabla 109. Matriz I para el caso de co-digestión con paja de trigo (kW). 
 

‹R*› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 258,498 

2 0 0 0 0 0 0 0 0 484,228 

3 0 0 0 0 0 0 0 0 418,843 

4 0 0 0 0 0 0 0 0 202,016 

5 0 0 0 0 0 0 0 2391,7 0 

6 0 0 0 0 0 0 0 925,58 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 110. Matriz R* para el caso de co-digestión con paja de trigo (kW). 
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 Desbaste Dec. 1ª 
Trat. 
Biol. 

Dec. 2ª Digestión 
Pulmón/ 
Centrif. 

Cogen. 8 9 R8 R9 TOTAL 

1.Desb. 0,00082 1,1E-06 0,00090 1,0E-05 0,000442 0 0,00161 0 0 0,00970 0,76312 1,77663 

2. Dec. 1ª 4,4E-07 0,00086 0,00066 8,0E-06 0,000327 0 0,00119 0 0 0,00720 0,76258 1,77285 

3.Trat. Biol. 0,00047 0,00093 2,28822 0,0086 0,249083 0 0,91104 0 0 5,46997 3,05818 12,9865 

4.Dec. 2ª 0,00048 0,00095 2,33204 0,0281 0,254475 0 0,93077 0 0 5,58839 3,89359 14,0289 

5.Digestor 0,00043 0,00085 0,64884 0,00784 0,317759 0 0,54281 0 0 6,97814 1,87536 11,3720 

6.Pulmón/ 
Cent. 

0,00032 0,00064 0,49120 0,00593 0,079139 0,03993 0,28946 0 0 3,59185 1,41973 6,91824 

7.Cogen. 0,00114 0,00224 1,70488 0,02061 0,8349389 0 3,05387 0 0 18,3356 4,92766 29,8809 

8.Dig. 0,00032 0,00064 0,49120 0,00593 0,0791395 0,03993 0,28946 0 0 3,59185 1,41973 6,91824 

9.Balsa 0,00047 0,00093 2,28822 0,00862 0,2490832 0 0,91104 0 0 5,46997 3,05818 12,9865 

Tabla 111. Descomposición de los costes exergéticos unitarios de los productos para cada uno de los procesos de la planta de 
tratamiento de purines de Capella, en el caso de co-digestión con paja de trigo. 
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- CASO III. Tratamiento de purines con Co-Digestión de glicerina. 

 

TABLA F-P: CO-DIGESTIÓN CON GLICERINA 

PROCESOS (kw) F1 F2 F3 F4 F5 F6 F7 F8 F9 F0 PRODUCTO 

Ambiente P0 340 636,9 831,92 0 737,889 224,28 0 0 0 0 2771 

Desbaste P1 0 0 38,201 0 231,373 70,325 0 0 0 0 339,9 

Dec. 1ª P2 0 0 71,546 0 433,339 131,71 0 0 0 0 636,6 

Trat. Biol. P3 0 0 0 265,71 0 0 0 0 105 49,39 420,1 

Dec. 2ª P4 0 0 29,322 0 177,597 53,980 0 0 0 0 260,9 

Digestión P5 0 0 0 0 0 0 1462 0 0 0 1462 

Pulmón/ 
Centrifuga 

P6 0 0 0 0 0 0 0 460,2 0 19,76 479,96 

Cogen. P7 0,18 0,25 110,8 0,25 90,43 19,5 0 0 0 335,1 556,51 

D. Digerido P8 0 0 0 0 0 0 0 0 0 460,2 460,2 

D. Balsa P9 0 0 0 0 0 0 0 0 0 105 105 

FUEL F 340,18 637,15 1081,8 265,96 1670,63 499,8 1462 460,2 105 969,45  

Tabla 112. Tabla F-P para el caso de co-digestión con glicerina (kW). 
 

