Analisis de Fourier

Los origenes del Andlisis de Fourier se remontan a los tiempos de J. Bernoulli y J. Fourier en su
intento por resolver los problemas de la cuerda vibrante y de la transmision de calor, expresando las
soluciones como desarrollos en serie de senos y cosenos; expresiones que en aquella época no se
consideraban vélidas.

En este capitulo se expondran las definiciones y propiedades mas importantes empleadas por la
tomografia en su intento por representar las imdgenes con la mayor resolucién y precision que le

sea posible. Mdas informacion puede ser consultada en [3].

A.1 La Transformada de Fourier

No hay unanimidad en la definicién de la Transformada de Fourier. En esta seccién se presentan
dos definiciones con sus propiedades asociadas. Ambas formas son muy utilizadas y en este trabajo
se usan la dos. Asi pues, una primera definicién es:

Definicion. La Transformada de Fourier de una funcién f(x) € L'(R") integrable Lebesgue

€S

f&) = @r 2 [ ja)e s, (A1)

R™
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A. ANALISIS DE FOURIER

Ademds, definimos La Transformada de Fourier Inversa de g(£) a la funcién obtenida como

g(x) = (2m)~"/? / g(&)e™de. (A2)

n

Asi definida, algunas propiedades de las que goza la Transformada de Fourier son:
e Linealidad : (af + B9)" = of + B§.

o (fxg9)" = (m)"/2fg.

Si p € O(n) es una transformacién ortogonal,(f(pz))"(€) = f(p€).

Jon | f(@)[2dz = [, | F(£)]2dE. Esta ecuacién se conoce como relacidn de Parseval.
o ()€ =i"erfe).
o (zFF)NE) = i T ().

Ifl\im f (&) = 0 (Riemann-Lebesgue). Se deduce de esta propiedad que para funciones in-
— 00

tegrables las componentes de altas frecuencias tienden a ser despreciables respecto a las de

bajas frecuencias.

Otra definicién muy usada en la literatura matemdtica para la Transformada de Fourier y su
inversa es:

Definicién. La Transformada de Fourier de una funcién f(x) € L*(R") es

f(é) = f(ac)e_ﬂ”&”“'dx, (A.3)

R
y su inversa

g(z) = / _g(g)em e, (A4)
Las propiedades anteriores se re-escriben:

e Linealidad : (af + Bg)" = Oéf + 4.

(f*g)N= f g. La transformada de Fourier del producto de convolucién de dos funciones es

el producto de sus transformadas.

Si p € O(n) es una transformacién ortogonal,(f(pz)) (&) = f(p€).

Jow | £(@)2dz = [ |f(€)]?d€ (Relacién de Parseval).

o (ZINE) = @m)Filtlerf(e).
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A.2 La Transformada de Fourier y la convolucion

o (FN)NE) = @m)FiM L (6).
. |€l|fm £(€) = 0 (Riemann-Lebesgue).

e Si A es una matriz regular se cumple F(f(Ax)) = m%f(A*TE), siendo § la Transfor-

mada de Fourier.

Ejemplo. Es muy habitual el uso de la siguiente funcién:

A sifx| <7/2

cuya transformada de Fourier segiin la dltima definicién dada es

sen(méT)

F(¢) = Ar (A.6)

€T

La funcién f(z), que se llama pulso rectangular, es de uso frecuente en el muestreo de sefiales.
Se puede deducir facilmente que cuanto mayor anchura tiene el pulso mds se estrecha su trans-
formada de Fourier; y viceversa. La interpretacion fisica la proporciona la relacién de Parseval; la
energia de la sefial tiende a concentrarse en el 16bulo principal de bajas frecuencias cuando la du-
racién del pulso aumenta. Este resultado es muy importante desde un punto de vista préctico. Si
deseamos obtener los detalles en aquellas zonas en las que hay una variacién importante de la sefial,
el pulso deberd estar muy localizado en el espacio o en el tiempo. Los detalles finos del objeto se

corresponden con las altas frecuencias y los detalles mds groseros con las bajas frecuencias.

A.2 La Transformada de Fourier y la convolucion

Se define el producto de convolucion de dos funciones f(z)y g(z) de R a

(frg)(@)= | [flz-y)g(y)dy. (A7)

R’Vl

La operacién de convolucién se realiza en la practica para realizar un suavizado en las sefiales. El
fundamento de esta técnica se basa en lo que sucede en el dominio de Fourier. Hacer una convolu-
cion en el dominio espacial supone multiplicar las sefiales en el dominio frecuencial. Si se necesita
que la sefial f(x) tenga unas propiedades deseadas, como puede ser una frecuencia de corte B,
basta multiplicar su transformada de Fourier F'(£) por una funcién H (£) que se anule para valores
|€] > By valga la unidad para el resto de valores. A continuacién, se realiza la transformacién

inversa de Fourier para recuperar la sefal con las propiedades pretendidas.
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Al proceso por el cual una sefial se la modifica para que tenga un contenido frecuencial dado se
le llama filtrado de la sefial. Esta es una de las operaciones mds importantes en representacion de
imagenes. Se llama filtro a la funcién con la que se convoluciona la sefial.

