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Nomenclatura 
β Velocidad de calentamiento 

σ Desviación estándar 

A0 Factor preexponencial de la ecuación de Arrhenius 

AsIQ Coeficiente de asimetría intercuartil 

CNT Nanotubos de carbono 

DTG Derivada de la variación de peso respecto de la temperatura 

DTGA  Análisis DTG 

DHN Decalina 

DMF Guayacol 

Ea Energía de activación 

f (m) Función de la masa en TGA 

GC Cromatografía de gases 

HDO Hidrodeoxigenación 

ID Intensidad de la banda D en el espectro Raman 

IG Intensidad de la banda G en el espectro Raman 

IK Índice de curtosis 

kdesc Constante cinética de descomposición 

kdt Constante de velocidad de reacción de la descomposición térmica 

m Masa de la muestra en cada instante “t” 

m0 Masa inicial de la muestra 

m’0 Masa inicial de la muestra deshidratada a 110ºC 

m’0,i Masa inicial de la muestra que trascurre por la reacción “i” 

mf Masa final de la muestra 

mf,i Masa final debido a la contribución de la reacción “i” 

mi Masa en cada momento de la descomposición debido a la reacción “i” 

MMF p-creosol 

N Número de datos medidos en la distribución 

n Orden de reacción 

O/C Relación oxígeno/carbono 

o/w Emulsión tipo aceite en agua 

PTC Catálisis por Transferencia de Fase 

R Rango de la distribución (diámetro máximo – diámetro mínimo) 

R2 Coeficiente de determinación múltiple (R2 = SSR/SST) 

SD Desviación estándar del logaritmo neperiano de la variable evaluada 

SSE Suma de cuadrados de residuos o error (error sum of squares) 

SSR Suma de cuadrados debida a la regresión (Regresion sum of squares) 

SST Suma de cuadrados del total (SST = SSR + SSE) 

t Tiempo (normalmente en minutos) 

T Temperatura en Kelvin 

Tf Temperatura final del proceso de pérdida de masa 
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Ti Temperatura inicial del proceso de pérdida de masa 

Tm Temperatura de máxima pérdida de peso de un proceso 

tR,US Tiempo de residencia del equipo de ultrasonidos 

TEM Microscopia electrónica de transmisión 

TG  Termogravimétrico 

TGA Análisis TG 

TR,US tiempo de residencia del equipo de ultrasonidos 

US Ultrasonidos 

VA Vanillina 

VOH Alcohol vainillínico 

w/o emulsión tipo agua en aceite 
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Estructura del trabajo 
 

Este proyecto final de carrera se ha estructurado en los siguientes capítulos: 

1.- Introducción: Se realiza un estudio del estado del arte, justificando el trabajo de investigación, 

proponiendo el objetivo general y los objetivos específicos del proyecto. 

2.- Experimental, que está formada por una sección instrumental, donde se describe cada equipo 

empleado y una sección de procedimientos experimentales. 

3.- Estudio Cinético donde se ha investigado: 

3.1.- Cinética de descomposición térmica de plantillas biomórficas para la obtención de catalizadores: 

se realiza un análisis por termogravimetría del proceso de descomposición de la celulosa, del papel de 

filtro y de éste impregnado con diferentes metales.  

3.2- Reacción de hidrogenación. Se realiza la síntesis de catalizadores de dos formas: por impregnación  

de metales y a partir de una plantilla biomorfica. Posteriormente se estudia la actividad de los 

catalizadores obtenidos empleando como medio de reacción una emulsión estable de agua/decalina 

4.- Conclusiones del trabajo. 

 

Resumen 

El siguiente proyecto final de carrera se enmarca en el proyecto de investigación de “Aplicaciones de 

Nanonohíbridos en Catálisis por Transferencia de fase (PTC)” (MINECO-FEDER, proyecto CTQ2010-

16132, DGA-FSE) del grupo de Catálisis, Separaciones Moleculares e Ingeniería de Reactores (CREG) 

del Departamento de Ingeniería Química y Tecnologías del Medio Ambiente de la Universidad de 

Zaragoza. 

El “bio-oil” obtenido de la pirólisis de biomasa está formado mayoritariamente por brea (o 

alquitranes), aceite biodegradable y agua. Esta composición se distribuye en dos fases, una fase acuosa 

en la que se encuentra una gran variedad de compuestos orgánicos oxigenados y una fase no acuosa 

formada por compuestos orgánicos insolubles en agua. La baja estabilidad del “bio-oil”, debida la alta 

reactividad que le confieren los grupos funcionales oxigenados a la mezcla, hace que sea de peor 

calidad que los combustibles fósiles, además de tener un menor poder calorífico. 

Para mejorar la calidad del “bio-oil” se lleva a cabo el refinado del mismo. Uno de los procesos más 

importantes del refinado es la hidrodeoxigenación (HDO), que disminuye la relación O/C en el “bio-oil” 

y da lugar a combustibles y productos químicos de mayor valor añadido. La HDO de “bio-oil” consiste 
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en el tratamiento de aceites a temperaturas moderadas, utilizando hidrógeno a alta presión en 

presencia de catalizadores heterogéneos. Habitualmente el proceso se realiza en múltiples etapas. 

En este proyecto se simplifica el proceso de manera que la reacción HDO se lleva a cabo en un solo 

reactor, a través de “catálisis por transferencia de fase” (PTC), que tiene lugar en un medio formado 

por las dos fases inmiscibles del “bio-oil” y un catalizador heterogéneo (sólido). 

Para facilitar la transferencia de materia entre ambas fases, y en última instancia, mejorar el 

rendimiento global del proceso de refino del “bio-oil”, se aumenta el área interfacial de contacto entre 

fases añadiendo surfactantes que formen una emulsión estable. 

Empleando emulsionantes sólidos, la fragmentación final se simplifica ya que no es necesario separar 

las fases. Los productos se reparten entre las fases según sus solubilidades. 

En el presente proyecto se han sintetizado catalizadores biomórficos degradando térmicamente en 

presencia de hidrógeno papel de filtro impregnado en nitrato del metal. Este proceso es más sencillo 

y barato que el uso de materiales nanohíbridos que recientemente se han empleado en estas 

reacciones. Además, tras la degradación térmica, el metal aparece en forma de nanopartículas 

reducidas altamente dispersas, por lo que no se requiere activación del catalizador previo a su uso. 

Los catalizadores biomorficos empleados han demostrado ser estabilizantes de la emulsión a la par 

que activos en la reacción HDO estudiada, pudiendo emplearse metales como el níquel con resultados 

comparables con metales más caros y frecuentemente utilizados como el paladio. 
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1.1 Fuentes de energía 

El estudio de las fuentes de energía es, desde un punto de vista económico, político y tecnológico, 

primordial para la sociedad. Se diferencian dos tipos de fuentes de energía: renovables (verdes, o 

permanentes) y no renovables (o temporales).Las energías no renovables son los combustibles fósiles 

y la energía nuclear, mientras que el resto de recursos se consideran fuentes de energía permanentes. 

Entre los combustibles fósiles más conocidos se encuentran el carbón y el petróleo, cuya extracción es 

cara ya que se encuentran a grandes profundidades y/o en minas bajo tierra. A demás, en el caso del 

petróleo, la rentabilidad económica se ve influida por su origen, peso, viscosidad o contenido en 

azufre. 

La mayor parte de la energía empleada actualmente en el mundo proviene de fuentes no renovable. 

Existen multitud de problemas medioambientales asociados al uso de estas energías. Se hace patente, 

cada vez más, un interés en desarrollar nuevas tecnologías, que permitan la incorporación de otras 

energías capaces de competir con el petróleo y fundamentadas en solventar los problemas derivados 

del uso de fuentes no renovables. Se trata, por una parte, de obtener energías que favorezcan la 

reducción de emisiones a la atmósfera, y por otra, que resulten de menor costo. Estas nuevas 

tecnologías que pueden sustituir a los combustibles fósiles se identifican como fuentes alternativas de 

energía o energías alternativas. 

Las energías alternativas son aquellas que pueden ser empleadas como sustitución a los combustibles 

fósiles. Desde este punto de vista, el concepto incluye no solo a las energías renovables, sino todas las 

alternativas posibles, incluso la energía nuclear. Actualmente, las energías verdes están cobrando 

importancia, frente a la energía nuclear (y sus posibles efectos derivados de la radiación) y la fósil (a 

causa del agravamiento del efecto invernadero y el consecuente calentamiento global, acompañado 

por una mayor toma de conciencia a nivel internacional con respecto a dicho problema). 

Las energías verdes son diversas: 

 Energía solar: recoger la energía del sol. 

 Energía marina u oceánica: producida por las olas del mar, las mareas, la salinidad, las 

diferencias de temperatura del océano y/o las corrientes marinas. 

 Energía eólica: obtenida por la fuerza del viento. 

 Energía hidroeléctrica: La energía potencial acumulada en los saltos de agua puede ser 

transformada en energía eléctrica. 

 Energía geotérmica: aprovechamiento del calor del subsuelo, se puede utilizar  para obtener 

electricidad o producción directa del calor. 

 Biomasa: La energía almacenada en el proceso fotosintético puede ser posteriormente 

transformada en energía térmica, eléctrica o carburantes de origen vegetal. 
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1.2 Bio-energía 

La bio-energía o energía de biomasa es un tipo de energía renovable procedente del aprovechamiento 

de la materia orgánica e industrial formada en algún proceso biológico o mecánico. Los recursos de 

biomasa son, entre otros, materia lignocelulósica, cultivos, residuos animales y biogás. 

La energía útil que proviene de la biomasa se expresa en dos términos: 

 Poder calorífico superior (HHV, “higher heating value”). Se refiere a la energía total liberada a 

través de la combustión dividida por el peso del combustible. 

 Poder calorífico inferior (LHV, “low heating value”). Se refiere a la energía de combustión que 

es realmente disponible después de descontar las pérdidas de energía debidas a la evaporación del 

agua contenida en el combustible y la formación de agua a partir de hidrógeno contenido en moléculas 

de hidrocarburos y su posterior evaporación. 

El petróleo tiene una diferencia entre ambos poderes caloríficos que raramente supera el 10 %, 

mientras que  los combustibles de biomasa presentan una diferencia que puede ser muy grande. Esto 

se debe a la cantidad de agua e hidrógeno del combustible, ya que en combustibles petrolíferos el 

contenido de agua está alrededor del 3 al 6 % y sin embargo los combustibles procedentes de la 

biomasa pueden contener 50-60 % de agua (Hemstock, S. 2006). 

La biomasa es la cuarta fuente de energía más importante después del carbón, petróleo y gas natural. 

Es un recurso renovable y sostenible que tiene propiedades favorables para el medio ambiente, por 

ejemplo, la emisión de gases de efecto invernadero a la atmósfera es menor que con otras fuentes de 

energía. 

La combustión directa es una de las maneras más antiguas de aprovechamiento de la biomasa, además 

de ser el 97 % de la producción de bioenergía del mundo (Demirbas, 2004). 

La biomasa puede tener varios usos: 

 Producir calor y electricidad a partir de su combustión. 

 Transformarla en combustibles líquidos (aceites de pirolisis, bio-fuel, etc.) o gaseosos (gas 

natural, H2, etc.). 

 Obtención de productos de mayor valor añadido (sustituyentes de los procedentes del 

petróleo). 

 A partir del residuo sólido de la combustión, obtención de coque o residuos carbonosos que 

pueden servir de abonos. 

En términos energéticos la biomasa se define como la materia orgánica originada en un proceso 

biológico, espontáneo o provocado, potencialmente utilizable como fuente de energía. En el contexto 

de la energía, generalmente se definen cuatro tipos de biomasa según su composición: azucarada 

(remolacha, caña de azúcar, etc.), amilácea (granos de cereal, patata, etc.), oleaginosa (semillas de  
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colza, girasol, etc.) y lignocelulósica (residuos agrícolas, madera, cultivos perennes y fracción orgánica 

de residuos industriales y residuos sólidos urbanos). 

La biomasa lignocélusica es un recurso abundante con la ventaja adicional de ser más renovable que 

los otros tipos biomasa. Como fuente de energía, los cultivos perennes aparecen como un recurso 

prometedor, ya que poseen alto rendimiento, bajos costes, buena adaptabilidad a tierras de mala 

calidad y poco impacto medioambiental (Demirbas, 2010). 

La conversión de la materia lignocelulósica en energía se puede lograr por medio de un tratamiento 

biológico o de tratamientos termoquímicos (gasificación, procesos syngas y pirólisis). 

 

Fig. 1.1.- Consumo de energía primaria en 2010 (Plan de Energías Renovables (PER) 2011-2020, 2011) 

 

 

En las Figuras 1.1 y 1.2 se presentan diferentes datos extraidos del Plan de Energías Renovables (PER). 

Se observa que en el periodo 2012-2013, se produce en España un descenso en el consumo del 

petróleo y del gas natural, mientras que las energías renovables aumentan desde un consumo de 11,3 

% en 2010 a un 13,8 % en 2013, destacando el incremento de las energías procedentes de la biomasa. 
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Fig. 1.2.- Consumo de energía primaria en Junio 2012-Mayo 2013 (Estudios, informes y estadísticas. Consumos energéticos 
2013. IDAE) 

 

Dentro de las nuevas fuentes de energía, el uso de biomasa tiene un fuerte impacto en la investigación, 

ya que, no sólo se obtiene poder calórico durante el procesado, sino también hidrógeno y productos 

de valor añadido. 

A continuación se muestra un resumen de las características principales de las tecnologías (Hemstock, 

2006) para diferentes tipos de materia prima usada: 

- biomasa seca: madera, astillas, otras biomasas sólidas y estiércol. 

- biomasa seca de herbáceos: residuos agroforestales 

- biomasa seca, biogás: Paja, residuos forestales, desechos, biogás 

- cultivos oleaginosos: colza 

- azúcar y almidones, material celulósico: Caña de azúcar, maíz, biomasa leñosa 

- biomasa húmeda: Estiércol, lodos de depuradora, residuos vegetales 
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Tecnología 
de conversión 

Tipo de biomasa 
Producto 
principal 

Utilidad 
Estado de la 
tecnología 

Notas 

Combustión Biomasa seca Calor 
Calor y electricidad 
(turbina de vapor) 

Comercial 
Varia la eficiencia: 

Eléctrica > 15 – 40% 
Termal > 80% 

Co-combustión 
Biomasa seca 

(madera y 
herbáceos) 

Calor y 
electricidad 

Calor y electricidad 
(turbina de vapor) 

Comercial 
(combustión 

directa) 
Demostración 
(gasificación 
avanzada y 

pirolisis) 

contaminación 
reducida 

bajos costes de 
inversión 

problemas de 
suministro, técnicos y 

de calidad 

Gasificación Biomasa seca Syngas 

Calor (caldera), 
electricidad (motor, 

turbina de gas, celda de 
combustible, ciclo 

combinado), gasolinas 
(metanol e hidrógeno) 

Demostración, 
principios de 

comercial 

Las tecnologías de 
gasificación avanzada 
ofrecen muy buenas 
oportunidades para 

multitud de usos 

Pirólisis Biomasa seca 
Aceite de 

pirólisis y co-
productos 

Calor (caldera), 
electricidad (motor) 

Demostración, 
principios de 

comercial 

Problemas con 
mantener la calidad 

de los productos 

CHP 
Biomasa seca, 

biogás 
Calor y 

electricidad 

Uso combinado de calor 
y energía (combustión y 

gasificación) 

Comercial (escala 
media a grande) 

Comercial (escala 
pequeña) 

Prioridad política en 
UK, alta eficiencia, 

potencial para celdas 
de combustible 

(plantas pequeñas) 

Esterificación / 
prensado 

cultivos 
oleaginosos 

Bio-diesel 
Calor (caldera), 

electricidad (motor), 
gasolinas 

Comercial Altos costes 

Fermentación / 
hidrólisis 

Azúcar y 
almidones, 

material celulósico 
Etanol 

Combustibles líquidos y 
materia prima química 

Comercial. Bajo 
desarrollo para 

biomasa celulósica 

5-10 años para 
comercialización 

Digestión 
anaeróbica 

Biomasa húmeda 
Biogás  y 

co-productos 

Calor (caldera), 
electricidad (motor, 

turbina de gas, celda de 
combustible) 

Comercial, excepto 
celdas de 

combustible 
Uso localizado 

Tabla 1.1.- Esquema de tecnologías de conversión de biomasa en energía (fuente (Hemstock, 2006)) 

 

El informe realizado por el PER para los años 2011-2020, muestra que a finales de 2010, en España, la 

capacidad de producción instalada (según datos del IDAE), ascendió a 464.000 toneladas de bioetanol 

(4 plantas), y 4.318.400 toneladas de biodiesel (47 plantas), que son dos de los biocombustibles que 

actualmente más se utilizan en España. 

El biodiesel se utiliza en motores de compresión con mezclas del 30 % en autobuses, del 5 % en coches 

y de forma pura en los motores modificados (Castillo, S. y Lozano, Y. 2009). 
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1.2.1 Pirólisis de biomasa 

La pirólisis es un proceso termoquímico que convierte la materia orgánica en combustibles útiles, con 

un alto rendimiento. 

El proceso se lleva a cabo a través de un  calentamiento, utilizando temperaturas en el rango de 350-

650 ºC, en ausencia (o en presencia de bajas concentraciones) de oxígeno. 

La pirolisis convencional conduce a la obtención de hasta un 70-75 % en masa de aceite de pirólisis 

(Sharma, R.K., Bakhshi, N.N., 1993; Bridgwater, A.V., 2012), también llamado “bio-oil”, el resto (~30 %) 

está formado, a partes iguales, por gases no condensables y un residuo carbonoso denominado “bio-

char” (~15 % cada fracción). El “bio-char” puede ser utilizado como fertilizante. El gas se utiliza para 

suministrar calor al horno de pirólisis o bien para secar la biomasa previamente a su carbonización. 

El poder calorífico del gas de pirólisis oscila entre 3,8 - 15,9 MJ/m3, aunque estos valores pueden 

aumentarse hasta 16,7 - 20,9 MJ/m3 mediante una variante del proceso denominada pirólisis flash. 

La pirólisis flash (Fig. 1.3) maximiza el “bio-oil” a expensas del “bio-char” y gases, utilizando una 

velocidad de calentamiento superior a 2 ºC/s, temperaturas moderadas de 400-600 ºC y tiempos de 

residencia inferiores a 20 segundos. 

 

Fig.  1.3.- Esquema de pirolisis flash y su integración en el ciclo del bio-combustible 

El “bio-oil” está formado por brea (o alquitranes), aceite biodegradable y agua (Bridgwater, 2012). Esta 

composición forma dos fases, una acuosa en la que se encuentra una gran variedad de compuestos 

orgánicos oxigenados y una fase apolar formada por compuestos orgánicos insolubles en agua. Los 

compuestos que forman parte del bio-oil dependen de la alimentación proporcionada (biomasa) y de 

las condiciones del proceso de pirólisis. Existen diversos problemas en el uso del bio-oil de pirólisis, 

debido a su composición, independientemente del tipo de biomasa empleado.  El producto principal 

es el agua, que constituye entre el 10 y el 40 % en peso (Mortensen et al., 2011; Bridgwater, A.V., 

2012). 
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La fase acuosa posee un alto contenido de compuestos con grupos oxigenados  (aldehídos, cetonas, 

ácidos carboxílicos, esteres, alcoholes y éteres) lo que confiere al bio-oil un bajo poder calorífico. Por 

otro lado, las moléculas oxigenadas de bajo peso molecular ayudan a mantener el aceite con un 

aspecto homogéneo, fundamentalmente los aldehídos y alcoholes, ya que actúan de estabilizantes 

para los compuestos de alto peso molecular (Mortensen et al., 2011). 

