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Resumen  

El actual cambio climático conlleva el aumento de la frecuencia e intensidad de los episodios 

de sequía extrema, que pueden provocar procesos recurrentes de decaimiento en los bosques 

mediterráneos. Las sequías representan la mayor amenaza para la conservación de estos 

ecosistemas, especialmente si las condiciones climáticas adversas futuras se intensifican tal y 

como vaticina el informe del IPCC 2013.  

El principal propósito de este estudio es conocer los efectos de los eventos de sequía extrema 

sobre uno de los principales y más importantes sistemas forestales de la Península Ibérica, los 

encinares, mediante el uso de técnicas de teledetección. Se pretende abordar esta cuestión 

con un enfoque multitemporal, cuantificando las relaciones existentes entre distintos índices 

de vegetación (IV) derivados de imágenes Landsat 5 y 7, datos climáticos e índices de sequía 

y datos de crecimiento primario obtenidos en el encinar de Arascués (Huesca).  

Todos los índices de vegetación propuestos se han mostrado sensibles a las defoliaciones 

severas observadas en campo durante el periodo de estudio (2000-2014). El índice de 

vegetación NDVI es el que ha mostrado mejor comportamiento en relación a la biomasa foliar 

en ramas de tres años. Sin embargo, los índices basados en el infrarrojo medio como MSI, 

NDII y NMDI, en este orden, reflejan mejor el estado hídrico de la encina en verano y muestran 

una gran dependencia a las precipitaciones de primavera. Los índices basados en la línea de 

suelo, como EVI y SAVI, no parecen los más adecuados para el estudio de formaciones 

vegetales con elevada cobertura del dosel arbóreo. La relación entre los índices de vegetación 

con los índices de sequía muestra mejores resultados con MSI y NDII cuando únicamente se 

tiene en cuenta la precipitación (SPI) y con NDVI cuando se introduce el parámetro temperatura 

(SPEI).Estos resultados pueden servir de referencia para establecer metodologías de 

seguimiento multitemporal de los eventos de decaimiento forestal inducidos por sequías 

extremas. 

Palabras Clave: encina, sequía, defoliación, índices de vegetación, teledetección, Landsat.  

Abstract  

The current climate change has increased the frequency and intensity of extreme drought 

events that can cause recurrent decline forest processes in the Mediterranean. Droughts are 

the greatest threat to the conservation of these ecosystems, especially if future adverse climate 

conditions are getting worse as the IPCC 2013 predicts. 

The main purpose of this study was to determine the effects of extreme drought events on one 

of the main and most important forest ecosystems of the Iberian Peninsula, the evergreen 

oaks, using remote sensing techniques. It is intended to address this issue through a 

multitemporal approach to quantifying the relationships between different vegetation indices 

(IV) derived from Landsat 5 and 7, weather data and drought indices and data from primary 

growth obtained by the evergreen oaks of Arascués (Huesca). 

All proposed vegetation indices have been sensitive to severe defoliation observed in the field 

during the study period. The NDVI is the one that has shown better performance in relation to 

foliar biomass in three years old branches. However, indices based on mid-infrared as MSI, 

NDII, and NMDI, in this order, reflect better the water status of the evergreen oak in summer 

and are highly dependent on spring precipitation. Indices based on soil line EVI and SAVI not 

seem the most suitable for the study of plant communities with high tree canopy. The 

relationship between vegetation indices with drought indices shows better results with the MSI 

and NDII when only takes into account precipitation (SPI) and NDVI when the temperature 

parameter (SPEI) is introduced .These results can serve as reference to establish monitoring 

methodologies of multitemporal events forest decline induced by extreme drought. 

Key Words: evergreen oak, drought, defoliation, vegetation indices, remote sensing, Landsat. 
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1. Introducción 
 

1.1. Decaimiento del bosque y Cambio climático 

 
La conservación de los ecosistemas forestales es una preocupación dentro de la comunidad científica y de 

la sociedad en general en todo el mundo. Al margen de los impactos directos de algunas actividades 

antrópicas sobre los bosques como la deforestación o los incendios provocados, los efectos del 

calentamiento global están teniendo un importante impacto sobre la conservación y estabilidad de las 

comunidades forestales a nivel global, incidiendo de forma muy negativa en muchas zonas del planeta en 

las que se han registrado eventos de decaimiento o declive del bosque a menudo asociados a elevadas tasas 

de mortalidad (Allen et al., 2010). 

El decaimiento del bosque es un fenómeno que se caracteriza por la pérdida de vitalidad de los bosques, 

defoliaciones severas e incremento progresivo de la mortalidad de los árboles, no asociado directamente a 

estresores biológicos como patógenos, defoliadores, hongos o plantas hemiparásitas. Este fenómeno 

también es conocido en la literatura científica con los siguientes términos forest decline, forest damage o 

canopy dieback (Manion, 1991).  

Las causas que se atribuyen al decaimiento del bosque pueden ser varias, entre éstas está la contaminación 

atmosférica, los cambios en el uso del suelo, el manejo de los bosques o el cambio climático. A pesar de 

que todos estos factores pueden contribuir en mayor o menor medida al decaimiento del bosque, los 

efectos asociados al cambio climático como el calentamiento global, aumento de las temperaturas, 

aumento de eventos climáticos extremos, etc., están detrás de gran parte de los episodios de decaimiento 

registrados en las últimas décadas en todo el mundo y, particularmente, en zonas sometidas a cierto estrés 

por sequía como el caso de los bosques Mediterráneos (Peñuelas et al., 2001). 

La emisión de gases de efecto invernadero derivada de la actividad humana ha alterado significativamente 

el clima a escala global, siendo ésta la principal causa del aumento de la temperatura media global y de los 

cambios del ciclo hidrológico mundial. La precipitación en el Mediterráneo ha disminuido y la superficie 

afectada por sequías, en un cómputo global, probablemente ha aumentado desde el decenio 1970 (IPCC, 

2013). 

Así, aumentos en la frecuencia, duración, 
y la severidad de las sequías asociadas 
con el cambio climático podrían alterar la 
composición, estructura y biogeografía 
de los bosques en muchas regiones. 
(Allen et al., 2010) (Fig. 1). 

 

 

 

 

  Figura 1. Ejemplos de decaimiento de bosques en diversas zonas del planeta.  
Fuente: Allen et al. (2010). 
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En cuanto a las regiones mediterráneas, éstas se encuentran bajo una creciente presión debido al cambio 

climático global. En estas regiones se han registrado con mayor frecuencia eventos climatológicos extremos 

como sequías y olas de calor, los cuales tienen implicaciones negativas para la persistencia de los 

ecosistemas forestales (Brouwers et al., 2013). 

En la Península Ibérica se han registrado varios eventos de decaimiento relacionados con periodos de sequía 

extrema: el verano de 1994 fue extremadamente seco, registrándose un episodio de extremo calor y sequía 

que causó la seca parcial o total de numerosas especies vegetales, afectando extensas superficies (Castell i 

Puig, 2001; Lloret et al., 2004; Peñuelas et al., 2001); En el año 2005 se registran defoliaciones notables 

relacionadas con una fuerte sequía puntual sufrida (MARM, 2011); en primavera y verano del 2012 se 

produjo una sequía intensa en el nordeste ibérico debido a que las elevadas temperaturas máximas previas 

condujeron a condiciones de aridez que carecen de precedentes similares desde 1950 (Camarero et al., 

2012). 

Ante esta panorámica y debido a la creciente preocupación que suscitaron los primeros episodios de 

decaimiento forestal en Europa, los países de la Comunidad Europea establecieron herramientas de 

seguimiento y control del estado de la salud de los bosques dentro de sus políticas forestales. En este marco, 

en el año 1987 se estableció la Red de Seguimiento de Bosques para el seguimiento del estado y la evolución 

de los bosques en Europa (ICP-Forest, 2013). Esta red de seguimiento consta de 620 puntos en España (Fig. 

2) y, entre otras variables, se recogen datos anuales del estado de defoliación, de la decoloración o de la 

salud de las copas de los árboles. 

 

 

Figura 2. Parcelas de seguimiento del estado de los bosques de la Red de Seguimiento a Gran Escala de Daños en 
los Montes (Red de Nivel I). Elaborado a partir de los datos del proyecto Futmon España. 
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En la figura 3 se muestra la evolución de la defoliación de la encina (Quercus ilex L.), especie objeto de este 

estudio, registrada en parcelas de nivel I de la Red Europea en la provincia de Huesca durante el periodo 

1990-2008, observándose una clara tendencia ascendente en los registros medios de la serie.  

 
Sin embargo, las Redes Europeas de Evaluación de Daños en los Bosques aportan resultados que adolecen 
de escasa representatividad a escala local. Por ello, se han desarrollado redes de seguimiento a nivel 
regional y de hecho, prácticamente todas las comunidades autónomas de nuestro país han implantado 
redes para el control y evaluación de sus masas forestales. Estas son las redes locales o regionales existentes 
en España (entre paréntesis se indica su año de inicio): 
 

 Red Andaluza de Seguimiento de Daños en Masas Forestales (2000). 
 Red de Seguimiento de la Evolución Sanitaria de las Masas Forestales de la Comunidad de Madrid, 
 (2000). 
 Red de Seguimiento Fitosanitario de las Masas Forestales de la provincia de Zaragoza (2001). 
 Red de Seguimiento de Daños en los Bosques de Castilla y León (2002).  
 Red de daños en las Masas Forestales de la Comunidad Valenciana (2004). 
 Red de seguimiento de daños en las masas forestales de Castilla-La Mancha (2005). 
 Red de Sanidad Forestal de Extremadura (2006). 
 Red de Evaluación Fitosanitaria en las Masas Forestales de Aragón (2007). 
 Red de Seguimiento de Daños en las Masas Forestales Gallegas (2005).  
 Red de Seguimiento de Daños en las Masas Forestales del Principado de Asturias (2005).  
 Red de Estaciones de Seguimiento Forestal Permanente (ESFP) de la Región de Murcia (2008). 
 Red de Seguimiento de Daños Forestales en los Montes de las Islas Baleares (2008). 
 Red de Evaluación de Daños en las Masas Forestales de Cantabria (2008). 
 DeBosCat (Decaïment de Boscos de Catalunya); Xarxa de Seguiment de l’estat dels boscos de 

 Catalunya (2012). 

En estas redes se han aumentado los puntos de control y seguimiento adaptándolas a las peculiaridades de 
los ecosistemas forestales de cada territorio y ampliando la frecuencia de los muestreos así como la 
obtención de un mayor número de parámetros que permitan un análisis más preciso del estado sanitario 
de los bosques. 
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Figura 3. Defoliación media (%) ± SD, y línea de tendencia en las parcelas de Q. ilex de la Red Europea de nivel I de 
la provincia de Huesca (1990-2008). Se muestra el índice de sequía SPEI (valores negativos indican condiciones más 
secas y valores positivos condiciones menos secas) medio de los meses de junio, julio y agosto, a la escala de 5 y 7  
meses del mismo periodo. Elaborado a partir de datos del ICP-Forest. 
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1.2. Teledetección como herramienta de análisis de eventos de decaimiento del 

bosque 
 
La observación de la tierra desde el espacio a través de sensores remotos instalados en los satélites  

proporciona una extraordinaria visión de la superficie terrestre. La valiosa información que se puede extraer 

de las imágenes obtenidas por estos sensores nos permite llevar a cabo estudios y seguimientos de diversos 

procesos ambientales como el cambio climático, la desertificación, la deforestación, el derretimiento de los 

casquetes polares o el deterioro de la capa de ozono, a una escala espacial y temporal difícilmente 

alcanzable a partir de métodos tradicionales de muestreo sobre el terreno (Smith et al., 2014).  

El primer proyecto dedicado exclusivamente a la observación de los recursos terrestres fue el proyecto 

diseñado por la agencia espacial norteamericana a fines de la década del 60 que dio lugar al programa 

Landsat y que ha constituido el proyecto más fructífero de teledetección espacial hasta el momento 

(Chuvieco, 2010).  

Las imágenes procedentes de los satélites Landsat registradas por sensores multiespectrales de resolución 

media han sido utilizadas por la comunidad científica para el estudio en muy variados campos en todo el 

mundo. Así, estas imágenes son ampliamente usadas para el seguimiento de las condiciones y 

características de la superficie de la tierra, incluyendo la cobertura vegetal. 

El registro de distintas bandas del espectro electromagnético es uno de los factores clave que permite el 

seguimiento de los procesos naturales (Wulder et al., 2006). La defoliación en masas forestales provoca 

cambios en la reflectividad y estos cambios pueden ser usados para detectar daños producidos por sequías, 

ataque de insectos defoliadores, etc. (Álvarez et al., 2005). Por otra parte, la elevada resolución temporal 

(1 imagen cada 16 días), junto con la disponibilidad de una larga serie histórica como es el caso de Landsat, 

hace estas imágenes idóneas para el estudio de perturbaciones en la cobertura forestal y, muy 

especialmente, para el estudio de daños relacionados con variables climáticas, como ocurre con el caso de 

las sequías. 

Por otro lado, hay que considerar que las mediciones de campo en las masas forestales son costosas y 

requieren de mucho esfuerzo y mano de obra, lo que conlleva a una limitación espacial y temporal en la 

adquisición de datos. En este sentido, la teledetección se ha mostrado como una alternativa útil para la 

cuantificación de variables biofísicas como por ejemplo el índice de área foliar y cobertura vegetal (Cohen 

et al., 2003). 

Existen diferentes estudios relacionados con varios aspectos de la cubierta vegetal del planeta, como por 

ejemplo sobre la estructura, la fenología o la dinámica de la vegetación (Alcaraz-Segura et al., 2009), 

cambios en la cobertura vegetal (deforestación o aumento de superficie forestal) (Potapov et al., 2012), 

estado de salud de los bosques o los efectos sobre el dosel arbóreo debido a perturbaciones ambientales 

de diversa índole (defoliaciones causadas por insectos, manejo inadecuado, polución, etc.) que se apoyan 

en el uso de imágenes de sensores remotos y en especial en imágenes Landsat (Asner & Alencar, 2010) 

Por tanto, el uso de imágenes Landsat y la utilización de índices de vegetación obtenidos por combinaciones 

de bandas espectrales se muestran como herramientas efectivas y de gran utilidad. Así, Carreiras et al. 

(2006) utilizan imágenes Landsat para estimar la cobertura del dosel vegetal en bosques adehesados de 

quercíneas (Quercus suber L. y  Quercus ilex subsp. ballota (Desf.) Samp.) llegando a la conclusión de que la 

detección de bajas o medias coberturas del dosel arbóreo en este tipo de cubiertas vegetales se puede 

lograr con la ayuda de imágenes satelitales de alta o media resolución espacial. Por su parte, en Camarero 
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et al. (2010) se comprueba, con el apoyo de imágenes Landsat, como eventos de producción masiva de 

frutos vienen precedidos por un incremento en la cobertura del dosel vegetal asociados a valores máximos 

del índice de vegetación NDVI. En el trabajo de Durante et al. (2009) se evalúa el índice de vegetación de 

diferencia normalizada (NDVI) de la serie temporal 1997-2002 para determinar patrones fenológicos de la 

vegetación bajo diferentes regímenes históricos de gestión y manejo, demostrando que el análisis del NDVI 

en series temporales amplias es una herramienta útil para programas de seguimiento y monitoreo debido 

a la sensibilidad a los cambios, fácil uso y aplicabilidad a estudios a gran escala.  

