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Abreviaturas: 

AOV:   Aceite de olive virgen 

ATGL:  Lipasa de triacilglicéridos adipocitaria  

cDNA:  Ácido desoxirribonucleico complementario 

CGI-58: Comparative gene identification-58 

CIDE:   Cell inducing DFF45-like effector 

CIDEC:  Cell inducing DFF45-like effector C 

CIDE-3:  CIDEC 

CM:  Camada 

CREB:  Elementos de unión en respuesta a cAMP 

C/EBPß:  Proteína de unión a la zona potenciadora CAAT 

DEPC:  Dietil pirocarbonato 

DNA:  Ácido desoxirribonucleico 

EDTA:  Ácido etilendiaminotetraacético 

FFA:  Ácidos grasos libres 

FSP27:  Fat specific protein 27 kDa, CIDEC. 

HFD:  Dieta alta en grasas 

HPRT:  Hipoxantina guanina fosforribosil transferansa 

HSL:  Lipasa sensible a hormonas 

LD:  Gota lipídica 

LDCS:  Sitios de contacto entre gotas lipídicas 

LDL:   Lipoproteina de baja densidad 

LFD:  Dieta baja en grasas 

MN:   Mann-Whitney 

MUFA: Ácido graso monoinsaturado 

mRNA:  Ácido ribonucleico mensajero 

PLIN:   Perilipina 1 

PPIA:   Ciclofilina A 

PUFA:  Ácido graso poliinsaturado 

PT:  Propionato de testosterona 

TBE:   Tris Borato EDTA 

TE:   Tris-EDTA 

TG:   Triglicérido 
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TRIS:   Tris(hidroximetil)aminometano 

RNA:   Ácido Ribonucleico 

KO:   Knot-out 

qPCR:   PCR cuantitativa 

WT:   wild-type, fenotipo salvaje
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I. Resumen: 

 

El hígado graso no alcohólico está alcanzando prevalencias del 30% en ciertas 

poblaciones occidentales. Esta alta incidencia acarrea muchas consecuencias, ya que 

supone una interrupción del metabolismo hepático conllevando al desarrollo de un 

amplio abanico de enfermedades metabólicas. 

 La familia de proteínas CIDE está íntimamente relacionada con el desarrollo de 

estas enfermedades ya que desempeñan un papel crítico en apoptosis y metabolismo 

lipídico. La familia de proteínas CIDE ha sido sugerida como una nueva diana 

terapéutica por estar asociadas a muchas enfermedades humanas como cáncer, 

envejecimiento, diabetes, y obesidad. Por ejemplo FSP27/CIDEC aumenta en varias 

formas de hígado esteatósico. Por todo lo anterior se postula que estas proteínas pueden 

constituir un nexo de unión entre el metabolismo energético y la apoptosis.  

Este trabajo incluye el empleo de varios modelos animales, la rata (Rattus 

norvegicus) por ser un modelo clásico de experimentación animal y el cerdo (Sus 

scrofa), por tener unas características anatómicas y funcionales muy semejantes a las 

humanas. Esto permite establecer mecanismos universales involucrados en la patogenia 

de la esteatosis y del transporte al hígado de nutrientes. Consecuentemente resulta 

pertinente validar los hallazgos descritos en roedores en la especie porcina para poder 

asumir que también confluyen en la especie humana. 

A través de este trabajo se puede vislumbrar la relación manifiesta entre 

esteatosis hepática y el aumento de la expresión hepática de FSP27/CIDEC en cerdos, la 

diferente influencia de las distintas grasas (monoinstaduras, poliinsaturadas o saturadas) 

en la expresión hepática de CIDEC o como la presencia de colesterol parece ser 

determintante en la expresión hepática de CIDEC. Además este estudio también recoge 

la influencia de otros factores como testosterona, inflamación local o resveratrol entre 

otros en la expresión hepática de CIDEC. 



Herrera Marcos, Luis Vte.    Introducción 

Máster biología celular y molecular.  2013‐2014  Página 7 
 

II. Introducción: 

 

El hígado graso no alcohólico está alcanzando prevalencias del 30% en ciertas 

poblaciones occidentales [1]. Esta alta incidencia acarrea muchas consecuencias, ya que 

supone una alteración del metabolismo hepático conllevando al desarrollo de un amplio 

abanico de enfermedades metabólicas (diabetes, obesidad, esteatosis hepática y 

enfermedades cardiovasculares). 

La familia de proteínas CIDE está íntimamente relacionada con el desarrollo de 

éstas y han sido sugeridas como una nueva diana terapéutica para desórdenes 

metabólicos [2]. Dado que las proteínas de la familia CIDE (incluyendo CIDEC/FSP27) 

tienen un papel crítico en apoptosis y metabolismo lipídico, están asociadas  a muchas 

enfermedades humanas como cáncer, envejecimiento, diabetes y obesidad [3]. Por 

ejemplo CIDEC/FSP27 y CIDEA aumentan su expresión en varias formas de hígado 

esteatósico [4]. Las funciones de las proteínas CIDE pueden proponernos un nexo entre 

el metabolismo energético y la apoptosis.  

El empleo de varios modelos animales para caracterizar molecularmente la 

esteatosis hepática resulta muy interesante por permitir también su abordaje terapéutico. 

Sin embargo, ningún modelo animal reproduce exactamente el proceso humano. La 

utilización de varios modelos animales, con diferentes peculiaridades del metabolismo 

lipoproteico cuya respuesta esperada será diferente, permitirá desentrañar los 

mecanismos involucrados en la patogenia de la esteatosis y del transporte al hígado de 

nutrientes, así como en la patogenia y protección de la aterosclerosis.  

Por ello, en este trabajo se estudiaron dos especies distintas, la rata (Rattus 

norvegicus) por ser un modelo clásico de experimentación animal y el cerdo (Sus 

scrofa). La elección de esta segunda especie es debido a que sus características 

anatómicas y funcionales son muy semejantes a las humanas. Consecuentemente resulta 

pertinente validar los hallazgos descritos en roedores en la especie porcina y así 

establecer mecanismos universales de esteatosis hepática que confluyan también en la 

especie humana. 
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III. Antecedentes: 

La familia CIDEs (cell inducing DFF45-like effectors) es una familia de 

proteínas proapoptóticas que apareció tras el descubrimiento de los factores 40 y 45 de 

fragmentación del DNA (DFF40/45), un complejo heterodímero, ejecutor y regulador 

de la fragmentación del DNA, paso clave para la apoptosis celular [3, 5]. Se observó 

que estas dos proteínas contenían un dominio común llamado CIDE, que daba lugar a 

una interacción proteica de un residuo de unos 90 aa. A raíz de ello se identificaron  

proteínas que contenían CIDE en base a su secuencia homologa. Hasta la fecha 5 

proteínas que contienen CIDE han sido identificadas en mamíferos (DFF40, DFF45, 

CIDEA, CIDEB Y CIDEC/FSP27) también se han descrito variantes tras el splicing 

para Cidec, (Cide-3α) y para DFF45 (DFF35) [3]. 

Los primeros estudios bioquímicos defendían que todas las proteínas que 

contuviesen CIDE estarían involucradas en la apoptosis. Sin embargo, varios estudios 

posteriores demostraron que Cidea, Cideb y Cidec/Fsp27 están involucradas en el 

metabolismo lipídico [3, 4, 6]. 

Las tres proteínas CIDE 

poseen un dominio CIDE-N en el 

extremo N terminal 

evolutivamente conservado (este 

dominio también está presente en 

la nucleasa proapoptótica DFF40 

y en su compañera inhibidora la 

proteína DFF45) y un domino 

CIDE-C que es único de la 

familia CIDE (Fig. 1) [3,7]. El 

dominio CIDE-N de CIDEA, 

CIDEB y FSp27/CIDEC posee una homología de 39, 29, y 38% respectivamente con 

DFF45. El dominio CIDE-C de CIDEA y de CIDEB posee una homología con 

FSP27/CIDEC del 54 y 53% respectivamente [8]. Esta alta homología no impide a 

CIDEC tener interacciones proteicas específicas ausentes en otros miembros de su 

familia. 