El mayor problema del “bio-oil” es la inestabilidad debida a la reactividad de los grupos oxigenados, lo 

que dificulta su almacenamiento, ya que la viscosidad, densidad y poder calorífico se ven afectados. 

Debido a dichos inconvenientes, es necesaria la desoxigenación de los compuestos oxigenados y 

condensación de las moléculas ligeras (Huber e Dumesic, 2006; Demirbas, 2010; Mortensen et al., 

2011). 

Para mejorar las condiciones del bio-oil es necesario llevar a cabo operaciones de refinado. 

 

1.3 Bio-refinería 

Una bio-refinería es una estructura que integra procesos de conversión de biomasa y equipamiento 

para producir combustibles, energía y productos químicos a partir de la biomasa. El concepto de bio-

refinería es análogo al de refinerías de petróleo, que producen múltiples combustibles y productos a 

partir del petróleo. 

El objetivo de las reacciones que se llevan a cabo en la refinería de biomasa es, esencialmente, mejorar 

la calidad, estabilidad y poder calorífico del bio-oil de pirolisis. Como se ha mencionado anteriormente, 

la eliminación de grupos oxigenados y la condensación de los compuestos ligeros, son dos de las vías 

empleadas para alcanzar la mejora del bio-oil. 

Las bio-refinerías se pueden clasificar según el tipo de biomasa que se alimente, siendo las principales: 

gramíneas perennes y cultivos de almidón (ej., trigo y maíz), cultivos de azúcar (ej., remolacha y/o 

caña), cultivos lignocelulósicos (ej., bosque gestionado, forestales de cultivo corto y mijo), residuos 

lignocelulósicos (ej., rastrojo y paja), cultivos oleaginosos (ej., palma y colza), biomasa acuática (ej., 

algas y semillas marinas), y residuos orgánicos (ej., residuos industriales y comerciales). 

 

1.3.1  Bio-refinería lignocelulósica 

La lignina constituye el 30 % del peso de la biomasa lignocelulósica y el 40 % del contenido energético 

de la misma. Esto hace que la fracción lignina sea importante en el funcionamiento y mejora de una 

bio-refinería lignocelulósica, obteniendo un mejor producto final. Los productos posibles obtenidos 

son diversos, como se muestra la Fig. 1.4 (Ed De Jong, 2012). 
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Fig.  1.4.- Productos potencial procedentes de la lignina (fuente (Ed De Jong, 2012)) 

Uno de los procesos más importante de refinado del “bio-oil” para mejorar su calidad, es la 

hidrodeoxigenación (HDO), que disminuye la relación O/C en el “bio-oil” y da lugar a combustible y 

productos químicos de mayor valor añadido (fenólicos) (Huber, G. W., Dumesic, J. A., 2006; Demirbas, 

A., 2010; Mortensen et al., 2011). 

La HDO de “bio-oil” consiste en el tratamiento de aceites a temperaturas moderadas, utilizando 

hidrógeno a alta presión en presencia de catalizadores heterogéneos (Demirbas, A., 2010).  

En este proyecto se estudian las reacciones de hidrogenación e hidrodeoxigenación de la vainillina. Las 

reacciones se llevan a cabo en un medio formado por dos fases inmiscibles y un catalizador 

heterogéneo (sólido), por lo que los procesos de la bio-refinería se pueden incluir dentro de la “catálisis 

por transferencia de fase” (PTC) (Starks, C.M., 1971; Kawahara et al., 1992; Naik, S. D., Doraiswamv, L. 

K., 1998; Makosza, M., 2000). 

 

1.4 Emulsiones 

Las reacciones que se llevan a cabo en la bio-refineria implican separar la fase acuosa de la fase 

orgánica con el fin de procesarlas por separado. En el presente trabajo se estudia un proceso de mejora 

del bio-oil (HDO) sin la etapa de separación de las fases. Se obtiene así un mecanismo de reacción en 

el cual los reactivos insolubles o parcialmente solubles en una fase se transfieren a la otra. 

Para facilitar la transferencia de materia entre ambas fases, y en última instancia, el rendimiento global 

del proceso de refino del “bio-oil”, se aumenta el área interfacial de contacto entre fases formando 

una emulsión estable añadiendo surfactantes. 

Una emulsión es una dispersión, es decir, un sistema compuesto de más de una sustancia, que es 

termodinámicamente inestable y se forma con dos o más líquidos inmiscibles o parcialmente miscibles. 

Uno de los líquidos se rompe formando gotas dentro del otro y es la denominada fase dispersa. El 
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líquido que contiene la fase dispersa en su seno se denomina fase continua o dispersante. 

Frecuentemente, los líquidos que forman la emulsión son una fase acuosa y otra apolar de naturaleza 

orgánica, comúnmente denominada aceite, pues suele estar formada por líquidos oleosos. 

La inestabilidad de las emulsiones se debe al aumento de área durante la emulsificación (formación de 

emulsión mediante aplicación de energía).  Las emulsiones se vuelven cinéticamente estables gracias 

a la presencia de agentes tensioactivos, los cuales poseen la capacidad de absorción en las superficies 

de las gotas. 

Para obtener una emulsión se aplica energía al sistema bifásico empleando agitadores, equipos de 

homogenización, de ultrasonidos, etc. 

La emulsión formada depende de los líquidos presentes (es decir, composición de las fases acuosa y 

orgánica), del emulsionante empleado y de la energía que genera la emulsión. La clasificación de las 

emulsiones (Fig.1.5) se puede hacer en función del estabilizante, del tipo de emulsión, de la energía 

empleada en la preparación y/o del tamaño de gota característico de la emulsión formada (diámetro 

de Sauter). 

 

         Fig. 1.5.- Clasificación de emulsiones según su composición y preparación 

En la siguiente figura (Fig. 1.6) se pueden ver los dos tipos de emulsiones. Las emulsiones con el aceite 

como fase dispersa se conocen como emulsiones de aceite en agua (“oil-in-water”, o/w) y las 

emulsiones con agua como fase dispersa se conocen como emulsiones de agua en aceite (“water-in-

oil”, w/o). 

 

              Fig. 1.6. - Esquema de emulsiones O/W (oil in water) y W/O (water in oil) 
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Las emulsiones tipo Pickering o estabilización de Pickering fueron descritas en 1907 por el químico 

P.S.Pickering (Pickering, S.U., 1907). Utilizan partículas en estado sólido, actuando como agentes 

surfactantes, las cuales influyen modificando la tensión superficial, en la superficie de contacto entre 

las dos fases inmiscibles, creando una película resistente en la interface (Fig 1.7), evitando así que se 

produzca la coalescencia de las gotas de la emulsión. 

 

 

Fig. 1.7.- Emulsiones tipo Pickering (fuente (Finkle, Draper e Hildebrand, 1923)) 

En este proyecto se han utilizado las emulsiones estabilizadas con partículas sólidas finas, por lo cual 

son emulsiones estabilizadas tipo “Pickering”. Este tipo de emulsiones tienen una gran ventaja frente 

a las emulsiones con surfactantes orgánicos: el agente estabilizante se separa con gran facilidad una 

vez rota la emulsión (por filtración). 

Los métodos de preparación de emulsiones se pueden clasificar en tres grupos, en función de la 

energía que emplean: alta energía (o métodos de dispersión), baja energía (o métodos de 

condensación) y homogenización clásica. 

Dentro de los métodos de alta energía existen tres sistemas de preparación de emulsiones: 

homogenización de alta presión (HPH), microfluidización y preparación por ultrasonidos (US). En los 

últimos años se ha notado un incremento en el uso del sistema de US (Maali, A., Mosavian, M. T. H., 

2013). 

 

1.5 Reacción catalizada en una emulsión 

En las reacciones bifásicas catalizadas puede ocurrir que alguno de los compuestos químicos presentes 

sea inestable o parcialmente soluble en una fase, bajo condiciones de reacción. Dicho compuesto, si 

es estable o parcialmente soluble en la otra fase, migra a través de la interfase, dando lugar a una 

transferencia de masa. 

Las etapas del mecanismo son: 

1. Difusión del reactivo “A” desde la fase libre hacia el interior de las gotas (fase dispersa). 

2. Reacción de hidrogenación en la interfase por el lado hidrofílico. 
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3. Transferencia del producto “B” que es soluble en la fase aceite (o parcialmente soluble) a través 

de la interfase. 

4. Reacciones, en el caso de haberlas, en la fase orgánica. 

 

La emulsión se forma con el agua y el aceite que componen las dos fases del sistema, 

empleando como emulsionante y catalizador un sólido. El reactivo se incorpora a la 

emulsión estable, por lo que la primera etapa consiste en la transferencia de “A” desde la 

fase libre hacia la fase dispersa (Fig. 1.8). 

 

Fig.  1.8.- Esquema general de una reacción catalizada en una emulsión 

 

Para ilustrar la aplicación de los catalizadores biomórficos tipo (Me/C) se ha estudiado el modelo de 

reacción de hidrogenación de la vainillina (3‐metoxi‐4‐hidroxibenzaldehído, VA). Esta reacción tiene 

lugar en la interfase de la emulsión tipo “w/o” (agua/decalina) en la cual el catalizador actúa también 

de surfactante. 

En la reacción de HDO de la vainillina ocurren los siguientes pasos (Fig. 1.9): 

 La HDO de la vainillina da lugar al alcohol vainillínico (VOH). Éste es un compuesto soluble en 

agua, muy utilizado en la química fina, pero de poco interés en la composición final del bio-oil. 

 A partir de la hidrogenólisis se pasa del (VOH) al p-cresol (MMF o 2-Methoxy-4-methylphenol),  

que es un compuesto parcialmente soluble en ambas fases y es además, de interés en la composición 

final del bio-oil. Esto se consigue trabajando con un aumento de  las temperaturas o largos tiempos de 

reacción. El (MMF) se puede obtener también de manera directa (hidrogenólisis directa) a partir de 

temperaturas elevadas. 

 En condiciones más severas se puede obtener guayacol (DMF o 2‐metoxifenol) mediante   

decarbonilación. Si se produce la eliminación directa de los grupos metoxi del guayacol se puede 

producir el catecol (CAT) y el fenol mediante  hidrogenólisis. 
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Fig. 1.9.- Hidrogenación de la Vainillina 

El compuesto DMF solamente aparece cuando se trabaja con temperaturas de reacción superiores a 

los 200 ºC. En este proyecto se trabaja con temperaturas más bajas a ésta, por lo que la investigación 

se centra en las reacciones de hidrogenación e hidrogenólisis. 

 

1.5.1 Catalizadores 

La naturaleza de un catalizador, los elementos que forman parte de su estructura o el grado de 

oxidación de los mismos, son características que influyen en la reacción en la cual se va a emplear. 

Los catalizadores se suelen agrupar según las características de las fases activas que lo componen, ya 

que la selección adecuada de la fase activa constituye el fundamento de un diseño correcto del 

catalizador. Así, para reacciones que conllevan fenómenos de transferencia de hidrógeno, son 

habituales metales con propiedades de conductores electrónicos como el Ni, Cu, Pd, Pt… Considerando 

los metales posibles para la reacción de HDO de la Vainillina, y los empleados habitualmente, los 

elementos activos utilizados en este estudio serán Ni, Cu, Co y Pd. 

Los reactivos se adsorben sobre la superficie del metal en el transcurso de la reacción. Sin embargo, la 

fortaleza de la adsorción determina la actividad del catalizador. 

La dispersión del metal sobre el soporte es otro factor importante del diseño, ya que una dispersión 

alta mejora el aprovechamiento del elemento activo y previene su sinterización. Por dicho motivo, el 

soporte debe tener elevada área superficial efectiva. Los compuestos más habituales como soporte 

son alúmina, sílice, zeolitas y carbón. 

En el presente proyecto, los catalizadores deben ser capaces de actuar como surfactantes que generen 

emulsiones tipo w/o, ya que el reactivo se encuentra inicialmente en la fase polar. Por dicho motivo, 

el catalizador debe ser hidrofóbico, empleando soportes como sílice hidrofóbica (Aerosil R972), carbón 

mesoporoso y nanotubos de carbono de pared simple “singlewall nanotubes”. 
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1.5.1.1 Catalizadores nanohíbridos 

Los nanotubos de carbono (CNT) anclados en un soporte y con metal impregnado forman los 

denominados nanohíbridos tipo Metal/CNT/soporte. El soporte empleado es sílice, los CNT mejoran el 

área superficial y cambian la polaridad pudiendo llegar a hacer el conjunto hidrofóbico. El tipo de CNT 

determina sus propiedades, y por medio de baños ácidos se puede modificar la polaridad y el grado de 

cristalinidad y por tanto, la adsorción del elemento activo. 

Mediante la impregnación de los CNTs, y/o del soporte, SiO2, con nanopartículas metálicas, de paladio 

por ejemplo, se dispone de partículas sólidas que son capaces de estabilizar la emulsión, y 

simultáneamente, de catalizar selectivamente reacciones en la fase orgánica o en la fase acuosa 

(Crossley et al., 2010; Ruiz et al., 2011). Todo ello supone un proceso en el que ocurren, de forma 

simultánea y en ambas fases, procesos de transferencia de materia, catálisis y reacción química. 

Los nanohíbridos tipo Me/CNTs/Soporte, son catalizadores heterogéneos para el proceso de HDO, a la 

vez que pueden mejorarlo al actuar como surfactantes formando una emulsión estable. 

 

1.5.1.2 Catalizadores biomorficos 

Los catalizadores biomórficos se basan en un material celulósico (madera, papel o algodón) 

impregnado con una disolución de la sal precursora del elemento activo. El material celulósico 

(denominado plantilla biomorfica) impregnado se descompone de tal forma que el material carbonoso 

resultante (soporte) mantiene la estructura física de partida, pero con las partículas metálicas 

distribuidas de forma homogénea y altamente dispersas. 

El mecanismo, que incluye el hinchamiento de los poros de la celulosa, favorece la elevada área 

superficial del material carbonoso, y dicho hinchamiento se debe a la presencia de la disolución del 

precursor y a la concentración de la sal metálica. 

Los catalizadores de óxidos metálicos sobre un soporte basado en una plantilla de celulosa han 

resultado ser estables térmicamente debido a su alta área superficial.  

La distribución del tamaño de poros está influenciada por el material empleado como plantilla 

celulósica, la concentración de la sal precursora, la temperatura final de la calcinación de la plantilla y 

la velocidad de calentamiento utilizada (Shigapov et al., 2001). 

El entendimiento de la síntesis de los catalizadores biomórficos requiere el estudio de la degradación 

térmica de cada uno de los componentes (celulosa y sal precursora) y del conjunto (plantilla biomórfica 

impreganda). 

La aplicación tanto de los catalizadores nanohíbridos tipo Me/CNTs/Soporte como la de los 

catalizadores biomórficos (Me/C), se presenta como una novedosa área de estudio de reciente 

desarrollo (Crossley, S., Faria, J., Shen, M., Resasco, D.E. 2010; Shen, M., Resasco, D.E. 2009). 
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1.5.2 Fundamentos de la degradación térmica 

La técnica más común utilizada para determinar el comportamiento térmico de una muestra es el 

análisis termogravimétrico (TG o TGA) y la derivada de la variación de peso respecto de la temperatura 

(DTG O DTGA). A partir de estos análisis se puede, obtener la cinética de los procesos de 

descomposición ( Balat, M., Kirtay, E., Balat, H. 2009; Doyle, C. D. 1962; Ozawa, T. 1965). 

El análisis termogravimétrico se lleva a cabo en atmosferas inertes (pirolisis) o reductoras 

(fundamentalmente H2) (Balat, M., Kirtay, E., Balat, H. 2009; Ozawa, T. 1965). Se emplean 

normalmente termobalanzas que registran la variación de peso de la muestra en función de la 

temperatura, siempre en una atmosfera controlada. 

La correcta interpretación de los datos obtenidos en los experimentos, puede proporcionar 

información sobre la composición del material, ordenes de reacción y constantes cinéticas. 

En este proyecto se estudia la descomposición térmica para optimizar los parámetros de síntesis de 

los catalizadores biomórficos. Para el estudio se realizan los análisis TG de: 

 Celulosa en polvo: componente principal de la plantilla biomórfica empleada. 

 Papel de filtro: plantilla biomórfica compuesta por celulosa tratada. 

 Papel de filtro impregnado en nitrato de níquel: material empleado para la síntesis del 

catalizador. 

El modelo cinético más simple de descomposición de un compuesto corresponde a una reacción 

directa del tipo siguiente: 

𝑆 → 𝑉 + 𝐶 

Donde S es el sólido inicial que se descompone en un residuo carbonoso (C) y volátiles (V) que incluyen 

gases y vapores. La irreversibilidad es debida a la condición de una corriente de gas de alimentación 

bien controlada que conduce el producto volátil hacia el exterior tan pronto como se forma. 

 

1.5.3 Degradación térmica de la celulosa 

La celulosa es el componente mayoritario de la biomasa y su empleo para obtención del papel es la 

aplicación más común. Mediante la descomposición térmica del papel de filtro se obtiene una materia 

carbonosa útil como soporte de catalizadores. 

La estabilidad térmica de la celulosa es elevada debido a una estructura ordenada y fuerte de un 

polímero de glucosa sin ramificaciones (Fig 1.10). 

 

     Fig.  1.10.- Estructura de la celulosa 
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El mecanismo de degradación o descomposición de la celulosa consta de varias etapas, donde la 

primera consiste en la eliminación de agua superficial a una temperatura inferior a 100ºC, 

posteriormente sufre cambios estructurales, eliminación de agua estructural, desfragmentación por 

transglicosilación y carbonización. 

Diferentes autores describen los procesos de forma similar (Sandu et al., 2003; Mamleev et al., 2006) 

siendo un posible esquema de la descomposición el que sigue (Fig. 1.1): 
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Fig. 1.11.-Pasos de descomposición de celulosa 

 

Los estudios termogravimétricos muestran tres procesos de pérdida de masa, que se corresponden a: 

temperaturas inferiores a 100ºC (primera etapa), rango de temperaturas entre 150-390ºC (segunda 

etapa) y 380-470ºC la tercera etapa (Sandu et al., 2003). A demás se obtiene degradación por craqueo 

funcional a más de 700ºC de forma exotérmica, formando volátiles. 

1. Primera etapa (<100ºC): Deshidratación. La pérdida de peso producida por liberación de 

aproximadamente un 10% en peso de agua enlazada superficialmente en la muestra de 

celulosa de forma endotérmica (Sandu et al., 2003; Yang et al., 2007). 

 

2. Segunda etapa (150-390ºC): Dehidración. Se produce la eliminación de agua estructural con 

desfragmentación del polímero por rotura de enlaces C-O. En función del flujo de gas 

empleado el inicio de este proceso se puede desplazar a temperaturas de 210ºC (Arseneau, 

1971). La dehidración, que produce desprendimiento de CO2, CO, H2 y agua, es un proceso 

lento. 
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El inicio de este proceso, según el flujo de gas empleado, se puede desplazar a temperaturas 

de 210 ºC (Arseneau, D.F., 1971). 