A pesar de que las técnicas de teledetección se han utilizado desde hace años para el seguimiento y análisis 

de defoliaciones en masas forestales de coníferas ocasionadas por plagas forestales en otras regiones 

(Dottavio & Williams, 1983) y más recientemente en España (Álvarez et al., 2005; Blanco et al., 2009; Cano 

et al., 2005; Navarro et al., 2000; Sangüesa-Barreda et al., 2014; Townsend et al., 2012), los trabajos 

relacionados con la detección y efecto de las sequías sobre masas forestales o defoliaciones en bosques de 

quercíneas basados en técnicas de teledetección son prácticamente inexistentes. En este sentido, podemos 

citar el trabajo de Mänd et al. (2010), que estudió los cambios en la fisiología y estructura de la vegetación 

en respuesta a varios tratamientos de calentamiento y sequía inducida. Los resultados indicaban que los 

índices de reflectividad empleados estaban relacionados significativamente con el índice de área foliar y los 

valores de NDVI fueron más bajos en los tratamientos con sequía inducida. Cabe destacar también el 

estudio de Vicente Serrano et al. (2013) que evalúa la respuesta de los distintos biomas terrestres a la 

sequía mediante correlaciones entre el índice de sequía (SPEI) y tres indicadores de la actividad y 

crecimiento de la vegetación entre los que se encuentran los índices de vegetación obtenidos a partir de 

imágenes de satélite.  

No obstante, en los últimos años está aumentado el número de trabajos científicos en los que se utilizan 

técnicas de teledetección como herramienta para la identificación, seguimiento y estudio de eventos de 

sequía (Baguskas et al., 2014; Nichol & Abbas, 2015; Wang et al., 2007). Además, la generalización del uso 

de imágenes satélite a través de herramientas que minimizan costes de inventario como es el caso de las 

imágenes Landsat, supone un cambio metodológico relevante no sólo para el diagnóstico, sino también 

para el seguimiento de grandes extensiones forestales previsiblemente afectadas (Blanco et al., 2009). 

Es importante tener en cuenta que el uso de imágenes de satélite para explicar fenómenos de interés debe 

estar íntimamente ligado a la posibilidad de validar las estimaciones derivadas de la información de los 

satélites con datos reales de campo, de tal modo que se puedan elaborar modelos predictivos, extrapolar 

datos a otras áreas o derivar variables biofísicas a partir de valores de reflectividad.  

A pesar de la importancia de los datos de campo, no resulta fácil disponer de éstos cuando se plantea un 

estudio mediante técnicas de teledetección y en caso de estar disponibles, no siempre se adaptan a las 

necesidades de éste.  

En todo caso, para el presente trabajo se dispone de datos de producción vegetal (peso seco de tallos y 

hojas) del encinar de la zona de estudio recopilados entre los años 2003 y 2008, que resultan idóneos para 

el análisis de los efectos de las sequías sobre bosques de quercíneas. Hay que considerar que los cambios 

en la cobertura del dosel vegetal (por ej. defoliaciones) implican modificaciones en el modo en que se refleja 

o emite energía y, en consecuencia, la energía (radiancia) que recibe el sensor, lo cual nos permite hacer 

un seguimiento de este tipo de eventos relacionados con el vigor vegetal o estado sanitario del encinar. 
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1.3. Especie de estudio 

 

1.3.1. Descripción de la especie 

 
La encina (Quercus ilex L.) es una especie arbórea perennifolia de la familia de las fagáceas, suele conservar 

hojas de hasta tres años de edad y presenta madera de poro difuso o semi-difuso (Monserrat-Martí et al., 

2009). Q. ilex L. se distribuye en la cuenca oeste mediterránea, mientras que Q. ilex subespecie ballota 

(Desf.) Samp. domina en zonas interiores de la península ibérica con clima mediterráneo continental 

(Camarero et al., 2010) (Fig. 4). 

 

 

Figura 4. Distribución de los encinares en la Península Ibérica. Están representadas las masas 
forestales cuya especie dominante corresponde a la encina (Quercus ilex L.). Elaborado a partir de los 
datos del Mapa Forestal de España (MFE50). 

 
 
Para dar un significado biológico a los resultados del presente estudio es necesario conocer el patrón 

fenológico de Q. ilex en la zona de estudio, el cual se caracteriza por diversas fenofases: i) crecimiento 

vegetativo de las ramas, ii) floración y fructificación y iii) abscisión foliar.  

En cuanto a estas fenofases, es importante conocer el inicio y final de los periodos de crecimiento primario 

(formación de tallos y hojas) y de la caída de las hojas (abscisión foliar), procesos que tienen un efecto 

directo sobre los cambios a nivel de reflectividad que se dan en el dosel del encinar y que resultan 

necesarios para explicar las variaciones de los índices de vegetación. 

Según Monserrat-Martí et al. (2009), el crecimiento de las ramas (dolicoblastos) se inicia en Q. ilex en el 

mes de marzo prolongándose hasta los meses de julio y agosto, en los que las hojas ya se encuentran 

totalmente desarrolladas. A su vez, la mayor caída de hojas se produce justo después de ocurrir la máxima 

producción de dolicoblastos, por lo que este pico de abscisión foliar se sitúa a final de primavera o a 

principio de verano (Fig. 5). 
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1.3.2. Situación actual de los encinares en la Península Ibérica 

 

En España, según datos del Mapa Forestal de España (MFE50), los encinares son dominantes en alrededor 

de 5 millones de ha de formaciones forestales arboladas. Si consideramos el conjunto de quercíneas, esa 

superficie alcanza los 7,3 millones, lo que supone cerca del 40 % de la superficie arbolada del país. 

Constituyen el grupo de especies que ocupa mayor superficie en España, por delante del grupo de las 

coníferas (6,8 Mha, ~35 % de la superficie forestal arbolada). Además, cabe resaltar que muchas superficies 

forestales consideradas desarboladas, están cubiertas por formaciones bajas, matorralizadas (monte bajo), 

de estas mismas especies.  

Las formaciones dominadas por encina presentan dentro del territorio español una gran heterogeneidad 

debido a la gran variedad de condiciones ecológicas y a las distintas modalidades de manejo que el ser 

humano ha aplicado desde antiguo. En este sentido, podemos encontrar masas puras con distinto grado de 

cobertura o densidad (dehesas, montes bajos) y masas mixtas en las que figuran dos o más especies. 

Más concretamente, si observamos la composición y estructura de las formaciones de encinar de la 

provincia de Huesca, en la que se encuentra ubicada nuestra zona de estudio, según el Inventario Forestal 

Nacional existen 106.653 ha de masas forestales en la que la especie principal es Q. ilex, de éstas el 22,7% 

corresponde a masas puras y el 77,3% a masas mixtas. 

Por otro lado, resulta interesante destacar que tan solo existe un 4,5% de toda la superficie de encinar en 

la provincia que presenta un porcentaje mayor del 80% de fracción de cabida cubierta (Fig. 6). 

Tanto la composición de la masa arbórea como la densidad del arbolado que la compone son dos factores 

fundamentales a tener en cuenta en cualquier estudio basado en técnicas de teledetección ya que en 

función de estas variables pueden producirse cambios importantes en los valores de reflectividad de la 

cubierta debido por ejemplo a la influencia de áreas desnudas (influencia del suelo), presencia de especies 

caducifolias en masa mixtas, etc. 

 

Figura 5. Diagrama fenológico de Quercus ilex subsp. ballota para 1997 y 1998. DVG crecimiento vegetativo de 
dolicoblastos; FBF formación de brotes florales; F floración; FS fructificación; SD dispersión de semillas; LSD 
abscisión foliar de dolicoblastos. Fuente: Monserrat-Martí et al., 2009. 
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Figura 6. Distribución de encinares en la provincia de Huesca. Se representan los encinares en función de la 
fracción de cabida cubierta (FCC) según el Inventario Forestal Nacional (IFN3). En la tabla se muestran los 
distintos porcentajes de superficie ocupada por encinares dentro de cada uno de los rangos de FCC. 

 

Las formaciones de encinar en nuestro país tienen una gran importancia tanto a nivel socioeconómico como 

ambiental. En este sentido, los encinares poseen un elevado potencial de generación de productos (leña, 

hongos, miel, alimentación de ganado, etc.) y por otro lado, prestan beneficios ambientales esenciales 

como la regulación hidrológica, la lucha contra la erosión, el secuestro de carbono, el reservorio de 

biodiversidad, etc. 

Actualmente, debido al intenso aprovechamiento al que han estado sometidos durante siglos, y tras el 

abandono generalizado desde mediados del siglo XX, muchos encinares presentan deficiencias como 

cubiertas defectivas, exceso de densidad, envejecimiento, escasa vitalidad, falta de renovación genética, 

estructuras de alta vulnerabilidad al fuego forestal, simplificación estructural o composición específica 

(Vericat et al., 2012).  

Por otra parte, al contrario de lo que podría creerse, las dos especies más afectadas en eventos de 

decaimiento en masas forestales de quercíneas en la Península Ibérica son Q. ilex y Q. suber, las cuales se 

consideran más resistentes a la sequía que las quercíneas de zonas templadas que coexisten en el mismo 

territorio (Gil-Pelegrín et al., 2012). 

Todo ello hace que estos sistemas forestales se encuentren en una situación de amenaza que podría 
comprometer su persistencia, de modo que resulta indispensable llevar a cabo un seguimiento del estado 
de los bosques y su evolución a lo largo del tiempo, en particular en respuesta a sequías severas ya que se 
ha predicho que la frecuencia de estos eventos extremos puede aumentar como consecuencia del cambio 
climático. 
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2. Objetivos 
 
El presente trabajo tiene como objetivo principal analizar el efecto de las sequías sobre la defoliación y la 

producción de hojas de bosques de Q. ilex mediante el establecimiento de relaciones entre los índices de 

vegetación obtenidos a partir de imágenes Landsat con parámetros biológicos procedentes de muestreos 

en campo. Para ello, se plantea un estudio multitemporal en el que se compararán los datos espectrales de 

las imágenes con los datos registrados durante los trabajos de investigación llevados a cabo por los Dres. 

G. Montserrat-Martí y J.J. Camarero del Departamento de Conservación de la Biodiversidad y Restauración 

de Ecosistemas del Instituto Pirenaico de Ecología (IPE-CSIC). 

Para llevar a cabo el objetivo principal se van a desarrollar las siguientes tareas: 

1. Determinación de las relaciones existentes entre la defoliación, el crecimiento primario (brotes y hojas) 

y los datos espectrales de las imágenes Landsat.  

 

2. Obtención del perfil de la dinámica anual del NDVI en el encinar de Arascués (Huesca) para el período 

2000-2014. 

 

3. Relación de los índices de vegetación propuestos con variables climáticas e índices de sequía.  
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3. Material y métodos 
 

3.1. Área de estudio 

 
La zona de estudio es un área de relieve llano (<1,5° de pendiente media) cubierto por un monte bajo 
monoespecífico de encinar (Quercus ilex L.) ubicado en Arascués, Huesca, al noreste de España (42°14´N, 
0°27´W, 650 m). El área basal media del encinar es de 31,6 m2 ha-1, la altura media de las encinas es de 4,8 
m y el rango de edad a 1,3 m es de 50-70 años (basado en el conteo de anillos de crecimiento). Los encinares 
presentes en la zona están muy fragmentados, rodeados de áreas de cultivo y en ellos, desde hace unos 50 
años, no se realiza ningún tipo de explotación o manejo (Fig. 7 y 8). En el sotobosque encontramos 
principalmente especies arbustivas como aladierno (Rhamnus alaternus L.), coscoja (Quercus coccifera L.) 
y enebro (Juniperus oxycedrus L.), en algunas zonas aparece también boj (Buxus sempervirens L.). 
 

 
La elección del área de estudio viene dada por los trabajos de investigación iniciados por los Dres. G. 
Montserrat Martí y J.J. Camarero del Instituto Pirenaico de Ecología (IPE-CSIC) en estos encinares desde el 
año 2003 hasta la actualidad. Durante estos trabajos se han registrado numerosos datos de campo para el 
análisis de la respuesta del encinar en cuanto a crecimiento y producción de frutos frente a episodios de 
sequía.  

Figura 7. Vista del encinar de Arascués 

Figura 8. Imagen de los cultivos existentes alrededor del encinar. 



 

    
Máster Universitario en Tecnologías de la Información Geográfica para la Ordenación del Territorio:   14 
Sistemas de Información Geográfica y Teledetección. 

Durante el período de estudio se registró un episodio de producción masiva de frutos en el año 2003 así 

como dos episodios de fuerte sequía en 2005 y 2012 que produjeron daños en campo como defoliación, 

secado de ramas e incluso la muerte de algunos árboles (el 2% de los 150 árboles monitorizados) (Fig. 9). 

 

 

Figura 9. Imágenes que muestran los daños ocasionados por la sequía de 2012. Se pueden observar defoliaciones severas e incluso 
individuos con ramas secas o totalmente secos. En ocasiones se observan individuos totalmente defoliados lo que no quiere decir 
que se trate de individuos muertos ya que la encina tiene una gran capacidad de rebrote como puede observarse en las dos 
imágenes superiores. Imágenes obtenidas en el encinar de Arascués para este trabajo. 
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Además de la zona establecida por el Instituto Pirenaico de Ecología para llevar a cabo el seguimiento del 

encinar (ver más abajo su descripción), se ha ampliado el área de estudio para este trabajo de modo que 

se ha considerado también un amplio encinar ubicado muy cerca de las áreas estudiadas por el IPE de unas 

660 ha de superficie aproximadamente y de características muy similares (elevada cobertura del estrato 

arbóreo (>80%) y relieve llano).  

Aunque no se dispone de información de campo en estas localidades, el propósito de su inclusión en el 

trabajo es el de obtener mayor cantidad de datos espectrales de las imágenes satelitales con el objeto de 

generar los patrones de la dinámica de la vegetación basados en índices de vegetación, así como establecer 

relaciones con diversas variables climáticas. 

En esta zona se han definido tres áreas o parcelas (Fig. 10) para la extracción de los datos espectrales 

teniendo en cuenta varios aspectos: 

 

1- Exclusión de las zonas periféricas de la masa forestal para evitar la influencia de las zonas agrícolas 

o de baja cobertura arbórea. 

 

2- Selección de áreas homogéneas de encinar de elevada cobertura (>80%) evitando zonas con claros 

o caminos que puedan alterar la radiancia registrada por los sensores en los píxeles de encinar. 

 

Figura 10. La trama amarilla muestra el área de estudio donde el IPE ha llevado a cabo los trabajos de investigación, en verde 
las áreas definidas para la extracción de los datos espectrales de las imágenes satelitales.  
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3.2. Clima 

 
El clima del área de estudio corresponde al Mediterráneo del Piso Mesomediterráneo - Seco (Clasificación 
Rivas-Martínez), caracterizado por un marcado periodo de sequía estival, tal y como se puede observar en 
el diagrama climático (Fig. 11). 

Los datos registrados en la estación de Monflorite, a 17 Km del área de estudio, muestran una temperatura 

media anual de 13,4°C y una precipitación anual media de 534 mm para toda la serie temporal de registros 

(1944-2012). Julio es el mes más cálido (T.med. 23,4°C) y enero el más frío (T.med. 4,8°C). Los meses más 

lluviosos son los de septiembre a diciembre y de abril a mayo, siendo éste último el más lluvioso.  

Durante el período que abarca este estudio (2000-2012), la precipitación anual se mantuvo ligeramente por 

debajo de la media de la serie temporal de registros, destacando la sucesión de dos años, 2004 y 2005, en 

los que se produjo una sequía extrema con valores de precipitación anual muy bajos, 371,4mm y 319,6 mm, 

respectivamente.  

 

Para el presente trabajo se han utilizado los datos 

de precipitación de la estación meteorológica Los 

Corrales Artasona (9487), ubicada a una distancia de 

11 km de las parcelas estudio (Fig.12). Aunque 

existen dos estaciones más cercanas a los bosques 

de encinar de Arascués (9900 y 9897), se ha optado 

por utilizar el observatorio 9487 debido a que es el 

que presenta una serie de registros de precipitación 

más larga y homogénea. En concreto, dicha estación 

presenta registros mensuales de precipitación 

desde el año 1960 hasta diciembre de 2012, 

cubriendo un periodo de 52 años. 