 

Fig. 1 Estructura esquemática de la familia CIDE en 
humana [5, 7]. 
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FSP27 (Fat specific protein 27), al que a partir de ahora me referiré como 

CIDEC, es un miembro importante de la familia CIDE, más que por su función como 

proteína proapoptótica, por su implicación en el metabolismo lipídico y en la regulación 

del peso corporal. Por ello, está considerado como un  gen candidato para el estudio de 

la obesidad humana y en la diabetes tipo 2 [9]. 

El gen CIDEC  humano contiene una región codificante de 717 pares de bases 

que codifican 238 aminoácidos. Éste muestra alta similitud con los modelos de rata y de 

cerdo. CIDEC, en cerdo, se localiza en el cromosoma 13q31, mientras que en rata se 

localiza en el cromosoma 4q42. Con respecto a su distribución en los tejidos se ha 

demostrado que se expresa en diversos tejidos, fundamentalmente  en tejido graso 

blanco y marrón. Pero también se encuentra en altas concentraciones en intestino, tejido 

linfático y cerebro. Además, los niveles de  m-RNA en tejido adiposo e hígado son 

significativamente más altos en cerdos obesos que en sus congéneres [9,10]. 

CIDEC (cell-inducing DFFA-like effector C)) también conocido como FSP27 o 

CIDE-3, está presente en gran cantidad en la superficie de las gotas lipídicas (LD) y está 

demostrado que la sobreexpresión de Cidec induce la acumulación de gotas lipídicas y 

su fusión. Además, promueve la acumulación de triglicéridos no sólo en adipocitos sino 

también en algunas células no lipídicas (musculo, hígado, fagocitos,…) [3, 8, 10-13]. 

En el estudio  de las funciones de CIDEC, varios grupos han descrito tanto en cultivos 

celulares como en los adipocitos blancos de ratones deficientes en CIDEC que se  

presentaban gotas lipídicas más pequeñas, mayor metabolismo oxidativo mitocondrial, 

y lipólisis aumentada [2, 10, 11, 13], además en los ratones KO se observaron niveles de 

glucosa y leptina más bajos, resultando en un aumento de la sensibilidad a la insulina y 

mayor resistencia a una dieta que induce obesidad [4, 11, 14, 15]. 

Mientras que algunos autores comentan que la expresión ectópica de CIDEA o 

CIDEC puede significativamente aumentar el tamaño de la gota lipídica en adipocitos 

[2, 4]. Otros estudios demuestran que la expresión ectópica de CIDEA, CIDEB y 

CIDEC induce potencialmente apoptosis en células de mamífero [5, 7]. En este  último 

caso se relacionaba la sobreexpresión con su localización mitocondrial. Sin embargo, no 

se ha descrito su presencia en mitocondria, solamente en gotas lipídicas o en retículo 

endoplasmático [2, 8]. 
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CIDEC, se encuentra enriquecido en los sitios de contacto de las gotas (LDCS), 

promueve la fusión y crecimiento de LDs mediante la generación de un potencial poro 

de transferencia de lípidos neutros de la LD pequeña a la grande [4, 12]. Varios factores, 

incluyendo el tamaño del poro, la diferencia de presión interna, la tensión de superficie 

de las LDs, la homodimerización del dominio CIDE-N de CIDEC, la formación del 

heterodímero CIDEC-PLIN1 o la interacción con CIDEA pueden influir y  promover la 

formación/expansión del poro y/o aumentar la tasa de transferencia de lípidos [2]. 

Además esta última asociación puede reclutar otras proteínas que deformen la 

monomembrana fosfolipídica en estos puntos de unión [16]. La manera en que se regula 

la transferencia de lípidos y el crecimiento de las gotas lipídicas sigue siendo un 

misterioso proceso distinto de otras fusiones de membrana.  

Conociendo esto, se podría pensar que los adipocitos marrones no expresan 

CIDEC. No obstante, los adipocitos marrones también lo expresan, pero acumulan LDs 

pequeños multiloculares. Esto puede ser explicado mediante la alta expresión de 

proteínas relacionadas con la termogénesis, por un alto número de mitocondrias y una 

oxidación activa de ácidos grasos. Se puede concluir que esta proteína es esencial pero 

no suficiente para la formación de LDs uniloculares [2, 12]. 

Otras funciones que se le atribuyen a CIDEC es la inhibición de la oxidación de 

ácidos grasos cuando se sobreexpresa. No obstante, se conoce poco sobre su papel 

fisiológico en el hígado. Durante el ayuno, el hígado adapta su metabolismo para 

mantener la normoglucemia, así que en el hígado se produce la gluconeogénesis. Ésta, 

necesita poder reductor (NADH) que se obtendrá mediante la oxidación mitocondrial de 

ácidos grasos. De este proceso saldrán cuerpos cetónicos, productos solubles de la 

oxidación incompleta de los ácidos grasos. Hay información que indica que hay dos 

mecanismos de regulación distintos entre el  ayuno a corto plazo y el ayuno a largo 

plazo. Esta teoría considera que los ácidos grasos liberados durante el ayuno a corto 

plazo son acumulados o exportados por CIDEC, y que en periodos largos son 

degradados por la mitocondria a través del sistema carnitina palmitoiltranferasa. 

Consecuentemente CIDEC se expresa más durante el ayuno a corto plazo que durante el 

ayuno prolongado [17].  

Por otro lado, se ha descubierto que los niveles de CIDEB y de CIDEC están 

aumentados en macrófagos en presencia de LDLs oxidadas, sugiriendo un papel 
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potencial de estas dos proteínas en la formación de células espumosas y el desarrollo de 

la aterosclerosis [18]. 

Algunos autores han centrado sus esfuerzos en conocer qué dominios de la 

proteína ejercen las distintas funciones. La conclusión fue que el dominio CIDE-C es 

necesario y suficiente para inducir el crecimiento de LDs. Sin embargo esta función se 

ve altamente perjudicada sin homodimerización [3]. 

Esta segunda función, la homodimerización,  es realizada por el dominio CIDE-

N de CIDEC. Éste tiene un plegamiento típico α/ß formado por dos hélices α y 5 o 4 

láminas ß, de manera similar a otras CIDE [2]. Sin embargo la estructura de alta 

definición de CIDEC indica que el dominio CIDE-N de Cidec tiene el potencial de 

formar un dímero asimétrico esencial para el crecimiento de las LDs mediado por 

Cidec. [2, 3]. En consecuencia, el dominio CIDE-N de CIDEC monomérico puede 

actuar como un dominio autoinhibitorio para bloquear la función del dominio CIDE-C. 

Se postula que esta autoinhibición es mayoritariamente debida a un efecto 

conformacional [3]. 

En un estudio realizado por Vishwajeet y cols sobre la interacción entre la 

perilipina (PLIN1) y CIDEC mediante inmunoprecipitación descubrieron que sólo el 

extremo C-terminal (aa 120–220) coinmunoprecipitaba con PLIN1 sugiriendo que este 

extremo es el responsable de esta interacción [19]. Sin embargo otro estudio publicado 

por Peng Li propone que es el extremo N terminal (a.a. 1–122, a.a. 1–135 y a.a. 38–239) 

el encargado de esta interacción [2]. A pesar de esta discrepancia, ambos están de 

acuerdo que esta interacción logra aumentar significativamente la transferencia de 

lípidos y el crecimiento de las LDs  dependiente de CIDEC. Además también coinciden 

en que se trata de una interacción específica entre PLIN1 y CIDEC. PLIN1 no 

interactúa ni con CIDEA ni con CIDEB a pesar de compartir un alto nivel de 

homología. 

Peng Li propone que.esta interacción surge a través de una estructura de seis 

residuos de lisina en forma de anillo en el dominio CIDE-N de CIDEC que no se 

conserva en el dominio CIDE-N de CIDEA ni en CIDEB y una pequeña sección de 

residuos aminoacídicos ácidos en el dominio central de PLIN1. De este manera, PLIN1 

funciona como una clave reguladora de la lipólisis en adipocitos [2, 12], resultando la 

ausencia de PLIN1 en adipocitos en una reducción marcada de la actividad de 
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Fig 2. Modelo de funcionamiento para las 
LDs [11]. 

intercambio lipídico [2]. Es más, este mismo autor ha demostrado que PLIN1 es capaz 

de restaura la actividad defectiva en mutantes de CIDEC que no pueden dimerizar. El 

mecanismo molecular exacto por el cual PLIN1 estimula la actividad de CIDEC 

permanece desconocido. 

