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Abstract

Groups are often first introduced as the set of automorphisms, or symmetries, of a given object. It is then
natural to think that, in order to study the properties of a group, it can be more convenient to study the
way it acts on an object, rather than the group itself. For instance, in Geometric Group Theory we study
geometric and topological properties of a well-understood space upon which the group acts, and we then
translate this geometric information into algebraic results.

Bass-Serre Theory deals with the case when this space is a graph, or more specifically a simply con-
nected graph, that is, a tree. The quotient space under the group action should be a graph as well, so that
this action is required to be without inversion. Our purpose is to develop the basic notions of this theory
and prove the so-called Structure Theorem (Theorem 3.4.1), which gives a complete characterization of
groups acting on trees. More precisely, we will aim to answer the following question:

What can be said of a group acting on a tree, provided that we understand the quotient graph and the
stabilizers of the vertices and the edges?

It turns out, as we will see, that this is the only information we need to characterize the group.

To this end, in Chapter 1 we begin recalling some definitions and results from graph theory, and give
the first example of a graph on which a group acts, which is the Cayley graph associated to a group
presentation. Furthermore, this action is free, i.e. the vertex and edge stabilizers are all trivial. This
graph is a tree if and only if the group is free.

In Chapter 2, we introduce some first examples of group acting on trees. The already mentioned free
groups turn out to be characterized by the fact that they act freely on a tree, and we determine exactly
on which trees they act in this way. This also provides a simple proof to Schreier’s Theorem (Corollary
2.2.3) which states that any subgroup of a free group is free, and we deduce a simple relation between
the index and the rank of these subgroups.

The basic constructions in Bass-Serre theory are free amalgamated products and HNN extensions,
which correspond to groups acting on trees with a segment or a loop as quotient graph, respectively.
We prove this characterization with the aid of the Normal Form Theorems which hold for these groups
(Theorems 2.3.10 and 2.3.15). We also illustrate these constructions with several examples, such as
SL2(Z), Baumslag-Solitar groups or special cases of Artin groups.

Finally, in Chapter 3, we generalize the above results. We start with the definition of a graph of
groups, which is a graph with groups associated to its vertices and edges in a certain way. This allows
to define the fundamental group and the universal cover of a graph of groups, which are generalizations
of the fundamental group and universal cover of a graph. The fundamental group acts on the universal
cover, which is a tree, with quotient space isomorphic to the original graph and stabilizers isomorphic
to the associated groups. In order to prove this, we use a generalized Normal Form Theorem (Corollary
3.2.3) which holds in these fundamental groups. Lastly, the Structure Theorem is a converse to this
construction. It tells us that any group acting on a tree has this structure, so that we arrive at the desired
characterization. This result can be used to understand better the structure of fundamental groups of
graphs of groups; we illustrate this with a result on subgroups of free amalgamated products known as
Kurosh’s Theorem (Corollary 3.4.2).

Our main references are Chapter I of [11] and Chapter IV of [9].
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Resumen

A menudo, los grupos son introducidos como el conjunto de automorfismos o simetrı́as de un objeto
dado. Es por tanto natural pensar que, para estudiar las propiedades de un grupo, puede ser más práctico
estudiar la manera en que actúa en un objeto, más que el grupo en sı́. Por ejemplo, en la Teorı́a
Geométrica de Grupos se estudian propiedades geométricas y topológicas de un espacio conocido en
el que el grupo actúa, y luego se traduce esta información geométrica a resultados algebraicos.

La teorı́a de Bass-Serre se ocupa del caso en el que este espacio es un grafo, o más especı́ficamente un
grafo simplemente conexo, es decir, un árbol. El espacio cociente bajo la acción del grupo también debe
ser un grafo, de modo que se requiere que esta acción sea sin inversión. Nuestro objetivo es desarrollar
las nociones básicas de esta teorı́a y demostrar el llamado Teorema de estructura (teorema 3.4.1), que
proporciona una caracterización completa de los grupos que actuán sobre árboles. Más concretamente,
buscaremos dar respuesta a la siguiente pregunta:

¿Qué podemos decir de un grupo que actúa en un árbol, si conocemos el grafo cociente y los
estabilizadores de los vértices y los ejes?

Resulta que, como veremos, esta es toda la información necesaria para caracterizar el grupo.

Con este fin, en el primer capı́tulo comenzamos recordando algunas definiciones y resultados de
teorı́a de grafos, y damos el primer ejemplo de grafo en el que actúa un grupo, que es el grafo de Cayley
asociado a la presentación de un grupo. Más aún, esta acción es libre, es decir, los estabilizadores de
todos los vértices y los ejes son triviales. Este grafo es un árbol si y solo si el grupo es libre.

En el segundo capı́tulo, presentamos los primeros ejemplos de grupos actuando en árboles. Los
ya mencionados grupos libres resultan estar caracterizados por el hecho de que actúan libremente en
un árbol, y además determinamos exactamente en qué árboles actúan de esta manera. Esto proporciona
también una demostración sencilla del Teorema de Schreier (corolario 2.2.3), según el que todo subgrupo
de un grupo libre es libre, y deducimos una relación sencilla entre el ı́ndice y el rango de estos subgrupos.

Las construcciones básicas en la teorı́a de Bass-Serre son los productos amalgamados libres y las
extensiones HNN, que corresponden a grupos actuando en árboles con un segmento o un lazo como
grafo cociente, respectivamente. Demostramos esta caracterización con la ayuda de los teoremas de
forma normal que se tienen para estos grupos (teoremas 2.3.10 y 2.3.15). Además, ilustramos estas
construcciones con varios ejemplos, como SL2(Z), grupos de Baumslag-Solitar o casos especiales de
grupos de Artin.

Finalmente, en el tercer capı́tulo generalizamos los anteriores resultados. Comenzamos con la
definición de un grafo de grupos, que es un grafo con grupos asociados a sus vértices y ejes de una
determinada manera. Esto permite definir el grupo fundamental y la cubierta universal de un grafo de
grupos, que son generalizaciones del grupo fundamental y la cubierta universal de un grafo. El grupo
fundamental actúa en la cubierta universal, que es un árbol, con grafo cociente isomorfo al grafo original
y estabilizadores isomorfos a los grupos asociados. Para demostrar esto, utilizamos un teorema de forma
normal generalizado (corolario 3.2.3) que se tiene en estos grupos fundamentales. Para terminar, el teo-
rema de estructura es un recı́proco a esta construcción. Nos dice que todo grupo que actúa en un árbol
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vi Resumen

tiene esta estructura, con lo que llegamos a la caracterización que buscábamos. Este resultado puede us-
arse para entender mejor la estructura de los grupos fundamentales de grafos de grupos; ilustramos esto
con un resultado sobre subgrupos de productos amalgamados libres conocido como Teorema de Kurosh
(corolario 3.4.2).

Nuestras principales referencias son el capı́tulo I de [11] y el capı́tulo IV de [9].
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Chapter 1

Graphs

1.1 Definitions and properties

Definition 1.1.1. A graph Γ consists of a set of vertices X = V(Γ) and a set of edges Y = E(Γ) together
with maps o, t : Y → X , ·̄ : Y → Y such that for every edge y ∈ Y , y = y, y ̸= y and o(y) = t(y). We call
o(y), t(y), y the origin, terminus and inverse of y respectively. For any y ∈ Y the set {y,y} is called a
geometric edge. Intuitively, we only want these doubled edges so that we can walk in any sense along an
oriented graph, but we can think of each geometric edge as a single edge.

A morphism between graphs Γ→ ∆ is a pair of maps V(Γ)→ V(∆), E(Γ)→ E(∆) which are com-
patible in the obvious sense.

An orientation of the graph Γ is a subset Y+ ⊆ Y such that Y = Y+⊔Y+. We denote Y− := Y+.

Definition 1.1.2. We may regard a graph as a topological space. With the same notation as above, let
T = X ⊔ (Y × [0,1]) where X ,Y are given the discrete topology. The topological realization of the graph
Γ is the quotient space T/R, where R is the equivalence relation generated by

(y,s)∼ (y,1− s)
(y,0)∼ o(y)
(y,1)∼ t(y)

∀y ∈ Y, s ∈ [0,1].

Note that the edges y,y give rise to the same segment. We will identify a graph and its realization, and
denote them in the same way.

Definition 1.1.3. A path of length n≥ 1 in Γ is a morphism from the oriented graph

Pn = . . .
0 1 2 n−1 n

into Γ. In particular, a graph isomorphic to P1 is what we call a segment. A path can also be deter-
mined by an ordered sequence of edges (y1, . . . ,yn) with t(yi) = o(yi+1). We may consider infinite paths,
corresponding to infinite sequences (y1,y2, . . .).

A pair of the form (yi,yi+1) = (yi,yi) in the path is called a backtracking. Given an arbitrary path
between two points of a graph, we can always construct inductively another path without backtracking,
which we shall call a reduced path.

Similarly, a circuit or cycle of length n in Γ is a subgraph isomorphic to a cycle graph, i.e. a graph of
the form

0

1

n−1

n−2

. . .

Cn =

1
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Such a subgraph is defined by a reduced path (y1, . . . ,yn) such that the t(yi) are all distinct and
t(yn) = o(y1).

A cycle of length 1 is called a loop.

Definition 1.1.4. A graph is combinatorial if it has no cycle of length≤ 2. In particular, we may describe
any edge y in a combinatorial graph as the ordered pair (o(y), t(y)). These are precisely the graphs that
can be defined from simplicial complexes.

Definition 1.1.5. A tree is a connected non-empty graph without cycles. In particular, a tree is combina-
torial.

For any two vertices v,w in a tree, there exists a unique reduced path between them, and it is an
injective path (this allows one to define a distance function on the set of vertices of a tree, by setting
d(v,w) to be equal to the length of this reduced path).

Now we turn our attention to subtrees of a graph Γ. The set of subgraphs of Γ that are trees, ordered
by inclusion, is clearly directed. Thus by Zorn’s lemma it has maximal elements, which we call maximal
subtrees of Γ. If Γ is connected, then every maximal tree contains all the vertices of Γ, because in other
case, we could adjoin a new vertex to the tree, contradicting maximality.