Para implementar el producto de convolucion de dos sefiales se precisa discretizarlas. Asi, defi-
niremos la convolucién de dos sefiales en tiempo o espacio discretas f(n)y g(n) ala seial h(n) en

tiempo o espacio discreta

h(n) = f(n)xg(n) = Y f(k)gln—k). (A8)

k=—o00
Ejemplo. La sefial impulso unitario se define como

1 sin=0
6(n)_{ 0 sin£0 (A9)

Si se convoluciona con cualquier sefial en tiempo o espacio discreto se obtiene como resultado la

propia sefial. Esto se escribe matematicamente como
h(n) = f(n)*d(n) = f(n). (A.10)

Dado que la sefial h(n) = f(k)d(n — k) es nula en todo instante salvo n = k, cuyo valor es
f(k), la ecuacién anterior muestra que una sefial se puede escribir como combinacién infinita de
sus muestras.

Definicion. Una sefial en tiempo o espacio discreta es de duracion finita o longitud N si se anula
en todo instante excepto en N instantes.

Ejemplo. Sea f(n) = (1,2), entendiendo que el valor de f(n) en el instante n coincide con el
valor de la coordenada n empezando en n = 0. Con la misma interpretacién, sea g(n) = (1,2, 3).

Ambas sefiales son de longitud finita 2 y 3, respectivamente. Su producto de convolucion es
h(n) = f(n) x g(n) = (1,4,7,6), (A.11)

obtenido como una multiplicacién polindmica. En este ejemplo, se obtiene la senal de longitud 4

dada por
1 sin=0
4 sin=1
h(n) = 7 sin=2 (A.12)
6 sin=3
0 en otro caso.

En general, dadas dos sefiales de longitudes N y M su producto de convolucién tendra longitud

N+ M -1
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A.3 Muestreo de senales

Al muestrear una sefial en tiempo continuo f(x) se obtiene una sefial en tiempo discreto f,, obtenida
a partir de la primera mediante la férmula f,, = f(7n), siendo 1/7 la velocidad de muestreo. Dicho
de otro modo, escogemos valores de f(z) a intervalos de 7 unidades.

El objetivo de la teoria del muestreo es la recuperacion de la sefal original a partir de sus
muestras. Se plantea las condiciones que deben poseer las sefiales f(x) para que esto sea posible.
Ademas, propone férmulas que puedan ser implementadas en la practica con los medios de calculo
de que se dispone.

Se dice que f(x) tiene ancho de banda B si su transformada de Fourier es localmente integrable
y es nula para frecuencias || > B. Luego, la frecuencia mds grande - llamada frecuencia de corte
- que tiene f(z) es B.

De entre las sefiales de ancho de banda limitada sobresale en importancia la funcién

sen@) g g #0
i = A.13
sinc(x) { ) z A ( )
que se obtiene mediante la transformada inversa de Fourier de
1 osilg <t
F(&) = { 0 otro caso. (A.14)

Por lo tanto, la sefial f(x) tiene ancho de banda 1. A partir de ella, se define en R" la funcién
sinc(x) = sinc(zq)... sinc(x,), (A.15)

conx = (z1,...7,)) 7. Y finalmente, sincy(x) = sinc(bx), cuya transformada de Fourier es

siney (6) = (v/2)"/%"R(:6), (A.16)

donde R es la funcién caracteristica de [—1, 1]™.

Esta funcidn juega un papel importante en la recuperacion de la sefial a partir de sus muestras.
Supongamos que f(z) es una funcién que se anula fuera de un intervalo [—a, a]. Luego, f(z) = 0
para €] > a. Si extendemos por periodicidad f(x) atodo R se podrd escribir como una combinacién
de exponenciales complejas cuyos coeficientes son los coeficientes de Fourier; y éstos se relacionan

con la transformada de Fourier.

fla) = fue™e, (A.17)
k

siendo los coeficientes de Fourier

fi=a) " [ flapetmtieds, (A18)
[_a’u’]
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y claramente
7r A T
_ (" \n/2 —n n
fi=(3)"a ;f(ak). (A.19)
Si se aplica este resultado a una sefial de cuadrado integrable, con ancho de banda B y para h < 3,
se deduce que su transformada de Fourier es

F(&) = m) 20y f(hk)e ek, (A20)

k

Para recuperar f () basta multiplicar por la funcién caracteristica 8, /5 de [—(7/h),n/h] y hacer

la transformada inversa de Fourier. Se llega a la formula
f(z) =Y f(hk)sine - (a — hk). (A21)
- h

Nota. La condicién h < % se llama condicion de Nyquist.

Ejemplo. Sea f(z) = 2sen(4mx) 4+ 5sen(10mx) para 0 < x < 1. Se observa que la maxima
frecuencia de la sefial es de 5 Hz. Se ha representado la grafica de la funcién y las graficas que se
obtienen al interpolar con tasas de muestreo inferior, igual y superior a la de Nyquist. Claramente,
tasas de velocidad de muestreo inferiores a la de Nyquist producen resultados insatisfactorios. Es
importante darse cuenta de que el muestreo a la tasa de Nyquist no produce resultados correctos en
este caso. La sefal original se recupera a una velocidad de muestreo superior a la de Nyquist, como

bien se aprecia en las graficas de la figura|A.1
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Grafica de fx)

=

5 Submuestren de fix)

Sobremuestreo de f{x)
5 . . . . . .