En este modelo propuesto por Peng Li,  la homodimerización del dominio CIDE-

N de CIDEC y la heterodimerización de CIDE-N y PLIN1 están mediadas por regiones 

diferentes del dominio CIDE-N.  

Estos datos muestran que el dominio CIDE-N de CIDEC controla la actividad de 

la proteína homodimerizando y reclutando cofactores como PLIN1. Además revelan un 

nuevo mecanismo para la formulación de LDs uniloculares en adipocitos a través de la 

acción cooperativa de CIDEC y PLIN1.  

Otra de las proteínas con las que 

interactúa directamente Cidec es ATGL 

(triglicérido lipasa adipocitaria). Esto añade 

un nivel adicional de regulación de la 

lipólisis, además de la mediada por la 

regulación de la morfología de las LDs. 

CIDEC a través del dominio a.a. 120-220, 

regula la acción lipolítica de ATGL (enzima 

limitante de la lipolisis en adipocitos) de una 

manera directa e independiente de proteínas o 

los factores específicos de adipocito. De esta 

manera, reduce la lipólisis y favorece la 

acumulación de los ácidos grasos libres 

(FFAs) y TG (Triglicéridos) circulantes 

dentro de los adipocitos, protegiendo frente a 

la resistencia insulínica mediada por FFA 

[11]. 

Vishwajeet y cols proponen un 

modelo de funcionamiento de las LDs en el 

que PLIN1 ancla a CIDEC a la LDs. En la 

membana fosfolipídica CIDEC se une a ATGL y limita el acceso de ATGL a CGI-58. 
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(Figura 2). Después de una estimulación lipolítica, HSL (hormona sensible a lipasa) y 

PLIN1 se fosforilan. CGI-58 se libera de la PLIN1 fosforilada, y se une directamente a 

ATGL activándolo.  De manera que cuando ATGL  no está unido a CIDEC puede ganar 

acceso a CGI-58 tanto bajo condiciones basales como estimulantes [11]. 

El mecanismo exacto de  la acumulación de TG mediada por CIDEC aún  está 

por conocer. Vishwajeet y cols  proponen que CIDEC reduce la lipolisis de los TGs 

almacenados y por ello, aumenta el contenido de TG. Además, proponen que la 

regulación de la lipolisis mediada por CIDEC y la acumulación de TG son 

específicamente dependientes de ATGL. En cualquier caso, es posible que CIDEC 

pueda regular la lipólisis mediante otros mecanismos además de la actividad catalítica 

de ATGL. Por ejemplo, la interacción de FSP27 con ATGL en la superficie de LD 

puede facilitar interacciones con otros factores intrínsecos que pueden, en cambio, 

maximizar la regulación de FSP27 sobre la lipólisis y aumentar la acumulación de TG 

[11]. 

Además de la interacción directa entre ATGL y CIDEC, y de que la fusión de 

LDs mediada por CIDEC  limite el acceso a las lipasas intracelulares al disminuir el 

área de superficie de las LDs, Vishwaajet y cols han descubierto una tercera vía por la 

que CIDEC tiene acción antilipolitica, CIDEC inhibe la expresión de ATGL  mediante 

la estimulación del efecto de su represor transcripcional EGR1. La supresión de ATGL 

mediante EGR1 y CIDEC está estimulada por una dieta alta en grasas [19]. En esta 

misma línea, Wang y cols han descubierto que FSP27 interacciona con y coactúa con la 

proteína ß de unión al dominio regulador CCAAT (C/EBPß). Por ello CIDEC puede ser 

un nuevo regulador de la transcripción en adipocitos [20]. 

Finalmente, cabe añadir como dato interesante el hallazgo de una mujer que 

padecía acantolisis nigricans y lipodistrofia parcial, esto fue achacado a un cambio de 

base G por T en el exón 6 de CIDEC, E188X, que cambia el aminoácido acido 

glutámico por un codón sinsentido. Esto coincide con el fenotipo observado en ratones 

deficientes en CIDEC (menos grasa corporal, formación de adipocitos blancos con gotas 

lipídicas multiloculares y aumento de mitocondrias en el tejido adiposo blanco) [11, 21, 

22]. 

Incluso después de una década de estudio, los roles fisiológicos de las proteínas 

CIDE aún no han sido completamente dilucidados. Con este trabajo se pretende arrojar 
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algo de luz sobre las funciones de CIDE y sus papeles fisiológicos.  La mayoría de 

estudios hasta el momento han estado realizados en humanos o en ratones, ninguna 

investigación en animales domésticos ha ido tan lejos. Sin embargo el cerdo no solo es 

un importante a nivel económico como animal de producción, sino también es un 

valioso modelo biomédico, ya que está considerado como el animal más apropiado para 

estudios sobre la obesidad humana [23]. 
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IV. Objetivos: 

 
 Este trabajo transversal persigue diferentes objetivos valiéndose para ello de 

muestras obtenidas a lo largo de los años de actividad del grupo de Jesús de la Osada, y 

de muestras facilitadas por grupos colaboradores: 

1- Caracterizar diversos factores dietéticos que puedan influir en la expresión 

hepática de CIDEC en cerdos: 

- Dieta esteatósica. 

- Adición de fitosteroles en la dieta. 

- Presencia de distintas grasas (MUFA, PUFA o saturadas) en la dieta.  

- Presencia de colesterol en la dieta. 

2- Conocer el efecto de una inflamación local capaz de iniciar la síntesis de 

mediadores inflamatorios hepáticos sobre la expresión hepática de CIDEC en 

cerdos. 

3- Validar resultados obtenidos en otras especies para el cerdo. 

4- Definir el efecto del resveratrol en distintos modelos de obesidad en ratas en 

la expresión hepática de Cidec. 

5- Determinar la influencia de la testosterona en la expresión hepática de Cidec 

en rata. 

6- Describir el efecto de la proporción de grasas en la dieta en la expresión 

hepática de Cidec en rata. 

7- Identificar la influencia de factores ambientales, como el tamaño de camada 

en la expresión hepática de Cidec en rata.  
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V. Material y Métodos: 

 

V.1 Material Biológico: 

Los animales pertenecientes a los experimentos 1, 3, 4 y 5 se albergaron en las 

instalaciones del Servicio General de Apoyo a la Investigación en la Facultad de 

Veterinaria de la Universidad de Zaragoza con la aprobación del Comité ético de 

Experimentación Animal de la Universidad de Zaragoza y acorde a la legislación 

vigente. 

V.1.1Cerdos (Sus scrofa): 

 

V.1.1.a) Experimento 1 o cerdos con dieta esteatósica: 

En este estudio se utilizaron 29 cerdos machos cruce de Landrace x Large White 

de 3 meses de edad. Estos cerdos se subdividieron en 5 grupos. 

El primer grupo de 3 animales recibió la dieta control del cerdo durante tres 

meses. 

El segundo grupo de 3 animales recibió una dieta capaz de inducir hígado graso 

durante tres meses. Esta dieta esteatósica especial es deficiente en metionina y colina y 

suplementada en colesterol, colato, grasa saturada, grasa parcialmente hidrogenada y 

fructosa [24]. 

El tercer grupo estuvo constituido por cinco animales y el estudio duró 3 meses. 

Se alimentó a todos ellos con la dieta esteatósica y el último mes se les administró 10 

mg de melatonina /kg/ día. 

El cuarto grupo, formado por otros seis animales, consumieron la dieta 

esteatósica durante 4,5 meses. Durante el último mes se les administró melatonina a la 

misma dosis que el grupo anterior.  

El quinto grupo estuvo constituido por 12 animales (tres de ellos fallecieron a lo 

largo del estudio). El estudio se prolongó durante 2 meses. Todos ellos recibieron la 
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misma dieta esteatósica y durante el último mes a 4 de ellos se les administró 

melatonina con dosis 10 mg/kg/día. 

La toma de muestras se realizó al sacrificio con edad variable entre 4 y 7 meses 

de edad en función del grupo al que pertenezca. A los cerdos se les indujo anestesia 

general y fueron mantenidos con propofol. El 

abdomen fue abierto a través de la línea alba 

mediante laparotomía. Las muestras hepáticas 

fueron obtenidas al final del procedimiento a 

partir del lóbulo cuadrado de los cerdos [24]. 