Fig. 11. Climodiagrama de Walter-Lieth (periodo 1944-2012). Elaborado 
a partir de los registros de la estación de Monflorite, Huesca, a 17 Km 
del área de estudio. 

Figura 12. Ubicación de la estación meteorológica de Los Corrales 
Artasona (9487). 
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3.3. Datos de campo 

 

3.3.1. Muestras de ramas  

 
El trabajo de investigación llevado a cabo por el Instituto Pirenaico de Ecología (IPE-CSIC) se centró en dos 
áreas de encinar de pequeña superficie: a) 14.5 ha y b) 13.6 ha. En la primera de ellas se definieron dos 
transectos (transecto 1 y 3) y en la segunda un transecto (transecto 2) (Fig. 13). En cada uno de los 
transectos fueron seleccionados y marcados con placa numerada 50 individuos de Q. ilex para su 
seguimiento y toma de datos de tamaño (diámetro, altura) y crecimiento. 

 
Figura 13. Transectos definidos para la toma de datos en campo. En verde se señala la ubicación de todos los pies 
de Q. ilex, y en amarillo la ubicación de aquellos en los que se recogieron las muestras de ramas. 

 

Entre el periodo 2004-2013 se llevaron a cabo muestreos de campo (estima de bellotas, flores y fenología), 
pero las muestras de ramas se recogieron entre el año 2004 y 2008. Durante los meses de octubre se 
recogieron al azar dos ramas de tres años de edad del tercio superior de la copa de 8 árboles seleccionados 
en cada uno de los tres transectos, en total 16 muestras por transecto y año (Fig. 13). Las ramas se dividieron 
en tallos y hojas según su año de formación y considerando tres cohortes anuales; tallos y hojas del mismo 
año, tallos y hojas de dos años y de tres años de edad (n, n - 1 y n - 2). Posteriormente se obtuvo el peso 
seco de cada una de las fracciones correspondiente a los tallos y las hojas de las tres cohortes tras su secado 
en horno a una temperatura constante de 60° grados. 

Para hacer comparables los datos entre diferentes muestras y años se propone un índice que relacione el 

peso seco total de las hojas con el peso seco total de los tallos para cada muestra y que denominamos 

Índice Foliar. Este índice, elaborado a partir de los datos de producción foliar, lo relacionaremos con los 

índices de vegetación propuestos en el presente trabajo para ver si existe algún tipo de correlación entre 

ellos.  
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Ecuación del Índice Foliar:  

Í𝐧𝐝𝐢𝐜𝐞 𝐅𝐨𝐥𝐢𝐚𝐫 =  
𝑃𝑒𝑠𝑜 𝑠𝑒𝑐𝑜 ℎ𝑜𝑗𝑎𝑠∗

𝑃𝑒𝑠𝑜 𝑠𝑒𝑐𝑜 𝑡𝑎𝑙𝑙𝑜𝑠∗
 

*ramas de tres años de edad 

 

3.4. Índices de sequía y variables climáticas. 

 
En la bibliografía podemos encontrar distintos índices climáticos que tienen por objeto medir de forma 
analítica las intensidades, frecuencias y duración de los periodos secos. Entre éstos, uno de los índices más 
utilizados es el índice de Palmer (PDSI, Palmer, 1965).  

En el presente trabajo se ha utilizado el Standardized Precipitation Index (SPI) desarrollado por Mckee et 

al., (1993), y el Standardized Precipitation Evapotranspiration Index (SPEI)(Vicente-Serrano et al., 2010), 

que permiten representar los periodos anormalmente secos y húmedos de forma más precisa que el índice 

de Palmer y, además, presentan una serie de ventajas frente a este último, ya que permiten un seguimiento 

temporal continuo a diferentes escalas temporales y destacan por su facilidad de cálculo en comparación 

con el PDSI, que requiere una gran cantidad de parámetros para su obtención (Soulé, 1992). 

El SPI utiliza exclusivamente datos de precipitación y es un índice probabilístico que representa el número 

de desviaciones estándar de los diferentes eventos que quedan por encima o debajo de la media de un 

determinado observatorio. Para su cálculo es necesario disponer de una serie homogénea de 

precipitaciones mensuales de al menos 30 años de duración (Wu et al., 2001).  

Como se ha señalado, el SPI puede analizarse a diferentes escalas temporales dependiendo de los impactos 

que se quieran estudiar. En este sentido, el cálculo a distintas escalas es útil para diferentes propósitos 

(agrícola, hidrológico y climático). 

Mckee et al., (1993) establecieron una clasificación de los valores de SPI, modificada posteriormente por 
Agnew (2000), que va desde periodos extremadamente húmedos a extremadamente secos (Tabla 1). Esta 
clasificación es de gran utilidad para determinar la severidad de los periodos secos identificados.  

 
Tabla 1. Clasificación de los valores de SPI según Agnew (2000) 

SPI CATEGORÍA 

< 1,65 Extremadamente húmedo 
1,28 a 1,64 Muy húmedo 
0,84 a 1,28 Moderadamente húmedo 
-0,84 a 0,84 Normal 
-0,84 a -1,28 Moderadamente seco 
-1,28 a -1,64 Muy seco 

<-1,64 Extremadamente seco 

 

A diferencia del SPI, el SPEI incorpora datos de temperatura para su cálculo lo cual es de gran interés en el 

estudio de las sequías. En este sentido, el estrés inducido por altas temperaturas durante periodos de 

sequía se ha hecho evidente en estudios recientes que analizan los impactos de las sequías en el crecimiento 

de los árboles y su mortalidad (de la Cruz et al., 2014). 

Así, el SPEI es el índice de sequía que mejor recoge las respuestas de las variables que definen las sequías 

estivales. Por tanto, el índice SPEI muestra una mejor capacidad de identificar los impactos de la sequía en 

comparación con el SPI (Vicente-Serrano et al., 2012). 

Con el cálculo del SPI y SPEI se pretende identificar los periodos de sequía ocurridos a diferentes escalas 

durante el periodo 2000-2014 y relacionarlos con los datos de reflectividad obtenidos a partir de la serie 

(1) 
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multitemporal de las imágenes satelitales de la zona de estudio. De este modo, se persigue ver si existe 

relación entre los valores de los índices de vegetación derivados de las parcelas estudio y los valores de 

ambos índices climáticos. 

Asimismo, se propone ver si existen relaciones significativas entre distintas variables climáticas, como la 

precipitación o la temperatura máxima y mínima media, tanto mensuales como estacionales (DJF, MAM, 

JJA, SON) y los índices de vegetación de la serie temporal 2001-2012. 

En la siguiente figura (Fig. 14) se representan distintas variables climáticas (precipitación y temperatura) 

registradas en la estación de Monflorite en el periodo 2001-2012. Como puede observarse en el gráfico, 

destacan dos picos muy elevados de temperatura máxima (> 40°) en los veranos de 2005 y 2012. 

 

 

Figura. 14. Precipitación media mensual (P), Temperatura máxima y mínima mensual (T max y Tmin) y 
Temperatura máxima y mínima media mensual (T max (media) y Tmin (media)) durante el periodo 2001-2012. 
Elaborado a partir de los registros de la estación meteorológica de Monflorite-Huesca.  

 

3.4.1. Cálculo del SPI y SPEI 

 
Los valores del SPI para la zona de estudio se han generado a partir de los datos de precipitación registrados 
en la estación meteorológica 9487. Esta estación presenta registros mensuales de precipitación desde el 
año 1960 hasta diciembre de 2012, cubriendo un periodo de 52 años. En este sentido, se cumple el criterio 
de Guttman (1999), que señala la necesidad de disponer de, al menos, 50 años de registros de 
precipitaciones. Para el cálculo del SPI se ha utilizado el paquete “SPEI” en R que genera los valores de SPI 
a partir de los datos de precipitación mensual. 

Para el SPEI se han obtenido los valores a partir de la base de datos “Global SPEI database” 

(http://sac.csic.es/spei/index.html) donde se recoge, casi a tiempo real, información de las condiciones de 

sequía a escala global, a una resolución espacial de 0,5° y una resolución temporal mensual. Para el caso 

del SPEI se ha utilizado la serie temporal 2000-2014 del punto de la malla de 0,5° que incluye el área de 

estudio. 

El análisis detallado de la evolución del SPI y SPEI entre 2000 y 2012 a escala de 1, 3, 6, 12 y 24 meses se 

muestra en la figura 15. La duración de los periodos secos depende de la escala temporal utilizada. En la 

escala de 1 mes destaca una gran alternancia de meses secos y húmedos ya que determina lo seco que ha 

sido un mes respecto del resto de meses de la serie. Así, pueden aparecer valores extremos de sequía 

intercalados entre meses húmedos. 
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A la escala de tres y seis meses se detectan eventos de sequía climática en la que la frecuencia de periodos 

secos y húmedos es menor pero aumenta la duración de dichos periodos. Ambos índices, a estas escalas 

temporales, reflejan la existencia de sequías de carácter agrícola (McKee et al., 1993 y  1995; Hayes et al., 

1999). Estas escalas son indicativas del estado de las condiciones de humedad de la vegetación y el suelo, 

ya que las variaciones temporales de estos parámetros se producen a escalas temporales cortas (Sims et 

al., 2002). 

Un aspecto importante a tener en cuenta es que el efecto de la sequía puede ser muy diferente en función 

del mes en el que se produce el déficit negativo debido a las diferentes necesidades hídricas de la 

vegetación natural (Vicente-Serrano, 2005). Así, a la escala de 6 meses, en 2005 se suceden periodos 

extremadamente secos y muy secos entre abril y septiembre coincidiendo con observaciones de 

importantes defoliaciones en campo, mientras que en diciembre de 2007 y febrero de 2008 se observan 

también episodios de extrema sequía que no tuvieron un impacto visible en campo. 

A escalas superiores de 12 y 24 meses se produce una disminución en la frecuencia de las sequías pero 

aumenta la duración de éstas. Esta escala muestra las condiciones de humedad de forma anual y  puede 

servir para el seguimiento de los recursos hídricos a escala de cuenca.  
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Figura 15. SPI y SPEI a escala de 1, 3, 6 y 12 meses (Serie regional 1960-2012). 
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3.5. Teledetección. Adquisición y tratamiento de la Imagen. 

 

3.5.1. Imágenes de satélite: características y adquisición. 

 

En un estudio multitemporal como el que se plantea, es necesario disponer de un sensor con una resolución 

temporal amplia que permita obtener un número suficiente de imágenes con el fin de cubrir el periodo 

para el que se dispone de datos de campo. Además, resulta imprescindible que, tanto la resolución 

espectral como la resolución espacial de las imágenes se adapten a los requerimientos del estudio.  Otro 

factor a tener en cuenta, es el coste que pueden llegar a alcanzar las imágenes de satélite, sobre todo  

cuando es necesario disponer de un gran número de ellas para cubrir un periodo amplio.  

Considerando los factores mencionados, la única posibilidad viable es el empleo de las imágenes obtenidas 

por los sensores TM y ETM+ de los satélites Landsat 5 y Landsat 7, respectivamente. La resolución temporal 

de estos sensores se remonta al año 1984 hasta 2012 para Landsat 5, si bien la disponibilidad de imágenes 

de acceso gratuito está muy limitada para el periodo 1990-2002, y al año 1999 hasta la actualidad para 

Landsat 7. 

Las imágenes del área de estudio corresponden a la escena path 199/ row 031 (Fig.16). Se han adquirido 

un total de 114 imágenes entre el periodo de  enero de 2000 a agosto de 2014. La adquisición de las 

imágenes se ha realizado a través de los portales del U.S. Geological Survey (USGS);   

http://earthexplorer.usgs.gov/ y http://glovis.usgs.gov/.  

 

 

 

Figura 16. Delimitación del barrido de la escena Landsat 7 (Path 199, Row 031) utilizada en el presente trabajo. 

 

http://earthexplorer.usgs.gov/
http://glovis.usgs.gov/


 

    
Máster Universitario en Tecnologías de la Información Geográfica para la Ordenación del Territorio:   22 
Sistemas de Información Geográfica y Teledetección. 

Características de los Sensores TM y ETM+: 

El sensor Landsat Thematic Mapper (TM) se instaló en las plataformas Landsat 4 y 5, capturando imágenes 

desde Julio de 1982 hasta Mayo de 2012 con un ciclo repetitivo de 16 días.  

Las imágenes Landsat 4-5 TM se componen de siete bandas espectrales (Tabla 2). La resolución espacial es 

de 30 m para las bandas 1-5 y 7. La banda 6 corresponde a la banda térmica con una resolución de 120 

metros. El tamaño de la escena es aproximadamente de 170 Km de Norte a Sur y 183 Km de Este a Oeste. 

El sensor Landsat Enhanced Thematic Mapper Plus (ETM+) a bordo de Landsat 7 ha adquirido imágenes de 

la tierra de forma casi continuada desde Julio de 1999, con un ciclo repetitivo de 16 días. Los datos, como 

en el caso de TM, están codificados con una resolución radiométrica de 8 bits. 

Las imágenes ETM+ se componen de 8 bandas espectrales con una resolución de 30 metros para las bandas 

1-5 y 7 (Tabla 2). La resolución de la banda 8 (pancromática) es de 15 metros. Todas las bandas presentan 

un valor de ganancia (high - low) para aumentar la sensibilidad radiométrica y rango dinámico, mientras 

que la banda 6 (térmica) registra ambos valores de ganancia (high - low). El tamaño de la escena es igual 

que en TM, aproximadamente de 170 Km de Norte a Sur y 183 Km de Este a Oeste. 

A partir de mayo de 2003, las imágenes del sensor ETM+ presentan un problema de registro debido a un 

fallo en el mecanismo de barrido ocasionando la perdida de parte de los datos originales (line gaps). 

 

Tabla 2. Características espectrales y espaciales de los sensores a bordo 
del programa Landsat. (Chuvieco, 2010) 

 Landsat 

 TM ETM+ 

Resolución 

espectral 

1 0.45-0.52 µm 1 0.45-0.52 µm 
2 0.52-0.60 µm 2 0.52-0.60 µm 

3 0.63-0.69 µm 3 0.63-0.69 µm 

4 0.76-0.90 µm 4 0.77-0.90 µm 

5 1.55-1.75 µm 5 1.55-1.75 µm 

6 10.40-12.50 µm 6 10.40-12.50 µm 

7 2.08-2.35 µm 7 2.08-2.35 µm 

 8 0.52-0.90 µm 

 

Resolución 

espacial 

1-5, 7 30 m 1-5, 7 30 m 
6 120 m 6 60 m 

 8 15 m 

 

 

La mayor parte de las imágenes utilizadas en el presente trabajo corresponden a imágenes Landsat Surface 

Reflectance (SR) generadas mediante el software denominado Ecosystem Disturbance Adaptive Processing 

System (LEDAPS). Estas imágenes están corregidas a reflectividad superficial y se podían descargar 

directamente del portal de Earthexplorer en formato HDF; actualmente, desde julio de 2014, se encuentran 

en formato GeoTiff. 

Además, se han obtenido 8 imágenes del sensor Landsat 7 ETM+ para los años 2012 y 2013 que no se 

encontraron en formato SR. En la siguiente tabla se muestra la relación de todas las imágenes adquiridas 

del USGS. 
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Tabla 3. Relación de imágenes descargadas del USGS. Periodo 2000-2014. 