Muestreo de fix) a la razon de MNyquist
3 . . . : .

Figura A.1: Ejemplo de muestreo de una sefial
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Inversion de la Transformada de Radon

El objetivo es recuperar el objeto f(z) a partir de sus integrales de linea. Para ello, una herramienta
util va a ser el potencial de Riesz y la transformada dual de Radon [9].

Definicion. Para o < n, se define el operador lineal /% que cumple

(I“F)NE) = €17 F(9). (B.1)

Si f(z) pertenece a la clase de funciones de Schwartz entonces se garantiza la existencia de
inversa para el operador lineal, que es I~ . Por lo tanto, [~ 1 f = f.

Ahora, de la propia definicion del potencial de Riesz,

I f(x) = (2m) "2 / €72 f(e)e <. (B.2)

n

Y realizando el cambio a coordenadas polares £ = p - w, se obtiene

I f(z) = (27T)_n/2/ /OO P TI f(p - w)e TPt dpduw. (B.3)
sn=1Jo

Aplicando el Teorema de la Rebanada de Fourier y que la Transformada de Radon posee simetria

par se llega a la siguiente expresion

1 (@) = 1/2(2m) "/ /g N IR w, ple e v dpdw. (B
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B. INVERSION DE LA TRANSFORMADA DE RADON

En la expresion anterior aparece el potencial de Riesz en la integral. Puede escribirse ahora

I°f(z) = 1/2(2@*”“/ IV R (w, - w)dw. (B.5)
Sn—l

La integral es la transformada dual de Radon. Se aplica I~* y f(z) queda despejada como
f=1/2@2r) "I “Rf[O"LRY. (B.6)

A partir de aqui pueden obtenerse formulas interesantes particularizando para diferentes valores
de o

Caso 1. Si o = 0 se obtiene la férmula explicita
1 1-nptrl—n
f= 5(2%) R'T"RY. B.7)
Para g perteneciente a la clase de Schwartz se tiene
(I'"g)™ (&) = [sgn(&)]"'€"1g(8). (B.8)

Teniendo en cuenta la definicion de la transformada de Hilbert de una funcién f de la clase de

Schwartz como aquella que cumple

(H[)"€) = ~isgn&f(€), (B.9)
o0 equivalentemente
Hf = lv.p.1 * f, (B.10)
™ X

y que verifica H(Hf) = —f, se tiene que I'~"g = H" ¢~V Por lo tanto, se puede escribir
con un poco de célculo

Lo vien (-1 Jon—1 H(RF)" D (w,z - w)dw sines par
Jw) = 2(27T) { (—1)"= Jon 1 (RAD(w, 2 - w)dw sinesimpar ®.1D

Para el caso n par y escribiendo la transformada de Hilbert como convolucién se obtiene, denotando

g=Rf,que fes

r-w—Ss

flz) = (—1)"/2+1(27r)—”/ v.p./Rg(n_l)(w’S)dsdw. (B.12)

Sn—l
Realizando el cambio de variable s = ¢ + x - w y que para el valor principal de Cauchy es cierto

que

v.p. Mdm = lim de = /OO Mdm, (B.13)
R —o00

T h—0 |z|>h xT 2x
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se escribe

flz) = (—1)”/2(277)_"%/Ré/Snil(g("_l)(w,x-w—i-q)—g("_l)(w,x-w—q))dwdq. (B.14)

n—1)

Puesto que ¢ tiene simetria par y n — 1 es impar entonces ¢ es impar, y se puede simplificar la

expresion anterior. Asi, definiendo

1

Fy(q) = 1571 Jguos

g(w,x - w+ q)dw, (B.15)
que es par por serlo g, se llega a la férmula original de Radon del afio 1917
<1
fl@) =2(=1*2m) 15" [ SR g, (8.16)
0

Particularizando para el caso plano (n = 2)

f(z) :—%/0 dFZ(q)dq. (B.17)

Caso 2. Si o« = n — 1 se obtiene para g = Rf
1 l-ngyl—n pf
f=5@m) IR, (B.18)

Si n es impar el potencial de Riesz verifica I'™" = (—A)("_l)/ 2 y particularizando al caso
n = 3 se llega a la férmula explicita
-1
f@)=s5A | glw,z-w)dw, (B.19)
8w S2
donde el operador laplaciano actiia en la variable x.
Otra forma de conseguir una férmula de inversion, y que serd adecuada para obtener posterior-

mente un algoritmo para recuperar el objeto, parte de la férmula ya vista
(R*w) * f = R*(w * Rf). (B.20)

Si se elige una funcién g cuya transformada dual de Radon Rfw se aproxime a la distribucién &
de Dirac se obtendra f como limite. Como se supone que las sefiales tienen frecuencia de corte B
podemos escribir

(R'w)" () = (2m)~"/2d(|¢|/B), (B.21)

con0 < & < 1y d(p) = 0parap > 1. La funcién &(p) se puede interpretar como un filtro paso

bajo para la sefial.

51






Tomografia matematica. Difraccion

Se considera el caso en el que la trayectoria de los rayos no es rectilinea y sufre del fendmeno de
la difraccion. Es lo que ocurre cuando se usan otro tipo de fuentes diferentes a la de los rayos-X y
que son mas seguros, sobre todo si su exposicion a ellos es a bajas dosis; ondas electromagnéticas
y ultrasonidos entre ellos. El pardmetro a reconstruir y que se considera como el objeto es el indice
de refraccion del medio; ya sea el electromagnético o el actstico.

