Graphene oxide: key to efficient charge extraction and suppression of polaronic transport in hybrids with poly (3-hexylthiophene) nanoparticles
Financiación H2020 / H2020 Funds
Resumen: Nanoparticles (NPs) of conjugated polymers in intimate contact with sheets of graphene oxide (GO) constitute a promising class of water-dispersible nanohybrid materials of increased interest for the design of sustainable and improved optoelectronic thin-film devices, revealing properties exclusively pre-established upon their liquid-phase synthesis. In this context, we report for the first time the preparation of a P3HTNPs–GO nanohybrid employing a miniemulsion synthesis approach, whereby GO sheets dispersed in the aqueous phase serve as a surfactant. We show that this process uniquely favors a quinoid-like conformation of the P3HT chains of the resulting NPs well located onto individual GO sheets. The accompanied change in the electronic behavior of these P3HTNPs, consistently confirmed by the photoluminescence and Raman response of the hybrid in the liquid and solid states, respectively, as well as by the properties of the surface potential of isolated individual P3HTNPs–GO nano-objects, facilitates unprecedented charge transfer interactions between the two constituents. While the electrochemical performance of nanohybrid films is featured by fast charge transfer processes, compared to those taking place in pure P3HTNPs films, the loss of electrochromic effects in P3HTNPs–GO films additionally indicates the unusual suppression of polaronic charge transport processes typically encountered in P3HT. Thus, the established interface interactions in the P3HTNPs–GO hybrid enable a direct and highly efficient charge extraction channel via GO sheets. These findings are of relevance for the sustainable design of novel high-performance optoelectronic device structures based on water-dispersible conjugated polymer nanoparticles.
Idioma: Inglés
DOI: 10.1021/acs.chemmater.3c00008
Año: 2023
Publicado en: Chemistry of materials 35, 9 (2023), 3522-3531
ISSN: 0897-4756

Factor impacto JCR: 7.2 (2023)
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 85 / 439 = 0.194 (2023) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 46 / 178 = 0.258 (2023) - Q2 - T1

Factor impacto CITESCORE: 14.1 - Chemical Engineering (all) (Q1) - Materials Chemistry (Q1) - Chemistry (all) (Q1)

Factor impacto SCIMAGO: 2.421 - Chemical Engineering (miscellaneous) (Q1) - Materials Chemistry (Q1) - Chemistry (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2019-104272RB-C55
Financiación: info:eu-repo/grantAgreement/ES/DGA/T03-20R
Financiación: info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3
Financiación: info:eu-repo/grantAgreement/EC/H2020/881603/EU/Graphene Flagship Core Project 3/GrapheneCore3
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C51/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104272RB-C52/AEI/10.13039/501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-104739GB-I00/AEI-10.13039-501100011033
Financiación: info:eu-repo/grantAgreement/ES/MICINN PRE2020-094503
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-080020
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-11:57:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-06-21, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)