AÑO MES FECHA IMAGEN AÑO MES FECHA IMAGEN 

2000 
 

Ene. 29/01/2000 lndsr.le71990312000029 2008 Abr. 24/04/2008 lndsr.le71990312008115 

Mar. 17/03/2000 lndsr.le71990312000077  Jun. 27/06/2008 lndsr.le71990312008179 

May. 20/05/2000 lndsr.le71990312000141  Ago. 30/08/2008 lndsr.le71990312008243 

Jun. 21/06/2000 lndsr.le71990312000173  Sep. 15/09/2008 lndsr.le71990312008259 

Ago. 08/08/2000 lndsr.le71990312000221  Oct. 01/10/2008 lndsr.le71990312008275 

Sep. 09/09/2000 lndsr.le71990312000253  Mar. 10/03/2009 lndsr.le71990312009069 

Oct. 27/10/2000 lndsr.le71990312000301  Mar. 26/03/2009 lndsr.le71990312009085 

2001 
 

Ene. 31/01/2001 lndsr.le71990312001031 2009 May. 29/05/2009 lndsr.le71990312009149 

Feb. 16/02/2001 lndsr.le71990312001047  Jun. 22/06/2009 lndsr.lt51990312009173 

Jun. 08/06/2001 lndsr.le71990312001159  Jun. 30/06/2009 lndsr.le71990312009181 

Oct. 14/10/2001 lndsr.le71990312001287  Jul. 08/07/2009 lndsr.lt51990312009189 

Oct. 30/10/2001 lndsr.le71990312001303  Jul. 24/07/2009 lndsr.lt51990312009205 

Dic. 01/12/2001 lndsr.le71990312001335  Ago. 17/08/2009 lndsr.le71990312009229 

2002 
 

Feb. 19/02/2002 lndsr.le71990312002050  Sep. 10/09/2009 lndsr.lt51990312009253 

Abr. 24/04/2002 lndsr.le71990312002114  Sep. 26/09/2009 lndsr.lt51990312009269 

May. 26/05/2002 lndsr.le71990312002146  Oct. 12/10/2009 lndsr.lt51990312009285 

Jun. 19/06/2002 lndsr.lt51990312002170  Mar. 13/03/2010 lndsr.le71990312010072 

Jun. 27/06/2002 lndsr.le71990312002178  Abr. 06/04/2010 lndsr.lt51990312010096 

Sep. 15/09/2002 lndsr.le71990312002258 

2010 

May. 16/05/2010 lndsr.le71990312010136 

2003 
 

Feb. 06/02/2003 lndsr.le71990312003037 May. 24/05/2010 lndsr.lt51990312010144 

Mar. 10/03/2003 lndsr.le71990312003069 Jul. 11/07/2010 lndsr.lt51990312010192 

Mar. 26/03/2003 lndsr.le71990312003085 Jul. 19/07/2010 lndsr.le71990312010200 

Abr. 27/04/2003 lndsr.le71990312003117 Ago. 04/08/2010 lndsr.le71990312010216 

May. 29/05/2003 lndsr.le71990312003149 Ago. 20/08/2010 lndsr.le71990312010232 

Jul. 08/07/2003 lndsr.lt51990312003189 Nov. 16/11/2010 lndsr.lt51990312010320 

Jul. 24/07/2003 lndsr.lt51990312003205 Dic. 02/12/2010 lndsr.lt51990312010336 

Ago. 25/08/2003 lndsr.lt51990312003237 Dic. 18/12/2010 lndsr.lt51990312010352 

Sep. 18/09/2003 lndsr.le71990312003261 Feb. 04/02/2011 lndsr.lt51990312011035 

Dic. 23/12/2003 lndsr.le71990312003357 Feb. 12/02/2011 lndsr.le71990312011043 

2004 
May. 15/05/2004 lndsr.le71990312004136 

2011 

Feb. 20/02/2011 lndsr.lt51990312011051 

Jun. 16/06/2004 lndsr.le71990312004168 Abr. 01/04/2011 lndsr.le71990312011091 

2005 
 

Feb. 11/02/2005 lndsr.le71990312005042 Abr. 09/04/2011 lndsr.lt51990312011099 

Feb. 27/02/2005 lndsr.le71990312005058 May. 03/05/2011 lndsr.le71990312011123 

Jun. 19/06/2005 lndsr.le71990312005170 May. 11/05/2011 lndsr.lt51990312011131 

Jul. 05/07/2005 lndsr.le71990312005186 Jun. 20/06/2011 lndsr.le71990312011171 

Jul. 21/07/2005 lndsr.le71990312005202 Jun. 28/06/2011 lndsr.lt51990312011179 

Ago. 06/08/2005 lndsr.le71990312005218 Ago. 15/08/2011 lndsr.lt51990312011227 

Dic. 28/12/2005 lndsr.le71990312005362 Oct. 02/10/2011 lndsr.lt51990312011275 

2006 

Jun. 22/06/2006 lndsr.le71990312006173 Mar. 02/03/2012 LE71990312012062ASN00 
 Jul. 08/07/2006 lndsr.le71990312006189 Jul. 24/07/2012 LE71990312012206ASN01 

Jul. 24/07/2006 lndsr.le71990312006205 

2012 

Ago. 09/08/2012 LE71990312012222ASN00 

Ago. 09/08/2006 lndsr.le71990312006221 Oct. 28/10/2012 lndsr.le71990312012302 

Oct. 28/10/2006 lndsr.le71990312006301 Nov. 13/11/2012 LE71990312012318ASN00 

Nov. 13/11/2006 lndsr.le71990312006317 Nov. 29/11/2012 LE71990312012334ASN00 

2007 

Mar. 05/03/2007 lndsr.le71990312007064 May. 24/05/2013 LE71990312013144ASN00 

Mar. 13/03/2007 lndsr.lt51990312007072 

2013 

Jun. 25/06/2013 LE71990312013176ASN00 

Mar. 29/03/2007 lndsr.lt51990312007088 Jul. 11/07/2013 LE71990312013192ASN00 

May. 08/05/2007 lndsr.le71990312007128 Sep. 13/09/2013 lndsr.le71990312013256 
 
 
 
 

Jul. 19/07/2007 lndsr.lt51990312007200 Oct. 31/10/2013 lndsr.le71990312013304 

Ago. 04/08/2007 lndsr.lt51990312007216 Dic. 02/12/2013 lndsr.le71990312013336 

Ago. 20/08/2007 lndsr.lt51990312007232 

2014 

Feb. 04/02/2014 lndsr.le71990312014035 

Ago. 28/08/2007 lndsr.le71990312007240 Mar. 08/03/2014 lndsr.le71990312014067 

Sep. 05/09/2007 lndsr.lt51990312007248 Jun. 28/06/2014 lndsr.le71990312014179 

Oct. 15/10/2007 lndsr.le71990312007288 Jul. 30/07/2014 lndsr.le71990312014211 

Nov. 16/11/2007 lndsr.le71990312007320 Ago. 15/08/2014 lndsr.le71990312014227 

2008 Ene. 19/01/2008 lndsr.le71990312008019 Ago. 31/08/2014 lndsr.le71990312014243 

Lndsr= Landsat surface reflectance. En rojo y cursiva imágenes no utilizadas por presencia de nubes, en verde imágenes originales 

nivel 1. 
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3.5.2. Detección de nubes 

 
Tras la adquisición de las imágenes a través del portal del USGS, se ha realizado una revisión visual para 
descartar aquellas imágenes con presencia de nubes sobre la zona de estudio (Tabla 3). La presencia de 
nubes o la sombra que éstas pudieran proyectar sobre el área de estudio, puede alterar de forma drástica 
los valores de reflectividad de los píxeles y distorsionar los resultados de los posteriores análisis. 

La detección visual de nubes debe basarse en aquellas bandas que se vean más afectadas por la presencia 

de éstas. En las bandas del espectro visible las nubes pueden ser poco aparentes (Fig. 17A), mientras que 

en el infrarrojo pasan totalmente desapercibidas (Fig. 17B). Sin embargo, la banda térmica facilita la 

discriminación de la cubierta nubosa ya que aparece como zonas totalmente oscuras (Fig. 17C).  

Además de la visualización de la banda térmica para la detección de nubes de la serie multitemporal de 

imágenes, se ha utilizado la banda sr_cfmask (cloud funtion mask) (Fig. 17D) que se adquiere junto con las 

imágenes SR. Esta banda fue desarrollada originalmente en entorno MATLAB y posteriormente se 

implementó en lenguaje C de código abierto, el cual está disponible en la web del proyecto cfmask 

(https://code.google.com/p/cfmask/). La banda sr_cfmask es un ráster binario con información de 

presencia o no de nubes, sombras de nubes, agua y nieve. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figura 17. A: combinación RGB 3, 2, 1. B: banda infrarrojo medio (banda 5). C: banda térmica (banda 6). D: banda sr_cfmask.                   
El círculo amarillo índica la zona de estudio. 

 

(A) (B) 

(C) (D) 

https://code.google.com/p/cfmask/
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3.5.3. Correcciones geométricas: Georreferenciación. 

 

La primera etapa para utilizar la información de las imágenes satelitales consiste en realizar su 

georreferenciación, asignándole a cada píxel su coordenada geográfica correspondiente, o encontrando el 

píxel o grupo de píxeles que proporcionan información sobre una determinada coordenada geográfica 

(Hantson et al., 2011). 

La georreferenciación es el proceso mediante el cual se eliminan los errores de localización de los píxeles y 

es necesaria para la realización de estudios multitemporales y para permitir relacionar las imágenes con los 

datos de campo. Por tanto, para llevar a cabo este estudio resulta imprescindible que todas las imágenes 

utilizadas estén ajustadas geográficamente, de modo que todos los píxeles de una localización concreta 

coincidan y se superpongan en todas las imágenes utilizadas. 

En nuestro caso, como se han utilizado imágenes Landsat que ya están georreferenciadas, no ha sido 

necesario llevar a cabo este proceso de transformación. No obstante, se ha comprobado el grado de ajuste 

de las imágenes utilizadas en el trabajo. 

El grado de ajuste de las funciones de transformación en el proceso de georreferenciación se mide por el 

error cuadrático medio (RMSE) que nos informa sobre la diferencia entre el valor estimado y observado 

para los puntos de control utilizados en la georreferenciación. La tolerancia del RMSE se establece 

generalmente por debajo de un píxel (30 m para Landsat). 

Las imágenes descargadas del U.S. Geological Survey (USGS) se proporcionan con un archivo de metadatos 

‘MTL.txt’ que nos informa sobre el RMSE obtenido en la corrección geométrica (Fig.18). En la tabla 6 se 

muestran dichos valores para todo el conjunto de las imágenes descargadas y el sensor. En todas las 

imágenes el error cuadrático medio (RMSE) se encuentra por debajo de un píxel, siendo el valor máximo de 

RMSE de 7,6 para Landsat-5 y 6,4 para Landsat 7.  

 

 

 

 

 

 

 

 

 

 

 

Tabla 4. Valores del error cuadrático medio (RMSE) de las 

imágenes obtenidas del USGS.  

 RMSE (m) 

 Landsat 5 Landsat 7 

Máx. 7,62 6,38 

Mín. 3,55 2,25 

Media 4,31 4,48 

Desv. St. (SD) 0,94 0,70 

 

Figura 18. Metadatos de una de las imágenes Landsat 7   
donde constan los atributos de la imagen y es posible 
consultar el error cuadrático medio (RMSE) para cada 
imagen. 
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3.5.4. Defecto de bandeado 

 
La plataforma Landsat 7 fue lanzada el 15 de Abril de 1999. En Mayo de 2003, el sensor ETM+ comenzó a 
presentar fallos en el SLC (Scan Line Corrector), por lo cual éste se encuentra apagado, y las escenas 
adquiridas a partir de esa fecha, presentan líneas de datos inválidos (gaps) (Fig. 19). 

 

 

Figura 19. Fragmento de una imagen Landsat 7 ETM+ donde 
claramente se puede observar el efecto de bandeado. 
Combinación RGB 7-4-3. 

 

Los gaps provocan aproximadamente, la pérdida de un 22% de la información de cada  imagen. Están 

dispuestos en franjas inclinadas hacia la izquierda unos 8° respecto a la orientación horizontal debido a la 

rotación de la imagen y aparecen en intervalos de 33 píxeles. Estas líneas tienen hasta 15 píxeles en el borde 

de la imagen y van disminuyendo gradualmente hacia el centro hasta desaparecer. Según el USGS, esta 

zona libre de gaps, tiene una extensión de 22km de ancho aproximadamente. Una anchura de 15 píxeles 

combinado con una distancia de 33 píxeles significa que al borde de la escena, el 45% de los datos se pierden 

(Rodríguez, 2009). 

En los bordes de las franjas de gaps, pueden existir píxeles que no sean registrados como gaps en todas las 

bandas. La amplitud de las lagunas en los datos varía para las diferentes bandas espectrales. Debido a esto, 

al combinar las bandas algunos gaps pueden quedar con un color distinto de negro (Fig.20). 

 

 

 

Figura 20. De izq. a dcha.: Banda 3, Banda 7 y combinación de bandas RGB 7, 4, 3. 
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En la secuencia de escenas adquiridas de una misma localización geográfica, las franjas de datos inválidos 

se van desplazando, hasta coincidir nuevamente en un ciclo de 4 tomas.  

En este trabajo no se ha realizado el relleno de los gaps de las distintas imágenes de Landsat 7 utilizadas ya 
que se requieren los valores originales de reflectividad de cada píxel para cruzarlos con los datos de campo. 
En este sentido, en lugar de aplicar alguno de los métodos de rellenado de gaps como la utilización de 
filtros, se ha optado por suprimir los valores correspondientes a los gaps extraídos de las imágenes y 
excluirlos de los análisis estadísticos. 
 
 

3.5.5. Cálculo de la reflectividad aparente 

 
En nuestro caso, el cálculo de reflectividad aparente se ha aplicado a aquellas imágenes Landsat 7 ETM+ 
que no estaban disponibles en formato Landsat Surface Reflectance (SR). 

Se ha realizado también el cálculo de reflectividad aparente para varias imágenes de Landsat 7 originales y 

se han comparado los valores obtenidos con los de reflectividad de las imágenes correspondientes Landsat 

Surface Reflectance (SR) con el fin de analizar si existen diferencias significativas. 

 
 

3.5.5.1. Conversión de los ND a radiancia espectral 
 
El total de energía radiada en una determinada longitud de onda por unidad de área y, en una dirección 
determinada, por ángulo sólido de medida (radiancia espectral, Lλ) que capta el sensor es codificada con un 
valor numérico denominado nivel digital (ND). 

La conversión de los niveles digitales (ND) almacenados en una imagen original a variables físicas, como la 

reflectividad aparente o la temperatura, es un proceso fundamental que permite trabajar con variables 

físicas de significado estándar comparables en un mismo sensor a lo largo del tiempo y entre distintos 

sensores. 

En este proceso de conversión de los ND a reflectividad aparente es necesario resolver la influencia de 

distintos factores; los referentes al propio sensor (calibrado de las radiancias), a las condiciones de 

observación y a factores ambientales como la dispersión atmosférica. 

El proceso de conversión de los ND a reflectividad aparente se puede esquematizar de la siguiente forma: 

 

 

 

 

Reflectividad aparente 

Obtención de la reflectividad aparente de la superficie terrestre

Radiancia Espectral

Eliminación de la dispersión atmosférica en la radiancia

Niveles Digitales (ND)

Conversión de los ND a valores de Radiancia espectral
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La reflectividad aparente expresa la relación existente entre la energía incidente y la energía reflejada. Su 

valor varía entre 0 (la superficie no refleja nada) y 1 (la superficie refleja toda la energía electromagnética 

que le llega). 

El calificativo de “aparente” se debe a que se asumen dos principios: 1) que la superficie observada es plana 

(pendiente inferior al 5%) y 2) que todas las cubiertas presentes reflejan la energía por igual en todas las 

direcciones (superficies lambertianas). 

Para los sensores TM y ETM+ la relación que permite la conversión de los ND a Radiancia espectral viene 

dada por la siguiente ecuación: 

𝐿𝜆 = 𝐺 × 𝑁𝐷 + 𝐵 

 

Siendo Lλ la radiancia espectral obtenida por el sensor [W/ (m2·sr·μm)], ND los niveles digitales de la imagen, 

G la ganancia (gain) y B el sesgo (bias u offset). 