Se puede tratar el problema de dos maneras diferentes:

1. Se estima un valor inicial para el indice de refraccion y se averigua el camino o trayectoria que
deberia seguir cada rayo dentro del espécimen. Se compara con los resultados de laboratorio
obtenidos y se efectia la correccién correspondiente en el indice de refraccion. El proceso se
vuelve a repetir calculando las nuevas trayectorias con el valor corregido. Se corrige el indice
y asi hasta que se llegue a cumplir el criterio de parada establecido. En estos métodos se
utilizan técnicas algebraicas y no se comporta mal cuando los casos de estudio son débilmente

difractantes.

2. Lateoria geométrica de rayos es adecuada para heterogeneidades cuyos tamafios son mayores
que la longitud de onda del medio con el que se desea ver. En otro caso, se debe tratar el

problema acudiendo a la ecuacion de ondas y teniendo en cuenta el fenémeno de difraccidn.
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Si estos fenémenos de difraccion son débiles, se puede hacer una reconstruccidon tomografica

basada en el Teorema de Difraccion de Fourier.

Para hacer tratable el problema se estudia en primer lugar el caso de materiales homogéneos para

pasar, a continuacion, a estudiar el caso de muestras no homogéneas. El material consultado en este

apéndice y que se anima al lector a que profundice en su lectura es [3].

C.1 Caso homogéneo

Sea u 1a magnitud del campo expresado en funcion de la posicion 7y del tiempo ¢. Sea ¢ la velocidad

del campo. La ecuacion de ondas se escribe

. 10?2
V2u(r,t) — gwu(r,t) =0.

Supongamos que la onda
a7, £) = u(F)e 7

verifica la ecuacién[C.1] Definiendo el nimero de ondas como

)

27 w

c
se obtiene

[VZ + E(7)] u(F) = 0.
Para un medio que es homogéneo el nimero de ondas es constante, k(%) = ko, y asi
(V2 + k(z)) u(r) = 0.
Como solucién de prueba ensayamos una onda plana
u(F) = 6]‘13? — ed(kaatkyy)

Nota. Se denomina vector de propagacion a k() = (ky, ky).

Ahora, debera cumplirse

oPulr) | (i)

per T gyt =0

con

k()] = k2 + Kk = k3.
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C.1 Caso homogéneo

La solucién general de la ecuaciéon de ondas homogénea, debido a la linealidad, serd una suma
ponderada de todas las soluciones de ondas planas posibles. Luego, para una frecuencia temporal
w, el campo u(7) puede escribirse

1 > . 1 > .
) = 5= [ o)t i, + o [ ), (o)
—o0 T J -0

2
ky = \/ki — k:g (C.10)

En la expresion anterior (k) y B(k,) son los coeficientes de las ondas que viajan hacia la derecha

con

y hacia la izquierda, respectivamente. Considerando el caso en el que el emisor estd a la izquierda y

el detector se coloca a la derecha sélo se ha de retener el primer sumando. Asi, la solucién es

1> 4
u(f) = ﬁ/ a(ky)e! B R d,, (C.11)

— 0o

Si se coloca el detector en z = 0 obtendremos la expresion

1 o )
u(0,y) = %/ a(k;y)ejk”ydky. (C.12)

— 00
Por lo tanto, se llega a que el coeficiente es la transformada inversa de Fourier de la solucién en la
linea de medicién x = 0

a(ky) = F 1 (u(0,y)). (C.13)

Conocido el coeficiente, éste se introduce en la ecuacién y se halla el valor en cualquier
lugar a la derecha de x = 0. Ahora es ficil obtener una expresion que ligue los valores del campo
cuando la linea de detectores se coloca en dos posiciones paralelas diferentes desplazadas entre ellas

una distancia d = |1 — [. Se obtiene
u(lla y) = U'(l()a y)ejkwd (C14)

Se observa que lo que sucede es un desplazamiento de fase.

Se puede sistematizar el proceso de la siguiente manera:

1. Hacer la transformada de Fourier de u(ly,y) para obtener la descomposicién de u como

funcién de k,,.

2. Propagar cada onda plana a la linea = [; multiplicando su amplitud compleja por el factor

elhed siendo d = Iy —lo y ke = (/K3 — k2.

3. Hacer la transformada de Fourier inversa de la descomposicién de ondas planas y obtener el

valor del campo en u(ly, y).
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C.2 Caso no-homogéneo

Para obtener la solucién en el caso de medios heterogéneos se parte de la ecuacién de ondas para

pequeiias perturbaciones
(V2 + k) u() = —o(7)u(7), (C.15)

siendo el objeto o(7) el que estd relacionado con las propiedades de la muestra y cuyo valor es
o(F) = k§ [n*(P) — 1], (C.16)

siendo n(7) el indice de refraccién correspondiente. Escribimos el campo como suma de una com-
ponente solucién del caso homogéneo uo(7) y otra la debida a las heterogeneidades o campo dis-
persado u (7). Tenemos

u() = ug(7) + us(7). (C.17)

