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era un alumno de grado haciendo una estancia en la Universidad de Pau. En todos
estos años, he tenido la inmensa suerte de poder compartir con él esta carrera que
es mi formación, pero sobretodo una amistad muy profunda. Gerardo es la persona
que ha estado en todos los momentos para mi; en los buenos, y muy especialmente
en los malos. Todos estos años he encontrado en él a una persona intachable, leal y
muy honesta. Mi cariño y aprecio por él me llevaŕıan a escribir varias tesis doctorales
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continuar trabajando con él hasta que él quiera, seguir investigando, aprendiendo,
admirándole y compartiendo parte de la vida con él.

También quiero agradecer muy sinceramente al Profesor Raúl Gouet. He tenido
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con ella y su familia, muy en especial a su brillante hijo Javi, que sigue haciendo
que el verano sea la mejor época del año.

También quiero hacer constar el aprecio a los profesores que he tenido a lo largo
de mi vida, y que han ido moldeando mis conocimientos hasta el d́ıa de hoy. Especial



Acknowledgements / Agradecimientos iii
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Abstract

Records, defined as observations that exceed all previous observations, are ubiqui-
tous in modern everyday life. They have also attracted much research and attention,
due to their intrinsic interest and the mathematical challenges they pose.

In 1952, a seminal paper by Chandler launched what has now grown to become a
rich body of literature on the mathematical properties of record observations. The
study of the probabilistic properties of records has attained an important degree
of maturity and it is therefore natural that significant effort has been devoted to
statistical inference with records over recent decades.

The classical probabilistic setting of records in independent and identically dis-
tributed ( i.i.d.) continuous random variables (r.v.), reflects the scarcity of this kind
of observations. Indeed, for sequences of i.i.d. continuous r.v., it is known that the
probability that the n-th observation is a record is 1/n, and the expected number
of records is of the order of the logarithm of n, where n is the number of observa-
tions. Note however that this universal property is lost when the underlying r.v.
are discrete.

The connection of records with many interesting problems led to a consider-
able interest in the study of record observations, especially from the perspective of
physics. Records have proved their worth in many areas such as athletics, risk theory,
financial modeling and evolutionary biology. One of the main fields of application is
climatology, where the i.i.d. model fails to predict the number of high-temperature
records, with these observations being significantly higher than expected.

In this thesis, we are going to consider two distinct generalizations related to the
study of usual records with the aim of enabling a greater number of problems to be
addressed.

The first concerns the mathematical definition of a record. In this monograph
we focus on two of the record-related concepts that have been most studied – near-
records introduced in 2005 by Balakrishnan et al. [7] and δ-records proposed by
Gouet et al. in 2007 [50]. Given a sequence of observations (Xn), we say that the
n-th observation is a δ-record if Xn > Mn−1 +δ, where Mn−1 is the maximum among
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the first n−1 observations, and δ is a real parameter. If δ = 0 records and δ-records
are equivalent, while in the case δ < 0 (δ > 0), δ-records are more (less) frequent
than records.

An observation is considered to be a near-record if it is not a record but is at
a distance of less than a units from the last record. Consequently, the study of δ-
records and near-records is closely related, and obtaining properties of one of these
notions generally results in obtaining properties of the other.

The other kind of generalization that we consider concerns the model of the
underlying variables. Adding a deterministic linear trend to the observations we
obtain what is known as a Linear Drift Model (LDM), first introduced by Ballerini
and Resnick [8], and studied later by other authors. The LDM has proven partic-
ularly useful in the study of global warming to explain the actual number of upper
records observed.

In this monograph we address some open problems for near-records and δ-records.
Chapter 1 presents the known properties of records and δ-records, as well as estab-
lishing the notation that will be used later.

In Chapter 2 we study the point process of near-record values when the observa-
tions are discrete, taking values in the integers. This problem was already studied in
[55] for continuous distributions. While in the discrete setting the resulting process
is also a cluster process, it is no longer a Poisson process, which makes the study of
the point process and its characterization more difficult. Laws of large numbers and
central limit theorems for the number of near-records with a value in a set are also
obtained. Finally, we characterize which discrete distributions fulfill a martingale
condition relating the partial maxima and the number of δ-records at time n. We
relate this characterization to the open problem of the positivity of the terms in a
recurrence relation.

The LDM is studied extensively in Chapter 3 for δ-records. From the basic
properties and derivations of the probability of δ-record, we study the asymptotic δ-
record probability and its analytic properties. We derive exact expressions for some
distributions, some of them also unknown in the case of usual records, and we use
these results to assess the effect of the δ parameter when the underlying variables
are heavy-tailed. For distributions where an analytic expression is not available, we
propose first order approximations to study δ-record probabilities. We also compute
the correlation of δ-record observations as a function of the number of observations
and the δ parameter. We study the asymptotics of the counting process of δ-records
in the LDM. The finiteness of the number of δ-records in the LDM is completely
characterized. In particular, this result solves a conjecture posed by Franke et al.
[33] for records, proving the result not only for usual records but also in the general
setting with δ 6= 0. Finally, we obtain laws of large numbers and a central limit
theorem under mild conditions, extending the results in [8] to the case δ 6= 0, and
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we prove a law of large numbers for a random trend model.

In Chapter 4 we develop statistical inference methods for δ-records in the LDM.
We propose two estimators for the variance of the number of δ-records and discuss
their properties, proving consistency. We also study Maximum Likelihood Estima-
tion based on δ-records in the LDM. We develop a general framework for Maximum
Likelihood Estimation and we find analytic solutions for particular cases. We use
Montecarlo simulation to compare the performance of the Maximum Likelihood Esti-
mators using δ-records with those using records only. Finally, the results in Chapter
3 and in this chapter are applied to a real dataset of temperatures, where the LDM
is consistent with the findings of other authors and the phenomenon of global warm-
ing. In particular, we find good agreement between the theoretical results and the
data observed in the example.

Finally, in Chapter 5, we set out some conclusions of the results reached in
previous chapters and offer some ideas for future work.





Resumen

Los récords, definidos como observaciones que exceden a todas las anteriores, son
un concepto omnipresente en la vida cotidiana. Es por ello que se han dedicado
grandes esfuerzos a la investigación de las propiedades de los mismos, tanto debido
a su interés intŕınseco como a los desaf́ıos matemáticos que este concepto conlleva.

En 1952, Chandler publicó el art́ıculo seminal sobre récords que inició lo que
hoy se ha convertido en una rica literatura de resultados y propiedades de estas
observaciones. El estudio de las propiedades probabiĺısticas de los récords goza
hoy en d́ıa de un importante punto de madurez, que consecuentemente ha derivado
asimismo en numerosas aplicaciones estad́ısticas en las últimas décadas.

El marco clásico de récords en sucesiones de variables aleatorias (v.a.) inde-
pendientes e idénticamente distribuidas (i.i.d.), refleja la escasez de este tipo de
observaciones. En efecto, para v.a. continuas e i.i.d., se conoce que la probabilidad
de que la n-ésima observación sea un récord es 1/n, y el número esperado de los
mismos es del orden del logaritmo de n, donde n es el número de observaciones.
Sin embargo, esta propiedad universal se pierde en el caso en el que las v.a. son
discretas.

La conexión de los récords con una amplia variedad de problemas interesantes
ha tráıdo consigo un considerable interés del estudio de estas observaciones, espe-
cialmente desde el punto de vista de la f́ısica. Los récords se han demostrado útiles
en muchas áreas, como el estudio de las marcas en atletismo, ciencias actuariales,
aplicaciones financieras o bioloǵıa evolutiva. Uno de los principales campos de es-
tudio donde los récords juegan un papel crucial es el de la climatoloǵıa, donde se ha
observado que el modelo i.i.d. no logra explicar el número de récords que se observan
en la realidad, siendo este número significativamente mayor que el esperado.

En esta tesis, con el objetivo de poder abordar una cantidad de aplicaciones
más numerosa, vamos a considerar dos generalizaciones de naturaleza muy distinta
respecto al estudio clásico de récords.

La primera de ellas tiene que ver directamente con la definición de récord. En esta
monograf́ıa nos centramos en dos de los conceptos relacionados con los récords más
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estudiados, los near-records (récords cercanos en castellano) introducidos en 2005
por Balakrishnan et al. [7], y los δ-récords, propuestos en 2007 por Gouet et al.
[50]. Dada una sucesión de observaciones (Xn), decimos que la n-ésima observacion
es un δ-récord si Xn > Mn−1 + δ, donde Mn−1 es el máximo de las primeras n − 1
observaciones, y δ es un parámetro real. Si δ = 0, los récords y los δ-récords son
equivalentes, mientras que en el caso δ < 0 (δ > 0), los δ-récords son más (menos)
frecuentes que los récords.

Una observación se considera near-record si no es un récord pero está a menos
de una distancia de a unidades de serlo. En consecuencia, el estudio de los δ-récords
y los near-records está ı́ntimamente relacionado, y obtener propiedades para unos
se corresponde habitualmente con obtener propiedades para los otros.

El otro tipo de generalización que vamos a considerar en esta memoria tiene
que ver con el modelo subyacente de la variables. Añadiendo una tendencia li-
neal determinista a la sucesión de observaciones obtenemos lo que se conoce como
Modelo con Tendencia Lineal (o LDM por sus siglas en inglés). Este modelo, que fue
primero introducido por Ballerini y Resnick [8], y posteriormente desarrollado por
otros autores, se ha demostrado particularmente útil en el estudio del calentamiento
global para explicar el número de récords de temperaturas que se ha observado en
la realidad.

En esta monograf́ıa abordamos algunos problemas abiertos para near-records y
δ-récords. En el Caṕıtulo 1 se presentan propiedades conocidas para los récords y
δ-récords, aśı como se establece la notación que se utilizará posteriormente.

En el Caṕıtulo 2 se estudia el proceso puntual de valores near-record cuando las
observaciones son discretas tomando valores en los números enteros. Este problema
ya ha sido estudiado en [55] para distribuciones continuas. Sin embargo, mientras
que en el caso discreto el proceso resultante también es un proceso de tipo cluster,
en el marco discreto este proceso no es de tipo Poisson, lo que dificulta el estudio
y la caracterización de dicho proceso puntual. A partir de dicha caracterización, se
obtienen leyes de grandes números y teoremas centrales del ĺımite para el número de
near-records con valores en un conjunto dado. Finalmente, también se caracterizan
las distribuciones discretas para la cuales su distribución cumple una condición de
tipo martingala que relaciona su máximo parcial y el número de δ-récords en el
instante n. Para ello, relacionamos este problema con el de garantizar la positividad
de las soluciones de las ecuaciones lineales de recurrencia.

En el Caṕıtulo 3 se estudia detalladamente el modelo con tendencia lineal (LDM).
Empezando por la obtención de expresiones para las probabilidades de δ-récord
y sus propiedades básicas, y continuando con su estudio asintótico y propiedades
anaĺıticas. Se obtienen expresiones expĺıcitas para las probabilidades de δ-récord
en distintas distribuciones, algunas de ellas desconocidas en la literatura también
en el caso de récords usuales, y se utilizan estos resultados para evaluar el efecto
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del parámetro δ cuando las variables subyacentes tienen colas pesadas. En el caso
en el que no se pueda obtener una expresión expĺıcita de estas probabilidades se
proponen aproximaciones de primer orden. Además, se calculan las correlaciones
entre la ocurrencia de observaciones δ-récord en función del parámetro δ. En el
estudio de las propiedades asintóticas del proceso de conteo de δ-récords en el LDM,
se obtienen resultados como la caracterización de la finitud del número total de δ-
récords. En particular, este resultado resuelve una conjetura planteada por Franke
et al. [33] para récords, demostrando el resultado no solamente para los récords
usuales sino para el marco general en el que se tiene δ 6= 0. Finalmente, se obtienen
leyes de grandes números y un teorema central del ĺımite bajo ciertas condiciones
débiles, extendiendo los resultados de [8] al caso δ 6= 0, y se demuestra también una
ley de grandes números para un modelo con tendencia aleatoria.

En el Caṕıtulo 4 se desarrollan métodos de inferencia para los δ-récords en el
LDM. Se proponen dos estimadores para la varianza del número de δ-récords y se
discuten algunas de sus propiedades, demostrando la consistencia de los mismos.
Se estudia asimismo la Estimación Máximo Verośımil basada en δ-récords para el
LDM, desarrollando un marco general para dicho tipo de estimaciones y encontrando
soluciones anaĺıticas en casos particulares. Mediante métodos de tipo Montecarlo
se compara el desempeño de los estimadores máximo-verośımiles usando δ-récords
con aquellos basados solo en récords. Por último, los resultados del Caṕıtulo 3 y de
este mismo, se aplican sobre un conjunto de datos reales de temperaturas, para los
cuales el LDM es adecuado en virtud de los hallazgos de otros autores en el marco
del calentamiento global. En particular, se concluye que los resultados teóricos y los
datos analizados en el ejemplo son consistentes entre śı, y la estimación máximo-
verośımil se revela como una herramienta útil en este tipo de problemas.

Para finalizar, en el Caṕıtulo 5 se exponen algunas conclusiones derivadas de los
resultados obtenidos en caṕıtulos anteriores, y se plantean ideas para un trabajo
futuro.
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“Salid y disfrutad”.

Johan Cruyff

Introduction

The Greeks and Romans believed that memory resided in the human heart. As a
result, the action of preserving the memory of extraordinary events of all kinds was
called recordor in Latin, from re-, meaning again, and -cor, from cordis, meaning
heart.

Today the term ‘record’ is ubiquitous. Outstanding achievements and world
records in athletics events such as the 100-metre sprint always make the headlines
and arise widespread admiration. Similarly, considerable media attention and public
concern attaches to record figures (often bad) relating to the economy, the weather
or healthcare systems. Crucial social questions arise when we are faced with a
steady flow of records, which are presented as ominous signs of dramatic underlying
phenomena. It is therefore unsurprising that the term ‘record’ has become such a
constant in our modern everyday life and in a wide range of specialist domains.

Since the dawn of the study of statistics and probability, extreme values and
records have attracted much research and attention, due to their intrinsic interest
and the mathematical challenges they pose. In 1952, a seminal paper by Chan-
dler [17] launched what has now grown to become a rich body of literature on the
mathematical properties of record observations and related concepts. An important
motivation for studying records is their connection with other interesting problems
and, of course, their countless practical applications in different fields. The classi-
cal probabilistic setting of independent and identically distributed (i.i.d.) random
observations has been widely studied for decades. The chief results in this frame-
work can be found in dedicated monographs [1, 2, 4, 87]. In recent years, there has
been considerable interest in the study of record observations, especially from the
perspective of physics.

Early on in research in this field, Foster and Stuart in 1954 [30] and Renyi in
1962 [98] made two key findings reflecting the intrinsic scarcity of records for i.i.d.
continuous random variables (r.v.). Using a simple argument that is now known
as stick-shuffling (i.e. scrambling the observations), Foster and Stuart proved that
the probability that the n-th observation is a record is 1/n. Renyi, in turn, demon-
strated that in this context, record occurrences are independent and, furthermore,
the number of records is, in the almost sure sense, of the order of the logarithm

xxi
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of the number of observations. Note however that this universal property is lost
when the underlying random variables are discrete, where the behaviour in this case
depends critically on the tail of the distribution [47, 48].

The study of the probabilistic properties of records has now attained an impor-
tant degree of maturity and it is therefore natural that significant research effort has
been devoted to statistical inference with records over recent decades. Statistical
inference based on records is a difficult problem, precisely because of the scarceness
of observations of this kind, meaning that samples are small.

Amongst the most influential contributions that laid the foundations of this
field were the early works of Foster and Stuart [30] and Foster and Teichroew [31],
who proposed and assessed test statistics to detect underlying trends in the data.
Some decades later, Samaniego and Whitaker were pioneers in considering maximum
likelihood estimation based on records [100], and also in providing non-parametric
methods [101]. Feuerverger and Hall [28] made important progress by including
information on record times in the estimation process. In 1993, Carlin and Gelfand
[15] presented a general framework for Bayesian estimation for record-breaking data,
allowing dependence between observations. The work by Gulati and Padgett [59]
also marked an important step in opening new lines of research for different models.

The study of a phenomenon based on information from its records corresponds in
many cases to the nature of the problem itself, that is, where data is inherently com-
posed of record observations [22, 59, 65, 117]. For example, “stress-testing” consists
of assessing the resistance or reliability of a material under stress situations. Glick
[37] studied this problem, relating it directly to the problem of inference in records.
Indeed, it is natural in this situation to monitor the minimum stimulus needed to
break a material. Note that following an initial failure, the next observation will
only be collected if the material has broken due to a stimulus of less magnitude
than the first entry, and therefore, a (lower) record has been observed. This is per-
formed sequentially, thus obtaining a sequence of record observations from which
the inference must be carried out.

There are numerous applications of records in the context of physics. For exam-
ple, in the field of evolutionary biology, studies have been made of the way in which
a mutation spreads in a population from the perspective of records [32, 118, 119]
and the timings of those events [66, 73, 74, 107, 109]. A mutation that is advan-
tageous for the survival of the individuals can be considered to have better fitness
than the previous one, and it therefore constitutes a record, yielding to a sequence
of increasing genotypes arranged by fitness. As argued in [72], the theory of records
is a useful tool for studying hard-to-quantify notions such as genotypical fitness,
because of the free-distribution properties of records.

Records have also proved useful in risk theory [27], financial data and stock prices
[121, 122] and other problems in physics such as their application to the theory of
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spin-glasses [106, 108], high-temperature superconductors [88], road traffic flow [60],
and even in the study of complex systems such as population evolution [91], or the
problem of division of labour among social animals [96], where record dynamics have
been shown to explain certain features of task-allocation among ants.

One area in which records are especially significant is sport. Historical top scores
live on in popular memory, and when they are broken, they become the stuff of
headlines and popular conversations. It is therefore unsurprising that the study
of records in athletics is another area of particular interest, from the perspective
of both modelling and prediction [8, 9, 15, 25, 35, 36, 110, 111], and even in the
detection of performing-enhancing drugs among athletes [97].

Records have proved their worth in climatology, one of the most important fields
of application given the vast implications of extreme events for human society. In-
deed, global warming is one of the greatest challenges faced by humanity this century,
and there is a patent need to study climate records.

However, long before the scientific community detected evidence of global warm-
ing, the study of records was used precisely as an argument to refute an increase in
temperatures. In Glick’s 1978 influential article [37], he says that at a meeting of the
Royal Statistical Society 25 years before, Foster and Stuart noted that records were
more frequent in athletics than in rainfall data. Glick argues that “this is not sur-
prising” given that athletic training has improved over the last century whereas “no
one has done much about the weather”. He also added that “weather fluctuations
over a century are more intuitively random, without a dramatic linear trend”.

Currently, many climate studies focus on verifying global warming and climate
change. Numerous studies have observed that the i.i.d. model fails to predict the
number of high-temperature records, with these observations being found to be
significantly higher than expected, revealing a warming effect [11, 18, 84, 93, 94,
124, 125]. As a result, different methods have been developed to detect the non-
stationarity of observations based on record occurrences [12, 16, 23]. Nevertheless,
the sole aim of climate assessment is not the study of temperatures, and a variety of
other subareas of climatology have been studied using extreme and record events.
These include the study of precipitation —ranging from simple rainfall models [82]
to more complex projections of future extremes [99]; detecting patterns in the oc-
currence of storms [68], and analyses of hurricanes intensity [58] among many other
applications.

Another challenge that we will face as a global society in coming decades has
been brought abruptly into the spotlight by the COVID-19 pandemic, which has
clearly shown the need for mathematical techniques for early detection of epidemic
outbreaks. It is evident that the theory of records can help to address such situations,
particularly the collapse of health resources due to high infection rates. For this
reason, although epidemiology is not a field that has been extensively studied from
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the perspective of records, some previous results already existed for the detection
of epidemic outbreaks based on records [69], and these results have been applied to
the COVID-19 pandemic [70].

In this thesis, we are going to consider two distinct generalizations related to the
study of usual records with the aim of enabling a greater number of problems to be
addressed.

The first concerns the mathematical definition of a record. Over recent years, dif-
ferent record-related concepts have appeared in the literature as a means of extend-
ing the practical applications. Some important notions related to usual records are
geometric records [26, 54, 80], records with confirmation [86], δ-exceedance records
[6, 92] and weak-records [113, 114, 116].

In this monograph we focus on two of the record-related concepts that have been
most studied – near-records and δ-records. Near-records were introduced in 2005 by
Balakrhisnan et al. [7] for applications in finance and later studied by other authors
(see for instance [55, 90]). In this framework, an observation is considered to be a
near-record if it is not a record but is at a distance of less than a units from the last
record. That is, a near-record is not a record but it is close to being one.

In 2007, Gouet et al. [50] proposed the so-called δ-records, which merge near-
records and usual records in a single mathematical object. Given a sequence of
observations, we say that the n-th observation is a δ-record if it is greater than
the previous record plus a fixed real quantity δ. It is easy to see that in the case
that δ < 0, an observation is a δ-record if it is either a near-record or a record.
As a consequence, δ-records are more numerous than records. This reduces the
problem of scarcity in records while still maintaining the extreme nature of records.
This property has been proven to be advantageous in applications, but it also adds
an extra difficulty when studying its properties since the free distribution of usual
records in the i.i.d. model is lost. In the case δ > 0, δ-records are less frequent than
records, these two concepts being equivalent if δ = 0. In particular, weak-records in
discrete distributions coincide with δ-records when the parameter δ is equal to −1.

Great progress has been made in recent years in the study of δ-records in the
i.i.d. setting. The seminal paper [50] analyzed the process of counting δ-records,
obtaining central limit theorems with a martingale approach for discrete sequences.
Later, asymptotic normality was proven for more general distributions [52, 53].

In [53] the authors obtained a classification of the behaviour of the expected
number of δ-records. For heavy-tailed distributions, the expected number of δ-
records is the same as in the case of records, that is, of the order of the logarithm
of the number of observations n. For exponential-like tails, the expected number of
records is proportional to log(n), while for light-tailed distributions the growth rate
is faster than log(n).
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The distribution for continuous r.v. was studied by López-Blazquez and Sala-
manca-Miño [78, 79], who obtained expressions for the density of δ-records and the
probability mass function of inter δ-record times. They also noted some interesting
applications where δ-records arise naturally, such as queuing theory, blocks in motor
traffic and Type-II particle counters, i.e. counters that are unable to detect particles
during a dead time following the arrival of new particles.

The process structure of δ-records from continuous parents was studied in [55].
This paper showed that the point process of δ-record values follows a Poisson Clus-
ter Process. One nice feature of this characterization is the role played by each
component of δ-records: usual records are the centers for the point process while
near-records are points drawn from each cluster conditional on the record values.

Recently, the use of δ-records in statistical inference has been proposed and
positively assessed; see [45, 46, 53]. These articles show how information from δ-
records can be incorporated successfully into the likelihood of the sample, which
is used for computing maximum likelihood and Bayes estimators and predictions of
future records. The resulting estimators and predictions outperform those computed
using records only; moreover, a slight modification in the sampling scheme for records
yields δ-records with a low additional cost. The results are applied to examples of
data on rainfall and material strength.

The other kind of generalization we consider in some chapters of this monograph
concerns the model of the underlying variables. An interesting departure from the
i.i.d. model, which introduces time-dependence between observations, results from
adding a deterministic linear trend to the observations, thus obtaining what is known
as a Linear Drift Model (LDM), first introduced in [8]. Some important contributions
of this paper were the asymptotic results such as laws of large numbers and central
limit theorems for the total number of records, and their application to athletics
data.

This model was later studied in [20], where the effect of heavy-tailed distributions
was assessed for particular distributions. They also considered different kinds of
trends to assess its effects on the asymptotic record rate. Borovkov [14] proved the
Markovianity of the bivariate process of record times and record values and studied
the limiting distributions for the inter-record times and increments between record
observations.

The LDM was also studied in a wide range of scenarios in [33], and has proven
particularly useful in the study of global warming to explain the actual number of
upper records observed [94, 124, 125]. Furthermore, the importance of this model
lies not only in its applications but also in its mathematical structure. For instance,
the study of records in the LDM model can be helpful in determining whether the
underlying distribution is heavy-tailed or not [34, 123].
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The usefulness of the LDM has also led to the appearance of statistical infer-
ence techniques based on record observations when there is an underlying trend. In
1988, Smith [110] performed simulation-based numerical analyses of record-based
maximum likelihood estimates in the LDM. Feuerverger and Hall [28] proposed a
non-parametric alternative based on least squares fitting and bootstrapping tech-
niques. Some decades later, Hoayek et al. [64] proposed distribution-free estimators
for the increasing variances model (see [126]), for which they showed that it co-
incides with the LDM in the case where the underlying variables have a Gumbel
distribution, and therefore in that case they also propose goodness-of-fit tests for
the LDM.

Additionally, some extensions of the LDM were studied in [9], where the inde-
pendence of the underlying random variables was dropped, and in [56], where the
trend of the model was generalized from deterministic to random. The last decade
has been especially productive in the study of models with correlated observations,
such as moving averages [39], Lévy flights and random walks [40, 41, 67, 83, 85],
biased or drifted random walks [77, 81, 122] and random trend models [56].

In this monograph we address some open problems for near-records and δ-records.
Chapter 1 presents the known properties of records and δ-records for a better un-
derstanding of their properties, as well as establishing the notation that will be used
later.

In Chapter 2 we study the point process of near-record values when the observa-
tions are discrete, taking values in the integers. This problem was already studied in
[55] for continuous distributions. While in the discrete setting the resulting process
is also a cluster process, it is no longer a Poisson process, which makes the study of
the point process and its characterization more difficult. Laws of large numbers and
central limit theorems for the number of near-records with a value in a set are also
obtained. Finally, we characterize which discrete distributions fulfil a martingale
condition relating the partial maxima and the number of δ-records at time n. We
relate this characterization to the open problem of the positivity of the terms in a
recurrence relation.

The LDM is studied extensively in Chapter 3 for δ-records. From the basic
properties and derivations of the probability of δ-record, we study the asymptotic δ-
record probability and its analytic properties. We derive exact expressions for some
distributions, some of them also unknown in the case of usual records, and we use
these results to assess the effect of the δ parameter when the underlying variables
are heavy-tailed. For distributions where an analytic expression is not available, we
propose first order approximations to study δ-record probabilities. We also compute
the correlation of δ-record observations as a function of the number of observations
and the δ parameter. We study the asymptotics of the counting process of δ-records
in the LDM. The finiteness of the number of δ-records in the LDM is completely
characterized. In particular, this result solves a conjecture posed by Franke et al.
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[33] for records, proving the result not only for usual records but also in the general
setting with δ 6= 0. Finally, we obtain laws of large numbers and a central limit
theorem under mild conditions, extending the results in [8] to the case δ 6= 0, and
we prove a law of large numbers for a random trend model.

In Chapter 4 we develop statistical inference methods for δ-records in the LDM.
We propose two estimators for the variance of the number of δ-records and discuss
their properties, proving consistency. We also study Maximum Likelihood Estima-
tion based on δ-records in the LDM. We develop a general framework for Maximum
Likelihood Estimation and we find analytic solutions for particular cases. We use
Montecarlo simulation to compare the performance of the Maximum Likelihood Esti-
mators using δ-records with those using records only. Finally, the results in Chapter
3 and in this chapter are applied to a real dataset of temperatures, where the LDM
is consistent with the findings of other authors and the phenomenon of global warm-
ing. In particular, we find good agreement between the theoretical results and the
data observed in the example.

Finally, in Chapter 5, we set out some conclusions of the results reached in
previous chapters and offer some ideas for future work.
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1
Records and δ-records.

Preliminary Results

In this chapter we introduce basic concepts of the theory of records as well as some notation.
We also introduce the concepts of near-record and δ-record and review and illustrate some
of their properties.

1.1 General notation

Sequences of random variables (r.v.) are indexed by the natural number N unless
otherwise stated, and are written in upper-case, in parentheses, e.g. (Xn), (Yk). We
use P() and E() for the probability operator and the mathematical expectation re-
spectively. A random variable can be characterized with its cumulative distribution
function (cdf), usually denoted by F . The support of an r.v. with cdf F is denoted
by supp(F ). Moreover, if the random variable is absolutely continuous it has a
probability density function (pdf) f .

For discrete distributions defined on the non-negative integers, we use pi for the
probability that the random variables take the value i, that is pi = P(X = i), the
survival function yk =

∑
i>k pi and the discrete hazard rate rk = pk/yk−1.

We denote an ∝ bn if limn→∞ an/bn = l > 0, an ∼ bn if limn→∞ an/bn = 1
and O(·) the standard big-O Landau notation. We will make use of the operator

1
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notation
∨m
k=nXk for maxima of the r.v. max{Xn, Xn+1 . . . , Xm}, and

∧
is the

minima “operator”, that is,
∧m
k=nXk = min{Xn, Xn+1 . . . , Xm}. Also, we denote by

b c and d e, the floor and ceiling functions respectively.

We occasionally make use of the abbreviations rhs and lhs, which stand for
right-hand side and left-hand side respectively.

Convergence of random variables can occur in distribution
D→, in probability

p→,
almost surely, written simply a.s. or

a.s.→, or in Lp.

1.2 Main definitions

As explained in the introduction, record theory is an extensively studied branch of
mathematics centring on around the concept of record observation. Mathematically,
we consider a sequence of observations X1, X2, . . . which are observed at discrete
times. In this framework, the n-th observation of the sequence will be considered
an upper record if it is greater than all previous entries, or mathematically, greater
than the partial maxima up to time n− 1.

Definition 1.2.1. To any random sequence (Xn) we associate the sequence of their
partial maxima (Mn), defined by

Mn = max{X1, X2, . . . , Xn}, n ≥ 1.

Definition 1.2.2. Record. Given a sequence of random variables (Xn), we say
that the n-th observation with n ≥ 2 is an upper record, or simply a record, if

Xn > Mn−1.

Also, the n-th observation will be considered a lower record if

Xn < min{X1, . . . Xn−1}.

By convention, the first observation is always considered to be an upper and lower
record.

Remark 1.2.3. Record theory is usually written for upper records. Nevertheless,
results for upper records can be transferred to lower records by considering the
opposite sequence. Indeed, if we consider the opposite of the sequence X1, X2, . . . ,
i.e. working with −X1,−X2, . . . , it is easy to see that the roles of the upper and
lower records are exchanged.

The main objects of interest in this monograph are δ-records and near-records,
two concepts which were defined for the purpose of extending the potential applica-
tions of records to other problems.
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Near-records were defined in 2005 by Balakrhisnan, Pakes and Stepanov [7] as
observations that are close to being records. The same paper noted the potential
interest of near-records in actuarial mathematics. In particular, this definition blends
the well-studied records with a previously introduced concept named near-maxima,
which are observations close to the maximum at time n.

Definition 1.2.4. Near-record. Let (Xn) be a sequence of random variables and
a > 0 a parameter. Then, for n ≥ 2, Xn is a near-record if

Mn−1 − a < Xn ≤Mn−1.

In 2007, Gouet, López and Sanz introduced the concept of the δ-record [50], for
which an observation is said to be a δ-record if it is greater than the previous record
plus a fixed quantity, δ. For applications of δ-records we refer the reader to the
introduction. The mathematical definition of δ-record is as follows.

Definition 1.2.5. δ-record. Let (Xn) be a sequence of random variables and δ ∈ R
a parameter. Then X1 is a δ-record and, for n ≥ 2, Xn is a δ-record if

Xn > Mn−1 + δ.

It is straightforward that for negative δ, a δ-record is either a record or a near-
record with parameter −δ. Consequently, the study of δ-records and near-records is
closely related, and obtaining the properties of one of these notions generally results
in obtaining properties of the other.

In the important case where the underlying variables are discrete, δ-records also
extend the notion of weak records, as originally defined by Vervaat in 1973 [116],
for which ties with the current maxima are also considered as weak-records.

Definition 1.2.6. Weak-record. Given a sequence of random variables (Xn), the
first observation is a weak-record and, for n ≥ 2, the n-th observation is a weak-
record if

Xn ≥Mn−1.

It is easy to see from the definition that, if the sequence of r.v. (Xn) takes values
in Z, then weak-records and δ-records with δ = −1 are equivalent.

In order to study δ-records, and thus also records, we introduce the following
notation for δ-record indicators, times, cumulative occurrence counting variables,
and the sequence of record values.

Definition 1.2.7. Let (Xn) be a sequence of random variables and δ ∈ R a param-
eter.
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(a) Let 1n,δ denote the indicator of the event {Xn is a δ-record}. That is, 11,δ = 1,
and for n ≥ 2, 1n,δ = 1 if Xn > Mn−1 + δ and 1n,δ = 0 otherwise.

(b) δ-record times are defined recursively as L1(δ) = 1 and for n ≥ 2

Ln(δ) = inf{j > Ln−1(δ) : Xj is a δ-record}.

We occasionally omit δ if δ = 0 to denote the record times, reading Ln.

(c) The number of δ-records up to time n ≥ 1 is computed as Nn,δ =
∑n

j=1 1j,δ.

(d) The sequence of record values (Rn) is given by Rn = XLn = MLn , for n ≥ 1.

Example 1.2.8. Given the sequence: 2, 4, 3, 6, 1, 6, 7, 1, 7, 8, 6, 7, 2, 4, 5, 8, 12, . . .

We have that X1, X2, X4, X7, X10 and X17 are records. So, in particular we
have N17,0 = 6.

The sequence of partial maxima, the sequence of record values, and the sequence
of record times are as follows

• M1 = 2, M2 = 4, M3 = 4, M4 = 6, M5 = 6 . . .

• R1 = 2, R2 = 4, R3 = 6, R4 = 7, R5 = 8, R6 = 12.

• L1 = 1, L2 = 2, L3 = 4, L4 = 7, L5 = 10 and L6 = 17.

Taking a = 3 for the near-record parameter, the following values of near-records
are observed sequentially: 3, 6, 7, 6, 7, 8.

Taking near-records with parameter a = 1, we observe the values 6, 7, 8, and
then for weak-records, or equivalently for δ-records with δ = −1, we observe the
sequence: 2, 4, 6, 6, 7, 7, 8, 8, 12.