 

3. Tercera etapa (380-470ºC): Depolimerización. La celulosa no reaccionada hacia levoglucosan 

sufre una reacción relativamente rápida y endotérmica a 270ºC (Arseneau, 1971), dando lugar 

a H2, CO2, CO, CH4. Se ha comprobado que a 380ºC tiene lugar la pérdida mayor de masa y 

que la dehidración continúa al mismo tiempo que ocurre la depolimerización. 

 

4. A temperaturas elevadas tiene lugar el craqueo o fragmentación, dando lugar a compuestos 

volátiles. 

Teniendo en cuenta las etapas anteriores, la temperatura de síntesis de los catalizadores biomorficos 

ha de estar por encima de la temperatura de depolimerización y por debajo de la temperatura de 

craqueo. 

 

1.5.4 Degradación térmica del nitrato de níquel hexahidratado 

Las condiciones de síntesis de los catalizadores biomórficos pueden favorecer un tamaño pequeño de 

las partículas metálicas (elementos activos) y una dispersión elevada. Estas características mejoran la 

reducibilidad y compensan la actividad catalítica de metales como el níquel frente a otros metales más 

caros como el paladio. 

El estudio de la descomposición del Ni(NO3)2·6H2O, en atmosfera de nitrógeno, se divide en varias 

etapas (Brockner, W., Ehrhardt, C., Gjikaj, M., 2007). Las dos primeras consisten en eliminación de 

agua, pero el nitrato de níquel no puede ser anhidro, por lo que queda con dos moléculas de agua. A 

continuación se lleva a cabo la descomposición, vía sales de níquel básicas, para la obtención de Ni2O3 

a 250ºC, temperatura a la que comienza la reducción a NiO. 

La propuesta de mecanismo es la que sigue (Tabla 1.2): 

Proceso T (ºC) m (%) 

Separación de agua   

1a)  𝑁𝑖(𝑁𝑂3)2 · 6𝐻2𝑂 →  𝑁𝑖(𝑁𝑂3)2 · 4𝐻2𝑂 + 2𝐻2𝑂 43 12.3 

1b)  Ni(NO3)2 · 4H2O →  Ni(NO3)2 · 2H2O + 2H2O 80 11.5 

Descomposición parcial (oxidación y condensación parcial)   

2a)  𝑁𝑖(𝑁𝑂3)2 · 2𝐻2𝑂 →  𝑁𝑖(𝑁𝑂3)(𝑂𝐻)2 · 𝐻2𝑂 + 𝑁𝑂2 145 16.8 

2b)  𝑁𝑖(𝑁𝑂3)(𝑂𝐻)2 · 𝐻2𝑂 →  𝑁𝑖(𝑁𝑂3)(𝑂𝐻)1.5𝑂0.25 · 𝐻2𝑂 + 1

2
𝐻2𝑂 190 1.4 

Descomposición   

3)  𝑁𝑖(𝑁𝑂3)(𝑂𝐻)1.5𝑂0.25 · 𝐻2𝑂 →  1

2
𝑁𝑖2𝑂3 + 𝐻𝑁𝑂3 + 1

4
𝐻2𝑂 250 29.8 

Descomposición del oxido   

4a)  3𝑁𝑖2𝑂3 → 2𝑁𝑖3𝑂4 + 1

2
𝑂2 250* 0.4 

4b)  𝑁𝑖3𝑂4 → 3𝑁𝑖𝑂 + 1

2
𝑂2 300* 1.8 

Pérdida de masa total  74% 

*temperatura en la que comienza la reacción 

Tabla 1.2.- Descomposición termal del Ni(NO3)2·6H2O en N2 según bibliografía 
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La descomposición térmica en una atmosfera con presencia de hidrógeno (10 %H2/ N2) conlleva dos 

reacciones de reducción (Tabla 1.3). La primera puede darse también en atmosfera inerte según las 

condiciones del flujo y cuya pérdida de masa, incluyendo la etapa de descomposición del óxido 

(reacciones 4ª y4b), es de 8 % (Brockner, W., Ehrhardt, C., Gjikaj, M., 2007): 

 

Proceso Reacción T (ºC) 

Reducción 
a)   𝑁𝑖(𝑁𝑂3)2 → 𝑁𝑖 + 2𝑁𝑂2 + 𝑂2 255* 

b)   3𝑁𝑖𝑂 + 3

2
𝐻2 → 3𝑁𝑖 + 3

2
𝐻2𝑂 262 

*temperatura en la que comienza la reacción 

 

Tabla 1.3.- Reacciones del Ni(NO3)2·6H2O en H2/N2 según bibliografía 

 

1.6 Objetivos 

Se pretende optimizar el proceso de refino de “bio-oil” y determinar las pautas principales de 

preparación de un material capaz de estabilizar la emulsión y catalizar reacciones de 

hidrodeoxigenación de diversos compuestos orgánicos contenidos en el “bio-oil”. 

Los objetivos parciales son: 

 

1.- Optimizar la síntesis del catalizador. 

Los catalizadores biomorficos se encuentran en proceso de desarrollo, por lo que su síntesis requiere 
un estudio cinético de la plantilla biomorfica a partir de la que se generan, mediante el uso de TGA. Se 
desarrollará un modelo cinético que describa la formación del soporte. 

 

2.- Optimizar la actividad del catalizador. 

Mediante el empleo de diferentes catalizadores biomorficos en una reacción modelo se 

determina el catalizador más activo y selectivo para dicha reacción. 
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2.1 Técnicas de caracterización y análisis  

El conocimiento de la composición global, superficial y estructural del catalizador utilizado es de gran 

importancia para el posterior estudio cinético. Es necesario el uso de distintas técnicas de 

caracterización para obtener una visión global del material que se analiza. A continuación se exponen 

las bases teóricas de forma resumida de las técnicas utilizadas en este proyecto. También se describe 

la técnica de análisis utilizada para conocer la composición de la alimentación y el avance de las 

reacciones estudiadas.  

 

2.1.1 Microscopia electrónica de transmisión (TEM) 

La microscopía electrónica de transmisión (TEM) permite obtener información, a escala nanométrica, 

acerca de la morfología de un catalizador. 

En este trabajo se ha hecho uso de esta técnica, fundamentalmente, para determinar la morfología y 

características de las partículas metálicas que son el elemento activo del catalizador. 

La microscopia electrónica de transmisión (TEM) se fundamenta en la interacción con la materia de un 

haz monocinético de electrones, acelerado bajo una diferencia de potencial de varios cientos de 

kilovoltios, que es colimado, enfocado y manejado por distintas lentes electromagnéticas. El paso del 

haz de electrones a través de una muestra de bajo espesor da lugar, además del haz transmitido, a 

varios haces difractados. El enfoque de estos haces difractados por la lente objetivo en el plano focal 

trasero origina un diagrama de difracción de electrones, mientras que su enfoque en el plano imagen 

permite obtener una proyección en dos dimensiones de la porción de material observado. 

Las muestras, tras estar en suspensión de etanol, se introducen en una rejilla de cobre y se espera a la 

evaporación del etanol. 

El equipo empleado es FEI Tecnai T-20 microscope, operando a 200 kV. 

 

2.1.2 Raman 

La espectroscopia Raman aporta información a nivel molecular de la naturaleza de los enlaces químicos 

y de la simetría de una muestra. 

El espectro vibracional “Raman” es único para cada tipo de material y sirve como una “huella digital”. 

Por lo tanto, esta técnica puede ser utilizada como un medio identificativo, dado que el conjunto de 

vibraciones atómicas es específico para cada fase de un compuesto. 

El fundamento de esta técnica consiste en irradiar una muestra con un haz láser cuya longitud de onda 

puede ir desde el UV hasta el IR. La interacción entre la radiación incidente y la muestra a estudio 

produce una excitación de las moléculas. 



Métodos Experimentales: Técnicas de Caracterización y análisis  

 

32 

 

A esta excitación le sigue un proceso de relajación hacia un estado de energía más estable, que puede 

darse de dos formas distintas: 

a) Las moléculas regresan al estado energético en el que se encontraban, liberando una energía igual 

a la absorbida, lo que sucede en la mayoría de los casos y constituye la dispersión elástica. 

b) Las moléculas no regresan a su estado de energía inicial, por lo que liberan una energía diferente a 

la absorbida. Este tipo de dispersión, conocido como dispersión inelástica, es la base del fenómeno 

Raman. 

En este trabajo, la espectroscopía Raman se he empleado para determinar el tipo de carbón existente 

en el catalizador y el equipo utilizado es WiTec Alpha300 Confocal Raman Microscope con un láser de 

excitación de 532 nm. 

 

2.1.3 Cromatografía de gases (GC) 

La cromatografía de gases es, en esencia, una técnica de separación de los componentes de una mezcla 

que puedan ser volatilizados sin descomponerse y que se miden a continuación por medio de un 

detector. Permite conocer los compuestos que forman la mezcla a medir de manera cualitativa y 

cuantitativa. 

El método consiste básicamente en separar los componentes de la muestra a analizar y hacerlos pasar 

por una columna (normalmente de vidrio o metal), que contiene una capa microscópica de una fase 

estacionaria (que generalmente es líquida sobre un soporte sólido inerte, pero también puede ser 

sólida). 

La muestra se inyecta a elevada temperatura, y una vez en estado gas, pasa a través de la columna, 

donde son arrastrados por un gas inerte llamado gas portador (gas de arrastre o fase móvil). La elección 

del gas portador generalmente depende del tipo de detector usado. 

Cada analito (componente) al avanzar por la columna interactúa con la fase estacionaria de manera 

diferente, por eso, algunos se ven más retenidos que otros dentro de la columna y tardan más en salir. 

El tiempo que permanece un componente dentro de la columna se denomina tiempo de retención. 

Los componentes básicos de un cromatógrafo son: 

1.- Sistema de inyección de muestra: volatiliza la muestra y la introduce al flujo de gas de arrastre. 

2.- Columna. Puede ser empaquetada o capilar y su longitud puede oscilar entre 2 y 60 m. 

3.- Detector: produce una señal electrónica medible en el momento en el que un analito eluye 

fuera de la columna. 

El cromatógrafo empleado durante este trabajo es un HP 7820A GC, con una columna capilar de 

polietilen glicol (HP-INNOWAX) de 60 m x 0.32 mm x 0.25µm nominal de Hewlett Packard. 
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2.2 Equipo de ultrasonidos 

Los equipos de ultrasonidos se pueden emplear como homogeneizadores, ya que reducen las 

partículas pequeñas en un líquido para mejorar la homogeneidad y la estabilidad. Estas partículas (fase 

dispersa) pueden ser sólidos o líquidos. 

La cavitación ultrasónica genera un alto cizallamiento que rompe aglomerados de partículas en 

partículas dispersas y forma burbujas a partir del líquido cercano a la fuente de cavitación. Se provocan 

unas ondas de choque intensivas en el líquido circundante a partir de las burbujas de cavitación, lo que 

implica una dispersión de las burbujas con las partículas. Las partículas individuales (y las burbujas) se 

mantienen unidas por fuerzas de atracción de distintas naturaleza (física y química), incluyendo fuerzas 

de van der Waals y tensión superficial. 

El equipo consta de un controlador digital en el que se seleccionan los parámetros de funcionamiento 

(porcentaje de potencia, tiempo, pulsos…) y una sonda conectada por un convertidor. El convertidor 

(o transductor) trasforma la señal proveniente del controlador en energía mecánica, la cual pasa a la 

sonda. La sonda está formada por un elemento conocido como sonotrono o “horn” que se encarga de 

amplificar la energía y una punta extraíble con superficie radiante que es la encargada de irradiar la 

energía acústica en la muestra (en nuestro caso, líquido). 

 

                                       

Fig.  2.1.- Equipo de ultrasonidos 

 

El equipo en el que se forman todas las emulsiones necesarias durante el desarrollo del proyecto es 

un procesador ultrasónico modelo GEX-750 ultrasonic processor de Cole-Parmer con una sonda (o 

punta) de 3 mm de diámetro. 
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2.3 Sistemas de reacción 

2.3.1  Sistema termogravimétrico 

El sistema termogravimétrico se emplea en la realización de los ensayos de descomposición de 

diversos materiales para optimizar la síntesis de catalizadores con plantilla biomorfica. 

La termobalanza permite determinar la pérdida o ganancia de masa en función de la temperatura y 

del tiempo. Con este sistema se obtienen los perfiles de formación de los depósitos carbonosos bajo 

diferentes condiciones de operación (temperatura, atmosfera inerte o reductora). 

La termobalanza es un equipo comercial C.I. Electronics Ltd. (U.K.), modelo MK2-M5 vacuum head (Fig. 

2.2). Consta de las siguientes partes fundamentales: 1) cuerpo de la termobalanza, 2) horno, 3) sistema 

de medida y control de temperatura, 4) sistema e adquisición y registro de datos, 5) alimentación 

(sistema de medida y control automático de flujo de gases de entrada). 

El sistema de adquisición, registro de datos y control de apertura y cierre de válvulas, se realiza 

automáticamente mediante un software computarizado realizado por el servicio informático de la 

Universidad de Zaragoza, el cual permite la lectura simultánea de la temperatura y peso, con una 

velocidad de registro entre 1-100 datos por minuto. 

La cabeza de la balanza, donde se aloja el elemento de medida, está construida en aluminio y tiene 

forma cilíndrica (Fig. 2.3). En su parte inferior posee tres orificios, dos de ellos permiten el acceso a los 

brazos de la balanza, donde cuelgan el platillo de contrapeso y el de la muestra. Por el tercer orificio 

se alimenta el N2 que permite la refrigeración de los elementos de medida de la balanza. 

 

Fig.  2.2.- Representación esquemática de la termobalanza 

1.-Cuerpo de la Termobalanza 

2.-Horno 

3.-Sistema de elevación del horno 

4.-Adquisición de datos 

5.-Control de Temperatura 

6.-Medidores de flujo másico 

7.-Control de flujo 

8.-Válvula de tres vías 

9.-Válvula de cuatro vías 

10.-Válvulas de alimentación 
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El elemento de medida (brazo de la balanza) es un sistema de autocompensación, guiado por una 

célula fotoeléctrica que mide la desviación del brazo de la balanza respecto del punto de equilibrio, 

basándose en la diferencia de intensidad luminosa recibida por el detector. En el momento en que se 

conecta el ordenador, que actúa como sistema de lectura y registro de datos, un fiel construido en 

ágata, situado en el punto central del brazo de la balanza, lo equilibra. 

El equipo está diseñado para un peso máximo de muestra de 5 g y es capaz de soportar una diferencia 

de peso máximo entre ambos brazos de 500 mg. Su sensibilidad es de 0.1 µg. 

 

                                           Fig. 2.3.- Cuerpo de la termobalanza 

Los orificios situados en la parte inferior de la cabeza de la balanza permiten acoplar dos recipientes, 

que alojan el contrapeso y la muestra. El recipiente donde se aloja el contrapeso está construido en 

vidrio, ya que no debe soportar altas temperaturas. El contrapeso está situado en un soporte de cobre 

que cuelga del brazo izquierdo de la balanza por medio de una varilla de aluminio. 

1.- Cabeza de la Termobalanza

2.- Fiel

3.- Entrada de N2 de inertización

4.- Conexiones eléctricas

5.- Soporte del contrapeso

6.- Entrada Reactantes

7.- Salida Gases

8.- Entrada Termopar

9.- Entrada Refrigerante

10.- Salida Refrigerante

11.- Cesta portamuestra
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El recipiente que contiene la muestra está construido en cuarzo y está diseñado para soportar temperaturas de 

1200 ºC. Entre éste y el orificio derecho de la cabeza de la balanza existe otro elemento de vidrio que permite 

la entrada de productos y la salida de reactivos del recipiente que contiene la muestra. La entrada de reactantes 

se realiza por la parte interior del tubo en forma de embudo, situado en el interior de este elemento. 

La salida de productos tiene lugar por el espacio anular que queda entre el tubo en forma de embudo y la pared 

externa del elemento. Además, existe un dispositivo de refrigeración por donde se puede hacer circular un 

líquido refrigerante si es necesario. 

Del brazo derecho de la balanza, y a través del tubo interior en forma de embudo, cuelgan varias varillas de 

cuarzo que sostienen el soporte donde se coloca la muestra. Todas tienen un diámetro de 0,3 mm y longitud 

variable.  En el extremo inferior de la última varilla está suspendido el cabestrillo sobre el cual se coloca la cesta 

que porta la muestra. 

Para ubicar la muestra se utiliza una “cestilla” de cuarzo de 10 mm de radio y 10 mm de altura. 

 

2.3.2  Reactor de lecho fijo 

En esta instalación se realizan las reacciones de calcinación y reducción de los catalizadores, puesto que el metal 

debe estar en su estado reducido para ser activo. También se emplea para la síntesis de los catalizadores tipo 

Metal/Carbón. El equipo consta, básicamente, de un sistema de alimentación y control del flujo de entrada 

(medidores y controladores de flujo másico), un reactor de cuarzo y un sistema de control y medida de la 

temperatura (termopar y controlador de la temperatura del horno). 

 

                        Fig. 2.4.- Esquema general del equipo de reacción en lecho fijo 

 

2.3.3  Reactor a presión 

Es un reactor comercial  Parr 4590 que puede trabajar con una presión máxima de 3000 bar y una temperatura 

de hasta 350 ºC. 

En este sistema experimental se han llevado a cabo las reacciones de hidrogenación con los catalizadores 

sintetizados. Consta de un vaso de acero inoxidable y una cabeza que cierra herméticamente el vaso del reactor. 
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La cabeza del reactor está equipada con: 

1.- Un manómetro para medición de la presión en el interior 

2.- Un motor de agitación con una varilla de agitación mecánica 

3.- Entrada de gases al reactor 

4.- Válvula de control de salida de gases (de la parte superior del reactor) 

5.- Entrada de líquidos (al fondo del reactor) que está conectada a un inyector consistente en un depósito 

de acero inoxidable que alberga el reactivo 

6.- Un termopar para el control de temperatura 

7.- Un disco de ruptura o de seguridad en caso de producirse sobrepresión  

 

Un horno cilíndrico se sitúa alrededor del vaso de reacción permite el calentamiento, conectado a un 

controlador Parr 4848 que emplea el termopar situado dentro del reactor, como elemento de control. 

 

 

Fig.  2.5. Reactor Parr de alta presión 

 

2.4 Procedimientos Experimentales 

2.4.1 Formación de emulsión 

Para la formación de una emulsión se prepara una mezcla con los componentes de la misma. Los pasos a seguir 

para formarla son los siguientes: 

1. Se pesa una cantidad determinada del sólido que actúa de surfactante. En este proyecto será el 

catalizador de la reacción. 
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La concentración de catalizador será la menor cantidad posible que forme una emulsión estable, ya que actúa 

también como emulsionante (por debajo de 2 g/L la emulsión es inestable). 

2. Se añaden los volúmenes requeridos, según en ensayo a realizar, de disolución acuosa (o agua destilada) 

y de disolución orgánica (o disolvente). 

Puesto que el bio-oil contiene una cantidad de agua variable (30 - 40%), se puede adicionar agua hasta el 50% 

en todos los casos, por lo que el volumen de agua destilada empleado en la reacción modelo será el mismo que 

el empleado de fase orgánica (decalina), es decir, la relación agua/decalina es 1:1 (15mL de agua destilada y 

15mL de decalina). 