Puesto que u(7) es solucién, se debe cumplir la ecuacion de Helmholiz
(V? + k§) us(7) = —o(7)u(F), (C.18)

cuya solucion se puede expresar en términos de la funcién de Green y que es solucion, a su vez, de

la ecuacion diferencial
7 ]

(V2 + k) g(7or’) = —6(7 —17). (C.19)
Se sabe que la solucién de la ecuacién |C.19|es:

e para el caso 2-dimensional
)= 1 H (koR), (C.20)

con R=|F— 77| y Hél) la funcién de Hankel de orden cero y de primera clase;

-
/

g(7,r

e para el caso 3-dimensional,
eIkoR

ATR

—

9(77,7” ) =

(C.21)

Se observa que en ambos casos g(7,7’) es funcién de ¥ — ' y asi, g también lo es. S6lo queda

expresar como suma de impulsos

—

o(F)u(F) = / o(r"yu(r")o(F — 7 )dr, (C.22)
y escribir la ecuacion integral ( integral de Fredholm de segunda clase )

- -
/ !/

s (7) = / (7 — 7)o yu()dr. (C.23)
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C.3 Aproximacion de Born

Suponiendo la condicion u,(7) << uo(7) y escribiendo el segundo miembro de la ecuacién

como suma de dos integrales

-
/

us(7) = / g(F =)o (rYuo (17 )dr’ + / g(7 = 7)o (r yus (r)dr”, (C.24)
se desprecia la contribucién de la segunda integral y queda
we(7) ~ up () = / 97— 7)ol yuo (7). (C.25)

El proceso se puede iterar sustituyendo en la aproximacién up obtenida dentro de la integral

y hallar u'? (7). Asf,
W20 = [ o= 7ol [uo() + un()] ar (€26)
Y asi, sucesivamente, podemos escribir

) = [ o= o) [uol?) + uiy (9] c2m)

C.4 Teorema de Difraccion de Fourier

-
/

La ecuacién se puede interpretar como una convolucién entre la funcion de Green g(7 — /) y

el producto o(7)u ) (7). Para el caso que la onda incidente sea una onda plana, siendo k& = (k,, ky),

uo(F) = &7, (C.28)

-

satisfaciendo k3 = k2 + kg Y puesto que la solucién para g(7,r’) viene dada por puede

escribirse explicitamente

P R / /
9(77,7'/):477/ Bej[a(xfxwmyfyuda, (C.29)

siendo 3 = /k3 — a?. Sustituyendo la expresion en la ecuacién se deduce

-
/

up(7) J /o(ﬁ)uO(T )/00 Bej[a(x_x/”’gly_y/l]dozdﬁ. (C.30)

— 00
Por conveniencia, supongamos que la direccion de propagacion de la onda plana incidente es el

eje y positivo. Luego, ug(7) = €797, con s5 = (0, ko). Y supongamos, ademds, que la linea de

57



C. TOMOGRAFIA MATEMATICA. DIFRACCION

receptores esta en la posiciéon y = Iy y, por lo tanto, l[j — y > 0 para todo punto interior de la

muestra. Entonces podemos escribir
j ° 0(7:;) [Oé(l—wl)-‘rﬁ( _ /)] ikoy' 17
up(z,y =lp) = — do | —2¢7 Y=Y ) eIFoY dp!, (C.31)
Am J - B

Denotamos con O(a, § — k) la transformada de Fourier del objeto o(7) a frecuencias ay 5 — kg

y escribimos

Lo
ug(z,y =lp) = L/ Z el tBlo) O (a, B — ko)da. (C.32)
dm J oo B
Denotamos por Up(w, lp) la transformada de Fourier de up;
Up(w,lp) = / up(z,lo)e % da. (C.33)
—0o0
Si se tiene en cuenta la expresioén dada para Up, que se verifica
/ eI WmNIT e — Ind(w — ) (C.34)
y teniendo en cuenta la ecuacién [C.32] se llega finalmente a la expresion

__J PN 12— 02 — ko)-
UB(a,lg)fQ\/We 0700 (e, \ kG — % — ko); (C.35)

vidlida cuando || < ko. Conviene decir que la fisica de propagacién de ondas da escasa probabi-
lidad a que la mayor frecuencia angular del campo dispersado medido en la linea y = [y exceda
el valor de ko. De manera que en la mayoria de las situaciones précticas Us(w, lp) serd nula para
valores w > kg.

; > 2_ 42 4 .
El factor QkJTeJ Vkg=a®lo g yna constante para una linea fija de receptores. Cuando a
U—(X

varfa de —ko a kg las coordenadas (cv, \/k3 — a® — ko) de la transformada de Fourier de la funcién
objeto trazan un arco semicircular en el plano (u,v). Los puntos extremos del arco semicircular
estdn a una distancia v/2kq del origen en el dominio de la frecuencia. Para || > kg la transformada
es nula.

Para un objeto cuyas heterogeneidades son débilmente dispersantes podemos establecer el si-
guiente resultado.

Teorema de Difraccion de Fourier. Si un objeto definido por la funcién o(z, y) se ilumina con
una onda plana entonces la transformada de Fourier del campo dispersado por el objeto, medido
sobre una linea en el sentido de avance, coincide con los valores de la transformada de Fourier 2-

dimensional del objeto, O(w1, w2), a lo largo de un arco semicircular en el dominio de la frecuencia

(figura|C.1).
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Transformada de Fourier
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Figura C.1: Relacién entre la transformada de Fourier de la proyeccién y la transformada de Fourier del
objeto.