For δ-records with parameter δ = −3, we observe the union of near-records with
parameter a = 3 and usual records. That is, we observe the following δ-record values
sequentially: 2, 4, 3, 6, 6, 7, 7, 8, 6, 7, 8, 12. The total number of δ-records in the first
n = 17 observations is N17,δ = 12. The δ-records times are

L1(−3) = 1, L2(−3) = 2, L3(−3) = 3, L4(−3) = 4, L5(−3) = 6, L6(−3) = 7, . . . .
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1.3 Records from i.i.d. sequences

1.3.1 The Classical Record Model

The most widely studied case in the literature relates to record occurrences arising
from sequences of i.i.d. r.v., the study of which had already attained an important
degree of maturity some decades ago [1, 2, 4, 87]. As mentioned in the introduction,
there are now ever more statistical applications in the literature from multiple fields
of science.

In the case of usual records (δ = 0), Foster and Stuart [30] proved in 1954 that
the probability that the n-th observation is a record is 1/n if the underlying random
variables (Xn) are i.i.d. continuous r.v. In fact, they used a simple argument which
is now known as stick-shuffling. Since the probability of observing ties for continuous
i.i.d. r.v. is null, every observation up to time n has an equal probability of being
the maxima, and thus the result is straightforward. This result allows us to compute
the expected number of records up to time n. Indeed,

E(Nn,0) =
n∑
j=1

E(1j,0) =
n∑
j=1

1/j = log(n) + γ +O(n−1)

where γ ≈ 0.57721 is the Euler-Mascheroni constant. Renyi later proved the inde-
pendence of record indicators and the convergence

Nn,0

log(n)
→ 1, a.s. (1.1)

from which an explicit result for the variance of the observed number of records can
be computed as

V ar(Nn,0) = E
(
N2
n,0

)
− (E (Nn,0))2 =

n∑
j=1

(
1

j
− 1

j2

)
= log(n) + γ − π2

6
+O(n−1).

Consequently, we only expect to observe a number of records of the order of
the logarithm of the total number of observations. Note that these properties are
distribution-free, making records a suitable tool in a wide range of scenarios. The
study of records arising from sequences of continuous i.i.d. r.v. is therefore often
called Classical Record Model (CRM).

In addition to the properties of the process of counting the number of records
and their universality for continuous distributions, the study of the record values
also gives some interesting results.

When the random variables are exponential with parameter 1, Exp(1), it can be
proved that the random variable Rn follows a gamma distribution Gamma(n+1, 1).
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This elegant result allows us in simple fashion to get the distribution of the n-th
record when the underlying random variables have a common continuous cdf F .
Thus, in the general case, it turns out that the distribution of the value of the n-th
record is

F−1
(
1− e−Rn

)
.

From these results we obtain one of the main results relating to records. In
particular, if the inverse of the hazard function associated with cdf F satisfies a
mild condition, the sequence of record values fulfills a Central Limit Theorem [95].

Tata [115] previously obtained conditions on the hazard function to ensure the
existence of sequences (an) and (bn > 0) such that

Rn − an
bn

D→ N(0, 1).

Analogously to what occurs with the limit of the distributions of the maximum
of random variables (see Section 1.3.4), Resnick [95] proved a result showing that the
only three possible limits for records are the log-normal distribution, the negative-
log-normal distribution and the normal itself. Results for the distribution of the
record value Rn, and on the joint distribution of different records, can be seen in
Arnold et al. (1998) [4].

1.3.2 Records from discrete sequences

Interesting – although more tedious to derive – are the results arising when the
underlying distribution, F , of the i.i.d. r.v. Xn, is discrete, taking values in the
non-negative integers.

In the first place, while the expected number of records in the CRM is universal,
in the sense that it is distribution-free, in the discrete case it depends critically on
the tail of the distribution [47, 48].

Moreover, if we assume that there is no right endpoint for the distribution F ,
that is F (n) < 1, ∀n, and denoting ψF (x) the inverse of the hazard function,
ψ−1
F (x) = − log (1− F (x)), Vervaat [116] proved that if we define the discrete version

of ψF (x) as

ψ−1
d (x) =

bxc∑
j=0

rj , with rj =
P(Xn = j)

P(Xn ≥ j)
,

and defining

Ij = 1{Rn=j for some n≥1},
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the following convergence towards normal distribution holds∑n
j=0 Ij −

∑n
j=0 rj√∑n

j=0 rj(1− rj)
D→ N(0, 1) ,

if
∑∞

j=0 rj (1− rj) =∞.

Additionally, if ψd(x) satisfies a mild condition then

Rn − ψd(n)

ψd(n+
√
n)− ψd(n)

D→ N(0, 1− p) ,

where

p = lim
n→∞

∑n
k=0 r

2
k∑n

k=0 rk
∈ [0, 1).

Similar results for weak records as defined in Definition 1.2.6 hold in the discrete
case (see the work by Stepanov [113]).

1.3.3 Shorrock’s Theorem

An important result which will be used in Chapter 2 to describe the point process
of near-record values is Shorrock’s Theorem. Originally proved by Shorrock in 1972
[104], a proof of this result using modern notation can be found in [87].

This result describes the process of record values for continuous, discrete, and
general distributions. In particular, the decomposition of the counting process of
record values as a sum of independent r.v. is particularly useful.

Theorem 1.3.1. Let F be the cdf of the r.v. (Xn) with supp(F ) = S and hazard
function H(x) = −log (1− F (x)). Let also D = {dj, j ≥ 1} denote the set of atoms
of F . If N(t) = card{j : Rj ≤ t}, then

N(t) = Nc(t) +Nd(t)

where Nc(t) and Nd(t) are two independent point processes on S with Nd(t) a process
with independent increments that can be expressed as

Nd(t) =
∑
dj≤t

Ij

with Ij random variables mutually independent with distribution Ber(rj), where rj =
P(Xn = dj)/P(Xn ≥ dj) is the discrete hazard rate.
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Alternatively, we can write that if Xn are i.i.d. r.v. with values in the non-
negative integers, then for m = 0, 1, . . . , and n = 1, 2, . . .

P(Rn > m) = P(η0 + η1 + · · ·+ ηm < n)P(Rn = m)

= P(η0 + η1 + · · ·+ ηm−1 = n− 1)
P(X = m)

P(X ≥ m)

where ηn = 1 if n is a record value, ηn = 0 if the sequence of record values, R1, R2, . . .
does not contain the value n.

1.3.4 Extreme Value Distributions

From the definition itself, it is obvious the relationship between the record occur-
rences and the values of the partial maxima in the first n observations. Although
the record occurrences in the CRM have already been shown to be independent of
one another, and not dependent on the distribution of the cdf, the record values are
dependent on the underlying distribution of the random variables, as we have seen
in Section 1.3.1. As a consequence, the theory of records and the theory of extreme
value statistics are closely related.

The principal result in extreme value theory is possibly the characterization
of the three families of extreme-value distributions. Let us now consider that the
observations follow the CRM. The problem is to find, when they exist, real sequences
(an) and (bn) > 0 such that

Mn − an
bn

converges in distribution to a non-degenerate r.v. as n→∞. In other words, there
exists a cdf G such that

lim
n→∞

F n(bnx+ an) = G(x)

for every x ∈ R. Interestingly, the following result, attributed to Fisher and Tippet
in 1928 [29], and to Gnedenko in 1943 [38] gives necessary and sufficient conditions
on the parent distribution for the existence of those sequences and when they exist,
that G belongs to one of the so-called extreme-value families, these being the Gum-
bel class (Type-I), Fréchet class (Type-II) and the Weibull class (Type-III). The
differences arising from this classification will be used later in Chapter 3.

1. Gumbel class. The limiting distribution is the Gumbel distribution with cdf

G(x) = exp (− exp (−x)), x ∈ R.

The distributions belonging to this class are those with exponential-like tails,
i.e., distributions whose pdf decays faster than a power law. In this class we
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find the Gaussian distribution and the exponential distribution itself. It also
includes distributions bounded to the right, provided that they fulfill a certain
condition on the decay of the tail towards the right end-point of the support
of the cdf.

2. Fréchet class. The limiting distribution is

G(x) = exp
(
−x−α

)
, x, α > 0.

It comprises distributions unbounded to the right with power-like tails, i.e,
heavy-tailed distributions, such as the Cauchy and the Pareto.

3. Weibull Class. The limiting distribution is

G(x) = exp (− | x |α), x < 0, α > 0

and G(x) = 1 if x > 0. Distributions in the Weibull class are bounded to the
right and violate the condition on the tail mentioned in the Gumbel class. Most
right-bounded distributions belong to this class, such as the Beta distribution.

1.4 The Linear Drift Model

The greatest research effort into the properties of records has been made in the study
of the CRM. Obviously, the first extension of the CRM is to drop the independence or
the identical distribution of the random variables; in other words to introduce some
type of dependence in the model. Ballerini and Resnick [8, 9], taking their inspiration
from records in athletics, initiated the study of records from observations with linear
trend, introducing the so-called Linear Drift Model (LDM). This model is a simple
setting where observations enjoy a time-dependence by allowing mean increments
over time. As explained in the introduction, this feature allows situations to be
modelled with a higher observed number of records than for the CRM, especially in
the interesting cases of temperature and athletics data.

In Chapters 3 and 4 of this monograph, we will study the occurrence of δ-records
in the LDM. In this model we focus on the random variables Yn, which are considered
to obey the Linear Drift model if Yn can be represented as

Yn = Xn + cn, n ≥ 1, (1.2)

where c ∈ R is the trend parameter and (Xn)n≥1 is a sequence of i.i.d. random vari-
ables, with (absolutely continuous) cdf F and pdf f . Another important parameter
of the model is the right-tail expectation of the Xn, defined as

µ+ =

∫ ∞
0

xf(x)dx.



10 Chapter 1. Records and δ-records. Preliminary Results

For simplicity, we assume the existence of an interval of real numbers I = (x−, x+),
with −∞ ≤ x− < x+ ≤ ∞, such that f(x) > 0, for all x ∈ I, and f(x) = 0
otherwise. We denote the left and right end-points of the support of F by x− =
inf{x : F (x) > 0} and x+ = sup{x : F (x) < 1}.

In this model, it is clear that the distribution-free property of the CRM is
lost. Nevertheless, in their seminal paper, Ballerini and Resnick [8] proved that
the asymptotic record rate converges to a constant if µ+ < ∞. More specifically,
they prove that

Nn,0

n
→ p a.s.

with p = limj→∞ P(Yj is a record).

Moreover, by extending the sequence (Xn) to a doubly infinite sequence, (X∗n),
they prove a central limit theorem for Nn,0, the random variable counting the number
of records up to time n, under mild conditions:

√
n
(
n−1Nn,0 − p

) D→ N(0, σ2)

with σ2 = p − p2 + 2
∑∞

m=1(rm − p2), and rm being the moment of the product of
the indicators of record in the doubly infinite sequence for variables X∗i and X∗i+m.

The model was later studied by different authors, with interesting properties
being obtained such as the Markovianity of the bivariate process of the record values
and record times [14]. For a brief summary of the advances made and applications
of the LDM, see the introduction to this monograph.

In Chapter 3 we also work with a generalization of the LDM introduced by Gouet
et al. [55], where they considered the case of a random trend. The authors proved
the strong convergence and asymptotic normality for the record rate of observations
of the form Yn = Xn+Tn, n ≥ 1, where (Xn), n ∈ Z is a stationary ergodic sequence
of random variables and (Tn), n ≥ 1 is a stochastic trend process with stationary
ergodic increments.

The proof of the asymptotic normality relies on the approach of Ballerini and
Resnick [9]. However, in order to deal with the random trend, a moment bound
for stationary sequences is needed. As an application, the strong convergence and
asymptotic normality for the number of ladder epochs in a random walk with sta-
tionary ergodic increments is obtained.

1.5 Properties of δ-records

From the Definition 1.2.5 of δ-record it is easy to show that for δ < 0 (δ > 0), δ-
records are more (less) frequent than usual records, while for δ = 0 the definitions of
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δ-record and record are identical. For this reason, the parameter δ is often set to be
negative in applications, in order to mitigate the scarceness of the number of usual
records while still keeping the extreme-like behaviour of such observations. Today,
δ-records have been extensively studied by different authors obtaining many of their
characteristics and proving their principal properties such as the behaviour of the
counting process of δ-records, including its asymptotic behaviour, and distributional
properties.

Gouet et al. introduced δ-records in [50], where they use a martingale approach
to prove a central limit theorem for the number of δ-records Nn,δ with δ 6= 0 for
i.i.d. r.v. with common distribution F on the non-negative integers, Z+. More
specifically, they define

sk =
P(X1 = k + δ)

P(X1 ≥ k)

and θ(k) =
∑k

i=0 si, the basic martingale for the result is

Nn,δ − θ(Mn).

Let us also denote the quantile function m(t) = min{j ∈ Z+, yj < 1/t}, for
t ≥ 0, and

zk =
∑
i>k

si
(
yi+δ + yi+δ−1 − yi−1

)
Thus, using the martingale approach and splitting the results according to the value
of δ and the behaviour of the hazard rates rn, we have the following results.

• Case δ < 0

1. If lim supk rk < 1, then

Nn,δ − θ(m(n))√∑m(n)
k=0 zkrk/yk

D→ N(0, 1).

2. If limk rk = 1 and limk(1− rk)/(1− rk−1) = 1, then

Nn,δ − θ(m(n))√∑m(n)
k=0 (1− rk)2δ

D→ N(0, 1).

3. If limk rk = r ∈ [0, 1), then

Nn,δ − θ(m(n))√
log n

D→ N(0, σ2
r),

where σ2
r = −r(1− r)δ

(
(1− r)δ+1 + (1− r)δ− 1

)
/ log(1− r) if r 6= 0 and

σ0 = 1. Moreover:
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(a) If r > 0 and
∑n

i=0 |ri − r|/
√
n −→ 0, then

Nn,δ + r(1− r)δ log n/ log(1− r)√
log n

D→ N(0, σ2
r).

(b) If r = 0 and
∑n

i=0 r
2
i /
√
n −→ 0, then

Nn,δ − log n√
log n

D→ N(0, 1).

• Case δ > 0 and limk rk = r ∈ [0, 1].

1. If r < 1, then
Nn,δ − θ(m(n))√

log n

D→ N(0, σ2
r),

where σ2
r = −r(1− r)δ

(
(1− r)δ+1 − (1 + 2δr)(1− r)δ + 1

)
/ log(1− r) if

r 6= 0 and σ0 = 1.

2. If r = 1, then
Nn,δ − θ(m(n))√∑m(n)

k=0 ek

D→ N(0, 1)

if
∑∞

k=0 ek = ∞ where ek = (1 − rk)(1 − rk+1) . . . (1 − rk+δ−1); and
limnNn,δ <∞ (a.s.) if

∑∞
k=0 ek <∞.

3. If r > 0 and
∑n

i=0 |ri − r|/
√
n→ 0, then

(log n)−1/2

(
Nn,δ +

r(1− r)δ log n

log(1− r)

)
D→ N(0, σ2

r).

4. If r = 0 and
∑n

i=0 r
2
i /
√
n→ 0, then

Nn,δ − log n√
log n

D→ N(0, 1).

The authors in [53] consider the more general case where the underlying random
variables (Xn) are i.i.d. with common distribution F possibly discontinuous. Strong
laws of large numbers for the counting process of δ-records Nn,δ are obtained when
δ ≤ 0. In that paper, a fundamental result is the relation between the number of
δ-records and the sum of partial minima of nonnegative i.i.d. random variables. In
particular, it is shown that

Nn,δ

Sn
→ 1 a.s.

where Sn =
∑n

k=1 min{Y1, . . . , Yk}, n ≥ 1 and Yn = 1−F (Xn+δ) ≡ F (Xn+δ), n ≥
1.

This result allowed the authors to obtain laws of large numbers for Nn,δ from the
corresponding result for the sum of minima Sn of nonnegative i.i.d. r.v. which was



Chapter 1. Records and δ-records. Preliminary Results 13

studied by Deheuvels in 1974 [21], who established weak and strong convergence
results.

Defining G(y) = P
(
F (X + δ) ≤ y

)
and its generalized inverse G←(z) = inf{y ≥

0 : G(y) ≥ z}, the function H(x) below plays a key role in the results:

H(x) =

∫ ex

1

G←(1/t)dt, x ≥ 0,

and, since G← is increasing, as n→∞

H(log n) =

∫ n

1

G←(1/t)dt ∼
n∑
k=2

G←(1/k).

We can now describe the main result of the paper, which is namely, weak and
strong laws of large numbers for the number of δ-records.

Let (Xn) be an i.i.d. sequence with common (general) distribution function F
such that F (x) > 0, for x ≥ 0. Let now δ ≤ 0.

1. If limx→∞H(x+ log x)/H(x) = 1 and

∞∑
n=2

(
nG←(1/n)2

/(
n∑
k=2

G←(1/k)

)2 )
<∞

holds, then
Nn,δ

H(log n)
→ 1 a.s.

2. If there exists a strictly increasing sequence of real numbers, xn ↑ ∞, such
that limn→∞H(xn + log n)/H(log n) = 1 and

lim
n→∞

n∑
k=2

k G←(1/k)2

/(
n∑
k=2

G←(1/k)

)2

= 0

holds, then
Nn,δ

H(log n)

p→ 1.

From this result we can get different laws of large numbers for Nn,δ according to
the tail of the distribution. However, for the sake of simplicity and ease of reading,
we include here only the results that concern discrete and continuous distributions.
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1. Heavy and exponential light tails

(a) Let F be concentrated on Z+. Then:

i. If the hazard rates rk → 0 and δ ≤ 0, then Nn,δ/ log n→ 1 a.s.

ii. If the hazard rates rk → r ∈ (0, 1) and δ ≤ 0, then Nn,δ/ log n →
−r(1− r)δ/ log(1− r) a.s.

(b) Let F be absolutely continuous. Then:

i. If the hazard function λ(x) ≡ f(x)/F (x) → 0, and δ ≤ 0, then
Nn,δ/ log n→ 1 a.s.

ii. If the hazard function λ(x)→ a ∈ (0,∞), and δ ≤ 0, thenNn,δ/ log n→
e−aδ a.s.

2. Light tails

(a) Let F be concentrated on Z+ with hazard rates rk → 1 and δ < 0, and

let cn =
∑m(n)

k=0 (1− rk)δ. Then:

i. If (1− rk)/(1− rk−1)→ 1, then Nn,δ/cn
p→ 1.

ii. If kα(rk− rk−1)/(1− rk−1)→ 0, for some α > 1/2, then Nn,δ/cn → 1
a.s.

(b) Let F be absolutely continuous, with differentiable hazard function λ(x)→
∞ (F is light tailed) and δ < 0. Let also ct =

∫ m(t)

0
λ(z)a(z)dz, for t ≥ 1

with a(z) = e
∫
z+δzλ(u)du, then:

i. If λ′ is bounded, then: Nn,δ/cn
p→ 1.

ii. If |λ′(x)| < 1/xr, for some r > 1/2 and all x large enough, then
Nn,δ/cn → 1 a.s.

López-Blazquez and Salamanca-Miño [78, 79] provide the basic distribution the-
ory of the δ-record values when the variables are i.i.d. and absolutely continuous.
Their approach is based on the derivation of recurring formulas for the density of
record values. They also analyzed several aspects of the inter δ-records times.

Finally, the authors in [53] introduce the inference with δ-records when the dis-
tribution F is absolutely continuous, computing the likelihood function and showing
how δ-records can be used for maximum likelihood estimation. Following these ideas,
new inferential procedures for the geometric and the Weibull distributions were later
developed in [45, 46]. Maximum likelihood and Bayesian approaches for parame-
ter estimation and prediction of future records based on δ-records were considered.
The performance of the estimators was compared with estimations based solely on
record-breaking data by means of Montecarlo simulations and showing that the use
of δ-records is clearly advantageous.

For the geometric random variable, the distribution of the number of δ-records
and of the values of δ-records associated with a record are obtained. The strong
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consistency of the Maximum Likelihood Estimator (MLE) is also proved and it is
shown that this estimator is asymptotically unbiased. On the other hand, for the
Weibull distribution, the strong consistency of the scale parameter, λ, when the
shape parameter, β, is known, is also established. In both distributions Bayesian
inference is also considered. From the results of these papers the conclusion is
clear; δ-records improve inference compared with the case based solely on records.
However, this conclusion is more noticeable in MLE than in the Bayesian framework,
possibly because of the influence of the prior distributions.

One interesting point in these papers is the prediction of future records using
δ-records, both using the maximum likelihood approach of Basak and Balakrishnan
[10] and the Bayesian approach [112]. In both cases, there is a clear advantage in
using δ-records over the exclusive use of records.





2
Near and δ-record values in

discrete sequences

In this chapter we study the point process of near-record values when the underlying vari-

ables are i.i.d. taking values in the non-negative integers. To that end, we combine theory

of point processes with classical results of record theory and new results about near-records.

We find that the resultant process is a cluster process. We get the probability generating

functional of the point process of near-record values from which we derive explicit expres-

sions of the first moments for the number of near-records in the whole sequence taking

values in a set A. We find sufficient conditions to ensure the finiteness of the number of

near-records along the whole sequence of observations. If this total number is infinite, we

find Laws of Large Numbers and Central Limit Theorems for the number of near-records

with value less than or equal to N , as N grows to infinity. Finally, we characterize the

distributions satisfying a martingale condition defined through the partial maxima and

the number of δ-records, relating this result with the open problem of the positivity of the

solution of a recurrence relation.

17
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2.1 The point process of near-record values and

notation

We consider the set of record values as a point process on R, which can be described
through the random counting measure ξ, defined, for any Borel subset A of R, as

ξ(A) = card{n ∈ N |Rn ∈ A}. (2.1)

Also, observe that record times Ln, as defined in Definition 1.2.7, are the jump
times of the sequence of partial maxima and that record values Rn are the (strictly
increasing) subsequence of partial maxima, sampled at those jump times. However,
without further probabilistic assumptions on (Xn), it may happen that Ln = ∞,
from some value of n on, which is equivalent to the existence of a final record.
Furthermore, we have to ensure that the counting measure ξ is boundedly finite in
the sense of being finite on bounded Borel sets A.

Similarly to the usual record setting, we define the sequences (Lan) of near-record
times and (Ra

n) of near-record values.

Definition 2.1.1. (a) Near-records times are defined by

La1 = min{k ∈ N|k ≥ 2, Mk−1 − a < Xk ≤Mk−1}

and

Lan = min{k ∈ N | k > Lan−1,Mk−1 − a < Xk ≤Mk−1} for n ≥ 2.

(b) The sequence of near-record values (Ra
n), is given by Ra

n = XLan , for n ≥ 1.

Now, we define the main process of interest in this chapter, the counting process
of near-record values.

Definition 2.1.2. The counting process of near-record values is defined by

η(A) = card{n ∈ N |Ra
n ∈ A}, (2.2)

for any Borel subset A of R+.

As for records, assumptions are needed in order to ensure that near-record times
and values are well defined. Additionally, in order to characterize η as a cluster
point process, we consider a classification of near-records in terms of their proximity
to records.



Chapter 2. Near and δ-record values in discrete sequences 19

Definition 2.1.3. (a) For m,n ∈ N, the n-th near-record value Ra
n is said to be

associated to the m-th record value Rm if Lm < Lan < Lm+1.

(b) The point process η(· |Rm) of near-record values associated to Rm is defined by
the random counting measure

η(A |Rm) = card{n ∈ N |Ra
n ∈ A,Lm < Lan < Lm+1}, (2.3)

for any Borel subset A of R+.

(c) Let Sm = η(R+ |Rm) be the number of near-records associated to recordRm, m ∈
N.

Remark 2.1.4. Note that unlike in the process of record values, where the sequence
of records is strictly increasing by definition, in the near-record process there may
be different near-record observations with the same value. In the point process η
the multiplicity of these observations is included.

Example 2.1.5. Let us consider the sequence of Example 1.2.8. That is, we observe
the discrete sequence 2, 4, 3, 6, 1, 6, 7, 1, 7, 8, 6, 7, 2, 4, 5, 8, 12, . . . . Taking a = 3 as the
near-record parameter, we get:

• L3
1 = 3, L3

2 = 6, L3
3 = 9, L3

4 = 11, L3
5 = 12, L3

6 = 16.

• The sequence of near-records is Ra
n = (3, 6, 7, 6, 7, 8, . . . ).

• The observed process of near-record values is {3, 6, 6, 7, 7, . . . }.

• η([6, 7]) = 4.

• The value 3 has multiplicity 1, while, 6 and 7 have multiplicity 2.

• S1 = 0, S2 = 1, S3 = 1, S4 = 1, S5 = 3.

• No near-records are associated to first record (R1 = 2). One near record
(Ra

1 = 3) is associated to R2. One near record (Ra
2 = 6) is associated to R3.

One near record (Ra
3 = 7) is associated to R4. Three near-records (Ra

4 = 6,
Ra

5 = 7, Ra
6 = 8) are associated to R5.

We finally state here the probabilistic assumptions regarding (Xn), which hold
throughout this chapter: (Xn) is a sequence of i.i.d. r.v. defined on a common
probability space (Ω,F ,P), taking non-negative integer values, with probabilities
pk := P(X1 = k), k ∈ Z+ := {0} ∪ N and, for convenience, we define pk = 0, for
k ∈ Z, k < 0.

In order to ensure that no final record exists and so, all record times Ln are well
defined, we suppose that yk := P(X1 > k) > 0, ∀k ∈ Z (note that yk = 1, ∀k < 0).
Consequently, ξ is a well-defined point process on R+ := [0,∞), with no multiple
points and boundedly finite. Also, to avoid unnecessary complications, we assume
a ∈ N.
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2.2 Characterizing the near-record process η

We recall that a point process N on R+ can be seen as a random measure and has
probability generating functional (p.g.fl.) defined by

GN [h] = E
(
e
∫

log h(x)N(dx)
)
,

under appropriate conventions regarding the logarithm of 0, acting on measurable
functions h : R+ → [0, 1] such that h is equal to 1 outside some bounded subset of
R+. In the rest of this section all the functions h are supposed to be of this form.
Alternative formulas for the p.g.fl., in the form of a product-integral or a product
are given by

GN [h] = E

∏
x∈R+

h(x)N(dx)

 = E

 ∏
x:N({x})>0

h(x)N({x})

 . (2.4)

In this section, we show that the near-record process η is a discrete cluster pro-
cess. Indeed, since η(A) =

∑∞
m=1 η(A |Rm), η can be seen as superposition of a

denumerable family of point processes which, by Proposition 2.2.2 (c) below, are
conditionally independent.

We characterize η by means of its probability generating functional and compute
its first moments and other related quantities of interest. To that end, we first
present some useful results about records and near-records.

Lemma 2.2.1. (a) The point process ξ of record values has its atoms in Z+ and the
random variables In := ξ({n}), n ∈ Z+, are independent Bernoulli {0, 1}, with

E(In) = rn :=
pn
yn−1

= P(X1 = n |X1 ≥ n), n ∈ Z+.

(b) For any h,

Gξ[h] =
∞∏
n=0

(1− rn(1− h(n))) . (2.5)

Proof. (a) This is a particular case of Shorrock’s Theorem presented in Chapter 1
for discrete sequences. For a proof of this result see for instance Theorem 16.1 in
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[87]. To prove (b), from (a) and the second formula in (2.4), we obtain

Gξ[h] = E

(
∞∏
n=0

h(n)ξ({n})

)

= E

(
∞∏
n=0

h(n)In

)

=
∞∏
n=0

E
(
h(n)In

)
=
∞∏
n=0

(1− rn + rnh(n)) .

Proposition 2.2.2. (a) Let Sm be the number of near-records associated to record
Rm, m ∈ N, according to Definition 2.1.3. Then

P(Sm = s |Rm) = (1− q
Rm

)sq
Rm
, s ∈ Z+,

where qi := P(X1 > i |X1 > i−a) = yi/yi−a. That is, Sm is geometrically distributed
(starting at 0), conditionally on Rm.

(b) Let Lan1
< · · · < LanSm be the near-record times associated to Rm. Then, con-

ditionally on Rm, Sm, the near-record values Ym,j := XLanj
, j = 1, . . . , Sm, are i.i.d.

with

P(Ym,1 = k1, . . . , Ym,s = ks | Rm, Sm) =
Sm∏
j=1

π(kj, Rm),

where π(k, i) := pk
yi−a−yi1{k∈(i−a,i]∩N}. Moreover, conditionally on Rm, Sm, the random

variables Nm(k) := η({k} |Rm) =
∑Sm

j=1 1{Ym,j=k}, for k ∈ (Rm − a,Rm] ∩ N, are
multinomially distributed, with parameters Sn, π(k,Rm).

(c) Conditionally onR := σ{Rm |m ∈ N}, Fm := σ{Rm, Sm, Ym,j, j = 1, . . . ,m}, m ∈
N, are independent σ-algebras.

Proof. (a) Note that the random variables Xn, n > Lm, are independent and identi-
cally distributed as X1. Define de subsequence (Xkn), with k1 = min{k > Lm |Xk >
Rm − a} and kn = min{k > kn−1 |Xk > Rm − a}, n ≥ 2. Then, condition-
ally on Rm, the sequence (Xkn) is also i.i.d. but their common distribution is
P(X1 ≤ x |X1 > Rm − a). Last, Sm is the number of terms Xkn up to (but no
including) the first Xkn > Rm. Hence, conditionally on Rm, Sm is geometrically
distributed, as stated.

(b) The near record values Ym,j are precisely the Xkn before the next record. So,
conditionally on Rm, Sm, they are i.i.d. with probabilities pk

y
Rm−a−yRm

, Rm−a < k ≤
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Rm. Also, from the arguments above, it is clear that the Nm,k are (conditionally)
multinomial.

(c) This follows immediately from the fact that the r.v. (Xn) are i.i.d. Once a new
record Rm is observed, the number of near-records and their values depend only on
Rm and the r.v. before the arrival of a new record. Therefore, they are independent
of the random variables before Rm.

We compute below the p.g.fl. of the point process η(· |Rm), which is obtained
from (2.4), taking conditional expectation. That is,

Gη(· |Rm)[h] := E

(
∞∏
k=0

h(k)η({k} |Rm)
∣∣∣Rm

)
. (2.6)

Proposition 2.2.3. For any h,

Gη(· |Rm)[h] =
1

1 + α
Rm

(h)
,

where

αi(h) :=
1

yi

i∑
k=i−a+1

pk(1− h(k)), i ∈ N. (2.7)

Proof. Suppose Rm = i, for some m ∈ N. From the second formula in (2.6) and (b)
of Proposition 2.2.2, we get

Gη(· |Rm)[h] = E

(
E

(
∞∏
k=0

h(k)η({k} |Rm)
∣∣∣Rm, Sm

)∣∣∣Rm

)

= E

(
E

(
∞∏
k=0

h(k)Nm(k)
∣∣∣Rm, Sm

)∣∣∣Rm

)

= E

( ∞∑
k=0

π(k,Rm)h(k)

)Sm ∣∣∣Rm


=
∞∑
s=0

(
∞∑
k=0

π(k,Rm)h(k)

)s

(1− q
Rm

)sq
Rm

=
y
Rm

y
Rm
−

Rm∑
k=Rm−a+1

h(k)pk

=
1

1 + α
Rm

(h)
.
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Definition 2.2.4. (See Section 6.3 in [19]) Let Nc be a point process in R+ and
{N(· | y) : y ∈ R+} a family of point processes on R+. A point process N on R+ is a
cluster process with center process Nc and component processes {N(· | y) : y ∈ R+}
if, for every bounded A, Borel subset of R+,

N(A) =

∫
N(A | y)Nc(dy) =

∑
y∈R+

N(A | y)1{Nc({y})>0}.

Definition 2.2.5. For i ∈ Z+, let η(· | i) be the point process with p.g.fl. given by

Gη(· | i)[h] =
1

1 + αi(h)
,

for any h and with αi(h) as defined in (2.7).

Theorem 2.2.6. (a) The point process η of near-records is a cluster process on Z+,
with center process ξ and independent component processes {η(· | i), i ∈ Z+}, with
η(· | i) given in Definition 2.2.5.

(b) For any h,

Gη[h] =
∞∏
i=0

1 + (1− ri)αi(h)

1 + αi(h)
. (2.8)

In particular, taking h(k) = t1A(k), t ∈ [0, 1] and A a bounded Borel set, we obtain
the probability generating function (p.g.f.) of η(A) as

ϕA(t) := E
(
tη(A)

)
=
∞∏
i=0

1 + (1− ri)(1− t)αi(A)

1 + (1− t)αi(A)
. (2.9)

(c) Let A,B ⊂ Z+, then

1. µ(A) := E(η(A)) =
∑∞

i=0 αi(A)ri,

2. Var(η(A)) =
∑∞

i=0 (αi(A))2 ri(2− ri) + E(η(A)),

3. Cov(η(A), η(B)) =
∑∞

i=0 αi(A)αi(B)ri(2− ri), for A ∩B = ∅,

where αi(A) := αi(1− 1A).

Proof. (a) From Proposition 2.2.3, we have

η(A) =
∞∑
m=1

η(A |Rm) =

∫
η(A |x)ξ(dx) =

∞∑
i=0

η(A | i)1{ξ({i})>0}.
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Moreover, for a bounded set A, η(A) is finite a.s. since the sum in the rhs is a finite
sum and η(A | i) are geometric r.v. So, according to Definition 2.2.4, η is cluster
point process as asserted. Independence of component processes follows from (c) in
Proposition 2.2.2, because η(A |Rm) is Fm-measurable, for any m ∈ N.

(b) From Lemma 2.2.1 (a), formula (2.4) and (a) in this theorem, we have

Gη[h] = E

(
E

(
∞∏
k=0

h(k)
∑∞
m=1 η({k} |Rm)

∣∣∣R))

= E

(
∞∏
m=1

E

(
∞∏
k=0

h(k)η({k} |Rm)
∣∣∣R))

= E

(
∞∏
m=1

E

(
∞∏
k=0

h(k)η({k} |Rm)
∣∣∣Rm

))

= E

(
∞∏
m=1

1

1 + α
Rm

(h)

)

= E

(
∞∏
i=0

1

1 + αi(h)Ii

)

=
∞∏
i=0

(
ri

1 + αi(h)
+ 1− ri

)
.

For ϕA(t) we replace h by t1A in (2.8) and obtain (2.9), after simple manipulations.

