
Trabajo Fin de Grado

Desarrollo de una aplicación móvil
multiplataforma para la creación de

documentos XML utilizando XML Schema
y Schematron

Autor

Sergio Frago Criado

Director

Álvaro Alesanco Iglesias

Universidad de Zaragoza / Escuela de Ingeniería y Arquitectura
2015

Repositorio de la Universidad de Zaragoza – Zaguan
http://zaguan.unizar.es

A mis padres y al resto de personas que me han
ayudado a hacer realidad este proyecto.

i

ii

Agradecimientos

Quiero dar las gracias Álvaro Alesanco por su ayuda, por su paciencia y sobre todo por
darme la oportunidad de trabajar en un proyecto tan interesante. También quiero mostrar
mi agradecimiento a todas aquellas personas que me han mostrado su apoyo y me han
animado a completar este proyecto, especialmente a mi padre.

iii

iv

Desarrollo de una aplicación móvil multiplataforma para la

creación de documentos XML utilizando XML Schema y

Schematron

Resumen

Este trabajo plantea el diseño y la implementación de una aplicación móvil multipla-
taforma mediante JavaScript, HTML5 y CSS3 que permita al usuario crear documentos
XML válidos de manera asistida a partir de XML Schema y opcionalmente Schematron.
Para ello, utilizando la información proporcionada por el XML Schema, la aplicación ge-
nera de forma dinámica un formulario que reproduce la estructura de un documento XML
válido, y el usuario interacciona con los elementos de dicho formulario de manera que el
estado y el propio formulario van evolucionando hasta obtener un documento XML que
es válido respecto del Schema puesto que el formulario se ha construido a partir de él.

El uso de Schematron es una de las caracteŕısticas que hacen novedosa a la aplicación
desarrollada frente a otras. Dicho documento define restricciones y relaciones entre dife-
rentes elementos del documento XML y la aplicación utiliza esta información no solo para
informar de restricciones que no se cumplen, sino también para prevenir errores de mane-
ra dinámica y anticipada, evitando que el usuario seleccione opciones que causaŕıan errores.

En la aplicación también se han tenido en cuenta las necesidades de los usuarios desde
el punto de vista visual y del tipo de documento que quieren obtener, por lo que se permite
utilizar hojas XSLT para transformar el documento XML a otro tipo de documento más
adecuado a las necesidades del usuario, como JSON, HTML o incluso PDF.

La aplicación se ha adaptado para ser utilizada en el ámbito de la dermatoloǵıa median-
te el uso de documentos XML Schema y Schematron que modelan patoloǵıas dermatológi-
cas comunes y que han sido desarrollados en un Trabajo de Fin de Grado anterior [Bue14].
No obstante, la aplicación es genérica y se adaptará de manera dinámica a los documentos
XML Schema y Schematron proporcionados por el usuario aunque fuesen otros diferentes.

v

vi

Índice general

1. Introducción 1
1.1. Introducción a XML Schema . 2
1.2. Acrónimos utilizados . 4
1.3. Estructura del documento . 5

2. Paradigma de validación XML tradicional frente al paradigma de la apli-
cación 7
2.1. Aplicaciones similares . 10

3. Arquitectura general del sistema 11
3.1. Paradigma de desarrollo . 11

3.1.1. Análisis de aproximaciones . 11
3.1.2. Solución adoptada . 11

3.2. Componentes del Sistema . 13
3.2.1. Componentes de la aplicación . 13
3.2.2. Componentes del servicio web . 15

4. El uso de XML Schema en la aplicación: estructura y elementos del
formulario 17
4.1. Evolución del formulario . 20
4.2. Namespace destinado a las mejoras . 23

5. El uso del Schematron en la aplicación 25
5.1. Introducción a Schematron, necesidad y ventajas de su uso 25
5.2. Prevención dinámica de errores y aviso de errores 26

6. Transformaciones en la aplicación 31

7. Conclusiones y trabajo futuro 37
7.1. Resultados y conclusiones . 37
7.2. Trabajo futuro . 41

A. Subconjuntos de XML Schema y Schematron soportados 47

B. Correspondencia entre elementos del formulario de la aplicación y ele-
mentos del XML Schema 49

C. Tutorial y aplicación 57

D. Créditos a libreŕıas y contenidos de terceros 59

vii

Índice general

viii

Caṕıtulo 1

Introducción

Las virtudes del lenguaje XML (EXtensible Markup Language) [BPSM+06], especial-
mente su simplicidad y su flexibilidad, lo convierten en un lenguaje idóneo para la transmi-
sión y el almacenamiento de datos en muchos ámbitos. En la mayoŕıa de dichos ámbitos no
solo se requiere que los documentos XML estén bien formados, sino que además se precisa
que sean válidos, es decir que cumplan unas determinadas condiciones que restringen su
estructura, contenidos, tipos de datos etc.

El presente TFG se centra en la concepción y el desarrollo de una aplicación multi-
plataforma que permita al usuario generar documentos XML válidos de forma dinámica
y asistida, a partir de XML Schema 1.0 [xsd04a] y opcionalmente Schematron [sch06],
que son dos tecnoloǵıas muy potentes dentro de las muchas alternativas disponibles en el
contexto de la validación XML.

XML Schema es probablemente el lenguaje de validación XML más ampliamente uti-
lizado, ya que permite especificar de manera una manera sencilla pero muy precisa la
estructura la de los documentos XML, aśı como restringir su contenidos. XML Schema
define qué elementos pueden aparecer en un documento XML, en qué orden, cuántas veces,
qué tipo de datos y restricciones debe cumplir el valor de cada elemento a nivel individual,
etc.

El uso de documentos Schematron está menos extendido pero supone una herramienta
muy potente de validación XML. Los documentos Schematron proporcionan validación de
documentos XML basada en reglas mediante el uso de XPath [xpa04]. Schematron se suele
usar en conjunción con la tecnoloǵıa XML Schema, ya que ambas se complementan: XML
Schema hace simple definir la estructura general del documento XML y proporciona va-
lidación avanzada para contenido simple, mientras que Schematron permite definir reglas
que el documento XML debe satisfacer y, lo que es más importante, relaciones entre los
valores de diferentes elementos del documento, es decir validaciones complejas de conteni-
dos cruzadas, lo cual no puede lograrse con XML Schema.

El resultado principal de este proyecto ha sido la implementación de una aplicación
multiplataforma, llamada Formulatron, que permite al usuario la creación de documen-
tos XML válidos a partir de XML Schema y opcionalmente Schematron. Esta aplicación
analiza el XML Schema y presenta de forma dinámica un formulario que reproduce la
estructura del Schema y gúıa al usuario de manera dinámica y asistida en el proceso de
completado del formulario. Cuando el usuario finaliza el proceso obtiene un documento

1

1.1. Introducción a XML Schema

XML que por construcción es válido, ya que el formulario se hab́ıa creado reproduciendo
la estructura del XML Schema. Por otra parte la aplicación utiliza la información pro-
porcionada por el documento Schematron para asistir al usuario aun más en el proceso
de completado del formulario, informándole de fallos y evitando de manera anticipada
que seleccione ciertas opciones del formulario que, dado el estado actual, causaŕıan un
error en caso de ser seleccionadas. Cabe señalar que la aplicación desarrollada permite
además aplicar transformaciones XSLT [Cla99] al documento XML válido, lo que permite
que el usuario final pueda obtener como resultado otro tipo de documentos, como HTML
o incluso documentos de tipo PDF a través de un servicio web que se ha creado para tal fin.

La aplicación desarrollada es genérica en el sentido de que no espera unos XML Schema
y Schematron concretos sino que se adapta de forma dinámica a los documentos propor-
cionados. No obstante, para comprobar el funcionamiento de la aplicación se han utilizado
XML Schemas y Schematrones de uso médico que modelan la formulación magistral de pa-
toloǵıas dermatológicas comunes, desarrollados en otro Trabajo de Fin de Grado [Bue14].
Además, se ha hecho que la aplicación incluya estos documentos como ficheros predefini-
dos, y se ha adaptado para dicho uso por parte de dermatólogos.

1.1. Introducción a XML Schema

Esta sección ofrece una breve y básica introducción a XML Schema, una tecnoloǵıa
de validación XML. Un documento XML Schema especifica al estructura y los tipos de
contenidos que debe tener un documento XML para ser válido. Algunos de los elementos
más importantes de XML Schema y su funcionalidad se resumen en la lista siguiente:

xs:schema: es el ráız de los documentos XML Schema. Está asociado al espacio de
nombres http://www.w3.org/2001/XMLSchema cuyo prefijo preferido es xs.

xs:element : permite definir un elemento del documento XML. Puede ser de tipo
simple si no contiene otros elementos, o de tipo complejo si los contiene. El tipo
del elemento se especifica en el atributo type o utilizando un hijo xs:simpleType o
xs:complexType.

xs:attribute: especifica un atributo de un elemento del documento XML.

xs:simpleType: permite definir un tipo simple, es decir, el contenido de texto de un
elemento del documento XML. Puede definirse utilizando los tipos predefinidos en
XML Schema [xsd04c], mediante restricciones, o bien a través de listas y o uniones.

xs:restriction: permite restringir los valores de un tipo simple mediante el uso de ele-
mentos de restricciones tales como xs:maxInclusive, xs:maxExclusive, xs:maxLength,
xs:enumeration, xs:pattern, etc.

xs:complexType: define un tipo complejo, es decir que puede contener otros elementos
y atributos. Existen tres tipos complejos principales: xs:sequence, xs:all y xs:choice.

xs:sequence: especifica una serie de elementos que debe aparecer en el documento
XML en el orden en el que se especifican en la secuencia.

xs:all : especifica una serie de elementos que pueden aparecer en el documento XML
en cualquier orden.

