
A
Análisis de Fourier

Los orı́genes del Análisis de Fourier se remontan a los tiempos de J. Bernoulli y J. Fourier en su

intento por resolver los problemas de la cuerda vibrante y de la transmisión de calor, expresando las

soluciones como desarrollos en serie de senos y cosenos; expresiones que en aquella época no se

consideraban válidas.

En este capı́tulo se expondrán las definiciones y propiedades más importantes empleadas por la

tomografı́a en su intento por representar las imágenes con la mayor resolución y precisión que le

sea posible. Más información puede ser consultada en [3].

A.1 La Transformada de Fourier

No hay unanimidad en la definición de la Transformada de Fourier. En esta sección se presentan

dos definiciones con sus propiedades asociadas. Ambas formas son muy utilizadas y en este trabajo

se usan la dos. Ası́ pues, una primera definición es:

Definición. La Transformada de Fourier de una función f(x) ∈ L1(Rn) integrable Lebesgue

es

f̂(ξ) = (2π)−n/2
∫
Rn

f(x)e−iξxdx. (A.1)
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A. ANÁLISIS DE FOURIER

Además, definimos La Transformada de Fourier Inversa de g(ξ) a la función obtenida como

ǧ(x) = (2π)−n/2
∫
Rn

g(ξ)eixξdξ. (A.2)

Ası́ definida, algunas propiedades de las que goza la Transformada de Fourier son:

• Linealidad : (αf + βg)∧ = αf̂ + βĝ.

• (f ∗ g)∧ = (2π)n/2f̂ ĝ.

• Si ρ ∈ O(n) es una transformación ortogonal,(f(ρx))∧(ξ) = f̂(ρξ).

•
∫
Rn |f(x)|2dx =

∫
Rn |f̂(ξ)|2dξ. Esta ecuación se conoce como relación de Parseval.

• (∂
kf
∂xk )∧(ξ) = i|k|ξkf̂(ξ).

• (xkf)∧(ξ) = i|k| ∂
kf̂
∂ξk

(ξ).

• ĺım
|ξ|→∞

f̂(ξ) = 0 (Riemann-Lebesgue). Se deduce de esta propiedad que para funciones in-

tegrables las componentes de altas frecuencias tienden a ser despreciables respecto a las de

bajas frecuencias.

Otra definición muy usada en la literatura matemática para la Transformada de Fourier y su

inversa es:

Definición. La Transformada de Fourier de una función f(x) ∈ L1(Rn) es

f̂(ξ) =

∫
Rn

f(x)e−i2πξxdx, (A.3)

y su inversa

ǧ(x) =

∫
Rn

g(ξ)ei2πxξdξ. (A.4)

Las propiedades anteriores se re-escriben:

• Linealidad : (αf + βg)∧ = αf̂ + βĝ.

• (f ∗ g)∧ = f̂ ĝ. La transformada de Fourier del producto de convolución de dos funciones es

el producto de sus transformadas.

• Si ρ ∈ O(n) es una transformación ortogonal,(f(ρx))∧(ξ) = f̂(ρξ).

•
∫
Rn |f(x)|2dx =

∫
Rn |f̂(ξ)|2dξ (Relación de Parseval).

• (∂
kf
∂xk )∧(ξ) = (2π)ki|k|ξkf̂(ξ).
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A.2 La Transformada de Fourier y la convolución

• (xkf)∧(ξ) = (2π)−ki|k| ∂
kf̂
∂ξk

(ξ).

• ĺım
|ξ|→∞

f̂(ξ) = 0 (Riemann-Lebesgue).

• Si A es una matriz regular se cumple F(f(Ax)) = 1
det(A)Ff(A−T ξ), siendo F la Transfor-

mada de Fourier.

Ejemplo. Es muy habitual el uso de la siguiente función:

f(x) =

{
A si |x| ≤ τ/2
0 |x| > τ/2

, (A.5)

cuya transformada de Fourier según la última definición dada es

F (ξ) = Aτ
sen(πξτ)

πξτ
. (A.6)

La función f(x), que se llama pulso rectangular, es de uso frecuente en el muestreo de señales.

Se puede deducir fácilmente que cuanto mayor anchura tiene el pulso más se estrecha su trans-

formada de Fourier; y viceversa. La interpretación fı́sica la proporciona la relación de Parseval; la

energı́a de la señal tiende a concentrarse en el lóbulo principal de bajas frecuencias cuando la du-

ración del pulso aumenta. Este resultado es muy importante desde un punto de vista práctico. Si

deseamos obtener los detalles en aquellas zonas en las que hay una variación importante de la señal,

el pulso deberá estar muy localizado en el espacio o en el tiempo. Los detalles finos del objeto se

corresponden con las altas frecuencias y los detalles más groseros con las bajas frecuencias.

A.2 La Transformada de Fourier y la convolución

Se define el producto de convolución de dos funciones f(x) y g(x) de Rn a

(f ∗ g)(x) =

∫
Rn

f(x− y)g(y)dy. (A.7)

La operación de convolución se realiza en la práctica para realizar un suavizado en las señales. El

fundamento de esta técnica se basa en lo que sucede en el dominio de Fourier. Hacer una convolu-

ción en el dominio espacial supone multiplicar las señales en el dominio frecuencial. Si se necesita

que la señal f(x) tenga unas propiedades deseadas, como puede ser una frecuencia de corte B,

basta multiplicar su transformada de Fourier F (ξ) por una función H(ξ) que se anule para valores

|ξ| ≥ B y valga la unidad para el resto de valores. A continuación, se realiza la transformación

inversa de Fourier para recuperar la señal con las propiedades pretendidas.
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A. ANÁLISIS DE FOURIER

Al proceso por el cual una señal se la modifica para que tenga un contenido frecuencial dado se

le llama filtrado de la señal. Esta es una de las operaciones más importantes en representación de

imágenes. Se llama filtro a la función con la que se convoluciona la señal.