‹FP› P1 P2 P3 F4 F5 F6 F7 F8 F9 

F1 0 0 0 0 0 0 0,00032 0 0 

F2 0 0 0 0 0 0 0,00044 0 0 

F3 0,11238 0,11238 0 0,11238 0 0 0,19909 0 0 

F4 0 0 0,63249 0 0 0 0,00044 0 0 

F5 0,68070 0,68070 0 0,68070 0 0 0,16249 0 0 

F6 0,20690 0,20690 0 0,20690 0 0 0,03503 0 0 

F7 0 0 0 0 1 0 0 0 0 

F8 0 0 0 0 0 0,95882 0 0 0 

F9 0 0 0,24994 0 0 0 0 0 0 

Tabla 113. Matriz FP para el caso de co-digestión con glicerina (kW). 
 
 

‹RP› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0,1895 

2 0 0 0 0 0 0 0 0 0,3551 

3 0 0 0 0 0 0 0 0 0,3071 

4 0 0 0 0 0 0 0 0 0,1481 

5 0 0 0 0 0 0 0 0,858 0 

6 0 0 0 0 0 0 0 0,141 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 114. Matriz RP para el caso de co-digestión con glicerina. 
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‹P*› 1 2 3 4 5 6 7 8 9 

1 441,577 0 0 0 0 0 0 0 0 

2 0 826,532 0 0 0 0 0 0 0 

3 0 0 2115,70 0 0 0 0 0 0 

4 0 0 0 1418,35 0 0 0 0 0 

5 0 0 0 0 4115,64 0 0 0 0 

6 0 0 0 0 0 1069,85 0 0 0 

7 0 0 0 0 0 0 4115,64 0 0 

8 0 0 0 0 0 0 0 1025,8 0 

9 0 0 0 0 0 0 0 0 528,799 

Tabla 115. Matriz P* para el caso de co-digestión con glicerina (kW). 
 

FE P0 

F1 340 

F2 636,9 

P3 831,9 

F4 0 

F5 737,8 

F6 224,2 

F7 0 

F8 0 

F9 0 

Tabla 116. Vector FE para el 
caso de co-digestión con 
glicerina (kW). 

 

‹I› 1 2 3 4 5 6 7 8 9 

I1 0,28 0 0 0 0 0 0 0 0 

I2 0 0,55 0 0 0 0 0 0 0 

I3 0 0 661,7 0 0 0 0 0 0 

I4 0 0 0 5,06 0 0 0 0 0 

I5 0 0 0 0 208,63 0 0 0 0 

I6 0 0 0 0 0 19,84 0 0 0 

I7 0 0 0 0 0 0 905,49 0 0 

I8 0 0 0 0 0 0 0 0 0 

I9 0 0 0 0 0 0 0 0 0 

Tabla 117. Matriz I para el caso de co-digestión con glicerina (kW). 
 

‹R*› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 100,245 

2 0 0 0 0 0 0 0 0 187,784 

3 0 0 0 0 0 0 0 0 162,427 

4 0 0 0 0 0 0 0 0 78,3421 

5 0 0 0 0 0 0 0 880,27 0 

6 0 0 0 0 0 0 0 145,52 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 118. Matriz R* para el caso de co-digestión con glicerina (kW). 
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 Desbaste Dec. 1ª 
Trat. 
Biol. 

Dec. 2ª Digestión 
Pulmón/ 
Centrif. 

Cogen. 8 9 R8 R9 TOTAL 

1.Desb. 0,00082 5,1E-07 0,00039 4,7E-06 0,00026 0 0,00115 0 0 0,00112 0,29536 1,29913 

2. Dec. 1ª 1,9E-07 0,00086 0,00029 3,5E-06 0,00019 0 0,00085 0 0 0,00083 0,29530 1,29835 

3.Trat. Biol. 0,00022 0,00043 1,90600 0,00400 0,14310 0 0,62109 0 0 0,60379 0,75753 5,03618 

4.Dec. 2ª 0,00022 0,00044 1,94185 0,02347 0,14622 0 0,63463 0 0 0,61696 1,07257 5,43640 

5.Digestor 0,00018 0,00037 0,28183 0,00340 0,19171 0 0,21274 0 0 0,80892 0,31589 2,81507 

6.Pulmón/ 
Cent. 