2

http://www.w3.org/2001/XMLSchema

Caṕıtulo 1. Introducción

xs:choice: especifica una serie de elementos de los que solamente uno de ellos puede
aparecer en el documento XML.

Attributos maxOccurs y minOccurs: Son atributos de los elementos que permiten
definir el número de veces que puede aparecer como máximo y como mı́nimo dicho
elemento en el documento XML. Su valor es por defecto es 1.

La figura 1.1 muestra un ejemplo básico de un XML Schema que modela la estructura
de un documento XML que contiene la información de una persona. Según este Schema,
en el documento XML un elemento persona tiene que tener el siguiente contenido y en
este orden puesto que se ha utilizado una secuencia (elemento xs:sequence):

Elemento obligatorio nombre de tipo string.

Elemento edad de tipo int que puede no aparecer puesto que el valor su atributo
minOccurs es 0.

Elemento obligatorio sexo cuyo valor puede ser Hombre o Mujer.

Elemento obligatorio embarazo de tipo boolean.

Elemento info de tipo string es opcional.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="persona">

<xs:complexType>

<xs:sequence>

<xs:element name="nombre" type="xs:string"/>

<xs:element name="edad" type="xs:int" minOccurs="0" />

<xs:element name="sexo">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Hombre"/>

<xs:enumeration value="Mujer"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="embarazo" type="xs:boolean"/>

<xs:element name="info" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Figura 1.1: Ejemplo de documento XML Schema que modela la estructura de un
documento XML que contiene la información de una persona.

La figura 1.2 muestra un ejemplo de documento XML válido respecto del XML Schema
de la figura 1.1. A continuación, para facilitar la comprensión de XML Schema, se explican
otros casos que podŕıan darse con un XML Schema y un documento XML similares a los
de las figuras 1.1 y 1.2 pero ligeramente modificados:

3

1.2. Acrónimos utilizados

El documento XML no seŕıa válido si el valor del elemento embarazo fuera ”no” ya
que no es de tipo boolean.

El documento XML seguiŕıa siendo válido si el elemento edad y/o el elemento info no
estuvieran presentes, puesto que en el Schema ambos tienen el atributo minOccurs
con valor 0.

El documento XML no seŕıa válido si el elemento edad apareciera antes que el ele-
mento nombre puesto que no se estaŕıa respetando el orden de la secuencia. Sin
embargo, si que seŕıa válido si en lugar de un elemento xs:sequence se utilizase un
elemento xs:all, ya que seŕıa válido independientemente del orden en el que apare-
cieran sus hijos.

El documento XML no seŕıa válido si en lugar de utilizar xs:sequence hubiésemos
utilizado el elemento xs:choice. En ese caso, para que el documento fuese válido solo
debeŕıa aparecer uno de sus hijos.

<?xml version="1.0"?>

<persona>

<nombre>Sergio Frago</nombre>

<edad>22</edad>

<sexo>Hombre</sexo>

<embarazo>false</embarazo>

<info>Nacido en Zaragoza en 1992</info>

</persona>

Figura 1.2: Ejemplo de documento XML válido respecto del XML Schema de la
figura 1.1.

El XML Schema presentado como ejemplo en la figura 1.1 modela una estructura rela-
tivamente simple, no obstante, la estructura modelada podŕıa ser arbitrariamente compleja
y recursiva si, por ejemplo, añadiéramos otros elementos complejos dentro del elemento
complejo persona.

Puede encontrarse toda la información relativa a XML Schema 1.0 en las tres partes
de la especificación del W3C [xsd04a] [xsd04b] [xsd04c].

1.2. Acrónimos utilizados

La lista siguiente muestra los acrónimos que se utilizan en este documento y su signi-
ficado:

AJAX: Asynchronous JavaScript And XML.

API: Application Programming Interface.

CSS: Cascading Style Sheets.

CSV: Comma-Separated Values.

DOM: Document Object Model.

4

Caṕıtulo 1. Introducción

HTML: HyperText Markup Language.

IEC: International Electrotechnical Commission.

ISO: International Organization for Standardization.

JSON: JavaScript Object Notation.

PHP: PHP: Hypertext Preprocessor.

TFG: Trabajo de Fin de Grado.

W3C: World Wide Web Consortium.

XML: eXtensible Markup Language.

XPath: XML Path Language.

XSLT: Extensible Stylesheet Language Transformations.

1.3. Estructura del documento

El resto del documento presenta la siguiente estructura y contenidos:

Paradigma de validación XML tradicional frente al paradigma de la apli-
cación. En este caṕıtulo se explica qué es lo que hace diferente y novedosa a la
aplicación desarrollada frente al paradigma de validación XML clásico. Se exponen
otras aplicaciones con un funcionamiento similar que también estén basadas en ge-
nerar un formulario a partir de un XML Schema para obtener un documento XML
válido.

Arquitectura general del sistema. Se da una visión de alto nivel del sistema
desarrollado, se explican las diferentes alternativas de desarrollo de la aplicación, la
solución que se escogió, y las tecnoloǵıas utilizadas para desarrollar este proyecto.

El uso de XML Schema en la aplicación. En este caṕıtulo se detallan los
usos de XML Schema en la aplicación y se explican los elementos que componen el
formulario.

El uso del Schematron en la aplicación. Este caṕıtulo da una introducción a
Schematron y detalla los usos que hace la aplicación del proporcionado por el usuario.

Transformaciones en la aplicación. Explica el uso de las transformaciones y de
XSLT en la aplicación, muestra la hoja XSLT creada para su uso en dermatoloǵıa y
explica el servicio web creado para la transformación de HTML a PDF.

Conclusiones y trabajo futuro. Detalla los resultados y conclusiones obtenidos
del desarrollo de este Trabajo de Fin de Grado aśı como posibles futuras v́ıas de
ampliación y uso de los resultados del Trabajo.

5

1.3. Estructura del documento

6

Caṕıtulo 2

Paradigma de validación XML
tradicional frente al paradigma de
la aplicación

La aplicación desarrollada plantea un enfoque novedoso y completamente diferente al
de la validación XML tradicional. Las diferencias entre ambos enfoques se dan principal-
mente en estos cuatro aspectos:

1. Los datos de entrada: cuáles son los documentos o elementos de los que partimos.

2. El objetivo: qué es lo que se quiere conseguir.

3. El flujo de procesos: qué pasos se siguen desde que se tienen los datos de entrada
hasta que se obtienen los resultados.

4. Resultados: qué se obtiene como resultado del proceso seguido.

El enfoque de la validación XML tradicional y el enfoque de la aplicación, aśı como sus
caracteŕısticas desde los cuatro puntos de vista citados anteriormente, se muestran en la
figura 2.1 y se explican a continuación:

1. Enfoque de la validación XML tradicional:

Datos de entrada: se parte de un Documento XML, un XML Schema y opcio-
nalmente un Schematron. Aunque es posible utilizar otro tipo de documentos
diferentes de XML Schema y Schematron, el uso de estos documentos es rela-
tivamente común.

Objetivo: comprobar si el documento XML es válido respecto al XML Schema
y al Schematron si lo hubiera.

Flujo de procesos: se valida el documento XML inicial utilizando el XML Sche-
ma, si es válido se valida también con el Schematron.

Resultado: el resultado del proceso es una afirmación, podŕıamos decir que es
un dato booleano, ya que el resultado es simplemente una conclusión sobre si el
documento XML inicial es o no válido respecto al XML Schema y al Schematron
si lo hubiera.

2. Enfoque de la aplicación desarrollada:

7

Datos de entrada: en la aplicación desarrollada se parte de un XML Schema y
opcionalmente un Schematron. También se puede añadir un documento XSLT
aunque no tiene relevancia en cuanto a la generación y validación del documento
XML.

Objetivo: que el usuario obtenga de manera dinámica y asistida un documento
XML válido respecto del XML Schema que ha proporcionado y respecto del
Schematron si lo hubiera.

Flujo de procesos: la información del XML Schema inicial se usa para presentar
al usuario un formulario que reproduce la estructura que debe cumplir un docu-
mento XML válido. Dicha información, aśı como la del Schematron si lo hubiera,
se utiliza para asistir al usuario en el proceso de creación del documento.

Resultado: el resultado del proceso es un documento XML que es válido res-
pecto del XML Schema y respecto del Schematron si lo hubiera, puesto que el
formulario presentado al usuario se ha construido a partir del XML Schema de
forma que el documento resultante es válido por construcción.

Además de todo eso, una vez acabado el proceso, en la propia aplicación se permite
al usuario transformar el documento XML resultante mediante XSLT, obteniéndose como
resultado otro documento XML u otro tipo de documento (como por ejemplo HTML que
puede resultar mucho más atractivo visualmente), y se permite también transformarlo a
PDF como paso posterior a la transformación HTML, lo cual aporta una gran ventaja de
cara al usuario final, ya que le permite tener la información en un formato más adecuado
a sus necesidades y mejor desde el punto de vista de la visualización y presentación. Aun-
que esto también seŕıa posible hacerlo por otros medios después del proceso de validación
XML tradicional, es algo que está completamente fuera de dicho proceso, mientras que
está completamente integrado en la aplicación desarrollada.