Para implementar el producto de convolución de dos señales se precisa discretizarlas. Ası́, defi-

niremos la convolución de dos señales en tiempo o espacio discretas f(n) y g(n) a la señal h(n) en

tiempo o espacio discreta

h(n) = f(n) ∗ g(n) =

∞∑
k=−∞

f(k)g(n− k). (A.8)

Ejemplo. La señal impulso unitario se define como

δ(n) =

{
1 si n = 0
0 si n 6= 0

. (A.9)

Si se convoluciona con cualquier señal en tiempo o espacio discreto se obtiene como resultado la

propia señal. Esto se escribe matemáticamente como

h(n) = f(n) ∗ δ(n) = f(n). (A.10)

Dado que la señal h(n) = f(k)δ(n − k) es nula en todo instante salvo n = k, cuyo valor es

f(k), la ecuación anterior muestra que una señal se puede escribir como combinación infinita de

sus muestras.

Definición. Una señal en tiempo o espacio discreta es de duración finita o longitudN si se anula

en todo instante excepto en N instantes.

Ejemplo. Sea f(n) = (1, 2), entendiendo que el valor de f(n) en el instante n coincide con el

valor de la coordenada n empezando en n = 0. Con la misma interpretación, sea g(n) = (1, 2, 3).

Ambas señales son de longitud finita 2 y 3, respectivamente. Su producto de convolución es

h(n) = f(n) ∗ g(n) = (1, 4, 7, 6), (A.11)

obtenido como una multiplicación polinómica. En este ejemplo, se obtiene la señal de longitud 4

dada por

h(n) =


1 si n = 0
4 si n = 1
7 si n = 2
6 si n = 3
0 en otro caso.

(A.12)

En general, dadas dos señales de longitudes N y M su producto de convolución tendrá longitud

N +M − 1.
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A.3 Muestreo de señales

A.3 Muestreo de señales

Al muestrear una señal en tiempo continuo f(x) se obtiene una señal en tiempo discreto fn obtenida

a partir de la primera mediante la fórmula fn = f(τn), siendo 1/τ la velocidad de muestreo. Dicho

de otro modo, escogemos valores de f(x) a intervalos de τ unidades.

El objetivo de la teorı́a del muestreo es la recuperación de la señal original a partir de sus

muestras. Se plantea las condiciones que deben poseer las señales f(x) para que esto sea posible.

Además, propone fórmulas que puedan ser implementadas en la práctica con los medios de cálculo

de que se dispone.

Se dice que f(x) tiene ancho de banda B si su transformada de Fourier es localmente integrable

y es nula para frecuencias |ξ| ≥ B. Luego, la frecuencia más grande - llamada frecuencia de corte

- que tiene f(x) es B.

De entre las señales de ancho de banda limitada sobresale en importancia la función

sinc(x) =

{
sen(x)
x si x 6= 0

1 si x = 0,
(A.13)

que se obtiene mediante la transformada inversa de Fourier de

F (ξ) =

{
1 si |ξ| ≤ 1
0 otro caso. (A.14)

Por lo tanto, la señal f(x) tiene ancho de banda 1. A partir de ella, se define en Rn la función

sinc(x) = sinc(x1)... sinc(xn), (A.15)

con x = (x1, ...xn))T . Y finalmente, sincb(x) = sinc(bx), cuya transformada de Fourier es

sincb (̂ξ) = (π/2)n/2b−nℵ(
1

b
ξ), (A.16)

donde ℵ es la función caracterı́stica de [−1, 1]n.

Esta función juega un papel importante en la recuperación de la señal a partir de sus muestras.

Supongamos que f(x) es una función que se anula fuera de un intervalo [−a, a]. Luego, f(x) = 0

para |ξ| > a. Si extendemos por periodicidad f(x) a todo R se podrá escribir como una combinación

de exponenciales complejas cuyos coeficientes son los coeficientes de Fourier; y éstos se relacionan

con la transformada de Fourier.

f(x) =
∑
k

fke
iπxk/a, (A.17)

siendo los coeficientes de Fourier

fk = (2a)−n
∫
[−a,a]

f(x)e−iπxk/adx, (A.18)
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y claramente

fk = (
π

2
)n/2a−n

∑
k

f̂(
π

a
k). (A.19)

Si se aplica este resultado a una señal de cuadrado integrable, con ancho de banda B y para h ≤ π
B ,

se deduce que su transformada de Fourier es

f̂(ξ) = (2π)−n/2hn
∑
k

f(hk)e−ihξk. (A.20)

Para recuperar f(x) basta multiplicar por la función caracterı́stica ℵ1/B de [−(π/h), π/h] y hacer

la transformada inversa de Fourier. Se llega a la fórmula

f(x) =
∑
k

f(hk) sinc
π

h
(x− hk). (A.21)

Nota. La condición h ≤ π
B se llama condición de Nyquist.