(c1) Observe that η(A) =
∑

k∈A
∑∞

m=1 η({k} |Rm) =
∑

k∈A
∑∞

m=1Nm(k) and recall
that Nm(k) is binomial, conditional on Rm, Sm, with parameters Sm, π(k,Rm) and

that Sm is geometric, conditional on Rm, with expectation
1−q

Rm

q
Rm

.

Moreover, Nm(A) :=
∑

k∈ANm(k) is binomial, conditional on Rm, Sm, with pa-
rameters Sm, π(A,Rm) :=

∑
k∈A π(k,Rm), hence

E(Nm(A)) = E(E(Nm(A) |Rm, Sm))

= E(Smπ(A,Rm))

= E(E(Smπ(A,Rm) |Rm))

= E(π(A,Rm)E(Sm |Rm))

= E
(
π(A,Rm)

1− q
Rm

q
Rm

)
.
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So, noticing that π(A, i)1−qi
qi

= αi(A),

E(η(A)) = E

(
∞∑
m=1

α
Rm

(A)

)

= E

(
∞∑
i=0

αi(A)Ii

)

=
∞∑
i=0

αi(A)ri.

(c2) From the computations above, it is clear that

E(η(A) |R) =
∞∑
m=1

α
Rm

(A) =
∞∑
i=0

αi(A)Ii.

Hence, the variance of the conditional expectation is

V ar(E(η(A) |R)) =
∞∑
i=0

α2
i (A)ri(1− ri).

We compute next the expectation of the conditional variance, namely E(V ar(η(A) |R)).
Observe that, because of the conditional independence of the η(A |Rn), we have

V ar(η(A) |R) =
∞∑
m=1

V ar(η(A |Rm) |Rm) =
∞∑
m=1

V ar(Nm(A) |Rm).

Moreover,

V ar(Nm(A) |Rm) = E(V ar(Nm(A) |Rm, Sm) |Rm) + V ar(E(Nm(A) |Rm, Sm) |Rm)

= E(Smπ(A,Rm)(1− π(A,Rm)) |Rm) + V ar(Smπ(A,Rm) |Rm)

=
1− q

Rm

q
Rm

π(A,Rm)(1− π(A,Rm)) +
1− q

Rm

q2
Rm

π2(A,Rm)

= α
Rm

(A)(1− π(A,Rm)) + α
Rm

(A)
π(A,Rm)

q
Rm

= α
Rm

(A)

(
1 + π(A,Rm)

(
1− q

Rm

q
Rm

))
= α

Rm
(A)(1 + α

Rm
(A)).

So, V ar(η(A) |R) =
∑∞

m=1 V ar(Nm,A |Rm) =
∑∞

i=0 αi(A)(1 − αi(A))Ii. Collecting
terms from the expressions above, we obtain

V ar(η(A)) =
∞∑
i=0

α2
i (A)ri(1− ri) +

∞∑
i=0

αi(A)(1 + αi(A))ri

=
∞∑
i=0

(αi(A))2 ri(2− ri) + E(η(A)).
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(c3) The covariance Cov(η(A), η(B)), when A ∩ B = ∅, is obtained from the
formula for the variance, noting that η(A∩B) = η(A)+η(B) a.s. Indeed, V ar(η(A)+
η(B)) = V ar(η(A)) + V ar(η(B)) + 2Cov(η(A), η(B))) = V ar(η(A ∪B)), and so,

Cov(η(A), η(B))) =
1

2
(V ar(η(A ∪B))− V ar(η(A))− V ar(η(B))).

Remark 2.2.7. The p.g.fl. of the process η of near-record values shown in Theorem
2.2.6 for discrete r.v., reflects its similarity with the process of near-record values
for continuous variables studied in [55]. Indeed, from (2.8) we may write

G(h) = exp

(
∞∑
i=0

log

(
1− ri

αi(h)

1 + αi(h)

))
.

Consider now that each realization of a r.v. Xn with value i could arise as gathering
a realization over the interval [i, i+1) of a continuous r.v. X ′n. If we repeatedly split
the values taken by the r.v. Xn when Xn = i into different discrete points in the
interval [i, i+ 1) in such a way that the Xn approximates X ′n, then we can consider
ri � 1. Using log(1 + x) ∼ x for x� 1 we have

G(h) ∼ exp

(
−
∞∑
i=0

ri
αi(h)

1 + αi(h)

)

= exp

(
−
∞∑
i=0

(
1−

∑∞
j=i+1 pj∑∞

j=i−a+1 pj −
∑i

j=i−a+1 pjh(j)

)
ri

)
,

which is an analogous expression to that of result Theorem 1 (b) in [55] by substi-
tuting the sum for an integral.

Example 2.2.8. (Geometric distribution) Let (Xn) be a sequence of i.i.d. r.v.
with geometric distribution with success parameter p. This distribution has pk =
p(1 − p)k, k ∈ Z+, yi = (1 − p)i+1 and ri = pi/yi−1 = p. Applying Theorem 2.2.6
we obtain the expected number of near-records with value smaller than or equal to
N ∈ Z+ in the whole sequence (Xn). If a < N we have

E (η([0, N ])) =p
a−1∑
i=0

1− (1− p)i+1

(1− p)i+1
+ p

N∑
i=a

(1− p)i−a+1 − (1− p)i+1

(1− p)i+1

+ p
N+a−1∑
i=N+1

(1− p)i−a+1 − (1− p)N+1

(1− p)i+1

=p(−a+N + 1)
(
(1− p)−a − 1

)
+ (ap− 1)(1− p)−a + (1− p)−a − ap

=(N + 1)p
(
(1− p)−a − 1

)
.
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Note that for the geometric distribution the number of near-records grows linearly
with N . Also, after cumbersome computations,

V ar (η([0, N ]))) =− (p− 2)p(1− p)−2a
(
−a+N + p2 + 2

)
+ p(1− p)−a(2p(−a+N + 2) + 4a− 3N − 7)− 2(p− 1)−2a

+ p(p− 1)−2a
(
−2(p− 2)(1− p)a − a(p− 2) + (p− 1)2p

)
− p(N(p− 1) + p+ 1) + 2,

which also has a linear growth with N .

Example 2.2.9. Let (Xn) be a sequence of i.i.d. r.v. with common hazard function
ri = 1 − 1

i+1
. We have a converging hazard function ri → 1 as i → ∞ and explicit

expressions for the probability mass function and the survival function

pi =
1

i!

(
1− 1

i+ 1

)
,

yi =
i∏

k=0

(1− rk) =
i∏

k=0

1

k + 1
=

1

(i+ 1)!
.

For i ∈ {0, . . . , a− 1} we compute the growth rate of pN/yN+i as N � 1 increases

pN
yN+i

=
1
N !

(
1− 1

N+1

)
1

(N+i+1)!

∼ N i+1.

We can compute the growth rate for the expectation and variance for the number
of near-records taking value equal to N , η({N}), in the whole sequence (Xn). First
note that αi({N}) = pN/yi if i ∈ {N − a + 1, . . . , N} and 0 otherwise. Now, from
Theorem 2.2.6, we have

E (η({N})) = pN

N+a−1∑
i=N

ri
yi
,

V ar (η({N})) = pN

N+a−1∑
i=N

ri(2− ri)
y2
i

+ E (η({N})) .

Recalling that ri → 1 as i→∞

E (η({N})) ∼
a−1∑
i=0

N i+1 ∼ Na.

For the variance we also have ri(2− ri)→ 1 which results in

V ar (η({N})) ∼
a−1∑
i=0

N2(i+1) +Na ∼ N2a.
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Additionally, from Theorem 2.2.6 we can compute the p.g.f. of η({N})

ϕ{N}(t) =
N∏

i=N−a+1

(
1 + (1− ri)(1− t)pNyi

1 + (1− t)pN
yi

)

=
N∏

i=N−a+1

(
1 + (1− t) pN

yi−1

1 + (1− t)pN
yi

)

=
1 + (1− t) pN

yN−a

1 + (1− t)pN
yN

=
1 + (1− t)rN(1− rN−1) . . . (1− rN−a+1)

1 + (1− t) rN
1−rN

.

2.3 Finiteness of the number of near-records

In this section we analyze the situation where the total number of near-records along
the whole sequence of observations is finite.

Theorem 2.3.1. If
∑∞

i=0 r
2
i < ∞ then η(R+) < ∞ a.s. That is, the number of

near-records in the whole sequence (Xn) is finite a.s. Moreover, η(R+) has finite
expectation

E(η(R+)) =
∞∑
i=0

αi(R+)ri (2.10)

and probability generating function given by

ϕR+
(t) :=

∞∏
i=0

1 + (1− ri)(1− t)αi(R+)

1 + (1− t)αi(R+)
,

where αi(R+) =
∑i

j=i−a+1 pj/yi.

Proof. From Proposition 2.2.2 we have

∞∑
m=1

P(Sm > 0 |R) =
∞∑
m=1

(1− q
Rm

) =
∞∑
i=0

(
1− yi

yi−a

)
Ii.
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Taking expectations above we obtain

∞∑
m=1

P(Sm > 0) =
∞∑
i=0

(
1− yi

yi−a

)
ri

=
∞∑
i=0

(
1−

i∏
j=i−a+1

(1− rj)

)
ri

≤
∞∑
i=0

i∑
j=i−a+1

rjri

=
a−1∑
j=0

∞∑
i=j

ri−jri

≤ a
∞∑
i=0

r2
i .

(2.11)

Therefore, by the Borel-Cantelli lemma, P(Sm > 0 i.o.) = 0, which yields the result.

In order to compute the p.g.f. of η(R+), we observe that η(n) := η([0, n]) →
η(R+) a.s. and so, by the monotone convergence theorem, ϕ[0,n](t) = E(tη(n)) →
ϕR+

(t), for t ∈ [0, 1], as n→∞. Furthermore, from (2.9) we have

ϕR+
(t) = lim

n→∞

∞∏
i=0

1 + (1− ri)(1− t)αi(n)

1 + (1− t)αi(n)
=
∞∏
i=0

1 + (1− ri)(1− t)αi(R+)

1 + (1− t)αi(R+)
. (2.12)

The interchange of limit and product above is justified by the monotone convergence
theorem, after taking logarithms, since the sequence inside the product decreases
with n.

Finally, (2.10) is obtained, for example, from the derivative of ϕR+
at t = 1− or

as the limit of E(η(n)). Finiteness follows from the bound 1 − qi ≤
∑i

j=i−a+1 rj,
used in (2.11), which implies qi → 1, as i → ∞. Indeed, for sufficiently large i, we
have qi ≥ 1/2 and

αi(R+) =
i∑

j=i−a+1

pj/yi =
yi−a
yi
− 1 =

1− qi
qi
≤ 2(1− qi).

The conclusion αi(R+) <∞ is obtained after arguing as in (2.11).

Example 2.3.2. Let (Xn) with pk = 1/(k(k + 1)), yk = (k + 1)−1 and rk = (k +
1)−1, ∀k ∈ N. We have

∑∞
i=0 r

2
i <∞ and, from Theorem 2.3.1, η(R+) <∞ a.s.

To compute the expectation note that αi(R+) = i, for i < a, and αi(R+) = i
i−a+1

,
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for i ≥ a. So, from (2.10), we obtain

E(η(R+)) =
a−1∑
i=0

(
1− 1

i+ 1

)
+
∞∑
i=a

(
1

i− a+ 1
− 1

i+ 1

)

= a−
a−1∑
i=0

1

i+ 1
+

a−1∑
i=0

1

i+ 1

= a.

It is interesting to see that the expected total number of near-records turns out to
be equal to the near-record parameter a. For the variance we use Theorem 2.2.6
(c2), and taking limits as in the derivation of (2.10) we obtain

V ar (η(R+)) =a+ 2
a−1∑
i=0

i2

i+ 1
−

a−1∑
i=0

(
i

i+ 1

)2

+ 2
∞∑
i=a

1

i+ 1

(
a

i− a+ 1

)2

−
∞∑
i=a

(
a

(i+ 1)(i− a+ 1)

)2

which we write as a+ A−B + C −D.

We now compute each term. For A

A = 2
a−1∑
i=0

i2

i+ 1

= 2

(
a∑
i=1

i− 2
a∑
i=1

1 +
a∑
i=1

1

i

)

= 2

(
a(a+ 1)

2
− 2a+H(a)

)
= a2 − 3a+ 2H(a),

where H(n) represents the n-th harmonic number.

In a similar way for B we have

B =
a−1∑
i=0

(
i

i+ 1

)2

=
a∑
i=1

1− 2
a∑
i=1

1

i
+

a∑
i=1

1

i2
= a− 2H(a) +

a∑
i=1

1

i2
.
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The sum of C can be computed via simple fractions as follows

C = 2a2

∞∑
i=a

1

(i− a+ 1)2(i+ 1)

= 2a2

∞∑
i=a

(
1

a2(i+ 1)
+

1

a(i− a+ 1)2
− 1

a2(i− a+ 1)

)
= −2

a∑
i=1

1

i
+ 2a

∞∑
i=1

1

i2

= −2H(a) + a
π2

3
.

And again for D we can split the sum and compute it

D =
∞∑
i=a

(
a

(i+ 1)(i− a+ 1)

)2

= a2

∞∑
i=a

(
1

a2(i+ 1)2
+

2

a3(i+ 1)
+

1

a2(i− a+ 1)2
− 2

a3(i− a+ 1)

)
=

∞∑
i=a+1

1

i2
− 2

a
H(a) +

π2

6
.

Therefore

V ar(η(R+)) = a2 − 3a+ 2

(
1 +

1

a

)
H(a) + (a− 1)

π2

3
,

that is, the variance is a quadratic function of a.

2.4 Asymptotic behaviour

We now focus on the asymptotic behaviour of η([0, n]) as n → ∞. We know that
limn→∞ η([0, n]) is finite a.s. if

∑∞
i=1 r

2
i <∞. In this section we obtain laws of large

numbers and a central limit theorem for η([0, n]) under the assumption
∑∞

i=1 r
2
i =∞.

By the definition of near-record we have that Zi :=
∑∞

m=1 Sm1{Rm=i} is the
total number of near-records associated to a record with value i. The r.v. Zi’s are
mutually independent by Proposition 2.2.2 and the total number of near-records
with value smaller than or equal to n can be bounded as

n∑
i=0

Zi ≤ η([0, n]) ≤
n+a−1∑
i=0

Zi. (2.13)
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The strategy now is to show the desired asymptotic results to the sum of Zi’s
and then transfer its behaviour to η. For this purpose, we require to introduce some
minimal conditions on the sequence of hazard rates (rn).

Note first that Zi has a geometric (starting at 0) distribution by Proposition 2.2.2
with parameter qi = yi/yi−a if i is a record in the sequence (Xn), and 0 otherwise.
Its expectation is

E (Zi) = E (E (Zi | Ii)) = E
((

1− qi
qi

)
Ii

)
=

1− qi
qi

ri, (2.14)

and the variance of Zi is also easily computed as

V ar (Zi) = V ar (E (Zi | Ii)) + E (V ar (Zi | Ii))

= V ar

((
1− qi
qi

)
Ii

)
+ E

((
1− qi
q2
i

)
Ii

)
=

1− qi
q2
i

ri ((1− qi)(1− ri) + 1) . (2.15)

The following result establishes some properties of the random variables Zn.

Proposition 2.4.1. If one of the following conditions holds

1.- lim supn→∞ rn < 1,

2.- limn→∞ rn = 1 and limn→∞(1− rn)/(1− rn−1) = 1.

then

a)
∑∞

i=0 E (Zi) =∞ and
∑∞

i=0 V ar (Zi) =∞.

b) For fixed k ∈ N
E (Zn+k)∑n
i=0 E (Zi)

→ 0 as n→∞.

c) For fixed k ∈ N
Zn+k√∑n
i=0 V ar (Zi)

p→ 0 as n→∞.

d) For fixed k ∈ N
V ar (Zn+k)∑n
i=0 V ar (Zi)

→ 0 as n→∞.

Proof. Case 1.- lim supn→∞ rn < 1.
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a) If lim supn→∞ rn < 1, then there exists γ ∈ (0, 1) with γ < 1− ri for all i and
we have

1 > qi =
i∏

k=i−a+1

(1− rk) > γa. (2.16)

This bound assures the equivalence

∞∑
i=0

E (Zi) =
∞∑
i=0

(
1− qi
qi

)
ri <∞⇐⇒

∞∑
i=0

(1− qi) ri <∞, (2.17)

and since 1− qi > ri and
∑∞

i=0 r
2
i =∞ then

∑∞
i=0 E (Zi) diverges.

For the sum of variances we note that

1 < (1− qi)(1− ri) + 1 < 2, (2.18)

and thus
∞∑
i=0

V ar (Zi) <∞⇐⇒
∞∑
i=0

(1− qi)ri <∞,

which diverges under
∑∞

i=0 r
2
i =∞.

b) Applying (2.16) and the divergence of the infinite sum of expectations we have

E (Zn+k)∑n
i=0 E (Zi)

=

(
1−qn+k

qn+k

)
rn+k∑n

i=0 E (Zi)
≤ γ−a∑n

i=0 E (Zi)
→ 0, as n→∞

and thus the result holds.

c) We prove the convergence in L1 of the desired random variables using the same
bound as in part (b) and the divergence of the sum of variances as follows

E (Zn+k)√∑n
i=0 V ar (Zi)

=

(
1−qn+k

qn+k

)
rn+k√∑n

i=0 V ar (Zi)
≤ γ−a√∑n

i=0 V ar (Zi)
→ 0, as n→∞.

Since convergence in L1 implies convergence in probability the result is proved.

d) From (2.15), (2.16) and (2.18) we have V ar (Zn+k) ≤ 2γ−a, which is a constant,
and thus the result holds since

∑n
i=0 V ar (Zi) diverges as seen in part (a).

Case 2.- limn→∞ rn = 1 and limn→∞(1− rn)/(1− rn−1) = 1.

a) In this setting, we have

qi =
i∏

k=i−a+1

(1− rk)→ 0 as i→∞.
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and from (2.14) and (2.15) it is readily seen that the growth of the first mo-
ments of the Zi random variables is

E (Zi) ∼
1

qi
:= αi, (2.19)

V ar (Zi) ∼
1

q2
i

= α2
i , (2.20)

as i → ∞. Since αi → ∞ as i → ∞, we obtain the divergence of both∑∞
i=0 E (Zi) and

∑∞
i=0 V ar (Zi).

b) Note first that

αn
αn+k

=
qn+k

qn
=

∏n+k
i=n+k−a+1(1− ri)∏n
i=n−a+1(1− ri)

and then it is straightforward that

lim
n→∞

1− rn
1− rn−1

= 1 =⇒ lim
n→∞

αn/αn+k = 1.

Now,

E (Zn+k)∑n
i=0 E (Zi)

∼ αn+k∑n
i=0 αi

∼ αn∑n
i=0 αi

→ 0, as n→∞,

where the convergence to 0 holds as a consequence of Lemma A1 in [51].

c) We prove convergence in L1 using the above equivalences in order to obtain
convergence in probability. Thus,

E (Zn+k)√∑n
i=0 V ar (Zi)

∼ αn+k√∑n
i=0 α

2
i

∼

√
α2
n∑n

i=0 α
2
i

→ 0 as n→∞,

guaranteed again by Lemma A1 in [51].

d) From (2.20) and Lemma A1 in [51] we get

V ar (Zn+k)∑n
i=0 V ar (Zi)

∼
α2
n+k∑n
i=0 α

2
i

→ 0 as n→∞.

Theorem 2.4.2. If one of the following conditions holds

1.- lim supn→∞ rn < 1,

2.- limn→∞ rn = 1 and kθ
(
rk−rk−1

1−rk

)
→ 0 for some θ > 1/2 as k →∞,
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then η([0, n]) obeys the following Strong Law of Large Numbers

η([0, n])

E (η([0, n]))
→ 1 a.s. when n→∞.

Proof. As stated in the introduction of this section, we first establish the Strong
Law of Large Numbers for the sequence of partial sums of Zn such that∑n

i=0 Zi∑n
i=0 E (Zi)

→ 1 a.s. when n→∞, (2.21)

for which it is enough to prove

∞∑
n=0

V ar (Zn)

(
∑n

i=1 E (Zi))
2 <∞,

since we already proved that
∑∞

i=0 E (Zi) =∞ in Proposition 2.4.1. In order to do
that, we proceed differently in the two scenarios.

Case 1.- lim supn→∞ rn < 1. Expressions (2.16) and (2.18) allow us to bound
the expectation and variance

E (Zi) > (1− qi)ri,
V ar (Zi) < 2γ−2a(1− qi)ri.

Then

∞∑
n=0

V ar (Zn)

(
∑n

i=0 E (Zi))
2 < 2γ−2a

∞∑
n=0

(1− qn)rn

(
∑n

i=0(1− qi)ri)2 . (2.22)

The series in the rhs of (2.22) converges by the Abel-Dini Theorem of convergence
of series. Indeed, taking dn = (1− qn)rn and α = 1, we apply Abel-Dini Theorem as
stated in [63] pg. 441, since dn > 0 and

∑∞
n=0 dn is divergent following the reasoning

in (2.17) and Proposition 2.4.1.

Case 2.- limn→∞ rn = 1 and kθ
(
rk−rk−1

1−rk

)
→ 0 for some θ > 1/2 as k → ∞.

Note that this condition is stronger than limn→∞(1 − rn)/(1 − rn−1) = 1. Recall
that this hypothesis implies 1− rk ∼ 1− rk−1.

From (2.19) and (2.20), it suffices to check

∞∑
n=0

α2
n

(
∑n

i=1 αi)
2 <∞.

This series was studied in [42], we gather here the elements of that paper that

allow us to prove its convergence. Let us suppose that kθ
(

1− αk−1

αk

)
→ 0 as k →∞.
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Taking ε = 1, there exists a k0 ∈ Z+ such that , ∀k > k0, it holds∣∣∣∣kθ (1− αk−1

αk

)∣∣∣∣ < ε ⇒ kθ
(

1− αk−1

αk

)
< ε = 1.

which yields

αk−1 >

(
1− 1

kθ

)
αk, ∀k > k0.

Iterating the last inequality we have

αl >

(
1− 1

(l + 1)θ

)
αl+1 >

(
1− 1

(l + 1)θ

)(
1− 1

(l + 2)θ

)
αl+2

and so we get

αl >

k∏
i=l+1

(
1− 1

iθ

)
αk, for l = k0, . . . , k − 1,

and then
αn∑n
k=k0

αk
<

αn∑n−1
k=k0

∏n
i=k+1

(
1− 1

iθ

)
αn
.

Moreover, note that log(1 − x) ≥ −2x, ∀ 0 < x ≤ 1/
√

2, so log
(
1− 1/iθ

)
≥

−2 1
iθ
∀i ≥ 2 and since θ > 1/2, we get

n∏
i=k+1

(
1− 1

iθ

)
= exp

(
n∑

i=k+1

log

(
1− 1

iθ

))

≥ exp

(
−2

n∑
i=k+1

1

iθ

)

≥
(
−2

∫ n

k

1

xθ
dx

)
= exp

(
−

2
(
n(1−θ) − k(1−θ))

1− θ

)
, ∀k > 1.

Let now β = 2
1−θ , θ 6= 1, we have

n−1∑
k=k0

n∏
i=k+1

(
1− 1

iθ

)
≥ e−βn

(1−θ)
n−1∑
k=k0

eβk
(1−θ)

≥ e−βn
(1−θ)

∫ n−1

k0−1

eβx
(1−θ)

dx

≥ e−βn
(1−θ) (n− 1)θeβ(n−1)(1−θ)

3

=
(n− 1)θeβ[(n−1)(1−θ)−n(1−θ)]

3
, (2.23)
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where for the last inequality we have used the relation∫ y

0

eβx
(1−θ)

dx ∼ eβy
(1−θ)yθ

2
as y →∞.

Moreover,

n(1−θ) − (n− 1)(1−θ) ≤ 1

(n− 1)θ
→ 0 as n→∞,

and so from (2.23) and e−β/(n−1)θ → 1, as n→∞, we have

n−1∑
k=k0

n∏
i=k+1

(
1− 1

iθ

)
=

(n− 1)θeβ
[

(n−1)(1−θ)−n(1−θ)
]

3

≥ (n− 1)θe
−β 1

(n−1)θ

3

≥ (n− 1)θ(1− ε)
3

.

Finally,

(n− 1)θ(1− ε)
3

≥ nθ

4
⇔ (n− 1)θ

nθ
≥ 3

4

1

(1− ε)
⇔ n− 1

n
≥
(

3

4

1

(1− ε)

) 1
θ

,

where the last inequality is true for n big enough if 3
4

1
(1−ε) < 1 and that is true if we

chose ε such that 1− ε > 3/4.

Summarizing,
αn∑n
k=k0

αk
<

4

nθ
,

which finally yields the result since θ > 1
2

and

∞∑
n=0

α2
n(∑n

k=k0
αk
)2 <∞⇐⇒

∞∑
n=0

1

n2θ
<∞.

Now, given that αk−1/αk = (1 − rk)/(1 − rk−a), the result holds under the
condition

lim
k→∞

kθ
(
rk − rk−a
1− rk−a

)
= 0,

which is a weaker condition than

lim
k→∞

kθ
(
rk − rk−1

1− rk

)
= 0,

since 1− rk ∼ 1− rk−1.
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Cases 1. and 2.- It only remains to transfer the strong convergence of the sum
of Zn to η([0, n]). In both scenarios, Proposition 2.4.1 (b) implies that

lim
n→∞

∑n+a−1
i=0 E (Zi)∑n
i=0 E (Zi)

= 1.

Now, from (2.21), we have∑n+a−1
i=0 Zi∑n
i=0 E (Zi)

→ 1 a.s. as n→∞. (2.24)

Finally, from (2.13), (2.21) and (2.24),

η([0, n])∑n
i=0 E (Zi)

→ 1 a.s. as n→∞

and

lim
n→∞

E(η([0, n]))∑n
i=0 E (Zi)

= 1,

proving that the Strong Law of Large Numbers holds.

In order to prove that a central limit theorem holds, we will make use of the next
elementary lemma on the sum of a random number of independent Bernoulli r.v.

Lemma 2.4.3. Let (Ω,F ,P) be a probability space. Let A ∈ F and let pA =
P(A). Let (Bk) be a sequence of independent events in F , independent of A, with
P(Bk) = pB, for all k ≥ 1. Let N be a r.v. which takes values in {0, 1, . . .} such
that N is independent of 1A, 1Bk , k ≥ 1 and E (N2) < ∞. Define X = 1AN and

Y = 1A
∑N

k=1 1Bk . Then, V ar(Y ) ≤ V ar(X) + E(X).

Proof. We have V ar(X) = V ar (E (X|1A)) + E (V ar (X|1A)). Since E (X|1A) =
E(N)1A, the first term is equal to (E(N))2 pA(1 − pA). Also, the second term is
E (V ar(N)1A) = V ar(N)pA. Thus.

V ar(X) = (E(N))2 pA(1− pA) + V ar(N)pA.

We compute V ar(Y ) in a similar way. First, we note that E (Y |1A) = E(N)pB1A,
so V ar (E (Y |1A)) = (E(N))2 p2

BpA(1− pA). For V ar (Y |1A) we use the formula for
the variance of the sum of a random number of elements, yielding

V ar (Y |1A) =
(
E(N)pB(1− pB) + V ar(N)p2

B

)
1A.

Therefore,

V ar(Y ) = (E(N))2 p2
BpA(1− pA) + E(N)pApB(1− pB) + V ar(N)pAp

2
B.

Since pB ≤ 1 and E(X) = E(N)pA, the result is proved.
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Theorem 2.4.4. If one of the following conditions holds

1.- lim supn→∞ rn < 1,

2.- limn→∞ rn = 1 and limn→∞(1− rn)/(1− rn−1) = 1.

then η([0, n]) obeys the following Central Limit Theorem

η([0, n])− E (η([0, n]))√
V ar (η([0, n]))

D→ N(0, 1) as n→∞.

Proof. As in the proof of Theorem 2.4.2, we first prove the asymptotic normality
for the sequence of the partial sums of Zi.

To that end, let us see that
∑n

i=0 Zi satisfies the following Lyapunov condition

1

s3
n

n∑
i=0

E
(
|Zi − E (Zi)|3

)
→ 0, as n→∞, (2.25)

where s2
n =

∑n
i=0 V ar (Zi), which implies the asymptotic normality of the sum of Zi

n∑
i=0

(Zi − E (Zi)) /sn
D→ N(0, 1) as n→∞.

From the elementary inequality | a− b |3< a3 + b3 with a, b ≥ 0, we get

E
(
|Zi − E (Zi)|3

)
= E

(
| Zi − E (Zi) |3| Ii = 1

)
ri + E

(
| Zi − E (Zi) |3| Ii = 0

)
(1− ri)

≤ (E
(
Z3
i | Ii = 1

)
+ E (Zi)

3)ri + E (Zi)
3 (1− ri)

= E
(
Z3
i | Ii = 1

)
ri + E (Zi)

3

= ri
(1− qi)
q3
i

(6 + q2
i − 6qi) + r3

i

(
1− qi
qi

)3

. (2.26)

Case 1.- lim supn→∞ rn < 1. From (2.16) and (2.26)

E
(
|Zi − E (Zi)|3

)
≤ K1(1− qi)ri (2.27)

for a positive constant K1.

We bound the sequence (sn) using (2.15), (2.16) and (2.18)

s3
n =

(
n∑
i=0

V ar (Zi)

)3/2

≥ K2

(
n∑
i=0

(1− qi)ri

)3/2

, (2.28)
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where K2 is a positive constant. Finally from (2.27) and (2.28) the Lyapunov con-
dition (2.25) is satisfied since

∑n
i=0(1− qi)ri diverges as n→∞.

Case 2.- limn→∞ rn = 1 and limn→∞(1−rn)/(1−rn−1) = 1. For the numerator in
the Lyapunov condition we proceed from (2.26) taking equivalences under lim ri = 1,
yielding

E
(
|Zi − E (Zi)|3

)
≤ K3α

3
i ,

with K3 a positive constant.

From (2.20) and (2.21), the Lyapunov condition in (2.25) will be implied by

lim
n→∞

∑n
i=0 α

3
i

(
∑n

i=0 α
2
i )

3/2
= 0.

Applying Cauchy-Schwartz’s Inequality we get∑n
i=0 α

3
i

(
∑n

i=0 α
2
i )

3/2
=

∑n
i=0 α

2
iαi

(
∑n

i=0 α
2
i )

3/2

≤ (
∑n

i=0 α
4
i )

1/2
(
∑n

i=0 α
2
i )

1/2

(
∑n

i=0 α
2
i )

3/2

=

( ∑n
i=0 α

4
i

(
∑n

i=0 α
2
i )

2

)1/2

→ 0, as n→∞,

where the last limit holds if (1− rk)/(1− rk−1)→ 1 by means of Lemma A1 in [51].
Indeed, taking α2

n as an in the cited lemma, note that an →∞ and

an
an−1

=

(
qn−1

qn

)2

=

(
1− rn−a
1− rn

)2

→ 1

if (1− rn)/(1− rn−1)→ 1.

Cases 1. and 2.- We have proved∑n
i=0 Zi −

∑n
i=0 E (Zi)√∑n

i=0 V ar (Zi)

D→ N(0, 1) as n→∞.

This implies, by (2.13) and Proposition 2.4.1 (c), that

η([0, n])−
∑n

i=0 E (Zi)√∑n
i=0 V ar (Zi)

D→ N(0, 1). (2.29)
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Now, taking expectations in (2.13) we have

n∑
i=0

E (Zi) ≤ E(η([0, n])) ≤
n+a−1∑
i=0

E (Zi) ,

which, together with Proposition 2.4.1 (b) and (2.29) yields

η([0, n])− E (η([0, n]))√∑n
i=0 V ar (Zi)

D→ N(0, 1) as n→∞. (2.30)

The last step is to prove

V ar (η([0, n]))∑n
i=0 V ar (Zi)

→ 1 as n→∞.

To that end, we note that η(n) =
∑n

i=0 Zi +
∑n+a−1

i=n+1 Z
′
i, where

Z ′i =
∞∑
m=1

(
Sm∑
j=1

1{Ym,j∈[0,n]}

)
1{Rm=i},

is the number of near-records associated to a record with value i which are less than
or equal to n. Since the random variables Z ′n+1, . . . , Z

′
n+a−1 are independent, and

also independent of Z1, . . . , Zn, we have

V ar

(
n∑
i=0

Zi

)
≤ V ar

(
n∑
i=0

Zi

)
+

n+a−1∑
i=n+1

V ar (Z ′i) = V ar(η([0, n])). (2.31)

We now find an upper bound for V ar(Z ′i) by using Lemma 2.4.3. The distribution
of Zi can be written as N1A where A = {a record takes the value i} and N has a
Geometric distribution with parameter qi, so we can identify Zi with X in Lemma
2.4.3, that is, 1A = ξ({n}). Also, given that the m-th record has taken the value i,
the value of each of the Sm near-records associated to it is in [0, n] with probability
(yi−a− yn)/(yi−a− yi), independently of other near-records. That is, writing Bk for
the event {the k-th near-record associated to the record with value i is in [0, n]},
we can identify Z ′i with Y . Therefore, we obtain V ar(Z ′i) ≤ V ar(Zi) + E(Zi) for
all i ≥ 0. This inequality, together with (2.31) and the mutual independence of the
variables Z1, . . . , Zn+a−1 yields

n∑
i=0

V ar (Zi) ≤ V ar(η([0, n])) ≤
n+a−1∑
i=0

V ar (Zi) +
n+a−1∑
i=n+1

E (Zi) . (2.32)

The last term in the rhs of (2.32) is negligible, since, under condition (1) it is
uniformly bounded in n and, under condition (2) E(Zi) ≤ V ar(Zi) for all large
enough i by (2.19) and (2.20).
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Finally, from Proposition 2.4.1 (d), we have that∑n
i=0 V ar (Zi)∑n+a−1

i=0 V ar (Zi)
→ 1 as n→∞,

which, together with (2.30) and (2.32) proves the result.

2.5 A martingale related to the counting of δ-

records

Martingales have been used successfully in the study of the counting process of
records and δ-records [48, 49, 50, 52, 53]. For usual records, the sequence Nn− cMn

is a martingale when the underlying distribution is exponential, where c > 0 is a
positive constant. This fact was taken as a starting point in the paper [49], which
found all the probability distributions such that Nn − cMn is a martingale. In
the particular case of discrete random variables taking values in the integers, the
geometric distribution is essentially the only distribution with this property when
0 < c < 1, and there is no solution for c ≥ 1. In this section we pose the same
problem for δ-records. Here, the solution will depend both on the sign of δ and the
value of c > 0.