8

Caṕıtulo 2. Paradigma de validación XML tradicional frente al paradigma de la
aplicación

Enfoque de validación XML tradicional frente a la aplicación desarrollada

Validación XML tradicional Aplicación desarrollada

 D
a
to

s
 d

e
 e

n
tr

a
d

a
O

b
je

ti
v
o

F
lu

jo
 d

e
 p

ro
c
e
s
o

s
R

e
s
u

lt
a
d

o

Documento XML XML Schema

Schematron
[Opcional]

XML Schema
Schematron
[Opcional]

Obtener un documento XML válido
respecto al XML Schema y al Schematron

si lo hubiera

Comprobar si el documento XML es válido
respecto al XML Schema y al Schematron

si lo hubiera

El documento
XML es válido

El documento
XML no es

válido

Documento
XML

¿Válido?

Validar contra
XML Schema

Validar contra
Schematron
[Opcional]

¿Válido?

Transformar con
XSLT o XSLT+PDF.

[Opcional]

XML Schema
Schematron
[Opcional]

Presentación del
formulario
adecuado

Interacción del
usuario con el

formulario

Documento XML
válido

Transformar con
XSLT o XSLT+PDF.

[Opcional]

El resultado es booleano: el documento
XML es (o no es) válido respecto al XML
Schema y al Schematron si lo hubiera

El resultado es un documento XML
que es válido respecto al XML Schema

y al Schematron si lo hubiera

No

Si

No
Si

Figura 2.1: Diferencias entre el enfoque tradicional de validación XML y el enfo-
que de la aplicación desde el punto de vista de los datos de entrada, el objetivo,
el flujo de procesos y el resultado.

9

2.1. Aplicaciones similares

2.1. Aplicaciones similares

Aunque Formulatron presenta funcionalidades que la hacen novedosa, existen aplica-
ciones similares, en el sentido de que siguen un flujo de procesos parecido. Algunas de las
aplicaciones similares encontradas, aśı como algunas de sus caracteŕısticas se describen
brevemente en la lista siguiente:

Xsd-forms [dav14]
Es un generador de formularios web (JavaScript, HTML, CSS) a partir de XML
Schema. Está implementado utilizando Scala y Java. Permite un subconjunto de los
elementos de XML Schema aunque no soporta atributos. Permite añadir informa-
ción para mejorar la presentación mediante la edición del XML Schema con unas
anotaciones determinadas. Permite también sobrescribir estilos y enviar el XML re-
sultante al servidor que el usuario elija. La aplicación puede usarse también desde
un servidor que proporciona el autor. El proyecto está hospedado en la dirección
https://github.com/davidmoten/xsd-forms.

XSDForm [Sof]
Es una aplicación comercial cuya licencia cuesta 50$, aunque cuentan con versión de
prueba gratuita durante 20 d́ıas. Está basada en PHP y Ajax y es capaz de generar
un formulario web a partir de XML Schema. Cuenta con entradas de datos adaptadas
al tipo de datos, estilos configurables y permite que el documento XML se pueda
enviar a un servidor. Puede obtenerse de la dirección http://www.ilerian.com/

xsd-web-form-overview.

DynaForm [Rau10]
Esta aplicación está implementada en Java y basada en el framework web Ara-
nea. Es capaz de generar dinámicamente un formulario web a partir de un XML
Schema y opcionalmente una instancia XML usada para la inicialización de da-
tos. Es altamente configurable utilizando un lenguaje denominado DynaData crea-
do por el autor que permite cambiar la distribución de los elementos, su estilo
etc. Permite realizar cambios en el Schema o el XML que se reflejan de mane-
ra dinámica en la aplicación. El proyecto se encuentra hospedado en la dirección
https://github.com/reinra/dynaform.

Hay que resaltar que ninguna de las aplicaciones similares encontradas presentan una
sola de las siguientes caracteŕısticas y funcionalidades, que śı que están presentes en la
aplicación desarrollada:

Soporte de un lenguaje de validación basado en reglas (Schematron).

Prevención dinámica de errores.

Navegación multipágina a través de los elementos del formulario.

Transformaciones del documento XML a otro tipo de documentos mediante XSLT
y XSLT->HTML->PDF.

Aplicación concebida y desarrollada como aplicación móvil y multiplataforma.

10

https://github.com/davidmoten/xsd-forms
http://www.ilerian.com/xsd-web-form-overview
http://www.ilerian.com/xsd-web-form-overview
https://github.com/reinra/dynaform

Caṕıtulo 3

Arquitectura general del sistema

Este caṕıtulo explica el diseño a alto nivel del sistema desarrollado, entendiendo por
sistema tanto la aplicación implementada como el servicio web externo que se ha puesto
en marcha para su uso en Formulatron, cuya única funcionalidad es la obtención de docu-
mentos PDF a partir de documentos HTML que puedan contener CSS. En los caṕıtulos
posteriores se explican con mayor detalle la mayoŕıa de las ideas que aqúı se presentan.

3.1. Paradigma de desarrollo

En esta sección se introducen los dos paradigmas más importantes que existen en el
desarrollo de aplicaciones multiplataforma, aśı como las ventajas e inconvenientes de cada
uno de ellos. Finalmente se comenta la solución elegida y los motivos de escogerla.

3.1.1. Análisis de aproximaciones

En el ámbito de los Sistemas Operativos móviles existen básicamente dos alternativas
bien diferenciadas para el desarrollo de aplicaciones multiplataforma:

1. Desarrollar una aplicación diferente para cada plataforma. Esta aproximación consis-
te en utilizar el lenguaje de programación espećıfico de cada plataforma para obtener
cada aplicación.

2. Utilizar frameworks que permiten crear aplicaciones para varias plataformas con un
mismo código. Estas herramientas ahorran gran cantidad de trabajo si se quiere
obtener una aplicación multiplataforma, puesto que solamente hay que desarrollar
un único código fuente para todas las plataformas y el framework se encarga de
generar las aplicaciones nativas.

La primera alternativa tiene como principal ventaja el rendimiento de la aplicación
final, puesto que está directamente desarrollada en el lenguaje de la plataforma objetivo,
mientras que la segunda aproximación tiene como principal ventaja la simplicidad de tener
que desarrollar un único código fuente.

3.1.2. Solución adoptada

Para el presente proyecto se optó por utilizar un framework por la enorme ventaja que
supone tener el mismo código fuente para todas las plataformas. No hubiera sido viable

11

3.1. Paradigma de desarrollo

en el tiempo programado para un TFG implementar la aplicación en un lenguaje de pro-
gramación distinto para cada plataforma objetivo.

La herramienta elegida ha sido el framework Phonegap [NS14], que tiene como len-
guajes de entrada JavaScript, HTML5 y CSS3, y a partir de ellos genera aplicaciones
nativas para varias plataformas. Phonegap cuenta con varias ventajas que lo hacen más
atractivo que otros frameworks similares, como la cantidad de plataformas soportadas y
los múltiples Plugins disponibles, que dan acceso común a APIs del Sistema Operativo
móvil, como por ejemplo al Sistema de ficheros.

JavaScript

HTML5

CSS3

Aplicación web

Phonegap
Aplicación
FirefoxOS

Aplicación
(otras)

Aplicación
Android

Figura 3.1: Obtención de aplicaciones a partir del código JavaScript, HTML5 y
CSS3. El propio código constituye en si una aplicación web que puede ser usada en
los navegadores comunes sin necesidad de Phonegap, por otro lado, se esquematiza
el uso de Phonegap para la obtención de las aplicaciones para las plataformas
móviles.

Las herramientas de desarrollo de Phonegap, y por tanto de la aplicación desarrollada,
son JavaScript, HTML5 y CSS3, que son las tecnoloǵıas más utilizadas en la web y en
el desarrollo web. El proceso de obtención de aplicaciones móviles a partir de JavaScript,
HTML5 y CSS3 mediante el uso de Phonegap se encuentra esquematizado en la figura 3.1.
El uso de cada una de estas tecnoloǵıas es el siguiente:

HTML5 permite definir y diseñar las páginas web especificando su arquitectura y es-
tructura, por tanto es el punto de entrada para diseñar la interfaz gráfica de la
aplicación.

CSS3 nos permite crear hojas de estilo, que contienen propiedades que especifican el estilo
de visualización que deben tener los elementos de las páginas HTML5.

JavaScript es un lenguaje de programación interpretado orientado a objetos cuyo uso
es habitual en las páginas web aportando dinamismo y permitiendo realizar muchas
funciones entre las que se incluye la interacción de manera sencilla con los elementos
de las páginas HTML5.

12

Caṕıtulo 3. Arquitectura general del sistema

Ya que la aplicación se ha desarrollado utilizando estos lenguajes que son la base
de la web, el desarrollo de la aplicación se puede considerar equivalente al desarrollo de
una página web, si bien la aplicación desarrollada es una aplicación que puede utilizarse
offline salvo que se quiera utilizar la funcionalidad de transformar el documento a PDF,
para lo cual se utiliza un servicio externo creado. En este sentido, la aplicación no solo
funciona como aplicación nativa en plataformas móviles sino que también funciona en los
navegadores de las plataformas de escritorio.

3.2. Componentes del Sistema

En esta sección se introducen los componentes o módulos en los que están divididas la
aplicación y el servicio web, aśı como las relaciones que existen entre ellos. La figura 3.3
proporciona una visión general de los principales componentes del sistema aśı como de las
comunicaciones entre ellos.