Ejemplo. Sea f(x) = 2 sen(4πx) + 5 sen(10πx) para 0 ≤ x ≤ 1. Se observa que la máxima

frecuencia de la señal es de 5 Hz. Se ha representado la gráfica de la función y las gráficas que se

obtienen al interpolar con tasas de muestreo inferior, igual y superior a la de Nyquist. Claramente,

tasas de velocidad de muestreo inferiores a la de Nyquist producen resultados insatisfactorios. Es

importante darse cuenta de que el muestreo a la tasa de Nyquist no produce resultados correctos en

este caso. La señal original se recupera a una velocidad de muestreo superior a la de Nyquist, como

bien se aprecia en las gráficas de la figura A.1.
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A.3 Muestreo de señales

Figura A.1: Ejemplo de muestreo de una señal
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B
Inversión de la Transformada de Radon

El objetivo es recuperar el objeto f(x) a partir de sus integrales de lı́nea. Para ello, una herramienta

útil va a ser el potencial de Riesz y la transformada dual de Radon [9].

Definición. Para α < n, se define el operador lineal Iα que cumple

(Iαf)∧(ξ) = |ξ|−αf̂(ξ). (B.1)

Si f(x) pertenece a la clase de funciones de Schwartz entonces se garantiza la existencia de

inversa para el operador lineal, que es I−α. Por lo tanto, I−αIαf = f .

Ahora, de la propia definición del potencial de Riesz,

Iαf(x) = (2π)−n/2
∫
Rn

|ξ|−αf̂(ξ)e−ix·ξdξ. (B.2)

Y realizando el cambio a coordenadas polares ξ = ρ · w, se obtiene

Iαf(x) = (2π)−n/2
∫
Sn−1

∫ ∞
0

ρn−1−αf̂(ρ · w)e−iρx·wdρdw. (B.3)

Aplicando el Teorema de la Rebanada de Fourier y que la Transformada de Radon posee simetrı́a

par se llega a la siguiente expresión

Iαf(x) = 1/2(2π)−n+1/2

∫
Sn−1

∫ ∞
−∞
|ρ|n−1−α(Rf)∧(w, ρ)e−iρx·wdρdw. (B.4)
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En la expresión anterior aparece el potencial de Riesz en la integral. Puede escribirse ahora

Iαf(x) = 1/2(2π)−n+1

∫
Sn−1

Iα+1−nRf(w, x · w)dw. (B.5)

La integral es la transformada dual de Radon. Se aplica I−α y f(x) queda despejada como

f = 1/2(2π)1−nI−αR]Iα−n−1Rf. (B.6)

A partir de aquı́ pueden obtenerse fórmulas interesantes particularizando para diferentes valores

de α.

Caso 1. Si α = 0 se obtiene la fórmula explı́cita

f =
1

2
(2π)1−nR]I1−nRf. (B.7)

Para g perteneciente a la clase de Schwartz se tiene

(I1−ng)∧(ξ) = [sgn(ξ)]n−1ξn−1ĝ(ξ). (B.8)

Teniendo en cuenta la definición de la transformada de Hilbert de una función f de la clase de

Schwartz como aquella que cumple

(Hf)∧(ξ) = −i sgn ξf̂(ξ), (B.9)

o equivalentemente

Hf =
1

π
v.p.

1

x
∗ f, (B.10)

y que verifica H(Hf) = −f , se tiene que I1−ng = Hn−1g(n−1). Por lo tanto, se puede escribir

con un poco de cálculo

f(x) =
1

2
(2π)1−n ·

{
(−1)

n−2
2

∫
Sn−1 H(Rf)(n−1)(w, x · w)dw si n es par

(−1)
n−1
2

∫
Sn−1(Rf)(n−1)(w, x · w)dw si n es impar

. (B.11)

Para el caso n par y escribiendo la transformada de Hilbert como convolución se obtiene, denotando

g = Rf , que f es

f(x) = (−1)n/2+1(2π)−n
∫
Sn−1

v.p.

∫
R

g(n−1)(w, s)

x · w − s
dsdw. (B.12)

Realizando el cambio de variable s = q + x · w y que para el valor principal de Cauchy es cierto

que

v.p.

∫
R

f(x)

x
dx = ĺım

h→0

∫
|x|>h

f(x)

x
dx =

∫ ∞
−∞

f(x)− f(−x)

2x
dx, (B.13)
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se escribe

f(x) = (−1)n/2(2π)−n
1

2

∫
R

1

q

∫
Sn−1

(g(n−1)(w, x ·w+ q)− g(n−1)(w, x ·w− q))dwdq. (B.14)

Puesto que g tiene simetrı́a par y n− 1 es impar entonces g(n−1) es impar, y se puede simplificar la

expresión anterior. Ası́, definiendo

Fx(q) =
1

|Sn−1|

∫
Sn−1

g(w, x · w + q)dw, (B.15)

que es par por serlo g, se llega a la fórmula original de Radon del año 1917

f(x) = 2(−1)n/2(2π)−n|Sn−1|
∫ ∞
0

1

q
F (n−1)
x (q)dq. (B.16)

Particularizando para el caso plano (n = 2)

f(x) = − 1

π

∫ ∞
0

dFx(q)

q
dq. (B.17)

Caso 2. Si α = n− 1 se obtiene para g = Rf

f =
1

2
(2π)1−nI1−nR]g. (B.18)

Si n es impar el potencial de Riesz verifica I1−n = (−∆)(n−1)/2 y particularizando al caso

n = 3 se llega a la fórmula explı́cita

f(x) =
−1

8π2
∆

∫
S2

g(w, x · w)dw, (B.19)

donde el operador laplaciano actúa en la variable x.