Lemma 1.1.6. Let Γ be a connected graph with |V(Γ)| < ∞. Then |V(Γ)|− |E+(Γ)| ≤ 1, and equality
holds if and only if Γ is a tree.

Proof. We first prove the equality for a tree. In the case of a single vertex, it is trivial. Also, it clearly
remains true whenever we adjoin a terminal vertex together with a pair of edges y,y. Since we can
construct any given tree by this procedure, the equality is true for all finite trees.

Next, we prove the inequality in the general case. Let Γ′ be a maximal subtree of Γ. Since it contains
all vertices of Γ, we have |V(Γ′)| = |V(Γ)| , |E(Γ′)| ≤ |E(Γ)|, and equality holds iff Γ = Γ′ i.e. Γ is a
tree. Also, by the former case, we know |E+(Γ

′)|= |V(Γ′)|−1. Thus,

|E+(Γ)|= |V(Γ)|−1+(|E+(Γ)|−
∣∣E+(Γ

′)
∣∣)

and the proposition follows.

Definition 1.1.7. The Euler characteristic of a connected graph Γ with |V(Γ)|< ∞ is defined as

χ(Γ) = |V(Γ)|− |E+(Γ)| . (1.1)

The above lemma says then that χ(Γ)≤ 1 and equality holds if and only if Γ is a tree.

As we said, any maximal subtree of a connected graph contains all of the vertices of the graph, and
it is not difficult to show that a tree is a contractible space. Therefore, the homotopy type of a graph
depends only on the edges that are left outside a given maximal subtree (the number of such edges does
not depend on the choice of the maximal subtree). In particular we have

Theorem 1.1.8. Any connected graph has the homotopy type of a bouquet of circles. Furthermore, a
graph is a tree if and only if it is contractible.

→

Figure 1.1: Contraction of a maximal subtree.

As a consequence, the fundamental group of any connected graph is free of rank |E+(Γ)−E+(Γ
′)|

(which equals 1−χ(Γ) in the finite case), and Γ is simply connected if and only if it is a tree.
In particular, if we choose any subtree of a graph Γ and contract it to a single vertex to get a new

graph Γ′, then Γ is a tree if and only if Γ′ is a tree.
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1.2 The Cayley graph

Definition 1.2.1. A presentation of a group G is an expression of the form

G = ⟨S | R⟩

where S is a set of letters called generators and R is a set of words of S∪ S−1 which are the only valid
relations, i.e. the only non-trivial equalities that hold in the group G. We will assume that S∩S−1 =∅,
although note that this is not possible when there are elements of order 2 among the generators.

Example 1.2.2. The free group on n generators Fn = ⟨a1, . . . ,an | ⟩ has no relations.

A group is an algebraic structure, but we can enrich our understanding of it by regarding it as a
geometric object. One very good way to do this is via the following construction.

Definition 1.2.3. Let G be a group with a presentation ⟨S | R⟩. We define the Cayley graph Γ(G,S) as
the oriented graph having the elements of G as vertices, and for each g ∈ G and each s ∈ S, a geometric
edge with extremes g and gs. The positively oriented edges have origin g and terminus gs.

The group G acts on Γ(G,S) by left multiplication, and as long as S∩S−1 =∅, the action preserves
orientation, that is, edges in Y+ are mapped to Y+ and edges in Y− are mapped to Y−. Furthermore, G acts
freely on the vertices and on the edges. One may analogously write in the above definition sg in place of
gs, in which case G acts on the graph by right multiplication instead.

Examples 1.2.4.

↶

↶

Z2×Z6 = ⟨a,b | a2 = b6 = 1,ab = ba⟩

↷

↶

D12 = ⟨r,s | s2 = r6 = 1,rs = r−1⟩

Z3 ∗Z5 = ⟨a,b | a3 = b5 = 1⟩ F2 = Z∗Z= ⟨a,b⟩
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. . . . . .

Z2 ∗Z2 = ⟨a,b | a2 = b2 = 1⟩

Z×Z= ⟨a,b | ab = ba⟩

Subgroup cosets, abelian groups, normal and central subgroups, splittings, direct and free products,
and a number of group theoretic notions can be seen to have their geometric analogue; it can be very
instructive to understand these concepts both from the algebraic and the geometric point of view. In
particular, we see that cycles in the Cayley graph correspond precisely to relations between the elements
of S. Therefore, we obtain

Theorem 1.2.5. Γ(G,S) is a tree if and only if G is a free group with basis S.

Remark 1.2.6. A graph can be regarded as a complex, with the vertices as 0-dimensional cells and the
edges as 1-dimensional cells. We next give an idea on how to construct higher dimensional complexes
on which G acts by permuting the cells. Starting off with the Cayley graph as the 1-skeleton, one can
construct a 2-complex by gluing 2-dimensional disks along the words in the relations; this gives rise to a
simply connected space X , called Cayley complex, on which G acts freely. It is then the universal covering
of the orbit space G\X , which is again a 2-complex (known as presentation complex). In general, this
complex is not aspherical (i.e. its higher homotopy groups are not trivial, or, equivalently, its universal
covering, the Cayley complex, is not contractible), but by repeatedly gluing higher dimensional cells, one
can kill these groups while leaving the fundamental group G untouched. The resulting space is then an
Eilenberg-Maclane space, or K(G,1), which is, by definition, a connected, aspherical complex with G as
its fundamental group. This is a great source of interaction between algebra and topology; for instance,
homology and cohomology groups of a group G can be defined to be those of a K(G,1) (this can be
shown not to depend on the specific constructed space). We refer to [2] for more details.

Example 1.2.7. The Cayley graph of Z2 = ⟨a | a2⟩ is isomorphic to S1. Then gluing two disks (we can
think of each being based at one of the two vertices), we obtain the Cayley complex S2, which is the
universal covering of the real projective plane RP2. Of course, one has π1(RP2) ∼= Z2. In this case we
see that S2 is not contractible; hence RP2 is not a K(Z2,1). In fact, it can be shown that a group with
torsion cannot have a finite-dimensional Eilenberg-Maclane space.

S1
S2

→

RP2

Figure 1.2: Cayley graph, Cayley complex and 2-presentation complex of Z2.



Chapter 2

Groups acting on trees

2.1 General setting

As a first step towards the structure theorem, in this chapter we will study some basic constructions of
groups which act on trees. In fact, we shall see that these actions completely characterize these groups.
We will always consider left actions, but of course one can reformulate the theory in terms of right
actions.

Definition 2.1.1. Let X be a graph on which G acts. An inversion is a pair (g,y) ∈ G×E(X) such that
gy = y. If there is no such pair, we say that G acts without inversion. This is the same as saying that there
is an orientation of X preserved by G.

Example 2.1.2. As we have noted in the previous chapter, G acts without inversion on the Cayley graph
Γ(G,S) when S∩S−1 =∅.

If G acts without inversion on X , we can define the quotient graph G\X in the obvious way. Notice
that if it did not act without inversion, the quotient of E(X) would not meet the requirements to be the
set of edges of a graph. From now on, we shall assume, unless otherwise stated, that all group actions on
graphs are without inversion.

Proposition 2.1.3. Let X be a connected graph on which G acts. Then every subtree of G\X lifts to a
subtree of X.

Proof. Let T ′ be a subtree of G\X , and let Ω be the set of subtrees of X that project injectively into T ′.
Ω is a directed set under the relation of inclusion. Let T0 be a maximal element of Ω, and let T ′0 be its
image in T ′. We claim that T ′ = T ′0 , from which the proposition follows.

Assume that T ′ ̸= T ′0 , so there is an edge y′ ∈ T ′−T ′0 . Since T ′ is connected, we can assume that
o(y′) ∈ T ′0 , and then necessarily t(y′) /∈ T ′0 , since otherwise we would get a cycle in T ′. Let now y be
a lift of y′. Since we can replace y by any gy, we can assume that o(y) ∈ T0. Let now T1 be the graph
obtained by adjoining the vertex t(y) and the edges y,y to T0. Since this makes t(y) a terminal vertex in
T1 and T0 is a tree, T1 is as well a tree, which properly contains T0 and which projects injectively into T ′,
contradicting the maximality of T0. Therefore, T ′ = T ′0 as we claimed.

Definition 2.1.4. Let X be a connected graph on which G acts. A tree of representatives of X modulo G
is any subtree T of X that is the lift of a maximal tree in G\X . Since X (hence G\X) is connected, such
a maximal tree contains all the vertices in G\X , which is equivalent to saying that every orbit of G in
V(X) contains exactly one element of V(T ).

A fundamental domain of X modulo G is a subgraph of X that maps isomorphically onto G\X .

If G\X is a tree, it is clear that any tree of representatives is a fundamental domain. In the case when
X itself is a tree, which is the case that we will devote ourselves to, the converse is obviously true:

5



6 Chapter 2. Groups acting on trees

Proposition 2.1.5. Let G act on a tree X. Then a fundamental domain of X modulo G exists if and only
if G\X is a tree.

Proof. Let T be a fundamental domain. Since X is connected, G\X is connected and so is T . Then, T is
a connected subgraph of the tree X , so it is a tree.

2.2 Free groups

We say that a group acts freely on a graph if it acts without inversion and no nontrivial element leaves
a vertex fixed. For example, we have noted before that G acts freely on the Cayley graph Γ(G,S). In
particular, theorem 1.2.5 shows that if G is free, then there is a tree upon which it acts freely. In the next
theorem, we strengthen this result by proving the converse. More precisely:

Theorem 2.2.1. Let G act freely on a tree X. Choose a tree T of representatives of X modulo G and an
orientation Y+ ⊆ E(X) preserved by G.

(i) Let S⊆ G be the set of nontrivial elements g ∈ G for which there is an edge in Y+ with origin in T
and terminus in gT . Then G is free with basis S.

(ii) If |V(G\X)|< ∞, then rankG = 1−χ(G\X).