3.2.1. Componentes de la aplicación

Ya que el lenguaje en el que se desarrolla el código de la aplicación es JavaScript, el
paradigma de programación es el de orientación a objetos, lo que ha permitido dotar de
modularidad a la arquitectura de la aplicación. A continuación se explican brevemente los
módulos que componen a alto nivel la aplicación. El orden de descripción de los módulos es
similar al orden en el que se usan en el proceso global de funcionamiento de la aplicación,
tal y como se esquematiza en la figura 3.2.

SchemaParser (parseador del Schema). Parsea el contenido del fichero o ficheros
XML Schema que el usuario haya seleccionado y genera dinámicamente un formula-
rio cuyos elementos reproducen la estructura definida por el XML Schema.

SchematronParser (parseador del Schematron). Parsea las restricciones del docu-
mento Schematron.

FormElement (elemento del formulario). Este módulo representa los elementos del
formulario, el parseado de cada elemento del XML Schema genera un elemento del
formulario diferente. Estos elementos evolucionan cambiando de estado con la inter-
acción del usuario, y cambiando a su vez el estado del documento XML asociado.

Paginador. Permite al usuario realizar una navegación basada en páginas a través de
los elementos del formulario, de esta forma el proceso de completado del formulario
puede estructurarse de una manera mucho más lógica y visual.

Estado. Contiene el estado del formulario, y es por tanto un estado intermedio del docu-
mento XML, que va evolucionando con la interacción del usuario.

Comprobador de las restricciones Schema. Comprueba que se cumplen las restric-
ciones del Schema en un FormElement simple determinado. Este módulo actúa en
tiempo real en cuanto el usuario interacciona con el FormElement modificando su
estado.

Comprobador de las restricciones de Schematron. Comprueba que las restriccio-
nes del Schematron se cumplen en el estado intermedio del documento XML. Este
módulo actúa cada vez que el usuario ha interaccionado con el formulario producien-
do un cambio que ha hecho evolucionar el estado y el documento XML.

13

3.2. Componentes del Sistema

Módulo de transformaciones. Permite transformar el documento XML a otro tipo de
documentos (tales como HTML u otro XML) utilizando el XSLT seleccionado por el
usuario. Permite también transformar el documento XML a PDF utilizando la hoja
de estilos XSLT para transformar inicialmente a HTML y posteriormente obtener el
PDF a parir del servicio web externo creado.

Sistema de ficheros. Este módulo es un explorador de ficheros que se ha implementado
e integrado en la aplicación y que proporciona funcionalidades para leer o guardar
ficheros del sistema de ficheros del dispositivo.

Ficheros predefinidos. Este módulo permite al usuario no tener que buscar y cargar los
ficheros de entrada (XML Schema y opcionalmente Schematron y/o XSLT) cada vez
que inicia la aplicación, ya que le habilita para guardar los ficheros y poder comenzar
la edición en sucesivos inicios de la aplicación. Este módulo incluye precargados
los ficheros XML Schema y Schematron de patoloǵıas dermatológicas desarrollados
en [Bue14] aśı como un XSLT que permite transformar el documento XML resultante
a HTML y posteriormente a PDF.

Funcionamiento básico de la aplicación

SchemaParser FormElement Estado Schematron Checker

Funcionamiento básico de la aplicación

SchemaParser FormElement Estado Schematron Checker

Obtener el
elemento raiz

del XML Schema

ParseElement()

Obtener el DOM
del XML Schema

Actualizar
documento XML

Comprobar errores
de Schematron

Comprobar
restricciones de XML

Schema del elemento,
añadir, mover o quitar

elemento, etc.

¿Hay
errores?

Actualizar estado

Prevenir futuros
errores de Schematron

Actualizar vista
Construir tabla
de elementos
referenciables

Mostrar elemento
en el formulario

Si

No

Fin del parseo
inicial del

XML Schema

Interacción
del usuario

Obtención
de documento

XML válido

Figura 3.2: Proceso de funcionamiento básico de la aplicación. Esquematiza el
trabajo que realizan los principales módulos en la secuencia básica de pasos del
parseado inicial del XML Schema y en el proceso iterativo en el que el usuario va
interactuando con el formulario hasta que obtiene como resultado un documento
XML válido.

14

Caṕıtulo 3. Arquitectura general del sistema

3.2.2. Componentes del servicio web

El servicio web creado tiene como funcionalidad proporcionar documentos PDF a par-
tir de documentos HTML con CSS. Se ha creado un servicio externo con esta funcionalidad
dado que a menudo es necesario o útil obtener un PDF como resultado, pero no śe han
encontrado bibliotecas JavaScript adecuadas para realizar la transformación en la propia
aplicación.

A continuación se enumeran y describen brevemente las partes en las que se divide
este servicio:

Procesador de parámetros. Este componente simplemente lee los parámetros de la
petición POST.

Transformador. Este módulo se encarga de transformar el documento HTML a PDF y
proporciona el PDF resultante.

El servicio creado está implementado en PHP y presenta la información necesaria ac-
cesible en la dirección http://formulatron.hol.es/htmlToPdf/index.html.

15

http://formulatron.hol.es/htmlToPdf/index.html

3.2. Componentes del Sistema

Aplicación

Schematron
Checker

Schema
Parser

FormElement

Estado

Schematron
Parser

Ficheros
predefinidos

Sistema de
ficheros

Checker de las
restricciones del

elemento

Servicio web creado

Transformación
de HTML a PDF

HTTP:POST

XSLT Transform

Internet

Figura 3.3: Diagrama de los principales componentes de la aplicación y del servicio
web desarrollados y relaciones de comunicación entre ellos.

16

Caṕıtulo 4

El uso de XML Schema en la
aplicación: estructura y elementos
del formulario

Ya que el objetivo principal es obtener un documento XML válido respecto a un XML
Schema, la aplicación desarrollada presenta al usuario un formulario que reproduce la
estructura definida en un XML Schema. Cada uno de los elementos que internamente
componen el formulario se denomina elemento del formulario o FormElement. Los FormE-
lements y su estructura se van construyendo en el proceso de parseado de los elementos
del XML Schema, de este modo lo que se logra es que por definición el documento XML
final cumpla con la estructura especificada en el Schema. Ya que los FormElements siguen
la estructura dada por el XML Schema, son elementos recursivos, es decir, dentro de cada
FormElement puede haber otros FormElements.

Dada esta estructura recursiva del Schema y su posible gran complejidad la aplicación
no parsea todo el Schema de una sola vez, sino que realiza podas inteligentes para no
parsear los elementos que puedan no aparecer. Por ejemplo, si un elemento es opcional,
inicialmente solo se parseará su nombre y se le presentará al usuario la posibilidad de
activarlo, y solamente en el caso de que el usuario decida activarlo se parseará el elemento
asociado en el XML Schema y su estructura arbitrariamente compleja. Esta optimización
de parseado dinámico se ha implementado en varios FormElements y ha permitido a la
aplicación ahorrar un gran trabajo de parseado de elementos que no se van a utilizar.

En la lista siguiente se describen muy brevemente los tipos de FormElements que
existen. Existe una descripción completa de cada uno de los tipos de FormElement y los
elementos del XML Schema a partir de los que se generan disponible en el Anexo B.

ValueEnum: elemento que permite seleccionar un valor entre un conjunto de valores.

ValueInput: entrada de texto que puede tener un slider asociado.

XMLElement: elemento que representa un nodo de tipo elemento del documento
XML.

Attribute: elemento que representa un atributo de un elemento XML.

Sequence: secuencia de otros elementos que deben aparecer en un orden determinado.

17

Choice: elemento que permite elegir un elemento de entre todos los que lo compone-
nen.

All: elemento que contiene otros elementos que pueden aparecer en cualquier orden.

List: elemento que contiene un FormElement que puede aparecer varias veces.

Aunque cada uno de estos elementos presenta propiedades y operaciones diferentes,
existen propiedades y operaciones que son comunes a todos ellos tal y como se puede ver
en la figura 4.1. Dichas propiedades y su funcionalidad son las siguientes:

Propiedad id : identificador del FormElement.

Propiedad childs: lista de hijos FormElement.

Propiedad parent : FormElement padre.

Propiedad viewNode: contiene la vista, es decir, el nodo HTML DOM asociado.

Propiedad xmlObject : contiene la información del FormElement en el documento
XML.

FormElement

+ id: string
+ childs: [0..n] FormElement
+ parent: FormElement
+ viewNode: HTML DOM Element
+ xmlObject: Object (Element Node, String, Array...)

+ addChild(child: FormElement)
+ remove()
+ notifyChildChange(child: FormElement): XMLElement
+ onXMLChange()

ValueInput

ValueEnum

Choice

Sequence

All

Attribute

XMLElement

List

Figura 4.1: Diagrama de clase que muestra las propiedades y operaciones comunes
a todos los FormElements, asi como los tipos de FormElements existentes.

En la figura 4.2 se da un ejemplo de un XML Schema y los FormElements que se
generaŕıan a partir de él. Con ello se intenta facilitar la comprensión de la estructura
recursiva de los FormElements y las ideas recientemente expuestas.

