Prediction of enteric methane emissions by sheep using an intercontinental database

Belanche, A. (Universidad de Zaragoza) ; Hristov, A. N. ; van Lingen, H. J. ; Denman, S. E. ; Kebreab, E. ; Schwarm, A. ; Kreuzer, M. ; Niu, M. ; Eugène, M. ; Niderkorn, V. ; Martin, C. ; Archimède, H. ; McGee, M. ; Reynolds, C. K. ; Crompton, L. A. ; Bayat, A. R. ; Yu, Z. ; Bannink, A.: Dijkstra, J. ; Chaves, A. V. ; Clark, H. ; Muetzel, S. ; Lind, V. ; Moorby, J. M. ; Rooke, J. A. ; Aubry, A. ; Antezana, W. ; Wang, M. ; Hegarty, R. ; Hutton, Oddy, V. ; Hill, J. ; Vercoe, P. E. ; Savian, J. V. ; Abdalla, A. L. ; Soltan, Y. A. ; Gomes Monteo, A. L. ; Ku-Vera, J. C. ; Jaurena, G. ; Gómez-Bravo, C. A. ; Mayorga, O. L. ; Congio, G. F. S. ; Yáñez-Ruiz, D. R.
Prediction of enteric methane emissions by sheep using an intercontinental database
Financiación H2020 / H2020 Funds
Resumen: Enteric methane (CH4) emissions from sheep contribute to global greenhouse gas emissions from livestock. However, as already available for dairy and beef cattle, empirical models are needed to predict CH4 emissions from sheep for accounting purposes. The objectives of this study were to: 1) collate an intercontinental database of enteric CH4 emissions from individual sheep; 2) identify the key variables for predicting enteric sheep CH4 absolute production (g/d per animal) and yield [g/kg dry matter intake (DMI)] and their respective relationships; and 3) develop and cross-validate global equations as well as the potential need for age-, diet-, or climatic region-specific equations. The refined intercontinental database included 2,135 individual animal data from 13 countries. Linear CH4 prediction models were developed by incrementally adding variables. A universal CH4 production equation using only DMI led to a root mean square prediction error (RMSPE, % of observed mean) of 25.4% and an RMSPE-standard deviation ratio (RSR) of 0.69. Universal equations that, in addition to DMI, also included body weight (DMI + BW), and organic matter digestibility (DMI + OMD + BW) improved the prediction performance further (RSR, 0.62 and 0.60), whereas diet composition variables had negligible effects. These universal equations had lower prediction error than the extant IPCC 2019 equations. Developing age-specific models for adult sheep (>1-year-old) including DMI alone (RSR = 0.66) or in combination with rumen propionate molar proportion (for research of more refined purposes) substantially improved prediction performance (RSR = 0.57) on a smaller dataset. On the contrary, for young sheep (<1-year-old), the universal models could be applied, instead of age-specific models, if DMI and BW were included. Universal models showed similar prediction performances to the diet- and region-specific models. However, optimal prediction equations led to different regression coefficients (i.e. intercepts and slopes) for universal, age-specific, diet-specific, and region-specific models with predictive implications. Equations for CH4 yield led to low prediction performances, with DMI being negatively and BW and OMD positively correlated with CH4 yield. In conclusion, predicting sheep CH4 production requires information on DMI and prediction accuracy will improve national and global inventories if separate equations for young and adult sheep are used with the additional variables BW, OMD and rumen propionate proportion. Appropriate universal equations can be used to predict CH4 production from sheep across different diets and climatic conditions.
Idioma: Inglés
DOI: 10.1016/j.jclepro.2022.135523
Año: 2023
Publicado en: Journal of Cleaner Production 384 (2023), 135523 [17 pp.]
ISSN: 0959-6526

Factor impacto JCR: 9.8 (2023)
Categ. JCR: ENGINEERING, ENVIRONMENTAL rank: 9 / 81 = 0.111 (2023) - Q1 - T1
Categ. JCR: GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY rank: 13 / 91 = 0.143 (2023) - Q1 - T1
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 24 / 358 = 0.067 (2023) - Q1 - T1

Factor impacto CITESCORE: 20.4 - Renewable Energy, Sustainability and the Environment (Q1) - Industrial and Manufacturing Engineering (Q1) - Strategy and Management (Q1) - Environmental Science (all) (Q1)

Factor impacto SCIMAGO: 2.058 - Environmental Science (miscellaneous) (Q1) - Strategy and Management (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Industrial and Manufacturing Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/101000395/EU/Pathways for transitions to sustainability in livestock husbandry and food systems/PATHWAYS
Financiación: info:eu-repo/grantAgreement/ES/INIA/MIT01-GLOBALNET-EEZ
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RYC2019-027764-I/AEI/10.13039/501100011033
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Producción Animal (Dpto. Produc.Animal Cienc.Ali.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-11:58:48)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-02-24, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)