0,00016 0,00032 0,24861 0,00300 0,03700 0,04133 0,16059 0 0 0,45933 0,27866 2,22904 

7.Cogen. 0,00049 0,00097 
0,74039

637 
0,00895 0,50366 0 2,18597 0 0 2,12511 0,82988 7,39545 

8.Dig. 0,00016 0,00032 0,24861 0,00300 0,03700 0,04133 0,16059 0 0 0,45933 0,27866 2,22904 

9.Balsa 0,00022 0,00043 1,90600 0,00400 0,14310 0 0,62109 0 0 0,60379 0,75753 5,03618 

Tabla 119. Descomposición de los costes exergéticos unitarios de los productos para cada uno de los procesos de la planta de 
tratamiento de purines de Capella, en el caso de co-digestión con glicerina. 
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- CASO IV. Tratamiento de purines con Co-Digestión con mezcla de 
residuos industriales, de matadero y de vegetales 
 

TABLA F-P: CO-DIGESTIÓN CON MEZCLA DE RESIDUOS 

PROCESOS (kw) F1 F2 F3 F4 F5 F6 F7 F8 F9 F0 PRODUCTO 

Ambiente P0 340 636,9 952,61 0 10023,41 6054,0 0 0 0 0 18007 

Desbaste P1 0 0 5,0508 0 208,7597 126,08 0 0 0 0 339,9 

Dec. 1ª P2 0 0 9,4597 0 390,9868 236,15 0 0 0 0 636,6 

Trat. Biol. P3 0 0 0 265,71 0 0 0 0 105 49,39 420,1 

Dec. 2ª P4 0 0 3,8769 0 160,2395 96,783 0 0 0 0 260,9 

Digestión P5 0 0 0 0 0 0 6514 0 0 0 6514 

Pulmón/ 
Centrifuga 

P6 0 0 0 0 0 0 0 6492 0 19,76 6511,76 

Cogen. P7 0,18 0,25 110,8 0,25 287,8 19,5 0 0 0 2063 2481,78 

D. Digerido P8 0 0 0 0 0 0 0 0 0 6492 6492 

D. Balsa P9 0 0 0 0 0 0 0 0 0 105 105 

FUEL F 340,18 637,15 1081,8 265,96 11071,2 6532,6 6514 6492 105 8729,15  

Tabla 120. Tabla F-P para el caso de co-digestión con mezcla de residuos (kW). 
 
 

‹FP› P1 P2 P3 F4 F5 F6 F7 F8 F9 

F1 0 0 0 0 0 0 7,2E-05 0 0 

F2 0 0 0 0 0 0 0,00010 0 0 

F3 0,01485 0,01485 0 0,01485 0 0 0,04464 0 0 

F4 0 0 0,63249 0 0 0 0,00010 0 0 

F5 0,61417 0,61417 0 0,61417 0 0 0,11596 0 0 

F6 0,37096 0,37096 0 0,37096 0 0 0,00785 0 0 

F7 0 0 0 0 1 0 0 0 0 

F8 0 0 0 0 0 0,99696 0 0 0 

F9 0 0 0,24994 0 0 0 0 0 0 

Tabla 121. Matriz FP para el caso de co-digestión con mezcla de residuos (kW). 
 