Tras su obtención, se introdujeron en 

nitrógeno líquido para su conservación y se 

almacenaron a -80 ºC. 

 

V.1.1.b) Experimento 2 o cerdos suplementados con fitosteroles:  

Este estudio, compuesto por 32 cerdos de 10 semanas de edad a inicio del 

estudio se llevó a cabo en la granja experimental “Mas de Bover” (Constantí, Tarragona) 

que pertenece a la unidad de nutrición animal IRTA. Los animales se estabularon en 

grupos de 6, el espacio disponible cumplía los estándares para esta categoría de animal 

con temperatura y humedad controladas. Los animales disponían de agua y alimento ad 

libitum. El alimento fue formulado para asegurar que todos los grupos experimentales 

recibieran una cantidad de alimento similar teniendo en cuenta la distinta cantidad de 

MAYMO® (fórmula compuesta por fitosteroles: fundamentalmente β-sitosterol) que 

recibían cada grupo experimental. Se establecieron cuatro grupos experimentales: 

T-1: Dieta basal 

T-2: Dieta basal + 120 ppm de MAYMO® 

T-3: Dieta basal + 240 ppm de MAYMO® 

T-4: Dieta basal + 2400 ppm de MAYMO® 

Fig 3. Imagen tomada durante la biopsia, 
Obsérvese diferencia  de color hígado 
estatósico (izquierda) frente bazo (derecha).
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Los animales se sacrificaron tras 56 días de estudio y se tomó muestra de músculo 

longuísimo dorsal, hígado, riñón, linfonodos mesentéricos. Las muestras se congelaron en 

nitrógeno líquido y se almacenaron a -80 ºC. 

 

V.1.1.c) Experimento 3 o influencia del tipo de grasa en cerdos ibéricos 

Este estudio fue realizado con 18 cerdos de raza ibérica con peso a inicio de 

estudio de 30 kg y se les tuvo en un periodo de adaptación hasta alcanzar los 55 kg.  

Después de obtener un peso de 55 kg se reasignaron en grupos de 6 individuos y 

recibieron una de las tres dietas isoenergéticas, isonitrógenas y libres de colesterol. Las 

dietas contenían 21 g lípidos/kg y estaban suplementadas al 3% con grasas saturadas, 

grasas monoinsaturadas (MUFA) en la dieta enriquecida con aceite de aceite de oliva o 

grasas polinsaturadas (PUFA) en las dietas enriquecidas en aceite de girasol. El 

alimento fue proporcionado ad libitum. Para formular la dieta se siguió las mismas 

pautas ya publicadas [25]. 

El experimento duró 42 días, hasta que los animales alcanzaron un peso vivo de 

95 kg. Sin apenas diferencias en las ganancias medias diarias entre los grupos. 

Después de una noche de ayuno, la toma de muestras se llevó a cabo en el 

matadero. Se tomaron muestras de sangre, hígado y duodeno. Las muestras de hígado 

fueron congeladas en nitrógeno liquido y almacenadas a -80 ºC [25].  

 

V.1.1.d) Experimento 4 o influencia del aceite de oliva virgen en cerdos 
minipigs 

Este estudio se realizó con 10 cerdos enanos, también llamados minipigs. Se 

dividieron en 2 grupos, uno que recibió una dieta control y el otro grupo que recibió la 

misma dieta suplementada con AOV (aceite de oliva virgen) al 25% y con colesterol al 

0,3%.  

Tras la obtención de la muestra se introdujeron en nitrógeno líquido para su 

conservación y se almacenaron a -80 ºC. 
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V.1.1.e) Experimento 5 o inflamación local en cerdos: 

Este estudio consistía en provocar una inflamación local con una inyección de 

turpentina (0,5 ml/kg) y observar el efecto que tenían los mediadores de la inflamación 

(IL-6 y TNFα) sobre el hígado. El estudio se compone de 12 cerdos machos Landrace x 

Large White de entre 28 y 39 kilos de peso. A 10 animales se les indujo la inflamación 

subcutánea con turpentina. Después de 8 horas y 48 horas se obtuvo la muestra de 3 y 7 

animales respectivamente. Como control 2 animales fueron inyectados con el mismo 

volumen de solución salina. Las muestras se obtuvieron mediante sacrificio de los 

animales y se obtuvo muestra de hígado y de plasma [26]. Las muestras fueron 

congeladas inmediatamente con nitrógeno líquido y se almacenaron a -80 ºC.  

 

V.1.2 Rata (Rattus norvegicus): 

V.1.2.a) Experimento 6 o efecto de la dieta grasa, tamaño de camada y 
testosterona en ratas: 

Para realizar este experimento se trabajó con muestras de RNA facilitadas por el 

grupo del doctor Manuel Tena Sempere de la Universidad de Córdoba.  

Este estudio está compuesto por 80 ratas hembras. Estas se dividen en diversos 
grupos de 10 animales en función de: 

LFD  
12 cm 

HFD 
12 cm 

LFD 
4 cm 

HFD 
4 cm 

LFD 
12 cm 

PT 

HFD 
12 cm 

PT 

LFD 
4 cm 
PT 

HFD 
 4 cm 
PT 

 
Si han recibido propionato de testosterona (PT) o no.  
Si han ingerido dieta alta  (HFD) o baja en grasas (LFD) 
Si pertenecen a partos de 4 o 12 crías por madre.  

Teniendo todos los factores en cuenta hay 8 grupos distintos [27].  

 

V.1.2. b) Experimento 7 o efecto del resveratrol en ratas genéticamente obesas 

Para realizar este experimento se trabajó con muestras de RNA facilitadas por el 

grupo de la doctora Mª del Carmen Puy Portillo de la Universidad del País Vasco.  
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El primer estudio  se realizó con ratas genéticamente obesas [28]. Se trabajó con 

30 machos Zucker (fa/fa) con 6 semanas de edad y peso aproximado de 213 gramos, 

obtenidos de Harlan Ibérica ( Barcelona, SPAIN) y estabulados de acorde a las guías de 

la Unión Europea de cuidado y uso de animales de laboratorio. Las ratas fueron alojadas 

individualmente en cajas metabólicas de policarbonato (Tecniplast Gazzada, 

Buguggiate, Italy) en una habitación con temperatura constante entre 22 y 28 ºC con 

ciclos de luz y oscuridad de 12 horas. Después de 6 días de periodo de adaptación, las 

ratas fueron distribuidas al azar en 2 grupos experimentales, un grupo control 

alimentado con una dieta estándar de laboratorio (Panlab, Barcelona, Spain) y un grupo 

resveratrol, administrado oralmente  (15 mg/kg de peso vivo por día) a través de un 

catéter orogástrico durante 6 semanas. El resveratrol estaba diluido en 1 ml de solución 

de etanol al 20%. Las ratas del grupo control recibieron el vehículo. 

Todos los animales tenían libre acceso al alimento y al agua. La ingesta y el peso 

fueron medidos diariamente. Al final del periodo experimental y después de un periodo 

de ayuno de 6-8 horas, los animales fueron sacrificados mediante desangrado cardiaco 

bajo condiciones anestésicas, utilizando una inyección intraperitoneal de una sobredosis 

(45 mg/kg) de pentobarbital sódico. Se recogió muestra de tejido hepático. Las muestras 

fueron congeladas inmediatamente con nitrógeno líquido y se almacenaron a -80 ºC.  

V.1.2. b) Experimento 8 o efecto del resveratrol en ratas obesas a través de la 

dieta: 

Para realizar esta experimento se trabajó con muestras de RNA facilitadas  

igualmente por el grupo de la doctora Mª del Carmen Puy Portillo.  

Este estudio se realizó con ratas obesas a través de la dieta [29]. El experimento 

se llevó a cabo con 16 machos Sprague-Dawley obtenidos de Harlan Ibérica (Barcelona, 

SPAIN) y estabulados de acorde a las guías de la unión europea de cuidado y uso de 

animales de laboratorio. Las ratas fueron alojadas individualmente en cajas metabólicas 

de policarbonato (Tecniplast Gazzada, Buguggiate, Italy) en una habitación con 

temperatura constante (22 + 2 ºC) con ciclos de luz y oscuridad de 12 horas. Después de 

6 días de periodo de adaptación, las ratas fueron distribuidas al azar en 2 grupos 

experimentales: grupo control (n=8) o grupo tratado con resveratrol (n= 8) y 

alimentadas con una dieta obesogénica (4.6 kcal/g) proporcionada por Harlan Ibérica 
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(TD.06415) durante 6 semanas. El Resveratrol se añadió a la dieta en cantidad 

suficiente para asegurar una dosis de 30 mg/kg de peso vivo al día. 