Los coeficientes de conversión (gain y bias) son proporcionados junto con la imagen original en los archivos 

de cabecera (MTL.txt). Sin embargo, para las imágenes Landsat 7 ETM+ del USGS-EROS se aplican los 

parámetros dados en los metadatos, que coinciden con los aportados en Chander et al. (2009), obtenidos 

a partir de las curvas de calibración radiométricas temporales (Chander et al., 2007). En este caso, la fórmula 

a aplicar para la conversión de los ND a radiancia espectral viene dada por la siguiente ecuación: 

 

𝐿𝜆  =  (
𝐿𝑀𝐴𝑋𝜆 − 𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙 𝑚𝑎𝑥 − 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛
) (𝑄𝑐𝑎𝑙 − 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛) + 𝐿𝑀𝐼𝑁𝜆 

 

o mediante el cálculo del gain y bias a partir de las siguientes relaciones:  

𝐿𝜆 = 𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒 × 𝑁𝐷 + 𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒 

 

donde: 

 𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒  =  
𝐿𝑀𝐴𝑋𝜆−𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙 𝑚𝑎𝑥−𝑄𝑐𝑎𝑙 𝑚𝑖𝑛
 

 

 𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒  =  𝐿𝑀𝐼𝑁𝜆 − (
𝐿𝑀𝐴𝑋𝜆−𝐿𝑀𝐼𝑁𝜆

𝑄𝑐𝑎𝑙 𝑚𝑎𝑥−𝑄𝑐𝑎𝑙 𝑚𝑖𝑛
) 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛 

 

siendo:  

 𝐿𝜆 = radiancia de una determinada longitud de onda [W/ (m2·sr·μm)]. 

 𝐿𝑀𝐴𝑋𝜆 = radiancia espectral que es escalada a 𝑄𝑐𝑎𝑙 𝑚𝑎𝑥 [W/ (m2·sr·μm)]. 

 𝐿𝑀𝐼𝑁𝜆 = radiancia espectral que es escalada a 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛 [W/ (m2·sr·μm)]. 

 𝑄𝑐𝑎𝑙 =  cuantificación del valor del píxel calibrado (ND). 

 𝑄𝑐𝑎𝑙 𝑚𝑎𝑥 = calibración máxima cuantificada para el valor del píxel correspondiente a 𝐿𝑀𝐴𝑋𝜆 (ND). 

 𝑄𝑐𝑎𝑙 𝑚𝑖𝑛 = calibración mínima cuantificada para el valor del píxel correspondiente a 𝐿𝑀𝐼𝑁𝜆 (ND). 

 𝐺𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = Factor de calibración de ganancia [(W/ (m2·sr·μm))/ND]. 

 𝐵𝑟𝑒𝑠𝑐𝑎𝑙𝑒 = Factor de calibración de sesgo [W/ (m2·sr·μm)]. 

(2) 

(3) 

(4) 

(6) 

(5) 
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Para el cálculo de la radiancia espectral de las imágenes Landsat 7 ETM+ es necesario tener en cuenta, 

además, el tipo de ganancia para cada una de las bandas de la imagen. El tipo de ganancia ‘low gain’ o ‘high 

gain’ viene especificada en el archivo de cabecera como se muestra en la tabla 5. 

 

Tabla 5. Tipo de ganancia especificada en el archivo 
de cabecera de una imagen Landsat 7 ETM+. 

GAIN_BAND_1 = "H" 

GAIN_BAND_2 = "H” 

GAIN_BAND_3 = "H" 

GAIN_BAND_4 = "L" 

GAIN_BAND_5 = "H" 

GAIN_BAND_7 = "H" 

 

En Chander et al. (2009) se recogen los coeficientes de calibración para la conversión de los ND a radiancia 

espectral para ETM+ en función del tipo de ganancia (Tabla 6). 

 

Tabla 6. Valores de los distintos parámetros para el cálculo de la radiancia espectral. (Chander et al., 2009) 

 

 

Una vez calculada la radiancia espectral, el siguiente paso consiste en eliminar la radiancia que procede de 

la dispersión atmosférica. Para ello, utilizamos los datos de la propia imagen a través del método basado 

en la estimación de la contribución de la atmósfera a partir de cubiertas con reflectividad nula (métodos 

basados en el ‘objeto oscuro’).  

La propuesta inicial de los métodos basados en el objeto oscuro (dark object) fue realizada por Chávez en 

1975, con sucesivas mejoras (Chavez, 1988, 1996). El método se basa en asumir que las áreas cubiertas con 

materiales de fuerte absortividad (agua, zonas de sombra), deberían presentar una radiancia espectral muy 

próxima a cero. En la práctica, el histograma de los ND de la imagen siempre presenta un mínimo superior 

a ese valor, que se atribuye al efecto de dispersión atmosférica. Asimismo, se observa que ese valor mínimo 

es mayor en las bandas más cortas, disminuyendo hacia el IRC y SWIR. Esta asunción puede ser bastante 

correcta siempre que en la imagen existan zonas en sombra o con agua profunda (Chuvieco, 2010). 

La identificación de los ND mínimos se ha realizado sobre la escena completa en las zonas de sombra 

topográfica y masas de agua, evitando la utilización de los bordes de la imagen para evitar valores 

anómalos. Una vez identificados  los ND mínimos se han transformado a valores de radiancia y, por último, 

se han restado dichos valores a la radiancia total calculada previamente. 
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3.5.5.2. Conversión de la radiancia espectral a reflectividad aparente 
 
El siguiente paso en el proceso del cálculo de la reflectividad aparente es la conversión de los valores de 
radiancia espectral corregida atmosféricamente (𝐿𝜆 − 𝐿𝑎) a los valores de reflectividad aparente en la 
superficie terrestre a través de la siguiente ecuación: 
 

𝜌𝑇 =
(𝐿𝜆 − 𝐿𝑎) ·  𝑑2 ·  𝜋

𝐸0𝜆 · cos 𝜃𝑠𝑜𝑙 · 𝜏1 · 𝜏0
 

donde:  

 𝐿𝜆 = Radiancia espectral. 

 𝐿𝑎 = Radiancia espectral debida a la dispersión atmosférica. 

 𝑑 = distancia tierra-sol en unidades astronómicas. 

 𝐸0𝜆 = Irradiancia espectral solar exoatmosférica. 

 𝜃𝑠𝑜𝑙 = Ángulo cenital solar. 

 𝜏1= Transmisividad del flujo incidente.  

 𝜏0 = Transmisividad del flujo ascendente.  

 

Los parámetros 𝑑 y 𝐸0𝜆 están recogidos en el artículo de Chander et al. (2009), y el ángulo cenital solar en 

los metadatos de la propia imagen. 

Para la transmisividad incidente (𝜏1) se emplean los valores estándar (0,70; 0,78; 0,85 y 0,91) dados por 

Chávez (1996) para las bandas 1-4, respectivamente, y (0,95 y 0,97) para banda 5 y 7, propuestos por 

Gilabert et al. (1994). Para los valores de transmisividad ascendente (𝜏0) se considera 1 para imágenes 

Landsat, ya que la observación es siempre vertical (Hantson et al., 2011). (Gilabert et al., 1994)  

Los cálculos de reflectividad aparente a partir de las imágenes originales se han realizado mediante la 

herramienta Model Maker de ERDAS IMAGINE 2013. En la siguiente figura se muestra el modelo utilizado 

para la conversión de los ND a reflectividad aparente. 

 

 

(7) 
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3.5.6. Imágenes LEDAPS vs. Imágenes Landsat originales (L1) 

 
En este apartado analizamos mediante correlaciones bivariadas en SPSS 20.0 (SPSS, Chicago, USA) los 
valores de reflectividad aparente de imágenes Landsat 5 TM y Landsat 7 ETM+ y los valores de reflectividad 
aparente de las mismas imágenes Landsat Surface Reflectance generadas mediante el software LEDAPS. 
Además, se analiza la correlación de distintos índices de vegetación (NDVI, NDII y MSI) calculados a partir 
de los valores de reflectividad de ambas imágenes. 

Con este análisis se pretende asegurar que no existen diferencias significativas entre los valores de 

reflectividad aparente obtenidos a partir de la conversión de ND a reflectividad aparente de las imágenes 

originales (imágenes L1) con los métodos anteriormente descritos y los valores de reflectividad aparente 

obtenidos mediante el software LEDAPS. De esta forma, se persigue corroborar la coherencia de los datos 

utilizados en el presente estudio ya que se usan ambos tipos de imágenes dentro de la serie temporal 

utilizada para el cálculo de los índices de vegetación. 

Para este análisis se han utilizado 13 imágenes (TM y ETM+) (Tabla 7), de las que se ha calculado la 

reflectividad aparente mediante el procedimiento explicado en el apartado anterior. Posteriormente,  se 

han extraído los valores de reflectividad de 10 píxeles comunes para cada imagen escogidos en el área de 

estudio.  

 

Tabla 7. Imágenes utilizadas para realizar las correlaciones de los valores de reflectividad aparente. 

IMAGEN LANDSAT IMAGEN LEDAPS IMAGEN LANDSAT IMAGEN LEDAPS 

LE71990322004136AS
N01 

lndsr.le719903120041
36 

LT51990322009285MP
S00 

lndsr.lt519903120092
85 LE71990322005170AS

N00 
lndsr.le719903120051

70 
LT51990322010144MP

S00 
lndsr.lt519903120101

44 LE71990322006301AS
N00 

lndsr.le719903120063
01 

LT51990322010320MP
S00 

lndsr.lt519903120103
20 LE71990322007128AS

N00 
lndsr.le719903120071

28 
LT51990322011131MP

S00 
lndsr.lt519903120111

31 LE71990322007288AS
N00 

lndsr.le719903120072
88 

LT51990322011275MP
S00 

lndsr.lt519903120112
75 LE71990322008179AS

N00 
lndsr.le719903120081

79 
LE71990322012302ASN

00 
lndsr.le71990312012

302 LE71990322008275AS
N00 

lndsr.le719903120082
75 

  

    

 

  

Figura. 21. Modelo construido en el módulo Model Maker de ERDAS IMAGINE 2013. Conversión de ND a Reflectividad 
aparente de la superficie terrestre. 
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Los valores de reflectividad obtenidos en ambos tipos de imágenes (LEDAPS y L1) se han cruzado en el 

software SPSS 20.0 (SPSS, Chicago, USA) para obtener el nivel de correlación existente y nivel de 

significancia. 

En la tabla 8 se muestra el resultado de las correlaciones obtenidas para cada una de las bandas. Como 

puede observase, los valores de reflectividad de ambos tipos de imagen están fuertemente relacionados, 

aumentando el nivel de correlación desde la banda 1 hasta la banda 7 donde se obtiene el valor de 

correlación más alto (0,996).  En la figura 22 se muestran los gráficos bivariados de correlación. 

 

Tabla 8. Correlación de Pearson de los valores de 

reflectividad aparente e índices de vegetación. 

 Correlación de Pearson 

Banda 1 0,817** 

Banda 2 0,844** 

Banda 3 0,924** 

Banda 4 0,948** 

Banda 5 0,979** 

Banda 7 0,996** 

NDVI 0,904** 

MDII 0,988** 

MSI 0,989** 
** Correlación significativa a nivel de 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figura 22. Correlaciones bivariadas entre los valores de reflectividad de las imágenes LEDAPS y las imágenes originales 
(L1T) de Landsat 5 y 7. Se obtienen correlaciones altas en todas las bandas siendo los valores más altos para la  banda 5 
y 7.  
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3.5.7. Normalización topográfica 

 
La normalización topográfica es uno de los pasos claves para crear series temporales coherentes y estables 
radiométricamente, ya que las sombras ocasionadas por el relieve cambian a la largo del tiempo (Hantson 
& Chuvieco, 2011). 

El relieve modifica las condiciones de iluminación de las cubiertas, de modo que, si no se tiene en cuenta 

este efecto, la reflectividad medida para la misma cubierta en distintas vertientes puede ser muy variada. 

En nuestro caso, la zona de estudio presenta una pendiente media inferior a 1,5° (calculado a partir del 

MDT05-LIDAR del IGN) (Fig. 23) de modo que el factor relieve es irrelevante y no es necesario realizar ningún 

proceso de corrección topográfica.  

 

Por otro lado, la aplicación de cocientes entre dos bandas de la misma imagen permite minimizar el efecto 

topográfico (pendiente y orientación) como se muestra en la siguiente figura. 

Figura 24. Minimización de los efectos de la topografía y la iluminación en el cálculo de índices de vegetación 

con cocientes entre bandas. Fuente: material docente Máster TIG Zaragoza 

Figura 23. Mapa de pendientes de la zona de estudio (elaborado a partir del MDT50). La pendiente media de las 

áreas de estudio está por debajo de 1,5°. 

NDVI =(50-18)/(50+18) = 0,47 

NDVI =(25-9)/(25+9) = 0,47 
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3.6. Índices de vegetación (IV). 

 
Los índices de vegetación (IV) derivados de los datos de satélite son una de las principales fuentes de 
información para el monitoreo de la cobertura vegetal de la Tierra (Gilabert et al., 2002). 

Estos índices, basados en datos de sensores remotos se han utilizado cada vez con más frecuencia como 

indicadores cuantitativos del funcionamiento de los ecosistemas (Rodriguez-Moreno, 2013). Debido a su 

diseño conceptual y estructural, los índices de vegetación se pueden relacionar con parámetros físicos del 

estado de la vegetación, ya que recogen el comportamiento espectral de ésta.   

Un elemento que caracteriza el comportamiento espectral de las hojas es la baja reflectividad en la porción 

visible del espectro debido al efecto absorbente de los pigmentos fotosintéticos, principalmente por la 

clorofila. La baja absorción de la clorofila y la elevada reflectividad debido a las cavidades internas del 

parénquima esponjoso de la hoja en la región del infrarrojo cercano (IRC), proporciona un fuerte contraste 

con la banda del rojo. Los IV capturan este contraste a través de combinaciones algebraicas entre estas dos 

regiones del espectro visible (Myneni et al., 1995). Además, estas combinaciones están diseñadas para 

minimizar influencias externas, tales como cambios de irradiancia solar debido al efecto de la atmósfera o 

variaciones por la influencia del suelo en la respuesta espectral del dosel vegetal (Gilabert et al., 2002). 

En la figura 25 se muestra la firma espectral de la vegetación sana. Se observa claramente el gran contraste 

que existe entre la región del infrarrojo cercano (0,70 – 0,90 µm) y del rojo (0,60 – 0,70 µm) debido a los 

factores comentados en el párrafo anterior. Esto permite discriminar claramente distintos tipos de 

vegetación y su estado fisiológico a través de los índices de vegetación que relacionan ambas bandas.  

Entre el gran número de índices de vegetación publicados (Bannari et al., 1995) se han seleccionado para 

este estudio los siguientes: (i) NDVI (Rouse et al., 1974), NDII (Hardisky & Klemas, 1983) y MSI (Rock et al., 

1986), como índices que se basan en las medidas de reflectividad espectral sin considerar ningún otro 

parámetro externo (Vercher et al., 2002); (ii) SAVI (Huete, 1988), EVI (Huete et al., 2002), índices que tienen 

en cuenta otros parámetros como la influencia del suelo o la atmósfera en la radiancia registrada por el 

sensor. Por último, se ha considerado también el índice NMDI (Normalized Multi-band Drought Index) que 

formaría parte del primer grupo (i) y cuya propuesta es relativamente reciente (Wang & Qu, 2007). 