18

Caṕıtulo 4. El uso de XML Schema en la aplicación: estructura y elementos del
formulario

XMLElement
(Persona)

+ id: fElem_1

Sequence

+ id: fElem_2

XMLElement
(Nombre)

+ id: fElem_3

XMLElement
(Edad)

+ id: fElem_5

XMLElement
(Sexo)

+ id: fElem_7

ValueInput

+ id: fElem_4

ValueInput

+ id: fElem_6

ValueEnum

+ id: fElem_8

< persona >

 < nombre > Sergio </ nombre >

 < edad > 22 </ edad >

 < sexo > Hombre </ sexo >

</ persona >

fElem_1

fElem_2

fElem_3

fElem_4

fElem_5

fElem_6

fElem_7

fElem_8

<xs:element name="persona" >

 <xs:complexType >

 <xs:sequence >

 <xs:element name="nombre" type="xs:string" />

 <xs:element name="edad" >

 <xs:simpleType >

 <xs:restriction base="xs:int" >

 <xs:minInclusive value="0" />

 <xs:maxInclusive value="120" />

 </xs:restriction >

 </xs:simpleType >

 </xs:element >

 <xs:element name="sexo" >

 <xs:simpleType >

 <xs:restriction base="xs:string" >

 <xs:enumeration value="Hombre" />

 <xs:enumeration value="Mujer" />

 </xs:restriction >

 </xs:simpleType >

 </xs:element >

 </xs:sequence >

 </xs:complexType >

</xs:element >

XML Schema que representa la estructura que debe tener
una persona en el documento XML

Estructura con cada FormElement generada por el SchemaParser.
Queda implícito el valor de la propiedad parent y del array childs.

Nodo HTML (tal y como se muestra en la aplicación) asociado con cada
FormElement generado: propiedad viewNode del FormElement

Objeto XML asociado a cada
FormElement: propiedad xmlObject

del FormElementFormElements generados
(especificados arriba)

Figura 4.2: Ejemplo de un XML Schema y la estructura que generaŕıa al ser
parseado. Permite ver la estructura de los FormElements asi como entender sus
propiedades. Nótese que los FormElements amarillos de arriba y de abajo son
los mismos, simplemente se han utilizado los identificadores para simplificar el
diagrama.

19

4.1. Evolución del formulario

4.1. Evolución del formulario

Cuando el usuario proporciona su Schema a la aplicación, obtiene un formulario que
inicialmente no es válido, salvo en el caso extraño de que el XML Schema sea tan simple
que no requiera ningún tipo de interacción con el usuario. Por tanto, el formulario es un
formulario vivo, en tanto en cuanto va evolucionando y cambiando de estado conforme el
usuario interacciona con él para completarlo. Aśı mismo, cada cambio en el formulario es
reflejado como cambio en el documento XML que contiene el estado actual.

La evolución del formulario, guiada por la interacción del usuario con los FormEle-
ments, es la que permitirá obtener el documento XML válido cuando todos los elementos
se encuentren en un estado válido. Dado que los elementos del formulario pueden cambiar
de estado, se consigue un estado válido (documento XML válido) cuando se cumplen las
siguientes premisas:

1. Todas las enumeraciones (FormElements de tipo ValueEnum) tienen un valor selec-
cionado.

2. Todos los sliders e inputs (FormElements de tipo ValueInput) están inicializados y
tienen un valor correcto respecto a las restricciones del Schema.

3. Todos los elementos de selección (FormElements de tipo Choice) tienen uno de sus
elementos seleccionado.

4. No hay errores de Schematron en el caso de que haya un Schematron seleccionado.
Véase el caṕıtulo Caṕıtulo 5.

Una vez que se cumplan estas condiciones el estado del formulario será válido y también
será válido el estado del documento XML asociado. Esto permitirá al usuario guardar
el documento XML, aplicarle transformaciones XSLT, o transformarlo a HTML median-
te XSLT y después a PDF. No obstante, aunque el estado no sea correcto, el usuario
puede ver en cualquier momento el estado del XML, el XML transformado a texto o el
XML transformado como HTML. Aśı mismo, también se le muestran comentarios sobre
el estado de los valores de los tipos simples y errores relativos al Schematron si los hubiera.

La figura 4.3 muestra las distintas interacciones que puede hacer el usuario con cada
tipo de FormElement aśı como el proceso que desencadenan en la aplicación. Como se
puede comprobar, cada interacción del usuario con los FormElemnts provoca cambios en
el documento XML, la comprobación de los errores de Schematron con ese estado del
documento XML, y la prevención de futuros errores de Schematron. La figura 4.4 muestra
los procesos desencadenados por las notificaciones internas que puede recibir cada tipo de
FormElement mientras trata las notificaciones generadas en las interacciones del usuario
especificadas en la figura 4.3.

20

Caṕıtulo 4. El uso de XML Schema en la aplicación: estructura y elementos del
formulario

FormElement
Estado de espera de

interacción o notificaciones

¿Opción prevenida?

Mostrar errores que
se producirían si se

seleccionara la opción

Actualizar estado
y valor (xmlObject)

¿Cumple las restricciones
del XML Schema?

Estado = correcto
valor (xmlObject) =

valorIntroducido

Estado = incorrecto
valor (xmlObject) =

Inválido

Choice
Parsear

elemento
Añadir elemento a

vista y modelo

All
Intercambiar hijos
en vista y modelo

List

Parsear elemento
Añadir elemento a

vista y modelo

Eliminar elemento
de vista y modelo

Notificar cambio
XML a elemento

padre

Comprobar
errores de

Schematron

¿Hay errores
de Schematron?

Mostrar
errores de

Schematron

Prevenir futuros
errores de

Schematron
ValueEnum

ValueInput

SI

NO

SI

NO

Selección
de opción

Reordenar
elementos

Añadir elemento

Eliminar elemento

Seleccionar
opción

Valor o slider

Figura 4.3: Posibles interacciones del usuario con cada tipo de FormElement y
proceso que se sigue para tratarlas.

21

4.1. Evolución del formulario

FormElement
Estado de espera de

interacción o notificaciones

Choice

All

List

Sequence

Actualizar en el modelo
(array) el objeto XML

del hijo cambiado

Attribute
Actualizar la propiedad

valor al objeto XML
del hijo cambiado

XMLElement

¿Valor de
atributo válido?

Actualizar el valor
del atributo en mi

nodo elemento XML

Eliminar el atributo
de mi nodo elemento

XML

Reemplazar en mi
nodo elemento XML

el contenido

¿Valor válido?

Establecer el texto de
mi nodo elemento XML
al valor. Validez=válido

Establecer la validez de
mi nodo elemento XML

como inválida

¿Estado de validez
(válido/inválido)
ha cambiado?

Notificar cambio
XML a elemento

padre

Notificación de que
un hijo ha cambiado

su objeto XML

Notificación de que
un hijo ha cambiado

su objeto XML

Notificación de que
un hijo ha cambiado

su objeto XML

H
ijo

 A
tr

ib
u
tt
e

Si

No

Hijo Sequence,
Choice, All o List

H
ijo

 V
a
lu

e
In

p
u
t
o
 V

a
lu

e
E

n
u
m

Si

No

Si

Figura 4.4: Posibles notificaciones que puede recibir cada tipo de FormElement
y proceso que se sigue para tratarlas.

22

Caṕıtulo 4. El uso de XML Schema en la aplicación: estructura y elementos del
formulario

4.2. Namespace destinado a las mejoras

Más allá de los namespaces de XML Schema y del documento XML final (atributo
targetNamespace del elemento ráız del XML Schema), se ha creado un espacio de nom-
bres para permitir añadir mejoras y nuevas funcionalidades a la aplicación a través de
atributos en los elementos del XML Schema. Este espacio de nombres tiene como URI
http://ehealthz.unizar.es/formulatron/improvements y como prefijo preferido imp.

La especificación de XML Schema permite que un documento XML Schema sea ex-
tendido utilizando espacios de nombres definidos por el usuario para uso propio de las
aplicaciones, por lo que el XML Schema extendido que utilice el espacio de nombres creado
seguirá siendo válido de cara a otros procesadores y validadores, aunque dicha información
solo será utilizada por nuestra aplicación.

Estas mejoras se han implementado como atributos opcionales de los elementos del
XML Schema, y en ningún caso alteran el documento XML final, simplemente modifican
la vista que se presenta al usuario para facilitar el uso de la aplicación. A continuación se
describen brevemente cada una de las mejoras disponibles:

imp:inNewPage si su valor es true el elemento se mostrará en una nueva página.
Permite una navegación basada en páginas mucho más intuitiva y eficaz de cara al
usuario.

imp:listInNewPage si su valor es true la lista asociada al elemento se mostrará en
una nueva página.

imp:image se mostrará la imagen de la url especificada junto al elemento.

imp:listImage se mostrará la imagen de la url especificada junto a la lista asociada
al elemento.

imp:label se mostrará el texto especificado junto al elemento.

imp:listLabel se mostrará el texto especificado junto a la lista asociada al elemento.

23

4.2. Namespace destinado a las mejoras

24

Caṕıtulo 5

El uso del Schematron en la
aplicación

Este caṕıtulo contiene una breve introducción a la tecnoloǵıa Schematron, una explica-
ción de las ventajas que aporta su uso y un resumen del uso que se hace de dicha tecnoloǵıa
en el ámbito de este proyecto.

5.1. Introducción a Schematron, necesidad y ventajas de su
uso

Schematron es un lenguaje de validación XML basado en reglas soportadas por XPath
que ha sido estandarizado en una norma ISO/IEC [sch06]. Es un lenguaje simple pero
potente, ya que está basado en XPath, que es un lenguaje de procesamiento de nodos
XML. Seguidamente se presentan y explican dos de los elementos más importantes en
Schematron:

Elemento sch:rule
Contiene un conjunto de reglas que se evalúan sobre un contexto establecido en el
atributo context.

Elemento sch:report
Es una regla que contiene una expresión XPath en el atributo test y un mensaje.
Si la expresión XPath evaluada sobre el contexto se cumple entonces se produce un
error y se muestra el mensaje asociado.