Todos los animales tenían libre acceso al alimento y al agua. La ingesta y el peso 

fueron medidos diariamente. Al final del periodo experimental y después de un periodo 

de ayuno de 12 horas, los animales fueron sacrificados mediante desangrado cardiaco 

bajo condiciones anestésicas (clorhidrato). El hígado fue disecado, pesado e 

inmediatamente congelado. 

 

V.2 Material instrumental y reactivos: 

 

V.2.1. Extracción del RNA 

 Reactivos 

• Agua destilada y desionizada: Agua milli-Q cuya resistividad sea superior a 18 

MΩ en un recipiente limpio de RNAsas. 

• Agua tratada con dietilpirocarbonato (agua DEPC). Por cada litro de agua 

destilada y desionizada se le añadió 0,5 ml de DEPC. Se agitó vigorosamente 

hasta solubilizar bien el DEPC. Y se dejó que actuara durante una noche para 

posteriormente destruirlo mediante autoclavado durante 1 hora a 1 atm. Cada 

vez que se ha usado, se ha autoclavado durante 20 min a 1 atm.  

• Solución descontaminante de DEPC al 0,05%. 

• SDS al 10%.  Se humectaron 100 g de sodio dodecil sulfato en 700 ml de agua 

tratada a 60 ºC durante una noche, el día posterior se completó el volumen a 

1000 ml.  

• EDTA 0,5 M pH 8,0. Se pesaron 186,1 g EDTA Na2.2H2O y se disolvieron en 

800 ml de agua tratada. Se agitó en un agitador magnético limpio de RNAsas. Se 

añadió 20 g de NaOH. Una vez disuelto, se verificó que el pH en una alícuota. 

Posteriormente se completó a 1 l con agua tratada. Se autoclavó cada vez que se 

usó durante 20 min. a 1 atm. 

• TRIS/HCl 1 M pH 8,0. 121,1 g de Tris base se disolvieron en 800 ml de agua 

tratada. Se añadió 54 ml de HCl concentrado. Se verificó el pH en una alícuota. 
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Posteriormente se completó a 1 l con agua tratada. Se autoclavó cada vez que se 

usó durante 20 min a 1 atm. 

• TE: 10 mM Tris-HCl, pH 8,0; 1 mM EDTA. Se tomó 10 ml de Tris/HCl 1 M pH 

8,0 para RNA y 2 ml del EDTA 0,5 M, Posteriormente se completó a 1 l con 

agua tratada.. Se autoclavó cada vez que se usó durante 20 min a 1 atm. 

• Cloroformo. (Sigma®). 

• Isopropanol. (Sigma®). 

• Etanol al 75%: 

• Reactivo de extracción: Tri-reagent®. (AMBION®). Almacenar a 4 ºC. 

• Nieve carbónica o nitrógeno líquido. 

• Hielo picado. 

• TBE. Se pesó 10,8 g de TRIS base y disolvió en 800 ml de agua tratada. Una 

vez disueltos, se añadió 40 ml de 0,5 M EDTA pH 8,0. Posteriormente se 

disolvió 5,5 g de ácido bórico y se completó el volumen a 1 l con agua tratada. 

Posteriormente se autoclavó. 

• Bromuro de etidio. (SIGMA®) Almacenar a 4 ºC 

• Gel de agarosa de RNA al 1% en TBE. 0,5 g de agarosa en 50 ml de tampón 

TBE. Se fundió en microondas, evitando la evaporación del tampón, hasta que la 

solución no tenía ninguna partícula de agarosa flotando. Se dejó enfriar un poco 

y se añadió bromuro de etidio al 0,5 µg /ml. Después se dejó gelificar en la 

cubeta con los peines puestos. 

• Tampón de carga de RNA.: Azul de bromofenol al 0,25%; xileno cianol al 

0,25%, EDTA 1 mM y glicerol al 50% en agua tratada 

 

Material: El material de RNA es específico para este uso 

• Vidrio y metal. Se descontaminó de RNAsas por esterilización a 180 ºC durante 

8 h. 

• Plástico y barras de agitación. Se trataron durante al menos media hora en la 

solución descontaminante de DEPC y después se autoclavaron durante una hora 

para inactivar el DEPC. 

• Nanodrop™ 1000  
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V.2.2. Purificación del RNA: 

 Reactivos almacenados a –20 ºC: 

El kit (AMBION® de Life technologies™) está 
compuesto por los siguientes reactivos: 

• TURBO Dnase (2 unidades/μl) (120 μl). 

• 10x TURBO DNase Buffer (600 μl). 

• DNase Inactivation Reagent (600 μl). 

• Nuclease-Free Water, o agua DEPC (1,75 ml).  

 

Material: 

• Termociclador (S1000™ Thermal 
Cycler, BIO-RAD®). 

• Nanodrop™ 1000. 
 
 
 
 

V.2.3. Retrotranscripción: 

 Reactivos almacenados a –20 ºC: 

El kit (First Strand cDNA Synthesis 
kit, Thermo Scientific) está compuesto 
por los siguientes reactivos: 

• Oligo (dT) 12-18 (500 μg/ml). 

• 1 μl dNTP Mix (10 mM cada uno). 

• M-MuLV Reverse Transcriptase (20 U/μl).* 

• RiboLock RNase Inhibitor (20 U/μl). 

• Agua destilada estéril. 

 Material: 

• Termociclador ( S1000™ Thermal Cycler, BIO-RAD®) 

   

Fig 5. Termociclador ( S1000™ Thermal Cycler,
BIO-RAD®) http://www.bio-rad.com/webroot/web
/images/lsr/products/amplification_pcr/product_detail/g
lobal/lsr_S1000.jpg 

Fig 4. Nanodrop ™ 1000. 
http://openwetware.org/ 
images/e/ee/NanoDrop1000.jpg 
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V.2.4. PCR cuantitativa (qPCR): 

 Reactivos: 

• Agua filtrada de PCR. 
• Kit de SYBR®Green (SYBR®Green, Applied Biosystems™). 
• Cebadores o Primers específicos para los genes a estudiar. 

Material: 

• Puntas autoclavadas sin ningún posible contaminante 
• Placas de tubos de 200 µl aptos para uso RT-PCR. 
• Tapas de tubos optical caps. 
• Real Time PCR system, Step One plus™. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6. Step One plus™ Real time PCR
system https://tools.lifetechnologies.com
/content/sfs/prodImages/high/StepOne_big.jpg 
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V.3 Métodos: 

 

V.3.1. Extracción del RNA: 

El RNA ha sido aislado usando Trigent® reagent (AMBION®). 

Se homogeneizó unos 100 mg de cada una de las 
muestras de tejido hepático de con el Ultraturrax en 1 ml de 
Trigent® reagent. Tras un lavado con Cloroformo (0,2 ml) se 
recogió la fase acuosa superior en un Eppendorf® y se 
precipitó el RNA con isopropanol y centrifugado. Tras 
decantar el sobrenadante, se lavó el precipitado con etanol al 
75% y volvió a centrifugar. Se decantó el etanol al 75% y se 
resuspendió el RNA en agua DEPC (dietilpirocarbonatada). 
Finalmente se midió su concentración con el nanodrop™. 
(Fijándose en el ratio de absorbancia 260/280 que nos da una 
referencia sobre la calidad de nuestro RNA). Posteriormente, a 
fin de verificar la integridad de la muestra se hizo una 
electroforesis de la muestra en un gel de agarosa al 1%. 

 

 

 

V.3.2. Purificación del RNA 

Tras la extracción del RNA han podido quedar restos de DNA genómico en la 

muestras que pueden interferir en la qPCR. Para evitarlo, se realizó el tratamiento del 

RNA con una DNAsa que en una etapa posterior se elimina de la muestra. 

Fig. 8: Gel de agarosa del 2º grupo de 
cerdos esteatósicos tras extraccion del 
RNA total 

   18      183      184     185    186    187

Fig 7. RNA solubilizado
en la fase superior, tras
lavado con clorformo.
Fase inferior, roja. 
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El procedimiento se realizó en el 

termociclador, se incubaron durante 30 minutos a 37 

ºC 5 µg de RNA junto con un Buffer y la DNAsa. 