Otra forma de conseguir una fórmula de inversión, y que será adecuada para obtener posterior-

mente un algoritmo para recuperar el objeto, parte de la fórmula ya vista

(R]w) ∗ f = R](w ∗Rf). (B.20)

Si se elige una función g cuya transformada dual de Radon R]w se aproxime a la distribución δ

de Dirac se obtendrá f como lı́mite. Como se supone que las señales tienen frecuencia de corte B

podemos escribir

(R]w)∧(ξ) = (2π)−n/2Φ̂(|ξ|/B), (B.21)

con 0 ≤ Φ̂ ≤ 1 y Φ̂(ρ) = 0 para ρ ≥ 1. La función Φ̂(ρ) se puede interpretar como un filtro paso

bajo para la señal.
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C
Tomografı́a matemática. Difracción

Se considera el caso en el que la trayectoria de los rayos no es rectilı́nea y sufre del fenómeno de

la difracción. Es lo que ocurre cuando se usan otro tipo de fuentes diferentes a la de los rayos-X y

que son más seguros, sobre todo si su exposición a ellos es a bajas dosis; ondas electromagnéticas

y ultrasonidos entre ellos. El parámetro a reconstruir y que se considera como el objeto es el ı́ndice

de refracción del medio; ya sea el electromagnético o el acústico.

Se puede tratar el problema de dos maneras diferentes:

1. Se estima un valor inicial para el ı́ndice de refracción y se averigua el camino o trayectoria que

deberı́a seguir cada rayo dentro del espécimen. Se compara con los resultados de laboratorio

obtenidos y se efectúa la corrección correspondiente en el ı́ndice de refracción. El proceso se

vuelve a repetir calculando las nuevas trayectorias con el valor corregido. Se corrige el ı́ndice

y ası́ hasta que se llegue a cumplir el criterio de parada establecido. En estos métodos se

utilizan técnicas algebraicas y no se comporta mal cuando los casos de estudio son débilmente

difractantes.

2. La teorı́a geométrica de rayos es adecuada para heterogeneidades cuyos tamaños son mayores

que la longitud de onda del medio con el que se desea ver. En otro caso, se debe tratar el

problema acudiendo a la ecuación de ondas y teniendo en cuenta el fenómeno de difracción.
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Si estos fenómenos de difracción son débiles, se puede hacer una reconstrucción tomográfica

basada en el Teorema de Difracción de Fourier.

Para hacer tratable el problema se estudia en primer lugar el caso de materiales homogéneos para

pasar, a continuación, a estudiar el caso de muestras no homogéneas. El material consultado en este

apéndice y que se anima al lector a que profundice en su lectura es [5].

C.1 Caso homogéneo

Sea u la magnitud del campo expresado en función de la posición ~r y del tiempo t. Sea c la velocidad

del campo. La ecuación de ondas se escribe

∇2u(~r, t)− 1

c2
∂2

∂t2
u(~r, t) = 0. (C.1)

Supongamos que la onda

u(~r, t) = u(~r)e−jωt (C.2)

verifica la ecuación C.1. Definiendo el número de ondas como

k(~r) =
2π

λ
=
ω

c
, (C.3)

se obtiene [
∇2 + k2(~r)

]
u(~r) = 0. (C.4)

Para un medio que es homogéneo el número de ondas es constante, k(~r) = k0, y ası́

(
∇2 + k20

)
u(~r) = 0. (C.5)

Como solución de prueba ensayamos una onda plana

u(~r) = ej
~k·~r = ej(kxx+kyy). (C.6)

Nota. Se denomina vector de propagación a k(~r) = (kx, ky).

Ahora, deberá cumplirse

∂2u(~r)

∂x2
+
∂2u(~r)

∂y2
+ k20u(~r) = 0, (C.7)

con

|k(~r)|2 = k2x + k2y = k20. (C.8)
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C.1 Caso homogéneo

La solución general de la ecuación de ondas homogénea, debido a la linealidad, será una suma

ponderada de todas las soluciones de ondas planas posibles. Luego, para una frecuencia temporal

ω, el campo u(~r) puede escribirse

u(~r) =
1

2π

∫ ∞
−∞

α(ky)ej(kxx+kyy)dky +
1

2π

∫ ∞
−∞

β(ky)ej(−kxx+kyy)dky, (C.9)

con

kx =
√
k20 − k2y. (C.10)

En la expresión anterior α(ky) y β(ky) son los coeficientes de las ondas que viajan hacia la derecha

y hacia la izquierda, respectivamente. Considerando el caso en el que el emisor está a la izquierda y

el detector se coloca a la derecha sólo se ha de retener el primer sumando. Ası́, la solución es

u(~r) =
1

2π

∫ ∞
−∞

α(ky)ej(kxx+kyy)dky. (C.11)

Si se coloca el detector en x = 0 obtendremos la expresión

u(0, y) =
1

2π

∫ ∞
−∞

α(ky)ejkyydky. (C.12)

Por lo tanto, se llega a que el coeficiente es la transformada inversa de Fourier de la solución en la

lı́nea de medición x = 0

α(ky) = F−1(u(0, y)). (C.13)

Conocido el coeficiente, éste se introduce en la ecuación C.11 y se halla el valor en cualquier

lugar a la derecha de x = 0. Ahora es fácil obtener una expresión que ligue los valores del campo

cuando la lı́nea de detectores se coloca en dos posiciones paralelas diferentes desplazadas entre ellas

una distancia d = l1 − l0. Se obtiene

u(l1, y) = u(l0, y)ejkxd. (C.14)

Se observa que lo que sucede es un desplazamiento de fase.

Se puede sistematizar el proceso de la siguiente manera:

1. Hacer la transformada de Fourier de u(l0, y) para obtener la descomposición de u como

función de ky.