27
)\ b

El radio de los arcos viene dado por ky = siendo A la longitud de onda. Se observa que al
disminuir la longitud de onda aumenta el radio de los arcos y, por lo tanto, el Teorema de Difraccién
de Fourier se aproxima al Teorema de la Rebanada de Fourier.

Segtn el teorema de Difraccién de Fourier, para que la reconstruccién de un objeto fuera perfec-
ta deberia conocerse el valor de la transformada de Fourier en todos los puntos interiores del disco
centrado en el origen y de radio v/2K. Eligiendo de forma adecuada la orientacién y la frecuencia
de las ondas planas incidentes es posible estimar la transformada de Fourier del objeto a cualquier
frecuencia. Por ejemplo, variando la frecuencia del campo incidente conseguimos cambiar el valor
del radio de los arcos. El objetivo es conseguir generar una estimacién de la transformada de Fourier
completa del objeto.

Rotando el objeto y midiendo el campo dispersado para diferentes orientaciones es posible
obtener esas estimaciones. Con la rotacién del objeto se rotan los arcos en el dominio de Fourier.

Un problema importante es la interpolacién que debe realizarse. Nétese que los datos en el do-

minio de Fourier se disponen sobre arcos semicirculares y se deben aproximar a una red rectangular

para realizar la inversion que proporcione los valores del objeto (figura|C.2).

59



C. TOMOGRAFIA MATEMATICA. DIFRACCION

Figura C.2: Los datos medidos se disponen sobre los arcos semicirculares.
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Programas

Los algoritmos realizados por el autor de este proyecto se recopilan en este apéndice. Todas las
figuras del capitulo correspondiente a la transformada de Radon han sido realizados con los mismos.
Se han programado con MATLAB 7.6 todos los algoritmos relacionados con la transformada de
Radon. El dltimo de los programas es una implementacién en Turbo Pascal de la FFT en el que se

ha usado el algoritmo de Buneman para la re-ordenacién de los nodos.
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D.1 Programas

1. Algoritmo que define el fantasma de 10 elipses para realizar la simulaciones.

o)

% Descripcidn de las elipses del phantom

[o)

% elipses=phantomas (total);
% total es el numero de elipses a dibujar
function [elipses]=phantomas (total)

elipse(l,:)=[1 0.69 0.92 0 0 0];

elipse(2,:)=[-0.8 0.6624 0.8740 0 -0.0184 0];
elipse(3, )=[-0.2 0.11 0.31 0.22 0 -18];
elipse(4,:)=[-0.2 0.16 0.41 -0.22 0 18];
elipse(5,:)=[0.1 0.21 0.25 0 0.35 0],
elipse(6,:)=[0.1 0.046 0.046 0 0.1 0],
elipse(7,:)=[0.1 0.046 0.046 0 -0.1 01;
elipse(8,:)=[0.1 0.046 0.023 -0.08 -0.605 0];
elipse(9,:)=[0.1 0.023 0.023 0 -0.606 0];
(1 =[

elipse (10, : 0.1 0.023 0.046 0.06 -0.605 01;
[1;
for numero=l:total

elipses=

elipses=[elipses;elipse (numero, :)];

end

2. Algoritmo que calcula la proyeccién de una elipse cualquiera

function [P] = proyeccion(elipse,theta, coord)
% Proyeccion de una elipse de centro cualquiera
% vy ejes cualesquiera

% elipse corresponde a los datos de la elipse a

o\

proyectar

o\

theta es el angulo de proyeccidn

coord es la coordenada sobre la recta que

o°  o°

recorren los rayos

o\

datos de la elipse
rho=elipse(1l);
A=elipse (2

14

B=elipse (3

)i
)i
x1l=elipse(4);
yl=elipse (5);
e

alfa=elipse (6);
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[

% cdlculo de gamma y S
gamma= (180/pi) rangle (x1+i*y1l);
s=sqgrt (x172+y17°2);

% cdlculo del é&ngulo y de la coordenada
% modificada

theta_modif=theta-alfa;
t_modif=coord-s*cos ((pi/180) * (gamma—-theta)) ;
% cdlculo de a

a2=A"2+* (cos ((pi/180) rtheta_modif)) "2+
B 2% (sin((pi/180) *theta_modif)) "2;
a=sqgrt (a2);

% cdlculo de P (t)
if (abs (t_modif) >a)
P=0;
else
P=(2+xrho*AxB/a2) xsqrt (a2-t_modif"2);
end

end

. Algoritmo que calcula la proyeccién de un conjunto de elipses.

function [y]=proyeccion_objeto (objeto,
angulo, coord)
y=0;
tamanio=size (objeto);
total=tamanio (1) ;
for numero_elipse=l:total
elipse=objeto (numero_elipse, :);
y=yt+proyeccion (elipse,angulo, coord) ;
end

end

. Algoritmo que calcula la grafica de la proyeccion de una elipse.