Let us recall some definitions. Given a probability space (Ω,F , P ), a sequence
(Fn) of sub-σ-fields of F is called a filtration if Fn ⊆ Fn+1, for all n ≥ 1.

Definition 2.5.1. Let (Ω,F , P ) be a probability space and (Fn) a filtration. A
sequence (Zn) of random variables is a martingale with respect to the filtration (Fn)
if it satisfies:

(a) E(|Zn|) <∞, for all n ≥ 1,

(b) (Zn) is adapted to (Fn), that is, Zn is Fn measurable, for all n ≥ 1,

(c) E(Zn|Fn−1) = Zn−1 almost surely, for all n ≥ 2.

In this section we study the following problem. Let δ 6= 0, c > 0 be fixed: find
all the distributions F with support in Z having E(|X1|) < ∞ and such that the
sequence (Zn) is a martingale with respect to the filtration (σ(X1, . . . , Xn)), where

Zn = Nn,δ − cMn, n ≥ 1. (2.33)

We impose that E(|X1|) <∞ because this is equivalent to E(|Mn|) <∞; note that
Nn,δ ≤ n, so the integrability of Zn for n ≥ 1 is equivalent to the integrability of X1.

We begin with a proposition giving an equivalent condition for our problem.
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Proposition 2.5.2. Let (Xn) be a sequence of i.i.d. r.v. taking values in the
integers with common cdf F such that E(|X1|) <∞. Then (Zn) defined in (2.33) is
a martingale if and only if, for all n ≥ 2,

G(k + δ) = c

∞∑
j=k

G(j), (2.34)

for every k ∈ supp(F ) where G(x) := 1− F (x) denotes the survival function.

Proof. Note first that, for n ≥ 2,

E(Nn,δ − cMn | Fn−1) = Nn−1,δ − cMn−1 + E(1n,δ | Fn−1)− cE(Mn −Mn−1 | Fn−1).

Therefore, (Zn) is a martingale if and only if

E(1n,δ | Fn−1) = cE(Mn −Mn−1 | Fn−1), (2.35)

for all n ≥ 2. Note that the lhs of (2.35) is P(Xn > Mn−1 + δ). For the rhs we have

cE (Mn −Mn−1 | Fn−1) = cE
(
(Xn −Mn−1)+ | Fn−1

)
,

where x+ = x ∨ 0. It is now obvious that

E
(
(Xn −Mn−1)+ | Fn−1

)
=
∞∑
i=1

iP (Xn = Mn−1 + i)

=
∞∑
k=1

∞∑
i=k

P (Xn = Mn−1 + i)

=
∞∑
k=0

(1− F (Mn−1 + k)) ,

so (2.35) can be written as

G(Mn−1 + δ) = c

∞∑
k=0

G(Mn−1 + k),

and thus the result holds.

Let x− = inf{k : G(k) < 1} ≥ −∞ and x+ = sup{k : G(k) < 1} ≤ +∞
be leftmost and rightmost points of the distribution. The next proposition gives
conditions on x−, x+ for (Zn) to be a martingale and find a family of solutions in
the case δ > 0
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Proposition 2.5.3. In the setting of Proposition 2.5.2, we have:

(a) If (Zn) is a martingale, then x− > −∞;

(b) If δ < 0 and (Zn) is a martingale, then x+ = +∞.

Proof. (a) Suppose that (Zn) is a martingale and x− = −∞. There exists a
decreasing sequence (kj) with kj ∈ supp(F ), with kj → −∞ as j → ∞. By
Proposition 2.5.2, we have

G(kj+1 + δ)−G(kj + δ) = c (G(kj+1) + · · ·+G(kj − 1)) . (2.36)

Since G is a survival function, G(kj) → 1 as j → +∞. So the lhs of (2.36)
converges to 0 while the rhs does not, which is a contradiction.

(b) Note that x+ ∈ supp(F ), and that G(x+ − 1) > 0 and G(x+) = 0. Then, by
Proposition (2.5.2), since δ < 0:

0 > G(x+ − 1) ≥ G(x+ + δ) =
∞∑

j=x+

G(j) = 0,

which proves the result.

The last proposition shows that F must be bounded below for (Zn) to be a
martingale. Besides, for δ < 0, the distribution cannot be bounded above. However,
it does not rule out the posibility that the distribution can be bounded above in the
case δ > 0. In fact, under some conditions on the support, and on δ and c, there
are bounded distributions for which (Zn) is a martingale, when δ > 0. We give a
complete answer to this situation in the following result.

Proposition 2.5.4. In the setting of Proposition 2.5.2, let δ > 0 and −∞ < x− <
x+ < +∞. Let x− = k1 < · · · < km = x+ be the support of F . Then, (Zn) is a
martingale if and only if the four following conditions hold:

1. ki − ki−1 > δ, for all i = 2, . . . ,m,

2. km − km−1 = 1/c,

3. ki − ki−1 < 1/c, for all i = 2, . . . ,m− 1,

4. G(ki) = G(k1)
∏i

j=2(1− c(kj − kj−1)) for all i = 2, . . . ,m− 1.
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Proof. Applying (2.34) to km−1 we get

G(km−1 + δ) = c(km − km−1)G(km−1).

If km−1 + δ ≥ km then the lhs is 0 while the rhs is not, which is a contradiction.
Therefore, km must be at least km−1 + δ + 1, so we assume this in the rest of the
proof. In this case, G(km−1 + δ) = G(km−1) and we conclude km − km−1 = 1/c.

Applying (2.34) to km−2, we get

G(km−2 + δ) = c(km−1 − km−2)G(km−2) +G(km−1). (2.37)

Now, if km−2 + δ ≥ km−1 then G(km−2 + δ) = G(km−1), leading to G(km−2) = 0,
which is a contradiction. Then km−1 − km−2 must be greater than δ and, in that
case, (2.37) is equivalent to

Gm−2 (1− c(km−1 − km−2)) = G(km−1),

which implies km−1 − km−2 < 1/c.

Iterating the above procedure, we get

G(ki−1) = c(ki − ki−1)G(ki−1) +G(ki),

for i = 2, . . . ,m− 1 and the result follows.

Remark 2.5.5. (a) In Proposition 2.5.4 we leave out the trivial case x− = x+,
that is, the random variables are all equal to the constant x−. In this case,
condition (2.34) is clearly satisfied so (Zn) is a martingale. In fact Zn = 1−x−
for all n ≥ 1.

(b) The distribution given in Proposition 2.5.4 coincides with Example 3.4 in [49],
where the problem was studied for records. Now, we need the extra assumption
ki − ki−1 > δ, for i = 2, . . . ,m. Note that this condition asserts that there is
no bounded distribution taking values in consecutive integers such that (Zn)
is a martingale.

Summarizing the above, we have proved that x− > −∞ is a necessary condition
for (Zn) to be a martingale; moreover, for δ < 0 it is also necessary that x+ = +∞,
while for δ > 0, it is possible that x+ < +∞ and the necessary and sufficient
conditions, together with the explicit expression of F are given in Proposition 2.5.4.
Therefore, we are left with the case −∞ < x− < x+ = +∞. In the rest of the section
we assume that the support of F is {x− + k : k ≥ 0}; without loss of generality we
can take x− = 0, so the support of F is {0, 1, . . .}. Note that if (Zn) is a martingale
for a distribution F , then it is also a martingale for the shifted distribution F̃ , with
F̃ (x) = F (x+ b), x ∈ Z.

We first consider the case δ < 0.
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Theorem 2.5.6. In the setting of Proposition 2.5.2, if δ < 0 and the support of F
is {0, 1, . . .}, we have:

a) If δ < −1 then (Zn) is not a martingale;

b) If δ = −1, then (Zn) is a martingale if and only if F is the geometric distri-
bution (starting at 0) with success parameter 1/(1 + c).

Proof. a) When δ < −1, applying condition (2.34) for k = 1 we get G(1 + δ) =
c
∑∞

k=1G(k). Since δ < −1, the lhs is 0 while the rhs is not, so no G can
satisfy (2.34).

(b) For δ = 0, condition (2.34) gives, for k ≥ 0,

G(k − 1) = c

∞∑
j=k

G(j),

G(k) = c
∞∑

j=k+1

G(j),

and then, taking differences we get

G(k − 1) = (c+ 1)G(k). (2.38)

Since we have the initial condition G(−1) = −1, the solution for (2.38) is

G(k) = (c+ 1)−(k+1),

and the result is proved.

Remark 2.5.7. Recall that δ-records for δ = −1 are weak-records. Theorem 2.5.6
states that, while (Zn) can be a martingale for weak-records, this cannot happen for
any other negative δ.

We now turn to the case δ > 0. Condition (2.34) generates a recurrent relation
for G(k), k ≥ 0. This recurrence implies that the value of G(k) can be written in
terms of G(0), . . . , G(δ). However, it might be the case that, depending on the values
of G(0), . . . , G(δ), the resulting G is not a survival function (that is, a nonnegative
decreasing to 0 function). Note that the problem of deciding if the sequence of real
numbers (un)n arising as a solution of a recurrence relation is non-negative is still
an open problem in the literature [89]. Therefore, we will focus on the case δ = 1
here.

Theorem 2.5.8. In the setting of Proposition 2.5.2, if δ = 1 and the support of F
is {0, 1, . . .}, we have:
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a) If c > 1/4, then (Zn) is not a martingale;

b) If c = 1/4, then (Zn) is a martingale if and only if G(0) ∈ (0, 1), G(1) ∈
[G(0)/2, G(0)) and

G(k) = 2−k
(
G(0) + (2G(1)−G(0))k

)
,

for k ≥ 2;

c) If 0 < c < 1/4, then (Zn) is a martingale if and only if G(0) ∈ (0, 1), G(1) ∈
[λ2G(0), G(0)) and

G(k) =
G(1)−G(0)λ2

λ1 − λ2

λk1 +
G(0)λ1 −G(1)

λ1 − λ2

λk2, (2.39)

for k ≥ 2, where

λ1 =
1

2

(
1 +
√

1− 4c
)
, λ2 =

1

2

(
1−
√

1− 4c
)
. (2.40)

Proof. Applying Proposition 2.5.2 with δ = 1, for k ≥ 0, we get that (Zn) is a
martingale if and only if

G(k + 2)−G(k + 1) + cG(k) = 0, (2.41)

for all k ≥ 0. That is, (Zn) is a martingale if and only if the function G defined by
(2.41), with 0 < G(1) < G(0) < 1 is a survival function on {0, 1, . . .}. Recurrence
equations have been profusely studied in mathematics, and the general term can be
computed as a function of the roots of their characteristic polynomial. In (2.41),
the characteristic polynomial is z2 − z + c, with discriminant 1− 4c. We study the
cases (a), (b) and (c) separately.

a) If c > 1/4, then the roots of the characteristic polynomial are complex num-
bers. In this case, the proof of Lemma 5 in [61] remains valid in our setting,
guaranteeing that the sequence G(k) will be negative for some n ∈ N so no
survival function can satisfy (2.41).

b) If c = 1/4, then 1/2 is a double root of the characteristic polynomial. The
solution of (2.41) is G(k) = 2−k(A + Bk), k ≥ 0, with A,B ∈ R. Taking
k = 0, 1 we get G(0) = A, G(1) = (A + B)/2. We now look for conditions on
G(0), G(1) such that G is a survival function.

First, G(0) ∈ (0, 1) if and only if A ∈ (0, 1); also G(1) > 0 ⇔ A + B > 0
and G(1) < G(0) ⇔ A > B. Moreover, G(k + 1) < G(k) is equivalent to
A > B − Bk; since this must hold for every k ≥ 0, it is equivalent to B ≥ 0
(since A > 0). Also, it is clear that G(k) → 0 as k → ∞. Therefore, G
is a survival function if and only if 0 ≤ B < A < 1, which is equivalent to
G(0) ∈ (0, 1), G(1) ∈ [G(0)/2, G(0)), as stated.
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c) The roots of the characteristic polynomial are λ1 and λ2 in (2.40) and the
solution of (2.41) is G(k) = Aλk1 +Bλk2, for k ≥ 1, where

A =
G(1)−G(0)λ2

λ1 − λ2

, B =
G(0)λ1 −G(1)

λ1 − λ2

. (2.42)

We now check under which conditions on A,B, the solution (2.39) is a survival
function. We analyze the different cases depending on the sign of A and B.
Note that 0 < λ2 < λ1 < 1 so, by (2.42), A and B cannot be both equal to 0,
so this case is excluded in the analysis below.

• (A,B ≥ 0.) Since G(0) must be smaller than 1, we have A + B < 1. It
is clear that Aλk1 +Bλk2 is positive, decreasing in k and limk→∞G(k) = 0
because λ1, λ2 ∈ (0, 1) so G is a survival function. Therefore, in this case,
the solution of (2.41) is a survival function if and only if A + B < 1.
Using the expressions (2.42), the conditions on A and B are equivalent
to

0 < G(0)λ2 ≤ G(1) ≤ G(0)λ1 < G(0) < 1.

• (A ≥ 0, B ≤ 0.) Note first that G(0) < 1 if and only if A+B < 1. Also,
the condition G(k) > 0 is equivalent to A > |B|(λ2/λ1)k, for all k ≥ 1;
since λ2 < λ1, this is equivalent to A+B > 0. Also, the condition for G
to be a decreasing function is

Aλk+1
1 +Bλk+1

2 < Aλk1 +Bλk2 ⇐⇒ A > |B|
(
λ2

λ1

)k
1− λ2

1− λ1

, (2.43)

for every k ≥ 0. Since λ2 < λ1, condition (2.43) needs only be checked
for k = 0, which is

A > |B|1 +
√

1− 4c

1−
√

1− 4c
. (2.44)

As A + B > 0 is implied by (2.44), the conditions on A,B in this case
are A + B < 1 and (2.44). Using the expressions (2.42), we note that
A ≥ 0, B ≤ 0 are equivalent to G(1) ≥ λ2G(0) and G(1) ≥ λ1G(0),
where the former condition is implied by the latter. Also condition (2.44)
is easily seen to be equivalent to G(0) > G(1). Therefore, the conditions
on G(0), G(1) in this case are

0 < G(0)λ1 ≤ G(1) < G(0) < 1.

• (A ≤ 0, B ≥ 0.) G(k) > 0 is equivalent to B > |A|(λ1/λ2)k. Since
λ1 > λ2, this condition cannot hold for every k ≥ 1 so G cannot be a
survival function in this case.

• (A,B ≤ 0.) In this case G(0) = A + B ≤ 0, so G cannot be a survival
function.



Chapter 2. Near and δ-record values in discrete sequences 49

Summarizing the four cases above, we get that G is a survival function if and
only if condition (2.39) holds.

Remark 2.5.9. In [49], where the problem was solved for usual records (δ = 0)
it was proved that the distributions F with support {0, 1, . . .} such that (Zn) is a
martingale are convex combinations of a Dirac delta on 0 and a Geometric distri-
bution with parameter c. In this section we have proved that, for δ < −1, no F
with support {0, 1, . . .} has (Zn) as a martingale. For δ = −1, the only F is the
Geometric distribution with parameter 1/(1 + c). For δ = 1 a variety of situations
arises: for c < 1/4 the general solution is a convex combination of the Dirac delta
on 0 and two Geometric distributions with parameters λ1 and λ2; for c = 1/4, con-
vex combinations of a Dirac delta and a Geometric distribution are obtained for
G(1) = G(0)/2 but different distributions are found when G(1) > G(0)/2.





3
Probabilistic properties of

δ-records in the Linear Drift
Model

The study of records in the Linear Drift Model (LDM) has attracted much attention recently
due to applications in several fields. In this chapter we study δ-records in the LDM. We
give analytical properties of the probability of δ-records and study the correlation between
δ-record events. We propose a first order approximation as a function of both the values
of δ and the trend to study the δ-record probability. We assess our results via Montecarlo
simulations finding that the approximations are accurate for a small-moderate number of
observations. We also analyze the asymptotic behaviour of the number of δ-records among
the first n observations and give conditions for convergence to the Gaussian distribution.
As a consequence of our results, we solve a conjecture posed in the Physics literature
regarding the total number of records in a LDM with negative drift. Examples of appli-
cation to particular distributions, such as Uniform, Gumbel or Pareto are also provided.
A generalization of the LDM where the underlying trend is random with a linear-growing
expectation is also considered. Most part of these results have been published in [43], [44]
and [76]
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3.1 First steps in the study of δ-records in the

Linear Drift Model

Throughout this chapter we assume that (Yn) are random variables obeying the
LDM as defined in equation (1.2) of Section 1.4. We briefly recall that we consider
observations Yn that follow

Yn = Xn + cn, n ≥ 1,

where c ∈ R is the trend parameter and (Xn) is a sequence of i.i.d. random variables,
with absolutely continuous cdf F and probability density function pdf f for which
it exists an interval I = (x−, x+), with −∞ ≤ x− < x+ ≤ ∞, such that f(x) > 0,
for all x ∈ I, and f(x) = 0 otherwise. Also, we recall that the right-tail expectation
of the Xj, that is µ+ =

∫∞
0
xf(x)dx, plays a critical role in the record occurrences

in the LDM.

Our first aim is to compute the probability of an observation to be a δ-record,
denoted by pj,δ, for the sequence of r.v. (Yn) following the LDM. Note that the
probability of the event {Yj is a δ-record} is the expectation of the indicator r.v.
1j,δ.

Theorem 3.1.1. Under the LDM, the probability of δ-record pj,δ is

pj,δ =

∫ ∞
−∞

j−1∏
i=1

F (x+ ci− δ)f(x)dx. (3.1)

Moreover, the asymptotic δ-record probability, denoted by pδ, is

pδ =

∫ ∞
−∞

∞∏
i=1

F (x+ ci− δ)f(x)dx. (3.2)

Proof. From the definition of δ-record in the LDM and by conditioning on the value
of Xj we have

pj,δ = P

(
Xj + cj >

j−1∨
i=1

(Xi + ci+ δ)

)

=

∫ ∞
−∞

P

(
x >

j−1∨
i=1

(Xi − c(j − i) + δ)

)
f(x)dx

=

∫ ∞
−∞

P

(
j−1⋂
i=1

{Xi < x+ c(j − i)− δ}

)
f(x)dx

=

∫ ∞
−∞

j−1∏
i=1

F (x+ ci− δ)f(x)dx.
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Moreover, the asymptotic δ-record probability is given by the formula

pδ := lim
n→∞

pn,δ =

∫ ∞
−∞

∞∏
i=1

F (x+ ci− δ)f(x)dx, (3.3)

which is mathematically justified by the monotone convergence theorem for integrals;
see [13, Theorem 2.8.2].

In what follows we occasionally write 1j,δ(c), Nn,δ(c), pj,δ(c), pδ(c), etc. to empha-
size the dependence on the trend parameter c.

3.2 Properties of the δ-record probabilities

We begin with a simple property about the asymptotic δ-record probability of an
affine transformation of the LDM, which can be easily checked from the δ-record
definition.

Proposition 3.2.1. Let X̃n = bXn+a, with b > 0, a ∈ R, and Ỹn = X̃n+cn, n ≥ 1.
If p̃j,δ(c) and p̃δ(c) are the analogous δ-record probability and asymptotic δ-record
probability in this model, then it holds

p̃j,δ(c) = pj, δ
b
( c
b
).

and

p̃δ(c) = p δ
b
( c
b
).

Proof. For fixed j, Ỹj is a δ-record if

X̃j + cj >

j−1∨
i=1

(
X̃i + ci+ δ

)
⇔ Xj +

c

b
j >

j−1∨
i=1

(
Xi +

c

b
i+

δ

b

)
,

which is the δ-record condition for δ/b in a LDM with trend parameter c/b, and so
both results hold.

We consider next some analytical properties of pj,δ(c) and pδ(c), as functions of
c and δ. We note first that both are increasing in c and decreasing in δ. Moreover,
it is easy to see that pj,δ(c) is decreasing in j and continuous in c, converging to 1 as
c → ∞. The continuity of pδ(c) is less clear because of the infinite product within
the integral in (3.2).
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3.2.1 Positivity of pδ(c)

We show that the positivity of pδ(c) depends on c and δ and on the right-tail be-
haviour of F . The characterization of the positivity of these quantities reveals the
importance of the parameter µ+ in the δ-record behaviour in the LDM.

Theorem 3.2.2. pδ(c) > 0 if and only if µ+ <∞ and one of the following conditions
holds

1. c > 0 and δ < x+ − x− + c,

2. c = 0, δ < 0 and x+ <∞.

Proof. 1. µ+ =∞. In this case pδ(c) = 0, for all δ, c ∈ R.

To justify this claim, we show that
∏∞

j=1 F (x+ cj − δ) = 0, for all x ∈ (x−, x+).

a) If c < 0 the conclusion is immediate because F (x+ cj − δ)→ 0, as j →∞.

b) If c = 0, we note that µ+ = ∞ implies x+ = ∞ and so, F (x − δ) < 1. Thus∏∞
j=1 F (x+ cj − δ) = 0.

c) Finally, if c > 0, we note that µ+ =∞ implies
∑∞

j=1(1− F (x+ cj − δ)) =∞,
which in turn implies

∏∞
j=1 F (x+ cj− δ) = 0. This follows from the definition

of µ+ and from Taylor’s expansion of log(1 + x).

2. µ+ <∞. As in the previous case, we have three situations depending on the sign
of c.

a) For c < 0, pδ(c) = 0, for all δ ∈ R, since
∏∞

j=1 F (x + cj − δ) = 0, for all
x ∈ (x−, x+).

b) If c = 0,

pδ(0) =

∫ ∞
−∞

∞∏
j=1

F (x− δ)f(x)dx =

∫ ∞
x++δ

f(x)dx, (3.4)

which is positive if and only if x+ <∞ and δ < 0.

c) Finally, if c > 0, then pδ(c) = 0 if and only if x+−x− ≤ δ−c. Indeed, note that,
if x+ − x− ≤ δ − c, then P(Yn > Yn−1 + δ) = 0, for all n, and so, only the first
observation (by convention) is a δ-record. Conversely, if x+−x− > δ− c, then
the interval J := (x−, x+)∩ (x−− c+ δ,∞) is nonempty and, for every x ∈ J ,
we have F (x+cj−δ) ≥ F (x+c−δ) > 0, for all j. Now, since F (x+cj−δ)→ 1
as j →∞, and µ+ <∞, we have

∑∞
j=1(1−F (x+ cj− δ)) <∞, which implies∏∞

j=1 F (x+ cj − δ) > 0 and, so pδ(c) > 0.
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Remark 3.2.3. Distributions with µ+ = ∞ can be considered as “right-heavy-
tailed” and we observe that, for such distributions, the linear trend has no impact
on the asymptotic probability of a δ-record. This class of distributions includes the
Pareto and Fréchet, with shape parameter α ∈ (0, 1].

3.2.2 Continuity of pδ(c)

As commented at the beginning of this section, the continuity of pδ(c) as a function
of δ and c is not obvious. However, thanks to Theorem 3.2.2 we can restrict our
attention to distributions F with finite right-tail expectation since, otherwise, pδ(c) is
identically zero and continuity is trivial. Thus, we assume throughout this subsection
that µ+ <∞.

It is obvious that the continuity of pδ(c) will depend critically on the behaviour
of the infinite product appearing in its expression (3.2). Proposition 3.2.4 shows the
continuity of the infinite product under certain hypotheses that will be used later in
the proof of Theorem 3.2.5, where a full characterization of the continuity of pδ(c)
is stated.

Proposition 3.2.4.
∏∞

j=1 F (x + cj − δ), as a function of c is continuous at c ∈
R \ {0}, for every x ∈ (x−, x+), x 6= x− + δ − c.

Proof. Let (cn)n≥1 be a real sequence converging to c > 0. We show that
∞∏
j=1

F (x+ cnj − δ)→
∞∏
j=1

F (x+ cj − δ), (3.5)

as n→∞, for fixed x ∈ (x−, x+), x 6= x− + δ − c.

Let x ∈ (x−, x+) be such that x < x−+ δ− c (this can only happen if x− > −∞
and δ − c > 0). In this case F (x + c − δ) = 0, so the rhs of (3.5) is 0. Also, since
cn → c, F (x+ cn − δ) = 0, for n large enough, the lhs of (3.5) is also 0 and (3.5) is
proved.

Let now x > x− + δ − c, then F (x + cj − δ) > 0 for all j ≥ 1. Let ε > 0 such
that x + c − ε − δ > x− and let n0 ≥ 1, such that |cn − c| < ε, for all n ≥ n0. We
have, for n ≥ n0,

− logF (x+ cnj − δ) ≤ − logF (x+ (c− ε)j − δ).
Since x > x−+δ− (c− ε) and µ+ <∞, we have −

∑∞
j=1 logF (x+(c− ε)j−δ) <∞,

so the dominated convergence theorem yields
∞∑
j=1

logF (x+ cnj − δ)→
∞∑
j=1

logF (x+ cj − δ),
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as n → ∞, so (3.5) also holds for x > x− + δ − c. Finally, for c < 0, we have∏∞
j=1 F (x+ cj − δ) = 0,∀x ∈ R, since F (x+ cj − δ)→ 0, as j →∞.

In the following theorem we summarize the conditions for the continuity of pδ(c).

Theorem 3.2.5. The asymptotic δ-record probability pδ(c), as a function of c, δ, is

(a) continuous at every c 6= 0 and right-continuous at c = 0, for all δ;

(b) discontinuous at c = 0 if and only if x+ <∞, δ < 0, and

(c) continuous in δ, for all c.

Proof.

a) For c 6= 0, Proposition 3.2.4 states that
∏∞

j=1 F (x + cj − δ) is continuous at
every c 6= 0, for every x ∈ (x−, x+), such that x 6= x− + δ − c. Then, thanks to
the dominated convergence theorem, we conclude that pδ(c) is continuous, at every
c 6= 0.

The continuity at c = 0 is subtler to establish and it depends on the sign of δ
and the finiteness of x+, the right-end point of F . Note that, for every c > 0 and
N ≥ 1, we have

∞∏
j=1

F (x− δ) ≤
∞∏
j=1

F (x+ cj − δ) ≤
N∏
j=1

F (x+ cj − δ).

Then, taking the limit as c→ 0+ in the above inequalities,

∞∏
j=1

F (x− δ) ≤ lim
c→0+

∞∏
j=1

F (x+ cj − δ) ≤ F (x− δ)N .

Therefore, limc→0+

∏∞
j=1 F (x+ cj− δ) is 0 if x < x+ + δ, and 1 otherwise. Then, by

the dominated convergence theorem,

lim
c→0+

pδ(c) =

∫ ∞
−∞

lim
c→0+

∞∏
j=1

F (x+ cj − δ)f(x)dx =

∫ ∞
x++δ

f(x)dx.

Thus, pδ(c) is right-continuous at c = 0 by (3.4).

b) Regarding left-continuity at 0, recall that pδ(c) = 0 for c < 0. So, pδ(c) is
discontinuous at 0 if and only if x+ <∞ and δ < 0.



Chapter 3. Probabilistic properties of δ-records in the Linear Drift Model 57

c) We now show the continuity of pδ(c) as a function of δ. The result is trivial if c < 0,
since pδ(c) = 0, for all δ ∈ R. For c = 0 note that, by (3.4), pδ(0) = 1− F (x+ + δ),
which is continuous since F is a continuous function.

If c > 0 and (δn)n≥1 is a sequence converging to δ, we prove that

lim
n→∞

∞∏
j=1

F (x+ cj − δn) =
∞∏
j=1

F (x+ cj − δ), (3.6)

for all x ∈ (x−, x+), x 6= x−+δ−c. Indeed, let x < x−+δ−c, then F (x+c−δ) = 0
yielding

∏∞
j=1 F (x + cj − δ) = 0. Also F (x + c − δn) = 0 for n large enough and

(3.6) follows. Let now x > x−+ δ− c and ε > 0 such that x+ c− δ− ε > x−. Then,
for n large enough, we have | δn − δ |< ε and

−
∞∑
j=1

logF (x+ cj − δn) ≤ −
∞∑
j=1

logF (x+ cj − (δ + ε)) <∞,

since µ+ <∞. So (3.6) holds, and continuity follows.

3.3 Exactly solvable models

In general it is not possible to compute the values pj,δ or pδ exactly. We show
below explicit results for the Gumbel distribution, the uniform and an extreme value
distribution in the Weibull class (see Section 1.3.4), and for particular instances of
the Dagum family of distributions [71] in the Fréchet class.

3.3.1 The Gumbel distribution

The Gumbel distribution is a key probability distribution in the context of extreme-
value theory, as it arises naturally to describe the behaviour of the partial maxima
of i.i.d. observations drawn from distributions in the Gumbel-domain, as it was
pointed in Section 1.3.4.

Example 3.3.1. Let F (x) = exp(− exp(−x)), for x ∈ R, be the cdf of the (stan-
dard) Gumbel distribution. Note first that we have

F (x+ cj − δ) = F (x)e
−cj+δ

.

Then, if c 6= 0,

n−1∏
j=1

F (x+ cj − δ) = F (x)
∑n−1
j=1 e

−cj+δ
= F (x)

eδ e
−c−e−nc
1−e−c .
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Figure 3.1
Asymptotic δ-record probability pδ(c) for the Gumbel distribution as a function of δ and c.
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So, from (3.1) we get

pn,δ(c) =

∫ ∞
−∞

F (x)
eδ e
−c−e−nc
1−e−c f(x)dx

=
1− e−c

1− e−c + eδ(e−c − e−nc)
.

If c = 0,
n−1∏
j=1

F (x+ cj − δ) = F (x)(n−1)eδ ,

which yields

pn,δ(0) =
1

(n− 1)eδ + 1
.

Taking limits as n→∞ in the above formulas, we obtain

pδ(c) =
1− e−c

eδe−c + 1− e−c
=

1

1 + e−c

1−e−c e
δ
,

if c > 0 and pδ(c) = 0, if c ≤ 0, as expected from Theorem 3.2.2.

Also, for every c > 0, pδ(c) decreases with δ as a logistic function of −δ. Figure
3.1 shows the behaviour of pδ(c) as a function of δ and c.

3.3.2 Distributions in the Weibull class

In this subsection we analyze two distributions in the Weibull class of extreme value
distributions. These distributions have x+ <∞.

Example 3.3.2. The Type III max-stable distribution has cdf given by F (x) = ex,
for x < 0 and F (x) = 1 if x ≥ 0, so the pdf is f(x) = ex if x < 0 and 0 otherwise.
Note that this is the limiting distribution of the maxima of i.i.d. r.v. in the Weibull
class with α = 1, as we saw in Section 1.3.4.
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The probability pn,δ(c) can be computed from (3.1) by splitting the integral
depending on the support of the cdfs in the product. Indeed, taking a positive trend
c > 0, and δ ≤ c, we have

pn,δ(c) =

∫ ∞
−∞

n−1∏
j=1

(
ex+cj−δ1{x+cj−δ<0} + 1{x+cj−δ≥0}

)
ex1{x<0}dx

=

∫ 0

δ−c
exdx+

n−2∑
k=1

(∫ δ−ck

δ−c(k+1)

k∏
j=1

(
ex+cj−δ) exdx)

+

∫ δ−c(n−1)

−∞

n−1∏
j=1

(
ex+cj−δ) exdx

=

∫ 0

δ−c
exdx+

n−2∑
k=1

(
e−kδec

k(k+1)
2

∫ δ−ck

δ−c(k+1)

e(k+1)xdx

)
+ ec

n(n−1)
2 e−δ(n−1)

∫ δ−c(n−1)

−∞
enxdx

=1− eδ−c +
n−2∑
k=1

(
1

k + 1
e−kδec

k(k+1)
2

(
e(k+1)(δ−ck) − e(k+1)(δ−c(k+1))

))
+

1

n
ec

n(n−1)
2 e−δ(n−1)en(δ−c(n−1))

=1− eδe−c +
n−2∑
k=1

(
eδe−c

k(k+1)
2

(
1− e−c(k+1)

)
k + 1

)
+

1

n
eδe−c

n(n−1)
2

=1− eδ
(
e−c −

n−2∑
k=1

(
e−c

k(k+1)
2

(
1− e−c(k+1)

)
k + 1

)
− 1

n
e−c

n(n−1)
2

)
.

As it can be seen in the last expression, not only can pn,δ(c) be explicitly computed,
but also the effect of the δ parameter can be isolated to assess its influence on the
δ-record probability. Now, the computation of the asymptotic δ-record probability
is straightforward by taking the limit as n goes to infinity, yielding

pδ(c) = 1− eδ
(
e−c −

∞∑
k=1

(
e−c

k(k+1)
2

(
1− e−c(k+1)

)
k + 1

))
.

Example 3.3.3. Let us consider the case where Xn is a sequence of uniform r.v.
For simplicity we will take Xn ∼ U(0, 1), −1 < δ ≤ 0 and c ∈ (0, 1), although
the computation is easily adapted for other values of the parameters. In this case
we have, F (x) = x1{x∈(0,1)}, if x < 1, and F (x) = 1, if x ≥ 1, while the pdf is
f(x) = 1{x∈(0,1)}.

We first note that if δ ≤ c − 1, then every observation will be a δ-record, and
thus pn,δ(c) = 1 for all n ∈ N, so let us choose δ > c− 1. We use (3.1) by splitting
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the integration domain conveniently, which for n ≥ 2 yields

pn,δ(c) =

∫ 1

1+δ−c
1dx+

min{n−2,b 1+δ
c
c−1}∑

k=1

(∫ 1+δ−ck

1+δ−c(k+1)

k∏
j=1

(x+ c− δ)dx

)

+

∫ 1+δ−c(1+min{n−2,b 1+δ
c
c−1})

0

1+min{n−2,b 1+δ
c
c−1}∏

j=1

(x+ c− δ)dx. (3.7)

We notice that the products appearing in the integrals can be written as rising
factorials (or Pochhammer Function), where

n∏
j=1

(x+ cj − δ) =
n∏
j=1

((x− δ) + cj) =
n+1∑
j=1

[
n+ 1

j

]
(x− δ)j−1cn+1−j,

and
[
n
m

]
represents the (unsigned) Stirling numbers of first kind. Now, from (3.7),

and writing m(c, δ, n) := min{n− 2, b1+δ
c
c − 1}, we have

pn,δ(c) =

∫ 1

1+δ−c
1dx+

m(c,δ,n)∑
k=1

(∫ 1+δ−ck

1+δ−c(k+1)

k+1∑
j=1

([
k + 1

j

]
(x− δ)j−1ck+1−j

)
dx

)

+

∫ 1+δ−c(1+m(c,δ,n))

0

2+m(c,δ,n)∑
j=1

([
2 +m(c, δ, n)

j

]
(x− δ)j−1c2+m(c,δ,n)−j

)
dx

=

∫ 1

1+δ−c
1dx+

m(c,δ,n)∑
k=1

(
k+1∑
j=1

([
k + 1

j

]
ck+1−j

∫ 1+δ−ck

1+δ−c(k+1)

(x− δ)j−1dx

))

+

2+m(c,δ,n)∑
j=1

([
2 +m(c, δ, n)

j

]
c2+m(c,δ,n)−j

∫ 1+δ−c(1+m(c,δ,n))

0

(x− δ)j−1dx

)
.