2. Propagar cada onda plana a la lı́nea x = l1 multiplicando su amplitud compleja por el factor

ejkxd, siendo d = l1 − l0 y kx =
√
k20 − k2y .

3. Hacer la transformada de Fourier inversa de la descomposición de ondas planas y obtener el

valor del campo en u(l1, y).
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C.2 Caso no-homogéneo

Para obtener la solución en el caso de medios heterogéneos se parte de la ecuación de ondas para

pequeñas perturbaciones (
∇2 + k20

)
u(~r) = −o(~r)u(~r), (C.15)

siendo el objeto o(~r) el que está relacionado con las propiedades de la muestra y cuyo valor es

o(~r) = k20
[
n2(~r)− 1

]
, (C.16)

siendo n(~r) el ı́ndice de refracción correspondiente. Escribimos el campo como suma de una com-

ponente solución del caso homogéneo u0(~r) y otra la debida a las heterogeneidades o campo dis-

persado us(~r). Tenemos

u(~r) = u0(~r) + us(~r). (C.17)

Puesto que u(~r) es solución, se debe cumplir la ecuación de Helmholtz

(
∇2 + k20

)
us(~r) = −o(~r)u(~r), (C.18)

cuya solución se puede expresar en términos de la función de Green y que es solución, a su vez, de

la ecuación diferencial (
∇2 + k20

)
g(~r, ~r′) = −δ(~r − ~r′). (C.19)

Se sabe que la solución de la ecuación C.19 es:

• para el caso 2-dimensional

g(~r, ~r′) =
j

4
H

(1)
0 (k0R), (C.20)

con R = |~r − ~r′| y H(1)
0 la función de Hankel de orden cero y de primera clase;

• para el caso 3-dimensional,

g(~r, ~r′) =
ejk0R

4πR
. (C.21)

Se observa que en ambos casos g(~r, ~r′) es función de ~r − ~r′ y ası́, g también lo es. Sólo queda

expresar como suma de impulsos

o(~r)u(~r) =

∫
o(~r′)u(~r′)δ(~r − ~r′)d~r′, (C.22)

y escribir la ecuación integral ( integral de Fredholm de segunda clase )

us(~r) =

∫
g(~r − ~r′)o(~r′)u(~r′)d~r′. (C.23)
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C.3 Aproximación de Born

Suponiendo la condición us(~r) << u0(~r) y escribiendo el segundo miembro de la ecuación C.23

como suma de dos integrales

us(~r) =

∫
g(~r − ~r′)o(~r′)u0(~r′)d~r′ +

∫
g(~r − ~r′)o(~r′)us(~r′)d~r′, (C.24)

se desprecia la contribución de la segunda integral y queda

us(~r) ≈ uB(~r) =

∫
g(~r − ~r′)o(~r′)u0(~r′)d~r′. (C.25)

El proceso se puede iterar sustituyendo en C.25 la aproximación uB obtenida dentro de la integral

y hallar u(2)B (~r). Ası́,

u
(2)
B (~r) =

∫
g(~r − ~r′)o(~r′)

[
u0(~r′) + uB(~r′)

]
d~r′. (C.26)

Y ası́, sucesivamente, podemos escribir

u
(i+1)
B (~r) =

∫
g(~r − ~r′)o(~r′)

[
u0(~r′) + uiB(~r′)

]
d~r′. (C.27)

C.4 Teorema de Difracción de Fourier

La ecuación C.25 se puede interpretar como una convolución entre la función de Green g(~r − ~r′) y

el producto o(~r)u0)(~r). Para el caso que la onda incidente sea una onda plana, siendo ~k = (kx, ky),

u0(~r) = ej
~k·~r, (C.28)

satisfaciendo k20 = k2x + k2y . Y puesto que la solución para g(~r, ~r′) viene dada por C.20 puede

escribirse explı́citamente

g(~r, ~r′) =
j

4π

∫ ∞
−∞

1

β
ej[α(x−x

′)+β|y−y′|]dα, (C.29)

siendo β =
√
k20 − α2. Sustituyendo la expresión C.29 en la ecuación C.25 se deduce

uB(~r) =
j

4π

∫
o(~r′)u0(~r′)

∫ ∞
−∞

1

β
ej[α(x−x

′)+β|y−y′|]dαd~r′. (C.30)

Por conveniencia, supongamos que la dirección de propagación de la onda plana incidente es el

eje y positivo. Luego, u0(~r) = ej ~s0~r, con ~s0 = (0, k0). Y supongamos, además, que la lı́nea de
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receptores está en la posición y = l0 y, por lo tanto, l0 − y > 0 para todo punto interior de la

muestra. Entonces podemos escribir

uB(x, y = l0) =
j

4π

∫ ∞
−∞

dα

∫
o(~r′)

β
ej[α(x−x

′)+β(y−y′)]ejk0y
′
d~r′. (C.31)

Denotamos con O(α, β − k0) la transformada de Fourier del objeto o(~r) a frecuencias α y β − k0
y escribimos

uB(x, y = l0) =
j

4π

∫ ∞
−∞

1

β
ej(αx+βl0)O(α, β − k0)dα. (C.32)

Denotamos por UB(ω, l0) la transformada de Fourier de uB ;

UB(ω, l0) =

∫ ∞
−∞

uB(x, l0)e−jωxdx. (C.33)

Si se tiene en cuenta la expresión dada para UB , que se verifica∫ ∞
−∞

ej(ω−α)xdx = 2πδ(ω − α) (C.34)

y teniendo en cuenta la ecuación C.32, se llega finalmente a la expresión

UB(α, l0) =
j

2
√
k20 − α2

ej
√
k20−α2l0O(α,

√
k20 − α2 − k0); (C.35)

válida cuando |α| < k0. Conviene decir que la fı́sica de propagación de ondas da escasa probabi-

lidad a que la mayor frecuencia angular del campo dispersado medido en la lı́nea y = l0 exceda

el valor de k0. De manera que en la mayorı́a de las situaciones prácticas Us(ω, l0) será nula para

valores ω > k0.