Elemento sch:assert
Es también una regla que contiene una expresión XPath en el atributo test y un
mensaje. Si la expresión XPath evaluada sobre el contexto no se cumple entonces
se produce un error y se muestra el mensaje asociado. Es similar a un elemento
sch:report, aunque en el caso del elemento sch:assert el error se genera cuando su
condición no se cumple.

A continuación, en la figura 5.1, se presenta un ejemplo sencillo de una regla de Sche-
matron para ayudar a la comprensión de esta tecnoloǵıa, junto a él se da un ejemplo de
documento XML que se intentaŕıa validar contra el Schematron, y que disparaŕıa el error
de la regla ya que se cumple.

25

5.2. Prevención dinámica de errores y aviso de errores

<!-- Ejemplo de regla que contendrı́a el Schematron -->

<rule context="factura">

<report test="precio < 6 and tipoDePago = ’Con tarjeta’">

No pueden pagarse con tarjeta facturas de menos de 6 euros.

</report>

</rule>

<!-- XML con una factura válida respecto del Schema pero no del Schematron-->

<factura>

<precio>5</precio>

<tipoDePago>Con tarjeta</tipoDePago>

</factura>

<!-- Documento XML Schema que modela la factura -->

<xs:element name="factura" imp:inNewPage="true">

<xs:complexType>

<xs:sequence>

<xs:element name="precio" type="xs:float" />

<xs:element name="tipoDePago"><html>Se deshabilita un valor ya que si se seleccionara causarı́a error</html>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Con tarjeta" />

<xs:enumeration value="En efectivo" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figura 5.1: Ejemplo de regla de Schematron, XML Schema y documento XML a
validar. Se produciŕıa un error de Schematron en la validación porque la regla se
cumple, y por tanto, se mostraŕıa el mensaje de error asociado.

Con el ejemplo anterior ha quedado de manifiesto que con Schematron se consigue
algo que no podemos hacer con XML Schema 1.0: modelar restricciones entre distintos
elementos. Utilizando XML Schema podemos definir de una manera sencilla y precisa la
estructura de un documento XML (qué elementos aparecen, en qué orden, qué valores
pueden tener a nivel individual, etc.), pero no podemos expresar relaciones ni restricciones
entre distintos elementos. XML Schema y Schematron son lenguajes que se complementan
muy bien y juntos hacen de la aplicación una herramienta más potente y poderosa.

5.2. Prevención dinámica de errores y aviso de errores

La aplicación permite el uso de Schematron, ya con él podemos expresar las restriccio-
nes y relaciones existentes entre elementos distintos. Aunque al comienzo de la aplicación
el usuario solamente está obligado a elegir un XML Schema, si elige también un Schema-
tron, la aplicación se encargará de garantizar que el documento XML finalmente generado
sea también válido respecto al Schematron. En el ámbito de la aplicación la información
proporcionada en el Schematron se usa principalmente para dos propósitos: advertir al
usuario cuándo el estado del XML no es válido respecto del Schematron y evitar de ma-
nera anticipada que ocurran errores de Schematron cuando sea posible.

La advertencia de errores era el uso más evidente del Schematron en la aplicación, esta
funcionalidad simplemente advierte al usuario de las restricciones del Schematron que no
se cumplen mostrándole el mensaje asociado. En este sentido se hace un uso del Schema-
tron similar al que se haŕıa en la validación XML tradicional, con la peculiaridad de que

26

Caṕıtulo 5. El uso del Schematron en la aplicación

en la aplicación el documento XML va evolucionando con la interacción del usuario, por
lo que también cambian o desaparecen los errores relativos al Schematron.

Por otro lado, en esta aplicación se ha querido ir más allá de simplemente mostrar los
errores relativos al Schematron por las restricciones que no se cumplen, y se ha añadido
una prevención dinámica de errores. La funcionalidad de prevención dinámica de errores
trata de evitar errores antes de que se produzcan, para ello, impide que el usuario seleccio-
ne opciones de las enumeraciones que causaŕıan un error del Schematron. Se trata de una
prevención porque ocurre de manera anticipada a la acción del usuario, impidiendo que co-
meta errores, y es dinámica puesto que se adapta al estado cambiante del documento XML.

Esta prevención de errores está basada en comprobar qué casos futuros causaŕıan un
error. Para ello se prueban los valores de las enumeraciones como si fuesen seleccionados,
alterando temporalmente el estado del documento XML, si dado ese estado se generan
errores de Schematron, entonces se deshabilita esa opción, impidiendo que el usuario la
seleccione, porque en caso de hacerlo llegaŕıa a un estado erróneo. Se ha decidido realizar
la prevención de errores analizando solamente los posibles casos futuros provocados por
cambios en las enumeraciones y se han descartado otros casos por los siguientes motivos:

El espacio de casos futuros de una enumeración esta definido y corresponde al con-
junto de valores que puede tener. En otros elementos, como por ejemplo los valores
numéricos, existen infinitos valores posibles, y por tanto infinitos casos futuros posi-
bles, por lo que no se pueden analizar todos ellos.

Modificar el valor de una enumeración es un cambio de orden temporal constante
(O(1)) en un documento XML, ya que simplemente consiste en alterar el contenido
de un nodo DOM, por lo que es muy rápido.

La prevención de errores de Schematron sobre los valores de las enumeraciones es
muy útil y sirve de gran ayuda al usuario, ya que su uso es muy común. Todav́ıa es
más útil cuando una enumeración tiene muchos posibles valores pero pocos de ellos
llevaŕıan a un estado válido.

Analizar otros posibles casos futuros supondŕıa un deterioro en el rendimiento. Por
ejemplo, si analizamos el caso futuro de activar un elemento opcional tendŕıamos
que parsear dicho elemento, lo que podŕıa causar un gran sobrecoste temporal, ya
que el elemento puede ser arbitrariamente complejo.

El interés de otros casos es muy reducido. Por ejemplo podŕıamos analizar los posibles
casos futuros de que un usuario reordenara los elementos de un All, pero este caso
no presenta interés ya que es poco probable que el intercambio de posición de dos
nodos cause un error, ya que si aśı fuese no se hubiera utilizado un elemento de tipo
xs:all en el Schema para definir el elemento.

En la figura 5.2 se esquematiza el proceso de prevención de errores de Schematron
que se sigue en la aplicación, y en la figura 5.3 se presenta un ejemplo real de uso de la
aplicación utilizando el XML Schema y la regla de Schematron contenida en la figura 5.1.

27

5.2. Prevención dinámica de errores y aviso de errores

Prevención de futuros errores de Schematron

Cambiar documento
XML (xmlDoc) como si

este valor fuera el
valor seleccionado

Comprobación de
errores de

Schematron

¿Hay errores?

Deshabilitar valor.
(Si el usuario lo
seleccionara se

producirían errores)

Habilitar valor.
(El usuario puede

seleccionarlo y no se
producirán errores)

Restaurar documento
XML (xmlDoc) a su

estado real

1

2

3

Estado
estable

Cambio en el
documento XML

(xmlDoc)

Comprobación de
errores de

Schematron

SchematronChecker

+ check(xml: documento XML) : [0..n] Errores

¿Hay errores?

Mostrar errores y
habilitar valores
deshabilitados.

2

1

3

Si No

for valor en Enumeración (ValueEnum)

for Enumeración (ValueEnum)

Interacción del usuario

check(xmlDoc)

[Errores de Schematron]

check(xmlDoc)

check(xmlDoc)

[Errores de Schematron]

No

Si

Figura 5.2: Diagrama del proceso que se sigue en la aplicación para evitar futuros
errores de Schematron.

28

Caṕıtulo 5. El uso del Schematron en la aplicación

No hay valores deshabilitados Se deshabilita un valor que causaría error seleccionado

Clickando el valor muestra porque esta deshabilitadoUsuario llega a estado válido ayudado por la aplicación

Ususario
cambia un valor

Usuario hace click en el valor para saber
el motivo de que esté deshabilitada

El usuario
selecciona la
única opción

habilitada

Figura 5.3: Ejemplo real del uso de la prevención dinámica de errores de Sche-
matron en la aplicación. El Schema que da lugar a estas pantallas y la regla de
Schematron que da lugar a esta prevención de errores son los de la figura 5.1.

29

5.2. Prevención dinámica de errores y aviso de errores

30

Caṕıtulo 6

Transformaciones en la aplicación

Tal y como se especificó en la propuesta de este trabajo el objetivo de la aplicación
a desarrollar debeŕıa ser obtener un documento XML válido respecto a un XML Schema
y Schematron si lo hubiera, no obstante finalmente se han ampliado las posibilidades de
manera que la aplicación permite al usuario obtener otros tipos de documentos, tales como
HTML o PDF, utilizando transformaciones y XSLT sobre el documento XML. El presente
caṕıtulo explica los motivos del uso de las transformaciones y las posibilidades que ofrece.

XSLT es un lenguaje basado en XPath que permite transformar documentos XML a
otros formatos o documentos. La aplicación desarrollada permite al usuario seleccionar un
documento XSLT para obtener como resultado el documento XML transformado a otro
documento. Esto sirve para que el usuario pueda obtener todo tipo de ficheros sin perder
la facilidad de uso y la riqueza semántica que aportan XML Schema y Schematron a la
aplicación.

PDF es uno de los formatos de documento más utilizados hoy en d́ıa, esto, unido a
que muchos usuarios no quieren un documento XML como resultado sino un PDF, ha
llevado a la creación de un servicio web que permite transformar documentos HTML a
PDF. Por tanto la aplicación puede utilizar el XSLT para transformar el documento XML
a un documento HTML con CSS y después realizar una petición al servicio web creado
para obtener un PDF.