Después se inactivó la enzima, se centrifugó la 

muestra y se recogió el sobrenadante en un nuevo 

Eppendorf® de 200 µl con mucho cuidado de no 

coger nada del precipitado. Tras ellos, se midió la 

concentración del RNA limpio en el nanodrop™.  

Después, se vuelve a correr la muestra en un 

gel agarosa al 1% para verificar el estado del RNA. 

 

V.3.3. Retrotranscripción 

  La transcripción inversa (retrotranscripción) es la reacción por la cual se 

sintetiza DNA complementario de doble hebra (cDNA) a partir de una hebra molde de 

RNA monocatenaria. La reacción es mediada por la enzima denominada transcriptasa 

reversa o retrotranscriptasa, una enzima tipo DNA polimerasa existente en los 

retrovirus. 

 Para la retrotranscripción se utilizó un kit de la casa Thermo Scientific™. Se 

depositaron 500 ng de RNA limpio junto con 1 µl de oligoDTs en agua DEPC hasta un 

volumen de 11 µl, se incubó durante 5 minutos a 65 ºC, se posó en hielo, se le dió un 

spin, y se volvió a poner en hielo. Se le añadió el resto de productos del kit hasta un 

volumen de 20 µl (4 µl 5X Reaction Buffer, 1 µl RiboLock inhibidor de RNasa , 2 µl de 

mix de dNTP y 1 µl de M.MulV Transcriptasa inversa). Para finalizar se incubó a 25 ºC 

durante 5 minutos seguido de 1 hora a 37 ºC y otros cinco minutos a 70 ºC. Así  se 

generó el cDNA. 

 V.3.4. PCR cuantitativa (qPCR) 

 El fundamento de la Reacción en Cadena de la Polimerasa es hacer copias de 

DNA de unas secuencias determinadas, a partir de unos primers específicos. Para 

amplificarlos se realizan una serie de ciclos de temperaturas que nos permiten repetir el 

proceso un número determinado de veces (normalmente 40 veces). 

Fig. 9. RNA limpio del estudio de 
inflamación local en cerdos  

   C11 C12  C21  C22   1      2      3      4 

 

 

     5      8 
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 En la qPCR la cantidad de DNA se 

mide después de cada ciclo mediante el uso de 

marcadores fluorescentes que se incorporan al 

producto de PCR. Para este trabajo se utilizó 

SYBRgreen, que es un agente intercalante que 

se introduce en la estructura secundaria de la 

doble hélice del DNA y se acopla 

energéticamente a los ácidos nucleícos que lo 

forman, de manera que se incrementa 

notablemente su tasa de emisión fluorescente. 

El incremento de la señal fluorescente es 

directamente proporcional al número de 

moléculas de producto de PCR (amplicones) 

generados en la fase exponencial de la 

reacción. 

 En los primeros ciclos de la 

qPCR la fluorescencia permanece en 

niveles no detectables, similares al 

ruido de fondo o background hasta 

un momento determinado en el que 

se alcanza un acúmulo detectable de 

producto amplificado. La PCR 

cuantitativa, nos permite identificar 

los ciclos necesarios en los que se 

alcanza el Ct (Cycle Threshold, ciclo umbral). Este valor se obtiene mediante una línea 

horizontal, que la determina el programa por encima del background de los 8 primeros 

ciclos para todas las muestras. El valor de Ct de cada muestra sirve para cuantificar ya 

que mide en la fase exponencial de la reacción cuando los reactivos no están limitados, 

doblando el número de moléculas presente con cada ciclo de amplificación. 

 Con los valores de Ct para cada una de las muestras se calcula la media y 

desviación estándar, observándose que las desviaciones estándar sean inferiores a un 

ciclo, En caso de tener valores superiores, se revisan los datos de los duplicados. Se 

trata de una técnica muy sensible. 

0,101507 

Fig 11. RT-qPCR, detalle del umbral. 

Fig. 10.Esquema de unión de las moléculas de
SYBRGreen a la cadena de DNA
(http://onlinelibrary.wiley.com/doi/10.1002/9780
470089941.et1003s00/pdf) 
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V.3.3.a) Diseño de primers 

A la hora de hacer una PCR resulta fundamental contar con unos buenos 

primers. Para ello se dispone de varios programas para diseñarlos. En este estudio se 

optó por Primer BLAST, programa que se encuentra en la página del NCBI 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/ ). Antes de diseñarlos, debemos de 

saber qué condiciones han de tener para considerarlos unos buenos primers:  

• Cada uno debe contar con una longitud de 18-24 bases.  

• Se debe mantener un contenido de G:C entre 40 y 60%.  

• Su temperatura de fusión “Tm” ha de ser similar, dentro de los 5 °C, mejor si 

es superior a 58 ºC 

• Es mejor si la secuencia de los primers individuales debe iniciarse y 

terminarse con 1 o 2 bases púricas. 

• Evitar regiones con potencialidad para formar horquillas internas, o que 

puedan dar lugar a dímeros de primers 

• Los primers deben ser complementarios a las regiones deseadas, aunque 

admiten degeneraciones 

 Una vez conocidas las características ideales de los pares de primers, queda 

encontrar la secuencia de CIDEC del RNA, preferentemente de dos exones distintos 

para minimizar la amplificación del DNA genómico. Esto lo podemos hacer en la base 

de datos nucleotide del NCBI buscando el gen motivo del trabajo: CIDEC pig 

(http://www.ncbi.nlm.nih.gov/nuccore/NM_001112689.1). De idéntica forma, se 

procedió para los cebadores de la rata. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/nuccore/NM_001112689.1
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 Llegados a este punto solo queda copiar la secuencia y escoger una pareja de 

primers.

 

Fig 12. Imagen de la base de datos de primer BLAST. 

Para confirmar la especificidad de nuestros primers recurrimos a una tercera 

página del NCBI para realizar el BLAST, que nos indica donde se nos unen nuestros 

primers a lo largo del genoma de la especie en estudio. 

 V.3.4.b) Housekeeping (Gen de referencia) 

Un housekeeping es un gen que se utiliza para corregir errores debidos a la 

posible diferencia de carga de las muestras. Este gen se caracteriza por no variar su 

expresión en las condiciones de estudio. A lo largo del estudio se han utilizado 

diferentes genes como housekeeping, como 18S, HPRT o PPIA. Ya que, a pesar de que 

todas las muestras son de hígado, variaba la estabilidad de los distintos genes de 

referencia utilizados, llegando a 

aparecer diferencias significativas entre 

las distintas condiciones 

experimentales. Para determinar la 

estabilidad se utilizó un programa 

llamado Bestkeeper. 

  
Fig. 13 Gráfica Bestkeeper estudio 6 o efecto de la 
dieta grasa, tamaño de camada y testosterona en 
ratas. 
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 V.3.4.c) Procedimiento experimental:  

 La reacción de PCR se llevó a cabo utilizando el kit de SYBR Green® (Applied 

Biosystems™) 

En cada pocillo de la placa pondremos 1 µl de cDNA a la dilución elegida, y 

luego añadiremos el mix (11,5 µl) con el resto de los reactivos, (SYBRgreen®, agua y 

los primers), el mix se prepara porque algunos de los volúmenes de los reactivos son 

muy pequeños, y el error de pipeteo puede ser importante. Al preparar el mix proteger el 

SYBR green de la luz cubriéndolo con papel de aluminio.  

 Una vez cargada la placa, se centrifuga, y se pone en el equipo para PCR 

cuantitativa. 

 V.3.5. Procedimiento matemático: 

 Este proceso tiene dos partes. La primera es evaluar los primers, tanto del gen 

que vamos a estudiar como del housekeeping (cuya expresión tiene que ser invariable 

en las condiciones del estudio). Para ver la capacidad de amplificación de nuestras 

muestras, haremos un pool de cada grupo con los cDNAs y sus respectivas diluciones 

decimales, desde cDNA sin diluir hasta la dilución 1/1000. Tanto del gen a estudiar 

como del gen control, representaremos dos rectas de calibrado en las que 

representaremos la media del valor Ct de cada dilución frente al logaritmo de la 

concentración de cDNA. Una vez representada la gráfica. Hay que observar la pendiente 

de la recta, cuyo valor óptimo es -3,32, por lo que si obtenemos pendientes con un error 

+ 10%, tendremos que volver a probarlo en otras condiciones. Además la pendiente de 

los dos genes tiene que ser parecida, ya que si es muy diferente no son comparables. 