Proof. (i) Since G acts freely on X and T → G\X is injective, the map g 7→ gT is a bijection of G onto
the orbit GT . In particular, we can form the quotient graph X ′ = X/GT by contracting each tree gT to
a single vertex which we denote (gT ). Then X ′ is still a tree. The inverse of the bijection g 7→ (gT )
can be regarded as a bijection α : V(X ′)→ V(Γ(G,S)) = G. We claim that α can be extended to an
isomorphism α : X ′ → Γ(G,S), so that Γ(G,S) will be a tree and by theorem 1.2.5, assertion (i) will
follow.

Notice that E(X ′) = E(X)−E(GT ). We give X ′ the orientation induced by that of X , i.e. Y ′+ =
Y+ ∩E(X ′). We want the map α to be a morphism of oriented graphs. To do that it suffices to define
α : Y ′+→ E+(Γ(G,S)). Let y ∈ Y ′+, and let (gT ) = o(y) and (g′T ) = t(y). Then, the edge y connects gT
to g′T in X , so s = g−1g′ ∈ S. We define α(y) = (g,gs). Injectivity of α then follows from injectivity of
α : V(X ′)→V(Γ(G,S)) and the fact that X ′, being a tree, is combinatorial. Surjectivity is also immediate
by construction, and we are done!

(ii) Let Z = {y ∈ Y+ | o(y) ∈ T, t(y) /∈ T}. By the above proof, we have a bijection Z→ S, whence
|Z| = |S|. The image G\T of T in G\X is a maximal tree. We provide G\X with the induced orienta-
tion G\Y+. We then have that G\Y+ = E+(G\T )⊔G\Z, and also that Z → G\Z is bijective. Thus, if
|V(G\T )|= |V(G\X)|< ∞,

|G\Y+|− |V(G\X)|= |G\Z|+ |E+(G\T )|− |V(G\T )|= |G\Z|−1 = |S|−1,

where we have used lemma 1.1.6.

Topological interpretation 1. Because G acts freely on X , X is the universal covering of the quotient
space G\X , and G is isomorphic to the fundamental group π1(G\X). Since G\T is a maximal subtree of
G\X , the quotient (G\X)/(G\T ) is a bouquet of circles, and it has the same homotopy type as G\X . The
fundamental group G is then the free group with generators corresponding to each circle in the bouquet.
These circles, suitably oriented, correspond to the elements of G\Z, and hence to the elements of S, as
we have seen above.

The structure theorem we are aiming for will be nothing but a generalization of this. It will allow us
to describe a group acting on a tree as the fundamental group of a graph of groups which we will later
define.

Remark 2.2.2. In fact, with the same idea one can generalize theorem 1.2.5. Let G = ⟨S | R⟩ be a
presentation of G, so that G = F(S)/⟨⟨R⟩⟩. Then, the free action of F(S) induces a free action of ⟨⟨R⟩⟩
on the tree Γ(F(S),S), and the quotient graph is isomorphic to Γ(G,S). As a consequence, ⟨⟨R⟩⟩ ∼=
π1(Γ(G,S)).
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As a beautiful application of theorem 2.2.1, we get a very simple proof of an otherwise tricky result
in group theory:

Corollary 2.2.3 (Schreier’s theorem). Every subgroup H of a free group G is free. Moreover, if |G : H|=
n < ∞, then rankH−1 = n(rankG−1).

Proof. If G is free, we can make it act freely on a tree X (for example, on the Cayley graph). Then it
is clear that H also acts freely on X , so it is free by theorem 2.2.1. For the second assertion, notice that
we can choose X so that |V(G\X)| < ∞ (for example, for the Cayley graph associated to a basis of G,
this number is 1). The formula then just follows from theorem 2.2.1(ii) and the fact that |V(H\X)| =
n |V(G\X)| and |E(H\X)|= n |E(G\X)|.

Topological interpretation 2. One can as well give a nice topological proof of this theorem. Let Y be a
bouquet of circles with π1(Y ) = G. This space satisfies good connectedness properties, and thus there is
a one-to-one correspondence between coverings of Y and subgroups of G. Hence there exists a covering
p : E→Y such that via the induced monomorphism, π1(E)∼= H. Since E is a covering space of a graph,
it is a graph itslef, and so its fundamental group is free. The rank formula then follows from the fact that
E is an n-fold covering of Y , so χ(E) = nχ(Y ). We refer to [10, §85] for details.

2.3 Free amalgamated products and HNN extensions

In this section we introduce two constructions which are basic to combinatorial group theory. Given two
groups G1,G2, one constructs their free product G1 ∗G2 as the group generated by both keeping their
original relations without adding any new ones. In other words, one has the presentation

G1 ∗G2 = ⟨G1,G2 | ⟩

where we understand the Gi to carry each both their elements and their relations, i.e. if Gi = ⟨Si | Ri⟩,
then G1 ∗G2 = ⟨S1,S2 | R1,R2⟩. Now, perhaps we would like instead to add some relations between some
elements of each group. How can we do that? This is precisely what free amalgamated products will do
for us.

Definition 2.3.1. Suppose we are given groups G1,G2 and A, and for i = 1,2, a monomorphism αi : A→
Gi. We define the free amalgamated product of the Gi along A by means of the αi as

G1 ∗A G2 = ⟨G1,G2 | α1(a) = α2(a)∀a ∈ A⟩.

Remark 2.3.2. One can define in the same way the free amalgamated product of an arbitrary family of
groups {Gi}i∈I along a common subgroup A, denoted ∗AGi. We will restrict ourselves to the case of two
factors for simplicity.

Definition 2.3.3. Let H be a group, and let A,B≤H be two subgroups of H together with an isomorphism
ϕ : A→ B. Let t be an element of infinite order not in H. We let

H∗A,B,t = ⟨H, t | t−1at = ϕ(a)∀a ∈ A⟩

denote the HNN extension of H with base group A and stable letter t (HNN stands for G. Higman, B.H.
Neumann and H. Neumann).

If A = H, the extension is said to be ascending, while if B = H, it is called descending. Notice that
H∗A,B,t = H∗B,A,t−1 and thus we may write any descending extension as ascending. If A ̸= H and B ̸= H,
we call the extension strict. For an extension both ascending and descending, one has H∗H,H,t =H⋊ϕ ⟨t⟩.

Remark 2.3.4. Let L be a group with two monomorphisms α1,α2 : L→H, and let A = α1(L),B = α2(L)
and ϕ = α2α

−1
1 : A→ B. Then, we can rewrite

H∗A,B,t = ⟨H, t | t−1
α1(s)t = α2(s)∀s ∈ L⟩=: H ∗L,t .



8 Chapter 2. Groups acting on trees

Topological interpretation 3. Both free amalgamated products and HNN extensions involve two sub-
groups and an isomorphism between them; they might be called the ”disconnected case” and the ”con-
nected case” of one basic idea, based on an analogy between these two group constructions and the
operation of gluing of topological spaces. It is in fact in this context where their motivation is most
naturally found.

On the one hand, amalgamation is the group-theoretic analogue of pasting two different topological
spaces together along a common connected subspace. The Seifert-Van Kampen theorem makes this
analogy precise via fundamental groups:

Theorem 2.3.5 (Seifert-Van Kampen). Let U,V be two open subspaces of X such that X =U ∪V , so we
have the following diagram of inclusions:

U ∩V

U

V

X

i k

j l

Assume that all the involved spaces are arcwise connected, and that the inclusions i, j are π1-injective.
Then, the induced group diagram

π1(U ∩V )

π1(U)

π1(V )

π1(X)

i∗ k∗

j∗ l∗

is an amalgamation diagram, i.e. π1(X)∼= π1(U)∗π1(U∩V ) π1(V ).

In fact, considering a less restrictive definition of amalgamation, the hypothesis that the induced
maps i∗, j∗ be injective is not necessary. We can then express the Seifert-Van Kampen theorem by saying
that π1 ”preserves amalgams”. In fact, it is a theorem of Whitehead (cf. [2, II.7.3]) that we can go in
the other direction, provided that we restrict to π1-injective inclusions: any group amalgamation diagram
with injective maps can be realized by a space diagram. The spaces involved can furthermore be realized
by Eilenberg-Maclane complexes; this can be used to derive in an easy way Mayer-Vietoris sequences in
group homology and cohomology.

U ∩V

U

V

X

π1

K(−,1)

A

G1

G2

G

On the other hand, there is an analogous correspondence between HNN extensions and fundamental
groups of topological spaces in which a subspace has been glued back on another homeomorphic sub-
space (so we ”attach a handle” to the space). These two group constructions allow, then, the description
of the fundamental group of any reasonable geometric gluing.

We will now take a look at some examples of group amalgamations and HNN extensions. As one
can imagine from the comments above, many of these examples arise in algebraic topology.

Examples 2.3.6. 1. The Baumslag-Solitar groups are defined as

BS(n,m) = ⟨a, t | t−1ant = am⟩, n,m ∈ Z.
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Putting H = ⟨a⟩, A = ⟨an⟩, B = ⟨am⟩ and ϕ : A→ B given by ϕ(an) = am, we see that BS(n,m) =
H∗A,B,t is an HNN extension with an infinite cyclic group as base. The extension is ascending (resp.
descending) if and only if |n|= 1 (resp. |m|= 1).

These groups are the source of many interesting examples. For the ascending case, one can see that
BS(1,m)∼= ⟨t⟩⋉Z

[ 1
m

]
where the action of tk is given by multiplication by mk, for all k ∈ Z. Indeed,

using additive notation, ⟨⟨a⟩⟩ ∼= Z
[ 1

m

]
via t−kaltk 7→ lmk, k, l ∈ Z with gcd(m, l) = 1. On the other

hand, we have an obvious epimorphism BS(1,m)→ ⟨t⟩ which splits and has kernel ⟨⟨a⟩⟩, whence
BS(1,m)∼= ⟨t⟩⋉ ⟨⟨a⟩⟩ and the assertion follows. As a consequence, BS(1,m), being the semi-direct
product of two abelian groups, is metabelian (that is, the derived subgroup G′ is abelian). In particular,
these are solvable groups.

2. Consider the special linear group with integer coefficients

SL2(Z) = {A ∈M2×2(Z) | detA = 1}.