The last step is to compute the integrals to get a closed expression for pn,δ(c):

pn,δ(c) =c− δ +

m(c,δ,n)∑
k=1

(
k+1∑
j=1

([
k + 1

j

]
(1− ck)j − (1− c(k + 1))j

j
ck+1−j

))

+

2+m(c,δ,n)∑
j=1

([
2 +m(c, δ, n)

j

]
(1− c m(c, δ, n))j − (−d)j

j
c2+m(c,δ,n)−j

)
.

Finally, note that a general feature for r.v. bounded both to the left and to the
right, which can be derived directly from (3.7), is that pn,δ(c) = pδ(c) for all n large
enough. In particular, for the uniform distribution we have pn,δ(c) = pδ(c) for all
n ≥ d(1 + δ)/ce.
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3.3.3 The Dagum family of distributions

In this subsection, we obtain the growth rate and explicit probabilities for distribu-
tions in the Dagum Family. The interest is to prove novel explicit results, not only
for the case of δ-records but also for usual records. Furthermore, this example allows
us to conclude that in the case µ+ =∞ we still find a different qualitative behaviour
of δ-records in the long term as a function of δ. Note that µ+ =∞ implies that the
variables Xn take large values, and so a negligible impact of the δ parameter could
be expected.

Example 3.3.4. The Dagum distribution has cdf given by

F (x) =

(
1 +

(x
b

)−a)−q
1{x≥0}, (3.8)

where a, b, q are positive parameters. Note that if q = 1, the distribution is referred
to as log-logistic [105]. Also, the Pareto distribution [3] with cdf

F (x) = (1− 1/x)1{x≥1}, (3.9)

can be seen as a shifted version of the Dagum family, with a = b = q = 1. For
simplicity, in this section we limit our attention to the case a = 1, which has
µ+ =∞.

By Theorem 3.2.2 we know that pδ(c) = 0, for every c, δ ∈ R, so we chose to
analyze the speed of convergence of pn,δ(c) to 0, for some values of c, δ. To that end,
observe that the formula for pn,δ takes the manageable form

pn,δ(c) =

∫ ∞
(δ−c)+

n−1∏
j=1

(
x+ cj − δ

x+ b+ cj − δ

)q
f(x)dx, (3.10)

which becomes simpler if we further assume that c = b (that is, the trend parameter
of the LDM is equal to the scale parameter of the distribution). From (3.10) we get

pn,δ(c) =

∫ ∞
(δ−c)+

(
x+ c− δ
x+ cn− δ

)q
f(x)dx. (3.11)

We introduce the notation p
(q)
n,δ(c) to make explicit the dependence of pn,δ(c) on

q. First, for records (δ = 0) we have,

p
(q)
n,0(c) =cq

∫ ∞
0

xq−1 (x+ cn)−q (x+ c)−1dx

=qn−q
∫ 1

0

tq−1(1− t(n− 1)/n)−qdt (3.12)

=
q

(n− 1)q

∫ n

1

(y − 1)q−1

y
dy, (3.13)
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where the second equality follows from the change of variable x = ct/(1− t) and the
third from 1− t(n− 1)/n = 1/y.

Observe that (3.12) and (3.13) do not depend on c and so, for the sake of sim-

plicity, we write p
(q)
n,0. Moreover, from (3.12) we see that

p
(q)
n,0 = n−q 2F1 (q, q; q + 1; (n− 1)/n) ,

where 2F1 is the Gauss hypergeometric function.

Also, from (3.13) and using the binomial expansion, for q = 1, 2, . . ., we readily
obtain

p
(q)
n,0 =

q

(n− 1)q

(
(−1)q−1 log n+

q−1∑
k=1

(
q − 1

k

)
(−1)q−1−k

k
(nk − 1)

)
. (3.14)

The asymptotic behaviour of p
(q)
n,0, for any q ∈ (0,∞), can be obtained from

(3.13). For q = 1, (3.14) yields p
(1)
n,0 = 1

n−1
log n. For q > 1, the leading term in

the integral in (3.13) is yq−2, so p
(q)
n,0 ∼

q
q−1

1
n
. For q ∈ (0, 1), the integral in (3.13)

converges and, using formula 3.191.2 in [57], we get

p
(q)
n,0 ∼ n−qq

∫ ∞
1

(y − 1)q−1

y
dy = n−qqΓ(1− q)Γ(q).

Thus,

p
(q)
n,0 ∼


n−qqΓ(1− q)Γ(q), if 0 < q < 1,

log(n)/n, if q = 1,

n−1 q
q−1

, if q > 1.

(3.15)

It is interesting to observe that the limiting behaviour of p
(q)
n,0, as a function of

the power of the tail q, seems to match the asymptotic behaviour of pn,0(c) when F
is the Fréchet distribution (F (x) = exp(−x−1), x > 0) and the tuning parameter is
the trend c, studied in [20].

We now consider δ 6= 0 and investigate whether p
(q)
n,δ/p

(q)
n,0 → 1, as n → ∞. This

result can be expected since, as µ+ =∞, the variables Xn take very large values, so
δ may have little influence on the probability of δ-record, in the long term.

From (3.11) we may evaluate p
(q)
n,δ, for any q ∈ N, although the computation

becomes lengthy as q grows. We have carried out the computation with values of q
from 1 to 7, and obtained

p
(1)
n,δ ∼

log(n)

n
, p

(q)
n,δ ∼

q

q − 1

1

n
, q = 2, . . . , 7.
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Figure 3.2
δ-record probability pn,δ(c) for the Pareto distribution as a function of δ and n with c = 1.
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So, from (3.15) we have p
(q)
n,δ/p

(q)
n,0 → 1, at least for q = 1, . . . , 7.

For noninteger values of q ∈ (0,∞), the limit behaviour of (3.11) is harder to
analyze. To get a tractable expression, we impose δ = c. Proceeding as above, we
have, for n > 2,

p
(q)
n,δ =

q(n− 1)q

(n− 2)2q

∫ n−1

1

(y − 1)2q−1

yq+1
dy.

Therefore, we have

p
(q)
n,δ ∼


n−q Γ(2q)Γ(1−q)

Γ(q)
, if 0 < q < 1,

log(n)/n, if q = 1,

n−1 q
q−1

, if q > 1.

So, under the above stated conditions, p
(q)
n,δ ∼ p

(q)
n,0, for q ≥ 1, but this is not the case

if q ∈ (0, 1).

To conclude this example we study the Pareto distribution, defined in (3.9),
taking c = 1. From (3.11), the probability of δ-record is explicitly computed as

pn,δ =

∫ ∞
max{1,δ}

x− δ
x2(x+ n− 1− δ)

dx

=
1

(n− 1− δ)2

(
(n− 1) log(n−min{1,δ}

max{1,δ} )−min{1, δ}(n− 1− δ)
)
,

(3.16)

if δ 6= n − 1 and pn,δ = 1
2(n−1)

, if δ = n − 1. Figure 3.2 shows the behaviour of pn,δ
as a function of n and δ.

3.4 First order approximations for the δ-record

probability

The quantity pn,0 for the non-asymptotic setting and usual record probabilities in
the LDM was studied in [33] by means of first order Taylor approximations. Also, it
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was suggested in [120] to apply this methodology to δ-records in the CRM (Classical
Record Model). Here, we will develop this idea for the CRM and the LDM for the
case δ 6= 0.

First, we study the behaviour of the δ-record probability, pn,δ when the r.v. are
(Xn) are drawn from the CRM. We recall that in this setting

pn,δ = P

(
Xn >

n−1∨
i=1

Xi + δ

)
=

∫ ∞
−∞

F (x− δ)n−1F (dx). (3.17)

This last integral is usually not analytically solvable, so in order to compute it
for a wider range of distributions, we will explore the possibility of a first order
approximation for F (x− δ) at the point δ. Taking | δ |� 1, we have

F (x− δ) = F (x)− δf(x) +O(δ2),

and thus
F (x− δ)n−1 = F (x)n−1 − (n− 1)F (x)n−2δf(x) +O(δ2).

This expression, together with (3.17), yields

pn,δ =
1

n
− δ(n− 1)In +O(δ2), (3.18)

where

In :=

∫ ∞
−∞

F (x)n−2f(x)2dx.

Summarizing, δ(n−1)In plays the role of a first order correction term in the δ-record
probability for small δ.

Moreover, according to the definition of near-record in (1.2.4), and since the first
term 1/n is the usual record probability as pointed out in (1.1), we get the following
approximation for the near record probability for a� 1 taking a = −δ

pnearn,a = a(n− 1)In +O(a2).

Let us now consider the case where the r.v. of interest (Yn) follow the LDM.
Under this model the δ-record probability pn,δ was computed in (3.1). In this setting,
in addition to | δ |� 1, we take c ≈| δ | for simplicity, so that we can compute a
first order approximation around the points (cj − δ). Note that this condition also
implies that the approximation will only be valid for small n. For the terms in the
product in (3.1) we have

F (x+ cj − δ) = F (x) + f(x)(cj − δ) +O(δ2),

and so, for the whole product in (3.1) and after some algebra, we get

n−1∏
j=1

F (x+ cj − δ) = F (x)n−1 + F (x)n−2f(x)

(
c
n(n− 1)

2
− δ(n− 1)

)
+O(δ2),
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Finally, substituting this last expression in (3.1), we obtain, for fixed n,

pn,δ(c) =
1

n
+ (n− 1)

(cn
2
− δ
)
In +O(δ2), (3.19)

where the term In is the same as in the case of the CRM.

In order to study the performance of the approximations in the LDM, we define
the excess probability.

Definition 3.4.1. Let denote the excess probability En(c, δ) as pn,δ(c)−1/n, that is,
the difference between the probability of a δ-record in the LDM and the probability
of a usual record in the CRM.

Note that, unlike in the CRM case, in the LDM we do not have that (n −
1) (cn/2− δ) In is an approximation of the near-record probability, since part of it
corresponds to the contribution of the trend c to the usual record probability.

Some notes about the approximations.

The accuracy of these δ-record probability approximations has been assessed via
Montecarlo simulation. Nevertheless, the analytical expressions of the approxima-
tions illustrate some of the features of δ-record probabilities.

For instance, the approximation in both cases is consistent with the influence
of the parameters δ and c. Indeed, for increasing (decreasing) δ, the occurrence of
a δ-record is more difficult (easier), and the approximate probability will be lower
(higher). For the LDM, the influence of δ is the same as in the CRM, while for c
the behaviour is also consistent since, for a higher (lower) trend parameter c, the
occurrence of a δ-record will be easier (more difficult), and then the approximate
probability will be higher (lower).

Also, for the LDM, taking c ≈| δ |, there is not an interaction term between c and
δ, being the influence of δ of the same magnitude as in the CRM. Nevertheless, the
influence of c is of a higher order of magnitude, revealing that in order to facilitate
the appearance of δ-records it is better to increase the underlying trend than to
widen the δ-record condition varying the value of δ.

In terms

It is important to note that, although the computation of In cannot be guaranteed
to be analitically solvable, it avoids the problem that arises in the integrals (3.1)
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and (3.17), where there is a delay between the points appearing in the argument of
the cdfs F with respect to the pdf. Some In terms have been computed previously
in the literature, showing a relationship between these terms and the domains of
attraction of extreme values (see Section 1.3.4). In particular, the authors in [33],
find the following patterns:

• In the Fréchet class of heavy-tailed distributions they consider r.v. of the
Pareto family with pdf f(x) = µx−µ−11{x>1}. Computations yield

In ∝ n−2−1/µ

and thus In ∝ n−α, for a parameter α > 2.

• In ∝ ann
−2 with an growing at a slow logarithmic rate in the Gumbel class of

exponential-like tailed distributions.

For this chapter, we have computed the term In for another distribution in
the Gumbel class. More specifically, for the Gumbel distribution as defined in
Section 3.3.1. For this distribution we find that the term In is exactly n−2,
consistent with the results in [33] for other distributions in this family.

• In the Weibull class of distributions with a right endpoint they consider a
Beta(1, b) r.v. with b > 1/2, finding

In ∝ bΓ(2− 1/b)n−2+1/b,

and, in particular, In ∝ nα, α < 2. In this family we can include the case
where Xn is the Type III max-stable distribution as in example 3.3.2, where
we find In = n−1. This is not surprising since it is well know that the right
tail of this distribution behaves similarly to a uniform random variable in [0, 1]
which has In = (n− 1)−1.

3.4.1 Correction terms for the LDM and qualitative classi-
fication

In order to study the influence of c and δ on pn,δ(c), we define a correction term as

Cn(c, δ) = (n− 1)
(cn

2
− δ
)
In.

This corresponds to the main term of the excess probability En(c, δ) added by the
influence of c and δ to the usual record probability 1/n; see (3.19) and Definition
3.4.1.

We classify the behaviour of Cn(c, δ) depending on the growth rate of In, which
reveals a dependence on the extreme-value family as pointed above. The predicted
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Figure 3.3
Points: Estimations of the excess probability En(c, δ) via simulation with 108 iterations. Lines:
Cn(c, δ). Left: Results for the Pareto distribution in the LDM. Right: Results for the Gumbel
distribution in the LDM.
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behaviour of En(c, δ) arising from the classification below has been assessed via Mon-
tecarlo simulations for several values of c and δ, finding a good agreement between
the approximations and the simulations in all cases except for some distributions
with unbounded pdf in the Weibull class.

1. In ∝ n−α, α > 2 (Fréchet family). The correction term is

Cn(c, δ) ∝ c
1

2nα−2
− δ 1

nα−1
,

and thus the influence of c and δ vanishes quickly as n increases as it can be
seen in Figure 3.3 (left), where the exact value of Cn(c, δ) and the estimated (by
simulation) value of En(c, δ) have been displayed for the Pareto distribution.

2. In ∝ n−2, (Gumbel family). The correction term is

Cn(c, δ) ∝ c
1

2
− δ 1

n
.

This means that the dependence on δ is weak, while for two values c1, c2,
the difference between the correction terms should be proportional to (c2 −
c1)/2. We can observe this phenomenon in Figure 3.3 (right) for the Gumbel
distribution. For small parameter values, approximations are good, and the
expected difference induced by (c2 − c1)/2 is predicted fairly well, since the
proportionality constant is 1 in this case because In = n−2.
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Figure 3.4
Points: Estimations of the excess probability En(c, δ) via simulation with 108 iterations. Lines:
Cn(c, δ). Left: Results for the Beta(1, 2) distribution in the LDM. Right: Results for the Type
III max-stable distribution in the LDM.
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3. In ∝ n−α, 1 < α < 2 (Weibull family). The correction term is

Cn(c, δ) ∝ c
n2−α

2
− δ 1

nα−1
,

expecting an increasing influence of c and decreasing influence of δ as n in-
creases. Figure 3.4 (left) shows the results for the Beta(1, 2) distribution. It
can be observed that the influence of the δ parameter is negligible while the
approximations tend to be grouped by the value of the trend as expected.

4. In ∝ n−1, (Weibull family). The correction term is

Cn(c, δ) ∝ c
n

2
− δ,

revealing that while specially in the short term the influence of c is strong, the
effect of δ is a translation proportional to δ units. This is exactly the phenom-
ena shown in Figure 3.4 (right) for the Type III max-stable distribution, for
which In = n−1. The dependence on c is observed for the first observations.
The influence of δ induces a constant difference for two different values of δ.
This phenomena seems to be valid even in the limit.

5. In ∝ n−α, 0 < α < 1, (Weibull family). The correction term is

Cn(c, δ) ∝ c
n2−α

2
− δn1−α,
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which shows an increasing influence of both parameters as n grows. However,
simulations show that (3.19) is not accurate, at least for the distributions
that we have considered. The reason is that those distributions have a finite
right-endpoint and an unbounded pdf.

3.4.2 Conclusions about the approximations

In the CRM, our first order approximations seem to capture well the influence of
δ in pn,δ for small δ, even for not too small values of n. Moreover, we have found
an approximation for the near-record probability. We have chosen not to show any
plot for the CRM since estimations are very close to the approximations.

In the LDM, for moderate c and δ, estimations seems to have more variability
due to the existence of two sources of error. Also, while c has a greater influence
than δ, we can still find the effect of δ on the δ-record probability. This is confirmed
both via approximations and simulations.

We find that the qualitative behaviour predicted by the first order approxima-
tions fits reasonably well the simulation results in the small n regime. This behaviour
is still critically related to the different domains of attraction of extreme-values, and
among the considered distributions, we do not find two distributions from two dif-
ferent families with a similar behaviour. In particular, we find that heavy-tailed
distributions (Fréchet class) are the least influenced by the parameters c and δ,
which it is not surprising since these distributions tend to take large values more of-
ten. The Gumbel class is an intermediate case between the two other families, being
the Weibull the most dependent on the value of δ, except in the case where there is
an asymptote in the right-endpoint, which makes the approximation inaccurate.

3.5 Correlations

The indicators of δ-records are in general not independent in the case of i.i.d. random
variables, see [53]. In [123] the authors study the dependence of record events in the
LDM, by means of the following dependence index (δ = 0 in their case)

ln(c, δ) :=
P(obs. n and n+ 1 are δ-records)

P(obs. n is δ-record)P(obs. n+ 1 is δ-record)
=

E(1n,δ1n+1,δ)

E(1n,δ)E(1n+1,δ)
.

If the events are independent, then ln(c, δ) = 1. Otherwise, values greater or smaller
than 1 indicate positive or negative correlation, respectively. That is, neighbouring
δ-records tend to attract or repel each other, if ln > 1 or ln < 1.
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In order to manipulate E(1n,δ1n+1,δ) we consider the decomposition

E (1n,δ1n+1,δ) = E
(
1n,δ1n+1,δ1{Yn<Yn+1}

)
+ E

(
1n,δ1n+1,δ1{Yn>Yn+1}

)
, (3.20)

which, for δ < 0, can be written as

E(1n,δ1n+1,δ) =

∞∫
−∞

( ∞∫
s−c

n−1∏
j=1

F (s+ cj − δ)f(t)dt+

s−c∫
s−c+δ

n∏
j=2

F (t+ cj − δ)f(t)dt

)
f(s)ds

=

∞∫
−∞

(
(1− F (s− c))

n−1∏
j=1

F (s+ cj − δ) +

s−c∫
s−c+δ

n∏
j=2

F (t+ cj − δ)f(t)dt

)
f(s)ds,

(3.21)

and, for δ ≥ 0,

E(1n,δ1n+1,δ) =

∞∫
−∞

∞∫
s−c+δ

n−1∏
j=1

F (s+ cj − δ)f(t)dtf(s)ds

=

∞∫
−∞

(1− F (s− c+ δ))
n−1∏
j=1

F (s+ cj − δ)f(s)ds, (3.22)

since the second term in (3.20) vanishes.

As for E(1n,δ), it is not possible to explicitly compute E(1n,δ1n+1,δ), in general.
Nevertheless, it is still possible to describe the behaviour of the dependence index
in some particular and illustrative cases.

3.5.1 The Gumbel distribution

Example 3.5.1. Let c > 0 and F the Gumbel distribution, as in Section 3.3.1.
When δ < 0, elementary but lengthy computations yield

lim
n→∞

E(1n,δ1n+1,δ) =
(ec − 1)2(ec − eδ + 1)

(ec + eδ − 1)(e2c + eδ − 1)

and

l∞(c, δ) := lim
n→∞

ln(c, δ) =
(ec + eδ − 1)(ec − eδ + 1)

(e2c + eδ − 1)
.

By differentiating with respect to c, we see that l∞(c, δ) is decreasing in c and
bounded below by 1, since limc→∞ l∞(c, δ) = 1. With respect to δ we find that the
derivative ∂l∞

∂δ
vanishes at

δ = log(1− e2c +
√
e4c − e2c),
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Figure 3.5
Dependence index l∞(c, δ) for the Gumbel distribution.
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and then, for any c,

max
δ<0

l∞(c, δ) =
2e2c

(√
e2c(e2c − 1)− e2c + 1

)√
e2c(e2c − 1)

= 2
(
e2c −

√
2e3c sinh (c)

)
.

Note also that limδ→−∞ l∞(c, δ) = 1.

For δ ≥ 0,

lim
n→∞

E(1n,δ1n+1,δ) =
ec(ec − 1)2

(ec + eδ − 1)(ec+δ − ec + e2c − eδ + e2δ)

and

l∞(c, δ) =
ec(ec + eδ − 1)

ec+δ − ec + e2c − eδ + e2δ
.

We note that l∞(c, δ) = 1, ∀c > 0, if δ = 0, which results in the asymptotic
independence of consecutive record indicators in the LDM. Also, there are no critical
points for the index when δ ≥ 0. So, in this case l∞(c, δ) is increasing in c with
limc→∞ l∞(c, δ) = 1, and decreasing in δ, with limδ→∞ l∞(c, δ) = 0, as can be seen
in Figure 3.5. Gathering these results, we conclude that l∞(c, δ) > 1 if and only
if δ < 0. The asymptotic independence for records (δ = 0) was proved in [14]; we
have shown here that δ-records attract each other for δ < 0 and repel each other for
δ > 0.

3.5.2 The Pareto distribution

Example 3.5.2. Let c = 1 and F be as in (3.9). The probability of δ-record is
given in (3.16). For E(1n,δ1n+1,δ) and n > 2, we use (3.21) for δ < 0 and (3.22) for
δ ≥ 0. Computations of ln(c, δ) are cumbersome so we omit the details. The explicit
expression of ln(1, δ) is shown below as a function of δ.

1. If δ < 0,

ln(1, δ) =
B + C

A
,
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Figure 3.6
Dependence index ln(1, δ) for the Pareto distribution as a function of δ and n.
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where a = n− δ, A = (δ − 2)(δ(1− a) + (n− 1) log a)(n log(a+ 1)− δa),

B = −
(
δ3(n− 2) + δ − 2n3 − 2δ2(n2 − 2) + δ(n− 1)(n+ 5)n+ n+ 1

)
log(a+ 1),

C = (a−1) log(a+1−δ)−(δ−2)a
(
δ(a− 1)2 − (n− 1)a log(4a)

)
+(1−a) log((a−δ+1)(a+1)).

2. If 0 < δ < 1,

ln(1, δ) =
a2(B + C)

A
,

where a = n− δ, A = (δ − 1)2(δ − a)(δ(1− a) + (n− 1) log a)(−δa+ n log(a+ 1)),

B = (a− δ)
(

(δ − 1)(δ2(a− 1) + (δ − 1)(n− 1) log

(
a− δ + 1

(2− δ)a

))
,

C = − log(2− δ)(δ(δ + 2)− 2δn+ n− 1)
)

+ (δ − 1)2(n− 1) log(a− δ + 1).

3. If δ = 1,

ln(1, 1) =
(n− 1)2((n− 2)n− 2(n− 1) log(n− 1))

2(n− 2)(−n+ (n− 1) log(n− 1) + 2)(−n+ n log(n) + 1)
.

4. Finally, if δ > 1, and δ /∈ {n/2, n, n + 1} (otherwise, the values of the index are
given by the continuous extension at these points),

ln(1, δ) =
a2(B + C)

A1A2

,

where a = n− δ, A1 = (δ+ log δ−n log δ−n+ (n− 1) log(n− 1) + 1)(δ− 1)2(δ−a),

A2 = (δ − n log δ − n+ n log n),

B = (log δ)
(
2δ(δ2 + 2δ − 1) + (2δ − 1)n2 − 5δ2n+ n

)
,

C = (δ− 1)2(n− 1) log(n− 1)− (a− 1)
(
(δ− 1)(δ− a) + (2δ− 1) log(2δ− 1)(a− 1)

)
.
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As a consequence of these results, we have

lim
δ→−∞

ln(1, δ) = 1

and

lim
δ→∞

ln(1, δ) = 1− log(2) ≈ 0.3069,

for every n > 1.

Also, limn→∞ ln(1, δ) = ∞ for all δ ∈ R, that is, δ-record-attraction grows un-
boundedly, as n increases. Moreover, it can be proved that ln(1, δ) ∼ C n

(logn)2 as
n→∞, where C is a constant depending on δ.

The sublinear growth of ln(1, δ) as n increases can be observed in the right panel
of Figure 3.6, for different values of δ, as well as the decrease in δ. Also, for fixed n
(left panel of Figure 3.6), there is a negative value of δ where the correlation reaches
a maximum, as in the Gumbel case. Note that, for negative and small positive
values of δ, ln(1, δ) > 1, while, for large values of δ, ln(1, δ) < 1.

3.6 Asymptotic behaviour of Nn,δ

In Sections 3.2 and 3.3 we have presented properties of the probability that obser-
vation n is a δ-record. In this section we analyze the random variable Nn,δ, defined
as the number of δ-records among the first n observations, and study its behaviour
as n→∞.

Depending on F , c and δ, it might be the case that only finitely many δ-records
are observed. We give necessary and sufficient conditions for this to happen. On
the other hand, if Nn,δ grows to infinity, we investigate if the ratio Nn,δ/n converges
(in a certain stochastic sense) to pδ and, in that case, how the fluctuations of Nn,δ/n
around pδ are distributed.

Recall that, in the Classical Record Model (c = 0), the number of records Nn,0

grows to infinity, and there are universal results ensuring that, for any continuous
F , Nn,0/ log n converges to 1, almost surely and (Nn,0− log n)/(log n)1/2 has, asymp-
totically, a standard Gaussian distribution. However, when δ 6= 0, results in [53]
and [54] for the model with c = 0, show that Nn,δ may grow to a finite limit and,
when it diverges, the corresponding limit laws depend both on δ and F . We begin
by analyzing the situation where Nn,δ has a finite limit.
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3.6.1 Finiteness of the total number of δ-records

Let N∞,δ = lim
n→∞

Nn,δ be the total number of δ-records along the sequence (Yn)n≥1.

In this section we find necessary and sufficient conditions for the finiteness of N∞,δ
and E(N∞,δ). Clearly, these questions are related to the asymptotic behaviour of
pn,δ. If pδ > 0, then we can expect N∞,δ =∞. On the other hand, if pδ = 0, it may
happen that Nn,δ grows sublinearly to ∞ or N∞,δ <∞.

In Theorem 3.6.4, we give a complete characterization of the (almost sure) finite-
ness of the number of δ-records depending on c, δ and the cdf F . To that end, we
first prove the following results.

Proposition 3.6.1. Let c = 0 and δ > 0. The following conditions are equivalent:

(a) N∞,δ <∞,

(b) E(N∞,δ) <∞,

(c) ∫ ∞
0

1− F (x+ δ)

(1− F (x))2
f(x)dx <∞.

Proof. It is clear that Yn is a δ-record if and only if eXn > eδ max{eX1 , . . . , eXn−1}.
That is, if the n-th observation in the sequence (eXn)n≥1 is a geometric record, with
parameter k = eδ, according to [54]. In Section 2.1.1 of that paper, it is shown that
the total number of geometric records, in a sequence of i.i.d. random variables, with
cdf G, is finite if and only if∫ ∞

1

1−G(kx)

(1−G(x))2
dG(x) <∞. (3.23)

Moreover, in Section 2.3.4 of that paper, it is shown that (3.23) is equivalent to
the finiteness of the expectation of the total number of geometric records. Since
G(x) = F (log(x)), the result is proved.

Lemma 3.6.2. 1. If c < 0, x− > −∞ and µ+ <∞, then E(N∞,δ) <∞, ∀δ ∈ R.

2. Let X̃1 be a random variable with cdf G, and (X̃n)n≥2 an i.i.d. sequence,
independent of X̃1, with common cdf F , such that G(x) ≤ F (x), ∀x. Let
Ỹn = X̃n + cn, n ≥ 1. Then, if c < 0,

E

(
∞∑
j=1

1{Ỹj>∨j−1
i=1 Ỹi+δ}

)
≤ E(N∞,δ).
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Proof. (i) First we bound pn,δ(c) as follows

pn,δ(c) =

∫ ∞
−∞

n−1∏
j=1

F (x+ cj − δ)f(x)dx

=

∫ ∞
−∞

n−1∏
j=1

F (x+ cj − δ)1{x+c(n−1)−δ>x−}f(x)dx

=

∫ ∞
x−−c(n−1)+δ

n−1∏
j=1

F (x+ cj − δ)f(x)dx

≤ 1− F (x− − c(n− 1) + δ).

So,
∑n

j=1 pj,δ ≤
∑n

j=1(1− F (x− − c(j − 1) + δ)) yielding

E(N∞,δ) ≤
∞∑
j=1

(1− F (x− − c(j − 1) + δ)) <∞,

since µ+ <∞.

(ii) It suffices to check that the δ-record probability for the Ỹn fulfills

E
(

1{Ỹj>∨j−1
i=1 Ỹi+δ}

)
=

∫ ∞
−∞

G(x+ c− δ)
j−1∏
i=2

F (x+ ci− δ)f(x)dx

≤
∫ ∞
−∞

j−1∏
i=1

F (x+ ci− δ)f(x)dx = pj,δ(c). �

Proposition 3.6.3. If c < 0 and µ+ <∞, then E(N∞,δ) <∞.

Proof. It suffices to consider δ < 0, since the number of δ-records is decreasing with
δ. Also, we take x− = −∞ as, otherwise, the result follows from Lemma 3.6.2 (i).
Moreover, since there exists c1 ∈ R such that P(Xn + c1 > 0) > 0, and the number
of δ-records is the same for the sequences Yn = Xn + cn and Ỹn = Xn + cn+ c1, we
assume without loss of generality that P(Xn > −δ) > 0.

Let N = inf{n ∈ N | Xn > −δ}, then N is a geometric random variable and

N∞,δ =
N∑
j=1

1j,δ +
∞∑

j=N+1

1j,δ =
N∑
j=1

1j,δ +
∞∑

j=N+1

1j,δ1{Xj>0}.

For j > N , let 1̃j,δ = 1{Xj>∨j−1
i=N (Xi+c(i−j)+δ)}1{Xj>0}, then

1j,δ1{Xj>0} = 1{Xj>∨j−1
i=1 (Xi+c(i−j)+δ)}1{Xj>0} ≤ 1̃j,δ.
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Note that the 1̃j,δ, defined for j > N , are the δ-record indicators of the sequence
{XN , XN+11{XN+1>0} + c,XN+21{XN+2>0} + 2c, . . . }. Now, taking expectations we
have

E(N∞,δ) ≤
1

P(X1 > −δ)
+
∞∑
i=1

E(1̃i,δ) <∞,

since the last sum is bounded by Lemma 3.6.2 (ii).

Theorem 3.6.4. N∞,δ <∞ a.s. if and only if one of the following conditions holds

1. c < 0 and µ+ <∞,

2. c = 0, δ > 0 and
∫∞

0
1−F (x+δ)
(1−F (x))2f(x)dx <∞,

3. c > 0 and x+ − x− ≤ δ − c.

Moreover, N∞,δ <∞ a.s. if and only if E(N∞,δ) <∞.

Proof. Since, by Theorem 3.2.2, the positivity of pδ is linked to the finiteness of µ+,
we split the analysis into two cases:

1. µ+ =∞. In this situation, N∞,δ =∞ a.s. for any c, δ ∈ R.

To check this assertion, we first prove that Mn := max{Y1, . . . , Yn} → ∞. Ob-
serve that µ+ =∞ implies x+ =∞ and

∞∑
n=1

P(Yn > a) =
∞∑
n=1

P(Xn > a− cn) =
∞∑
n=1

(1− F (a− cn)) =∞, ∀a ∈ R. (3.24)

From (3.24) and the second Borel-Cantelli lemma, we conclude that Yn > a infinitely
often (i.o.), for any a, and so, Mn → ∞, with probability one. This fact clearly
implies N∞,0 =∞. Now, since, for δ < 0, N∞,δ ≥ N∞,0, we get N∞,δ =∞. On the
other hand, for δ > 0, the event

{Xn + (c− δ)n > max
1≤j≤n−1

{Xj + (c− δ)j}} implies {Xn + cn > max
1≤j≤n−1

{Xj + cj}+ δ},

that is, 1n,0(c− δ) ≤ 1n,δ(c). Therefore, N∞,δ(c) ≥ N∞,0(c− δ) =∞.

2. µ+ <∞. We distinguish three scenarios depending on the sign of c.

If c > 0, we first assume x+ − x− > δ − c. In this case, we have pδ > 0 and
N∞,δ = ∞ is an immediate consequence of the law of large numbers in Theorem
3.6.7 below. If x+−x− ≤ δ−c, only the first observation will be a δ-record as shown
in the proof of Theorem 3.2.2, so N∞,δ = 1.
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If c = 0 and δ ≤ 0, then N∞,δ =∞, since N∞,δ ≥ N∞,0 =∞. If c = 0 and δ > 0,
the situation is more complicated. In fact N∞,δ <∞ if and only if∫ ∞

0

1− F (x+ δ)

(1− F (x))2
f(x)dx <∞,

which is also equivalent to E(N∞,δ) < ∞, as it is shown in Proposition 3.6.1 by
relating this question to the counting process of geometric records.

If c < 0, we proceed as in (3.24) to obtain

∞∑
n=1

P(Yn > a) =
∞∑
n=1

P(X1 > a− cn) <∞, ∀a ∈ R,

where the last inequality follows from µ+ <∞. Thus, the first Borel-Cantelli lemma
ensures that P(Yn > a i.o.) = 0, for all a ∈ R, so Yn → −∞. Then, there exists a
random variable N <∞ such that limn→∞Mn = MN and, consequently, N∞,δ <∞.
In this case, we can also prove that E(N∞,δ) <∞; see Proposition 3.6.3.