 Lo siguiente que hay que ver es la dilución a utilizar para analizar las muestras. 

Esta técnica pierde precisión a partir de 32 ciclos, por lo que tenemos que emplear la 

dilución correspondiente a un valor Ct inferior a 32 ciclos para los dos genes. Utilizando 

como máximo una dilución 1/100. 

 La segunda parte del proceso es evaluar las muestras y hacer los cálculos 

matemáticos para compararlas. Como las muestras se hacen por duplicado, se tiene que 

hacer la media y la desviación estándar y comprobar que no ha habido problemas en 
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ninguna muestra ni duplicado. Luego hay que comprobar que el gen control no cambia 

en las condiciones de estudio mediante un análisis estadístico entre grupos. 

 A continuación, con la media de cada gen y animal, se calcula el valor ΔCt (Ct 

gen de estudio - Ct gen housekeeping). 

 El siguiente paso es normalizar los valores de Δ Ct, para lo que calcularemos la 

media de este valor para el grupo control, y se restará a todas las muestras los valores 

ΔCt del grupo control, con lo que obtendremos ΔΔ Ct. 

 Para representar los datos de forma que comparable, existen dos posibilidades, 

hacerlo utilizando la potencia (R= 2 -ΔΔCt) o el logaritmo (R= Log (ΔΔCt)), 

Dependiendo de los resultados o de las preferencias personales, podremos utilizar uno u 

otro. 

V.3.6.Análisis estadístico: 

 Los resultados se representan como valores medios y desviaciones estándares de 

la media. El test Shapiro-Wilk se aplicó para analizar el tipo de distribución. Cuando el 

test de Shapiro-Wilk rechazó la hipótesis de distribución normal de la muestra o cuando 

el test de Barlett de homogeneidad de varianza fue significativamente diferente, las 

diferencias entre los grupos se calcularon por el test de Mann-Whitney para muestras no 

apareadas y el test de Wilcoxon para muestras apareadas. 

 En el caso contrario, las diferencias se evaluaron por el test ANOVA de Tukey 

para muestras no apareadas [30]. Estos análisis estadísticos se llevaron a cabo mediante 

el programa GraphPad. 
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VI. Resultados: 

 

 Experimento 1 o cerdos con dieta esteatósica: 

 En este estudio se puede observar  la fuerte influencia de la esteatosis en la 

expresión del gen que codifica la proteína CIDEC. 

 

Gráfica 1. Efecto de la esteatosis inducida por la dieta en cerdos en la 
expresión hepática a nivel de mRNA de CIDEC normalizando con 18S y 
medido mediante qPCR. Resultados expresados como media ± desviación 
estándar. Análisis estadístico fue llevado a cabo por el test de  MN  de una cola. 
(*: P < 0.02 vs control) 
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Experimento 2 o cerdos suplementados con fitosteroles 

 

Gráfica 2 Efecto de la administración de fitosteroles en cerdos en la 
expresión a nivel de mRNA de CIDEC normalizando con HPRT y medido 
mediante qPCR. Resultados expresados como media ± desviación estándar. 
Análisis estadístico fue llevado a cabo por el test de MN  de una cola. (*: P< 
0.05 vs control). 

 

Gráfica 3 Efecto de la administración de fitosteroles independientemente 
de la dosis en cerdos en la expresión hepática a nivel de mRNA de CIDEC 
normalizando con HPRT y medido mediante qPCR. Resultados expresados 
como media ± desviación estándar. Análisis estadístico fue llevado a cabo por el 
test de MN  de una cola. (*: P < 0.02 vs control) 
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En el experimento 2 se observa como una alimentación suplementada con 

fitosteroles reduce significativamente la expresión de CIDEC. Algo que ya sucede con 

la dosis más baja de 120 ppm. Dosis más altas no producen más efecto, aunque el 

mismo se mantiene. 

 

Experimento 3 o influencia del tipo de grasa en cerdos ibéricos 

 

Gráfica 4. Efecto del tipo de grasa en cerdos ibéricos en la expresión 
hepática a nivel de mRNA de CIDEC normalizando con PPIA y medido 
mediante qPCR. Resultados expresados como media ± desviación estándar. 
Análisis estadístico fue llevado a cabo por el test de MN  de una cola. (*: P < 
0.04, **: P <  0.02) 

 

La expresión hepática de CIDEC mostró diferencias significativas por  

efecto de la saturación de los ácidos grasos proporcionados en la dieta. Se 

obtuvieron cambios significativos al comparar la dieta suplementada con 

PUFA frente a la dieta con grasa saturada (**: P < 0.02 vs saturada), y al 

comparar la dieta suplementada con PUFA frente a la suplementada con 

MUFA (*: P < 0.04 vs MUFA).  
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Experimento 4 o influencia del aceite de oliva virgen en cerdos minipigs 

 

 Cuando se comparó la administración de una dieta enriquecida en AOV con la 
dieta estándar del cerdo, se observó que la expresión de CIDEC disminuyó 
significativamente en este modelo animal.  

 

 

Gráfica 5. Efecto de la administración de AOV en cerdos minipigs en la 
expresión hepática a nivel de mRNA de CIDEC normalizando con PPIA y 
medido mediante qPCR. Resultados expresados como media ± desviación 
estándar. Análisis estadístico fue llevado a cabo por el test de MN  de una cola 
(**P <  0.01 vs control). 
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Experimento 5 o inflamación local en cerdos:   

En este estudio no se obtuvieron diferencias significativas con respecto a los 
controles mediante inyección subcutánea de turpentina. 

 Control 8h 48h 

Fsp27 1.0 ± 0.2 0.9 ± 0.7 1.1 ± 0.8 

Tabla 1.  Efecto de una inflamación local frente al control en la expresión 
hepática de  CIDEC a nivel de mRNA, normalizado con PPIA, y mediante 
qPCR. Resultados expresados como media ± desviación estándar. Análisis 
estadístico fue llevado a cabo por el test de MN  de una cola  

 

 

 

Experimento 6 o efecto de la dieta, tamaño de la camada y testosterona en ratas 

 Este estudio deja patente una fuerte influencia de la testosterona en la expresión 
de Cidec. Donde los grupos que han recibido propionato de testosterona tienen una 
expresión más elevada que los que no han recibido testosterona. Sin embargo no 
obtuvieron efecto alguno el efecto del porcentaje de grasa en la dieta ni el tamaño de la 
camada.  

 LFD  
12 cm 

HFD 
12 cm 

LFD 
4 cm 

HFD 
4 cm 

LFD 
12 cm 

PT 

HFD 
12 cm 

PT 

LFD 
4 cm 
PT 

HFD 
 4 cm 
PT 

Fsp27 1.2 ± 
0.9 

1.1 ± 
0.5 

1.6 ± 
0.8 

1.7 ± 
1.0 

18 ±  
17a 

21.7 ± 
12b 

15.0 
± 14c 

9.1 ± 
7.1d 

Tabla 2. . Efecto de la administración de propionato de testosterona en la 
expresión hepática de Cidec a nivel de mRNA, normalizado con Ppia, y 
mediante qPCR. Resultados expresados como media ± desviación estándar. 
Análisis estadístico fue llevado a cabo por el test de MN  de una cola (a LFD 12 cm 
vs. LFD 12 cm PT: P<0.01, b HFD 12 cm vs. HFD 12 cm PT: P<0.01, c LFD 4 cm 
vs LFD 4 cm PT: P < 0.0001, d HFD 4 cm vs HFD 4 cm PT: P < 0.0009). 
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Experimento 7 o ratas genéticamente obesas 

Este experimento muestra de manera significativa el efecto protector del 
resveratrol frente a la esteatosis hepática en ratas Zucker. 

 

 

Gráfica 6. Efecto de la administración de resveratrol a través de la dieta en ratas 
Zucker en la expresión hepática de Cidec a nivel de mRNA, normalizado con 18S, y 
mediante qPCR. Resultados expresados como media ± desviación estándar. Análisis 
estadístico fue llevado a cabo por el test de MN  de una cola. (*: P < 0.05 vs control). 
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Experimento 8 o ratas obesas a través de la dieta.  