We claim that SL2(Z) is generated by the elementary matrices S=
(

0 −1
1 0

)
and R=

(
0 −1
1 1

)
,

which are of order 4 and 6 respectively. Indeed, let T = S−1R = −SR =

(
1 1
0 1

)
, which is of

infinite order with T n =

(
1 n
0 1

)
∀n ∈ Z, let G = ⟨S,T ⟩, and let us see that SL2(Z) = G. For every

A =

(
a b
c d

)
∈ SL2(Z) and n ∈ Z, we have

SA =

(
−c −d
a b

)
, T nA =

(
a+nc b+nd

c d

)
.

If c = 0, since detA = 1 and A has integer entries, then A must be of the form(
±1 m
0 ±1

)
=±T±m

which, since S2 = −I2, is an element of G. Suppose now that c ̸= 0. If |a| ≥ |c|, divide a by c, so
that a = cq+ r with 0 ≤ r ≤ |c|. Then, T−qA has upper left entry a− qc = r, which has smaller
modulus than the lower left entry c. Applying S switches these entries (with a sign change). If r ̸= 0,
we can then divide again the upper left entry −c by the lower left entry r. Iterating this procedure of
Euclidean division+multiplication by powers of T +multiplication by S, we eventually obtain a matrix
with lower left entry 0, which reduces to the first case and completes the proof.

Note that the intersection ⟨S⟩∩ ⟨R⟩ is the cyclic group generated by −I2 = S2 = R3 (this is in fact the
center of SL2(Z)). We shall show later with the aid of Bass-Serre theory that this is the only relation
that holds between S and R, i.e. SL2(Z) ∼= Z4 ∗Z2 Z6, where each cyclic group is generated by the
mentioned matrices.

3. Let Γ be a combinatorial graph. The right angled Artin group (RAAG for short) associated to Γ is the
group generated by the vertices of Γ, such that two vertices commute if and only if there is an edge
between them. That is:

AΓ = ⟨V(Γ) | [v,w] = 1 ∀ v w ∈ E(Γ)⟩.

Let now v,w be two vertices such that there is no edge between them in Γ, and take the subgraphs Γ1 =
Γ−v, Γ2 = Γ−w and Γ1∩Γ2 = Γ−{v,w}. For each u ∈V(Γ1∩Γ2), let ui denote the corresponding
element in AΓi . Because there is no edge joining v and w in Γ, one has E(Γ) = E(Γ1∪Γ2), hence no
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new relations apart from those in the AΓi are added to AΓ, except those of identifying the elements ui

in the intersection. In other words,

AΓ = ⟨AΓ1 ,AΓ2 | u1 = u2 ∀u ∈ V(Γ1∩Γ2)⟩= AΓ1 ∗AΓ1∩Γ2
AΓ2 .

Repeating this process on each subgraph, one can write any RAAG as an iterated free amalgamated
product. Notice that the procedure ends when we arrive to a clique (a full subgraph), whose RAAG is
a free abelian group of rank equal to the number of vertices.

We can write RAAGs as iterated HNN extensions as well. Let v∈V(Γ), put Γ1 = Γ−v, and let lkΓ(v)

be the full subgraph induced by the vertices that are joined to v in Γ, i.e. {w ∈ V(Γ) | v w ∈
E(Γ)}. Adjoining the vertex v to Γ1 to recover Γ translates in the RAAG to adding all the relations
encoded by lkΓ(v). Hence we see that

AΓ = ⟨AΓ1 ,v | [v,w]∀w ∈ lkΓ(v)⟩= AΓ1∗AlkΓ(v)
,v,

since [v,w] = 1⇔ v−1wv = w.

4. The above are particular examples of Artin groups, which are defined by means of a combinatorial
graph Γ with each geometric edge y labeled by an integer Ny. A particularly simple case is that of a
triangle Artin group, given by the presentation

a

b c
PM

N

AMNP = ⟨a,b,c | (a,b)M = (b,a)M,(b,c)N = (c,b)N ,(c,a)P = (a,c)P⟩

where (a,b)M denotes the alternating word abab . . . of length M. Suppose that P = 2, let x = ab and
y = cb, and consider a new presentation of AMN2 with generators b,x,y. The relation (a,b)M = (b,a)M

is replaced by bxmb−1 = xm when M = 2m, and by bxmb = xm+1 when M = 2m+1. We denote this
relation by rM(b,x). Note that yx−1 = ca−1, so relation ac = ca can be replaced by yx−1 = bx−1yb−1.
This gives the following presentation

AMN2 = ⟨b,x,y | rM(b,x),rN(b,y),bx−1yb−1 = yx−1⟩.

In the case when both M,N are even, we see that this is the presentation of an HNN extension with
base group freely generated by x,y and stable letter b. More generally, one can show that if M≥N ≥P
and either P> 2 or N > 3, then AMNP splits as either a free amalgamated product or an HNN extension
of finitely generated free groups. The idea to do this is to consider a special class of graphs which
admit a ”good” orientation, which includes the cases where P > 2. Both these and the remaining
cases are dealt with through a nice geometric argument using the 2-presentation complex; see [5] and
[6].

5. Let G = ⟨S | r⟩ be a finitely generated one-relator group. This group is torsion-free if and only if r
is not a proper power (cf. [2, p. 37]). In such case, when the exponent sum in r of some generator t
equals zero, it can be shown that G is an HNN extension of a one-relator group whose defining relator
is strictly shorter than r, and with f.g. free associated subgroups. If there is no zero exponent sum
generator, we can still embed G in such an HNN extension. This result is very useful, since it can be
used to prove certain statements by induction on the length of the relator, and it is usually proved as
part of the proof of a theorem of Magnus known as Freiheitssatz about a certain free subgroup of G;
see [9, IV.5.1]. The idea is to replace the generators by their conjugates by powers of t, which allows
to rewrite r with fewer letters. The only ”bad” point of this is that one is generally left with infinitely
many generators.

Two classical examples of one-relator groups are

⟨a1, . . . ,ag,b1, . . . ,bg | [a1,b1] . . . [ag,bg]⟩, g≥ 1,
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which is the fundamental group of the genus g closed orientable surface Fg (i.e. a connected sum of g
toruses), and

⟨c1, . . . ,ck | c2
1 . . .c

2
k⟩, k ≥ 2,

which is the fundamental group of the non-orientable closed surface with k crosscaps Nk (i.e. a
connected sum of k real projective planes). This is easily proved by induction, showing that Fg

(resp. Nk) can be obtained by gluing the sides of a 4g-gon (resp. 2k-gon) labeled by the word
[a1,b1] . . . [ag,bg] (resp. c2

1 . . .c
2
k).

2.3.1 Normal forms

In a free group, each element has a unique reduced expression in terms of a basis. This is no longer true
when there are relations in the group that may allow to write very differently the same element, but in
some cases we still get lucky and have what we call a normal form, which is (essentially) unique for each
element. Even so, for many problems one is usually only interested in being able to deduce that a given
element is not trivial.

Definition 2.3.7. Let G = H∗A,B,t . The word g0tε1g1 . . . tεngn, where g0 ∈ H and εi = ±1, is said to be
reduced if there is no consecutive subword t−1git with gi ∈ A or tgit−1 with gi ∈ B.

Two distinct reduced words may be equal in G. To actually get normal forms we will need a further
refinement.

Definition 2.3.8. Let SA (resp. SB) be a set of representatives of the right cosets of A (resp. of B) in H,
both containing the identity. A normal form is a word g0tε1g1 . . . tεngn where

(a) g0 ∈ H,

(b) εi =−1⇒ gi ∈ SA,

(c) εi = 1⇒ gi ∈ SB, and

(d) there is no consecutive subword tε1t−ε .

To get an intuition on this definition, notice that the defining relations of G can be rewritten as

t−1a = ϕ(a)t−1∀a ∈ A or tb = ϕ
−1(b)t ∀b ∈ B.

We can view these as quasi-commuting relations. Indeed, they allow us to move elements in A or B to
either side of t, via ϕ . By working from right to left, we can then show that every element of G is equal
to a normal form g0tε1g1 . . . tεngn.

Example 2.3.9. Let F = ⟨x,y⟩ and let G = F∗x,y2,t = ⟨x,y, t | t−1xt = y2⟩. As representatives of ⟨x⟩-
cosets, we choose all freely reduced words on x and y which do not begin with x, while as representatives
of ⟨y2⟩-cosets, we choose all freely reduced words on x and y which do not begin with yk, k ≥ 2. We can
calculate the normal form of the element xyt−1x3ty5xyt−1x3y3 using the above relations:

xyt−1x3ty5xyt−1x3y3 = xyt−1x3ty5xy7t−1y3 = xyt−1x5tyxy7t−1y3 = xy12xy7t−1y3.

Theorem 2.3.10 (Normal form theorem for HNN extensions).

(i) (Britton’s lemma). If g0tε1g1 . . . tεngn = 1 in G, then either n = 0 and g0 = 1, or n≥ 1 and the word
is not reduced.

(ii) Every element of G has a unique representation as a normal form.

Sketch of proof. One first shows that both statements are equivalent. Then, to prove (ii) the idea is to
make G act on the set of normal forms by multiplication on the left and reduction to normal form. The
proof can be found at [9, IV.2.1].
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Remark 2.3.11. 1. As a consequence of this theorem, the natural homomorphism H→G is injective.

2. For most purposes, there is no need to choose coset representatives. What is important is that H is
embedded in G and that we have a criterion to tell when words of G do not represent the identity.

Corollary 2.3.12. Every element of finite order in G = H∗A,B,t is conjugate to an element of H.

Proof. A word g0tε1g1 . . . tεn is called cyclically reduced if all its cyclic permutations are reduced. Clearly,
every element of G is conjugate to an alement that admits a cyclically reduced expression.

Let g ∈ G such that gm = 1, and let h = g0tε1g1 . . . tεn be a cyclically reduced word with h conjugate
of g. We claim that h ∈ H. Indeed, if h /∈ H i.e. n ≥ 1, then hm = g0tε1g1 . . . tεn . . .g0tε1g1 . . . tεn ̸= 1 by
Britton’s lemma.

Corollary 2.3.13. H∗A,B,t is torsion-free if and only if H is torsion-free.