3. El vial con la mezcla se sitúa en el equipo de ultrasonidos y se sumerge en agua y hielo para evitar que 

se eleve la temperatura. Se enciende el equipo de ultrasonidos con la potencia y tiempo deseados. 

Debe tenerse en cuenta que el vial empleado para la formación de la emulsión ha de tener siempre las mismas 

dimensiones (diámetros interno y externo, diámetro del cuello del vial, altura y simetría) y estar construido en 

el mismo material (vidrio). 

También es importante que la punta del brazo del equipo de ultrasonidos sea siempre la misma o de igual 

geometría y dimensiones, y que se encuentre a la misma profundidad en la mezcla a emulsionar. 

Tanto el vial como el equipo de ultrasonidos influyen en la aireación de la mezcla durante el proceso de 

sonicado, y por tanto afectan a la distribución de las gotas formadas como fase dispersa y a la fracción formada. 

Se recomienda trabajar a amplitudes bajas para no modificar el catalizador con la energía empleada y proteger 

al equipo, por lo que para la formación de emulsión de reacción se utilizará una amplitud de 25% durante 30min. 

 

2.4.2 Estudio de la Plantilla biomórfica 

Como se ha comentado en la introducción, los catalizadores biomórficos son unos materiales aún en desarrollo, 

cuya síntesis se realiza por la degradación/descomposición térmica de material celulósico, en el que se ha 

impregnado la fase activa del catalizador, por lo que el estudio termogravimétrico de descomposición de la 

plantilla sirve para determinar las condiciones de síntesis. 

1.- Se calibra la balanza, pasando un flujo de nitrógeno por la cabeza y el cuerpo de la balanza, igual al flujo total 

que se empleará en el experimento. 

2.- Se coloca en una cestilla de cuarzo 100 mg de la muestra a degradar (si tiene poca densidad, 50 mg). 

3.- Se sitúa la cestilla en el brazo derecho de la balanza (posición de la muestra) y se cierra la carcasa asegurando 

que la cestilla no toque la pared del recipiente. 

4.- Se eleva el horno colocándolo en su posición de calentamiento, y se programa en el “software” la secuencia 

de trabajo (flujo de cada gas, temperatura de la etapa o rampa de calentamiento de la etapa, tiempo que dura 

la etapa). 

El programa empleado para la degradación térmica consta de dos etapas (Fig. 2.6): eliminación de agua 

superficial de la muestra (secado y deshidratación) y degradación térmica. 
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El periodo de deshidratación de la muestra es necesario para que la pérdida de peso por dicho proceso no 

interfiera en la degradación. Se realiza en atmosfera inerte (de nitrógeno) para evitar reacciones indeseadas. 

 

Fig. 2.6.- Esquema de trabajo para degradación térmica 

En la etapa de degradación térmica se aumenta la temperatura de la muestra con una velocidad de 

calentamiento constante (por ejemplo, 5 ºC/min) en función del experimento realizado y en presencia de una 

determinada atmosfera de la que se quiere determinar su efecto sobre el proceso: inerte (100 % N2) o reductora 

(5 % H2 en N2). 

 

2.4.3 Síntesis de catalizadores 

Se emplean tres tipos diferentes de catalizador: metal sobre Aerosil R972, metal sobre nanotubos de carbono 

soportados en sílice (denominados nanohíbridos) y catalizadores biomórficos (generados a partir de una 

plantilla biomorfica). 

 

2.4.3.1 Me/soporte 

El método más empleado para preparar catalizadores de metal soportado es por impregnación según el método 

de humedad incipiente, siendo los metales más frecuentes en HDO níquel, cobalto y paladio. 

Para la preparación de catalizadores bimetálicos se hace una co-impregnación simultánea de ambos metales, 

ya que éstos tienen un número atómico próximo (ej: Ni y Cu). 

Este método, generalmente, se utiliza cuando el metal activo es soportado por óxidos metálicos como por 

ejemplo SiO2, Al2O3, SiO2‐Al2O3 TiO2, ZrO2, La2O3, CeO2, MgO, MgAl2O4, ZnO, ZnAl2O4. 

Estos soportes deben de cumplir una serie de cualidades como tener una buena estabilidad térmica y química, 

así como presentar un área superficial elevada. Las principales ventajas que presenta este método de 

preparación de catalizadores se resumen en los siguientes puntos: 

1. Reduce la cantidad de metales nobles a utilizar en el catalizador como metales activos, por lo que 

disminuye el precio del catalizador. 
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2. Aumenta el área superficial del metal activo (mayor dispersión). 

3. Se consigue un incremento tanto de la estabilidad térmica como de la estabilidad química del 

catalizador. 

Se toma como soporte sílice hidrofóbica, empleada también en la formación de emulsiones. Como ventajas de 

emplear el Aerosil R-972 como soporte destacan el área superficial y el tamaño de partícula, que permiten una 

incorporación de metal elevada y una gran facilidad para la formación de emulsiones estables tipo w/o. 

 

 

Los catalizadores empleados son los que figuran en la Tabla 2.1: 

 

Metal Carga (%wt) Soporte Nombre 

Co 5 Aerosil R972 Co/A 

CoCu 5/5 Aerosil R972 CoCu/A 

NiCu 5/5 Aerosil R972 NiCu/A 

Tabla. 2.1.- Catalizadores de metal soportado 

En este trabajo, las etapas de secado y calcinado se han llevado a cabo de la siguiente manera: 

a) Etapa de secado: 70 ºC durante 1 hora en estufa 

b) Etapa de calcinado: 

 b1) 100 ºC durante 1 hora en mufla 

 b2) 600 ºC durante 3 horas en reactor de flujo 

Antes de la reacción, debe realizarse la activación de las nanopartículas de catalizador. Dado que el metal activo 

se deposita sobre las paredes de los poros del soporte en su forma oxidada, se hace necesaria una etapa de 

reducción mediante una corriente de H2. 

La reducción se efectua en el reactor de lecho fijo, calentando en atmosfera de nitrógeno a 10 ºC/min hasta 

500 ºC, entonces se establece un flujo al 5 % hidrogeno durante 1 hora a 500 ºC. Se enfría en flujo de nitrógeno 

para evitar que se re-oxide el metal. 

 

2.4.3.2 Me/NH 

El método empleado en la síntesis es la impregnación a humedad incipiente utilizando como soporte nanotubos 

de carbono tipo “single-wall” soportados en sílice, obtenidos por el método CoMoC (Resasco et al., 2002). El 

descubrimiento de los nanohíbridos como catalizadores es de aplicación reciente y su empleo en reacciones de 

HDO está en desarrollo. 

Los catalizadores empleados son los que aparecen en la Tabla 2.2: 

Metal Carga (%wt) Soporte Nombre 

Co 5 NTC/SiO2 Co/NH 

Pd 1 NTC/SiO2 Pd/NH 

Tabla. 2.2.- Catalizadores nanohíbridos 
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Las etapas de secado y calcinado son idénticas a las utilizadas con los catalizadores Me/soporte descritas en el 

punto anterior. 

El paladio y de cobalto se reducen fácilmente y por lo tanto los catalizadores nanohíbridos no requieren de la 

etapa de reducción durante su síntesis. 

 

2.4.3.3 Catalizadores biomórficos 

Los materiales biomórficos son una nueva generación de catalizadores cuyo soporte celulósico (madera, papel 

o algodón) se obtiene por descomposición, de forma que el carbón residual resultante mantiene la estructura 

física de partida pero con las partículas metálicas distribuidas de forma homogénea y altamente dispersas. 

En esta investigación se emplea un disco de papel de filtro (Prat Dumas 210) que hace de plantilla biomorfica y 

se impregna por inmersión en una disolución acuosa de nitrato del metal, que se desea como elemento activo, 

durante 30 segundos. 

Cada papel de filtro, secado a 80 ºC para quitarle la humedad, pesa sobre 660 mg y absorbe 1.5 mL de agua 

destilada. Los metales estudiados como elementos activos son los mostrados en la Tabla 2.3: 

 

Metal Carga (%wt) Nombre 

Ni 5 Ni/CB 

NiCu 5/5 NiCu-1/CB 

NiCu 5/2 NiCu-2.5/CB 

NiCu 5/0.4 NiCu-12.5/CB 

NiCu 5/0.5 NiCu-10/CB 

Pd 1 Pd/CB 

PdCu 1/0.4 PdCu-2.5/CB 

PdCu 1/0.1 PdCu-10/CB 

Cu 5 Cu/CB 

Tabla. 2.3.- Catalizadores Biomórficos 

 

La concentración de la disolución se prepara de forma que la carga metálica sea la deseada (sabiendo el agua 

que adsorbe el papel de filtro y el peso de la materia carbonosa residual del papel una vez descompuesto en 

condiciones de síntesis). Las cantidades de la sal precursora de la disolución (nitrato del metal activo), con la 

que se impregna el papel de filtro, considerando 10 mL de disolución, son las mostradas en la Tabla 2.4: 

Metal y carga (%) Cantidad (mg) 

Ni 5% 1047.4 mg Ni 

Ni 5% y Cu 5% 1047.4 mg Ni + 815.5 mg Cu 

Ni 5% y Cu 2% 1047.4 mg Ni + 310.4 mg Cu 

Ni 5% y Cu 0.5% 1047.4 mg Ni  + 82.42 mg Cu 

Pd 1% y Cu 0.4% 226.18 mg Pd + 19.78 mg Cu 

Pd 1% y Cu 0.1% 226.18 mg Pd + 16.82 mg Cu 

Pd 1% 226.18 mg Pd 

Tabla. 2.4.- Disoluciones para catalizadores biomórficos (en 10 mL) 
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Los discos impregnados se colocan en estufa a 80 °C para acelerar el proceso de secado, llegando a dicha 

temperatura con una rampa de 4 ºC/min para evitar que la concentración del precursor se acumule en los 

bordes. 

Posteriormente, el papel impregnado seco, se lleva a 500 ºC en un reactor de lecho fijo, con un flujo de 300 

mL/min de 5 % H2 en N2 y se deja durante 30 min, a una velocidad de calentamiento de 42 °C min-1. Este proceso 

produce la degradación térmica de la plantilla biomorfica que da como resultado un material carbonoso. 

Además, el nitrato de metal se descompone y al realizarse en presencia de hidrógeno, se reduce el metal. Por 

ello, no es necesaria la activación del catalizador por reducción en el reactor de flujo. 

 

2.4.4 Estudio de Reacción HDO en reactor Parr 

Los pasos a seguir para la reacción son los detallados a continuación: 

1.- Síntesis del catalizador (descrito en el apartado 2.4.3) 

2.- Formación de emulsión (descrito en el apartado 2.4.1) 

3.- Estabilización de la emulsión en el reactor 

4.- Reducción/Activación “in-situ” 

5.- Alimentación del reactivo 

6.- Reacción química 

7.- Separación de fases y análisis 

 

Estabilización de la emulsión en el reactor 

La emulsión, formada por catalizador, fase orgánica y fase acuosa, se deposita en el reactor a presión y se deja 

en reposo para estabilizarla en atmosfera de nitrógeno y así evitar la re-oxidación del metal del catalizador. 

Se ha comprobado que entre 30 min y 24 h de reposo los resultados experimentales no varían, por lo que se 

decide estabilizar la emulsión durante 30 min. 

 

Reducción/Activación “in-situ” 

Para los catalizadores Me/Aerosil se lleva a cabo la activación “in-situ”, ya que durante la formación de emulsión 

han perdido actividad. Esto se debe a la oxigenación del sistema durante la agitación a alta velocidad que se 

genera en el equipo de ultrasonidos. 

Con una velocidad de agitación de 600 rpm, se purga el reactor introduciendo H2 en el interior del mismo hasta 

alcanzar una presión de 15 bar. Se lleva la temperatura hasta 100 ºC en un periodo de 40 min y se deja 1 hora 

de reducción a dicha temperatura. 

Los nanohíbridos requieren de la reducción “in-situ” ya que no se realiza la pre-reducción en el reactor de flujo. 

Se procede como el caso de los catalizadores tipo Me/soporte pero se deja 3 horas de reducción a 100 ºC. 

En el caso de los catalizadores biomorficos, pierden actividad durante la formación de emulsión, al igual que 

ocurre con los catalizadores tipo Me/soporte, sin embargo, la alta dispersión y el tamaño nanométrico de las 

partículas metálicas implican una fácil reducibilidad del catalizador. 
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 Se ha comprobado, realizando experimentos con y sin reducción “in-situ”, que el hidrógeno introducido para 

la reacción actúa como activador y como reactivo de la HDO, por lo que no requiere reducción “in-situ”. 

 

Alimentación del reactivo 

Como reactivo para el test catalítico se emplea vainillina, ya que es un compuesto frecuente en el bio-oil y es 

parcialmente soluble en ambas fases, por lo que se encuentra tanto en la fase acuosa como en la fase orgánica 

y la separación de ambas fases no conlleva una ventaja en su tratamiento. 

Cuando se realiza la reducción “in-stu”, se purga el reactor con N2 y se reduce la presión a 1 bar. Posteriormente 

se abre la válvula que permite el paso de la disolución de reactivo, 10 ml de disolución acuosa de vainillina hasta 

el interior del reactor. Como el interior del reactor está a 1 bar de presión, y la línea de gas (N2) en la que se 

encuentra la disolución de reactivo se encuentra a unos 5 bar, esta diferencia de presión asegura el correcto 

vertido del reactivo a la mezcla reaccionante (emulsión). 

Tras la alimentación del reactivo, en el reactor hay 25 mL de fase acuosa y 15 mL de fase orgánica, es decir, un 

62.5 % de fase acuosa, similar a la fracción de agua presente en el bio-oil. 

En el caso de emplear catalizador biomorfico, el reactivo se introduce en el reactor junto con la emulsión como 

se ha descrito anteriormente. 

 

Reacción Química 

En las reacciones de HDO en emulsiones se ha estudiado la aplicación de nanohíbridos con condiciones de 

trabajo moderadas: 100-150 ºC y 15-100 bar de hidrogeno (Shen, M.,  Resasco, D.E., 2009; Crossley et al., 2010; 

Faria, J., Ruiz, M.P., Resasco, D.E., 2010; Ruiz, M.P., et al., 2011). 

La reacción se ve mejorada por una elevada agitación ya que se favorece la transferencia de materia y el 

contacto del reactivo con el catalizador. Sin embargo, la agitación vigorosa (≥ 1000 rpm) da lugar a la rotura de 

las gotas de la emulsión y a la formación de nuevas gotas mucho mayores procedentes de la fase libre acuosa. 

La velocidad utilizada durante la reacción es de 600 rpm. 

Se estabiliza el reactor a 100 ºC, 600 rpm y 5 bar de atmósfera inerte. Una vez alcanzada la temperatura de 

reacción, se cargan 15 bar de hidrógeno comenzando la reacción en dicho instante. Finalizado el tiempo 

establecido de reacción, para interrumpir la hidrogenación se disminuye rápidamente la temperatura y la 

atmósfera de H2 es remplazada por 5 bar de N2. 

 

Separación de fases y análisis 

Una vez extraída la mezcla de reacción se dispone de tres fases: fase acuosa libre, emulsión y fase orgánica 

libre. Para romper la emulsión se filtran los 40 ml de producto (30 ml de emulsión + 10 ml de disolución de 

reactivo) a través de un filtro de nylon de 5 μm. Una vez realizado este paso, se tiene una mezcla bifásica agua‐

decalina con una interfase continua. 

Se toman dos muestras con la ayuda de una jeringuilla, una de la fase acuosa y otra de la fase orgánica, y se 

filtran nuevamente mediante un filtro de teflón de 0,22 μm para eliminar los restos de partículas de catalizador 
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que no hubiesen sido eliminados tras la primera filtración. Finalmente, las muestras tomadas se analizan 

mediante un GC – FID.
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Los resultados experimentales obtenidos en este proyecto responden a cada uno de los dos objetivos parciales 

descritos en el punto 1.6: optimizar por un lado la síntesis y por otro la actividad del catalizador. Estos resultados 

se estructuran en los  siguientes apartados: 

 Estudio de la síntesis de catalizadores biomórficos: Los materiales biomórficos se obtienen a partir de 

la degradación térmica, y puesto que las condiciones y el método de síntesis influyen en las 

características y propiedades del catalizador, se estudia la cinética de la degradación térmica de dos 

tipos de celulosa y la influencia de la presencia de una sal precursora de metal, la velocidad de 

calentamiento y tipo de atmósfera. 

 

 Test catalítico: Se comparan los catalizadores empleados en bibliografía para la HDO de la VA, con 

catalizadores sintetizados por impregnación del emulsionante (Aerosil R-972) y con los catalizadores 

biomórficos. 

 

3.1 Síntesis de catalizadores Biomórficos 

Los catalizadores biomórficos son materiales, que como se ha mencionado en el apartado 02, están 

actualmente en etapa de desarrollo. Por este motivo, se requiere de un estudio previo con el que determinar 

sus condiciones óptimas de síntesis. 

Debido a que la preparación de estos catalizadores se realiza por medio de la degradación térmica de una 

plantilla biomórfica, los dos parámetros más influyentes que se deben estudiar son la temperatura de 

degradación y la rampa de calentamiento de la plantilla. 

La cinética de la degradación térmica del material, se ve influida por la presencia de la sal precursora del 

elemento activo y los constituyentes propios del papel. Por dicho motivo se estudia mediante análisis 

termogravimétrico cada una de las sustancias que forman la plantilla biomórfica: 

 celulosa en polvo 

 papel de filtro (Prat Dumas 210): material de celulosa con trazas de aditivos no descritos en su 

composición comercial. 

 plantilla biomórfica tipo: papel de filtro impregnado en nitrato de níquel 

También se realizan los ensayos con nitrato de níquel comercial en polvo para determinar el efecto del níquel 

en el estudio de la plantilla biomórfica tipo. 

En bibliografía, se ha estudiado y analizado la descomposición térmica de la celulosa (apartado 1.5.3) y del 

nitrato de níquel (apartado 1.5.4), sin embargo, la descomposición térmica de ambos compuestos a la vez 

(celulosa y nitrato de níquel) puede modificar el comportamiento respecto a los compuestos por separado. En 

el presente trabajo se parte de los mecanismos y datos bibliográficos. 

El estudio cinético se realiza empleando una termobalanza (apartado 2.2.1), con la que se obtienen las curvas 

TG-DTG (termogravimétricas – derivada de la curva termogravimétrica) para la degradación térmica. Son más 

fiables los datos con velocidades de calentamiento lentas, ya que un aumento rápido de la temperatura puede 

mostrar un retardo en la señal masa-temperatura y se ve afectada por la inercia del calentamiento. 
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La ecuación cinética de una sola etapa (Ec. 3.1) y la ley de Arrhenius (Ec. 3.2) proporcionan una descripción 

adecuada del proceso de descomposición térmica en términos del modelo de reacción: 

 mfk
dt

dm
dt ·  Ec. 3.1 

TR

E

dt

g

a

eAk
·

·



0

 Ec. 3.2 

Siendo m la masa residual en cada instante, kdt la constante de velocidad de reacción de la descomposición 

térmica, f(m) la función de masa, A0 el factor pre-exponencial, Ea la energía de activación, Rg la constante 

universal de los gases y T la temperatura absoluta. 