 

 

 

Figura 25. Firma espectral de vegetación sana. Se observa el gran contraste entre la 
región del rojo (R) y el infrarrojo cercano (IRC). Fuente: Modificado de Wikiagro.com 
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I. NDVI (Normalized Difference Vegetation Index) 
 
El índice más empleado es el índice de la vegetación de diferencia normalizada (Normalized Difference 
Vegetation Index- NDVI), un cociente que representa las características funcionales de la planta activa y que 
contrasta la reflectividad de las bandas infrarrojo cercano (Near Infrared- NIR) y rojo (Red- R) (Rodriguez-
Moreno, 2013). 

Propuesto originalmente por Rouse et al (1974):  

 

𝑁𝐷𝑉𝐼𝑖 =  
𝜌𝑖,𝐼𝑅𝐶 − 𝜌𝑖,𝑅

𝜌𝑖,𝐼𝑅𝐶 + 𝜌𝑖,𝑅
 

donde  𝜌𝑖,𝐼𝑅𝐶  y 𝜌𝑖,𝑅 , indican las reflectividades del píxel 𝑖 en la banda del infrarrojo cercano (IRC) y del rojo 

(R), respectivamente. Este índice se obtiene a partir de la reflectividad de las bandas 4  y 3 para TM y ETM+ 

(Fig. 26). 

 

 

El NDVI varía entre unos márgenes conocidos (-1 y +1), lo que facilita notablemente su interpretación. Así, 

se puede establecer un valor crítico mínimo para cubiertas vegetales en torno a 0,1 y entre 0,5 y 0,7 para 

vegetación densa (Holben, 1986). 

En nuestro caso, se espera que los valores de NDVI obtenidos a partir de imágenes que coinciden con 

momentos favorables para el desarrollo y la actividad vegetativa sean más elevados que los obtenidos con 

imágenes adquiridas en momentos de sequía acusada. 

 

 

 

 

Figura 26. Firma espectral de vegetación sana y respuesta espectral relativa de las bandas del 

sensor ETM+. Modificado del USGS (http://landsat.usgs.gov/tools_spectralViewer.php). 

(8) 

http://landsat.usgs.gov/tools_spectralViewer.php
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II. NDII (Normalized Difference Infrared Index) 
 
Definido como (Hardisky & Klemas, 1983):  

𝑁𝐷𝐼𝐼𝑖  =  
𝜌𝑖,𝐼𝑅𝐶 − 𝜌𝑖,𝐼𝑅𝑀

𝜌𝑖,𝐼𝑅𝐶 + 𝜌𝑖,𝐼𝑅𝑀
 

donde  𝜌𝑖,𝐼𝑅𝐶  y 𝜌𝑖,SWIR , indican la reflectividad del píxel 𝑖 en la banda del infrarrojo cercano y el infrarrojo 

medio, respectivamente. 

Para el cálculo del NDII se ha utilizado, dentro del SWIR, la banda 5 de TM y ETM+ quedando la expresión 

como:  

𝑁𝐷𝐼𝐼𝑖 =  
𝜌𝑏𝑎𝑛𝑑𝑎 4 − 𝜌𝑏𝑎𝑛𝑑𝑎 5

𝜌𝑏𝑎𝑛𝑑𝑎 4 + 𝜌𝑏𝑎𝑛𝑑𝑎 5
 

La banda 4 de TM va de 0,76 a 0,90 µm y la banda 5 de 1,55 a 1,75 µm; para ETM+ la banda 4 es ligeramente 

más estrecha, de 0,77 a 0,90 y la banda 5 es igual. 

En el caso de las sequías, un factor prioritario es el análisis del contenido de agua en la vegetación. En este 

caso, el dominio espectral más idóneo no está formado por las bandas IRC-R, sino más bien por las SWIR-

IRC, ya que la absorción del agua se produce en el SWIR y no en el visible. Por tanto, al aumentar el 

contenido de agua en la vegetación, disminuye paralelamente la reflectividad en el SWIR. Por su parte, el 

IRC nos proporciona información sobre el estado fisiológico de las hojas, ya que el estrés hídrico provoca el 

colapso de las cavidades internas de la hoja con lo que disminuye la reflectividad en esta región del espectro 

(Chuvieco, 2010). 

NDII ha sido descrito como un indicador muy preciso del contenido de humedad foliar en distintos 

ecosistemas (Cheng et al., 2008; Chuvieco et al., 2002; Hardisky & Klemas, 1983). 

Se espera que los bosques no perturbados presenten los valores más altos del Índice infrarrojo de diferencia 
normalizada (NDII), en comparación con los bosques que han sufrido defoliaciones debido a la disminución 
en el contenido de agua a causa de eventos de sequía (De Beurs & Townsend, 2008). 
 
 

III. MSI (Moisture Stress Index) 
 
El MSI es un índice de vegetación que se basa, al igual que el NDII, en la relación entre el infrarrojo medio 
y el infrarrojo cercano. El índice fue desarrollado por Rock et al (1986) como:(  

𝑀𝑆𝐼𝑖  =  
𝜌𝑖,𝐼𝑅𝑀

𝜌𝑖,𝐼𝑅𝐶
 

Bandas utilizadas para Landsat TM y ETM + .   𝑀𝑆𝐼 = 
𝜌𝑏𝑎𝑛𝑑𝑎 5
𝜌𝑏𝑎𝑛𝑑𝑎4

 

donde 𝜌𝑖,𝐼𝑅𝐶 y 𝜌𝑖,𝐼𝑅𝑀 , indican la reflectividad del píxel 𝑖 en las bandas del IRC y del SWIR, respectivamente. 

 

Al contrario que el NDII, el MSI presentará valores altos en bosques afectados por sequía; a menor 

contenido de agua foliar mayores serán los valores en la banda 5 y el apelmazamiento interno de la hoja 

(9) 

(10) 

(11) 
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que se produce como consecuencia del estrés hídrico dará valores más bajos de reflectividad en la banda 

4.  

Como el NDII, el MSI se utiliza como índice para el estudio de las sequías. Rock et al. (1985) encontraron 
que el MSI presenta altas correlaciones con los cambios hídricos de la planta. 
 
 

IV. SAVI (Soil Adjusted Vegetation Index) 
 
Uno de los factores que modifica notablemente el comportamiento del NDVI es la proporción de 
vegetación/suelo observada por el sensor. De esta forma valores similares de NDVI pueden corresponder a 
cubiertas vigorosas pero poco densas, o a cubiertas densas con menor vitalidad. Por ello Huete (1988) 
propuso introducir este factor suelo mediante un parámetro (L) en la fórmula del NDVI:  

𝑆𝐴𝑉𝐼𝑖  =  
𝜌𝑖,𝐼𝑅𝐶 − 𝜌𝑖,𝑅

𝜌𝑖,𝐼𝑅𝐶 + 𝜌𝑖,𝑅 +  𝐿
 (1 + 𝐿) 

donde L, indica una constante para ajustar la línea vegetación-suelo al origen. En otro trabajo, el autor 
indica un posible valor de L en torno a 0,5 para densidades intermedias (Huete et al., 1994). El índice SAVI 
utilizado en este trabajo se ha calculado con dicho valor de L (0,5). 
 
 

V. EVI (Enhanced Vegetation Index) 
 

El índice de vegetación mejorado (EVI), fue desarrollado para optimizar la señal de la vegetación con el fin 

de mejorar la sensibilidad en regiones de elevada biomasa y mejorar el seguimiento de la vegetación 

separando la aportación del suelo y la influencia atmosférica (Huete et al., 2002). La ecuación se presenta 

como sigue:  

𝐸𝑉𝐼 = 𝐺 
(𝜌𝐼𝑅𝐶 − 𝜌𝑅)

(𝜌𝐼𝑅𝐶 + 𝐶1𝜌𝑅 − 𝐶2𝜌𝐴 + 𝐿)
 

donde 𝜌𝐴, 𝜌𝑅, y 𝜌𝐼𝑅𝐶  son la reflectividad del azul, rojo e infrarrojo cercano, respectivamente, L es la 
radiancia del fondo (la misma que en SAVI), G es un factor de ganancia, y C1 y C2 son los coeficientes para 
corregir la influencia de aerosoles en la banda roja a partir del azul. Los coeficientes adoptados en el 
algoritmo del índice EVI son: L=1, C1=6, C2= 7,5 y G (gain factor)= 2,5. 
 
 

VI. NMDI (Normalized Multi-band Drought Index) 
 
Propuesto por Wang y Qu (2007), se diseñó para analizar el contenido de humedad del suelo y la vegetación. 
Los autores concluyen en su estudio que este índice mejora la sensibilidad a las sequías extremas pero que 
su aplicación en áreas con cobertura vegetal moderada debe ser mejor estudiada. La expresión de dicho 
índice es: 
 
 

𝑁𝑀𝐷𝐼 =  
𝜌𝑏𝑎𝑛𝑑𝑎 4 − (𝜌𝑏𝑎𝑛𝑑𝑎 5 − 𝜌𝑏𝑎𝑛𝑑𝑎 7)

𝜌𝑏𝑎𝑛𝑑𝑎 4 + (𝜌𝑏𝑎𝑛𝑑𝑎 5 − 𝜌𝑏𝑎𝑛𝑑𝑎 7)
 

 
 
 
 

(12) 

(13) 

(14) 
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3.7. Relaciones existentes entre los datos de campo (ramas) e índices de vegetación 

 
Para relacionar los datos de campo con las imágenes de satélite es indispensable conocer la ubicación 
geográfica precisa de los árboles muestreados. Por este motivo, se decidió georreferenciar las encinas de 
los tres transectos del área de estudio mediante GPS (GeoExplorer 2008 Series de Trimble) aplicando 
corrección diferencial para obtener resultados de localización más precisos (precisión < 2 m) (Fig.27). 

Una vez georreferenciadas las encinas, resultó que la mayoría de 

píxeles de la imagen satélite que se superponen con los 

individuos de los que se obtuvieron las muestras de ramas se 

ubican en la zona periférica del área de estudio. Esto constituye 

un problema a la hora de relacionar los datos espectrales de 

cada píxel con el índice foliar, debido a que estos píxeles pueden 

verse afectados por coberturas como zonas de cultivos o suelo 

desnudo.  

En la siguiente figura se muestra la distribución de los pies de 

encina de cada uno de los tres transectos sobre una imagen 

Landsat (combinación RGB 7, 4, 3). Los puntos amarillos 

corresponden a las encinas muestreadas y como puede 

apreciarse claramente se encuentran en la zona del borde del área de estudio (transecto 1 y parte del 3) o 

en una franja muy estrecha cubierta apenas por 2 píxeles (60 m) de encinar (transecto 2). Se observa que 

el color de los píxeles en estas zonas de borde es distinto al color de los píxeles en las áreas centrales del 

encinar (P 1_3 y P 2) debido a la aportación de energía radiante de píxeles vecinos.  

 

 

Figura 27. Georreferenciación de las encinas 
mediante GPS Trimble 

Figura 28. Localización de las encinas en la zona de estudio sobre una imagen Landsat 7 corregida a reflectividad 
aparente (Combinación RGB 7, 4, 3). 
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En la figura 29 se muestra la signatura espectral de los valores medios de reflectividad aparente extraídos 

de los píxeles correspondientes a las ubicaciones de las encinas muestreadas y de los píxeles de la zona 

central (P 1_3 y P 2) del encinar. Como puede apreciarse, la signatura espectral de píxeles de borde de 

encinar (en marrón) presenta valores más elevados en todas las bandas y menor contraste entre la banda 

4 y 3, debido a la aportación de radiancia de las cubiertas del borde del encinar como puedan ser algunos 

cultivos o suelo desnudo. 

 

Para evitar la influencia del efecto borde en las correlaciones entre los índices de vegetación y el índice 

foliar se ha decidido trabajar con valores medios de reflectividad aparente obtenidos a partir de los píxeles 

ubicados en la zona central del encinar.  

 

Para ello, se han definido dos polígonos P1_3 y P2 (ver figura 26) y se han extraído los valores de 

reflectividad aparente de las imágenes Landsat más próximas a las fechas en que se realizó el muestreo de 

ramas en campo, esto es, los meses de octubre de 2004 a 2008. Para la extracción de dichos valores se ha 

utilizado la función “Pixels to ASCII” mediante la creación de áreas de interés poligonales (AOI’s)  en el 

software ERDAS IMAGINE 2013. De esta forma, se han obtenido los valores de reflectividad de 58 y 16 

píxeles para el polígono P1_3 y P2, respectivamente. Posteriormente, se han depurado los datos, 

eliminando aquellos registros que correspondían a píxeles de bandeado cuando se daba el caso. Por último, 

se han calculado los índices de vegetación propuestos según las fórmulas y parámetros expuestos en el 

apartado 3.5 y se ha obtenido el valor medio de éstos para cada polígono e imagen (Tabla 9). 

 
Tabla 9. Valores de los IV para cada imagen y parcela. 

Año Polígono Fecha de adquisición imagen NDII NDVI MSI EVI SAVI NMDI 

2004 1_3 Junio lndsr.le71990312004168 0,254 0,658 0,595 0,401 0,374 0,529 

2004 2 Junio lndsr.le71990312004168 0,252 0,657 0,598 0,406 0,380 0,526 

2005 1_3 Agosto lndsr.le71990312005218 0,121 0,570 0,785 0,312 0,298 0,463 

2005 2 Agosto lndsr.le71990312005218 0,100 0,539 0,819 0,298 0,287 0,466 

2006 1_3 Octubre lndsr.le71990312006301 0,313 0,690 0,524 0,391 0,361 0,560 

2006 2 Octubre lndsr.le71990312006301 0,306 0,671 0,532 0,381 0,353 0,574 

2007 1_3 Octubre lndsr.le71990312007288 0,270 0,674 0,575 0,360 0,337 0,532 

2007 2 Octubre lndsr.le71990312007288 0,242 0,644 0,610 0,339 0,322 0,533 

2008 1_3 Octubre lndsr.le71990312008275 0,254 0,584 0,596 0,344 0,313 0,592 

2008 2 Octubre lndsr.le71990312008275 0,224 0,579 0,634 0,342 0,312 0,578 

Figura 29. Signaturas espectrales de píxeles de borde y área central del encinar de una 
imagen Landsat 7.  
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3.8. Perfil de la dinámica anual del NDVI en el encinar de Arascués.  

 

La construcción de perfiles basados en índices de vegetación a partir de series temporales largas de 

imágenes de satélite, nos ayuda a entender cómo se comportan los distintos tipos de vegetación durante 

un ciclo anual desde un punto de vista ecológico. De esta forma, cada perfil será característico de un tipo 

de vegetación y puede servir de línea de referencia para detectar valores puntuales anormales como los 

que se registran en caso de episodios de sequía y que se corresponden a caídas fuertes en la reflectividad 

como consecuencia de daños o defoliaciones en el dosel vegetal. 

En el clima mediterráneo continental, caracterizado por bajas temperaturas invernales y un acusado 

periodo de sequía estival, se generan dos “ventanas” temporales óptimas para el crecimiento vegetal: 

primavera y otoño (Mitrakos, 1980). Así, se espera que el perfil de NDVI refleje estos dos periodos de 

crecimiento vegetal con valores más elevados en ambas estaciones. 

Para establecer la dinámica anual del NDVI, se han calculado los valores medios mensuales de NDVI del 

periodo 2000-2014 con los datos espectrales extraídos de las áreas de estudio definidas en los encinares 

de Arascués (Fig.30). En total se han extraído los valores de reflectividad de 1.230 píxeles de encinar de 90 

imágenes, tras la depuración de los datos eliminando los valores de píxeles afectados por líneas gaps se ha 

calculado el NDVI y el valor medio de éste para cada imagen. Finalmente se ha calculado la media mensual 

del NDVI de todo el periodo de estudio (2000-2014). 

 

 

 

Figura. 30. Parcelas definidas en los encinares de Arascués para extraer los datos de reflectividad. Imagen Landsat 
(combinación RGB 4, 3, 2). 
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El principal problema que ha surgido a la hora de generar el perfil ha sido la baja disponibilidad de imágenes 

en algunos meses del período de estudio; en concreto, el mes con menos imágenes disponibles es enero 

(3). En la siguiente tabla se muestra la cantidad de imágenes por mes utilizadas para obtener los valores 

medios de NDVI. 