We turn now to free amalgamated products.

Definition 2.3.14. Let G = G1 ∗A G2 be an amalgam of two groups. The word c1 . . .cn is called reduced
if

(a) ci ∈ G1 or G2 alternately (so consecutive ci’s belong to different factors),

(b) if n≥ 2, ci /∈ A∀i≥ 1, and

(c) if n = 1, c1 ̸= 1.

Theorem 2.3.15 (Normal form theorem for free amalgamated products). If c0 . . .cn is a reduced word,
then c0 . . .cn ̸= 1 in G. In particular, the inclusions G1,G2→ G are embeddings.

Sketch of proof. The idea is to construct an embedding of G into the HNN extension (G1 ∗G2)∗A,t which
sends reduced words to reduced words, and then use theorem 2.3.10. See [9, IV.2.6].

As with HNN extensions, there is an equivalent statement of the normal form theorem involving a
choice of coset representatives of the common subgroup A in each factor:

Theorem 2.3.16. Let G = G1 ∗A G2, and let Si ⊆ Gi be sets of right coset representatives of Gi/A, both
containing the identity. Then any g ∈ G can be written uniquely in the form

g = as1 . . .sn

where a ∈ A, sk ∈ S1−1 or S2−1 and no two consecutive sk,sk+1 belong to the same factor Gi. We call
this the normal form of g.

Corollary 2.3.17. Let G = G1 ∗A G2, and assume that A is a normal subgroup of both Gi. Then, A is
normal in G and G/A∼= (G1/A)∗ (G2/A).

Proof. Let g ∈ G, and let us see that Ag = gA. Keeping the notation of theorem 2.3.16, we write g =
a0s1 . . .sn where a0 ∈ A and, to fix ideas, s1 ∈ G1. Since A is normal in G1, there exists a1 ∈ A such that
a0s1 = s1a1. We repeat this operation writing ak−1sk = skak for each k, so that

g = a0s1 . . .sn = s1a1s2 . . .sn = · · ·= s1 . . .snan.

Hence by the same argument Ag = As1 . . .sn = s1 . . .snA = gA. The second statement is immediate using
again normal forms, just noting that a set of coset representatives of Gi modulo A is the same as a set of
coset representatives of Gi/A modulo 1.

Example 2.3.18. Notice that the hypothesis of the corollary is trivially satisfied when the Gi are abelian,
which is the case of many of our examples. For instance, the projective version of SL2(Z) is

PSL2(Z) = SL2(Z)/⟨−I2⟩ ∼= (Z4 ∗Z2 Z6)/Z2 ∼= Z2 ∗Z3.

Finally, with the same proof as in corollary 2.3.12, we have

Corollary 2.3.19. Every element of finite order in G1 ∗A G2 is conjugate to an element of G1 or G2.

Corollary 2.3.20. G1 ∗A G2 is torsion-free if and only if G1 and G2 are torsion-free.
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2.3.2 Action on trees

Given a group acting on a graph, we gave the name of fundamental domain to a subgraph that projects
isomorphically onto the quotient graph. One might wish to characterize a group action through its fun-
damental domain (given that it exists). We also know that if the graph is a tree, the fundamental domain
needs to be a tree as well. Perhaps then the simplest candidate we could think of is a segment:

(we colour its vertices differently to stress out the fact that they represent distinct orbits). It turns out that
amalgams of two groups correspond precisely to this type of action!

Theorem 2.3.21. Let G be a group acting on a graph X, and let T =
v wy

be a segment of
X. Suppose that T is a fundamental domain of X modulo G. Let Gv, Gw and Gy = Gy be the stabilizers
of the vertices and edges of T . Let ψ : Gv ∗Gy Gw→ G be the homomorphism induced by the inclusions
Gv→ G and Gw→ G. Then one has

(i) ψ is injective if and only if X contains no cycles.

(ii) ψ is surjective if and only if X is connected.

(iii) ψ is an isomorphism if and only if X is a tree.

Proof. Notice first that the stabilizers indeed satisfy Gy = Gy = Gv ∩Gw, since y,y are the only edges
with vertices v and w, and no element of G can interchange v and w (they are inequivalent mod G).

The key observation is that we can relate reduced paths in X to reduced words in Gv ∗Gy Gw, as
follows.

Let (g1y1, . . . ,gnyn) be a reduced path in X , where gi ∈ G, yi ∈ {y,y}. Passing to G\X ∼= T , we see
that yi = yi−1. Let then vi = o(yi) = t(yi−1). We have that gi ≡ gi−1 mod Gvi , since

givi = gio(yi) = o(giyi) = t(gi−1yi−1) = gi−1t(yi−1) = gi−1vi,

and gi ̸≡ gi−1 mod Gy = Gy, since

giyi = giyi ̸= gi−1yi−1 = gi−1yi,

as an equality would yield a backtracking. Therefore, any reduced path must be of the form

(c0y0,c0c1y1, . . . ,c0 . . .cnyn) (2.1)

where yi = yi−1 and ci ∈ Go(yi)−Gy∀i≥ 1.

...

G\X

X

↓

Figure 2.1: Reduced paths in X fold ”like an accordion” when projected onto G\X .
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(i) The reduced path (2.1) is a cycle if and only if c0 . . .cnt(yn) = c0o(y0) i.e. y0 = yn (so any cycle
must be of even length!) and c1 . . .cn ∈ Go(y0). In conclusion, the existence of a cycle in X is
equivalent to the existence of a sequence c1, . . . ,cn+1 ∈ Gv−Gy or Gw−Gy alternately such that
1 = c1 . . .cn+1 in G. Since by theorem 2.3.15 an element of this form can never be trivial in
Gv ∗Gy Gw, this is equivalent to saying that ψ is not injective.

(ii) In view of (2.1), constructing a reduced path in X between any two given vertices amounts to
constructing a normal form in Gv ∗Gy Gw that equals a specific element in G, which is in turn
equivalent to surjectivity of ψ .

(iii) This is just the intersection of the first two assertions.

Remark 2.3.22. As we have noted during the proof, if X contains any cycles, then they must be of even
length. That is the same to say that X is a bipartite graph.

To complete this characterization, we now prove the converse.

Theorem 2.3.23. Let G = G1 ∗A G2 be an amalgam of two groups. Then there is a tree X unique up to

isomorphism on which G acts, with fundamental domain a segment T =
v wy

, and whose
vertices and edges have Gv = G1, Gw = G2 and Gy = Gy = A as their respective stabilizers.

Proof. We really have no choice as to how to construct X . Namely, we must take

V(X) = G/G1⊔G/G2,

E(X) = G/A⊔G/A,
o(gA) = gG1,
t(gA) = gG2.

If we set v = G1, w = G2 and y = GA, then G acts on X by left multiplication with the segment T =

v wy
as a fundamental domain and with G1, G2 and GA as stabilizers. Theorem 2.3.21 then

shows that X is a tree.

Remark 2.3.24. 1. The existence of the tree X associated to G is little more than a reformulation of the
normal form theorem for amalgamanted free products. Nevertheless, the tree is a very convenient tool
for keeping track of the combinatorics of normal forms. It is often considerably easier to prove things
about G by using X than it is to work directly with normal forms.

2. In the situation of corollary 2.3.17, the tree associated to G = G1 ∗A G2 is the same as the one associ-
ated to G/A = (G1/A)∗ (G2/A).

3. The cardinality of the set of geometric edges passing through the vertex gGi is equal to the index
|Gi : A| (this is called the valency of the vertex).

Example 2.3.25. We return to G = SL2(Z) with the same notation as in example 2 of 2.3.6. This group
acts on the upper half plane H= {z∈C | Imz > 0} by Möbius transformations, via the so-called modular
action: (

a b
c d

)
z =

az+b
cz+d

.

Let ω = e
2πi
3 (i.e. the only primitive 3rd root of unity which lies in H). We claim that the stabilizers

of i and ω under the modular action are

(a) Gi = ⟨S⟩ and

(b) Gω = ⟨R⟩.
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Indeed, ai+b
ci+d = i ⇔ ai+ b = di− c ⇔ a = d and b = −c, hence 1 = ad− bc = a2 + b2 and, since

a,b ∈ Z, either (a,b) = ±(1,0) and the matrix is ±I2, or (a,b) = ±(0,1) and the matrix is ±S. Since
⟨S⟩= {±I2,±S}, and S does indeed fix i, this proves (a).

On the other hand, since ω2+ω+1= 0, we have aω+b
cω+d =ω ⇔ aω+b= cω2+dω =(d−c)ω−c⇔

b =−c and a = d− c = d +b. Thus 1 = ad−bc = a(a−b)+b2 = (a− b
2)

2 + 3
4 b2, and the only integer

solutions of this equation are (a,b) = ±(1,0),±(0,1),±(1,1), which yield 6 possible values for the
matrix that turn out to be the powers of R. Since R indeed fixes ω , this proves (b).

Notice that for every A ∈ G,z ∈ C, we have Az = (−A)z. This means that −I2 acts trivially, and this
induces an action of PSL2(Z) on H. In fact, it can be shown (see [3]) that the stabilizer of any point not
belonging to the orbits Gi or Gω is precisely {±I2}.

Now consider the circular arc y =
{

eiθ | π

2 < θ < 2π

3

}
joining i and ω , and let T = ω

i
y

.
The stabilizer of the arc y is Gy = ⟨I2⟩. We have that G acts on the set X = GT of translates of T with
fundamental domain T ; moreover, one can show that X is a tree, so by corollary 2.3.21 it follows that

SL2(Z) = Gi ∗Gy Gω
∼= Z4 ∗Z2 Z6,

as promised.
To picture this tree in a fancy way, recall that the upper half plane is a model for the hyperbolic plane.

Another model is the Poincaré disk, which we show in the next figure with ω at its center. There is a tiling
of the disk by ideal hyperbolic triangles (they have their vertices at infinity) which is compatible with
the action of SL2(Z), i.e. the triangles are shuffled by this action. The points in the orbit Gω correspond
then to the barycenters of the triangles, while the points in the orbit Gi correspond to the intersections of
the edges of the triangles with the hyperbolic segments joining translates of ω in adjacent triangles.