La temperatura de la muestra es proporcional al tiempo, ya que la velocidad de calentamiento es constante 

para cada experimento, por lo que: 

dt

dT
  Ec. 3.3 

Al sustituir las ecuaciones 3.2 y 3.3 en la ec. 3.1 se obtiene la ecuación cinética para la reacción de una etapa: 

 mfeA
dT

dm TR

E

g

a

··
· ·

0 

















 Ec. 3.4 

Las técnicas desarrolladas para la evaluación de los parámetros cinéticos de análisis termogravimétricos no-

isotermos se pueden dividir en “modelos de ajuste” (que son modelos de análisis de datos) y en “modelos 

libres”. 

Con los “modelos libres” no es necesario asumir una cinética de reacción y los parámetros cinéticos se obtienen 

en función de la conversión o de la temperatura. Dentro de este tipo de modelos son los métodos 

isoconversionales los que asumen un grado de conversión constante y por tanto que la velocidad de reacción 

depende exclusivamente de la temperatura. Así, permiten estimar la energía de activación, Ea, en función de la 

conversión independientemente del modelo de reacción, f(α). 

La ventaja de los métodos isoconversionales frente a modelos de análisis de datos es la sencilla aplicación de 

los modelos. Sin embargo, tienen varios inconvenientes entre los que cabe destacar: 

 

 son aproximaciones 

 ajustan la energía de activación con un solo dato de la curva  

 no son correctos para modelos con reacciones complejas 

 no dan información cinética, sólo informan de la energía de activación 

Los modelos de ajuste requieren de la suposición inicial de un mecanismo, o el conocimiento del mismo, para 

asumir una cinética de reacción. Consideran todos los puntos de la curva TG y no emplean aproximaciones, por 

lo que en general se consideran más exactos que los modelos libres. 

En este proyecto se realiza un modelado integral de análisis de datos para obtener la cinética de 

descomposición. 
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Método integral de análisis de datos 

El ajuste se realiza en el rango de temperaturas que va desde 110ºC en adelante, ya que de esta forma se 

excluye la etapa de deshidratación de la muestra (eliminación del agua superficial). 

Los estudios sobre pirolisis de celulosa son abundantes, por lo que se toman revisiones bibliográficas para su 

estudio (Orfao et al., 1999; Lin et al., 2009; Cho et al., 2010; Serbanescu, 2014). 

Aunque los datos sobre cinética y mecanismo son diversos y no hay consenso al respecto, se considera la 

depolimerización como la reacción de mayor pérdida de masa con una cinética de primer orden cuya energía 

de activación es elevada (200 kJ/mol aprox.). La primera etapa (reacción) del mecanismo corresponde a la 

dehidración, lo que implica un proceso lento entre 200ºC y 500ºC (apartado 1.5.3). La segunda etapa es rápida 

y se da alrededor de los 320-350ºC y es la depolimerización. 

La menor temperatura de iniciación para la reacción de dehidración, respecto del proceso de depolimerización, 

indica una energía de activación (Ea1) menor que la de energía de depolimerización (Ea2). 

Si mf es la masa final de la muestra, m la masa en el instante “t” y m0 la masa inicial, se define la m como la 

masa total resultante de la suma de la masa de cada etapa de reacción (ya que son paralelas y el producto de 

una no se convierte en reactivo de la otra): 





N

i

imm
1

 Ec. 3.5 

Por lo que, según la ec. 3.5, se deduce: 





N

i

imm
1

,00
 Ec. 3.6 





N

i

iff mm
1

,
 Ec. 3.7 

El porcentaje de pérdida de masa debida a cada etapa se define como: 

/

0

,,0
%

m

mm
Perdida

ifi 
  Ec. 3.8 

Donde 𝑚0
′  es la masa inicial de la muestra una vez deshidratada y m0,i el peso inicial de la fracción de muestra 

que trascurre por la etapa “i”. 

 

Para obtener un modelo cuyo ajuste sea convergente, se emplea la ecuación de Arrhenius “re-parametrizada”. 

Se evalúa, en primer lugar, la constante cinética (km) a la temperatura promedio de los datos experimentales 

(Tav), de forma que: 

avg

a

TR

E

m eAk
·

0·



  Ec. 3.9 

Empleando la Ec. 3.9 en la ecuación de Arrhenius (Ec. 3.2) se obtiene: 
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 
TTR

TTE

m

TR

E

TR

E

mdt
avg

ava
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a
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ekeekk
····

···



  Ec. 3.10 

Las etapas de la reacción son paralelas e independientes entre sí. El modelo a emplear sigue la ecuación cinética 

3.1 extendida a cada etapa del proceso, donde la constante cinética se define por la ley de Arrhenius “re-

parametrizada” (ec. 3.10), es decir: 

 

 

 





















N

i

i

TTR

TTE

mi mfek
dt

dm
avg

avai

1

··
··

 Ec. 3.11
 

Donde mi es la contribución de masa en cada momento debido a la reacción “i”, f(mi) es la función de la masa, 

km,i es la constante cinética de la etapa “i” a la temperatura media de los datos experimentales, T es la 

temperatura en grados Kelvin, Tav la temperatura media de los datos experimentales, Rg es la constante de los 

gases y Eai es la energía de activación de la etapa “i”. 

 

Las funciones de la masa tienen la forma: 

    in

fiii mmmf   Ec. 3.12 

Siendo mi es la masa en cada instante debido a la etapa “i”, mf,i es masa final debido a la contribución “i” y ni el 

orden de reacción de la etapa “i”. 

Sustituyendo la ec. 3.12 en la ec. 3.11, se obtiene la ecuación cinética general del modelo, que para el caso de 

la celulosa consta de dos etapas, depolimerización y dehidración: 

 
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··
··

 Ec. 3.13 

 

Criterio de selección del modelo 

Se ajustan los datos experimentales termogravimétricos, obtenidos para una velocidad de calentamiento, a la 

ecuación del modelo integral de análisis de datos (Ec. 3.13). 

 

La bondad del ajuste se puede medir por dos parámetros: 

1.- Error cuadrático medio, R2, cuyos valores están entre 0 (no se ajusta el modelo) y 1 (ajuste perfecto): 

SST

SSE
R 12

 Ec. 3.14 

Donde SSE es la suma de residuos cuadrados y SST es la suma de residuos totales: 



Catalizadores Biomorficos y Test Catalítico  

 

51 

 

 



N

i

calcii mmSSE
1

2
,  Ec. 3.15 

 



N

i

avi mmSST
1

2
 Ec. 3.16 

Siendo mi la masa experimental, mi,calc la masa calculada y mav la masa media. 

2.- El criterio de selección de modelo, MSC, de forma que el ajuste con el valor más elevado es el mejor. El 

criterio es válido para diferentes modelos, ya que en su fórmula considera el número de puntos de la curva 

termogravimétrica, NTG, y el número de parámetros del modelo al que se ajustan, p. En este proyecto se utiliza 

un solo modelo pero con diferentes soluciones. El MSC se empleará para determinar la mejor solución entre las 

posibles. Se define el MSC de la forma siguiente: 

TG
N

p

SSE

SST
MSC ·ln 2








  Ec. 3.17 

Donde SST y SSE corresponden con la suma de cuadrados totales y suma de cuadrados de errores, 

respectivamente, definidos en las Ec. 3.16 y Ec. 3.15. 

Calculando el MSC para cada solución, a una velocidad de calentamiento se pueden comparar los valores entre 

sí, determinando cuál es la mejor. 

A continuación se detallan los experimentos realizados y la información que se deduce de las curvas TG 

obtenidas con dichos ensayos. 

 

 

3.1.1 Celulosa en polvo 

Los estudios se realizan a diferentes velocidades de calentamiento, β, y diferentes flujos. La Tabla 3.1 muestra 

los ensayos realizados: 

Flujo β (ºC/min) Nombre 

100% N2 

3 C-N3 

10 C-N10 

20 C-N20 

42 C-N42 

5%H2/ N2 

3 C-H3 

10 C-H10 

20 C-H20 

42 C-H42 

Tabla 3.1.- Ensayos realizados con celulosa en polvo 

Cada mínimo en la curva DTG (Fig. 3.2) se corresponde con un máximo de pérdida de masa debido a un proceso 

o reacción. Como consecuencia de que la dehidración y la depolimerización se solapan, ambos procesos 

aparecen como una sola etapa de pérdida de masa ( 

Fig. 3.1), mostrando un solo mínimo en la curva DTG. 
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Fig. 3.1.- Variación del peso (W) frente a la Temperatura (T) para los ensayos de la tabla 3.1 
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Fig. 3.2.- Variación de la derivada  dW/dT  frente a la Temperatura para los ensayos de la tabla 3.1 

Con esta información, se delimitan los procesos presentes caracterizados por tres temperaturas:  

 Inicial (Ti): comienza la pérdida de masa de la muestra 

 Máxima (Tm): se muestra un pico en la derivada, el cual, es el punto de máxima pérdida de masa  

 Final (Tf): se estabiliza la masa 
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La temperatura inicial del proceso no se ve afectada por el aumento de la velocidad de calentamiento, sin 

embargo, la presencia de hidrógeno implica una mayor temperatura (50 ºC superior) para que comience la 

descomposición (Tabla 3.2), lo que implica un desplazamiento del final del proceso de descomposición a 

temperaturas ligeramente superiores. 

 

 

 

 

Atmósfera β(ºC/min) Ti (ºC) Tm (ºC) Tf (ºC) m (%) 

Inerte 

3 210 313 330 64.0 

10 200 328 450 67.5 

20 200 337 470 71.2 

42 200 342 485 76.1 

Reductora 

3 220 314 340 81.73 

10 250 330 450 75.11 

20 250 340 500 77.5 

42 250 351 500 80.9 

Tabla 3.2.- Temperaturas para descomposición de celulosa en polvo 

 

La temperatura de máxima pérdida de masa, sin embargo, no se ve afectada por la composición del flujo, lo 

que podría indicar que la reacción de depolimerización ocurre a la temperatura Tm. 

Respecto la pérdida de masa, las curvas TG ( 

Fig. 3.1) muestran un 10 % más de masa residual al final del proceso en atmósfera de nitrógeno que en presencia 

de hidrógeno. Ya que la depolimerización y la dehidración desprenden hidrógeno al medio, la presencia de 5 % 

de hidrógeno en el gas reaccionante desplaza ligeramente la reacción hacia el equilibrio (por la ley de 

L’Chatelier). 

Para la pirolisis de la celulosa en polvo en atmósfera inerte, los datos experimentales se ajustan al modelo 

descrito por la Ec. 3.13, encontrando dos posibles soluciones. La solución 1 implica que la masa residual debida 

a la dehidración es nula, mientras que en la solución 2 es la masa residual debida a la depolimerización la que 

tiende a cero. Los valores de los parámetros obtenidos se encuentran en la Tabla 3.3, junto con el valor para el 

criterio de selección de modelo (de acuerdo con la Ec. 3.17): 
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β(ºC/min) 3 10 20 

solución 1 2 1 2 1 2 

Ea1 
(kJ/mol) 148 ± 1 188 ± 1 146 ± 2 191 ± 3 151 ± 4 185 ± 4 

Ea2 
(kJ/mol) 343 ± 1 365 ± 1 273 ± 2 289 ± 2 230 ± 2 259 ± 2 

km1 

(min-1) 
3.3 ·10-5 ± 2·10-6 3.6 ·10-6 ± 2·10-7 4.2 ·10-5 ± 5·10-6 3.2 ·10-6 ± 5·10-7 3.6 ·10-4 ± 8·10-5 3.2 ·10-5 ±1·10-5 

km2 

(min-1) 
2.2 ·104 ± 6·102 4.0 ·104 ± 9·102 609 ± 13 806 ± 17 1147 ± 33 1.5·103 ± 40 

A1 
(min-1) 

4.6·106 ± 5·105 5.1·108 ± 6·107 7.2·106 ± 2·106 1.5·109 ± 5·108 4.1·107 ± 2·107 2.0·109 ± 7·108 

A2 
(min-1) 1.3·1030 ±7·1028 1.1·1032 ±5·1030 5.8·1023 ±2·1022 1.4·1025 ±5·1023 8.8·1019 ±5·1018 1.7·1022 ±7·1020 

n1 5.0 6.2 5.0 6.3 5.0 6.1 

n2 1.0 1.0 1.0 1.0 1.0 1.2 

%peso1 31.4 33.8 29.2 32.2 26.2 29.3 

MSC 11.46 11.99 11.47 11.69 11.30 11.62 

Tabla 3.3.- Valores de los parámetros para las soluciones del modelo integral de análisis de datos: celulosa en polvo (β=3, 10 y 20 
ºC/min) 

El criterio de selección de modelos refleja que la solución 2 es la que mejor se ajusta a los datos experimentales. 

El cambio en la velocidad de calentamiento no afecta de manera significativa a las energías de activación ni a 

los órdenes de reacción. Si nos fijamos en las energías de activación se pueden ver valores algo diferentes 

conforme aumenta la velocidad de calentamiento, esto es debido a causas experimentales ya que una velocidad 

mayor implica una menor precisión en los datos TG obtenidos.  

Se repiten los cálculos para las velocidades de calentamiento de 42 ºC/min, a pesar que a tan alta velocidad de 

calentamiento el error cometido en la medida experimental es apreciable, obteniendo como resultado los datos 

de la Tabla 3.4: 

 N2 (42ºC/min)  

Solución 1 Solución 1 1 Solución 2 

Ea1 (kJ/mol) 155 ± 15 166 ±32 

Ea2 (kJ/mol) 176 ± 2 172 ± 4 

km1 (min-1) 6.1 ·10-6 ± 7·10-6 6.4 ·10-7 ± 2·10-6 

km2  (min-1) 0.68 ± 0.05 0.67 ± 0.08 

A1  (min-1) 3.4·108 ± 7·108 3.1·108 ± 7·109 

A2  (min-1) 2.5·1015 ± 4·1015 13·1015 ± 3·1014 

n1 5.0 6.0 

n2 1.0 1.0 

%peso1 20.3 18.19 

MSC 11.82 11.02 
Tabla 3.4.- Valores del modelo integrale de análisis de datos para celulosa en polvo (β=42 ºC/min) 

Si se observan los errores de los valores para los datos cinéticos y las energías para la velocidad de 

calentamiento de 42 ºC/min (Tabla 3.4) se aprecia que son mayores que los errores a velocidades de 

calentamiento menor, lo que refleja la imprecisión cometida al emplear estos datos experimentales. 
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Según el criterio de selección de modelos, el mejor ajuste se obtiene con la solución 2 con independencia de la 

velocidad de calentamiento empleada (Tabla 3.3) excepto para el caso de velocidad de calentamiento alta que 

no se considera, ya que como se ha comentado presenta errores grandes. 

Según la solución que mejor ajusta los datos experimentales, las reacciones ocurren en etapas paralelas y la 

masa residual debida a la depolimerización tiende a ser nula. Los valores de las variables de la ecuación que 

representa el modelo seleccionado se resumen en la Tabla 3.5: 

 N2 

β (ºC/min) 3 10 20 42 

Ea1 (kJ/mol) 188 ± 1 191 ± 3 185 ± 4 166 ±32 

Ea2 (kJ/mol) 365 ± 1 289 ± 2 259 ± 2 172 ± 4 

km1 (min-1) 3.6 ·10-6 ± 2·10-7 3.2 ·10-6 ± 5·10-7 3.2 ·10-5 ± 1·10-5 6.4 ·10-7 ± 2·10-6 

km2 (min-1) 4.0 ·104 ± 9·102 806 ± 17 1.5·103 ± 40 0.67 ± 0.08 

A1 (min-1) 5.1·108 ± 6·107 1.5·109 ± 5·108 2.0·109 ± 7·108 3.1·108 ± 7·109 

A2 (min-1) 1.1·1032 ± 5·1030 1.4·1025 ± 5·1023 1.7·1022 ± 7·1020 13·1015 ± 3·1014 

n1 6.2 6.3 6.1 6.0 

n2 1.0 1.0 1.2 1.0 

%peso1 33.8 32.2 29.3 18.19 

Tabla 3.5.- Valores de los parámetros de la solución elegida del modelo para la descomposición de la celulosa en polvo 

Tomando los valores promedio, sin tener en cuenta la velocidad de calentamiento más elevada (y con mayor 

error), la energía de activación de dehidración es 188 ± 3 kJ/mol con un orden de reacción 6. La depolimerización 

es una reacción de primer orden con energía de activación 304 ± 61 kJ/mol. 

El valor más real, sin embargo, se obtiene con velocidades de calentamiento lentas, por lo que una energía de 

activación de depolimerización sobre 365 kJ/mol se debería aproximar más a la realidad. 

La representación de las curvas TG ajustadas con el modelo propuesto se encuentran en el Anexo A 1. 

Para una descomposición de celulosa en polvo en presencia de hidrogeno, el mecanismo no debería de variar, 

ya que la propia descomposición de la celulosa desprende hidrógeno, de forma que la atmosfera de 

descomposición siempre es ligeramente reductora. 

Con dicha consideración, se ajustan los datos termogravimétricos experimentales de la descomposición de la 

celulosa en polvo en presencia de hidrógeno al modelo (Ec. 3.13) teniendo en cuenta las dos posibles soluciones. 
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β 
(ºC/min) 

3 10 20 

Solución 1 2 1 2 1 2 

Ea1 
(kJ/mol) 170 ± 1 132 ± 1 181 ± 3 147 ± 2 189 ± 3 200 ± 3 

Ea2 
(kJ/mol) 348 ± 1 348 ± 2 299 ± 2 308 ± 2 250 ± 2 254 ± 2 

km1 ·106 
(min-1) 

2.4 ± 0.1 7.1 ± 0.6 15 ± 2 65 ± 7 2.0·103 ± 149 1.5·103 ± 115 

km2 ·10-3 

(min-1) 
55 ± 1 42 ± 1 6.8 ± 0.2 5.9 ± 0.2 269 ± 13 311 ± 15 

A1 ·10-6 
(min-1) 

9.1 ± 1 0.05 ± 8·10-3 393 ± 117 5.1 ± 1 2.1·103 ± 305 7.8·103 ± 1·103 

A2 ·10-28 
(min-1) 

359 ± 16 247 ± 17 0.01 ± 6·10-4 0.04 ± 2·10-3 2.1·10-7 ± 2·10-8 4.2·10-7 ± 4·10-8 

n1 6.0 5.2 6.0 5.1 6.2 6.6 

n2 1.0 1.1 1.0 1.1 1.1 1.1 

%peso1 33.39 30.33 31.80 30.04 28.49 29.03 

MSC 12.01 10.87 11.32 11.33 12.10 12.10 

Tabla 3.6.- Valores de los parámetros para la solución del modelo integral  de análisis de datos para celulosa en polvo (H2/N2) (β=3, 10 
y 20 ºC/min) 

 

La representación de los ajustes de las curvas TG con el modelo se encuentra en el  Anexo A 2, donde se aprecia 

un muy buen ajuste refrendado por los elevados valores de MSC (Tabla 3.6). 

Según el criterio de selección de modelos, la mejor solución es la que implica que la masa residual debida al 

proceso de dehidración tiende a cero (solución 1), siendo la diferencia entre ambas soluciones muy parecida en 

cuanto a valores de MSC (Tabla 3.6). Este resultado es diferente de obtenido para un flujo inerte, donde la masa 

residual de depolimerización era la que tendía a cero, y esta diferencia implica que el aumento de presencia de 

hidrogeno en el medio favorece la dehidración frente a la depolimerización. 

Con la solución 1 del modelo, se determinan los valores promedio de energía de activación, resultando 181 ± 9 

kJ/mol para la dehidración y 299 ± 49 kJ/mol para la depolimerización. 