 

Tabla 10. Número de imágenes Landsat válidas (n) por mes durante el periodo 2000-2014 

 Ene. Feb. Mar. Abr. May. Jun. Jul. Ago. Sep. Oct. Nov. Dic. 

n 3 6 8 4 10 11 10 13 7 9 5 4 

 

De este modo, es posible que la escasa disponibilidad de imágenes en algunos meses no permita definir de 

forma muy precisa el valor mensual medio real del NDVI durante el periodo estudiado. No obstante, desde 

el punto de vista del análisis y estudio de los episodios de sequía, nos interesa en mayor medida los meses 

de verano en los que sí hay óptima disponibilidad de imágenes. 

 

 

3.9. Relación entre índices de vegetación, clima e índices de sequía 

 
En este apartado tratamos de analizar la correlación existente entre los índices de vegetación (IV) obtenidos 
a partir de los datos de reflectividad extraídos del área de estudio de toda la serie multitemporal de 
imágenes satélites del año 2000 al 2014, con los valores del SPI y SPEI correspondientes al mes en que cada 
una de las imágenes fueron adquiridas. 

En otras palabras, las variables utilizadas son: i) valores medios de los índices de vegetación del área de 

estudio para cada una de las imágenes de la serie temporal y ii) valores de SPI y SPEI del mes 

correspondiente a la adquisición de cada una de las imágenes.  

El análisis se ha realizado agrupando los datos por meses para comprobar si existe mayor correlación entre 

los IV e índices climáticos para los meses estivales en los que los eventos de sequía presentan un mayor 

impacto sobre el desarrollo de la vegetación. En este sentido, se pretende corroborar los resultados 

obtenidos en Vicente-Serrano et al. (2005), donde después de analizar la relación existente entre distintos 

índices climáticos y series dendrocronológicas se observa que las correlaciones resultan mucho más altas 

en verano que en invierno. 

En el caso de disponer de varias imágenes del mismo mes para un año en concreto se ha realizado la media 

de los valores de los IV para obtener un único dato mensual a la hora de hacer las correlaciones con el valor 

del índice climático de ese mes en concreto. 

Por otro lado, el hecho de realizar las medias de los valores de los índices de vegetación para los meses con 

varias imágenes podría introducir ruido en el análisis de correlación. Sin embargo, tras analizar dichos 

valores mediante la desviación estándar, se observa que las diferencias en los índices de vegetación de 

distintas imágenes adquiridas dentro de un mismo mes son mínimas, al menos, para el caso de los encinares 

(Tabla 11).  
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Tabla 11. Valores de Desviación estándar (SD) para NDVI y NDII. 

AÑO MES SD(NDII) SD(NDVI) AÑO MES SD(NDII) SD(NDVI) 

2001 Oct. 0,0320 0,1155 2009 Sep. 0,0061 0,0329 

2002 Jun. 0,0054 0,0561 2010 May. 0,0071 0,0496 

2003 Mar. 0,0045 0,0021 2010 Jul. 0,0139 0,0473 

2003 Jul. 0,0094 0,0437 2010 Ago. 0,0013 0,0063 

2005 Feb. 0,0122 0,1267 2010 Dic. 0,0147 0,0468 

2005 Jul. 0,0132 0,0641 2011 Feb. 0,0143 0,0179 

2006 Jul. 0,0031 0,0039 2011 Abr. 0,0054 0,0642 

2007 Mar. 0,0124 0,0458 2011 May. 0,0076 0,0272 

2007 Ago. 0,0102 0,0452 2011 Jun. 0,0318 0,0787 

2009 Mar. 0,0083 0,0151 2012 Nov. 0,0078 0,0002 

2009 Jun. 0,0076 0,0029 2014 Ago. 0,0042 0,0199 

2009 Jul. 0,0009 0,0054     

 

La relación existente entre las distintas variables se ha cuantificado mediante la correlación de Pearson (r), 

el análisis estadístico se ha realizado con el programa SPSS 20.0 (SPSS, Chicago, USA). 

Como inconveniente del análisis realizado es destacable la baja disponibilidad de imágenes, en especial 

para los meses de invierno. Además, cabe señalar que no existen imágenes de todos los meses para cada 

año en la serie temporal 2000-2014.  

En la siguiente tabla se muestra el número de casos (n) disponibles para cada uno de los meses analizados: 

 

Tabla 12. Número de datos (n) disponibles por mes para el periodo 2000-2012. 

 Ene. Feb. Mar. Abr. May. Jun. Jul. Ago. Sep. Oct. Nov. Dic. 

n 3 5 6 5 8 9 7 10 6 8 4 4 

 

Para establecer las relaciones entre los índices de vegetación (IV) con las variables climáticas se han 

utilizado los índices de vegetación del mes de octubre, de mayo y la media de los meses de verano (IV de 

junio, julio y agosto). Las variables climáticas utilizadas han sido la precipitación para cada mes y la suma 

de la precipitación para los siguientes meses DEF, MAM, JJA, SON. En cuanto a temperatura, se ha utilizado 

la temperatura máxima y mínima media de cada mes  y la media de los meses DEF, MAM, JJA, SON. 
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4. Resultados 

 

4.1. Relación entre el índice foliar e índices de vegetación. 

 
Los datos obtenidos  de las muestras de campo (tallos y hojas) de los tres transectos, utilizados para realizar 
los distintos análisis, se resumen en la siguiente tabla. 
 

Tabla 13. Valores medios ±1SD de peso seco de ramas y hojas en los tres transectos estudiados. 

Año Transecto 
Tallos (g) Hojas (g) 

n n-1 n-2 n n-1 n-2 

2004 1 0,17 ± 0,05 0,42 ± 0,06 0,25 ± 0,05 0,42 ± 0,21 1,80 ± 0,30 0,02 ± 0,01 
 2 0,18 ± 0,07 0,36 ± 0,06 0,22 ± 0,05 0,31 ± 0,12 1,24 ± 0,17 0,13 ± 0,08 
 3 0,11 ± 0,05 0,37 ± 0,08 0,27 ± 0,08 0,37 ± 0,25 1,51 ± 0,28 0,11 ± 0,03 
 Media 0,15 ± 0,03 0,38 ± 0,04 0,25 ± 0,03 0,37 ± 0,09 1,51 ± 0,13 0,09 ± 0,02 

2005 1 0,13 ± 0,03 0,17 ± 0,04 0,23 ± 0,04 0,35 ± 0,11 0,39 ± 0,18 0,21 ± 0,07 
 2 0,18 ± 0,05 0,12 ± 0,03 0,17± 0,02 0,57 ± 0,17 0,12 ± 0,04 0,12 ± 0,07 
 3 0,15 ± 0,03 0,20± 0,06 0,27 ± 0,04 0,32 ± 0,10 0,35 ± 0,15 0,40 ± 0,08 
 Media 0,15 ± 0,02 0,17 ± 0,02 0,23 ± 0,02 0,41 ± 0,06 0,25 ± 0,04 0,29 ± 0,07 

2006 1 0,27 ± 0,05 0,10 ± 0,03 0,14 ± 0,01 1,89 ± 0,26 0,06 ± 0,04 0,00 ± 0,00 
 2 0,25 ± 0,04 0,13 ± 0,02 0,16 ± 0,02 2,15 ± 0,36 0,06 ± 0,04 0,01 ± 0,01 
 3 0,36 ± 0,04 0,13 ± 0,02 0,23 ± 0,03 2,31 ± 0,20 0,11 ± 0,08 0,01 ± 0,01 
 Media 0,29 ± 0,03 0,12 ± 0,01 0,18 ± 0,01 2,11 ± 0,16 0,08 ± 0,04 0,01 ± 0,00 

2007 1 0,27 ± 0,05 0,38 ± 0,05 0,18 ± 0,02 1,07 ± 0,13 1,57 ± 0,27 0,00 ± 0,00 
 2 0,15 ± 0,03 0,26 ± 0,04 0,15 ± 0,03 0,69 ± 0,16 1,24 ± 0,16 0,01 ± 0,01 
 3 0,24 ± 0,03 0,31 ± 0,03 0,14 ± 0,01 0,97 ± 0,14 1,29 ± 0,16 0,00 ± 0,00 
 Media 0,22 ± 0,02 0,32 ± 0,02 0,16 ± 0,01 0,91 ± 0,09 1,36 ± 0,11 0,00 ± 0,00 

2008 1 0,73 ± 0,13 0,42 ± 0,05 0,29 ± 0,03 2,78 ± 0,34 0,42 ± 0,10 0,06 ± 0,04 
 2 0,60 ± 0,08 0,29 ± 0,03 0,22 ± 0,02 1,96 ± 0,19 0,44 ± 0,11 0,12 ± 0,04 
 3 0,70 ± 0,09 0,47 ± 0,07 0,25 ± 0,03 2,57 ± 0,36 0,56 ± 0,12 0,03 ± 0,01 
 Media 0,68 ± 0,06 0,40 ± 0,03 0,25 ± 0,02 2,44 ± 0,18 0,48 ± 0,06 0,07 ± 0,02 

 
En la figura 31 izda. se representa el índice foliar (peso seco hoja/peso seco tallo) para cada año y cohorte 
anual así como el valor medio anual ±SD. En la figura 31 dcha. se representa el porcentaje del peso seco de 
hojas de cada cohorte (n, n-1 y n-2) respecto al peso total de hojas de las muestras para cada año de 
muestreo. Resulta interesante observar que tras el período de fuerte sequía que se registró en el año 2005 
se pierden prácticamente todas las hojas formadas durante ese año, de modo que en 2006 el porcentaje 
de hojas del año anterior (n-1) es muy bajo (3.6%). 
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Figura 31. Izda.: Índice foliar (peso seco total hojas/peso seco total tallos de las ramas de tres años de edad) por año y cohorte 
anual (n, n-1 ,n-2). Dcha.: porcentaje de peso seco de hojas por cohorte (n ,n-1 ,n-2)  respecto al peso seco total de la muestra.   
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La representación gráfica de los distintos índices de vegetación calculados para el periodo 2004-2008 pone 

de manifiesto la caída que se produce en 2005 y que se reproduce con menor o mayor intensidad en todos 

los índices empleados (Figura 32). A diferencia del resto de índices, el MSI experimenta una acusada subida 

en el año 2005, no olvidemos que este índice es mayor cuanto menor es la actividad vegetal.  

 

El Índice Foliar, relación entre el peso seco de las hojas y el peso seco del tallo, se ha calculado para cada 

muestra y año. Posteriormente se ha obtenido el valor medio del índice correspondiente a las muestras de 

los transectos 1 y 3, por un lado, y del transecto 2 por otro (Tabla 14). En la figura 33 se muestra el valor 

medio ±SD de todos los transectos. 

 

Tabla 14. Valores del índice foliar para el periodo 
2004-2008. 

Año Polígono Mes datos Índice Foliar 

2004 1_3 Octubre 3,08 

2004 2 Octubre 3,18 

2005 1_3 Octubre 2,08 

2005 2 Octubre 1,83 

2006 1_3 Octubre 3,82 

2006 2 Octubre 3,95 

2007 1_3 Octubre 3,45 

2007 2 Octubre 3,86 

2008 1_3 Octubre 2,36 

2008 2 Octubre 2,53 

Figura 32. Evolución de los índices de vegetación en el mes de octubre para el periodo 2004-2008. 
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La correlación de Pearson entre los índices de vegetación y el índice foliar se ha realizado organizando los 

datos por grupos, separando el transecto 1_3 y el transecto 2 con su correspondiente dato de índice de 

vegetación. Para el NDVI se obtienen correlaciones significativas muy altas: 0,929 para el transecto 1_3 y 

0,940 para el transecto 2, con significaciones de p<0,01 y p<0,05 respectivamente. El NDII y MSI muestran 

correlaciones significativas en el transecto 2 mientras que el resto de índices no presentan ningún tipo de 

correlación significativa en ninguno de los transectos (Tabla 15). 

 

 

Tabla 15. Correlación de Pearson entre los índices de vegetación y el índice foliar para el transecto 1_3 
y el transecto 2 del periodo 2004-2008. 

Índice Foliar  NDII NDVI MSI EVI SAVI NMDI 

Transecto 1_3 Correlación de Pearson  0,836 0,929** -0,822 0,794 0,795 0,350 

Transecto 2 Correlación de Pearson 0,929* 0,940* -0,929* 0,674 0,665 0,661 

 n 5 5 5 5 5 5 

**Correlación significativa a nivel de 0,01. 
*Correlación significativa a nivel de 0,05. 
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Figura 33. Evolución del índice foliar en el mes de octubre para el periodo 2004 – 2008. Valores medios 

± SD de los tres transectos. 
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4.2. Perfil multitemporal del NDVI (serie 2000-2014) 

 

El perfil del valor medio mensual del NDVI del periodo 2000-2014 obtenido para el conjunto de fragmentos 

de encinar de Arascués se representa en la figura 34.  

En dicho perfil, se puede ver que el valor mínimo de NDVI se alcanza en el mes de julio (0,604) coincidiendo 

con el periodo de sequía estival característico del clima mediterráneo. En primavera se produce un aumento 

en el valor del NDVI y después del verano se produce un incremento continuado hasta el mes de noviembre. 

El valor máximo se alcanza en el mes de enero lo cual hemos considerado una anomalía relacionada con el 

escaso número de imágenes disponibles para el periodo de estudio: tan sólo hay tres imágenes del mes de 

enero en los 14 años considerados en el periodo de estudio. Aunque, una forma de minimizar la baja 

disponibilidad de imágenes en los meses de invierno podría consistir en el cálculo del perfil medio por 

estaciones: DJF, MAM, JJA y SON. 

Entre los resultados obtenidos en el presente análisis, cabe señalar que el valor mínimo de NDVI de toda la 

serie de imágenes del periodo 2000-2014 corresponde al mes de julio del año 2005, coincidiendo con el 

evento de sequía extrema que se produjo ese año. En la figura 34 se representan los valores de NDVI del 

año 2005 y 2012 junto con el perfil de valores medios.  El test de la t de Student muestra diferencias 

significativas (p<0,05) para los meses de junio, julio y agosto de 2005 y el mes de agosto de 2012, los cuales 

se representan en la figura 35.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 34. Perfil de NDVI para el periodo 2000-2014. Valores medios ± SD. Representación gráfica de los 
valores de NDVI del año 2005 y 2012, destaca el valor correspondiente al mes de julio de 2005, muy 
inferior a la media del periodo estudiado y que se atribuye a las condiciones de sequía extrema registradas 
durante ese año. 
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4.3. Relación entre los índices de vegetación, clima e índices de sequía. 

 

Para el SPI, las correlaciones son muy significativas entre el SPI7 y todos los índices de vegetación en el mes 

de junio a excepción del NMDI, alcanzando los valores máximos de correlación el MSI y NDII (Tabla 16, Fig. 

36). Además, se obtienen correlaciones altas en el intervalo del SPI 5 y SPI 9 para el MSI, NDII y SAVI. 

  

 

Tabla 16. Coeficientes de correlación de Pearson entre índices 

de vegetación y SPI para el mes de junio (periodo 2000-2012). 

Los valores marcados en negrita corresponden a la correlación 

más alta para cada índice. 