ω

i

Figure 2.2: Tree associated with SL2(Z) and PSL2(Z), as seen in the Poincaré disk.

Just like we did for free groups, we are now able to easily prove some group theoretical results with
the aid of Bass-Serre theory.

Proposition 2.3.26. Let H ≤ G = G1 ∗A G2, and suppose that H intersects trivially every conjugate of
G1 or G2. Then H is free.

Proof. Let X be the tree associated to G. The hypothesis on H is equivalent to that H acts freely on X ;
therefore by theorem 2.2.1, H is free.

Example 2.3.27. Let G = SL2(Z)∼= Z4 ∗Z2 Z6 = ⟨S,R | S4 = R6 = 1,S2 = R3⟩, and consider its derived
subgroup G′, generated by all the commutators [a,b],a,b ∈ G. This is a normal subgroup, and the
quotient G/G′ is, by definition, the abelianization of G:

Gab = ⟨S,R | S4 = R6 = 1,S2 = R3, [S,R] = 1⟩= ⟨S,R2 | S4 = (R2)3 = 1, [S,R2] = 1⟩
∼= Z4×Z3 = Z12.
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It is easy to check that G′ intersects trivially the subgroups generated by S and R; for example, we see by
looking at the presentation of Gab that their images in the quotient have the same order as in G. Hence
G′ is a free subgroup of G of index |G : G′| = |Gab| = 12, and G′ acts freely on the tree X associated to
G. Each vertex (resp. edge) G-orbit splits in |G : G′G1| or |G : G′G2| (resp. |G : G′A|) H-orbits, since
G1,G2,A are the corresponding stabilizers. Therefore by theorem 2.2.1(ii) we can identify G′ with the
fundamental group of G′\X and

rankG′ = 1− (
∣∣V(G′\X)

∣∣− ∣∣E(G′\X)
∣∣) = 1−12

(
1
4
+

1
6
− 1

2

)
= 2.

Figure 2.3: G′\X has 3+2 = 5 vertices and 6 edges.

Next, we give a nice application to free products:

Proposition 2.3.28. The kernel R of the canonical projection p : A∗B→ A×B is a free group, with basis
the set of nontrivial commutators {[a,b] | a ∈ A−1,b ∈ B−1}.

Remark 2.3.29. In the case that A,B are abelian, then R is the derived subgroup of A∗B.

Proof. Clearly, R∩A = R∩B = 1, so, since R is normal in G = A∗B, R−1 does not meet any conjugate
of A or B. Hence by proposition 2.3.26, R is free, or more precisely, it acts freely on the tree X associated
to G, defined by

V(X) = G/A⊔G/B,
E(X) = G⊔G,
o(g) = gA,
t(g) = gB.

Let us describe the quotient graph R\X . The orbit set of the edges is

E(R\X) = R\G⊔R\G∼= A×B⊔A×B,

since R = ker p. For the vertices, let πA : A×B→ A and πB : A×B→ B denote the canonical projections.
Since kerπB p = AR and kerπA p = BR, we have

V(R\X) = R\G/A⊔R\G/B = G/AR⊔G/BR∼= B⊔A

since R is normal, where the double classes R\G/A are the classes of G/A modulo R. On the element
level, we are identifying

edges: Rg ↔ p(g)

vertices: RgA = gAR ↔ πB p(g) (this is the ”B-part” of g)

RgB = gBR ↔ πA p(g) (”A-part” of g)

Hence ∀(a,b) ∈ A×B,∀g ∈ p−1(a,b),

o(a,b)≡ o(Rg) = Ro(g) = RgA≡ πB p(g) = πB(a,b) = b

and similarly, t(a,b) = a.
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AB

Figure 2.4: R\X .

We construct a maximal subtree of R\X choosing the edges corresponding to pairs (a,1) and (1,b).
Since p|A and p|B are injective, we can lift these edges to a and b in E(X), respectively. On the other hand,
since A∩B = 1 in G, we can lift the vertices b ∈ B to bA and a ∈ A to aB. This indeed defines a subgraph
T of X , so, since X is a tree and T projects injectively onto a maximal subtree of R\X , it is a tree of
representatives. It has vertices B/A⊔A/B and edges A∪B⊔A∪B, where we denote B/A = {bA | b ∈ B}
and analogously for A/B.

AB

1 1

←−
B

A

A/B

B/A

1

T

Figure 2.5: Maximal subtree and its lift T , the usual way one draws it.

Finally, to apply theorem 2.2.1, we are going to see that the elements r ∈ R−1 such that

• there exists g ∈ G− (A∪B) (a positive edge not in T ) with

• gA ∈ B/A (origin in T ) and

• gB ∈ rA/B (terminus in the translate rT ̸= T )

are precisely the commutators [b,a],a ∈ A−1,b ∈ B−1. Since g /∈ A∪B, from the second condition we
have g = ba for some b ∈ B−1,a ∈ A−1, so the segment we are looking at is

bA baBba

(notice that ba is a lift of one of the edges (a,b) of R\X which we have not lifted to T ; in fact, it is the
only edge in this fibre to have its origin in T and its terminus in a different translate rT ). Now, from the
third condition baB ∈ rA/B we deduce that ba = ra1b1 for some a1 ∈ A, b1 ∈ B. We assumed that r ∈ R,
and R acts freely on X , so this equation must have a unique solution! We find it by passing to A×B:

ba = ra1b1⇒ (a,b) = p(ba) = p(ra1b1) = (a1,b1),

since r ∈ R = ker p. Hence, a1 = a and b1 = b, and

r = bab−1a−1 = [b,a],

which completes the proof (note that [a,b] = [b,a]−1).

Example 2.3.30. Using the above result, we get yet another proof of the fact that the derived subgroup
of G = SL2(Z) is free of rank 2: we just need to pass to the quotient G/⟨−I2⟩ = PSL2(Z), which is
isomorphic to the free product Z2∗Z3, and apply the proposition. We conclude that G′ is freely generated
by the matrices

SRS−1R−1 =

(
2 1
1 1

)
and SR2S−1R−2 =

(
1 1
1 2

)
.
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We have studied so far the case when a group acts on a tree and the quotient graph is a segment.
Another very simple situation is when the quotient is a loop:

Theorem 2.3.31. Let G = H∗A,B,t be an HNN extension. Then, up to isomorphism there is a unique

graph X on which G acts, such that there is a segment T =
v wy

in X whose vertices and
edges have stabilizers Gv = H, Gw = tHt−1 and Gy = Gy = A, respectively, and the action is transitive
on vertices and transitive on geometric edges (equivalently, the quotient graph is a loop). Moreover, X
is a tree.

↓

T

G\X

y
w

v

Figure 2.6: The segment projecting onto the loop.

Proof. As in theorem 2.3.23, we have no choice but to set

V(X) = G/H,

E(X) = G/A⊔G/A,
o(gA) = gH,
t(gA) = gtH.

Notice that the map t is well defined, as at = tϕ(a)∀a ∈ A. Letting v = H, w = tH and y = A, then G

acts on X by left multiplication with the segment T =
v wy

having the required stabilizers.
It is clear too that the action is transitive on vertices and geometric edges, so all that is left is to show that
X is a tree. As before, this is done by relating reduced paths and reduced words.

Note that the vertices H and gH are adjacent if and only if there is g0 ∈H with g = g0t or g = g0t−1.
Let h ∈ G with normal form h = g0tε1g1tε2 . . . tεngn. Hence one has a path with sequence of vertices

(H,g0tε1H,g0tε1g1tε2H, . . . ,g0tε1 . . .gn−1tεnH = hH)

and since the action of G is transitive on the vertices, this shows that X is connected.
To see that X has no cycles, it suffices to see that it has no cycles passing through the vertex H.

Assume that there exists such a cycle of length n≥ 1. Its sequence of vertices must be of the form

(H,g0tε1H,g0tε1g1tε2H, . . . ,g0tε1 . . .gn−1tεnH = H)

(with gi ∈H), i.e. there is gn ∈H, g0tε1g1tε2 . . . tεngn = 1. As the cycle has no backtracking, we have that
∀i = 1, . . . ,n−1,

gi−1tεigitεi+1H ̸= H,

i.e. tεigitεi+1 /∈ H, so in particular it is not in A or B, and then by Britton’s lemma, g0tε1g1tε2 . . . tεngn ̸= 1,
a contradiction.

For the converse to theorem 2.3.31, which tells us that if a group acts on a tree with a loop as quotient
then it is an HNN extension, we shall wait until we have proved the general structure theorem, so that we
will obtain this result as an easy particular case.



Chapter 3

Graphs of groups

3.1 Fundamental groups

We come to a key definition in Bass-Serre theory, which will allow us to generalize the constructions in
the previous chapter.

Definition 3.1.1. A graph of groups (G,Y ) consists of a graph Y , a group Gv for each v ∈ V(Y ), and for
each y ∈ E(Y ) a group Gy together with a monomorphism Gy → Gt(y), which we denote a 7→ ay. One
requires in addition that Gy = Gy, so really, we have monomorphisms Gy→ Gt(y) and Gy→ Go(y). We
denote by Gy

y and Gy
y the images of Gy under these monomorphisms, respectively.

Let Y be a connected graph, and let (G,Y ) be a graph of groups. The procedure to construct the
fundamental group of (G,Y ) can be summarized as follows. We choose a maximal subtree T of Y , and
construct a group GT by iterated free amalgamated products of the vertex groups along the edge groups.
For every edge y of Y −T , GT contains a pair of isomorphic subgroups Gy

y and Gy
y, so that we can extend

GT by iterated HNN-extensions with stable letters y. The resulting group, as we will see, is independent
of the choice of T .

In order to do this, we begin by defining first an ”auxiliary” group F(G,Y ) generated by the vertex
groups Gv and the edges y of Y , subject to the relations

y = y−1 and yayy−1 = ay, ∀y ∈ E(Y ),a ∈ Gy.

We will not distinguish an element of Gv from its image in F(G,Y ) via inclusion, since, as we will later
prove, this inclusion is an embedding.