 
 

‹RP› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0,18957 

2 0 0 0 0 0 0 0 0 0,35511 

3 0 0 0 0 0 0 0 0 0,30716 

4 0 0 0 0 0 0 0 0 0,14815 

5 0 0 0 0 0 0 0 0,9762 0 

6 0 0 0 0 0 0 0 0,0237 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 122. Matriz RP para el caso de co-digestión con mezcla de residuos. 
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‹P*› 1 2 3 4 5 6 7 8 9 

1 441,371 0 0 0 0 0 0 0 0 

2 0 826,043 0 0 0 0 0 0 0 

3 0 0 2106,79 0 0 0 0 0 0 

4 0 0 0 1412,69 0 0 0 0 0 

5 0 0 0 0 21337,3 0 0 0 0 

6 0 0 0 0 0 7390,87 0 0 0 

7 0 0 0 0 0 0 21337,3 0 0 

8 0 0 0 0 0 0 0 7368,4 0 

9 0 0 0 0 0 0 0 0 526,574 

Tabla 123. Matriz P* para el caso de co-digestión con mezcla de residuos (kW). 

FE P0 

F1 340 

F2 636,9 

P3 952,6 

F4 0 

F5 10023,4 

F6 6054,0 

F7 0 

F8 0 

F9 0 

Tabla 124. Vector FE para el 
caso de co-digestión con mezcla 
de residuos (kW). 

 

‹I› 1 2 3 4 5 6 7 8 9 

I1 0,28 0 0 0 0 0 0 0 0 

I2 0 0,55 0 0 0 0 0 0 0 

I3 0 0 661,7 0 0 0 0 0 0 

I4 0 0 0 5,06 0 0 0 0 0 

I5 0 0 0 0 4557,2 0 0 0 0 

I6 0 0 0 0 0 20,84 0 0 0 

I7 0 0 0 0 0 0 4032,22 0 0 

I8 0 0 0 0 0 0 0 0 0 

I9 0 0 0 0 0 0 0 0 0 

Tabla 125. Matriz I para el caso de co-digestión con mezcla de residuos (kW). 
 

‹R*› 1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 99,8239 

2 0 0 0 0 0 0 0 0 186,993 

3 0 0 0 0 0 0 0 0 161,744 

4 0 0 0 0 0 0 0 0 78,0124 

5 0 0 0 0 0 0 0 7193,5 0 

6 0 0 0 0 0 0 0 174,93 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 

Tabla 126. Matriz R* para el caso de co-digestión con mezcla de residuos (kW). 
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 Desbaste Dec. 1ª 
Trat. 
Biol. 

Dec. 2ª Digestión 
Pulmón/ 
Centrif. 

Cogen. 8 9 R8 R9 TOTAL 

1.Desb. 0,00082 8,3E-08 6,3E-05 7,7E-07 0,00112 0 0,00099 0 0 0,00177 0,29375 1,29853 

2. Dec. 1ª 3,17E-08 0,00086 4,7E-05 5,7E-07 0,00083 0 0,00073 0 0 0,00131 0,29379 1,29758 

3.Trat. Biol. 3,14E-05 6,1E-05 1,62218 0,00056 0,56437 0 0,49935 0 0 0,89085 0,43756 5,01499 

4.Dec. 2ª 3,21E-05 6,3E-05 1,65220 0,01997 0,57680 0 0,51036 0 0 0,91048 0,74477 5,41470 

5.Digestor 3,07E-05 6,0E-05 0,04597 0,00055 0,80752 0 0,09548 0 0 1,27466 0,05132 3,27562 

6.Pulmón/ 
Cent. 

1,66E-05 3,2E-05 0,02492 0,00030 0,01497 0,00320 0,01324 0 0 0,05049 0,02781 1,13500 

7.Cogen. 8,07E-05 0,00015 0,12068 0,00145 2,11952 0 1,87535 0 0 3,34565 0,13470 8,59761 

8.Dig. 1,66E-05 3,2E-05 0,02492 0,00030 0,01497 0,00320 0,01324 0 0 0,05049 0,02781 1,13500 

9.Balsa 3,14E-05 6,1E-05 1,62218 0,00056 0,56437 0 0,49935 0 0 0,89085 0,43756 5,01499 

Tabla 127. Descomposición de los costes exergéticos unitarios de los productos para cada uno de los procesos de la planta de 
tratamiento de purines de Capella, en el caso de co-digestión con mezcla de residuos. 
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ANEXO V.     ANÁLISIS DE SITUACIONES ALTERNATIVAS. 