function [x,yl=grafica_proyeccion_elipse(elipse,
angulo, puntos)
incremento=2/ (puntos-1);

y=1I[1;
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x=[];
for t=-1l:incremento:l

f=proyeccion(elipse,angulo,t);

y=[y,f1l;
x=[x,t];
end
end

5. Algoritmo que calcula la grafica de la proyeccién de un objeto.

function [x,yl=grafica_proyeccion_objeto (objeto,
angulo, q)
h=1/qg;
y=[1;
x=[1;
for 1=—qg:1l:g
sl=1xh;
[f]=proyeccion_objeto (objeto,angulo, sl);
y=I[y,fl;
x=[x,s1l];
end

end

6. Algoritmo que calcula el filtro de RamLak

function [w]=RamLak (h, 1)
% Filtro de Ram y Lak

w=1/(8+xh"2);
elseif (mod(1l,2) "=0)
w=-1/(2*pi~2+h"2+x172);

else

7. Algoritmo que calcula el filtro de Shepp-Logan.

function [w]=SheppLlogan(c,s);
$filtro Shepp Logan
numerador=pi/2—-cxsxsin(c=*s);

denominador=(pi/2) "2- (c*s) "2;
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if (denominador==0)
u=1/pi;

else
u=numerador/denominador;

end

w=(c"2/ (2+xpi~3)) *xu;

end

. Algoritmo que calcula el sinograma del fantasma.

function [imagen]=sinograma (objeto, p,d,ang)

imagen=[];

incremento_angulo=ang/p;

angulo=0;

while (angulo<(ang))
[x,filal=grafica_proyeccion_objeto
objeto, angulo, q) ;
angulo=angulo+incremento_angulo;
imagen=[imagen; fila];

end

end

. Algoritmo directo de Fourier.

function [f]=algoritmo_directo (g)

%datos

tamanio=size (g);

p=tamanio (1l); %$numero de proyecciones;
g=(tamanio(2)-1)/2; %2g+l es el numero de rayos;
%$phantomas;

$[gl=sinograma (elipses,p,q);

g(:,2*g+l)=[1;

h=1/q;

%paso 1
G=[1;
for j=1:p

g_fft=(1/sqrt (2xpi)) «hxfft (fftshift(g(j,:)));

G=[G; fftshift (g_£fft)1;

end
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[o)

% paso 2

for fila=1l:2xg
v=g*pi-(fila-1) xpi;
for columna=1:2xqg
u=-g*pi+ (columna-1) xpi;
if ((u"2+v"2)<g”2)
agamma= (180/pi) rangle (u+i*v) ;
agamma=mod (agamma, 360) ;
Jj=round (agammax*p/180) ;
cercano=(180/p) *Jj;
cercano=(pi/180) xmod (cercano, 180) ;
s=u*cos (cercano) +v+sin (cercano) ;
r=round (s/pi) ;
k=g+r+1;
if (k>2x*q)
k=2xq;
end
if (k<1)
k=1;
end
j=mod (j, p) +1;
F(fila,columna)=(1/sqgrt (2+pi))*G(J, k);
else
F(fila,columna)=0;
end
end

end

10. Algoritmo de retro-proyeccion filtrada.

function [f]=retroproyeccion (g,angulo)

% Esta funcidn realiza la

% retroproyeccidén filtrada

% p es el numero de proyecciones

% el numero de rayos va de —-g a g

% angulo corresponde al abarcado por las

% proyecciones a partir del eje 0OY

o

...ambos lados del eje
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[)

%$datos

% g corresponde al sinograma

tamanio=size (qg);

p=tamanio (1) ;
g=floor ((tamanio (2)-1)/2);

h=1/q;

for j=1:p

thetal (j)=cos ((Jj-1) rangulo*pi/ (180xp)) ;
theta2 (j)=sin((j-1) *angulo*pi/ (180xp)) ;

end

[)

% paso 1

for j=1:p

for k=

o)

°

—q:q
convolucion

v(j, k+gt+l)=0;

for 1=-qg:qg

v(j, k+tgtl)=v(j, ktg+tl)+
RamLak (h, (k=1))*g(j, 1+g+1);

end

end

end

%paso 2
fila=1;

v(j, k+tgtl)=v (J,k+tg+l) xh;

for y=1:-1/128:-1
columna=1;
for x=-1:1/128:1

fbi=0;
for j=1l:p

s=thetal (j) »x+theta2 () *xy;
k=floor (s/h);
u=s/h-k;

if (k>=q)
fhi=fbi+v (3, 2xg+l);
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elseif (k<=-q)
fbi=fbi+v (j,1);
else
fhi=fbi+ (1-u)*v(j, k+g+l) tux*
v(j, k+1+g+l);
end
end
fbi=(2xpi/p) xfbi;
f(fila, columna)=£fbi;
columna=columna+1;
end
fila=fila+1l;
end

end

11. Programa escrito en Turbo Pascal que realiza la FFT hasta 1024 puntos. Los resultados pue-

den introducirse por archivo y también por teclado. Las salidas se obtienen en archivo.