El factor j

2
√
k20−α2

ej
√
k20−α2l0 es una constante para una lı́nea fija de receptores. Cuando α

varı́a de −k0 a k0 las coordenadas (α,
√
k20 − α2− k0) de la transformada de Fourier de la función

objeto trazan un arco semicircular en el plano (u, v). Los puntos extremos del arco semicircular

están a una distancia
√

2k0 del origen en el dominio de la frecuencia. Para |α| > k0 la transformada

es nula.

Para un objeto cuyas heterogeneidades son débilmente dispersantes podemos establecer el si-

guiente resultado.

Teorema de Difracción de Fourier. Si un objeto definido por la función o(x, y) se ilumina con

una onda plana entonces la transformada de Fourier del campo dispersado por el objeto, medido

sobre una lı́nea en el sentido de avance, coincide con los valores de la transformada de Fourier 2-

dimensional del objeto,O(ω1, ω2), a lo largo de un arco semicircular en el dominio de la frecuencia

(figura C.1).

58



C.4 Teorema de Difracción de Fourier

Figura C.1: Relación entre la transformada de Fourier de la proyección y la transformada de Fourier del
objeto.

El radio de los arcos viene dado por k0 = 2π
λ , siendo λ la longitud de onda. Se observa que al

disminuir la longitud de onda aumenta el radio de los arcos y, por lo tanto, el Teorema de Difracción

de Fourier se aproxima al Teorema de la Rebanada de Fourier.

Según el teorema de Difracción de Fourier, para que la reconstrucción de un objeto fuera perfec-

ta deberı́a conocerse el valor de la transformada de Fourier en todos los puntos interiores del disco

centrado en el origen y de radio
√

2K0. Eligiendo de forma adecuada la orientación y la frecuencia

de las ondas planas incidentes es posible estimar la transformada de Fourier del objeto a cualquier

frecuencia. Por ejemplo, variando la frecuencia del campo incidente conseguimos cambiar el valor

del radio de los arcos. El objetivo es conseguir generar una estimación de la transformada de Fourier

completa del objeto.

Rotando el objeto y midiendo el campo dispersado para diferentes orientaciones es posible

obtener esas estimaciones. Con la rotación del objeto se rotan los arcos en el dominio de Fourier.

Un problema importante es la interpolación que debe realizarse. Nótese que los datos en el do-

minio de Fourier se disponen sobre arcos semicirculares y se deben aproximar a una red rectangular

para realizar la inversión que proporcione los valores del objeto (figura C.2).

59
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Figura C.2: Los datos medidos se disponen sobre los arcos semicirculares.
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Programas

Los algoritmos realizados por el autor de este proyecto se recopilan en este apéndice. Todas las

figuras del capı́tulo correspondiente a la transformada de Radon han sido realizados con los mismos.

Se han programado con MATLAB 7.6 todos los algoritmos relacionados con la transformada de

Radon. El último de los programas es una implementación en Turbo Pascal de la FFT en el que se

ha usado el algoritmo de Buneman para la re-ordenación de los nodos.
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D.1 Programas

1. Algoritmo que define el fantasma de 10 elipses para realizar la simulaciones.

% Descripción de las elipses del phantom

% elipses=phantomas(total);

% total es el número de elipses a dibujar

function [elipses]=phantomas(total)

elipse(1,:)=[1 0.69 0.92 0 0 0];

elipse(2,:)=[-0.8 0.6624 0.8740 0 -0.0184 0];

elipse(3,:)=[-0.2 0.11 0.31 0.22 0 -18];

elipse(4,:)=[-0.2 0.16 0.41 -0.22 0 18];

elipse(5,:)=[0.1 0.21 0.25 0 0.35 0];

elipse(6,:)=[0.1 0.046 0.046 0 0.1 0];

elipse(7,:)=[0.1 0.046 0.046 0 -0.1 0];

elipse(8,:)=[0.1 0.046 0.023 -0.08 -0.605 0];

elipse(9,:)=[0.1 0.023 0.023 0 -0.606 0];

elipse(10,:)=[0.1 0.023 0.046 0.06 -0.605 0];

elipses=[];

for numero=1:total

elipses=[elipses;elipse(numero,:)];

end

2. Algoritmo que calcula la proyección de una elipse cualquiera

function [P] = proyeccion(elipse,theta,coord)

% Proyeccion de una elipse de centro cualquiera

% y ejes cualesquiera

% elipse corresponde a los datos de la elipse a

% proyectar

% theta es el ángulo de proyección

% coord es la coordenada sobre la recta que

% recorren los rayos

% datos de la elipse

rho=elipse(1);

A=elipse(2);

B=elipse(3);

x1=elipse(4);

y1=elipse(5);

alfa=elipse(6);
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% cálculo de gamma y s

gamma=(180/pi)*angle(x1+i*y1);

s=sqrt(x1ˆ2+y1ˆ2);

% cálculo del ángulo y de la coordenada

% modificada

theta_modif=theta-alfa;

t_modif=coord-s*cos((pi/180)*(gamma-theta));

% cálculo de a

a2=Aˆ2*(cos((pi/180)*theta_modif))ˆ2+

Bˆ2*(sin((pi/180)*theta_modif))ˆ2;

a=sqrt(a2);