En el presente anexo se van a tratar de determinar los litros de combustible necesarios 

para transportar el purín en cada una de las situaciones que se explican a 

continuación: 

- SITUACIÓN 1. Suponiendo la no existencia de una planta de tratamiento de 

purines en la zona de Capella (Huesca).  

- SITUACIÓN 2. Suponiendo la existencia de una planta de tratamiento de 

purines en la zona de Capella (Huesca).  

 

Análisis del combustible empleado en el transporte de los purines. 

En el presente apartado se va a tratar de realizar una estimación sobre el consumo de 

combustible necesario para transportar el purín en las situaciones antes mencionadas: 

 

- Situación 1. Sin la existencia de la planta de tratamiento, los purines deben 

transportarse a grandes distancias desde las explotaciones ganaderas para 

de esta manera poder abarcar suficiente tierra arable sin resultar 

contamínate para la misma. 

 

 

 

Figura 10. Esquema del transporte del purín según la situación 1 analizada. 

 

 

- Situación 2. Con la existencia de la planta de tratamiento, los purines, por un 

lado, deben ser transportados desde las explotaciones ganaderas hasta la 

planta de tratamiento y, por otro lado, el digerido sólido debe ser 

transportado desde dicha planta hasta las tierras arables. 

 

 

 

Figura 11. Esquema del transporte del purín según la situación 2 analizada. 
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SITUACIÓN 1. Análisis del consumo de combustible en la situación en la que 

no exista planta de tratamiento. 

Teniendo en cuenta que las tierras agrícolas tienen una capacidad limitada para 

absorber purín, en el caso de no existir una planta de tratamiento de purines los 

ganaderos tendrían que transportar el purín generado por sus explotaciones porcinas 

a largas distancias de dichas explotaciones, para de esta forma no saturar el terreno 

cercano. El hecho de tener que transportar el purín conlleva unos altos costes 

exergéticos debidos, fundamentalmente, al coste de los combustibles de los vehículos 

agrícolas, es decir, al gasoil tipo “B”. 

b.h. (%) Gasóleo 

C 86 

H 11,1 

N 1 

O 0 

S 0,8 

w 1 

z 0,1 

ρ (kg/m3) 850  

PCI (kJ/kg) 43.100 

Tabla 128. Análisis elemental del 
gasóleo [66], así como su 
densidad [67] y su poder 
calorífico inferior [68]. 

 

Para poder analizar el ahorro exergético que supondría la instalación de la planta de 

tratamiento de purines en Capella (Huesca) frente a tener que transportar el purín a 

zonas alejadas a la explotación ganadera, a continuación se van a analizar las 

características de la zona objeto de estudio para, de esta manera, poder determinar 

los kilómetros que serían necesarios ser recorridos por los vehículos agrícolas. 

 

En primer lugar, se estudiara el balance entre las necesidades de Nitrógeno de los 

cultivos y el Nitrógeno contenido en los estiércoles: 

- La superficie de cultivo utilizada será la que aparece recogida en las parcelas 

de la PAC (Política Agraria Común) con la categoría de Tierra Arable (TA) [69]. 

La superficie de tierra arable para el municipio de Capella son 1.593,4 ha. 

- Dentro de la TA, y siguiendo las indicaciones del Plan de Biodigestión de 

Purines [70], se contabiliza únicamente la superficie de cultivos herbáceos para 

la valorización del purín (“hectáreas de superficie agraria de herbáceos: tierras 
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ocupadas por cultivos temporales, praderas temporales y tierras dedicadas a 

huertas”). 

- Teniendo en cuenta que toda la superficie de cultivo no está disponible 

realmente para la valorización del estiércol, se supondrá un 75% de dicha 

superficie de cultivo [5]. 