Comparando estas energías con las calculadas para el flujo de nitrógeno se aprecia (Tabla 3.7) que la energía 

de activación es prácticamente independiente de la atmósfera (inerte o reductora). 

Atmósfera Ea1 (kJ/mol) Ea2 (kJ/mol) 

Inerte 188 ± 3 304 ± 61 

Reductora 181 ± 9 299 ± 49 

Tabla 3.7.- Energías de activación para celulosa en polvo según modelo libre 

 

El orden de reacción de la depolimerización es 1 para ambas atmosferas estudiadas y la reacción de dehidración 

tiene orden 6, siendo favorecida por la presencia de hidrógeno.  
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3.1.2 Papel de filtro 

Para sintetizar el catalizador biomórfico se utiliza papel de filtro (Prat Dumas 210), que según las 

especificaciones es fundamentalmente celulosa y contiene menos de 0.06 % de cenizas. 

La cristalinidad y pureza de la celulosa pueden modificar la cinética de descomposición. Los ensayos realizados 

para determinación de las curvas TG son los que se presentan en la Tabla 3.8: 

Flujo β (ºC/min) Nombre 

100% N2 

3 P-N3 

10 P-N10 

20 P-N20 

5%H2/ N2 

3 P-H3 

10 P-H10 

20 P-H20 

Tabla 3.8.- Ensayos realizados con papel de filtro 

Las curvas TG (Fig. 3.3) muestran que el 60 % en peso del papel queda como residuo carbonoso final, mientras 

que con la celulosa en polvo sólo queda el 20 %. 
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Fig. 3.3.- Variación del peso (W) frente a la Temperatura (T) para celulosa en polvo y papel de filtro (Prat Dumas 210) 

Las curvas DTG (Fig. 3.4) muestran una temperatura inicial (Ti) para el papel de 230 ºC (Tabla 3.939)  lo que 

implica 30 ºC más respecto a la pirolisis de la celulosa en polvo y 20 ºC menos en presencia de hidrógeno (Tabla 

3.2). 

La temperatura de máxima pérdida de masa y la temperatura final para la degradación del papel son más 

elevadas que para la celulosa en polvo (Fig. 3.4), esto implica que la depolimerización en presencia de aditivos 

requiere más temperatura, y por tanto, la estructura es más estable térmicamente. 
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Atmósfera β(ºC/min) Ti (ºC) Tm (ºC) Tf (ºC) m (%) 

Inerte 

3 230 330 360 39.7 

10 230 343 510 40.6 

20 230 345 510 40.6 

Reductora 

3 230 330 380 38.5 

10 230 340 500 41.5 

20 230 360 530 40.1 

Tabla 3.93.- Temperaturas para descomposición de papel de filtro 
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Fig. 3.4.- Variación de la derivada  dW/dT  frente a la Temperatura para los ensayos de la tabla 3.8 

El tipo de celulosa empleado puede influir en la energía de activación, sin embargo, se asume que el mecanismo 

de reacción que sigue durante la descomposición no varía. Debido a que el mecanismo de descomposición de 

celulosa en polvo se ajusta al modelo (Ec. 3.13), se considera el mismo modelo para la descomposición del papel 

de filtro. 

Los órdenes de reacción deberían de ser iguales al tratarse de las mismas reacciones químicas, por lo que se 

supone primer orden para la depolimerización y orden 6 para la dehidración. De esta manera se reducen las 

variables del ajuste y el resultado obtenido muestra como el modelo ajusta los datos experimentales (Anexos 

A 3 y A 4). 

Los valores de los parámetros calculados para la pirolisis de papel de filtro pueden verse en la Tabla 3.40. La 

mejor solución según el criterio de selección de modelos, es la segunda (la masa residual debida a 

depolimerización tiende a cero). Esto coincide con la solución encontrada para celulosa en polvo en atmosfera 

inerte. 
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β (ºC/min) 3 10 20 

Solución 1 2 1 2 1 2 

Ea1 
(kJ/mol) 197 ±0.3 196 ±0.3 220 ±1 233 ±1 215 ±1 215 ±1 

Ea2 
(kJ/mol) 316 ±0.5 311 ±0.5 261 ±1 267 ±1 217 ±1 217 ±1 

km1 
(min-1) 

0.1 ±1·10-3 0.1 ±1·10-3 0.5 ±0.02 0.4 ±0.01 1.6 ±0.06 1.6 ±0.06 

km2 ·10-3 

(min-1) 
2.97 ±0.05 2.52 ±0.04 0.49 ±0.01 0.37 ±0.01 0.46 ±0.01 0.46 ±0.01 

A1 ·10-13 
(min-1) 

4.4 ±0.1 4.6 ±0.1 1.2·103 ±82 1.4·104 ±908 947 ±64 898 ±61 

A2 ·10-27 
(min-1) 

1.0 ±0.03 0.4 ±0.01 1.4·10-5 ±8·10-7 5.3·10-5 ±3·10-6 3.8·10-9 ±2·10-10 3.7·10-9 ±2·10-10 

%peso1 27.99 27.41 28.27 29.67 27.03 26.97 

MSC 11.16 11.22 10.61 10.68 11.38 11.38 

Tabla 3.40.- Valores de los parámetros para las soluciones del modelo integral de análisis de datos: papel de filtro en N2 (β=3, 10 y 20 
ºC/min) 

 

 

Se comprueba que las energías de activación en atmósfera inerte tienden a valores similares (considerando los 

errores) de dehidración (190-200 kJ/mol) para celulosa en polvo (Ea1 ≈ 188 ± 3 kJ/mol y Ea2 = 304 ± 61 kJ/mol) y 

para papel de filtro (Ea1 ≈ 215 ± 18 kJ/mol y Ea2 = 265 ± 46 kJ/mol). 

Los resultados para la descomposición de papel de filtro en presencia de hidrógeno aparecen en la Tabla 3.51: 

β (ºC/min) 3 10 20 

Solución 1 2 1 2 1 2 

Ea1 
(kJ/mol) 187 ±0.4 187 ±0.4 220 ±0.7 219 ±0.7 187 ±0.4 216 ±5 

Ea2 
(kJ/mol) 303 ±0.7 303 ±0.7 259 ±0.8 259 ±0.8 303 ±0.7 212 ±1 

km1 
(min-1) 

0.06 ±9·10-4 0.06 ±9·10-4 0.38 ±0.01 0.37 ±0.01 0.06 ±9·10-4 0.05 ±2·10-3 

km2 ·10-3 

(min-1) 
1.20 ±0.03 1.20 ±0.02 0.51 ±0.01 0.50 ±0.01 1.20 ±0.03 0.08 ±2·10-3 

A1 ·10-12 
(min-1) 

6.0 ±0.2 6.0 ±0.2 9.3·103 ±503 7.8·103 ±421 6.0 ±0.2 784 ±94 

A2 ·10-25 
(min-1) 

6.3 ±0.3 6.1 ±0.2 1.0·10-3 ±5·10-5 9.5·10-3 ±4·10-5 6.4 ±0.3 6.2·10-8 ±4·10-9 

%peso1 27.96 27.80 28.40 28.29 27.87 8.21 

MSC 10.49 10.49 11.00 11.00 10.48 8.20 

Tabla 3.51.- Valores de los parámetros para las soluciones del modelo integral de análisis de datos: papel de filtro en H2/N2 (β=3, 10 y 
20 ºC/min) 

 

Como en el caso de celulosa en polvo, el aumento de hidrógeno en el medio (atmosfera reductora) favorece la 

dehidración haciendo que la masa residual debida a dicha reacción tienda a cero.  

En esta ocasión no es posible discernir cuál de las dos soluciones es mejor por el criterio de selección de modelos 

al dar valores de MSC iguales para velocidades de calentamiento bajas (con una velocidad de 20 ºC/min si hay 

diferencia notable entre las soluciones). 
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La Tabla 3.62 muestra la comparativa entre las energías de activación de los dos tipos de celulosa (en polvo y 

papel de filtro) y en ambas atmosferas (inerte y reductora): 

 Ea1 (kJ/mol) Ea2 (kJ/mol) 

 Celulosa en polvo Papel de filtro Celulosa en polvo Papel de filtro 

Inerte 188 ± 3 215 ± 18 304 ± 61 265 ± 46 

Reductora 181 ± 9 198 ± 11 299 ± 49 288 ± 29 

Tabla 3.62.- Energías para descomposición de la celulosa según el modelo integral de análisis de datos 

Se observa que la energía de activación de la etapa de dehidración es más elevada en el caso del papel de filtro 

que en el de celulosa en polvo, mientras que la energía de activación de depolimerización es menor. Sin 

embargo, considerando los errores, los valores de las energías de activación de cada etapa (y para atmósfera) 

no son muy diferentes entre ambos tipos de celulosa. 

3.1.3 Plantilla biomórfica 

La plantilla biomórfica empleada es papel de filtro (Prat Dumas 210) impregnado con un nitrato del metal que 

será el elemento activo del catalizador. El objetivo es analizar cómo afecta el nitrato empleado en la 

descomposición del material celulósico que da lugar al soporte carbonoso. 

Como ejemplo para el estudio de cinética de síntesis de un catalizador biomorfico se emplea, en este trabajo, 

el catalizador de níquel, por lo que se realiza primero un estudio termogravimétrico del nitrato de níquel 

hexahidratado (sal precursora) para poder identificar su comportamiento en el papel de filtro posteriormente. 

El estudio termogravimétrico se realiza con una velocidad de calentamiento de 3 ºC/min para identificación de 

los procesos partiendo de 110 ºC, temperatura en la que se seca la muestra al igual que en los ensayos de 

celulosa en polvo. 

Debido a que la etapa de secado lleva asociada la deshidratación, que tiene lugar a 110ºC, la muestra pierde 

masa por la pérdida de agua superficial, pero por la presencia del nitrato ocurre una separación de agua por 

debajo de dicha temperatura. 

La pirolisis del nitrato de níquel (atmósfera inerte) y la reducción con 5 % de hidrógeno muestran varias etapas 

de pérdida de masa al aumentar la temperatura que se aprecian en las curvas TG-DTG (Fig. 3.5). 
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Fig. 3.5.- Curvas TG-DTG del Ni(NO3)2·6H2O (pirolisis y reducción) 

Los cambios de masa de la muestra en ambas atmósferas (inerte y reductora), son los que aparecen en la Tabla 

3.73. 

Identificando los procesos a baja temperatura con la etapa de separación de agua, se aprecia que la pérdida de 

masa es de 13-16 % que corresponde con la pérdida de masa reportada en la bibliografía para la reacción 1a 

más la pérdida por secado de la muestra (deshidratación por agua superficial). 

Comparando el rango de temperaturas experimentales en el que ocurren las reacciones con las temperaturas 

de bibliografía descritas anteriormente (Apartado 1.5.4), se identifican las etapas del mecanismo de 

descomposición: 

 N2 H2/ N2 

Etapa Proceso según mecanismo (reacción) Tª (ºC) m (%) T (ºC) m (%) 

I Deshidratación y separación de agua (1a) <110 13.3 <110 16.0 

II 
 - - 122-147 3.2 

Descomposición parcial (2a y 2b) 150-210 13.1 150-210 10.1 

III Descomposición final (3) 210-250 21.3 210-242 17.3 

IV Descomposición del óxido (4a y 4b) 273-332 28.7 257-320 31.5 

V Reducción a metal - - 320-340 8.6 

Pérdida de masa total  76.4%  86.7% 

Tabla 3.73.- Identificación de las etapas de la descomposición del Ni(NO3)2 correspondientes a la figura 3.5 

 

La descomposición parcial (reacciones 2a y 2b) implica, según bibliografía, un 18.2 % de pérdida de masa 

(Brockner et al., 2007), resumidos en la Tabla 1.2, mientras que experimentalmente se pierde sobre un 13.1 % 

en atmósfera inerte (etapa II). Comparando las dos curvas experimentales (atmósfera con N2 y H2/N2) se observa 

un comienzo de reacción a temperaturas menores en presencia de hidrógeno, lo que fomenta una mayor 

separación entre las reacciones 2a y 2b del proceso de descomposición. 
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La pérdida de masa en la descomposición final (reacción 3, m = 29 %), según los datos bibliográficos (Brockner 

et al., 2007), es algo superior a la experimental en flujo de nitrógeno (etapa III, m = 21 %), pero en la 

descomposición en presencia de hidrógeno, es menor (m = 17 %).  

La etapa IV ocurre en el rango de temperaturas de la descomposición del óxido (reacciones 4a y 4b), sin 

embargo, la pérdida de masa experimental para ambos ensayos (Δm ≈ 30 %) es mucho mayor que el dato 

publicado (m= 2.2 %). 

Puesto que las reacciones de descomposición del óxido emplean como reactivo el producto de reacciones 

anteriores, la etapa IV puede favorecer las reacciones de etapas anteriores (que estaban en equilibrio al ser 

reversibles). 

La presencia de hidrógeno conlleva la reducción hasta el níquel metálico (Tabla 1.3), siendo la pérdida de masa 

debida a este proceso similar a la pérdida de masa experimental. El peso residual (masa final tras la 

descomposición) publicado (Brockner et al., 2007)  es similar al obtenido experimentalmente, por lo que se 

considera el mecanismo válido para los datos experimentales obtenidos. 

La síntesis del catalizador se realizará con presencia de hidrógeno con el fin de obtener el elemento activo en 

forma reducida. De esta manera se elimina la etapa de activación del catalizador con la posible modificación 

del soporte durante el proceso. 

La presencia de hidrógeno sólo afecta a la temperatura de máxima pérdida de masa en la descomposición de 

la celulosa en polvo y del papel, siendo dicha temperatura dependiente de la velocidad de calentamiento. Este 

efecto hace necesario comparar el comportamiento del papel de filtro impregnado en el nitrato de níquel 

(plantilla biomórfica) en las dos atmósferas. 

Se realiza una serie de ensayos con una velocidad de calentamiento de 3ºC/min desde la temperatura ambiente 

hasta 750ºC, para la degradación de la plantilla biomórfica (papel de filtro impregnado en nitrato de níquel), 

siendo dicho ensayos los que se muestran en la Tabla3.14: 

Nombre atmósfera durante la degradación 

PN-N3 Inerte 

PN-H3 Reductora 

Tabla 3.14..- Ensayos de la degradación térmica de la plantilla biomórfica 
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Las curvas TG-DTG correspondientes  a estos ensayos son las representadas en la Fig. 3.6: 
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Fig. 3.6.-Curvas TG-DTG para plantilla impregnada (N2 y H2/ N2) a 3ºC/min 

 

Los procesos o etapas son los mismos, con independencia de la presencia o no del hidrógeno, lo que se explica 

porque la degradación térmica de la celulosa da hidrógeno como producto secundario, así que siempre hay 

presente hidrógeno en el medio. 

La descomposición del papel de filtro Prat Dumas 210 comienza a 230 ºC. La máxima pérdida se produce a 330 

ºC. Se observa en las curvas TG-DTG (Fig. 3.6) que para el papel impregnado la máxima pérdida es a 304 ºC, por 

lo que la primera conclusión es que existe un desplazamiento de las reacciones de descomposición de celulosa 

hacia temperaturas inferiores (  2̴5 ºC, Tabla3.15). 

Muestra Ti (ºC) Tm (ºC) Tf (ºC) 

P-N3 230 330 360 

PN-N3 204 304 330 

P-H3 230 330 380 

PN-H3 204 304 330 

Tabla 3.15.- Temperaturas de descomposición para el papel y la plantilla biomórfica 

 

Los procesos que tienen lugar en las curvas TG-DTG (Fig. 3.6) son los siguientes: 

Proceso 1 (Tª < 110 ºC): Separación de agua en el nitrato de níquel y deshidratación de la muestra (papel de 

filtro y nitrato de níquel). 

Proceso 2 (150 – 180 ºC): Con máxima pérdida de masa a 160 ºC. Este rango de temperaturas denota la etapa 

de descomposición parcial del nitrato de níquel (oxidación y condensación parcial). 

Proceso 3 (204 – 330 ºC): El proceso tiene varias contribuciones: 

a) 204 – 280 ºC: correspondiente a una pérdida de masa lenta. Se sabe que sobre los 230 ºC comienza la 

dehidración del papel de filtro, sobre 250 ºC la descomposición final del Ni(NO3)2·6H2O 
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b) 280 – 330 ºC: pérdida de masa más rápida con Tm (temperatura de máxima pérdida de masa) sobre 304 ºC. 

El cambio de velocidad de pérdida de masa se puede deber a la depolimerización que ocurre de forma rápida 

mientras continua la dehidración (y la descomposición final del Ni(NO3)2·6H2O). 

Proceso 4 (380 – 450 ºC): Es una pequeña pérdida de masa que se atribuye a la reducción del metal y que debido 

al soporte se ha desplazado a temperaturas mayores. 

Se ha comprobado que los procesos son los mismos con independencia de la presencia de hidrógeno. Para 

realizar el estudio se hacen los ensayos con la etapa de secado a 110 ºC al igual que los experimentos de celulosa 

en polvo y papel de filtro. La tanda de experimentos realizados son los descritos a continuación (Tabla3.16): 

 

 

Flujo β (ºC/min) Nombre 

N2 

3 PN-N3 

10 PN-N10 

20 PN-N20 

5%H2/ N2 

3 PN-H3 

10 PN-H10 

20 PN-H20 

42 PN-H42 

Tabla 3.16.- Experimentos de papel de filtro impregnado 

Se aprecia (Fig. 3.7) que a medida que la velocidad de calentamiento es más rápida, los rangos de temperatura 

en los que ocurre el proceso son más amplios y se desplazan ligeramente hacia temperaturas más elevadas. 

También se observa que con velocidades de calentamiento elevadas, la pérdida de masa en el proceso 2 

(descomposición parcial del nitrato) es más rápida que a velocidades lentas. 
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Fig. 3.7.-Curvas TG-DTG para plantilla biomorfica en H2/N2 
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3.2 Caracterización según condiciones de síntesis 

3.2.1 Estructura del material carbonoso (Espectroscopía Raman) 

La espectroscopia Raman es una técnica útil para la caracterización de los materiales de carbono con arreglo a 

criterios estructurales, ya que esta técnica muestra el grado de orientación de las unidades estructurales 

básicas. 

Los espectros Raman de la mayoría de las formas del carbono incluyen dos bandas principales, asociadas con 

los defectos estructurales y el orden grafítico, respectivamente: 

 Banda D  (1355 cm-1 aprox.)  

 Banda G (1575 cm-1 aprox.)  

Un pico de menor intensidad aparece a   2̴700 cm-1 (banda G’) en sólidos carbonosos que muestra un menor 

orden estructural cuanto más ancho y bajo es el pico, pudiendo abarcar longitudes de onda entre 2600 y 3200 

cm-1 en casos de coque o no ser apreciable en estructuras con grado de orden estructural muy bajo.  

El cálculo numérico para relacionar las bandas identificadas en el espectro y poder estudiar la cantidad de 

defectos y ordenamiento de la muestra se obtiene de los valores de la intensidad de la banda D (ID) y la 

intensidad de la banda G (IG). 