% cálculo de P(t)

if (abs(t_modif)>a)

P=0;

else

P=(2*rho*A*B/a2)*sqrt(a2-t_modifˆ2);

end

end

3. Algoritmo que calcula la proyección de un conjunto de elipses.

function [y]=proyeccion_objeto(objeto,

angulo,coord)

y=0;

tamanio=size(objeto);

total=tamanio(1);

for numero_elipse=1:total

elipse=objeto(numero_elipse,:);

y=y+proyeccion(elipse,angulo,coord);

end

end

4. Algoritmo que calcula la gráfica de la proyección de una elipse.

function [x,y]=grafica_proyeccion_elipse(elipse,

angulo,puntos)

incremento=2/(puntos-1);

y=[];
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x=[];

for t=-1:incremento:1

f=proyeccion(elipse,angulo,t);

y=[y,f];

x=[x,t];

end

end

5. Algoritmo que calcula la gráfica de la proyección de un objeto.

function [x,y]=grafica_proyeccion_objeto(objeto,

angulo,q)

h=1/q;

y=[];

x=[];

for l=-q:1:q

sl=l*h;

[f]=proyeccion_objeto(objeto,angulo,sl);

y=[y,f];

x=[x,sl];

end

end

6. Algoritmo que calcula el filtro de RamLak

function [w]=RamLak(h,l)

% Filtro de Ram y Lak

if l==0

w=1/(8*hˆ2);

elseif (mod(l,2)˜=0)

w=-1/(2*piˆ2*hˆ2*lˆ2);

else

w=0;

end

end

7. Algoritmo que calcula el filtro de Shepp-Logan.

function [w]=SheppLogan(c,s);

%filtro Shepp Logan

numerador=pi/2-c*s*sin(c*s);

denominador=(pi/2)ˆ2- (c*s)ˆ2;
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if (denominador==0)

u=1/pi;

else

u=numerador/denominador;

end

w=(cˆ2/(2*piˆ3))*u;

end

8. Algoritmo que calcula el sinograma del fantasma.

function [imagen]=sinograma(objeto,p,q,ang)

imagen=[];

incremento_angulo=ang/p;

angulo=0;

while (angulo<(ang))

[x,fila]=grafica_proyeccion_objeto(

objeto,angulo,q);

angulo=angulo+incremento_angulo;

imagen=[imagen;fila];

end

end

9. Algoritmo directo de Fourier.

function [f]=algoritmo_directo(g)

%datos

tamanio=size(g);

p=tamanio(1);%numero de proyecciones;

q=(tamanio(2)-1)/2; %2q+1 es el numero de rayos;

%phantomas;

%[g]=sinograma(elipses,p,q);

g(:,2*q+1)=[];

h=1/q;

%paso 1

G=[];

for j=1:p

g_fft=(1/sqrt(2*pi))*h*fft(fftshift(g(j,:)));

G=[G;fftshift(g_fft)];

end

65



D. PROGRAMAS

% paso 2

for fila=1:2*q

v=q*pi-(fila-1)*pi;

for columna=1:2*q

u=-q*pi+(columna-1)*pi;

if ((uˆ2+vˆ2)<qˆ2)

agamma=(180/pi)*angle(u+i*v);

agamma=mod(agamma,360);

j=round(agamma*p/180);

cercano=(180/p)*j;

cercano=(pi/180)*mod(cercano,180);

s=u*cos(cercano)+v*sin(cercano);

r=round(s/pi);

k=q+r+1;

if (k>2*q)

k=2*q;

end

if (k<1)

k=1;

end

j=mod(j,p)+1;

F(fila,columna)=(1/sqrt(2*pi))*G(j,k);

else

F(fila,columna)=0;

end

end

end

10. Algoritmo de retro-proyección filtrada.

function [f]=retroproyeccion(g,angulo)

% Esta función realiza la

% retroproyección filtrada

% p es el número de proyecciones

% el número de rayos va de -q a q

% angulo corresponde al abarcado por las

% proyecciones a partir del eje OY

% ...ambos lados del eje
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% g corresponde al sinograma

%datos

tamanio=size(g);

p=tamanio(1);

q=floor((tamanio(2)-1)/2);

h=1/q;

for j=1:p

theta1(j)=cos((j-1)*angulo*pi/(180*p));

theta2(j)=sin((j-1)*angulo*pi/(180*p));

end

% paso 1

for j=1:p

for k=-q:q

% convolucion

v(j,k+q+1)=0;

for l=-q:q

v(j,k+q+1)=v(j,k+q+1)+

RamLak(h,(k-l))*g(j,l+q+1);

end

v(j,k+q+1)=v(j,k+q+1)*h;

end

end

%paso 2

fila=1;

for y=1:-1/128:-1

columna=1;

for x=-1:1/128:1

fbi=0;

for j=1:p

s=theta1(j)*x+theta2(j)*y;

k=floor(s/h);

u=s/h-k;

if (k>=q)

fbi=fbi+v(j,2*q+1);
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elseif (k<=-q)

fbi=fbi+v(j,1);

else

fbi=fbi+(1-u)*v(j,k+q+1)+u*
v(j,k+1+q+1);

end

end

fbi=(2*pi/p)*fbi;

f(fila,columna)=fbi;

columna=columna+1;

end

fila=fila+1;

end

end

11. Programa escrito en Turbo Pascal que realiza la FFT hasta 1024 puntos. Los resultados pue-

den introducirse por archivo y también por teclado. Las salidas se obtienen en archivo.