program FFT_base_2;
uses crt;
const
Pi=3.1415926535897932;
type
complejo=record
p_real:real;
p_imag:real
end;
lista=array[0..1023] of integer;

vector=array[0..1023] of complejo;

var
fichero:Text;modulo:real;
numero_puntos:integer;
total_fases, fase,mariposas, longitud_mariposa,
bloque, primero, k:integer;
numeracion_indices_inicial:lista;
H,hO:vector;
producto, suma, resta:complejo;
W:complejo;
a,b:complejo;

respuesta:char;
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procedure datos(var h:vector);
{Obtencidén de los datos iniciales hO}
var
k,opcion:integer;
begin
clrscr;
writeln ('’ Introduccidén de los datos

iniciales’);

writeln (/== = ====

writeln;
writeln(’1. Introducir datos por el
teclado’);
writeln(’2. Introducir datos mediante
archivo datos.txt’);
writeln;
write('Elige opcidn: ');
readln (opcion);
if opcion=1
then begin
writeln (’ Introduce los datos asj
--> parte real parte imaginaria’);
for k:=0 to numero_puntos-1 do
readln (h[k].p_real,h[k].p_imag);
end
else begin
assign(fichero,’datos.txt’);
reset (fichero) ;
for k:=0 to numero_puntos-1 do
readln (fichero,h[k] .p_real,
hlk].p_imag);
close (fichero);

end;
end;
function potencia (base,exponente:integer)
:integer;

(# Calcula la potencia real x)

var
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resultado, i:integer;
begin
resultado:=1;
for i:=1 to exponente do
resultado:=resultadox*base;
potencia:=resultado;
end;

procedure adiciona (v,w:complejo;var

resultado:complejo);

(» Calcula la suma de dos numeros

complejos x*)

begin
resultado.p_real:=v.p_realtw.p_real;
resultado.p_imag:=v.p_imag+w.p_imag;

end;

procedure sustrae (v,w:complejo;var

resultado:complejo);

(» Calcula la suma de dos numeros

complejos x*)

begin
resultado.p_real:=v.p_real-w.p_real;
resultado.p_imag:=v.p_imag-w.p_imag;

end;

procedure multiplica(v,w:complejo; var

resultado:complejo);

(x Calcula el producto de dos numeros

complejos x)

begin
resultado.p_real:=v.p_real*w.p_real
-v.p_imag*w.p_imag;
resultado.p_imag:=v.p_real*w.p_imag
+v.p_imag*w.p_real;

end;

procedure Buneman (var indices:lista);
var

etapas,k,L,Ll,L2:integer;
begin
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etapas:=round (Ln (numero_puntos) /
Ln(2));
for k:=1 to etapas do

begin

for L:= 1 to potencia(2,k-1) do

begin
Ll:=L-1;
L2:=Ll+potencia(2,k-1);
indices[Ll] :=2+indices[L1];
indices[L2] :=indices[L1]+1;

end;

end;

end;

procedure primera_etapa (var h:vector;h0:
vector;indices:lista);
var
k:integer;
begin
for k:=0 to numero_puntos-1 do begin
hlk].p_real:=h0O[indices[k]].p_real;
h(k].p_imag:=hO[indices[k]].p_imag;
end;

end;

procedure muestra_DFT (h:vector);
var
k:integer;
begin
for k:=0 to numero_puntos-1 do begin
write(h[k].p_real,’” , ’',hlk].p_imaqg);
writeln;
end;

end;

begin
(* Menu Principal )
clrscr;

write ('’ ;Clantos Puntos hay que
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computar? ’);
readln (numero_puntos) ;
datos (h0); (x Recogida de datos de
partida )
muestra_DFT (hO) ;
Buneman (numeracion_indices_inicial);
primera_etapa (H, hO,
numeracion_indices_inicial);
(* Asigna primera DFT de 1 Pto x)
total_fases:=Round (Ln (numero_puntos)
/In(2));

for fase:=1 to total_fases do begin

mariposas:=numero_puntos div
potencia (2, fase);

longitud_mariposa:=potencia (2, fase);

for bloque:=1 to mariposas do begin
primero:=(bloque-1)xlongitud_

mariposa;

for k:= primero to (primero+
(longitud_mariposa div 2)-1)
do begin
W.p_real:=Cos (—2xPix
(k—primero) /longitud_mariposa);
W.p_imag:=Sin (-2+Pix

(k-primero) /longitud_mariposa) ;

a.p_real:=H[k].p_real;
b.p_real:=H[k+ (longitud_
mariposa div 2)].p_real;
a.p_imag:=H[k] .p_imag;
b.p_imag:=H[k+ (longitud_
mariposa div 2)].p_imag;
multiplica (W,b,producto);
adiciona (a,producto, suma) ;

sustrae (a, producto, resta);

H[k] :=suma;

H[k+ (longitud_mariposa div
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end.

2)]:=resta;

end;

end;

end;

writeln (’==== Resultado FFT ====')
;writeln;

muestra_DFT (H) ;

assign (fichero,’DFTdatos.txt’);

Rewrite (fichero);

for k:=0 to numero_puntos-1 do

~
~

writeln (fichero,H[k] .p_real, ,
H(k] .p_imagqg);
close (fichero);

assign(fichero,’DFTModul.txt’);

Rewrite (fichero);

for k:=0 to numero_puntos-1 do

begin
modulo:= H[k].p_realx
H(k].p_real+H[k].p_imagxH[k] .p_imag;
modulo:=Sgrt (modulo) /numero_puntos;
writeln (fichero, modulo);

end;

close (fichero);

writeln(’Pulsa Intro para cerrar’);

readln;
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