Se realizan los espectros Raman para el residuo carbonoso obtenido de la degradación térmica de celulosa en 

polvo en nitrógeno a dos velocidades de calentamiento diferentes (10 ºC/min y 42 ºC/min) y para la atmósfera 

reductora se estudia a la velocidad de calentamiento  de 42º C/min, ya que es en la que se realiza la síntesis de 

catalizadores. Los espectros se muestran en la Fig. 3.8. 
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Fig. 3.8.- Espectro Raman para carbón residual de celulosa en polvo y papel de filtro 
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La relación de intensidades de las bandas características muestra más defectos estructurales con velocidades 

de calentamiento altas en flujo inerte, y con igual velocidad de calentamiento, los defectos estructurales 

aumentan siendo mayor en presencia de hidrógeno (Fig. 3.8, Tabla3.17): 

 ID/IG  ID/(ID+IG) 

C-N10 1.011 ± 0.03 0.503 ± 0.008 

C-N42 0.921 ± 0.02 0.479 ±0.005 

C-H42 0.814 ±0.03 0.449 ±0.007 

Tabla 3.17.- Relación de bandas D y G para carbón residual de celulosa en polvo 

 

Al estudiar los residuos carbonosos de la plantilla biomórfica impregnada en nitrato de níquel (catalizadores 

biomórficos de níquel) con diferentes velocidades de calentamiento en presencia de hidrógeno, se obtienen los 

siguientes espectros Raman (Fig. 3.9): 
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Fig. 3.9.- Raman para catalizador biomorfico de Níquel a diferentes β. 

Siendo las relaciones de sus intensidades (Tabla3.18): 

 ID/IG  ID/(ID+IG) 

PN-H3 0.999± 0.03 0.500 ± 0.004 

PN-H10 0.973± 0.02 0.493 ± 0.005 

PN-H42 0.984± 0.02 0.496 ± 0.005 

Tabla 3.18.- Relación de bandas D y G de catalizadores biomórficos de níquel 

Se observa que al aumentar la velocidad de calentamiento no se observa un efecto apreciable sobre la 

estructura. 
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3.2.2 Tamaño de partículas metálicas (TEM) 

 

El tamaño de las partículas metálicas (fase activa) es un factor primordial en los catalizadores, y el empleo de 

micrografías TEM permiten la determinación de dicho parámetro, además de mostrar la homogeneidad de la 

muestra y la dispersión de las partículas. 

La mejor forma de saber el tamaño de las partículas metálicas es la representación del tamaño de partícula, 

para lo cual se emplean histogramas. 

Para la obtención del histograma se toma una pequeña cantidad procedente de la muestra utilizada en la 

termobalanza la cual se somete a una micrografía TEM. Posteriormente con la imagen que obtenemos del TEM 

(Anexo B1) se procede a medir el tamaño de las partículas mediante el programa ScopePhoto© y se exportan 

los valores de los diámetros a una hoja de cálculo (análisis de imagen). 

Los parámetros calculados para cada distribución de tamaño de partículas metálicas son: 

 diámetro medio 

 desviación estándar (que se escribe como el error del diámetro medio en la tabla de datos) 

 moda, que se corresponde con el valor de diámetro de partícula más probable (es el diámetro con 

mayor frecuencia relativa en la distribución) 

 AsIQ e IK que son los parámetros de forma de la distribución, siendo el primero el coeficiente de asimetría 

intercuartil y el segundo el índice de curtosis. 

El coeficiente de asimetría intercuartil (AsIQ) caracteriza a una distribución según su simetría, siendo la 

clasificación la sigue (esquematizada en la Fig. 3.10): 

 AsIQ < - 0.4 la distribución es asimétrica negativa. 

 -0.4 < AsIQ < 0.4 la distribución es simétrica. 

 AsIQ > 0.4 la distribución es asimétrica positiva. 

 

 

Fig. 3.10. – simetrías de distribución de partículas 

 

El índice de curtosis (IK) define como de “apuntada” es la distribución respecto a una distribución gaussiana 

normal, y los diferentes tipos de distribución según este índice son (Fig. 3.11): 

 IK < -0.4 distribución plana o platicúrtica. 

 -0.4 < IK < 0.4 distribución normal o mesocúrtica. 

 IK > 0.4 distribución con una moda muy definida o leptocúrtica. 
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Fig. 3.11. – Tipos de curtosis 

Los datos obtenidos a partir de la medición del tamaño de partículas en las micrografías (Anexo B 1) para los 

materiales obtenidos a diferentes velocidades de calentamiento son los que aparecen en la Tabla3.19: 

Muestra diámetro medio (nm) moda AsIQ IK 

PN-H3 18.6 ± 3.4 19.3 1.9 13.6 

PN-H5 23.0 ± 4.4 19.1 1.6 5.8 

PN-H10 3.9 ± 1.2 5.2 4.5 31.2 

PN-H42 3.5 ± 0.6 3.2 17.7 507.3 
Tabla 3.19.- Valores estadísticas de tamaño de partícula en plantillas biomórficas 

 

Se observa que todas las distribuciones son asimétricas positivas y leptocúrticas, sin embargo, a medida que la 

velocidad de calentamiento es mayor, la asimetría aumenta y las partículas son más uniformes tendiendo al 

valor medio (más leptocúrticas). Por otro lado, las partículas formadas son más pequeñas contra más rápido se 

alcanza la temperatura de descomposición (Fig. 3.12). 
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Fig. 3.12.- Distribución de tamaño de partícula metálicas en plantillas biomórficas 

Se puede concluir que con velocidades lentas de calentamiento, las partículas que se originan son de mayor 

tamaño que las que se forman con velocidades de calentamiento más rápidas.  

Se debe tener en cuenta que el estudio se realiza en la termobalanza con una cantidad pequeña de muestra, 

mientras que la síntesis del catalizador se lleva a cabo en un reactor vertical para la obtención de una cantidad 

de catalizador suficiente para varias reacciones. 
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El cambio de escala puede implicar cambios en el comportamiento de la descomposición debido a la 

homogeneidad del flujo de gas a través del lecho, de la uniformidad de la temperatura en toda la muestra, etc. 

Se compara la muestra obtenida en la termobalanza (PN-H42) con la muestra producida en el reactor de flujo 

(Ni/CB), los tamaños para las partículas de níquel son iguales en ambos casos, pero la desviación estándar es 

ligeramente mayor en el caso de la muestra que procede del reactor de flujo (Tabla3.20).  

 

Muestra Equipo Peso inicial (mg) diámetro medio (nm) moda AsIQ IK 

PN-H42 Termobalanza 50 3.5 ± 0.6 3.2 17.7 507.3 

Ni/CB Reactor de flujo ̴1200 3.6 ± 0.8 4.0 4.0 67.9 
Tabla 3.20.- Valores estadísticas de tamaño de partícula con diferentes escalas 

 

Los histogramas de las dos muestras son bimodales (Fig. 3.13). La moda principal engloba el 99.93 % de las 

partículas e incluye los diámetros menores de 11.4 nm, y la moda secundaria, con sólo el 0.07 % de las 

partículas, refleja la diferencia en los valores de asimetría, curtosis y varianza. Para la muestra PN-H42, la 

segunda moda se encuentra en el intervalo de tamaños de partícula entre 34.2 y 45.6 nm, mientras que para la 

muestra Ni/CB el intervalo es 22.8 – 34.2 nm. 
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Fig. 3.13.- Distribución de tamaño de partícula de níquel en termobalanza y en reactor de flujo 

 

Se puede decir que la velocidad de calentamiento elevada favorece tamaños de partículas de metal pequeños 

y homogéneos (distribuciones simétricas, leptocúrticas y con diámetros menores a 11.4 nm). El cambio de 

escala para la obtención de una cantidad mayor de producto (catalizador), no refleja cambios apreciables en 

los tamaños de partícula (el 99.9 % de las partículas mantienen el mismo tamaño, diámetros menores a 11.4 

nm). 
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3.3 Test Catalítico 

El objetivo último del trabajo es el refinado del bio-oil en un solo paso, lo que implica eliminar las etapas de 

separación y llevar a cabo las reacciones de mejora en un solo reactor. El proceso elegido para la valoración del 

método que proponemos es la HDO, ya que es de los más importantes en la bio-refineria.  

Los aldehídos son uno de los compuestos mayoritarios presentes en la fracción líquida de la pirólisis de biomasa. 

Algunos de ellos son más solubles en agua, como el glutaraldehído (GTA) que es insoluble en aceite, mientras 

que otros son más solubles en la fase orgánica, como el benzaldehído, y algunos son parcialmente solubles en 

ambas fases como la Vanillina (VA). 

La HDO de la vanillina (Fig 1.1 del apartado 1.5 del capítulo 1) da lugar a alcohol vanillinico (VOH) que es soluble 

en agua y p-cresol (MMF = 2-Methoxy-4-methylphenol) parcialmente soluble en ambas fases. En condiciones 

de reacción más severas se puede obtener guaiacol (DMF). 

Con el fin de determinar los catalizadores activos para la HDO, se prueban los diferentes catalizadores 

sintetizados para la reacción de hidrogenación de la Vanillina. 

 

3.3.1 Datos experimentales 

Como catalizador de referencia se emplean nanohíbridos tipo Pd/NTC/SiO2 ya que es el catalizador empleado 

en bibliografía (Ruiz et al., 2011), con 1% en peso de paladio sobre nanotubos tipo “singlewall” crecidos sobre 

un soporte de sílice. 

Se ensayan los catalizadores con metales más viables económicamente que el paladio y que son activos en 

hidrogenaciones. 

Los catalizadores en consideración son: 

 Ni, NiCu y Co: preparados sobre un soporte de sílica hidrofóbica impregnados mediante la técnica 

de humedad incipiente. 

 Ni, NiCu, Pd, PdCu y Cu: preparados mediante su impregnación en platillas biomorficas (papel de 

filtro).  

 

Se realizan varios ensayos para cada experiencia con el objetivo de asegurar reproducibilidad. Dichos ensayos 

serán la reacción de HDO de VA durante 30 min con velocidad de agitación 600 rpm llevada a cabo en el reactor 

comercial  Parr 4590. La lista de catalizadores sintetizados se muestra en la Tabla3.21 (empleando la misma 

nomenclatura que en su síntesis). 

 

  



Catalizadores Biomorficos y Test Catalítico  

 

71 

 

 

Catalizador Metal Carga (%wt) Soporte 

A0 - - 

Aerosil-R972 
Co/A Co 5 

CoCu/A Co / Cu 5 / 5 

NiCu/A Ni / Cu 5 / 5 

Co/NH Co 5 
Nanohibrido SWNT/SiO2 

Pd/NH Pd 1 

NiCu-1/CB Ni / Cu 5 / 5 

Material Carbonoso Biomórfico 

NiCu-2.5/CB Ni / Cu 5 / 2 

NiCu-10/CB Ni / Cu 5 / 0.5 

NiCu-12.5/CB Ni / Cu 5 / 0.4 

Ni/CB Ni 5 

PdCu-2.5/CB Pd / Cu 1 / 0.4 

PdCu-10/CB Pd / Cu 1 / 0.1 

Pd/CB Pd 1 

Cu/CB Cu 5 

Tabla 3.21.- Catalizadores utilizados durante la investigación 

 

En la Tabla 3.22 se detallan las condiciones de operación empleadas en cada uno de las experiencias realizadas. 

Serie Catalizador 
Cantidad catalizador 

(mg) 
Concentración 

VA 
Estabilización Activación 

1 

A 60 

0.01M 24 h 

- 

Co/NH 60 

3 h Pd/NH 60 

Pd/NH + A 60 (Pd/NH) + 30 (A) 

2 

Co/A 60 

0.01M 24 h 3 h 
CoCu/A 60 

CoCu/A + A 60 (CoCu/A) + 30 (A) 

NiCu/A 60 

3 

Ni/CB 60 0.03M 24 h 

5 h 

3 h 

- 

Ni/CB 60 0.03M 30 min 

5 h 

3 h 

- 

4 

NiCu/A 

60 0.03 M 30 min 

3 h 

Cu/CB 

- 

Ni/CB 

NiCu-12.5/CB 

NiCu-10/CB 

NiCu-2.5/CB 

NiCu-1/CB 

Pd/CB 

PdCu-10/CB 

PdCu-2.5/CB 

Tabla 3.82.- Resumen de experimentos del test catalítico 

Las condiciones usadas en las series 3 y 4 se establecieron tras los resultados de experimentos anteriores y se 

ha aumentado la concentración del reactivo para una mejor valoración de la reacción al alejarse del umbral 

inferior del detector de cromatografía (la concentración de las primeras series se fija por el valor de la 
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bibliografía para esta reacción). Para todas las series hay que considerar una velocidad de calentamiento de 10 

ºC/min hasta 100 ºC, temperatura a la que se realiza la activación, en caso de haberla. 

 

Los resultados de las tandas de experimentos 1 y 2 en términos de rendimientos, conversión y selectividad se 

encuentran en las Fig 3.14. 

 

 

Fig. 3.14.- Comparación de resultados de conversiones, rendimientos y selectividades para la HDO de VA (0.01 M) a 100 ºC y 15 bar H2, 
600 rpm y 30 min de reacción 

La silice hidrofóbica no posee actividad catalítica, sin embargo, su presencia durante la reacción cambia los 

rendimientos y conversiones. La adicción de Aerosil R972 aumenta la fracción de emulsión formada y por tanto 

el área interfacial, pero al mismo tiempo, eleva la cantidad de solido dispuesto en la interfase generando una 

resistencia física a la transferencia de solutos a través de la interfase, por lo que el efecto sobre la reacción se 

debe al balance entre ambos efectos. 

El catalizador Co/NH no es activo, sin embargo el Co/A tiene actividad aunque con baja conversión. La diferencia 

entre ambos catalizadores se debe a la reducción previa del catalizador tipo Me/A, ya que la reducción del 

cobalto requiere de altas temperaturas y la reducción “in situ” en el reactor no es suficiente para la activación 

del catalizador. 

 

La adicción de Aerosil R-972 al catalizador se emplea para mejorar la emulsion, sin embargo, la mezcla del 

catalizador CoCu/A con Aerosil R-972 fresco empeora la actividad del catalizador CoCu/A, lo que implica una 

alta resistencia a la transferencia de masa y poco incremento del área interfacial. 

 

El catalizador bimetálico de NiCu/A tiene una actividad similar al catalizador de referencia (Pd/NH). Esto supone 

una mejora económica en la síntesis del catalizador y los elementos activos empleados, sin embargo, el 

rendimiento a VOH disminuye ligeramente. Considerando los resultados obtenidos, el catalizador de NiCu 

soportado en Aerosil R-972 es la elección mejor para la reacción en estudio 

0

20

40

60

80

100

120

%

Conversión Select VOH Select MMF

0

10

20

30

40

50

60

%

Conversión rend VOH rend MMF



Catalizadores Biomorficos y Test Catalítico  

 

73 

 

Los catalizadores de plantilla biomorfica se sintetizan en atmosfera reductora y el metal está distribuido en 

forma de nanopartículas muy dispersas. Las nanopartículas se reducen mejor que las partículas de metal 

mayores, por lo que se considera una reducción más corta en el reactor para la activación del catalizador. 

La serie de experimentos 3 se efectúa   para la optimización de la reducción del catalizador y tiempo de 

estabilización de la emulsión. Las reacciones se realizan con 60 mg de catalizador Ni/CB, a 600 rpm durante 30 

min y con una alimentación de 10 mL de VA (0.03M). El resultado de estos ensayos figura en la Tabl3.23, donde 

se aprecia que la reducción de no supone una mejora notable en la reacción. 

 

Estabilización Reducción/activación 
Rend. a VOH 
(%) ± 2% 

Rend. a MMF 
(%) ± 0.5% 

Conv. de VA 
(%)± 2% 

24 h 

10 ºC/min hasta 100 ºC 
5 h a 100 ºC 

21 3 24 

10 ºC/min hasta 100 ºC 
3 h a 100 ºC 

15 2 17 

- 21 7 28 

30 min 

10 ºC/min hasta 100 ºC 
5 h a 100 ºC 

23 2 25 

10 ºC/min hasta 100 ºC 
3 h a 100 ºC 

14 2.5 17 

- 21 8 30 

Tabla 3.23.- Optimización del tiempo de estabilización de la emulsión y reducción del catalizador 

El porcentaje de error por reproducibilidad (2% en rendimiento de VOH, 0.5% en rendimiento de MMF y 2% 

sobre la conversión) se debe a los 5 analisis del cromatografo por cada muestra y las 3 repeticiones de cada 

experimento. 

La estabilidad de la emulsión varía entre 30 min y 1 día en función del surfactante, las fases y la energía. Puesto 

que la agitación en el reactor supone una alteración en la emulsión, se comprueba que con 30 min de 

estabilización es tiempo suficiente para el objetivo (la reacción). 

Una vez optimizada la estabilidad de la emulsión y la activación del catalizador, de forma que se reducen los 

tiempos respecto a las series 1 y 2, se realiza el test catalítico (serie 4) de los catalizadores biomórficos y un 

catalizador de referencia (NiCu/A) con la misma concentración inicial de reactivo. 

Los rendimientos de los catalizadores biomorficos se muestran en la Fig 3.15, donde se aprecia que el aumento 

de contenido en cobre disminuye la conversión que se alcanza con ese catalizador: 
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Fig. 3.15.- Conversión y rendimientos para HDO del VA con catalizadores biomorficos 
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Fig.  3.16.- Conversión y selectividad para HDO del VA con catalizadores biomorficos 

 

3.3.2 Discusión de resultados 

De acuerdo con los resultados obtenidos, el catalizador NiCu/A posee más actividad que el NiCu-1/CB (con igual 

carga metálica). Sin embargo, la selectividad a VOH del catalizador biomorfico es mayor. El cobre no tiene 

actividad catalítica, por lo que su efecto es sólo como dopante del elemento activo. 

El paladio y el níquel son más selectivos a VOH, como se aprecia en la Fig3.16, sin embargo, los catalizadores 

bimetálicos (con presencia de cobre) presentan mayor selectividad que los monometálicos. Se aprecia una 

disminución de la conversión y un aumento de la selectividad a VOH al aumentar la cantidad de cobre en los 

catalizadores bimetálicos. 

El paladio y el níquel son selectivos a VOH, como se aprecia en los catalizadores biomorficos. El rendimiento en 

ambos casos a alcohol vanillinico es similar, pero la selectividad hacia el mismo es mayor con paladio. 
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Según los resultados obtenidos durante el test catalítico se concluye: 

 El cobre no es activo y los catalizadores bimetálicos con cobre son menos activos y menos selectivos a 

VOH que el catalizador mono-metálico sin cobre. 

 

 La actividad catalítica más elevada a 100 ºC la dan los catalizadores de Ni/CB y PdCu-2.5/CB que es 

similar a la actividad del NiCu/A, aunque la selectividad a alcohol vanillinico es menor. Considerando la 

mejora operativa que supone la eliminación de dos etapas en el proceso (reducción previa y reducción 

en el reactor a presión), se plantea la alternativa de optimización de la reacción con catalizadores de 

plantilla biomorfica. 

 

3.4 Caracterización 

Se analiza el material carbonoso de los catalizadores biomórficos con los diferentes metales empleados como 

elemento activo y el tamaño de partículas metalizas y su distribución. 

 

3.4.1 Material carbonoso 

Como se ha mencionado en el apartado 3.2.1, los espectros Raman de la mayoría de las formas del carbono 

incluyen dos bandas principales asociadas con los defectos estructurales y el orden grafítico. 