Este experimento muestra de manera muy significativa como el resveratrol 
induce la expresión del gen Cidec en este diseño experimental. 

 

Gráfica 7. Efecto de la administración de resveratrol con una dieta 
obesogénica en la expresión hepática de Cidec a nivel de mRNA, normalizado 
con 18S, y mediante qPCR. Resultados expresados como media ± desviación 
estándar. Análisis estadístico fue llevado a cabo por el test de MN  de una cola (**: 
P < 0.01 vs control)  
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VII. Discusión de resultados: 

A través de los resultados presentados en este trabajo se pueden atisbar algunos 

aspectos de la influencia de las grasas de la dieta en la expresión hepática de CIDEC. 

Además este estudio también recoge como otras circunstancias (inflamación local o 

adición de testosterona o resveratrol) influyen en el metabolismo lipídico hepático. 

Todo esto contribuye a reforzar una rama de la ciencia llamada nutrigenómica, la cual 

estudia cómo influye la dieta en la expresión de los genes.  

La administración de una dieta esteatósica en cerdos aumenta significativamente 

la esteatosis hepática (datos no mostrados) y la expresión hepática de CIDEC frente al 

grupo control, estos resultados corroboran los obtenidos por otros investigadores que 

observaron que los niveles de mRNA en tejido adiposo e hígado son significativamente 

más altos en cerdos obesos que en sus congéneres [4, 9, 10]. 

Por otro lado una alimentación suplementada con fitosteroles reduce 

significativamente la expresión de CIDEC. Tanto al comparar todos los individuos 

frente a los controles, o únicamente aquellos que recibieron la dosis más baja (120 

ppm). Además estos resultados muestran que un aumento de la dosis de fitosteroles no 

supone una mayor respuesta a partir de 120 ppm. Está demostrado que los fitosteroles 

en la dieta reducen la absorción del colesterol [31]. De esta manera reducen la cantidad 

de lípidos que alcanzan el hígado y en consecuencia el número de lípidos que el hígado 

almacena. Este principio es el mismo que el utilizado por algunos productos lácteos 

comerciales a los que se les añade fitosteroles [32]. 

Al estudiar el efecto del tipo de grasa en ausencia de suplementación de 

colesterol en la dieta observamos un aumento significativo de la expresión hepática de 

CIDEC en el grupo de grasa monoinsaturada frente al grupo de grasa poliinsaturada. 

Estos resultados podrían ser consecuentes con los niveles observados de trigliceridemia 

publicados por algunos autores ya que se observa un nivel de TG mayor con la 

administración de una grasa monoinsaturada [25]. Por otro lado es lógico observar que 

la dieta enriquecida en grasas PUFA provoque una expresión hepática de CIDEC 

significativamente menor que la saturada.  
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Sin embargo, la administración de una dieta suplementada con aceite de oliva 

virgen al 25% y un 0,3% de colesterol en cerdos reduce la expresión de CIDEC frente al 

control de manera muy significativa. Este resultado se muestra en alta discordancia con 

resultados obtenidos en el experimento del efecto de tipo de grasa en la expresión 

hepática de CIDEC. Puede que estas diferencias se deban a diferencias raciales de los 

cerdos y/o a la presencia de colesterol en la dieta. No obstante, debido a que el número 

de animales de cada grupo en este estudio es mayor, y que aporta resultados mucho más 

sólidos (P < 0,01) es lógico considerar que el AOV reduce la expresión de CIDEC a 

través de su efecto en el metabolismo lipídico. Estos resultados confirman en cerdo los 

resultados obtenidos en ratón con aceite de oliva virgen al 10% [33] e implican que 

pudiese ser el responsable un componente minoritario del aceite de oliva virgen. De 

hecho el escualeno aumenta su expresión hepática en estos ratones (datos no 

mostrados). Igualmente, en este estudio el aporte de grasa monoinsaturada fue muy 

superior al del estudio anterior.  

Al estudiar el efecto de la inflamación sobre la expresión hepática de CIDEC no 

se observaron cambios significativos a pesar de que CIDEC pertenece a una familia 

relacionada con procesos proapoptóticos. Puede que esto sea debido a que el estudio 

provoque una forma inflamatoria local en la que la alteración hepática únicamente se 

vea reflejada en la secreción de mediadores inflamatorios [26], sin que ello perturbe el 

metabolismo lipídico hepático.  

Entrando a discutir los resultados obtenidos en los grupos de ratas  no cabe duda 

alguna de que el efecto de la testosterona se trata de uno de los resultados más 

llamativos de este trabajo y posiblemente también el más difícil de explicar. La 

testosterona tiene un efecto tan fuerte en la expresión de Cidec que oculta el efecto de 

cualquier otro factor recogido en el estudio. Sería muy interesante ahondar en este 

hecho, y estudiar este efecto ya que también se ha estudiado el efecto sexo en el 

experimento de cerdos fitosteroles sin que se mostrase significativo (datos no mostrados 

en este trabajo).  

Este efecto que muestra la testosterona puede estar debido a que la testosterona 

como derivado del colesterol, interaccione con ligandos que normalmente interaccionan 

con el colesterol, y activara de esta manera rutas relacionadas con el metabolismo del 

colesterol que estimulen la expresión de Cidec. 
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En cuanto al efecto del resveratrol en la expresión hepática de Cidec en obesidad 

genética los resultados obtenidos se muestran bastante lógicos y esperables. Este 

antioxidante natural que aparece en el vino tinto parece ser beneficioso en este modelo 

de obesidad genética. Seguramente sea debido a su efecto antioxidante sobre las 

lipoproteínas [34]. Este efecto ayuda a la movilización de grasas y repercute en el 

almacenaje hepático de lípidos a largo término porque promueve un tipo de almacenaje 

más fluido reduciendo la expresión de Cidec.  

 Al estudiar el efecto del resveratrol sobre la expresión hepática de Cidec en 

obesidad inducida por la dieta, paradójicamente la expresión de Cidec aumenta, pero no 

podemos concluir que aumente también la esteatosis hepática ya que como Portillo y 

cols [29] demuestran el resveratrol disminuye el contenido de triglicéridos, y aumenta la 

tasa de oxidación mitocondrial y peroxisomal en este mismo estudio. Esto reincide en la 

idea de que no siempre hay correlación entre la transcripción de un gen y su traducción 

a proteína y nos lleva a obtener resultados aparentemente contradictorios. Llegados a 

este punto, habría que profundizar en el estudio de la expresión de CIDEC a nivel 

proteico. 

 

CIDEC

Fig. 24. Cuadro resumen de los resultados obtenidos en este trabajo   
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VIII. Conclusiones: 

Tras analizar los datos obtenidos en este trabajo se pueden obtener varias 

conclusiones: 

1. La expresión hepática de CIDEC aumenta con la inducción de esteatosis 

hepática en cerdos y podría ser un biomarcador de la misma. 

2. El enriquecimiento con aceite de oliva virgen junto con colesterol en la dieta 

disminuye la expresión de CIDEC en cerdos. Este efecto puede verse 

influenciado por la dosis, la presencia de colesterol y/o la raza de cerdos usados. 

3. La suplementación en la dieta con fitosteroles reduce la expresión hepática de 

CIDEC y probablemente esto sea debido a su efecto sobre la absorción del 

colesterol. Además existe una dosis óptima (120 ppm), por encima de la cual no 

se observan mejores resultados. 

4. La expresión hepática de CIDEC no se ve alterada con una inyección subcutánea 

de turpentina capaz de generar una respuesta inflamatoria en el organismo. 

5. Los distintos modelos de obesidad en ratas no siempre responden de la misma 

manera, por ello se reafirma la necesidad de contrastar los resultados en varios 

modelos experimentales. 

6. La expresión de un gen medida a través de su mRNA no siempre correlaciona 

con el metaboloma del animal, existiendo niveles de regulación post 

transcripcional que pueden variar tanto la traducción de ese mRNA como 

impedir la función de la proteína o estimular su degradación.  

7. Todos estos resultados permiten entrever una relación de CIDEC con el 

metabolismo del colesterol, donde el colesterol dietético estimularía su síntesis. 
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