Remark 3.6.5. Theorem 3.6.4 answers a conjecture posed in [33], stating that the
expected number of records (δ = 0) in the LDM, with negative trend, remains finite,
based on the observed exponential decay of pn, in a particular case. We have shown
that the conjecture holds if and only if µ+ <∞.

3.6.2 Growth of Nn,δ to infinity

Now that we have completely characterized the asymptotic finiteness of the number
of δ-records in the LDM, we turn our attention to the case N∞,δ = ∞. More
precisely, we are interested in the convergence of the proportion of δ-records to pδ.

For records (δ = 0) it was shown in [8] and [9] that Nn,0/n → p0 and that
fluctuations of Nn,0 around p0 are asymptotically Gaussian. We show here that
these results carry over to the case of δ 6= 0. As in the aforementioned works, we
assume µ+ < ∞ and c > 0 and, additionally, that x+ − x− > δ − c. Note that, by
Theorems 3.2.2 and 3.6.4, we have pδ > 0 and N∞,δ =∞.

Bilateral version of the LDM.

In order to work with a stationary process, we consider a bilateral version of the
LDM defined as in (1.2), but letting n ∈ Z instead of n ∈ N.

Associated to this model, we will write Mn for the maximum up to the n-th
observation starting at an observation indexed by 1, in contraposition with the
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starred M∗
n where the maximum is taken up to the n-th observation in the double-

ended sequence:

Mn :=
n∨
i=1

Yi, M∗
n :=

∨
i≤n

Yi.

In the same way, given n ∈ N, the random variables 1n,δ, will represent the
occurrence of a δ-record over the single-ended sequence

1n,δ =

{
1 if Yn > Mn−1 + δ,

0 otherwise.
(3.25)

while, for n ∈ Z, 1∗n,δ will be the analogous over the double-ended one

1∗n,δ =

{
1 if Yn > M∗

n−1 + δ,

0 otherwise.
(3.26)

The sum of these indicators will be the total number of δ-records at time n, Nn,δ

and N∗n,δ, both quantities starting at point 1 just changing the definition of δ-records

Nn,δ =
n∑
j=1

1j,δ, N∗n,δ =
n∑
j=1

1∗j,δ. (3.27)

We first prove the following Law of Large Numbers for the number of δ-records
up to time n in the LDM. In order to prove this result, we will require the Birkhoff’s
Ergodic Theorem which we state for completeness.

Lemma 3.6.6. (Birkhoff’s Ergodic Theorem) Let X = (X1, X2, . . . ) be a stationary
(strict sense) ergodic random sequence with E(| X1 |) <∞. Then

lim
n→∞

1

n

n∑
k=1

Xk = E(X1) a.s. and in L1.

Proof. See [103] page 385, Theorem 3.

Theorem 3.6.7. Assume µ+ <∞, c > 0 and x+ − x− > δ − c. Then, as n→∞,

Nn,δ/n→ pδ a.s.

and

E(Nn,δ/n)→ pδ.
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Proof. It is clear that

lim
n→∞

P(Yn > a) = lim
n→∞

P(Xn > a− cn) = 1, ∀a ∈ R,

thus Yn →∞ and Mn →∞ a.s. Also, since µ+ <∞, it is known by a Borel-Cantelli
argument that M∗

0 <∞ a.s. Gathering these facts, we know that ∃ 0 < N <∞ a.s.
such that 1∗N,0 = 1 almost surely. From the definition of 1∗n,0, given n ∈ N we have
1n,0 ≥ 1∗n,0, and so 1N,0 = 1 a.s., entailing M∗

n = Mn and 1n,δ = 1∗n,δ a.s. ∀n > N .
So,

∞∑
k=N+1

1k,δ =
∞∑

k=N+1

1∗k,δ a.s.

Also, we know that 1∗n,δ is a strictly stationary and ergodic sequence. Applying
Birkhoff’s Ergodic Theorem we have

lim
n→∞

N∗n,δ
n

= lim
n→∞

1

n

n∑
k=1

1∗k,δ = E(1∗0,δ) a.s.

Now, let (an)n≥1 be a real sequence diverging to ∞. Then∣∣∣∣Nn,δ −N∗n,δ
an

∣∣∣∣ ≤ ∣∣∣∣Nan
∣∣∣∣→ 0 a.s.

since N does not depend on n. Finally, since
∣∣∣Nn,δ−N∗n,δn

∣∣∣ → 0 a.s. and
N∗n,δ
n
→

E(1∗0,δ) a.s., we have
Nn,δ
n
→ E(1∗0,δ) a.s. Finally, E(1∗0,δ) can be written as the rhs in

(3.2), yielding E(1∗0,δ) = pδ(c).

Convergence in L1 follows from the Dominated Convergence Theorem (see for
example [5], result 1.6.9).

Some related results can be obtained from the proof of Theorem 3.6.7. Let
us now consider δ-record times in the LDM as defined in Definition 1.2.7 for the
sequence (Yn).

Theorem 3.6.8. Under the hypothesis of Theorem 3.6.7, we have n−1Ln(δ)→ p−1
δ

as n→∞ a.s. and in L1.

Proof. Since by definition we have NLn(δ),δ = n, and NLn(δ),δ/Ln(δ) = pδ by Theorem
3.6.7 a.s. and in L1, the result holds since pδ > 0.

Remark 3.6.9. As it can be seen in the proof of Theorem 3.6.7, the assumption
on independence of the Xn can be relaxed to stationary and ergodic and prove that
Nn,δ/n → E(1∗0,δ). This is useful because it allows to deal with a wider range of
scenarios, including stationary autoregressive-moving-average (ARMA) processes.
Note, however, that E(1∗0,δ) could differ from pδ in (3.2).
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A proof of Gaussian convergence for the number of δ-records, based on the ideas
in [8], is not straightforward. The main problem arises when considering the joint
probability of two observations being δ-records. While in the case of records this
quantity can be explicitly written as follows

E(1i,01i+m,0) =

∫ ∞
−∞

i−1∏
k=1

F (y + ck)

∫ ∞
y−cm

m−1∏
j=1

F (s+ cj)f(s)dsf(y)dy,

in the setting δ 6= 0 there is no such analytical expression. In order to solve this
problem we introduce the following general bounds, which do not depend on the
specification of the model for the sequence (Yn)n≥1.

Proposition 3.6.10. Let (Yk)k∈Z be a sequence of random variables and consider the

events A =

{
i−1∨

k=−∞
Yk + δ < Yi

}
, B=

{
i+m−1∨
k=i+1

Yk + δ < Yi+m

}
, C = {Yi − δ < Yi+m}

and E = {Yi + δ < Yi+m}. Then, if δ ≤ 0,

a1) P(A ∩B ∩ C) ≤ E(1∗i,δ1
∗
i+m,δ)

and

a2) P(A ∩B ∩ E) ≥ E(1∗i,δ1
∗
i+m,δ).

Also, if δ ≥ 0,

b) P(A ∩B ∩ E) = E(1∗i,δ1
∗
i+m,δ).

Proof. a1) Note that 1∗j,δ is the indicator of Dj =

{
j−1∨

k=−∞
Yk + δ < Yj

}
, j = i, i+m.

Then we must show that A ∩B ∩ C ⊆ Di ∩Di+m.

First, it is clear that A = Di. Also, observe that C ⊆ E and that A ∩ C ⊆{
i−1∨

k=−∞
Yk + δ < Yi+m

}
, since δ ≤ 0. From the inclusions above we have

A ∩B ∩ C ⊆

{
i−1∨

k=−∞

Yk + δ < Yi+m

}
∩ E ∩B = Di+m

and the conclusion follows.

a2) Trivial.

b) It is clear that Di ∩ Di+m ⊆ A ∩ B ∩ E and that A ∩ B ∩ E ⊆ Di, because
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A = Di. Also, since δ ≥ 0, we have A ∩ E ⊆
{

i−1∨
k=−∞

Yk + δ < Yi+m

}
, so

A ∩B ∩ E ⊆

{
i−1∨

k=−∞

Yk + δ < Yi+m

}
∩ E ∩B = Di+m,

which completes the proof.

Note that, although it is unnecessary in our setting, the reverse a1) inequality in
Proposition 3.6.10 also holds for δ ≥ 0. Under the assumptions of the LDM, the lhs
of the first two bounds in the previous proposition have analytical expressions. The
strategy to prove Gaussian convergence is to work with the corresponding bounds
of E(1i,δ1i+m,δ), which are shown to be tight enough to achieve our purpose. So,
with this result we slightly modify the necessary bounds and rebuild the martingale
approach in [8], to prove convergence to the Gaussian distribution.

Theorem 3.6.11. Suppose that
∫∞

0
x2f(x)dx <∞ and let c > 0, δ ∈ R, such that

pδ > 0. Then, as n→∞,

√
n(n−1Nn,δ(c)− pδ(c))

D→ N(0, σ2
δ (c)),

where

σ2
δ (c) = pδ(c)− p2

δ(c) + 2
∞∑
m=1

(E(1∗i,δ1
∗
i+m,δ)− p2

δ(c)). (3.28)

Proof. For simplicity, we only consider the case δ ≤ 0 since the case δ > 0 is
analogous. We assume −2δ < x+ as, otherwise, we can define X ′n = Xn+(−3δ−x+),
n ≥ 1; the number of δ-records in both models is the same and −2δ < x′+, where
x′+ is the right-end point of X ′n.

The proof is split into several steps.

1) We claim that

0 ≤ pn,δ − pδ ≤ c−1

∫ ∞
c(n−1)/2−δ

(1− F (s))ds+ F (−δ)b(n−1)/2c. (3.29)

The first inequality follows from

pn,δ − pδ =

∫ ∞
−∞

(
n−1∏
j=1

F (y + cj − δ)−
∞∏
j=1

F (y + cj − δ)

)
f(y)dy ≥ 0.
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For the second, let u =
n−1∏
j=1

F (y+ cj − δ) and v =
∞∏
j=1

F (y+ cj − δ). Then, from the

elementary inequality u− v ≤ u− uv, we have

pn,δ − pδ ≤
∫ ∞
−∞

u(1− v)f(y)dy. (3.30)

The integral in the rhs of (3.30) is split into two terms A,B, that we bound. Let

A =
∫ −c(n−1)/2

−∞ u(1− v)f(y)dy and B =
∫∞
−c(n−1)/2

u(1− v)f(y)dy, then

A ≤
∫ −c(n−1)/2

−∞

n−1∏
j=1

F (−c(n− 1)/2 + cj − δ)f(y)dy

≤
n−1∏
j=1

F (c(j − (n− 1)/2)− δ)

≤
b(n−1)/2c∏

j=1

F (c(j − (n− 1)/2)− δ)

≤
b(n−1)/2c∏

j=1

F (−δ) = F (−δ)b(n−1)/2c. (3.31)

For B we have

B ≤
∫ ∞
−c(n−1)/2

(
1−

∞∏
j=n

F (y + cj − δ)

)
f(y)dy

≤
∫ ∞
−c(n−1)/2

∞∑
j=n

(1− F (y + cj − δ))f(y)dy

≤
∫ ∞
−c(n−1)/2

(∫ ∞
z=n−1

(1− F (y + cz − δ))dz
)
f(y)dy

≤
∫ ∞
−c(n−1)/2

(
c−1

∫ ∞
−c(n−1)/2+c(n−1)−δ

(1− F (s))ds

)
f(y)dy

≤ c−1

∫ ∞
c(n−1)/2−δ

(1− F (s))ds. (3.32)

So, from (3.31) and (3.32), (3.29) holds.

2) Let rm,δ = E(1∗i,δ1
∗
i+m,δ), which is well defined since it does not depend on i. We
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bound rm,δ by applying Proposition 3.6.10 as follows:

rm,δ = P (Yi, Yi+m are δ-records)

= P

(
Yi >

∨
l<i

Yl + δ, Yi+m >
∨

l<i+m

Yl + δ

)

≤ P

(
Yi >

∨
l<i

Yl + δ, Yi+m >
m−1∨
l=1

Yi+l + δ, Yi+m > Yi + δ

)

=

∫∫
y<s+cm−δ

∞∏
j=1

F (y + cj − δ)
m−1∏
i=1

F (s+ ci− δ)f(s)dsf(y)dy.

If rm,δ ≥ p2
δ , we apply the Fubini-Tonelli theorem, as well as the triangle inequal-

ity, to obtain

|rm,δ − p2
δ| ≤

∣∣∣∣∣
∫∫

y<s+cm−δ

∞∏
j=1

F (y + cj − δ)
m−1∏
i=1

F (s+ ci− δ)f(s)dsf(y)dy − p2
δ

∣∣∣∣∣
≤A+B,

where

A =

∫ ∞
−∞

∞∏
j=1

F (y + cj − δ)

∣∣∣∣∣
∫ ∞
−∞

m−1∏
i=1

F (s+ ci− δ)f(s)ds− pδ

∣∣∣∣∣ f(y)dy

and

B =

∫ ∞
−∞

∞∏
j=1

F (y + cj − δ)
∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)dsf(y)dy.

Since variables are separated in A and applying the first step of this proof

A ≤
∫ ∞
−∞

m−1∏
j=1

F (s+ cj − δ)f(s)ds− pδ

≤ c−1

∫ ∞
c(n−1)/2−δ

(1− F (s))ds+ F (−2δ))b(m−1)/2c. (3.33)
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While for B we have

B =

∫ cm/2

−∞

∞∏
j=1

F (y + cj − δ)
∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)dsf(y)dy

+

∫ ∞
cm/2

∞∏
j=1

F (y + cj − δ)
∫ y−cm+δ

−∞

m−1∏
i=1

F (s+ ci− δ)f(s)dsf(y)dy

≤
∫ −cm/2+δ

−∞

m−1∏
j=1

F (s+ cj − δ)f(s)ds

∫ cm/2+

−∞

∞∏
j=1

F (y + cj − δ)f(y)dy

+

∫ ∞
cm/2

∞∏
j=1

F (y + cj − δ)f(y)dy

≤
m−1∏
j=1

F (−cm/2 + cj) + 1− F (cm/2)

≤F (−2δ)b(m−1)/2c + 1− F (cm/2). (3.34)

Analogously, applying the corresponding bound in Proposition 3.6.10, we get the
same conclusion if rm,δ ≤ p2

δ via (3.33) and (3.34), so

|rm,δ − p2
δ| ≤ c−1

∫ ∞
c(m−1/2−δ)

(1− F (s))ds+ 2F (−2δ)b(m−1)/2c + 1− F (cm/2).

(3.35)

3) Since
∫∞

0
x2f(x)dx <∞, it is easy to check, from (3.35), that the series

∑∞
m=1 |rm,δ−

p2
δ| converges; for F (−2δ)b(m−1)/2c convergence holds since F (−2δ) < 1.

4) Using the strategy in the proof of Theorem 3.6.7, we get the following convergence
in distribution

√
n(n−1Nn,δ − n−1N∗n,δ)

D→ 0. (3.36)

5) Theorem 5.2 in [62] is applied to the N∗n,δ in order to transfer the asymptotic
normality to Nn,δ, as a consequence of (3.36). This martingale result guarantees
convergence to the Gaussian distribution, if the next two conditions hold:

1.
∑∞

k=1 E(ξk,δE(ξl,δ|M0)) converges ∀l ≥ 0.

2. liml→∞
∑∞

k=K E(ξk,δE(ξl,δ|M0)) = 0 uniformly in K ≥ 1.

where ξk,δ = 1∗k,δ − pδ and M0 is a certain sub-σ-algebra of events of the original
probability space (see [62], page 128, for details). Moreover we have
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lim
n→∞

n−1E

( n∑
i=1

ξi,δ

)2
 = σ2

δ .

Given that the hypothesis δ 6= 0 does not imply any extra difficulty in the
application of this theorem, we omit the verification of these two conditions since
the adaptation of this part of the proof is straightforward following the lines of
[8].

3.7 A Law of Large Numbers for δ-records with

Random Trend

In this section we consider a generalization of the LDM. The first model extending
the LDM can be found in [9], where the i.i.d. assumption is relaxed to strict station-
arity. In this regard Remark 3.6.9 already pointed that the Law of Large Numbers
that it is shown in Theorem 3.6.7 can be generalized to this setting.

In 2015, the authors in [56] studied the asymptotic behaviour of record appear-
ances from a Random Trend Model that can be written as

Yn = Xn + Tn, (3.37)

where Tn :=
∑n

k=1 τk, n ≥ 1 is an stochastic drift process with ergodic stationary
increments, and (Xn, τn+1) is a bivariate, strictly stationary and ergodic sequence
and 0 < c := E(τ1) <∞ appears as the mean increment or slope of the trend. Also,
we assume E(X+

1 ) <∞ where x+ := x ∨ 0, that is, we have µ+ <∞.

It is easy to check that the expression in (3.37) represents a flexible model that
comprises the LDM, its correspondent generalisation pointed in Remark 3.6.9 and
studied in [9], and also other models like some drifted random walks.

Note that, while the decomposition Yn = X
′
n+cn with X

′
n := Xn+Tn−cn could

be done, it does not eliminate the random trend including it into the residuals of
the LDM because X

′
n is not stationary in general. Finally, we remark that (Xn) and

(τn) are allowed to be dependent as long as they have a finite expectation.

The result presented in this section may be considered an extension of the anal-
ogous results in [53], devoted to the i.i.d. case, and in [56], where the asymptotic
record rate for a model with random trend is proved. Moreover, for the particular
case δ = 0, our proof is much simpler than the one given in [56].

For theoretical purposes, we are interested in working in a similar framework
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to the bilateral version of the LDM in Section 3.6.2, which is legitimate since any
stationary single-ended sequence can be extended to a double-ended one. That is,
we can consider the indices as defined in Z yielding the model in (3.37) to

Yn = Xn + Tn, (3.38)

where Tn :=
∑n

k=1 τk, for n ≥ 1 and, Tn := τ1 −
∑0

k=n τk, given n ≤ 0. Also,
as in (3.37), (Xn, τn+1) is a bivariate, strictly stationary and ergodic sequence and
0 < c = E(τ1) <∞.

Associated to this model and in the same way that for the bilateral version of
the LDM, we define, for n ∈ Z,

M∗
n = max{Yi : i ≤ n}, 1∗n,δ = 1{Yn>M∗n−1+δ},

where we will see later that M∗
n <∞ for all n ∈ Z. Also, for n ∈ N,

N∗n,δ =
n∑
k=1

1∗k,δ,

being the non-starred version of these quantities as in the LDM but over the se-
quences defined in (3.38).

In the proof of the Law of Large Number, we will make use of the Dubins-
Freedman Strong Law that we state next.

Lemma 3.7.1. (Dubins-Freedman strong law) Let (Un)n≥1 be a sequence of nonneg-
ative and bounded random variables, adapted to the increasing family of σ-algebras
(Gn)n≥0. Then {∑

n≥1

Un =∞
}

=

{∑
n≥1

E(Un | Gn−1) =∞
}
a.s.

and ∑n
k=1 Uk∑n

k=1 E(Uk | Gk−1)
→ 1 on

{∑
n≥1

E(Un | Gn−1) =∞
}
a.s.

Proof. See [24].

Finally, we are able to prove the next Law of Large Numbers for the number of
δ-records, or equivalently, for the asymptotic δ-record rate.

Theorem 3.7.2. If δ ≤ 0, for the Random Trend Model it holds that

Nn,δ

n
→ E(1∗1,δ) = P

(
X1 >

∨
k≥1

{
X1−k −

1∑
j=2−k

τj

}
+ δ

)
> 0

both a.s. and in L1 as n→∞.
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Proof. The proof is organized in six steps. The proof of Mn → ∞ in 1 below and
that of 2 are the same as in Lemma 1 and Proposition 1 of [56], but we include it
here for completeness.

1. Mn →∞ and Nn,δ →∞ a.s. as n→∞.

Since Mn is an increasing sequence by construction, it either converges to a
finite limit or diverges to ∞ a.s. Also, we have ∀a ∈ R

P(Mn > a) ≥ P(Xn > a− Tn)

≥ P(Xn > a− nc/2, Tn ≥ nc/2)→ 1,

in view of P(Xn > a−nc/2) = P(X0 > a−nc/2)→ 1 and P(Tn ≥ nc/2)→ 1,
by Birkhoff’s Theorem. Thus, Mn →∞, and then Nn,0 →∞.

Since 1n,0 ≤ 1n,δ ∀n ∈ N and δ ≤ 0, the result is straightforward.

2. P
(∨

k≥1{Xn−k −
∑n

j=n+1−k τj} ∈ R
)

= 1 and M∗
n <∞ a.s. for all n ∈ Z.

Stationarity will guarantee the result if we prove that

P

(
X−k >

0∑
j=−k+1

τj, i.o.

)
= 0.

We know by Birkhoff’s Theorem that P
(∑0

j=−k+1 τj ≤ kc/2, i.o.
)

= 0, thus

P
(
X−k >

0∑
j=−k+1

τj i.o.

)
≤ P

(
X−k > kc/2 i.o.

)
= P

(
X0 > kc/2 i.o.

)
for k ≥ 1.

Also, since E(X+
0 ) < ∞ we know

∑∞
k=1 P(X0 > kc/2) < ∞ and the result

holds by the Borel-Cantelli lemma.

3. ∃ 0 < N <∞ a.s. such that M∗
n = Mn and 1n,δ = 1∗n,δ a.s. ∀n > N .

As a consequence of the previous result, we have

P

(∨
k≥1

{
Xn−k −

n∑
j=n+1−k

τj

}
∈ R

)
= 1 ∀n ∈ Z,

which together with Mn →∞ imply that ∃ 0 < N <∞ a.s. such that 1∗N,0 = 1
almost surely. Also, given n ∈ N we have 1n,0 ≥ 1∗n,0 by construction, and thus
1N,0 = 1 a.s. Now, we trivially have M∗

n = Mn and 1n,δ = 1∗n,δ a.s. ∀n > N .
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4. E(1∗1,δ) > 0 if δ ≤ 0.

Knowing that E(1∗1,δ) ≥ E(1∗1,0) by definition, it suffices to check E(1∗1,0) > 0.

Let us assume E(1∗1,0) = P
(
X1 >

∨
k≥1{X1−k −

∑1
j=2−k τj}

)
= 0, then

P

(
X1 >

∨
k≥1

{
X1−k −

1∑
j=2−k

τj

} ∣∣∣ F0

)
= 0 a.s.

and so stationarity implies

P

(
Xn >

∨
k≥1

{
Xn−k −

n∑
j=n+1−k

τj

} ∣∣∣ Fn−1

)
= 0 a.s. ∀n ∈ N.

Since
∨
k≥1{Xn−k −

∑n
j=n+1−k τj} and

∨n−1
k=1{Xn−k −

∑n
j=n+1−k τj} couple by

the previous reasoning, then

∞∑
n=1

P

(
Xn >

∨
k≥1

{
Xn−k −

n∑
j=n+1−k

τj

} ∣∣∣ Fn−1

)
<∞

and the Dubins-Freedman strong law imply

∞∑
n=1

P

(
Xn >

∨
k≥1

{
Xn−k −

n∑
j=n+1−k

τj

})
=
∞∑
n=1

1n,0 <∞,

resulting in a contradiction.

5. N∗n,δ/n→ E(1∗1,δ) > 0 a.s. as n→∞.

Choosing N such that the coupling of the part three has taken place, we have

∞∑
k=N+1

1k,δ =
∞∑

k=N+1

1∗k,δ a.s. (3.39)

Since we have that 1∗n,δ is a strictly stationary and ergodic sequence by con-
struction, we get the desired result by Birkhoff’s Theorem:

lim
n→∞

1

n

n∑
k=1

1∗k,δ → E(1∗1,δ) a.s.

6. Nn,δ/n→ E(1∗1,δ) > 0 a.s. as n→∞.

Since E(1∗1,δ) > 0 then
∑n

k=1 1∗k,δ →∞ a.s. as n→∞. Because of step 3 above,
we have

∑∞
k=1 1k,δ =∞ a.s. by (3.39). Now, for any (an)n∈N real sequence such

that (an)→∞ we have∣∣∣∣Nn,δ −N∗n,δ
an

∣∣∣∣ ≤ ∣∣∣∣Nan
∣∣∣∣→ 0 a.s.
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since N does not depend on n. Finally, if n → ∞, we can conclude from∣∣∣Nn,δ−N∗n,δn

∣∣∣→ 0 a.s. and
N∗n,δ
n
→ E(1∗1,δ) a.s. that

Nn,δ
n
→ E(1∗1,δ) a.s.

Finally, convergence in L1 is straightforward by the dominated convergence theorem.

Next, we show an example of an application of Theorem 3.7.2 that was analyzed
in [56] for records.

Example 3.7.3. Drifted Random Walk. Consider a random walk, Sn =
∑n

i=1 τi,
where (τn, n ≥ 1) is a stationary ergodic sequence with E(τ1) > 0. We want to
get the asymptotic δ-record rate of that random walk. For this we need to fit this
situation in our general framework in (3.37), for which we take Xn = 0, ∀n ∈ N,
and Tn ≡ Sn.

Theorem 3.7.2 guarantees that the asymptotic δ-record rate Nn,δ/n converges to
E(1∗1,δ) as n→∞, where

E(1∗1,δ) = P

(
X1 >

∨
k≥1

{
X1−k −

1∑
j=2−k

τj

}
+ δ

)

= P

(
0 >

∨
k≥1

{
−

1∑
j=2−k

τj

}
+ δ

)

= P

(∧
k≥1

{
1∑

j=2−k

τj

}
> δ

)
.





4
Statistical Inference based on
δ-records in the presence of a

trend

In this chapter we study some statistical properties of δ-records in the LDM. In the first
section we propose two estimators for the variance of the number of δ-records based on
the ideas of [9], proving consistency. In the second section we develop a framework for
Maximum Likelihood Estimation and we find analytic solutions for a family of distribu-
tions, analyzing its properties. We assess the performance of these estimators based on
δ-records via Montecarlo simulation and we compare the results with those using records
only. In the final section, we apply the results in this chapter, and also probabilistic results
derived in Chapter 3, to a real data set of summer temperatures in Spain, where the LDM
is consistent with the global-warming phenomenon.

4.1 Estimation of the variance of the number of

δ-records

Making inference requires suitable estimators for the unknown quantities in order
to apply the theoretical results studied in Chapter 3 to a time series. First, it is
obvious that these properties about the δ-record rate, n−1

∑n
j=1 1j,δ(c), make it a

suitable estimator for pδ(c).

91
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With regard to the estimation of σ2
δ (c) for a sample with size n, we propose the

following two estimators following the ideas of [9] for records:

1.

σ̃2
δ = γ̃n,δ(0) + 2

m∑
k=1

γ̃n,δ(k), m ∈ N, (4.1)

where

γ̃n,δ(k) = n−1

n−k∑
j=1

(
1j,δ − n−1Nn,δ

) (
1j+k,δ − n−1Nn,δ

)
. (4.2)

2.

σ̂2
δ = γ̂n,δ(0) + 2

m∑
k=1

γ̂n,δ(k), m ∈ N, (4.3)

where

γ̂n,δ(k) = (n− k)−1

n−k∑
j=1

(1j,δ1j+k,δ)−
(
n−1Nn,δ

)2
. (4.4)

In [9], the authors proved weak consistency for σ̂2
0 to get the same property for

σ̃2
0 under the condition m(n) = o(n1/2). After that, they preferred the use of σ̃2

0

over σ̂2
0 since the last one might yield negative estimations of σ2

0. Nevertheless, the
problem that the cited authors claim to avoid is not solved, since it is still present
in σ̃2

0 as well. For instance, considering the sequence {1, 1, 0, 1, 1} representing the
first 5 record indicators, we get γ̃(0) = 4/25, γ̃(1) = −6/125, γ̃(2) = −7/125 and
hence σ̃2

0 = −6/125. Nevertheless, both estimators will produce positive estimations
asymptotically due to the weak convergence, but we do not see theoretical evidence
of the benefits of using σ̃2

0 over σ̂2
0, and so, we will use both estimators when applying

this result to real data (Section 4.3).

In this section, we prove the weak consistency of both estimators of σ2
δ for any

δ ∈ R. To that end we will make use of the notation introduced in Chapter 3,
including the starred double-ended stationary sequence.

The following proposition establishes two useful results about sums of δ-record
indicators.

Proposition 4.1.1. In the LDM, and if k ∈ N, then

(a) n−1
∑n

j=1 1j,δ1j+k,δ → rk,δ as n→∞ a.s. and in L1.
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(b) If E(X2
0 ) <∞, the following series

∞∑
h=1

∣∣E(1∗0,δ1
∗
k,δ1

∗
h,δ1

∗
h+k,δ)− E(1∗0,δ1

∗
k,δ)

2
∣∣

converges.

Proof. (a) As it was proved in Theorem 3.6.7, we know that there exists N ∈ N
such that 1∗N,0 = 1 a.s. and that 1n,δ = 1∗n,δ for all n > N , which implies

∞∑
j=N+1

1j,δ1j+k,δ =
∞∑

j=N+1

1∗j,δ1
∗
j+k,δ a.s.

Since (1∗j,δ1
∗
j+k,δ) is a strictly stationary and ergodic sequence, Birkhoff’s Theorem

yields

lim
n→∞

n−1

n∑
j=1

1∗j,δ1
∗
j+k,δ = E

(
1∗0,δ1

∗
k,δ

)
a.s.

Finally, we have that∣∣∣∣∣
∑n

j=1 1j,δ1j+k,δ −
∑n

j=1 1∗j,δ1
∗
j+k,δ

n

∣∣∣∣∣ ≤
∣∣∣∣Nn
∣∣∣∣→ 0 a.s.

and therefore

lim
n→∞

n−1

n∑
j=1

1j,δ1j+k,δ = E
(
1∗0,δ1

∗
k,δ

)
= rk,δ a.s.

Convergence in L1 follows from the dominated convergence theorem.

(b) In order to prove convergence, it is enough to sum starting from h > k. Define
the two following events

A1,h :=

{
X0 >

∞∨
i=1

(X−i − ci+ δ), Xk >
∞∨
i=1

(Xk−i − ci+ δ),

Xh >
∞∨
i=1

(Xh−i − ci+ δ), Xh+k >
∞∨
i=1

(Xh+k−i − ci+ δ)

}
,

A2,h :=

{
X0 >

∞∨
i=1

(X−i − ci+ δ), Xk >

∞∨
i=1

(Xk−i − ci+ δ),

Xh >

h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >

h−1∨
i=1

(Xh+k−i − ci+ δ)

}
,

and thus we need to prove

∞∑
h=k+1

∣∣P(A1,h)− E(1∗0,δ1
∗
k,δ)

2
∣∣ <∞.
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Using the triangle inequality we have

∣∣∣P (A1,h)−
(
E(1∗0,δ1

∗
k,δ)
)2
∣∣∣ ≤ |P (A1,h)− P (A2,h)|+

∣∣∣P (A2,h)−
(
E(1∗0,δ1

∗
k,δ)
)2
∣∣∣

= P (A2,h \ A1,h) +
∣∣∣P (A2,h)−

(
E(1∗0,δ1

∗
k,δ)
)2
∣∣∣

:= Ah +Bh,

where the second equality holds since A1,h ⊂ A2,h.

We first see the convergence of the first part. Using basic set operations we
bound Ah as

Ah ≤P
({

Xh >
h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >
h−1∨
i=1

(Xh+k−i − ci+ δ)

}
⋂{

Xh >
∞∨
i=1

(Xh−i − ci+ δ), Xh+k >
∞∨
i=1

(Xh+k−i − ci+ δ)

}c)

≤P
({

Xh >
h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >
h−1∨
i=1

(Xh+k−i − ci+ δ)

}
⋂{

Xh >
∞∨
i=1

(Xh−i − ci+ δ)

}c)

+ P
({

Xh >
h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >
h−1∨
i=1

(Xh+k−i − ci+ δ)

}
⋂{

Xh+k >

∞∨
i=1

(Xh+k−i − ci+ δ)

}c)
,

which yields

Ah ≤P

(
h−k−1∨
i=1

(Xh−i − ci+ δ) < Xh ≤
∞∨
i=1

(Xh−i − ci+ δ)

)

+ P

(
h−1∨
i=1

(Xh+k−i − ci+ δ) < Xh+k ≤
∞∨
i=1

(Xh+k−i − ci+ δ)

)

≤P

(
Xh ≤

∞∨
i=h−k

(Xh−i − ci+ δ)

)
+ P

(
Xh+k ≤

∞∨
i=h

(Xh+k−i − ci+ δ)

)
.
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For each term in the last sum we proceed as follows:

P

(
Xh ≤

∞∨
i=h−k

(Xh−i − ci+ δ)

)
≤

∞∑
i=h−k

P (Xh ≤ Xh−i − ci+ δ)

≤
∞∑

i=h−k

P (| Xh−i −Xh |≥ ci− δ)

≤
∞∑

i=h−k

P (| Xh−i | + | Xh |≥ ci− δ)

≤ 2
∞∑

i=h−k

P (| X0 |≥ (ci− δ)/2) .

Gathering these facts, we have

∞∑
h=k+1

Ah ≤ 4
∞∑

h=k+1

∞∑
i=h−k

P (| X0 |≥ (ci− δ)/2) <∞,

since E (X2
0 ) <∞.

For the convergence of
∑∞

h=k+1 Bh, we have

∞∑
h=k+1

∣∣∣P (A2,h)−
(
E(1∗0,δ1

∗
k,δ)
)2
∣∣∣

=
∞∑

h=k+1

∣∣∣∣E(1∗0,δ1
∗
k,δ)P

(
Xh >

h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >
h−1∨
i=1

(Xh+k−i − ci+ δ)

)
−
(
E(1∗0,δ1

∗
k,δ)
)2

∣∣∣∣
≤

∞∑
h=k+1

∣∣∣∣P( Xh >

h−k−1∨
i=1

(Xh−i − ci+ δ), Xh+k >

h−1∨
i=1

(Xh+k−i − ci+ δ)

)
− E(1∗0,δ1

∗
k,δ)

∣∣∣∣
≤

∞∑
h=k+1

(
P
(
X0 >

h−k−1∨
i=1

(X−i − ci+ δ), Xk >
h−k−1∨
i=1

(Xk−i − ci+ δ)

)
− E(1∗0,δ1

∗
k,δ)

)
.