- La zona de Capella (Huesca), está considerada como zona no vulnerable [71], 

por lo que se considerara un valor de extracción de 210 kgN/ha [72]. No 

obstante, según un estudio llevado a cabo por el Gobierno de Aragón y por 

Sodemasa en 2006, se considerará un índice medio de extracción de 150 

kgN/ha para una presión ganadera sostenible, teniendo en cuenta la 

producción del tipo de cultivo (secano) en la zona de Capella (Huesca). 

 

Por lo tanto, teniendo en cuenta la anterior información, a continuación se indica la 

cantidad de Nitrógeno que puede ser absorbida por el municipio de Capella (Huesca) 

Tierra Arable, (ha) 
75% TA 

Cantidad total de nitrógeno, (kgN) 
150kgN/ha 

1.195,05  179.250 

Tabla 129. Kilogramos de Nitrógeno que puede ser absorbido por las tierras 
arables del municipio de Capella. 

 

Según un estudio de las explotaciones ganaderas de la zona de Capella (Huesca) 

llevado a cabo en la memoria de la planta [5], se determinó que el purín de dicha zona 

tenía 7.000 mgN/l purín, es decir, teniendo en cuenta que la planta esta dimensionada 

para 60.000m3 de purín (en base al cálculo de las explotaciones de la zona), se 

tendrían 420.000kg de nitrógeno en la zona de Capella. Por lo tanto, se puede 

comprobar que dicho municipio no podría absorber todo el purín generado, por lo que 

éste tendría que ser trasportado a otras zonas más alejadas para conseguir una 

presión ganadera sostenible. 

Para determinar el área sobre el que tendría que repartirse el purín generado 

(60.000m3) sin generarse un problema medioambiental, se realizará un cálculo 

proporcional teniendo en cuenta los datos de Capella, es decir, si 1.195,05ha pueden 

absorber 179.250kgN, los 420.000kgN generados podrán ser absorbidos por 2.800ha. 

Por lo tanto, teniendo en cuenta que la superficie total del municipio de Capella son 

60,7km2 y éste dispone de 1.195,05ha de tierra arable valorizable, se considerará que 

las 2.800 ha necesarias para absorber los 420.000kgN equivalen a una superficie total 

de 142km2. 
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En conclusión, si no existiera la planta de purines en Capella, el purín generado por las 

explotaciones ganaderas de la zona (60.000m3 de purín) tendría que ser repartido en 

un área de 142km2 para conseguir una presión ganadera sostenible. Teniendo en 

cuenta dicha área para el cálculo exergético de los costes de transportar el purín, se 

considerará una media de 70 kilómetros/trayecto (considerando la ida y la vuelta). 

Dicha distancia, si bien será tomada en cuenta para los cálculos exergéticos, es una 

distancia mínima, ya que las en las zonas adyacentes al municipio de Capella también 

existen explotaciones ganaderas que pueden repartir los purines generados por sus 

tierras arables, por lo que todavía tendrían que desplazarse más lejos los vehículos 

agrícolas de Capella en caso de no existir la planta de tratamiento.  

Por otro lado, teniendo en cuenta la capacidad de las cisternas arrastradas por 

vehículos agrícolas, en torno a 10.000 litros, serán necesarios 6.000 trayectos para 

repartir todo el purín generado. 

Finalmente, teniendo en cuenta el consumo de un vehículo agrícola arrastrando una 

cisterna a plena capacidad y en vacio (una vez que ha descargado), se determinará la 

cantidad total de litros de combustible (gasoil) necesarios para evacuar de una forma 

sostenible el purín generado. 

 
*Consumo, 

l/100Km 
Recorrido, 

km 
Nº Trayectos/año 

Combustible, 
l/año 

Trayecto de ida 
Granja/TA 

(Cisterna Cargada) 
30 35 6.000 63.000 

Trayecto de vuelta
TA/Granja 
(Cisterna 

Descargada) 

18 35 6.000 37.800 

Tabla 130. Litros de gasoil necesarios para transportar el purín en caso de no existir una planta de 
tratamiento próxima si sin generar una presión ganadera insostenible (* consumo estimado según 
información facilitada por diversos ganaderos). 
 