Los espectros Raman de estos catalizadores se presentan en la Fig.  3.17, donde se puede ver que son muy 

similares, y por ello las relaciones de las bandas son del mismo orden. 
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 Cu/CB
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Fig.  3.17.- Espectro Raman de catalizadores biomorficos de níquel y cobre 

 

En la Tabla3.24 se presentan las relaciones de las intensidades de las bandas asociadas a la estructura del 

material carbonoso: 
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 ID/IG  ID/(ID+IG) 

Cu/CB 0.902 ± 0.01 0.474 ± 0.003 

Ni/CB 0.976 ± 0.02 0.494 ±0.004 

NiCu-12.5/CB 0.862 ± 0.01 0.463 ± 0.003 

NiCu-10/CB 0.916 ± 0.004 0.478 ± 0.001 

NiCu-1/CB 0.917 ± 0.02 0.478 ± 0.001 

Tabla 3.24.- Relación de bandas D y G para catalizadores biomórficos de níquel y cobre 

La relación de intensidades de las bandas características muestran menos defectos estructurales en los 

catalizadores biomórficos de cobre (ID/IG ≈ 0.902 ) que en los de níquel (ID/IG ≈ 0.976). 

En catalizadores de níquel dopados con una cantidad de cobre menor de 10 % en peso, respecto al peso total 

de metales en el catalizador, el ordenamiento grafitico aumenta disminuyendo los defectos estructurales. 

Aumentando la cantidad de cobre, se incrementan los defectos respecto al bimetálico con menos de un 10% 

de cobre, aunque los catalizadores bimetálicos siguen siendo más ordenados estructuralmente que el 

catalizador de cobre (Tabla3.24). 

El catalizador de paladio tiene una estructura más/menos ordenada, y la presencia de cobre junto con el paladio 

aumenta los defectos estructurales (Tabla 3.25): 

 ID/IG  ID/(ID+IG) 

PdCu-10/CB 0.916 ± 0.03 0.478 ± 0.001 

PdCu-2.5/CB 0.926 ± 0.03 0.481 ± 0.001 

Tabla 3.25.- Relación de bandas D y G para biomórficos de paladio y cobre 

Los espectros Raman de los catalizadores biomorficos basados en paladio se representan en la Fig.  3.18: 
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Fig.  3.18.- Espectro Raman de catalizadores biomorficos de paladio y cobre 

La presencia de un metal aumenta los defectos del material carbonoso procedente de la plantilla biomórfica. 

En los catalizadores bimetálicos, al aumentar la cantidad de cobre, se aprecian más defectos en la materia 

carbonosa. 
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3.4.2 Tamaño de partículas metálicas 

El análisis de micrografías TEM de cada uno de los catalizadores biomorficos (Anexo B 2), permite la obtención 

de la distribución del tamaño de las partículas metálicas presentes que se caracterizan por el diámetro medio, 

la moda y los coeficientes de forma (Tabla3.26): 

 

 

Muestra diámetro medio (nm) moda AsIQ IK 

Cu/CB 10.2 ± 2.3  8.8 0.5 -1.0 

Ni/CB 3.6 ± 0.8 4.0 4.0 67.9 

Pd/CB 8.7 ± 3.6 6.3 0.5 0.7 

NiCu-12.5/CB 5.5 ± 3.0 5.7 -0.01 77.6 

NiCu-2.5/CB 4.2 ± 0.5 3.7 -0.3 -0.3 

PdCu-10/CB 2.9 ± 0.9 2.9 0.5 0.2 

PdCu-2.5/CB 3.1 ± 1.6 4.0 0.2 4.9 
Tabla 3.26.- Valores estadísticas de tamaño de partícula en catalizadores biomórficos 

Las partículas metálicas de cobre en el catalizador son más grandes que las partículas de paladio, y las de níquel 

son las de menor tamaño. 

En los catalizadores bimetálicos de níquel y cobre, al aumentar la cantidad de cobre, se aprecian partículas 

metálicas mayores, sin embargo, en los de paladio y cobre, la adicción de cobre provoca una disminución en el 

diámetro de las nanopartículas, y el aumento de 0.1% a 0.4% en peso de cobre afecta más a la forma de la 

distribución que al tamaño de las partículas (Tabla3.26).
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Se ha optimizado la reacción de hidrogenación (HDO), primordial en el proceso de refinado del bio-oil,  en una 

sola etapa y el tiempo empleado en el proceso, siendo ahora económicamente más viable. Esto se consigue 

gracias a que no es necesario la separación de las fases acuosa y orgánica.   

Con el fin de mejorar la transferencia de productos entre ambas fases aumentando el área interfacial, se ha 

formado una emulsión estabilizada por solidos que son más fácilmente recuperables que los emulsionantes 

tradicionales. La reacción en la emulsión ocurre en la interfase donde se localiza el catalizador, por lo que se 

pretende que el sólido actué de surfactante y catalizador al mismo tiempo. 

Se han estudiado los catalizadores que formen la emulsión deseada y que a su vez sean catalíticamente activos. 

De todos los investigados, los catalizadores biomórficos son los más adecuados ya que mejoran la reacción y 

son más sencillos de sintetizar que los catalizadores nanohíbridos que aparecen en bibliografía. En los primeros 

no es necesaria la etapa de pre-reducción y posterior activación “in-situ” como ocurre en el caso de los 

catalizadores Me/soporte y además son más económicos.  

Los catalizadores biomorficos se forman por degradación térmica de un material celulósico impregnado con 

una sal precursora del elemento activo. Se realiza un estudio a distintas rampas de temperatura y atmósferas 

para determinar las condiciones que conducen al mejor catalizador. Se demuestra que una elevada velocidad 

de calentamiento favorece la formación de un tamaño pequeño de las partículas de metal, con una distribución 

leptocúrtica. De las atmosferas utilizadas, la que contiene una cierta cantidad de hidrógeno es la más adecuada, 

lo que demuestra que la presencia de este gas mejora la reducción del metal activo sin influir en la cinética de 

descomposición de celulosa. 

Estos catalizadores se obtienen por la impregnación de las plantillas con metales económicamente viables 

(niquel y cobre). Con éstos se mejora el rendimiento a MMF (p-cresol), que es el producto de interés desde el 

punto de vista del aprovechamiento como bio-combustible,  y la conversión de VA frente a metales con menos 

viabilidad como el paladio. 

En las condiciones de operación estudiadas se consiguen alcanzar rendimientos notablemente superiores de  

alcohol vainilínico. Este compuesto posee un alto valor añadido como reactivo de síntesis en la industria de la 

química fina y en la síntesis de moléculas biológicamente activas. 

El objetivo final de este trabajo es alcanzar una mejora de la reacción HDO, que se ha conseguido en el estudio 

realizado gracias a que, como se ha reseñado:  

 No se requiere la separación posterior de fases (formadoras de la emulsión), lo que reduce las etapas 

de trabajo. 

 Se consigue un mejor contacto del catalizador con el reactivo (aumento del área interfacial donde se 

sitúa el catalizador por medio de formación de emulsión).  

 Se emplea un sólido que se separa fácilmente al acabar la reacción por medio de filtración y que actúa 

simultáneamente de catalizador y estabilizante de emulsiones. 

 Se utiliza un catalizador económicamente viable y de fácil síntesis (catalizador biomórfico): 

 Se sustituye el Pd (metal caro) por otros más económicos como el Ni y el Cu. 

 No hay que pre-reducir ni activar el catalizador. 
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 La descomposición térmica de papel de filtro impregnado en nitrato del elemento activo en 

presencia de 5 % de hidrógeno es más sencilla y barata que la síntesis de nanohíbridos 

Me/NTC/soporte. 
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Anexo A: Análisis integral de datos. Cinética de 

descomposición 
 

Anexo A 1: Ajuste para celulosa en polvo: Pirolisis 
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Fig. A.1.- Descomposición de celulosa en polvo (N2, 3 ºC/min). Modelo 1 Solución 1 
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Fig. A.2.- Descomposición de celulosa en polvo (N2, 3 ºC/min). Modelo 1 Solución 2 
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Fig. A.3.- Descomposición de celulosa en polvo (N2, 10 ºC/min). Modelo 1 Solución 1 
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Fig. A.4.- Descomposición de celulosa en polvo (N2, 10 ºC/min). Modelo 1 Solución 2 
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Fig. A.5.- Descomposición de celulosa en polvo (N2, 20 ºC/min). Modelo 1 Solución 1 
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Fig. A.6.- Descomposición de celulosa en polvo (N2, 20 ºC/min). Modelo 1 Solución 2 
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Fig. A.7.- Descomposición de celulosa en polvo (N2, 42 ºC/min). Modelo 1 Solución 1 
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Fig. A.8.- Descomposición de celulosa en polvo (N2, 42 ºC/min). Modelo 1 Solución 2 

 

Anexo A 2: Ajuste para celulosa en polvo: Reducción 
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Fig. A.9.- Descomposición de celulosa en polvo (5 %H2/N2, 3 ºC/min). Modelo 1 Solución 1 
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Fig. A.10.- Descomposición de celulosa en polvo (5 %H2/N2, 3 ºC/min). Modelo 1 Solución 2 
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Fig. A.11.- Descomposición de celulosa en polvo (5 %H2/N2, 10 ºC/min). Modelo 1 Solución 1 
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Fig. A.12.- Descomposición de celulosa en polvo (5 %H2/N2, 10 ºC/min). Modelo 1 Solución 2 
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Fig. A.13.- Descomposición de celulosa en polvo (5 %H2/N2, 20 ºC/min). Modelo 1 Solución 1 
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Fig. A.14.- Descomposición de celulosa en polvo (5 %H2/N2, 20 ºC/min). Modelo 1 Solución 2 

 

Anexo A 3: Ajuste para papel de filtro: Pirolisis 
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Fig. A.15.- Descomposición de papel de filtro (N2, 3 ºC/min). Modelo 1 Solución 1 
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Fig. A.16.- Descomposición de papel de filtro (N2, 3 ºC/min). Modelo 1 Solución 2 
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Fig. A.17.- Descomposición de papel de filtro (N2, 10 ºC/min). Modelo 1 Solución 1 
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Fig. A.18.- Descomposición de papel de filtro (N2, 10 ºC/min). Modelo 1 Solución 2 
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Fig. A.19.- Descomposición de papel de filtro (N2, 20 ºC/min). Modelo 1 Solución 1 
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Fig. A.20.- Descomposición de papel de filtro (N2, 20 ºC/min). Modelo 1 Solución 2 

 

Anexo A 4: Ajuste para el papel de filtro: Reducción 

400 500 600 700 800 900 1000

0

10

20

30

40

50

M
a

s
a

 r
e

s
id

u
a

l 
(m

g
)

T
a
 (K)

 experimental

 Calculado

 dehidracion

 depolimerizacion

 

Fig. A.21.- Descomposición papel de filtro (5 %H2/N2, 3 ºC/min). Modelo 1 Solución 1 
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Fig. A.22.- Descomposición papel de filtro (5 %H2/N2, 3 ºC/min). Modelo 1 Solución 2 
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Fig. A.23.- Descomposición papel de filtro (5 %H2/N2, 10 ºC/min). Modelo 1 Solución 1 
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Fig. A.24.- Descomposición papel de filtro (5 %H2/N2, 10 ºC/min). Modelo 1 Solución 2 

 

400 500 600 700 800 900 1000

0

10

20

30

40

50

M
a

s
a

 r
e

s
id

u
a

l 
(m

g
)

T
a
 (K)

 experimental

 Calculado

 dehidracion

 depolimerizacion

 

Fig. A.25.- Descomposición papel de filtro (5 %H2/N2, 20 ºC/min). Modelo 1 Solución 1 
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Fig. A.26.- Descomposición papel de filtro (5 %H2/N2, 20 ºC/min). Modelo 1 Solución 2 

 

 

Anexo B: Micrografías TEM para catalizadores biomórficos 
 

Anexo B 1: Plantilla biomórfica de níquel según condiciones de síntesis 
 

 

 

Fig. B.1.- Micrografía TEM de PN-H3 
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Fig. B.2.- Micrografía TEM de PN-H5 

 

 

Fig. B.3.- Micrografía TEM de PN-H10 
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Fig. B.3. - Micrografía TEM de PN-H42 

Anexo B 2: Catalizadores biomórficos del test catalítico 

 

Fig.  B.4.- Micrografía TEM de Cu/CB 
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Fig.  B.5.- Micrografía TEM de Ni/CB 

 

 

Fig. B.6.- Micrografía TEM de Pd/CB 
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Fig.  B.7.- Micrografía TEM de NiCu-12.5/CB 

 

 

Fig.  B.8.- Micrografía TEM de NiCu-2.5/CB 
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Fig.  B.9.- Micrografía TEM de PdCu-10/CB 

 

 

Fig.  B.10.- Micrografía TEM de PdCu-2.5/CB 
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Anexo C: Propiedades de sustancias químicas 
 

Anexo C 1: Aerosil R972 
 

El Aerosil R 972 es una silice pirogénica (“fumed”) hidrofóbica que se obtiene como resultado del 

tratamiento de silice pirogénica hidrofílica con dimetildiclorosilano. Las propiedades se resumen la 

siguiente tabla (Tabla C.1): 

Propiedades y métodos Unidades Valor 

Estado físico  sólido 

Color  blanco 

Área superficial específica (BET) m2/g 110 ± 20 

Contenido en carbón %wt. 0.6 – 1.2 

Tamaño de partícula primaria medio nm 16 

Densidad compactada 
(valor aprox.) según DIN EN ISO 787/11, agosto 1983 

g/L aprox. 50 

Humedad 
2 horas a 105ºC 

%wt. ≤ 0.5 

Pérdida por ignición 
2 horas a 1000ºC, basado en el material seco (2 horas a 105ºC) 

%wt. ≤ 2 

Ph 
en dispersión del 4% 

 3.6 – 4.4 

Contenido SiO2 
basado en el material de ignición 

%wt. ≥ 99.8 

Tabla C.1.- Propiedades del Aerosil R972 

La modificación estructural que le confiere a la silice la hidrofobicidad se muestra en la Fig. C.1 y las 

aplicaciones comerciales son diversas, entre las que se encuentran: gomas y sellantes de silicona, 

pinturas, revestimientos, tintas de impresora y toner, adhesivos y fitosanitarios. 

 

Fig.  C.1.- Superficie de Aerosil hidrofóbico 
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Anexo C 2: Decalina 
 

La decalina o decahidronaftaleno es un hidrocarburo bicíclico de fórmula molecular C10H18 y número 

CAS 91-17-8. Es utilizada como solvente orgánico. Puede encontrarse como dos formas 

estereoisoméricas. 

 

Fig.  C.2.- Estructura de la trans-decalina y cis-decalina 

En la trans-decalina (Fig. C.2) los anillos se encuentran unidos mediante los carbonos 1 y 6 en 

posición trans (por enlaces equatoriales). Presenta una estructura rígida y mayor estabilidad que la 

cis-decalina (un enlace equatorial y uno axial). La estructura cis es más flexible, presentando un 

equilibrio conformacional, pudiendo interconvertirse en su enantiómero (Fig. C.2). La decalina 

empleada a lo largo de este trabajo es una mezcla de ambos esteroisomeros, siendo sus 

propiedades: 

Propiedades y métodos Unidades Valor 

Estado físico  liquido higroscópico 

Color  Incoloro 

Peso molecular g/mol 138.25 

Punto de ebullición ºC 189-191 

Punto de fusión ºC - 125 

Punto de inflamación - copa cerrada ºC 57.2 

Densidad relativa (25ºC) g/cc 0.896 

Coeficiente de reparto n-octanol/agua 
log Pow 

 4.79 

Densidad de vapor (aire =1)  4.77 

Presión de vapor hPa 
988 (188 °C) 

56 (92 °C) 

Umbral de olor ppm 100 

Solubilidad en agua  inmiscible 

Tabla C.2.- Propiedades de la decalina 

 

Anexo C 3: Celulosa 
 

La celulosa empleada para el estudio termogravimétrico de descomposición térmica se identifica con 

el número CAS 9004-34-6 (de Sigma Aldrichm, cellulose fibers medium). La estructura se describe en 

la      Fig.  1.9 y sus propiedades son las que siguen: 

 

 

tran cis 
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Propiedades y métodos Unidades Valor 

Estado físico  polvo (sólido) 

Color  blanco 

Contenido en humedad % ≤ 10 

Peso molecular g/mol 100.12 

Densidad relativa g/cc 0.600 

Tamaño de partícula  medio (rango de 50 µm) 

Tabla C.3.- Propiedades de la celulosa 

 

Anexo C 4: Papel de filtro 
 

El papel de filtro utilizado para los catalizadores biomórficos es el Prat Dumas 210, cuya equivalencia 

es Whatman 5. Se trata de un papel de filtro analítico cualitativo bajo en cenizas de velocidad de 

filtración lenta.  

Las propiedades son: 

Propiedades Unidades Valor 

Gramaje g/m2 100 

Poro µm 2-3 

Espesor µm 200 

Cenizas % 0.06 

Resistencia a la humedad kg/cm 0.50 

Tabla C.4.- Propiedades de la celulosa 

 

Anexo C 5: Sales precursoras 
 

Los nitratos empleados como sales precursoras en la síntesis de los catalizadores son los mostrados, 

junto con sus propiedades en la tabla siguiente:  

Propiedades Unidades 
Valor 

Ni(NO3)2·6H2O Cu(NO3)2·3H2O Co(NO3)2·6H2O Pd(NO3)2·xH2O 

CAS  13478-00-7 10031-43-3 10141-05-6 10102-05-3 

Pureza % 98 99.5 98 41.3 

Estado físico  polvo polvo polvo Polvo 

Color  verde azul rojo cobrizo Marrón 

Peso molecular g/mol 290.81 241.60 291.03 230.72 

Punto de fusión ºC 56.7 114 57 83 

Densidad 
relativa (20ºC) 

g/cc 2.05 2.32 1.87 1.11 

Solubilidad en 
agua (20ºC) 

g/L 2.380 2.670 1.09 - 

Temperatura 
descomposición 

ºC desde 145 desde 170 desde 100 desde 100 

Tabla C.5.- Propiedades de VA, VOH y MMF 
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Anexo C 6: Vainillina, Vanillol, p-Cresol 
 

Una de las reacciones de HDO estudiadas es la de la vanillina, vanilina, vainillina o 4-hidroxi-3-metoxi-

benzaldehido (VA, número CAS 121-33-5). Los productos procedentes de la reacción son el vanillol 

(VOH, alcohol vanillinico, CAS 498-00-0) y el para-creosol (MMF, 2-Metoxi-4-metilfenol, CAS 93-51-6). 

Las características de estos compuestos son las que siguen: 

Propiedades y métodos Unidades 
Valor 

VA VOH MMF 

Estado físico  polvo polvo Líquido 

Color  blanco-amarillo blanco amarillo claro 

Olor  vainilla dulce, fenol Fenol 

Peso molecular g/mol 152.15 154.16 138.16 

Punto de ebullición ºC 170 313.1 221 

Punto de fusión ºC 81-83 110-117 5 

Densidad relativa (20ºC) g/cc 1.056 1.226 1.092 

Coeficiente de reparto 
n-octanol/agua (log Pow) 

 1.23 0.195 1.925 

Densidad de vapor (aire =1)  5.2 - 4.76 

Presión de vapor (a 25°C) hPa 0,0022 0.00015 0.1044 

Solubilidad en agua (25ºC) g/L 10 63 4.7 

Tabla C.6.- Propiedades de VA, VOH y MMF 

 