Let us denote 1kn,δ = 1 if Yn >
∨k
i=1 Yn−i + δ, and 0 otherwise. From the last



96 Chapter 4. Statistical Inference based on δ-records in the presence of a trend

inequality we get

∞∑
h=k+1

∣∣∣P (A2,h)−
(
E(1∗0,δ1

∗
k,δ)
)2
∣∣∣

≤
∞∑

h=k+1

(
E(1h−k−1

0,δ 1h−k−1
k,δ )− E(1∗0,δ1

∗
k,δ)
)

=
∞∑

h=k+1

(
E(1h−k−1

0,δ 1h−k−1
k,δ − 1∗0,δ1

h−k−1
k,δ )− E(1∗0,δ1

∗
k,δ − 1∗0,δ1

h−k−1
k,δ )

)
=

∞∑
h=k+1

(
E(1h−k−1

k,δ (1h−k−1
0,δ − 1∗0,δ)) + E(1∗0,δ(1

h−k−1
k,δ − 1∗k,δ))

)
≤

∞∑
h=k+1

(
E(1h−k−1

0,δ − 1∗0,δ) + E(1h−k−1
k,δ − 1∗k,δ)

)
= 2

∞∑
h=k+1

(
E(1h−k−1

0,δ − 1∗0,δ)
)

= 2
∞∑

h=k+1

(
E(1h−k−1

0,δ )− pδ
)

= 2
∞∑
n=0

(E(1n,δ)− pδ)

<∞,

because of the bound in equation (3.29), for which the convergence of the sum
holds.

We now establish the asymptotic behaviour of the estimators γ̂n,δ(k) and γ̃n,δ(k).

Proposition 4.1.2. In the LDM the following convergences hold:

(a) γ̂n,δ(k)→ rk,δ − p2
δ a.s. and in L1 as n→∞.

(b) γ̃n,δ(k)→ rk,δ − p2
δ a.s. and in L1 as n→∞.

Proof. (a) From Proposition 4.1.1(a) we have that for fixed k

1

n− k

n−k∑
j=1

1j,δ1j+k,δ → rk,δ

as n → ∞ a.s. and in L1. Also, Theorem 3.6.7 guarantees that n−1Nn,δ → pδ as
n→∞ in the a.s. and L1 sense and therefore the result holds.
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(b) Expanding the expression of γ̃n,δ(k) and regrouping the terms conveniently we
get

γ̃n,δ(k) =
1

n

n−k∑
j=1

(
1j,δ1j+k,δ − 1j,δn

−1Nn,δ − 1j+k,δn
−1Nn,δ + n−2N2

n,δ

)
=

1

n

n−k∑
j=1

(1j,δ1j+k,δ)− n−1Nn,δ
1

n

n−k∑
j=1

1j,δ − n−1Nn,δ
1

n

n−k∑
j=1

1j+k,δ +
n− k
n

n−2N2
n,δ.

Taking limits as n→∞, we have from the proof of Proposition 4.1.1(a) and Theorem
3.6.7 that

γ̃n,δ(k)→ rk,δ − p2
δ − p2

δ + p2
δ = rk,δ − p2

δ ,

both a.s. and in L1.

In the next theorem, the consistency of the estimators σ̂2
n,δ and σ̃2

n,δ is proved.

Theorem 4.1.3. In the LDM with E(X2
0 ) < ∞, and taking m ∈ N such that

m = m(n) = o(n1/2), the following convergences hold

(a) σ̂2
n,δ → σ2

δ , in L1, as n→∞.

(b) σ̃2
n,δ → σ2

δ , in L1, as n→∞.

Proof. (1) First, we recall the that σ2
δ = pδ − p2

δ + 2
∑∞

k=1 (rk,δ − p2
δ) as it has been

proved in Theorem 3.6.11. Now, from the definition of γ̂n,δ(0) in (4.4), we observe
that

γ̂n,δ(0) =
Nn,δ

n
−
(
Nn,δ

n

)2

→ pδ − p2
δ

as n→∞ as a consequence of Theorem 3.6.7.

Now it remains to check that

E

(∣∣∣∣∣
m∑
k=1

(γ̂n,δ(k)− (rk,δ − p2
δ))

∣∣∣∣∣
)
→ 0, as n→∞.



98 Chapter 4. Statistical Inference based on δ-records in the presence of a trend

Interchanging the sum and the expectation and grouping terms we get the bound

E

(∣∣∣∣∣
m∑
k=1

(
γ̂n,δ(k)− (rk,δ − p2

δ)
)∣∣∣∣∣
)

≤
m∑
k=1

E
(∣∣γ̂n,δ(k)− (rk,δ − p2

δ)
∣∣)

=
m∑
k=1

E

(∣∣∣∣∣(n− k)−1

n−k∑
j=1

(
1j,δ1j+k,δ −

(
n−1Nn,δ

)2
)
− rk,δ + p2

δ

∣∣∣∣∣
)

=
m∑
k=1

E

(∣∣∣∣∣(n− k)−1

n−k∑
j=1

(
1j,δ1j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))
−
(
n−1Nn,δ

)2
+ p2

δ

∣∣∣∣∣
)
.

Using the triangle inequality we split the bound in three terms:

E

(∣∣∣∣∣
m∑
k=1

(
γ̂n,δ(k)− (rk,δ − p2

δ)
)∣∣∣∣∣
)

≤

(
m∑
k=1

E

(∣∣∣∣∣(n− k)−1

n−k∑
j=1

(
1j,δ1j+k,δ − E(1∗j,δ1

∗
j+k,δ)

)∣∣∣∣∣
))

+mE
(∣∣∣p2

δ −
(
n−1Nn,δ

)2
∣∣∣)

≤
m∑
k=1

E

(∣∣∣∣∣(n− k)−1

n−k∑
j=1

(
1j,δ1j+k,δ − 1∗j,δ1

∗
j+k,δ

)∣∣∣∣∣
)

+
m∑
k=1

E

(∣∣∣∣∣(n− k)−1

n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))∣∣∣∣∣
)

+ 2mE
(∣∣n−1Nn,δ − pδ

∣∣)
:= An +Bn + Cn,

where the last inequality follows applying the triangle inequality after adding and
subtracting the same terms, and from the fact that pδ + n−1Nn,δ ≤ 2.

For the term An we note that

E

(∣∣∣∣∣
n−k∑
j=1

(
1j,δ1j+k,δ − 1∗j,δ1

∗
j+k,δ

)∣∣∣∣∣
)

=
n−k∑
j=1

E
(
1j,δ1j+k,δ − 1∗j,δ1

∗
j+k,δ

)
≤ 2

n−k∑
j=1

E
(
1j,δ − 1∗j,δ

)
≤ 2

∞∑
j=1

(E(1j,δ)− pδ)

<∞,
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where the first inequality and the convergence follow arguing as in the proof of
Proposition 4.1.1(b). Finally, the convergence to 0 of An holds since

m∑
k=1

(n− k)−1 ≤ m(n−m)−1 ≤ m(n− n1/2)−1 ≤ mn−1/2 → 0,

as n→∞.

To prove the convergence of Bn to 0 we first note

Bn =
m∑
k=1

(
(n− k)−1E

(∣∣∣∣∣
n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))∣∣∣∣∣
))

≤
m∑
k=1

(n− k)−1

E

[n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))]2
1/2

 (4.5)

We now bound the expectation in the sum (4.5), obtaining

E

[n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))]2


= E

(
n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))2

)

+ 2E

(
n−k∑
j=1

j−1∑
i=1

((
1∗i,δ1

∗
i+k,δ − E

(
1∗0,δ1

∗
k,δ

)) (
1∗j,δ1

∗
j+k,δ − E

(
1∗0,δ1

∗
k,δ

))))
≤ n− k

+ 2E

(
n−k∑
j=1

j−1∑
i=1

(
1∗i,δ1

∗
i+k,δ1

∗
j,δ1
∗
j+k,δ − E

(
1∗0,δ1

∗
k,δ

)
1∗j,δ1

∗
j+k,δ

− E
(
1∗0,δ1

∗
k,δ

)
1∗i,δ1

∗
i+k,δ +

(
E
(
1∗0,δ1

∗
k,δ

))2
))

.

We now introduce the expectation into the double sum simplifying the expression
and regrouping terms, yielding
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E

[n−k∑
j=1

(
1∗j,δ1

∗
j+k,δ − E

(
1∗j,δ1

∗
j+k,δ

))]2


≤ n− k + 2
n−k∑
j=1

j−1∑
i=1

(
E
(
1∗i,δ1

∗
i+k,δ1

∗
j,δ1
∗
j+k,δ

)
−
(
E
(
1∗0,δ1

∗
k,δ

))2
)

= n− k + 2
n−k−1∑
j=1

(n− k − j)
(
E
(
1∗0,δ1

∗
k,δ1

∗
j,δ1
∗
j+k,δ

)
−
(
E
(
1∗0,δ1

∗
k,δ

))2
)

≤ n− k + 2(n− k)
∞∑
j=1

∣∣∣E (1∗0,δ1∗k,δ1∗j,δ1∗j+k,δ)− (E (1∗0,δ1∗k,δ))2
∣∣∣

≤M(n− k),

for a real constant M , because the infinite sum appearing in the second last line
above is convergent by Proposition 4.1.1(b). Now, from (4.5) we have

Bn ≤
m∑
k=1

(
(n− k)−1 (M(n− k))1/2

)
≤M1/2

m∑
k=1

(n− k)−1/2

≤M1/2m(n−m)−1/2

≤M1/2m(n− n1/2)−1/2

→ 0,

since m(n) = o(n1/2).

Finally we prove that Cn → 0 as n → ∞. To that end we apply the triangle
inequality, obtaining

mE
(∣∣n−1Nn,δ − pδ

∣∣) = mE

(∣∣∣∣∣n−1Nn,δ − n−1

n∑
j=1

1∗j,δ + n−1

n∑
j=1

1∗j,δ − pδ

∣∣∣∣∣
)

≤ mE

(∣∣∣∣∣n−1Nn,δ − n−1

n∑
j=1

1∗j,δ

∣∣∣∣∣
)

+mE

(∣∣∣∣∣n−1

n∑
j=1

1∗j,δ − pδ

∣∣∣∣∣
)

= mn−1

n∑
j=1

(
E (1j,δ)− E

(
1∗j,δ
))

+mn−1E

(∣∣∣∣∣
n∑
j=1

(
1∗j,δ − pδ

)∣∣∣∣∣
)
.

The convergence to 0 as n → ∞ of the first term in the last expression is again
guaranteed by equation (3.29) and the fact that m(n) = o(n1/2). For the second
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part we proceed as with Bn, yielding

mn−1E

(∣∣∣∣∣
n∑
j=1

(
1∗j,δ − pδ

)∣∣∣∣∣
)
≤ mn−1

E

[ n∑
j=1

(
1∗j,δ − pδ

)]2
1/2

= mn−1

(
E

(
n∑
j=1

(
1∗j,δ − pδ

)2

)

+ 2
n∑
j=1

j−1∑
i=1

E
((

1∗i,δ − pδ
) (

1∗j,δ − pδ
)))1/2

≤ mn−1

(
n+ 2

n∑
j=1

j−1∑
i=1

(
E
(
1∗i,δ1

∗
j,δ

)
− p2

δ

))1/2

≤ mn−1

(
n+ 2n

n−1∑
j=1

∣∣rj,δ − p2
δ

∣∣)1/2

.

We note that the sum involving the terms rj,δ − p2
δ converges as n → ∞ because

of step 3 in the proof of Theorem 3.6.11. Finally, we notice that mn−1n1/2 → 0 as
n→∞ because m(n) = o(n1/2).

(2) From part (1) in this proof, it suffices to see that

E
(∣∣σ̂2

n,δ − σ̃2
n,δ

∣∣)→ 0 as n→∞. (4.6)

We first note that γ̂n,δ(0) = γ̃n,δ(0), so condition (4.6) boils down to proving

E

(∣∣∣∣∣
m∑
k=1

(γ̂n,δ(k)− γ̃n,δ(k))

∣∣∣∣∣
)
→ 0, as n→∞.

Writing the expressions of γ̂n,δ(k) and γ̃n,δ(k), and regrouping conveniently, we
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get

E

(∣∣∣∣∣
m∑
k=1

(γ̂n,δ(k)− γ̃n,δ(k))

∣∣∣∣∣
)

=E
(∣∣∣∣ m∑

k=1

(
(n− k)−1

n−k∑
j=1

(1j,δ1j+k,δ)− (n−1Nn,δ)
2

− n−1

n−k∑
j=1

(
1j,δ1j+k,δ − n−1Nn,δ1j,δ − n−1Nn,δ1j+k,δ +

(
n−1Nn,δ

)2
))∣∣∣∣)

=E
(∣∣∣∣ m∑

k=1

(
(n− k)−1

n−k∑
j=1

(1j,δ1j+k,δ)− n−1

n−k∑
j=1

(1j,δ1j+k,δ)

−
(
n−1Nn,δ

)2
+ n−2Nn,δ

n−k∑
j=1

1j,δ + n−2Nn,δ

n−k∑
j=1

1j+k,δ − n−3(n− k)N2
n,δ

)∣∣∣∣)

≤E

(
m∑
k=1

∣∣∣∣∣(n− k)−1

n−k∑
j=1

(1j,δ1j+k,δ)− n−1

n−k∑
j=1

(1j,δ1j+k,δ)

∣∣∣∣∣
+ n−1Nn,δ

m∑
k=1

∣∣∣∣∣n−1

n−k∑
j=1

1j,δ + n−1

n−k∑
j=1

1j+k,δ − n−2(2n− k)Nn,δ

∣∣∣∣∣
)
, (4.7)

where the last bound follows from the triangle inequality. Now, for the first sum in
the expectation we have

E

(
m∑
k=1

((
1

n− k
− 1

n

) n−k∑
j=1

(1j,δ1j+k,δ)

))
=

m∑
k=1

(
k

n(n− k)

n−k∑
j=1

(E (1j,δ1j+k,δ))

)

≤ n−1

m∑
k=1

k

= n−1m(m+ 1)

2
→ 0,

as n→∞ since m(n) = o(n1/2).

For the second sum in the expectation in (4.7) we use the triangle inequality and
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n−1Nn,δ ≤ 1, yielding

E

(
n−1Nn,δ

m∑
k=1

∣∣∣∣∣n−1

n−k∑
j=1

1j,δ + n−1

n−k∑
j=1

1j+k,δ − n−2(2n− k)Nn,δ

∣∣∣∣∣
)

≤ E

(
m∑
k=1

(∣∣n−1Nn,δ + n−1Nn,δ − n−2(2n− k)Nn,δ

∣∣+ n−1

n∑
j=n−k+1

1j,δ + n−1

k∑
j=1

1j,δ

))

≤ E

(
m∑
k=1

(
k

n2
Nn,δ +

2k

n

))

≤ 3n−1

m∑
k=1

k → 0,

as n→∞ reasoning as in the previous case and the result is proved.

4.2 Maximum Likelihood Estimation in the LDM

Once probabilistic properties for the LDM have been established in Chapter 3,
the next step is addressing the question of making inference for such model based
on δ-records. To that end, a natural approach is to consider maximum likelihood
estimation.

Inference based on records in the LDM was studied for the first time by Smith
in 1988 [110]. In that paper, maximum likelihood estimation was performed nu-
merically for different trend models. Later, Feuerverger and Hall [28] considered
a least-squares approach based on bootstrap techniques, while Hoayek et al. [64]
proposed distribution-free estimators for the increasing variance model, which was
shown to be equivalent to the LDM if the r.v. (Xn) have a Gumbel distribution,
and thus losing the distribution-free property for the specific case of the LDM.

Here we study maximum likelihood estimation when using δ-record observations
and assess the effect of the δ parameter in the estimation problem. While, in most
instances, maximization must be carried out numerically, we obtain the explicit
expression of the Maximum Likelihood Estimators (hereafter referred as MLE) for
a family of distributions. Taking δ = 0, we get the explicit expression of the MLE
using usual records for that family. To the best of our knowledge, no explicit MLE
based on records in the LDM have appeared in the literature.

The use of δ-records for estimation in the CRM has been considered in [45, 46, 53],
both in the frequentist and the Bayesian framework, for estimation of the parameters
and prediction of future records. Those papers show that the information provided
by δ-records can be successfully used and estimations and predictions based on δ-
records outperform those based on records only. Therefore, it is expectable that the
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use of δ-records is also advantageous in the LDM. As in those papers, we work only
with δ ≤ 0; taking δ > 0 would leave out the information provided by records, which
are in fact necessary to compute δ-records, so it seems pointless to make inferences
based on δ-records for δ > 0.

We work with observations (Yn) that follow a deterministic trend model, that is,
(Yn) is a sequence of r.v. such that

Yj = Xj + tj(c), (4.8)

where (Xn) is a sequence of absolutely continuous i.i.d. r.v with cdf F and pdf f ,
and tn(c) is a deterministic sequence depending on a single parameter c.

We consider the following sampling scheme of the observations Yj. First, a
negative δ parameter is chosen to define the δ-record condition. Realizations of the
trend model are drawn sequentially, and they are observed only if their value is a
δ-record. That is, we observe realizations from the sequence

y = (Y111,δ, Y212,δ, . . . , Yn1n,δ) . (4.9)

Note that this is exactly the same sampling scheme considered in [110], taking
δ-records instead of records (except that Smith considers lower records while we
consider upper records). That is, the estimation problem in [110] can be seen as a
particular case of our problem with δ = 0.

Our aim is to estimate the parameters of the model using the information of the
sample based only on δ-records. We remark here that the sampling scheme allows
us to work with both the δ-record values as well as δ-record times.

We assume that the sequence of the underlying r.v. (Xn) depends on an unknown
vector parameter θ in a parameter space Θ, that is, Xn ∼ f(x; θ). Since the model
has also the trend parameter c, which can be assumed to belong to a real set C, the
parameter space in the maximum likelihood estimation problem can be written as
C ×Θ.

Given a realization of y of size n, (y1, . . . , yn) and writing mj for max{y1, . . . , yj},
j = 1, . . . , n, we define the sequence (vn) as:

vj =

{
yj if yj is a δ-record,

mj + δ otherwise.
(4.10)

Example 4.2.1. In example 1.2.8, we considered the sequence

2, 4, 3, 6, 1, 6, 7, 1, 7, 8, 6, 7, 2, 4, 5, 8, 12.

Choosing δ = −1, the observed sample of y is

y = (2, 4, 0, 6, 0, 6, 7, 0, 7, 8, 0, 0, 0, 0, 0, 8, 12),
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and the values vj are

(vj)
n
j=1 = (2, 4, 3, 6, 5, 6, 7, 6, 7, 8, 7, 7, 7, 7, 7, 8, 12).

Note that, in the case of records (δ = 0), the sample would be

y = (2, 4, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 0, 0, 0, 0, 12),

and the values vj are the partial maxima mj:

(vj)
n
j=1 = (2, 4, 4, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 12),

which is the type of sequence used in the aforementioned papers.

Since observations (Xn) in the model (4.8) are independent, the likelihood of the
sample of δ-records (4.9), with size n, can be written explicitly as

L(y; c, θ) =
n∏
j=1

(f(vj − tj(c); θ))1j,δ F (vj − tj(c); θ)1−1j,δ . (4.11)

Taking δ = 0 we recover the likelihood for usual records obtained in [110] (written
for upper instead of lower records).

Note that a location change in the deterministic trend model (4.8) can be due
both to a change in the deterministic trend function tn(c) and to a change in the
location parameter of the underlying r.v. (Xn).

We now assume that the observations (Yn) are drawn from the LDM (1.2), which
is a particular case of the deterministic trend model where tn(c) = cn. Note that
under the definition of the trend in the LDM we only consider location changes in
the location parameter of the underlying variables (Xn) and not in the deterministic
trend, and so the model is identifiable. The likelihood for the LDM is then

L(y; c, θ) =
n∏
j=1

(f(vj − cj; θ))1j,δ F (vj − cj; θ)1−1j,δ . (4.12)

Note that taking |δ| large enough such that all the observations are δ-records, the
expression (4.12) is equal to the classical likelihood function in a linear model.

The maximum likelihood estimator for the model parameters, the trend c and
the distribution parameters θ, are(

ĉmle, θ̂mle

)
= arg max

(c,θ)∈C×Θ

L(y; c, θ). (4.13)

The estimators ĉmle and θ̂mle cannot be computed analytically in general. In
Subsection 4.2.2 we obtain numerically the MLE with a grid-search algorithm, and
we assess its performance for different models via Montecarlo simulation.
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4.2.1 Analytical solution for the MLE in a family of distri-
butions

In this subsection we compute analytically the expression of the MLE based on
δ-record data for the family of distributions with pdf

f(x) =

{
λeλ(x−α) x ≤ α,

0 otherwise,
(4.14)

and cdf F (x) = eλ(x−α) if x < α and 1 otherwise. Note that in this family of
distributions there is a location parameter α, and a shape parameter λ. Since
these distributions are essentially equivalent to the shifted exponential distribution
multiplied by −1, we will refer to this family as opposite-shifted exponential family.
Additionally, this family is an extension of the Type III max-stable distribution, for
which the probability of δ-record was analyzed in detail in example 3.3.2 if α = 0
and λ = 1, which is particularly interesting since it is a limiting extreme value
distribution, and thus it can be used to model the maxima arising from random
variables in the Weibull class.

Writing Φ = {j ∈ {1, . . . , n} : 1j,δ = 1}, i.e., the set of indexes of δ-records in
the sample, formula (4.11) for this family of distributions is

L(y; c, α, λ) = λNj,δeλ
∑
j∈Φ(vj−α−cj)

∏
j∈Φ

1{vj≤α+cj}e
λ
∑
j 6∈Φ min{vj−α−cj,0}, (4.15)

where Nn,δ =
∑n

j=1 1j,δ is the number of δ-records in the sample.

In order to write (4.15) in a more manageable form, we prove the following
property of the sequence (vn).

Lemma 4.2.2. Let α ∈ R, c ≥ 0. Let (yn) be a realization of y and (vn) as defined
in (4.10). Then, if

yj ≤ α + cj, for all j such that yj is a record, (4.16)

then

vj ≤ α + cj, (4.17)

for all j = 1, . . . , n.

Proof. Since records are δ-records and vj = yj, the condition (4.17) trivially holds
when observation j is a record. Suppose now that observation j is a δ-record but
not a record and let i < j be such that yi = mj (the last record index before j).
Then

vj = yj < mj = mi = yi ≤ α + ci < α + cj,
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so (4.17) is proved when observation j is a δ-record.

Take now j such that observation j is not a δ-record, that is yj < mj − a. As
above, let i < j such that yi = mj, then

vj = mj − a = mi − a = yi − a ≤ α + ci− a < α + cj

and the result is proved.

We remark that Lemma 4.2.2 is a consequence of the definitions of record, δ-
record and the sequence (vn), so it can be applied for any distribution and not only
for the family of distributions considered in this section.

By Lemma 4.2.2, the formula (4.15) can be written as:

L(y; c, α, λ) = λNn,δeλ
∑n
j=1(vj−α−cj)

∏
j∈ΦR

1{yj≤α+cj}, (4.18)

where ΦR = {j ∈ {1, . . . , n} : 1j,0 = 1} is the set of indexes of records in the sample.

We can now give the explicit expression of the MLE in this family of distributions.
Since there are three parameters to estimate (α, c, λ), we consider all the possibilities
regarding which are known or unknown.

Theorem 4.2.3. Let α ∈ R, c ≥ 0, λ > 0. Let f be a density function as in (4.14)
and consider a sample of size n as in (4.9). Let (vn) be defined as in (4.10). Then:

(a) The MLE of λ is:

λ̂mle =
Nn,δ∑n

j=1 (α + cj − vj)
, (4.19)

where α and c are either their values (if they are known) or their maximum
likelihood estimations given in part (b).

(b) Both when λ is known and unknown, we have:

1. if α is unknown and c is known:

α̂mle = maxj∈ΦR{yj − cj},

2. if α is known and c is unknown:

ĉmle = maxj∈ΦR

{
yj − α
j

}
,
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3. if α and c are unknown, the MLE of (α, c) is

(α̂mle, ĉmle) =

(
jyi − iyj
j − i

,
yj − yi
j − i

)
with i, j ∈ ΦR or (α̂mle, ĉmle) = (yl, 0), where l = max{k ∈ ΦR}, such that
α̂mle + ĉmlek ≥ vk, for all k ∈ ΦR, which maximizes 2α̂mle + (n+ 1)ĉmle.

Proof. (a) From (4.18), we get that the likelihood is positive if and only if (4.16)
holds. Thus, when α and c satisfy this condition, the logarithm of the likeli-
hood is

logL(y; c, α, λ) = Nn,δ log λ− λ
n∑
j=1

(α + cj − vj).

Taking the derivative with respect to λ, we observe that, for every α, c such
that (4.16) holds, the likelihood is maximized when λ is taken equal to (4.19).

(b) When λ is known, then, if α and c are such that (4.16) is satisfied, the likelihood
is decreasing in

∑n
j=1(α + cj − vj). If λ is unknown, replacing it by its MLE

in (a), the logarithm of the likelihood is equal to

Nn,δ

(
logNn,δ − log

(
n∑
j=1

(α + cj − vj)

)
− 1

)
,

which is decreasing in
∑n

j=1 (α + cj − vj). So, in both cases, α and c must be
taken such that

∑n
j=1 (α + cj − vj) is minimized subject to condition (4.16).

Therefore, the MLE of α and c are the solution of the following linear pro-
gramming problem:

Min. 2α + (n+ 1)c

s.t. α + cj ≥ vj, j ∈ ΦR,

c ≥ 0.

When either α or c are known, the solutions of (4.2.1) are readily shown to
be those in the statement of the theorem. When both are unknown, then,
the feasible set is clearly nonempty (by taking α and c large enough) and
the problem is bounded (due to the signs of the coefficients in the objective
function and the constraints). Therefore, the solution is an extremal point of
the feasible set. The intersections of the lines defining the constraints are of
the form (

jyi − iyj
j − i

,
yj − yi
j − i

)
, i, j ∈ ΦR

and (yj, 0), j ∈ ΦR, which proves the result.
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Remark 4.2.4. (a) By Theorem 4.2.3 the MLE of α and c, both when λ is known
and unknown, depend only on the sequence of records, and not on near-records.
Therefore, changing the value of δ does not change the estimation of α and c,
but it does affect the estimation of λ.

(b) Taking δ = 0 in Theorem 4.2.3 gives the explicit expression of the MLE of
the parameters based on usual records. To the best of our knowledge, this is
the first result giving explicit expressions of the MLE in the LDM, since all
previous works searched for the estimators numerically.

(c) If we work with lower records instead of upper records and take a negative drift,
as in [110], and consider that the distribution of Xn is the shifted exponential
with parameter λ, that is f(x;α, λ) = λe−λ(x−α)1{x≥α}, then Theorem 4.2.3
can be modified in a straightforward way to yield the analytical expression of
the MLE of the parameters.

4.2.2 Numerical results

In this section we assess the behaviour of the MLE for three families of distributions:
shifted exponential, normal and opposite-shifted exponential. All of them have a
location parameter α ∈ R and a scale parameter λ > 0. Their respective pdf are:

f1(x;α, λ) = λe−λ(x−α)1{x≥α},

f2(x;α, λ) =
λ√
2π
e−(x−α)2λ2/2,

f3(x;α, λ) = λeλ(x−α)1{x≤α}.

Note that, in the three distributions, the parameter λ has been chosen to be the
inverse of the standard deviation.

In order to analyze the behaviour of the MLE and the effect of different values
of δ on the accuracy of the estimations, we use Montecarlo simulation. We have
considered different settings: in the three distributions, we have kept the value of α
equal to 5, and the value of c equal to 0.1. We have taken different values of λ =0.25,
0.5, 0.75 and 1, and different values of δ equal to 0 (usual records), −0.5, −1 and
−1.5. These values have been chosen to represent situations in which the trend is
small with respect to the variability of the underlying random variables. Note that
if the trend is large, many observations will be record and δ-record, and therefore
the estimates will be much more accurate. Furthermore, in practical applications it
is common to work with weak trends, as in the case of temperatures in a climate
change framework (see Section 4.3), or even to use these methods as a tool to detect
the existence of such trends.

For each setting we have carried out 1000 simulation runs of length n = 100
observations. We have computed the MLE of α, c, λ in all 7 combinations defined
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by which parameters are unknown. In each case, the MSE (defined as the average
of the square of the estimations minus the actual value) was computed. For the
exponential and normal distributions, the MLEs of the parameters were found via
a grid search; for the opposite-shifted exponential, the exact values of the MLEs
were obtained with the formulas in Theorem 4.2.3. Tables 4.1, 4.2 and 4.3 show
the results. Note that Table 4.3 includes only rows where λ needs to be estimated;
this is because our primary interest is to assess the improvement in the estimations
when using δ-records instead of records only, and we showed in Section 4.2.1 that,
for this family of distributions, the MLEs for α and c using δ-records are equal to
those obtained with records.

The tables are split by horizontal lines depending on the unknown parameters.
Thus, for instance, the first line in Table 4.1 is the MSE of the estimation of α when
c and λ are known; the fourth and fifth lines are the MSE of α and c when λ is
known; the three next to last lines are the MSE of the three parameters when all
are unknown. The last line of the tables is the mean number of δ-records in the
sample. Also, some of the parameters have a ×10−k attached; this means that all
the figures in the line must be multiplied by that constant in order to get the MSE;
for instance, in Table 4.1, the second line has a ×10−4, which means that all the
line has to be multiplied by 10−4, so the figure in the first column means that the
MSE of the MLE of c for records when λ = 0, 25 is equal to 21, 18× 10−4.

We note that, both in the case of records and δ-records, the MSE is lower when
there are more known parameters; of course this could be expected because all the
information in the data is used to estimate a fewer number of parameters. Another
common feature in the tables is that the estimation of α and c, both using records
and δ-records is much better when there is less uncertainty in the model, that is, for
greater values of λ. One source of this improvement is that there are more records
and δ-records when there is less uncertainty in the model (see the last lines in the
tables), but this does not account for all it. Indeed, note that, for instance, in Table
4.1 the MSE of the MLE of α using records when c and λ are known, with λ = 0.25,
is equal to 1.89, and it is 0.06 when λ = 1, that is 30 times smaller, while the
number of records only doubles from 6.67 to 12.82. A similar pattern is observed
for c. For λ, even though the MSE increases as λ grows (for instance, when α and c
are known, the MSE for λ using records ranges from 1.53 × 10−3 to 1.724 × 10−2),
this MSE should be taken relative to the value of λ. This is because multiplying λ
by 4 (from 0.25 to 1) implies a factor of 16 in the MSE, so the value 1.724 × 10−2

for λ = 1 can be seen as smaller than 1.53 × 10−3 for λ = 0.25. When comparing
Tables 4.1, 4.2 and 4.3, we observe that the MLE in the exponential distribution
are the least accurate while those in the opposite-shifted exponential family are
the most accurate. This can be explained by several factors: first, the exponential
distribution generates less records and δ-records than the normal distribution, being
the opposite-shifted exponential the one with the greatest number of records and δ-
records; second, while the standard deviation of the three distributions is the same,
the right-tail of the exponential distribution is heavier than the normal distribution
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(and, of course, than that of the opposite-shifted exponential family, which has a
finite right endpoint in its support); third, the parameter α in the opposite-shifted
exponential family is precisely the right endpoint of the support of the distribution,
so it is expectable that a very good estimation is obtained since our sampling is
based on upper records (and δ-records), that is, we are sampling the rightmost part
of the distribution.

Regarding the effect of using δ-records we observe that, in most situations, the
inclusion of δ-records in the sample improves estimations. This could be expected
since δ-records include more information than usual records, but Theorem 4.2.3
shows that, for some distributions, this is not the case. Indeed, for the opposite-
shifted exponential family of distributions, the MLE for α and c are based only
on records, so taking δ-records does not improve their accuracy; the MLE of λ,
however, does improve with the use of δ-records, as shown in Table 4.3. Except for
those parameters in Table 4.3, in the rest of settings and parameters the MLE using
δ-records outperform those using records only. Looking at the tables, we can see that
the decrease in the MSE of the estimations using δ-records is roughly proportional
to the number of extra observations included in the sample (near-records). For
instance, in Table 4.1, we see that, for λ = 0.25, when c and λ are known, there is a
reduction from 1.89 to 1.45 in the MSE of the MLE of α from using records to using
δ-records with δ = −1.5, while the number of observations increases from 6.67 to
9.18; that is, by multiplying the number of observations by 1.37 we divide the MSE
by 1.31. This is consistent with what happens in i.i.d. samples, where the MSE of
the MLE of the parameters is inversely proportional to the number of observations.

In Section 4.3 we show the MLE of the parameters, based on δ-records, in a
real data set of temperatures, where the drift is induced by the global warming
phenomenon.

4.3 Application

We present a practical application of the the theoretical results obtained in Chapters
3 and 4 to a real dataset of temperatures, where convergence to the stationary regime
is seen for quite small values of n. As pointed out in the introduction, the LDM has
been used by different authors to model temperature record data in the framework
of climate-change.

Our dataset consists of means of daily maximum temperatures (in degrees Cel-
sius), for every month of July, from 1951 to 2019, in the city of Saragossa, Spain.
See Figure 4.1 for a data plot. For δ-records we choose the value δ = −1, which
is arbitrary and does not respond to any specific reason, other than interpretability
of the example. Note that a year will have a δ-record temperature if the maximum
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Figure 4.1
Monthly mean of maximum temperature in July, 1951-2019 in Saragossa (Spain).
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average temperature in July is a record or if it is at a distance smaller than 1◦C
from the current maximum. In this framework, we find that 17 out of the 69 obser-
vations are δ-records (coloured in red), and 7 of them are records (with circle). The
least squares line fitted to the data (in dotted red), reveals a linear increase of the
maximum temperatures over time.

The simple linear model for the temperature takes the form

Tt = β0 + β1t+ εt, (4.20)

where Tt is the temperature of year t (indexed by {1, 2, . . . , 69}), and εt the error
term. The results of the least-square estimators of the coefficients and their p-values
(assuming Gaussian errors, with zero mean and standar deviation σ) are shown in
Table 4.4.