 

SITUACIÓN 2. Análisis del consumo de combustible en la situación en la que 

exista planta de tratamiento. 

En primer lugar se analizará tanto la ubicación de la planta como la de las 

explotaciones ganaderas para las cuales está diseñada la misma. 
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Figura 12. Producción de purín en el entorno del emplazamiento de la planta de tratamiento de Capella 
[5]. 
 

A la vista del grafico anterior, se puede comprobar que en un radio de 5 kilómetros 

desde la ubicación de la planta de tratamiento, las explotaciones ganaderas de ese 

área ya generan 111.566m3 de purín al año, por lo que teniendo en cuenta la 

capacidad de la planta (60.000m3), serían dichas explotaciones las que trasportarían 

sus purines a la planta, por lo que recorrerían un trayecto de unos 5 kilómetros. Por lo 

tanto, a continuación se indican los litros de gasoil necesarios para transportar el purín 

desde las explotaciones ganaderas hasta la planta de tratamiento (Trayecto 1). 

 
*Consumo, 

l/100Km 
Recorrido, 

km 
Nº 

Trayectos/año 
Combustible, l/año 

Trayecto de ida 
Granja/Planta 

(Cisterna Cargada) 
30 2,5 6.000 4.500 

Trayecto de vuelta 
Granja/Planta 

(Cisterna 
Descargada) 

18 2,5 6.000 2.700 

Tabla 131. Litros de gasoil necesarios para transportar el purín desde la explotación ganadera hasta la planta 
de tratamiento (trayecto 1)  si sin generar una presión ganadera insostenible.  (* consumo estimado según 
información facilitada por diversos ganaderos). 

 

En esta segunda situación, también hay que tener en cuenta el coste del transporte del 

abono sólido producido en la planta de tratamiento tras la digestión (digerido sólido) 

desde la planta de tratamiento hasta las tierras arables. A continuación se indican las 

propiedades de dicho digerido: 
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FLUJOS DE 
PURÍN 

Tn/año m3/año 
Nitrógeno 
kg N/año 

Fósforo 
kg P/año 

10  
(Digerido sólido) 

3.105  4.436 30.817 14.272 

Tabla 132. Nitrógeno y fosforo contenido en el flujo 10 de la planta de tratamiento (para realizar los 
cálculos se ha supuesto que el flujo 10 está compuesto por  nutrientes y  materia orgánica, 
considerándose los datos volumétricos correspondientes al caso sin co-digestión). 

 

Teniendo en cuenta, como ya se ha explicado anteriormente, que el municipio de 

Capella podría absorber 179.250kgN/año, se puede comprobar que no sería necesario 

transportar el digerido fuera de dicho municipio, es decir, todo el digerido sólido podría 

ser repartido sobre parte de sus tierras arables valorizables. 

Por otro lado, considerando una capacidad media de una abonadora de abono 

orgánico sólido, en torno a 5.000 litros, serán necesarios 890 trayectos para repartir 

todo el digerido solido.  

A continuación se indican los litros de gasoil necesarios para transportar el digerido 

sólido desde la planta de tratamiento hasta las tierras arables. 

 
*Consumo, 

l/100Km 
Recorrido, 

km 
Nº Trayectos/año 

Combustible, 
l/año 

Trayecto de ida 
Planta/TA 

(Abonadora Cargada) 
25 2,5 890 556 

Trayecto de vuelta 
Planta/TA 

(Abonadora 
Descargada) 

15 2,5 890 334 

Tabla 133. Litros de gasoil necesarios para transportar el digerido sólido  desde la planta de tratamiento hasta las 
tierras arables (trayecto 2)  si sin generar una presión ganadera insostenible.  (* Consumo estimado según 
información facilitada por diversos ganaderos). 

 