JUNIO (n=9) 

 NDII NDVI MSI EVI SAVI 

SPI 5 0,808**  -0,798**   

SPI 6 0,885**  -0,885**  ,803** 

SPI 7 0,921** 0,814** -0,926** 0,835** 0,879** 

SPI 8 0,857** 0,806** -0,867**  0,847** 

SPI9   -0,801**  0,813** 

** p < 0,01 

Figura 35. Diagrama de dispersión de los valores mensuales de NDVI para la serie multitemporal 2000-2014. 
En rojo y amarillo se muestran los valores para el año 2005 y 2012, respectivamente, que corresponden a 
dos años de sequía en los que se produjeron defoliaciones severas en campo. 
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Para el SPEI, las correlaciones son muy significativas también en el mes de junio, donde el valor más alto se 

da entre el NDVI y el SPEI 7 (Fig.37).  Para el NDVI, se dan correlaciones altas entre el SPEI 4 y SPEI 8, y para 

SAVI entre el SPEI 4 – SPEI 7 (Tabla 17). 

 

Tabla 17. Coeficientes de correlación de Pearson entre IV y SPEI para 

el mes de junio (periodo 2000-2014).  Los valores marcados en 

negrita corresponden a la correlación más alta para cada índice. 

JUNIO (n=11) 

 NDII NDVI MSI EVI SAVI 

SPEI 4 0.755** 0.781** -0.747** 0.737** 0.791** 

SPEI 5  0.830**   0.788** 

SPEI 6  0.879**   0.789** 

SPEI 7  0.881**   0.761** 

SPEI 8  0.813**    

** p < 0.01 
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Figura. 36. Representación gráfica del NDII y MSI con mayor coeficiente de correlación respecto 

al índice de sequía SPI calculado a una escala de 7 meses para el mes de junio. 
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En cuanto a las correlaciones entre los índices de vegetación y las variables climáticas, se han encontrado 

correlaciones muy significativas entre la media de los índices de vegetación (NDII, MSI y NMDI) de los meses 

de verano (media de junio, julio y agosto (JJA)) y la suma de la precipitación de los meses de primavera 

(marzo, abril y mayo, MAM) (Tabla 18, Figura 38). Para el NDVI no se ha obtenido ninguna correlación 

significativa con ninguna variable climática, aparte del índice de sequía antes mencionado. 

 

Tabla 18. Coeficientes de Pearson entre índices de vegetación de verano (JJA) y precipitación de primavera (MAM). Los valores 
marcados en negrita corresponden a la correlaciones más altas. 

 NDII (JJA) NDVI (JJA) MSI (JJA) EVI (JJA) SAVI (JJA) NMDI (JJA) 

Precipitación MAM  
Correlación de 

Pearson 
0,710** 0,501 -0,711** 0,603* 0,609* 0,685** 

Sig. (2-tailed) 0,004 0,068 0,004 0,022 0,021 0,007 

N 14 14 14 14 14 14 
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Fig. 37. Representación gráfica del NDVI con mayor coeficiente de correlación respecto al índice 
de sequía SPI calculado a una escala de 7 meses para el mes de junio. 
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Figura 38. Gráficos de dispersión y regresiones lineares mostrando las relaciones entre índices de vegetación de los meses de 

junio, julio y agosto con la suma de precipitación de los meses de marzo, abril y mayo. Se muestran las correlaciones más 

significativas que se han obtenido en el análisis estadístico, así como las ecuaciones y el coeficiente de regresión (R2). 
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5. Discusión y conclusiones 
 

Los resultados obtenidos muestran una fuerte relación entre los índices de vegetación con la dinámica de 

la cobertura del dosel vegetal del encinar y variables climáticas que condicionan el crecimiento primario así 

como la respuesta de Quercus ilex a eventos de sequía extrema.  

El perfil del NDVI mensual obtenido en el presente estudio se comporta, como se esperaba, presentando 

un máximo en mayo que coincide con el periodo de formación de tallos y hojas en primavera y valores 

mínimos en el mes de julio en el que las hojas se encuentran sometidas a mayor estrés debido a la sequía 

estival.  

En líneas generales, el perfil de NDVI para el periodo 2000-2014 en el encinar de Arascués, concuerda con 

los obtenidos en el estudio de Alcaraz-Segura et al., (2009) en el que se generan perfiles de NDVI para 

distintos tipos de vegetación de la Península Ibérica tanto en bosques caducifolios como en bosques y 

matorrales esclerófilos perennes basados en imágenes AVHRR (Advanced Very High Resolution 

Radiometer).  

 

En la figura 39, publicada en el artículo de Alcaraz et al., 

(2009), se representa el perfil de NDVI de distintos tipos de 

vegetación perennifolia de la Península Ibérica entre los que 

se encuentran los encinares (MEF, mediterranean evergreen 

esclerophyllus forest).  

Aunque la escala de representación no es la misma, el perfil 

(MEF) muestra los mismos rasgos que el obtenido en el 

presente trabajo: valores comprendidos entre 0,6 y 0,7; 

valores de NDVI mínimos en verano, aumento de los mismos 

en los meses de octubre y noviembre, bajada a partir de 

noviembre hasta los meses de primavera en que se vuelve a 

producir una subida previa a los meses de verano. 

 

 

No obstante, el perfil anual de NDVI muestra un comportamiento que no puede explicarse únicamente 

teniendo en cuenta el crecimiento primario de primavera y el periodo de sequía estival; los valores más 

altos de NDVI no corresponden al pico de mayo sino que se dan en los meses de otoño (octubre y 

noviembre). Dicho incremento en los meses posteriores al verano no corresponde a crecimientos primarios 

de otoño ya que éstos no son frecuentes ni abundantes en los encinares sometidos a condiciones 

continentales (Fig. 5), salvo algunos años como 2012 en los que se ha observado presencia de brotes 

otoñales como respuesta a defoliaciones severas inducidas por la sequía estival y a mayor humedad en 

otoño (Camarero, J.J., comunicación personal). Además, durante los meses de junio, julio y agosto se 

produce la mayor parte de la abscisión foliar con la consecuente pérdida de área foliar. 

En consecuencia, cabe considerar diferentes factores que podrían estar relacionados con la reflectividad de 

las hojas o el dosel vegetal y que podrían contribuir a los altos niveles de NDVI observados en los meses de 

otoño como puede ser la actividad fotosintética, cambios fisiológicos (mayor peso específico, lignificación 

de tejidos) de la hoja, el índice de área foliar (LAI), el índice de masa foliar (LMA) o cambios estacionales de 

la inclinación u orientación de las hojas. 

La mayor actividad fotosintética se presenta en periodos cortos del año cuando se dan las condiciones 

ambientales óptimas. El trabajo de Gratani et al. (2000) establece los periodos favorables entre abril y 

noviembre con una interrupción estival más o menos prolongada en encinares de localidades frías, mientras 

Figura 39. Perfil de NDVI en diferentes tipos de 
vegetación de la península ibérica.  
Fuente: Alcaraz et al., (2009). 
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que en localidades más cálidas, los periodos en los que se da mayor ganancia de carbono fotosintético son 

de febrero a junio y de octubre a diciembre. Los resultados de dicho estudio muestran que la actividad 

fotosintética decrece por encima del 50% cuando la temperatura de la hoja se encuentra por debajo de 6°C 

o por encima de 37°C indicando un pronunciado declive de la actividad del mesófilo. 

En términos de reflectividad, la actividad fotosintética presenta implicaciones directas en la cantidad de 

energía absorbida en la banda del rojo (banda 3 de Landsat 5 y 7) del espectro electromagnético. Como 

consecuencia, elevadas concentraciones de clorofila activa implican mayor absorción en la banda 3 y se 

traducen en valores más altos en el NDVI.  

Por tanto, la caída brusca de los valores de NDVI registrada en verano e invierno como consecuencia de las 

altas y bajas temperaturas respectivamente, se puede relacionar con un importante descenso de la 

actividad fotosintética. Del mismo modo, el incremento de la actividad clorofílica en otoño puede contribuir 

a explicar el aumento que se produce en los valores de NDVI observados en octubre y noviembre sin que 

exista crecimiento primario significativo. 

Otra de las variables que podrían influir en los valores elevados de otoño vendría dado por cambios 

estructurales de la hoja. Muchos autores han demostrado que la reflectividad aumenta y la transmisividad 

decrece con el incremento del grosor de la hoja. Las capas del parénquima en empalizada pueden actuar 

como conductoras de la luz hacia el interior de la hoja, mientras que las capas del parénquima esponjoso 

dispersan la luz (Gratani & Bombelli, 2000). El incremento del grosor y densidad de las hojas se ha observado 

en Q. ilex en relación al empeoramiento de las condiciones ambientales (Grossoni et al., 1998). Sin 

embargo, aunque sí se pueden observar diferencias importantes en la morfología de la hoja de Q. ilex entre 

distintas localidades, no se observan diferencias significativas durante el transcurso del año en una misma 

localidad.  

Según Gratani (1995, 1996), los parámetros de esclerofilia no cambian substancialmente a lo largo del año 

en hojas maduras y las hojas están completamente desarrolladas incluso antes del inicio de las severas 

condiciones estivales (Bussotti et al., 2002).  

La disposición de las hojas en la copa es otro factor a tener en cuenta en los valores de NDVI registrados. 

La forma de disponer las hojas en la copa determina la eficiencia de captación de radiación así como la 

energía reflejada que finalmente captaría el sensor. En este sentido, existe una fuerte influencia del ángulo 

de inclinación de la hoja en la reducción de la radiación solar incidente en la superficie de la hoja. En Q. ilex, 

las hojas nuevas muestran la mayor inclinación en verano (59°), valor que decrece a medida que aumenta 

la edad de la hoja (Gratani & Bombelli, 2000). Esta característica puede contribuir al significado ecológico 

de los altos valores de NDVI registrados durante otoño, en los que la formación de nuevas hojas es poco 

significativa en encinares del interior de la Península Ibérica. 

El estudio sobre los cambios estacionales de la vegetación debe considerar o tener en cuenta la sensibilidad 

de los índices de vegetación a las variaciones en el ángulo cenital solar, ya que en estos casos la altura solar 

cambia de manera sistemática entre las diferentes medidas y se podrían producir sobreestimaciones con 

el aumento del ángulo cenital. Sin embargo, la dependencia de los índices de vegetación frente a las 

geometrías de observación e iluminación son acusadas cuando se observan cubiertas con un índice de área 

foliar bajo, mientras que para cubiertas de vegetación densa y valores altos de LAI, en observación próxima 

al nadir como es el caso de Landsat, los índices de vegetación son poco sensibles a las variaciones del ángulo 

cenital solar (Vercher et al., 2002).  

El perfil de NDVI del encinar de Arascués proporciona una referencia para evaluar los efectos causados 

por eventos de sequía estival, sobre todo respecto al mes de junio en el que la sequía estival es más 

acusada: el valor de NDVI registrado para el mes de junio del 2005 (0,51) cuando se observaron 

defoliaciones severas, se encuentra muy por debajo del valor medio para ese mes (0,61). 

Un aspecto novedoso en este estudio ha sido la utilización del índice foliar que relaciona el peso seco de las 

hojas con el peso seco del tallo de las ramas de tres años recogidas en octubre y su relación con los índices 
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de vegetación. La representación gráfica del índice foliar muestra claramente el efecto de la sequía extrema 

que se produjo en el año 2005 con la consiguiente pérdida de hojas viejas en 2006 y que se reproduce en 

los valores de todos los índices de vegetación analizados. No obstante, el índice de vegetación que mejor 

resultados ha presentado ha sido el NDVI con correlaciones muy altas, mientras que los índices que tienen 

en cuenta la línea de suelo como EVI y SAVI no han mostrado ninguna correlación con el índice foliar. Ello 

concuerda con el estudio de Álvarez et al. (2005) en el que se concluye que la influencia del suelo y del 

sotobosque no es un factor relevante cuando se trata de cubiertas vegetales con fracciones de cabida de 

cubierta (FCC) densas (>80%) como es el caso del encinar de Arascués. 

Respecto a la relación entre los índices de vegetación y las variables climáticas (precipitación y 

temperatura), las relaciones más significativas se obtuvieron entre los índices de vegetación del periodo 

estival con las precipitaciones previas en primavera. En este caso, los índices que han mostrado mayor 

sensibilidad respecto a la variable precipitación fueron NDII y MSI, valores altos de correlación se dieron 

también para NMDI. Estos resultados concuerdan con numerosos estudios en los que se considera a los 

índices de vegetación basados en el infrarrojo medio (IRM) e infrarrojo cercano (IRC) como los más 

adecuados para estimar el contenido de humedad foliar y  las defoliaciones debido a la disminución en el 

contenido de agua a causa de eventos de sequía (Cheng et al., 2008; Hardisky & Klemas, 1983; Wang & Qu, 

2007). Por otra parte, exclusiones inducidas de precipitación primaveral se han relacionado con fuertes 

inhibiciones de crecimiento primario lo que explicaría también los bajos valores de los índices citados 

durante los meses de verano precedidos por meses con escasas precipitaciones (Misson et al., 2011). 

En cuanto a la temperatura, de la Cruz et al. (2014) indican que las variables térmicas constituyen los 

principales factores relacionados con las defoliaciones registradas en las parcelas de seguimiento de 

defoliación de la red de nivel I del ICP en la Península Ibérica, y en particular las temperaturas medias en 

abril y junio, así como las oscilaciones térmicas tanto del año en curso como del anterior, mientras que tan 

sólo un indicador de sequía fue estadísticamente significativo (la duración del periodo árido en meses). 

Sin embargo, en el presente estudio no se han encontrado relaciones claras entre los índices de vegetación 

utilizados y las variables térmicas, mientras que sí se producen relaciones muy fuertes con los índices de 

sequía SPI y SPEI. 

En la literatura científica existe discusión sobre cuáles son los parámetros climáticos que determinan la 

severidad de las sequías (precipitación, temperatura, evapotranspiración, radiación solar, etc.). No 

obstante, hay un consenso en la importancia de la precipitación para explicar la variabilidad de las sequías, 

y la necesidad de incluir dicha variable en los cálculos de los índices de sequía. Varios estudios muestran 

que la precipitación es la principal variable que define la duración, magnitud e intensidad de las sequías 

(Vicente-Serrano et al., 2010). 

En este sentido, resultan esclarecedores los resultados obtenidos en este estudio en el que las mayores 

correlaciones se han dado entre NDII y MSI y el índice SPI, índice de sequía que no incorpora la variable 

temperatura. No obstante, cuando se tiene en cuenta la temperatura en el índice de sequía, como en el 

caso del SPEI, no son el NDII ni el MSI los que presentan mayores correlaciones sino que éstas son mayores 

con el NDVI, lo cual sugiere una mayor sensibilidad del NDVI cuando se introduce el parámetro de la 

temperatura. 

Tanto los índices basados en el infrarrojo medio (NDII y MSI) como el NDVI, presentaron las mayores 

correlaciones para el SPI y SPEI del mes de junio a una escala temporal de 7 meses, respectivamente.  

Para concluir, la escala temporal en la que la sequía afecta a la vegetación proporciona información útil 

para entender cómo los bosques mediterráneos responden a la sequía y puede relacionarse con los 

diferentes mecanismos y estrategias que permiten a los árboles reducir los daños causados por sequías. En 

contraste con las regiones áridas y húmedas en las que las máximas correlaciones entre los índices de sequía 
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y los índices de vegetación se producen a escalas temporales cortas (2-4 meses), la vegetación de zonas 

semiáridas y subhúmedas tiende a responder a las sequías a escalas temporales largas. La vegetación de 

estas regiones está adaptada a tolerar de forma regular periodos de déficit de agua y presenta mecanismos 

fisiológicos para hacer frente a estas condiciones. Así, en éstas áreas se dan elevadas correlaciones entre el 

SPEI y NDVI a escalas de entre 8 y 10 meses (Vicente-Serrano et al., 2010), observaciones que concuerdan 

con los resultados obtenidos en el presente estudio. 

Como conclusión final de este estudio, cabe señalar que las técnicas de teledetección mediante imágenes 

Landsat se muestran como herramientas muy útiles para caracterizar el efecto de las sequías sobre las 

cubiertas vegetales y constituyen un elemento valioso para entender la respuesta de los distintos tipos de 

vegetación frente a las condiciones climáticas.   
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