Go(y)← Gy→ Gt(y)

ay←[ a 7→ ay

y(·)y−1

Figure 3.1: Situation in each segment of (G,Y ). The notation (·) y is not to be confused with conjugation
by y, which we will always denote y(·)y−1.

Definition 3.1.2. Let c be a path in Y with origin o(c) = v0. We let y1, . . . ,yn denote the edges of c, and
vi = o(yi+1) = t(yi). Let µ = r0, . . . ,rn be a sequence of elements ri ∈ Gvi . Then the word in F(G,Y )

(c,µ) = r0y1r1y2 . . .ynrn

is called a word of type c.

19
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The role of the edges y in the group F(G,Y ) should be understood just as that of the ”glue” that
allows one to put all the vertex groups Gv together. In the actual group we are interested in, which we
next introduce, we make this glue be ”almost” invisible (more precisely, we only care about it in the
non-contractible part of the graph).

Definition 3.1.3. Fix a maximal subtree T of Y . We construct the fundamental group of (G,Y ) at T by
quotienting out of F(G,Y ) the elements y ∈ E(T ), i.e.

π1(G,Y,T ) = F(G,Y )/⟨⟨E(T )⟩⟩.

In particular, notice that in π1(G,Y,T ) one has ay = ay∀y ∈ V(T ),a ∈ Gy.

Remark 3.1.4. Let R be the normal subgroup of π1(G,Y,T ) generated by the images of the Gv. It follows
from the definition that the quotient π1(G,Y,T )/R is defined by the generators y ∈ E(Y )−E(T ) and the
relations y = y−1. This is nothing but π1(Y,T ), the fundamental group in the ordinary sense of the graph
Y relative to T . It is a free group, with a basis consisting of the geometric edges which do not belong to
T .

Definition 3.1.5. Fix a vertex v0 of Y . We define the fundamental group of (G,Y ) at v0 as the set of
words in F(G,Y ) whose type is a closed path (possibly with backtracking) based at v0, i.e.

π1(G,Y,v0) = {(c,µ) | o(c) = t(c) = v0}.

It is immediate to check that π1(G,Y,v0) is a subgroup of F(G,Y ). When G is the trivial graph
of groups I, corresponding to Iv = 1∀v ∈ V(Y ), then the group π1(I,Y,v0) coincides with π1(Y,v0),
the fundamental group in the usual sense of the graph Y based at v0 (more precisely, one obtains the
combinatorial definition of this group). In the general case, the canonical projection G→ I extends to an
epimorphism π1(G,Y,v0)→ π1(Y,v0), whose kernel is the normal subgroup of π1(G,Y,v0) generated by
the Gv.

Examples 3.1.6. 1. Suppose that Gy = 1 ∀y ∈ E(Y ). Then π1(G,Y,T ) is generated by the groups Gv

and the elements y ∈ E(Y )−E(T ) subject only to the relations y = y−1. Thus taking into account the
above remark, we have

π1(G,Y,T ) = π1(Y,T )∗ (∗Gv).

2. If T =
v wy

is a segment, we have

π1(G,T,T ) = ⟨Gv,Gw | ay = ay∀a ∈ Gy⟩= Gv ∗Gy Gw.

More generally, if T is a tree, then all the y ∈ E(T ) disappear in the quotient and π1(G,T,T ) is an
iterated free amalgamated product, which we shall call tree product and denote by GT .

3. If Y = v y is a loop, then

F(G,Y ) = π1(G,Y,v) = ⟨Gv,y | yayy−1 = ay∀a ∈ Gy⟩= Gv ∗Gy,y .

4. If Y = v

yi

is a bouquet of n circles, then

F(G,Y ) = π1(G,Y,v) = ⟨Gv,y1, . . . ,yn | yiayiy−1
i = ayi ∀a ∈ Gyi , i = 1, . . . ,n⟩.
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We can regard this as a generalization of HNN extensions, with several stable letters instead of just
one. Of course, when G = I is the trivial graph of groups, we get the free group on n generators.

5. One can understand any fundamental group of a graph of groups as an iterated construction using
at each step one of the above basic building blocks. Given a maximal subtree T , one exhibits the
fundamental group as a generalized HNN extension in the above sense, with the tree product as base
group and the edges which do not belong to T as stable letters:

π1(G,Y,T ) = ⟨GT ,y ∈ E+(Y )−E+(T ) | yayy−1 = ay∀a ∈ Gy⟩.

The two constructions we have given for a fundamental group of (G,Y ) are in fact equivalent, so the
situation is the same as for the usual fundamental group.

Theorem 3.1.7. Let (G,Y ) be a graph of groups, let v0 ∈V(Y ) and let T be a maximal subtree of Y . The
canonical projection p : F(G,Y )→ π1(G,Y,T ) induces an isomorphism of π1(G,Y,v0) onto π1(G,Y,T ).

Sketch of proof. One constructs the inverse p−1 : π1(G,Y,T )→ π1(G,Y,v0) by conjugation by the ele-
ments corresponding to reduced paths. See [11, prop. 20 of I.5].

3.2 Reduced words

The following definition generalizes the notions of reduced words we gave in section 2.3.1.

Definition 3.2.1. With the notation of def. 3.1.2, we say that the word (c,µ) = r0y1r1y2 . . .ynrn of type
c is reduced if it satisfies one of the following:

(a) n = 0 and r0 ̸= 1, or

(b) n≥ 1 and ri /∈ Gyi
yi for every index i such that yi+1 = yi (i.e. there is a backtracking).

Theorem 3.2.2. If (c,µ) is a reduced word, then (c,µ) ̸= 1 in F(G,Y ). In particular, the inclusions
Gv→ F(G,Y ) are embeddings.

Sketch of proof. To prove the theorem, one shows first that the group F(G,Y ) can be constructed by
smaller ”building blocks”, which allows to use an induction argument and reduce to the case of a group
with a single geometric edge (see [11, lemma 8 of I.5]). But we have actually already done all the work
in this situation:

(1) The case of a segment T =
v wy

.

In this case, a reduced word has the form (c,µ) = r0yε1r1yε2 . . .yεnrn, with εi =±1,εi+1 =−εi,r0 ∈
Gv0 and ri ∈Gvi−Gyεi

y , where vi = v or w alternately. If n= 0, then r0 ̸= 1. Now, taking the quotient,
we have

F(G,T ) −→ π1(G,T,T ) = Gv ∗Gy Gw

r0yε1r1yε2 . . .yεnrn 7−→ r0r1 . . .rn,

and it follows from theorem 2.3.15 that r0r1 . . .rn ̸= 1, whence (c,µ) ̸= 1.

(2) The case of a loop Y = v y .

A reduced word takes the form (c,µ) = r0yε1r1yε2 . . .yεnrn, with εi = ±1,ri ∈ Gv and ri /∈ Gyεi
y if

εi+1 =−εi. But now F(G,Y ) = π1(G,Y,v) = Gv∗Gy,y, so the result reduces to Britton’s lemma of
theorem 2.3.10.

As an immediate consequence, we get the following generalization of theorems 2.3.10 and 2.3.15:
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Corollary 3.2.3 (Normal form theorem, general case). Let T be a maximal subtree of Y , and let (c,µ)
be a reduced word whose type c is a closed path based at the vertex v0. Then the image of (c,µ) in
π1(G,Y,T ) is not 1.

Proof. The hypothesis implies that (c,µ) ∈ π1(G,Y,v0), and by theorem 3.2.2, (c,µ) ̸= 1 in this group.
The corollary then follows from theorem 3.1.7.

3.3 Universal coverings

Let (G,Y ) be a connected graph of groups (with a fixed orientation) and T a maximal subtree of Y . In the
same spirit as that of a covering of a topological space, we are going to construct the following objects:

• a graph X̃ = X̃(G,Y,T ),

• an action of π = π1(G,Y,T ) on X̃ ,

• a morphism X̃ → Y which induces an isomorphism π\X̃ ∼= Y , and

• sections V(Y )→ V(X̃) and E(Y )→ E(X̃), denoted v 7→ ṽ and y 7→ ỹ,

such that

• ∀v ∈ V(Y ), the stabilizer πṽ of ṽ in π is Gv, and similarly,

• ∀y ∈ E(Y ), πỹ =

{
Gy

y ⊆ Go(y), if y is a positive edge,
Gy

y ⊆ Gt(y), if y is a negative edge.

Just as we have been doing so far when constructing graphs, to achieve this we set

V(X̃) =
⊔

v∈V(Y )

π/Gv

E+(X̃) =
⊔

y∈E+(Y )

π/Gy
y with

o(gGy
y) = gGo(y)

t(gGy
y) = gyGt(y)

E−(X̃) =
⊔

y∈E−(Y )

π/Gy
y with

o(gGy
y) = gy−1Go(y)

t(gGy
y) = gGt(y)

Notice that the definition of the extremes of negative edges is forced by that of the positive ones:

gGo(y) gyGt(y)

gGt(y) gy−1Go(y)

gGy
yq q

Figure 3.2: Edges in X̃ (here y ∈ E+(Y ); recall that Gy = Gy).

The sections then come off as ṽ = 1 ·πṽ and ỹ = 1 ·πỹ, with πṽ and πỹ defined as above. Notice that
the extremes definitions can be summarized by

o(gỹ) = gy−ε(y)õ(y)
t(gỹ) = gy1−ε(y)t̃(y)

where ε(y) =
{

0 if y is positive,
1 if y is negative.

To see that the action of π on X̃ is a graph morphism, it remains to show that the stabilizer πgỹ =
gπỹg−1 of gỹ is contained in the stabilizers of its extremes o(gỹ), t(gỹ). If y is positive, then

πo(gỹ) = π
gõ(y)

= gπ
õ(y)

g−1 = gGo(y)g−1 ⊇ gGy
yg−1 = gπỹg−1 = πgỹ,

πt(gỹ) = π
gyt̃(y)

= gyπ
t̃(y)

y−1g−1 = gyGt(y)y−1g−1 ⊇ gyGy
yy−1g−1 = gGy

yg−1 = πgỹ
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(see figure 3.1); an analogous computation shows the same for negative edges (or you can use the fact
that gỹ = gỹ = gỹ). Because we will use it later, we remark that for every y ∈ E(Y ), we have the equality

πỹ = y1−ε(y)Gy
yyε(y)−1.