Teniendo en cuenta que la aplicación plantea un uso real en el ámbito de la dermato-
loǵıa a partir de los documentos XML Schema y Schematron desarrollados en [Bue14], se
ha diseñado una hoja XSLT que transforma el documento XML a un documento HTML.
Por tanto se puede transformar a PDF usando el servicio web creado, y obteniendo un
formato mucho más usable desde el punto de vista del usuario.

La figura 6.1 resume los documentos que se pueden obtener en la aplicación aśı como su
proceso de obtención. La figura 6.2 muestra un ejemplo del documento PDF que se obtiene
en la aplicación utilizando el documento XML de la figura 6.4 y la hoja de la figura 6.3,
creada para ser usada conjuntamente con los documentos desarrollados en [Bue14].

31

Uso de transformaciones y XSLT

Aplicación Servicio web creado

Documento transformado
(JSON, HTML, CSV, etc.)

Documento XML

Realizar transformación
de HTML+CSS a PDF

Documento PDF

Enviar documento
HTML transformado

Devolver PDF

Aplicar XSLT

Figura 6.1: Diagrama que muestra los tipos de documentos que se pueden obtener
en la aplicación y el proceso de obtención mediante transformaciones XSLT y el
uso del servicio web creado.

32

Caṕıtulo 6. Transformaciones en la aplicación

Farmacia: datos de la farmacia (dirección/teléfono/...)

FÓRMULA MAGISTRAL

DATOS DEL PACIENTE

INFORMACIÓN PERSONAL
NOMBRE EDAD EMBARAZO ALERGIAS INTOLERANCIA_EXCIPIENTES

Sergio Frago 22 No No No

INFORMACIÓN RELATIVA A LA PATOLOGÍA
LOCALIZACIÓN ESTADIO DE LA LESIÓN

CueroCabelludo Androgenetica Masculina

DATOS DE LA FÓRMULA

VEHÍCULO
Espuma capilar

COMPOSICIÓN
GRUPO - PRINCIPIO ACTIVO RANGO_DOSIFICACIÓN_(%)

Irritantes-Ditranol 0.63

Sensibilizantes-Difenciprona 0.36008

INFORMACIÓN ADICIONAL
Facultativo prescriptor:
Administración:
Conservación:
Caducidad:
Comentarios:

Firma

FECHA
DÍA MES AÑO

· · ·

Figura 6.2: Ejemplo de documento PDF que se obtiene en la aplicación trans-
formando el documento XML de la figura 6.4 generado usando los documentos
creados en [Bue14] y la hoja XSLT de la figura 6.3 desarrollada como parte de
este proyecto.

33

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head>

<meta charset="utf-8" />

<title>title</title>

<style type="text/css">

#mainHeader {

font-size: 18pt;

font-weight: bold;

text-align: center;

margin: 0mm auto 10mm

}

.superHeader {

background: #444;

color: white;

font-size: 14pt;

margin-bottom: 4mm;

}

.normalHeader {

background: #808080;

}

.bordered, table, th, td {

border: 1pt solid black;

border-collapse: collapse;

text-align: center;

}

#pharmacy {

border-bottom: 1pt dotted black;

color: #DDD;

font-size: 12pt;

}

table{

width: 100%;

}

</style>

</head>

<body>

<!-- Zona para los datos de la farmacia -->

<div id="mainHeader">

Farmacia: datos de la farmacia (dirección/teléfono/...)

FÓRMULA MAGISTRAL

</div>

<!-- Zona para los datos del paciente -->

<div class="superHeader bordered">DATOS DEL PACIENTE</div>

<table>

<tr class="normalHeader"><th colspan="5">INFORMACIÓN PERSONAL</th></tr>

<tr><th style="width:100%">NOMBRE</th><th>EDAD</th><th>EMBARAZO</th><th>ALERGIAS</th><th>INTOLERANCIA_EXCIPIENTES</th></tr>

<tr>

<td><xsl:value-of select="/Enfermedad/DatosPaciente/Nombre"/></td>

<td><xsl:value-of select="/Enfermedad/DatosPaciente/Edad"/></td>

<td><xsl:value-of select="/Enfermedad/DatosPaciente/Embarazo"/></td>

<td><xsl:value-of select="/Enfermedad/DatosPaciente/Alergias"/></td>

<td><xsl:value-of select="/Enfermedad/DatosPaciente/IntoleranciaExcipientes"/></td>

</tr>

<tr class="normalHeader"><th colspan="5">INFORMACIÓN RELATIVA A LA PATOLOGÍA</th></tr>

<tr><th>LOCALIZACIÓN</th><th colspan="4">ESTADIO DE LA LESIÓN</th></tr>

<tr>

<td colspan="1"><xsl:value-of select="/Enfermedad/Formula/Localizacion"/></td>

<td colspan="4"><xsl:value-of select="/Enfermedad/Formula/EstadioLesion"/></td>

</tr>

</table>

34

Caṕıtulo 6. Transformaciones en la aplicación

<!-- Zona para los datos de la fórmula -->

<div class="superHeader bordered">DATOS DE LA FÓRMULA</div>

<table>

<tr class="normalHeader"><th colspan="2">VEHÍCULO</th></tr>

<tr><td colspan="2"><xsl:value-of select="/Enfermedad/Formula/Vehiculo"/></td></tr>

<tr class="normalHeader"><th colspan="2">COMPOSICIÓN</th></tr>

<tr><th>GRUPO - PRINCIPIO ACTIVO</th><th>RANGO_DOSIFICACIÓN_(%)</th></tr>

<!-- EJEMPLO: <tr><td>Nombre grupo</td><td>Cantidad</td></tr> -->

<!-- Para cada grupo -->

<xsl:for-each select="/Enfermedad/Formula/Grupos/*">

<!-- Para cada principio activo. Gr-Pr 0.2 -->

<xsl:for-each select="./*">

<tr>

<td><xsl:value-of select="name(..)"/>-<xsl:value-of select="name(.)"/></td>

<td><xsl:value-of select="."/></td>

</tr>

</xsl:for-each>

</xsl:for-each>

</table>

<!-- Zona para información adicional -->

<table>

<tr class="normalHeader"><th>INFORMACIÓN ADICIONAL</th></tr>

<tr><th style="text-align:left">Facultativo prescriptor:</th></tr>

<tr><th style="text-align:left">Administración:</th></tr>

<tr><th style="text-align:left">Conservación:</th></tr>

<tr><th style="text-align:left">Caducidad:</th></tr>

<tr><th style="text-align:left;height:6em;vertical-align:top">Comentarios:</th></tr>

</table>

<!-- Zona para firma (o sello??) y fecha -->

<table>

<tr><td rowspan="3" style="width:100%;vertical-align:bottom">Firma</td><th class="normalHeader" colspan="3">FECHA</th></tr>

<tr><th>DÍA</th><th>MES</th><th>A~NO</th></tr>

<tr>

<td>·
<!-- <xsl:value-of select="day-from-date(current-date())"/> -->

</td>

<td>·
<!-- <xsl:value-of select="month-from-date(current-date())"/> -->

</td>

<td>·
<!-- <xsl:value-of select="year-from-date(current-date())"/> -->

</td>

</tr>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Figura 6.3: Hoja XSLT creada para ser usada en el ámbito de la dermatoloǵıa
junto con los XML Schemas y Schematron desarrollados en [Bue14].

35

<?xml version="1.0" encoding="UTF-8"?>

<Enfermedad>

<DatosPaciente>

<Nombre>Sergio Frago</Nombre>

<Edad>

<Adultos>22</Adultos>

</Edad>

<Alergias>No</Alergias>

<Embarazo>No</Embarazo>

<IntoleranciaExcipientes>No</IntoleranciaExcipientes>

</DatosPaciente>

<Formula>

<Localizacion>CueroCabelludo</Localizacion>

<EstadioLesion>Androgenetica Masculina</EstadioLesion>

<Vehiculo>Espuma capilar</Vehiculo>

<Grupos>

<Irritantes>

<Ditranol>0.63</Ditranol>

</Irritantes>

<Sensibilizantes>

<Difenciprona>0.36008</Difenciprona>

</Sensibilizantes>

</Grupos>

</Formula>

</Enfermedad>

Figura 6.4: Ejemplo de documento obtenido en la aplicación utilizando los XML
Schemas y Schematron desarrollados en [Bue14].

36

Caṕıtulo 7

Conclusiones y trabajo futuro

Este caṕıtulo se centra en las conclusiones finales del proyecto en cuanto a los resultados
obtenidos y al planteamiento de posibles trabajos futuros que utilicen los resultados de
este proyecto.

7.1. Resultados y conclusiones

Los resultados de este TFG más importantes son los siguientes:

Se ha desarrollado una aplicación multiplataforma, que funciona tanto en platafor-
mas móviles como en entornos de escritorio, y que permite crear de documentos
XML válidos a partir de XML Schema y opcionalmente Schematron.

Se ha probado y adaptado el funcionamiento de la aplicación para su uso en derma-
toloǵıa utilizando los Schemas y Schematrones desarrollados en [Bue14].

Se ha comprobado el funcionamiento de la aplicación en varias plataformas móviles
y en navegadores de escritorio, tal y como se explicará más adelante.

Se ha creado una hoja XSLT para dichas formulaciones magistrales de dermato-
loǵıa que permite transformar el documento XML a un documento HTML con CSS,
permitiendo al usuario tener un estilo más adecuado para la visualización.