program FFT_base_2;

uses crt;

const

Pi=3.1415926535897932;

type

complejo=record

p_real:real;

p_imag:real

end;

lista=array[0..1023] of integer;

vector=array[0..1023] of complejo;

var

fichero:Text;modulo:real;

numero_puntos:integer;

total_fases,fase,mariposas,longitud_mariposa,

bloque,primero,k:integer;

numeracion_indices_inicial:lista;

H,h0:vector;

producto,suma,resta:complejo;

W:complejo;

a,b:complejo;

respuesta:char;
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procedure datos(var h:vector);

{Obtención de los datos iniciales h0}

var

k,opcion:integer;

begin

clrscr;

writeln(’Introducción de los datos

iniciales’);

writeln(’==========================

=========’);

writeln;

writeln(’1. Introducir datos por el

teclado’);

writeln(’2. Introducir datos mediante

archivo datos.txt’);

writeln;

write(’Elige opción: ’);

readln(opcion);

if opcion=1

then begin

writeln(’Introduce los datos as¡

--> parte real parte imaginaria’);

for k:=0 to numero_puntos-1 do

readln(h[k].p_real,h[k].p_imag);

end

else begin

assign(fichero,’datos.txt’);

reset(fichero);

for k:=0 to numero_puntos-1 do

readln(fichero,h[k].p_real,

h[k].p_imag);

close(fichero);

end;

end;

function potencia(base,exponente:integer)

:integer;

(* Calcula la potencia real *)

var

69



D. PROGRAMAS

resultado,i:integer;

begin

resultado:=1;

for i:=1 to exponente do

resultado:=resultado*base;

potencia:=resultado;

end;

procedure adiciona(v,w:complejo;var

resultado:complejo);

(* Calcula la suma de dos números

complejos *)

begin

resultado.p_real:=v.p_real+w.p_real;

resultado.p_imag:=v.p_imag+w.p_imag;

end;

procedure sustrae(v,w:complejo;var

resultado:complejo);

(* Calcula la suma de dos números

complejos *)

begin

resultado.p_real:=v.p_real-w.p_real;

resultado.p_imag:=v.p_imag-w.p_imag;

end;

procedure multiplica(v,w:complejo; var

resultado:complejo);

(* Calcula el producto de dos números

complejos *)

begin

resultado.p_real:=v.p_real*w.p_real

-v.p_imag*w.p_imag;

resultado.p_imag:=v.p_real*w.p_imag

+v.p_imag*w.p_real;

end;

procedure Buneman(var indices:lista);

var

etapas,k,L,L1,L2:integer;

begin
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etapas:=round(Ln(numero_puntos)/

Ln(2));

for k:=1 to etapas do

begin

for L:= 1 to potencia(2,k-1) do

begin

L1:=L-1;

L2:=L1+potencia(2,k-1);

indices[L1]:=2*indices[L1];

indices[L2]:=indices[L1]+1;

end;

end;

end;

procedure primera_etapa(var h:vector;h0:

vector;indices:lista);

var

k:integer;

begin

for k:=0 to numero_puntos-1 do begin

h[k].p_real:=h0[indices[k]].p_real;

h[k].p_imag:=h0[indices[k]].p_imag;

end;

end;

procedure muestra_DFT(h:vector);

var

k:integer;

begin

for k:=0 to numero_puntos-1 do begin

write(h[k].p_real,’ , ’,h[k].p_imag);

writeln;

end;

end;

begin

(* Menú Principal *)

clrscr;

write(’¿Cúantos Puntos hay que
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computar? ’);

readln(numero_puntos);

datos(h0);(* Recogida de datos de

partida *)

muestra_DFT(h0);

Buneman(numeracion_indices_inicial);

primera_etapa(H,h0,

numeracion_indices_inicial);

(* Asigna primera DFT de 1 Pto *)

total_fases:=Round(Ln(numero_puntos)

/Ln(2));

for fase:=1 to total_fases do begin

mariposas:=numero_puntos div

potencia(2,fase);

longitud_mariposa:=potencia(2,fase);

for bloque:=1 to mariposas do begin

primero:=(bloque-1)*longitud_

mariposa;

for k:= primero to (primero+

(longitud_mariposa div 2)-1)

do begin

W.p_real:=Cos(-2*Pi*
(k-primero)/longitud_mariposa);

W.p_imag:=Sin(-2*Pi*
(k-primero)/longitud_mariposa);

a.p_real:=H[k].p_real;

b.p_real:=H[k+(longitud_

mariposa div 2)].p_real;

a.p_imag:=H[k].p_imag;

b.p_imag:=H[k+(longitud_

mariposa div 2)].p_imag;

multiplica(W,b,producto);

adiciona(a,producto,suma);

sustrae(a,producto,resta);

H[k]:=suma;

H[k+(longitud_mariposa div

72



D.1 Programas

2)]:=resta;

end;

end;

end;

writeln(’==== Resultado FFT ====’)

;writeln;

muestra_DFT(H);

assign(fichero,’DFTdatos.txt’);

Rewrite(fichero);

for k:=0 to numero_puntos-1 do

writeln(fichero,H[k].p_real,’ ’,

H[k].p_imag);

close(fichero);

assign(fichero,’DFTModul.txt’);

Rewrite(fichero);

for k:=0 to numero_puntos-1 do

begin

modulo:= H[k].p_real*
H[k].p_real+H[k].p_imag*H[k].p_imag;

modulo:=Sqrt(modulo)/numero_puntos;

writeln(fichero,modulo);

end;

close(fichero);

writeln(’Pulsa Intro para cerrar’);

readln;

end.
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