000132415 001__ 132415
000132415 005__ 20240311111224.0
000132415 0247_ $$2doi$$a10.1016/j.enconman.2023.117916
000132415 0248_ $$2sideral$$a137569
000132415 037__ $$aART-2024-137569
000132415 041__ $$aeng
000132415 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000132415 245__ $$aIntegration of power to gas and biomass charcoal in oxygen blast furnace ironmaking
000132415 260__ $$c2024
000132415 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132415 5203_ $$aThe paper introduces a novel approach for mitigating CO2 emissions in blast furnaces by integrating top gas recycling, an oxy-fuel regime, power to gas, and biomass pyrolysis. Various case studies were conducted, involving the adjustment of pyrolysis temperatures (300 °C, 500 °C, 700 °C, and 900 °C) and varying the quantity of blast furnace gas directed to methanation for carbon recycling. Pinus radiata, abundant and cost-effective in Chile and Spain, was chosen as the biomass source. The integration was modeled using the extended operating line methodology and evaluated through 12 key performance indicators, such as flame temperature, coke consumption, CO2 emissions, and specific primary energy consumption per unit of CO2 avoided. Optimal performance was observed with pyrolysis at 700 °C and no blast furnace gas recycled through methanation. This configuration achieved a 58 % reduction in CO2 emissions, with an energy consumption of 9.8 MJ/kgCO2, and obviated the need for geological storage. Comparing this innovative proposal with other oxygen blast furnace approaches from the literature revealed a 13 percentage point improvement in CO2 reduction over the second-best alternative. Additionally, the required electrolysis capacity, influencing capital expenditure, was 57 % lower, and energy consumption was reduced by 44 %.
000132415 536__ $$9info:eu-repo/grantAgreement/EC/H2020/887077/EU/Decarbonisation of carbon-intensive industries (Iron and Steel Industries) through Power to gas and Oxy-fuel combustion/DISIPO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 887077-DISIPO$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-130000B–I00
000132415 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132415 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132415 700__ $$aRebolledo, Boris
000132415 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000132415 773__ $$g300 (2024), 117916 [15 pp.]$$pEnergy convers. manag.$$tENERGY CONVERSION AND MANAGEMENT$$x0196-8904
000132415 8564_ $$s7282113$$uhttps://zaguan.unizar.es/record/132415/files/texto_completo.pdf$$yVersión publicada
000132415 8564_ $$s2638051$$uhttps://zaguan.unizar.es/record/132415/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132415 909CO $$ooai:zaguan.unizar.es:132415$$particulos$$pdriver
000132415 951__ $$a2024-03-11-09:50:40
000132415 980__ $$aARTICLE