We have now defined the graph X̃ as well as the action of π on X̃ , and, by construction, π\X̃ = Y .
Notice that, if y ∈ E(T ), then Gy

y = Gy
y and o(gỹ) = gõ(y), t(gỹ) = gt̃(y) for all g ∈ π . In particular,

v 7→ ṽ,y 7→ ỹ define a lift T → T̃ of T into X̃ .

Examples 3.3.1. 1. When all the stabilizers are trivial, i.e. G = I is the trivial graph of groups, we have
π = π1(Y,T ) and X̃ is the universal covering (in the usual sense) of Y relative to T . In particular, π

acts freely on the tree X̃ and it is of course a free group. Notice that, by the proof of theorem 2.2.1, if
Y has a single vertex, i.e. it is a bouquet of circles as in example 4 of 3.1.6, then X̃ is the Cayley graph
Γ(π,y1, . . . ,yn); otherwise, X̃ contains infinitely many copies of T which we can shrink to recover the
Cayley graph.

X̃

T̃

Y

T

Figure 3.3: Universal covering relative to a maximal subtree.

2. If Y =
v wy

is a segment, then X̃ is the tree associated with the amalgam π = Gv ∗Gy Gw,
which we constructed in theorem 2.3.23.

3. If Y = v y is a loop, then X̃ is the tree associated with π = Gv∗Gy,y, which we constructed in

theorem 2.3.31.

In the examples above, the graph X̃ turned out to be a tree. We next prove that this holds in general.

Theorem 3.3.2. With the definition above, X̃ is a tree.

Proof. We first show that X̃ is connected. For every y ∈ E(Y ), one of the extremes of ỹ belongs to T̃
(o(ỹ) = õ(y) if y is positive; t(ỹ) = t̃(y) if y is negative). This shows that the smallest subgraph W of X̃
which contains all the ỹ is connected; moreover, the π-translates of W cover X̃ , i.e. πW = X̃ . It then
suffices to show that there is a subset S⊆ π which generates π and such that W ∪ sW is connected for all
s ∈ S. Indeed, this will imply, by induction on n, that W ∪ s1W ∪ s1s2W ∪·· ·∪ s1 . . .snW is connected for
any s1, . . . ,sn ∈ S∪S−1.

We take S to be the union of the Gv (v∈V(Y )) and the y∈ E(Y ). If s∈Gv, the graphs W and sW have
a common vertex ṽ, so W ∪ sW is connected. Likewise, W and yW have a common vertex (o(ỹ) = o(yỹ)
if y is positive; t(ỹ) = t(yỹ) if y is negative), so we are done.

To show that X̃ is a tree, it now suffices to prove that it does not contain any cycle of length n ≥ 1.
Assume c̃ is such a cycle, let s1ỹ1, . . . ,snỹn be the sequence of its edges, and let v0, . . . ,vn be the sequence
of vertices of the projection c of ỹ in Y (so v0 = vn). If we put εi = ε(yi), we have

siy
1−εi
i Gvi = t(siỹi) = o(si+1ỹi+1) = si+1y−εi+1

i+1 Gvi
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where indices are taken mod n. Now putting qi = sig
−εi
i , this means that qiyiri = qi+1 with ri ∈ Gvi .

Hence, yiri = q−1
i qi+1 and by multiplying we obtain

y1r1 . . .ynrn = 1. (3.1)

Let (c,µ) be the word of type c defined by µ = 1,r1, . . . ,rn. We are going to prove that (c,µ) is
reduced. Indeed, suppose that yi+1 = yi = y−1

i . Then

ri = yεi−1
i s−1

i si+1y−εi+1
i+1 = yεi−1

i s−1
i si+1y1−εi

i .

We have to show that ri /∈ Gyi
yi i.e.

s−1
i si+1 /∈ y1−εi

i Gyi
yi

yεi−1
i = πỹi ⇔ siπỹi ̸= si+1πỹi ,

which is true, since si+1ỹi = si+1ỹi+1 = si+1ỹi+1 ̸= siỹi because c̃ has no backtracking. Therefore, (c,µ) is
reduced, so, since c is closed, the equality (3.1) contradicts corollary 3.2.3, and the proof is complete.

Definition 3.3.3. By the above result, X̃ is simply connected, which justifies that we call it the universal
covering of the graph of groups (G,Y ) relative to T .

3.4 The structure theorem

We have so far exhibited a procedure to construct, out of a graph of groups (G,Y ), a group π which
acts on a tree X̃ with stabilizers isomorphic to the groups Gv,Gy and orbit space isomorphic to Y . The
theorem we are going to prove says that any group acting on a tree has this structure. More precisely, let
G be a group which acts on a connected graph X . We shall see that, if X is a tree, then G can be identified
with the fundamental group of a certain graph of groups (G,Y ), where Y = G\X and the vertex and edge
groups correspond to the stabilizers of the action of G. The construction is really very natural; we simply
need to define things in the only way they can be defined to make everything work.

We begin with the construction of (G,Y ). As above, set Y = G\X and let T be a maximal subtree of
Y , j : T → X a lifting of T (so jT is a tree of representatives of X modulo G), and fix an orientation of
Y . We extend j to a section j : E(Y )→ E(X) such that jy = jy: it suffices to define it for positive edges,
in which case we choose jy so that o( jy) ∈ V( jT ) (we then have o( jy) = jo(y)). Since t( jy) and jt(y)
project both to t(y) in Y , we can choose γy ∈G such that t( jy) = γy jt(y). We extend y 7→ γy to all of E(Y )
by γy = γ−1

y and γy = 1 if y ∈ E(T ). Hence for each y ∈ E(Y ), we have the following equalities, which
already remind us of X̃ :

o( jy) = γ
−ε(y)
y jo(y),

t( jy) = γ
1−ε(y)
y jt(y).

The graph of groups (G,Y ) is then defined by

Gv = G jv, v ∈ V(Y ),
Gy = G jy, y ∈ E(Y ),

where G jv,G jy are the stabilizers of jv, jy in G, and Gy → Gt(y) is given by a 7→ ay = γ
ε(y)−1
y aγ

1−ε(y)
y ,

which is well defined since γ
ε(y)−1
y G jyγ

1−ε(y)
y ⊆ G jt(y)∀y ∈ E(Y ).

Let now φ : π = π1(G,Y,T )→ G be the homomorphism defined by the inclusions Gv→ G and by
φ(y) = γy, and let

ψ : X̃ = X̃(G,Y,T ) −→ X

gṽ 7−→ ψ(gṽ) = φ(g) jv,

gỹ 7−→ ψ(gỹ) = φ(g) jy.

One can check that ψ is a graph morphism, and that it is φ -equivariant (i.e. it can be regarded as a π-map
via φ ).
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Theorem 3.4.1 (Structure theorem). The following are equivalent:

(i) X is a tree.

(ii) ψ : X̃ → X is a graph isomorphism.

(iii) φ : π → G is a group isomorphism.

Proof. (i)⇒ (ii) Let W be the smallest subgraph of X which contains jy for all y ∈ E(Y ). Each edge of
W has an extreme in jT , and we have GW = X . Moreover, W ⊆ ψ(X̃) by construction, and φ induces
isomorphisms between the stabilizers of the corresponding vertices and edges in X̃ and X , so ψ is locally
injective. One can deduce from here, using some properties of graph automorphisms, that ψ is in fact an
isomorphism (see [11, theorem 13 of I.5]).

(ii)⇒ (i) follows from theorem 3.3.2.
(ii)⇒ (iii): Let v ∈ V(Y ). We have kerφ ∩ πṽ = 1 because φ defines an isomorphism between

Gv = πṽ and G jv. Hence, if g ∈ kerφ−1, the two vertices ṽ,gṽ of X̃ are distinct and have the same image
jv in X ; whence (ii)⇒ (iii).

(iii)⇒ (ii) is clear by construction.

We show now an example of application of this theorem to a group theoretical result, which helps to
understand subgroups of free amalgamated products.

Corollary 3.4.2 (Kurosh’s theorem). Let G=G1∗A G2 and let H be a subgroup of G. For each x∈G/Gi,
let Hx

i = H ∩ xGix−1, which is the stabilizer of x under the natural action of H on G/Gi. Suppose that H
intersects trivially every conjugate of A. Then there exist a free subgroup F ≤ H and sets of right coset
representatives Xi of G/Gi modulo H (i.e. in H\G/Gi) such that

H = F ∗ (∗Hx
1)∗ (∗Hx

2),

where x ranges over the coset representatives.

Proof. Let X be the tree associated to G, so that G acts on X with a segment as fundamental domain.
The stabilizers of the edges are the conjugates of A, and those of the vertices are the conjugates of the
Gi. Since H ≤G, H acts on X as well and we can apply theorem 3.4.1. We see then that H = π1(H,Y,S)
where Y = H\X and S is a maximal subtree of Y , a lifting of which is chosen in X . The hypothesis that
H−1 intersects trivially every conjugate of A is equivalent to saying that Hy = 1 for all y ∈ E(Y ). By the
first example in 3.1.6, we then have

H ∼= F ∗ (∗Hv)

where F ∼= π1(Y,S) is a free group and v ranges over V(S). On the other hand,

V(X)∼= G/G1⊔G/G2,
V(S)∼= H\G/G1⊔H\G/G2.

The lifting of S into X then defines systems of representatives Xi ⊆ G/Gi of H\G/Gi. If x belongs to Xi,
the corresponding group Hv is H ∩ xGix−1, whence the theorem.

Remark 3.4.3. 1. The condition H∩xAx−1 = 1 is trivially satisfied when A = 1, i.e. G is a free product.
Actually, the original formulation of Kurosh’s theorem deals only with this case.

2. With the same proof, one obtains an analogous result for subgroups of HNN extensions: if G = K∗L,t

and H ≤ G such that H intersects trivially any conjugate of L, then

H = F ∗ (∗H ∩ xKx−1)

where F is free and x ranges over G/K.
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