In addition, we find an adjusted-R2 of 0.2769 and an estimated standard de-
viation of σ = 1.514 degrees in the error terms. The hypothesis β1 = 0 is clearly
rejected, using the Student t-test. Moreover, the estimate of β1, which represents the
average increment of mean maximum temperatures by year, agrees well with previ-
ous estimates of the summer warming trend in Europe, see [124, 125]. Nevertheless,
the intercept β0 is irrelevant when counting δ-records.

In Figure 4.2 we show the classical diagnosis plots for linear regression. The
top left panel indicates that a linear model is appropriate since no pattern in the
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Table 4.4
Regression analysis estimations for the temperature data.

Coefficient Estimate Std.Error p-value

β0 30.1706 0.3686 < 2e-16

β1 0.0476 0.00915 2.04e-06

residuals is observed. On the top right panel, the quantile-quantile plot of the
residuals against the normal distribution, with all the values within the confidence
lines, shows that the Gaussian assumption is adequate for errors; this is corroborated
by a p-value of 0.58 in the Shapiro-Wilk test [102, Section 5.2.2] for normality
of the standardized residuals. Moreover, the bottom panels show no significant
autocorrelation or partial autocorrelation values, indicating the absence of serial
correlation of the observations; this is confirmed by a p-value greater than 0.1 in
the Kwiatkowski-Phillips-Schmidt-Shin test [75] for stationarity of a series around
a deterministic trend. We conclude that the data are well fit by a linear regression
in t, with Gaussian errors. Hence, an LDM with drift parameter c = β̂1 = 0.0476
and (Xn)n≥1 independent normally distributed random variables, is adequate for the
data. Note that, for applying Theorem 3.6.7, there is no need to assume any specific
form of the distribution of the Xn.

Now, since 17 out of 69 observations were identified as δ-records, it is natural to
estimate pδ by the empirical record rate, that is,

p̂δ = n−1Nn,δ = 17/69 ≈ 0.2464.

Figure 4.3 illustrates how the empirical δ-record rate evolves with each extra ob-
servation and how it seems to stabilize around a constant value, as predicted by
Theorem 3.6.7.

Concerning the asymptotic normality (Theorem 3.6.11), we need to estimate the
variance σ2

δ , defined in (3.28). In order to apply the estimators of the variance of the
number of δ-records studied in Section 4.1 to our data, we must choose m, of order
o(
√
n). In our case, n = 69 so we take m = 8 to obtain the estimates σ̃2

δ = 0.337
and σ̂2

δ = 0.331, which are indeed very similar. Therefore, from Theorem 3.6.11,
Nn,δ is approximately Gaussian, with mean 17 and variance 23.25 (0.337× 69).

Now, we analyze the performance of these estimators for different values of m =
5, 6, 7, 8. In Tables 4.5 and 4.6 we show the results of applying estimators (4.1) and
(4.3) respectively to compute the 95% confidence intervals for pδ and the expected
number of δ-records, E (Nn,δ), with endpoints:

p̂δ ± 1.96σ̃δ/
√
n

np̂δ ± 1.96σ̃δ
√
n,

and the corresponding ones in the case σ̂2
δ .
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Figure 4.2
Diagnostic plots of the regression model. Top left: residuals vs year. Top right: quantile-quantile
plot of the residual with the normal distribution. Bottom left: autocorrelation function. Bottom
Right: partial autocorrelation function.
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Figure 4.3
Evolution of the δ-record rate for the temperature data.
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Table 4.5
Confidence intervals for the asymptotic δ-record rate and expected number of δ-records using σ̃2

δ

and different values of m.

m = 5 m = 6 m = 7 m = 8

p̂δ − 1.96σ̃δ/
√
n 0.118 0.121 0.119 0.109

p̂δ + 1.96σ̃δ/
√
n 0.375 0.372 0.374 0.383

np̂δ − 1.96σ̃δ
√
n 8.114 8.362 8.198 7.543

np̂δ + 1.96σ̃δ
√
n 25.886 25.638 25.802 26.457

We can see that the results found are similar for both estimators and for every
value of m considered. Also, we note that the intervals for both cases are not narrow,
but this is clearly expected since we just have a small sample of 69 observations.

For assessing the goodness of fit, we simulate the adjusted model (4.20) 106 times,
and compute the value of N69,δ. Figure 4.4 summarizes the total number of δ-records
obtained at each of the 106 simulations. The histogram has a Gaussian shape, so
the convergence in Theorem 3.6.11 to the Gaussian distribution seems to be fast.
Moreover, the 0.025 and 0.975 quantiles of the normal distribution N(17, 23.25)
are, respectively, 7.54 and 26.45. The 0.025 and 0.975 empirical quantiles from the
simulated data are 8 and 26, showing an excellent fit to the theoretical (asymptotic)
distribution.

As a conclusion, we see that empirical results and theory are in very close agree-
ment. This means that, even with a small sample, the approximations in Theorems
3.6.7 and 3.6.11 are good, at least for the model considered. Theoretical results
take advantage over simulations since they do not need as many assumptions as the
simulated results. In particular, simulations need the hypothesis of the distribution
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Table 4.6
Confidence intervals for the asymptotic δ-record rate and expected number of δ-records using σ̂2

δ

and different values of m.

m = 5 m = 6 m = 7 m = 8

p̂δ − 1.96σ̃δ/
√
n 0.116 0.121 0.120 0.111

p̂δ + 1.96σ̃δ/
√
n 0.377 0.371 0.373 0.382

np̂δ − 1.96σ̃δ
√
n 7.976 8.369 8.252 7.630

np̂δ + 1.96σ̃δ
√
n 26.024 25.631 25.748 26.370

Figure 4.4
Histogram of the total number of δ-records for the adjusted regression model (106 iterations of 69
observations).
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of the residuals, forcing us to conjecture the entire law of the data.

We now consider the estimation of the parameters of the model based only on
δ-records. In table 4.7 we give the MLE of the parameters for the temperature data.
The values have been obtained via a grid search as explained in Section 4.2. We
observe that, even when only the 7 records in the sample are used, the estimations
for β0 and β1 are very close to the ones obtained with all the data (69 observations).
However, the MLE for σ using only records is far from the value when all the
observations are used. We observe an improvement in the estimations, especially in
that of σ when δ-records are used.

Table 4.7
MLE for the temperature data

Records δ = −0.5 δ = −1 δ = −1.5 δ = −2 δ = −2.5 All data

β0 30.811 30.732 30.613 30.375 30.089 30.233 30.171
β1 0.055 0.047 0.046 0.051 0.054 0.047 0.048
σ 0.955 1.088 1.150 1.207 1.350 1.428 1.514

card(Φ) 7 11 17 25 31 38 69





“I en acabat, que cadascú es vesteixi com
bonament li plagui, i via fora!, que tot està
per fer i tot és possible”.

Miquel Mart́ı i Pol

5
Conclusions and future work

Throughout this monograph we have obtained novel results for δ-record and near-
record observations.

In Chapter 2 we have studied the point process of near-record values when the
observations are discrete, taking values in the integers. To that end, we start from
the record value process, which is the so-called Shorrock’s process. We use Shorrock’s
theorem to obtain the distribution of the number of near-record values in a set
associated to a record by conditioning on its value, finding that this number is
distributed as a geometric random variable starting at zero.

In addition, we obtain the distribution of the near-record values associated to
a certain record value in a set, and show that these quantities and their number
enjoy good independence properties. We use these results and the classical theory
of point processes to combine these properties, finding that the process of near-
records with values in a given set is a cluster process and we characterize it through
its probability generating functional (p.g.fl.). From this p.g.fl. we derive the exact
distribution of the number of near-records in a set in the whole sequence via its
probability generating function (p.g.f.). For this number of near-records, we also
obtain explicit expressions for some quantities of interest, such as the expected
number, the variance and the covariance.

These results are applied to different distributions. For example, for the geomet-
ric distribution it is found that both the expected number and the variance of the
number of near-records with value in [0, n] are of the order of n. For the distribution

121
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with hazard rates ri = 1− 1/(i + 1), we find that the number of near-records with
value exactly n is of the order of na, and its variance is of the order of n2a, where a
is the near-record parameter.

Once these properties are established, we analyze the asymptotic behaviour of
the number of near-records in the interval [0, n] as n grows. In the first place,
it is obtained that the condition

∑∞
i=1 r

2
i < ∞ is sufficient to guarantee that the

number of near-records in the whole sequence is finite almost surely. In this case,
we characterize the distribution of the total number of near-records by giving the
explicit expression of its p.g.f. As an example of a family with

∑∞
i=1 r

2
i < ∞, we

analyze the zeta distribution, with yk = (k + 1)−1. For this family, the expected
number of near-records is exactly the near-record parameter a, and we give an
explicit expression for the variance.

On the contrary, if
∑∞

i=1 r
2
i = ∞ holds, we obtain that the number of near-

records in the whole sequence is infinite a.s. under mild conditions. Moreover,
we find interesting asymptotic results for the number of near-records with values in
[0, n], denoted by η([0, n]), as n goes to infinity. Indeed, we find a strong law of large
numbers and a central limt theorem for η([0, n]) both for for heavy- or medium-tailed
distributions (those with lim supk→∞ rk < 1) and for light tailed distributions (those
with rk → 1) under some additional assumptions on the speed of growth of rk → 1.

The end of this chapter is devoted to the characterization of all discrete distri-
butions, taking values in the integers, satisfying that Mn − cNn,δ is a martingale.
This problem has been studied for records in [49], and we reached interesting results
in the case of δ-records. If δ < −1 we show that there is no distribution satisfying
the martingale condition. If δ = −1, that is, considering weak-records, we prove
that only the geometric distribution is a solution. If δ > 0, the problem of finding
these distributions is shown to be equivalent to the problem of guaranteeing certain
conditions for the solutions of linear recurrence relations. In this case, the solu-
tion to the linear recurrence is the sequence of the values of the survival function,
and therefore we have to guarantee that this sequence lies in the interval [0, 1], it
is non-increasing and its limit is 0. The problem of the positivity of solutions in
recurrence relations is an open problem in the literature, and therefore we have not
obtained the solution in the general case. However, the problem has been solved for
the case δ = 1, obtaining that the there exist solutions if and only if 0 ≤ c ≤ 1/4,
and that these solutions are convex combinations of the Dirac delta distribution and
two geometric distributions in general, except in the frontier case c = 1/4, where we
find another solutions related with (although not equal to) the negative binomial
distribution.

In Chapter 3 we have studied the behaviour of δ-records in the LDM. We have
analyzed the asymptotic probability of δ-records, the dependence between δ-record
events and the limiting distribution of the number of δ-records among the first n
observations.
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The behaviour of the asymptotic probability of δ-record shows similarities with
the case of records (δ = 0); for instance, for positive c, pδ(c) > 0 if and only if
µ+ <∞, regardless the value of δ (except for the trivial case δ ≥ x+−x−+ c, where
no δ-records are observed). We also find that pδ(c) is a continuous function of δ for
every c, while, as a function of c, it is continuous for every c 6= 0, and a discontinuity
arises at c = 0, if x+ < ∞ and δ < 0. This differs from records where p0(c) is a
continuous function of c.

We have described in detail the probability of δ-record in different examples. For
the Gumbel distribution, an explicit expression for pδ(c) is found, showing that it
decreases with δ, as a logistic function of −δ. For the cases studied in the Dagum
family of distributions, we have pδ(c) = 0, for every δ, c, since µ+ = ∞. For this
family, we investigate whether or not the speed of convergence of pn,δ(c) to 0, as
n → ∞, depends on δ. Since random variables Xn, with µ+ = ∞, may produce
large values provoking abrupt changes in record values, we can expect that δ values
close to 0 have a negligible impact and so, pn,δ(c)/pn,0(c)→ 1. This happens in the
case c = 0, where the number of δ-records grows at the same speed as the number of
records, when the Xn are heavy-tailed. However, we find that, for some distributions
in the Dagum family, pn,δ(c)/pn,0(c) → a 6= 1. The Uniform and the Type III
max-stable distributions, both in the Weibull class of extreme values are analyzed,
obtaining exact expressions for pn,δ. We also propose first order approximations for
pn,δ in the LDM, assessing positively its performance in the LDM.

The parameter δ has a clear impact in the qualitative behaviour of correlations of
δ-record events. First, the expression of the limiting correlation is different for δ ≥ 0
and δ < 0. For the Gumbel distribution, where record indicators are independent
[14], dependence appears when δ 6= 0; in fact, δ-records in this distribution attract
each other for δ < 0 and repel each other, for δ > 0. For distributions with power
law tails, it is known, for c > 0, that correlations between records are positive and
increase with n; see [34]. We have studied the Pareto distribution with c = 1, and
obtained that, while the correlations are positive (and increasing in n) for negative,
zero and small positive values of δ, they are negative for big values of δ. In fact, for
each n, the limiting correlation index, as δ →∞, is 0.3069.

We also make a detailed analysis of the random variable Nn,δ(c). We completely
solve the question of finiteness of N∞,δ(c), that is, the finitness of the number of
δ-records along the infinite sequence of observations. We show that this cannot
happen for c > 0, for any δ (except if the trivial condition x+ − x− < δ − c holds).
It cannot happen either when c < 0 and the underlying random variables Xn have
an infinite right-tail expectation. This last fact solves a problem posed in [33] by
Franke et al., where the authors conjectured that, in the presence of a negative trend,
the expected number of records in the whole sequence is finite. In the case c > 0
we analyze the asymptotic behaviour of the random variable Nn,δ, which grows to
infinity. We give a law of large numbers, showing that the ratio Nn,δ/n converges to
pδ(c) and that its asymptotic distribution is Gaussian, finding the explicit expression
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of its normalizing constants, which can be estimated from observed data. This result
was already known for records and has been applied to different problems, such as
athletic records [8, 9] and climate change [124, 125].

In the last section of this chapter a law of large numbers for a model with random
trend, which is a generalization of the LDM, is proved.

Chapter 4 is devoted to the use of δ-records for statistical inference in the LDM.
In the first section we propose two estimators of the variance of the number of δ-
records. These two statistics depend only on the δ-record times, and not on their
value, and so they only need the information of the sequence of the δ-record indices,
(1j)

n
j=1. Using techniques of ergodic theory as in Chapter 3, consistency for both

estimators is proved.

In the second part of this chapter a framework for Maximum Likelihood Esti-
mation is proposed. Based on the ideas of Smith [110], who analyzed the problem
for usual records, we find the likelihood of the sample based on δ-records for models
with deterministic trend and independent underlying random variables. That is, we
consider observations drawn from the model Yj = Xj + tj(c) such that (Xn) is a
sequence of absolutely continuous i.i.d. r.v. and tn(c) is a deterministic sequence
depending on a single parameter c. In this framework, we consider the sampling
scheme in which only δ-records, with δ ≤ 0, are observed, i.e., we work both with
δ-records values and times of occurrence.

The independence of the residuals in the deterministic model allows us to write
the likelihood of the sample of e δ-records, and we find the analytical Maximum
Likelihood Estimators (MLE) for a family of distributions, being this, to the best
of our knowledge, the first analytical result for a MLE, not only for δ-records, but
also for usual records in the LDM. Interesting properties are derived from the ex-
pressions of the MLEs for this family. For instance, the estimation of both the
location and trend parameters depend only on the sequence of records and not on
the δ-records which are not records. Nevertheless, this is a particular feature of this
family which is not shared by many other distributions, such as the Gaussian or
the shifted-exponential distributios, where all δ-records are used in the estimation
of the parameters. By means of Montecarlo simulation, we have analyzed how the
estimations of the unknown parameters improve with the use of δ-records. In par-
ticular, we see how in the Gaussian family and the shifted-exponential, the decrease
in the mean squared error of the estimations using δ-records is roughly proportional
to the number of extra observations included in the sample (near-records).

In the last section, we have illustrated the limiting results obtained in Chapter
3 for Nn,δ with a set of real data of temperatures of the city of Saragossa (Spain),
showing a good agreement between the theoretical asymptotic results and the ob-
served data in the example. Indeed, even for this relatively short series (69 data),
the distribution of the number of δ-records is close to the theoretical limiting Gaus-
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sian distribution. Also, the estimators of the variance of the number of δ-records
are applied to this dataset. These estimators depend on a number m which should
be in the order of o(n1/2) to enjoy consistency, as it is shown in the first part of
this chapter. We show how both estimators yield similar estimations for different
values of m, and we use these results to build confidence intervals for particular
quantities of interest of the model, such as the asymptotic δ-record probability and
the expected number of δ-records among the first n observations. Finally, we apply
the MLE to the dataset of temperatures, showing a good performance and yielding
accurate results even with a small sample of observations. In particular, we find
good agreement between the results obtained and previous estimates of the summer
warming trend in Europe [124, 125].

Ideas for future work

Below we list a series of ideas to develop in future work based on the results obtained
in this monograph.

• The problem of characterizing the distributions satisfying that Mn − cNn,δ is
a martingale has been studied in Chapter 2 for discrete r.v. taking values in
the integers. Preliminary results for the continuous case have been obtained
by relating this problem with the theory of delay differential equations, which
is a first step to solve the problem of finding all general distributions such that
the martingale condition holds.

• The LDM has been extensively studied in Chapter 3. While the laws of large
numbers have been shown to hold for more general models, like ARMA pro-
cesses with an underlying trend, or the random trend model, it seems a natural
continuation to look for central limit theorems for the number of δ-records as
n increases.

• The explicit expression of the correlation between δ-record occurrences in the
LDM was obtained in Chapter 3. Since this correlation indicator is the quan-
tity appearing in the expression of the variance in the central limit theorem,
exact expressions for the asymptotic distribution of the number of δ-records
can be obtained. This result would allow us to develop asymptotic hypothesis
testing methods for the trend parameter based on δ-records, and also to assess
the power of such tests.

• The MLE methods analyzed in Chapter 4 could be complemented with ad-
ditional results, such as consistency for particular families of distributions.
Also, Bayesian or bootstrap techniques could be applied to propose alterna-
tive methods for making inference based on δ-records in the LDM.
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• In addition to parametric inference, other statistical problems in the LDM can
be addressed using δ-records. An example is the prediction of future records,
which is very important in climatology. Another example is nonparametric
estimation of the hazard function of the observations. These problems have
been addressed successfully in the i.i.d. case, and we believe that the extension
to the LDM will lead to results that outperform the inferences based on record
values.



Conclusiones y trabajo futuro

A lo largo de esta memoria se ha obtenido una importante cantidad de nuevos
resultados para las observaciones δ-récord y near-record (o récords cercanos).

En el Caṕıtulo 2 se ha estudiado el proceso puntual de los valores near-record
cuando las observaciones subyacentes son variables aleatorias discretas tomando
valores en los números enteros. Para ello, nos hemos apoyado en el proceso de valores
récord, que es conocido como proceso de Shorrock. Condicionando a la sucesión
de valores récords, hemos obtenido la distribución del número de near-records que
toman valores en un conjunto asociados a un determinado récord, encontrando que
dicha distribución es en realidad una geométrica empezando en cero.

Además, hemos obtenido la distribución de esos valores near-records asociados
a un determinado récord, demostrando asimismo que los valores, y el número de
ellos, gozan de buenas propiedades de independencia. Combinando estos resultados
con la teoŕıa clásica de procesos puntuales, demostramos que el proceso de valores
near-record que toman valores en un conjunto es un proceso de tipo cluster, ca-
racterizándolo a través de su funcional generador de probabilidad. A partir de este
funcional obtenemos la distribución exacta del número de near-records que toman
valores en un conjunto a través de su función generatriz de probabilidad, aśı como
expresiones expĺıcitas para algunas cantidades de interés como la esperanza y la
varianza de dicho número, o como la covarianza.

Estos resultados han sido aplicados a distintas distribuciones. Por ejemplo para
la distribución geométrica obtenemos que tanto el número esperado de near-records
en el intervalo [0, n], como su varianza, son del orden de n. Para la distribución con
tasa de riesgo ri = 1 − 1/(i + 1), se encuentra que el número de near-records con
valor exactamente n es del orden de na, y su varianza del orden de n2a, donde a es
el parámetro de near-record.

A partir de estas propiedades, hemos analizado el comportamiento asintótico
del número de near-records en el intervalo [0, n] cuando n crece. En primer lugar
se demuestra que la condición

∑∞
i=1 r

2
i < ∞ es suficiente para garantizar que el

número de near-records a lo largo de toda la sucesión de observaciones es finito
casi seguramente. En este caso, caracterizamos la distribución del número total de
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near-records dando su función generatriz de probabilidad. Como ejemplo de una
familia con

∑∞
i=1 r

2
i < ∞, analizamos el caso de la distribución zeta, cuya función

de supervivencia es yk = (k+ 1)−1. Para esta familia se demuestra que la esperanza
del número de near-records coincide con el valor del parámetro de near-record a.
Adicionalmente también se obtiene una expresión expĺıcita para la varianza de este
número.

Si por el contrario se tiene
∑∞

i=1 r
2
i = ∞, se demuestra que bajo condiciones

débiles el número de near-records en toda la sucesión de observaciones es infinito
casi seguramente. Además, demostramos interesantes resultados asintóticos para
el número de near-records, η([0, n]), cuando n tiende a infinito. En efecto, de-
mostramos una ley de grandes números y un teorema central del ĺımite para η([0, n]),
tanto para distribuciones con colas pesadas y medianas (aquellas que cumplen
lim supk→∞ rk < 1) y para distribuciones de cola ligera (para las cuales rk → 1)
bajo algunas condiciones adicionales sobre la velocidad de crecimiento de rk cuando
rk → 1.

El final de este caṕıtulo se dedica al estudio de la caracterización de todas las dis-
tribuciones discretas tomando valores en los enteros que satisfacen que Mn−cNn,δ es
una martingala. Este problema fue estudiado en detalle en [49] en el caso de récords
usuales. En el caso de los δ-récords, hemos encontrado interesantes resultados en
esta memoria. Si δ < −1, se demuestra que ninguna distribución puede satisfacer la
condición de martingala propuesta. Si δ = −1, que es el caso de los récords débiles,
se demuestra que solo la distribución geométrica cumple dicha condición. Si δ > 0,
se demuestra que el problema de hallar las distribuciones que cumplen la condición
de la martingala es equivalente al problema de garantizar ciertas condiciones para
las sucesiones solución de unas ecuaciones lineales de recurrencia. En nuestro caso
las soluciones de estas ecuaciones representan la función de supervivencia de las dis-
tribuciones, por lo que se ha de garantizar que dicha sucesión pertenece al intervalo
[0, 1], y es no creciente con ĺımite 0. El problema de garantizar la positividad de
las soluciones en este tipo de ecuaciones de recurrencia es actualmente un problema
abierto en la literatura, y por lo tanto no hemos obtenido una solución para el caso
general. Sin embargo, śı que se ha resuelto el problema completamente para el caso
δ = 1, para el cual se ha obtenido que existe solución si y solo si 0 ≤ c ≤ 1/4, y que
además dichas soluciones son combinaciones convexas de la distribución Delta de
Dirac y de dos distribuciones geométricas, excepto en el caso ĺımite c = 1/4, donde
se obtiene una solución relacionada (pero no igual) con la binomial negativa.

En el Caṕıtulo 3 se ha estudiado el comportamiento de los δ-récords en el modelo
con tendencia lineal (LDM). Se ha analizado el comportamiento asintótico de la
probabilidad de δ-récord, la dependencia entre las ocurrencias δ-récord, y la dis-
tribución asintótica del número de δ-récords en las primeras n observaciones.

El comportamiento asintótico de los δ-récords muestra similitudes con el caso de
los récords (δ = 0). Por ejemplo, si la tendencia c es positiva, entonces pδ(c) > 0 si
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y solo si µ+ <∞, independientemente del valor de δ (exceptuando el caso trivial en
el cual se tiene δ ≥ x+ − x− + c, donde x− y x+ son los ĺımites inferior y superior
del soporte de las variables subyacentes respectivamente, situación en la cual no se
observan δ-récords). También se demuestra que pδ(c) es una función continua en δ
para todo c. Como función de c es continua para todo c 6= 0, mientras que hay una
discontinuidad en c = 0, si x+ < ∞ y δ < 0, lo cual difiere del caso de los récords
usuales donde p0(c) siempre es una función continua en c.

Además, se ha estudiado en detalle la probabilidad de δ-récord en distintos ejem-
plos. Para la distribución Gumbel se halla una expresión expĺıcita para la proba-
bilidad asintótica pδ(c), mostrando que decrece en δ como una función loǵıstica de
−δ. Para los casos estudiados en la familia de distribuciones Dagum se tiene que
pδ(c) = 0, para todo c y δ, ya que µ+ = ∞. Para esta familia se estudia si la
velocidad de la convergencia de pn,δ(c) a 0 cuando n→∞ depende del parámetro δ.
Como las variables aleatorias Xn con µ+ = ∞ pueden tomar valores muy grandes,
provocando aumentos muy pronunciados en los valores récord, quizás seŕıa espera-
ble que valores de δ cercanos a 0 tuvieran un efecto despreciable, y que por tanto
se tuviera pn,δ(c)/pn,0(c) → 1. Esto ocurre de hecho en el caso c = 0, donde el
número de δ-récords crece con la misma velocidad que en el caso de los récords
usuales cuando las variables aleatorias Xn son de cola pesada. Sin embargo, en este
ejemplo encontramos que para ciertas distribuciones de la familia Dagum se tiene
pn,δ(c)/pn,0(c) → a 6= 1. También se analizan las distribuciones uniforme, y la dis-
tribución ĺımite de valores extremos de tipo III, ambas de la familia de extremos
de la clase Weibull, para las que se obtienen expresiones exactas de pn,δ. Además,
se proponen aproximaciones lineales de primer orden para la probabilidad pn,δ en el
LDM, evaluando su precisión numéricamente.

El parámetro δ tiene una clara importancia en el comportamiento cualitativo
de las correlaciones de las ocurrencias δ-récord. En la distribución Gumbel, para
la cual los indicadores de récord son independientes en el LDM [14], se demuestra
que esto deja de ser aśı en el caso δ 6= 0; de hecho, las ocurrencias de los δ-récords
en esta distribución tienden a atraerse cuando δ < 0, y a separarse si δ > 0. Para
distribuciones cuya cola decrece de manera polinómica ya era conocido que si c > 0,
las correlaciones entre las ocurrencias de los récords son positivas y que incrementan
con n [34]. En este marco, hemos estudiado la distribución Pareto con c = 1,
obteniendo que si bien las correlaciones son positivas (y crecientes en n) para valores
negativos o pequeños de δ, éstas son negativas para valores grandes de δ. De hecho,
fijado n, el ĺımite del ı́ndice de correlación cuando δ →∞ es 0.3069, indicando una
correlación negativa.

Realizamos además un estudio detallado del comportamiento de la variable
aleatoria Nn,δ(c) y resolvemos completamente el problema de la finitud de N∞,δ(c),
es decir, si el número de δ-récords en la sucesión completa es infinito o no. De-
mostramos que el número de δ-records es infinito si c > 0, para todo δ, excepto si se
cumple la condición trivial x+ − x− < δ − c. También es infinito si la tendencia es
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negativa, c < 0 y las variables subyacentes Xn no tienen una esperanza de su cola
derecha finita, siendo el número finito si dicha esperanza es finita. Este resultado
proporciona una solución al problema propuesto en [33] por Franke et al., donde
los autores conjeturaron que en la presencia de una tendencia negativa, el número
esperado de récords en la sucesión infinita es finito. En el caso c > 0 analizamos
el comportamiento asintótico de la variable aleatoria Nn,δ(c), la cual ya hab́ıamos
demostrado que crece a infinito. Damos una ley de grandes números, probando
que el cociente Nn,δ/n converge a pδ(c), y que asintóticamente su distribución es
gaussiana, encontrando una expresión expĺıcita de las constantes normalizadoras,
las cuales pueden ser estimadas de los datos. Este resultado ya era conocido para
los récords usuales, y ha sido aplicado en diferentes problemas, como los récords en
atletismo [8, 9] o el cambio climático [124, 125].

En la última sección de este caṕıtulo se demuestra además un ley de grandes
números para un modelo con tendencia aleatoria, el cual puede ser visto como una
generalización del LDM.

El Caṕıtulo 4 se dedica al uso de δ-récords en inferencia estad́ıstica en el LDM.
En la primera sección proponemos dos estimadores para la varianza del número de
δ-récords que se observan en el LDM. Estos dos estad́ısticos dependen únicamente
de los tiempos de δ-récord, y no de sus valores, por lo que para su aplicación solo
se necesita conocer el valor de las variables indicadoras (1j)

n
j=1. Usando técnicas

de teoŕıa ergódica como en el Caṕıtulo 3, se demuestra la consistencia en ambos
estimadores.

En la segunda parte de este caṕıtulo se considera el problema de la estimación
máximo verośımil en el LDM. Basándonos en las ideas del trabajo de Smith [110],
en el que se analizó el problema para récords, damos una expresión expĺıcita para la
verosimilitud de la muestra de δ-récords en modelos con una tendencia determinista
con residuos independientes. En particular, consideramos que las observaciones
siguen el modelo Yj = Xj + tj(c), donde (Xn) es una sucesión de variables aleatorias
absolutamente continuas e i.i.d., y la tendencia tn(c) es una sucesión determinista
que depende de un único parámetro c. En este marco, consideramos el esquema
de muestreo en el cual se observan únicamente los δ-récords, con δ ≤ 0, es decir,
trabajamos únicamente con los valores δ-récord y sus tiempos de ocurrencia.

La independencia de los residuos en el modelo con tendencia lineal nos permite
escribir la verosimilitud de la muestra de los δ-récords. A partir de ésta, encon-
tramos los Estimadores Máximo Verośımiles (EMV) para una familia de distribu-
ciones, siendo estos los primeros resultados anaĺıticos en la literatura respecto a
EMV, no solamente para δ-récords, sino también para los récords usuales. De estas
expresiones anaĺıticas obtenemos interesantes conclusiones, como por ejemplo, que
en dicha familia la estimación de los parámetros de localización y de la tendencia
dependen únicamente de los récords, y no de los δ-récords que no son récord. Sin
embargo, esta propiedad no se cumple en otras familias de distribuciones, como la
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gaussiana o la exponencial, para las cuales todos los δ-récords se utilizan para la
estimación de los parámetros. A través de simulación de tipo Montecarlo, se mues-
tra como las estimaciones de los parámetros desconocidos mejoran con el uso de
los δ-récords. En particular, vemos como en la familia gaussiana y exponencial, la
reducción del error cuadrático medio usando δ-récords es, grosso modo, proporcional
al número de observaciones adicionales incluidas en la muestra, es decir, al número
de near-records respecto al de récords.

En la última sección se han ilustrado los resultados obtenidos en el Caṕıtulo 3
para Nn,δ con un conjunto de datos reales en la ciudad de Zaragoza (España), para
los cuales se muestra una excelente concordancia entre los resultados teóricos y los
datos de la muestra. De hecho, para una serie de datos relativamente corta (69
datos), la distribución del número de δ-récords ya se aproxima bastante bien por la
distribución normal tal y como predice la teórica asintótica desarrollada. Además,
se aplican los estimadores de la varianza del número de δ-récords a este conjunto
de datos. Estos estimadores dependen de un número, m, que ha de ser escogido de
antemano y que debe ser del orden de o(n1/2) para garantizar la consistencia de los
estimadores, tal y como se ha demostrado en la primera parte de este caṕıtulo. En
la aplicación a los datos reales observamos como ambos estimadores, para distintos
valores de m, arrojan estimaciones muy similares. Estas estimaciones se utilizan
para construir intervalos de confianza para cantidades de interés del modelo, como
la probabilidad asintótica de δ-récord o el número esperado de los mismos en las
primeras n observaciones. Finalmente, utilizamos el EMV desarrollado en la sección
anterior sobre este conjunto de temperaturas, para el cual se observa que arroja
estimaciones precisas incluso con una muestra pequeña. En particular, los resultados
encontrados son consistentes con estimaciones de otros autores sobre la tendencia
del calentamiento en verano en Europa [124, 125].

Ideas de trabajo futuro

A continuación se ofrece una serie de ideas para desarrollar en trabajos futuros
motivadas por los resultados obtenidos en esta monograf́ıa.

• En el Caṕıtulo 2 abordamos el problema de caracterizar las distribuciones
discretas con valores enteros que cumplen que Mn − cNn,δ es una martingala.
En el caso continuo ya se han obtenido resultados preliminares relacionando
el problema con el de la resolución de ecuaciones diferenciales con retardo.
Este es el siguiente paso hacia la caracterización de todas las distribuciones de
cualquier tipo que cumplan la condición de martingala.

• En el Caṕıtulo 3 se ha estudiado detalladamente la ocurrencia de δ-récords en
el LDM. Nótese que las leyes de grandes números se han demostrado, no solo
para el LDM, sino también para generalizaciones del mismo como procesos
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ARMA con una tendencia subyacente y el modelo con tendencia aleatoria.
Parece por tanto una continuación natural el tratar de demostrar resultados
acerca de la normalidad asintótica de estas observaciones en estos modelos más
generales.

• La expresión expĺıcita de la correlación entre dos ocurrencias δ-récord se mues-
tra en el Caṕıtulo 3. Como este indicador de la correlación es la cantidad que
aparece en la expresión de la varianza en el teorema central del ĺımite, eso im-
plica que se pueden obtener expresiones exactas para la distribución asintótica
del número de δ-récords. Este resultado permitiŕıa el desarrollo de contrastes
de hipótesis basados en δ-récords sobre la tendencia subyacente de las obser-
vaciones, aśı como analizar la potencia de dichos contrastes.

• Los EMV analizados en el Caṕıtulo 4 pueden ser complementados con re-
sultados adicionales como la consistencia de los estimadores para familias de
distribuciones particulares. También se está considerando el uso de técnicas de
análisis bayesiano y bootstrap como métodos alternativos para hacer inferencia
basada en δ-récords para el LDM.

• Además de la inferencia paramétrica, se pueden abordar otros problemas es-
tad́ısticos en el LDM utilizando δ-récords. Por ejemplo para la predicción de
récords futuros, cuyo interés en climatoloǵıa es evidente. Otro ejemplo es la
estimación no paramétrica de la función de riesgo de las observaciones. Es-
tos problemas se han abordado con éxito en el caso i.i.d., y creemos que la
extensión al LDM conducirá a resultados que mejoren la inferencia basada en
valores récord.
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[47] Gouet, R., López, F. J., and San Miguel, M. (2001). A martingale approach
to strong convergence of the number of records. Advances in Applied Probability,
33(4):864–873.
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