Se ha creado un servicio web que permite obtener un documento PDF a partir de
un documento HTML con CSS, lo que permite al usuario obtener como resultado
un tipo de documento de uso más generalizado y adecuado a sus necesidades de
visualización.

Las plataformas, dispositivos y navegadores en los que se ha comprobado el funciona-
miento de la aplicación son las siguientes:

Plataforma móvil Android : comprobado en Samsung Galaxy Core Plus con Android
versión 4.2.2, OnePlus one con Cyanogen 11S y BQ Edison2 con Android 4.1 Jelly
Bean.

Plataforma móvil FirefoxOS : comprobado en Alcatel One Touch Fire c con Firefo-
xOS versión 1.3.

Navegadores web de escritorio: comprobado en Firefox versión 31, Google Chrome
versión 38 y Safari versión 7.1.3.

37

7.1. Resultados y conclusiones

La aplicación mantiene una visualización uniforme en todas las plataformas, siendo el
acceso al sistema de ficheros el único aspecto del código (y de la visualización) que cambia
entre plataformas. En las figuras 7.1, 7.2 y 7.3 se muestran algunas pantallas reales de
la aplicación durante su uso en un Samsung Galaxy Core Plus para generar una fórmu-
la magistral para un paciente con Alopecia. Como se ha comentado anteriormente, estos
Schemas y Schematrones utilizados han sido definidos previamente en [Bue14] y se corres-
ponden a casos reales llevados a cabo en colaboración con dermatólogos y farmacéuticos.

38

Caṕıtulo 7. Conclusiones y trabajo futuro

(a) Pantalla inicial de selección de ficheros y sub-
menú de ficheros predefinidos.

(b) Menú principal y página inicial del formulario
para la opción predefinida de la patoloǵıa Alopecia.

(c) Selector de ficheros integrado en la aplicación.
(d) Página de estado: elementos del formulario que
quedan por completar.

Figura 7.1: Capturas de la aplicación en un Samsung Galaxy Core Plus

39

7.1. Resultados y conclusiones

(a) Página del elemento del formulario relativo a los
datos del paciente.

(b) Submenú de configuración y página del elemen-
to del formulario relativo a la fórmula.

(c) Página del elemento del formulario relativo a los
grupos de principios activos.

(d) Página de estado: mostrar estado del documen-
to XML.

Figura 7.2: Capturas de la aplicación en un Samsung Galaxy Core Plus

40

Caṕıtulo 7. Conclusiones y trabajo futuro

(a) Página de estado: mostrar estado del documen-
to XML transformado con XSLT como HTML.

Muestra los elementos del formulario no
completados y da un acceso directo a
ellos.

Muestra los errores de Schematron ac-
tuales.

Permite ver el estado del documento
XML.

Permite guardar el documento XML.

Permite ver el XML transformado co-
mo texto.

Permite guardar el documento transfor-
mado.

Permite ver el XML transformado co-
mo HTML.

Permite guardar un PDF obtenido a
partir del HTML del documento trans-
formado.

(b) Funcionalidades de la página de estado

Figura 7.3: Captura de la aplicación en un Samsung Galaxy Core Plus y funcio-
nalidades de la página de estado.

7.2. Trabajo futuro

Un trabajo futuro claro consistiŕıa en añadir soporte en la aplicación para un subcon-
junto mayor de los elementos de XML Schema y/o Schematron. Dichos subconjuntos a los
que da soporte la aplicación detallan en el anexo A. Adicionalmente, dada la genericidad
de la aplicación, es evidente que podŕıa ser usada por otros usuarios.

Otro trabajo futuro próximo planificado es la validación cĺınica por parte de los der-
matólogos para su uso en formulación magistral. Aunque el resultado final que se ha
conseguido es visualmente atractivo, tendrán que ser los especialistas los que expresen sus
opiniones sobre la usabilidad del sistema, posibles mejoras, etc. que se debeŕıan incluir en
la aplicación para su uso en la práctica cĺınica habitual.

Otra v́ıa de ampliación, que ya está puesta sobre la mesa como futuro TFG, consiste
en el desarrollo de una aplicación que permite modelar de manera visual Schemas y Sche-
matrones para dermatoloǵıa, que usada en conjunción con la aplicación aqúı desarrollada
permitiŕıa al dermatólogo cubrir el proceso completo de creación de fórmulas magistrales,
desde la definición de nuevas patoloǵıas hasta la obtención de fórmulas magistrales.

41

7.2. Trabajo futuro

42

Bibliograf́ıa

[BPSM+06] Bray, Paoli, Sperberg-McQueen, Maler, Yergeau, and Cowan, Extensible mar-
kup language (xml) 1.1, W3C recommendation, W3C, 2006,
http://www.w3.org/TR/xml11.

[Bue14] Victoria Mingote Bueno, Definición de xml schemas para la prescripción de
fórmulas magistrales en dermatoloǵıa, Master’s thesis, Universidad de Zara-
goza, Escuela de Ingenieŕıa y Arquitectura, 2014,
http://deposita.unizar.es/record/16637?ln=es.

[Cla99] Clark, Xsl transformations (xslt), W3C recommendation, W3C, 1999,
http://www.w3.org/TR/xslt.

[dav14] davidmoten, xsd-forms, 2014,
https://github.com/davidmoten/xsd-forms.

[NS14] Nitobi and Adobe Systems, Phonegap, 2014,
http://phonegap.com/.

[Rau10] Rein Raudjärv, dynaform, 2010,
https://github.com/reinra/dynaform.

[sch06] Information technology — document schema definition languages (dsdl) —
part 3: Rule-based validation — schematron, Tech. report, ISO/IEC, 2006,
http://www.schematron.com/.

[Sof] Ilerian Software, Xsdform,
http://www.ilerian.com/xsd-web-form-overview.

[xpa04] Xml path language (xpath), W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xpath/.

[xsd04a] Xml schema part 0: Primer, W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xmlschema-0/.

[xsd04b] Xml schema part 1: Structures, W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xmlschema-1/.

[xsd04c] Xml schema part 2: Datatypes, W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xmlschema-2/.

43

http://www.w3.org/TR/xml11
http://deposita.unizar.es/record/16637?ln=es
http://www.w3.org/TR/xslt
https://github.com/davidmoten/xsd-forms
http://phonegap.com/
https://github.com/reinra/dynaform
http://www.schematron.com/
http://www.ilerian.com/xsd-web-form-overview
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Bibliograf́ıa

44

Anexos

45

Bibliograf́ıa

46

Apéndice A

Subconjuntos de XML Schema y
Schematron soportados

La aplicación desarrollada no da soporte a toda la especificación de XML Schema y
Schematron, sino que solamente soporta un subconjunto de sus elementos. Se ha intentado
que los elementos a los que se dan soporte sean los más útiles y los más utilizados.

Subconjunto de elementos de XML Schema a los que se da soporte:

xs:schema

xs:include

xs:element

xs:attribute

xs:all

xs:choice

xs:sequence

xs:complexType

xs:simpleType

xs:restriction incluyendo todas las restricciones sobre tipos simples (xs:minInclusive,
xs:enumeration, etc.).

xs:list

xs:union

xs:simpleContent solo para extender un tipo simple añadiéndole atributos.

Subconjunto de elementos de Schematron a los que se da soporte:

sch:schema

sch:pattern

sch:rule

47

sch:assert

sch:report

sch:value-of

sch:name

48

Apéndice B

Correspondencia entre elementos
del formulario de la aplicación y
elementos del XML Schema

En este anexo se explican para cada tipo de elemento del formulario y los elementos
del Schema a los que está asociado. Junto con los ejemplos de XML Schema se adjuntarán
también capturas de la aplicación para dar una idea más clara sobre dichas asociaciones y
su modo de presentación al usuario. Hay que tener en cuenta que esto son solamente ejem-
plos, pero la aplicación se adapta dinámicamente al Schema proporcionado, y por ejemplo,
soporta el resto de tipos simples, entre los que se incluyen los definidos por restricción,
lista, unión, derivación de tipos primitivos o globales, etc.

La siguiente lista contiene los tipos de elementos del formulario (clase FormElement)
y los elementos del Schema a los que están asociados acompañados de ejemplos:

Tipos simples
Están asociados al elemento del XML Schema xs:simpleType. Representan un tipo
simple, es decir el texto de un nodo. La aplicación presenta al usuario tres visuali-
zaciones diferentes que se adaptan a tres de los tipos de datos más utilizados:

1. Enumeración o ValueEnum Se utilizan cuando un elemento puede tener un
valor de entre un conjunto de valores. Permiten al usuario seleccionar fácilmente
un valor de entre los valores del conjunto válido. Ejemplo en figura B.1.

49

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:minInclusive value="0" />

<xs:maxInclusive value="120" />

</xs:restriction>

</xs:simpleType>

Figura B.1: Ejemplo de parte de un XML Schema y vista del ValueEnum que
produce.

2. Sliders o ValueInput con slider Se utilizan cuando el tipo de dato es numéri-
co y cuenta con un máximo y un mı́nimo. Permiten al usuario introducir con
facilidad un valor numérico dentro del rango. También le permite escribir un
valor libremente para obtener una precisión mayor si lo desea. Ejemplo en figura
B.2.

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:minInclusive value="0" />

<xs:maxInclusive value="120" />

</xs:restriction>

</xs:simpleType>

Figura B.2: Ejemplo de parte de un XML Schema y vista del ValueInput-slider
que produce.

3. Input o ValueInput Se utilizan cuando un elemento de tipo simple no se en-
cuentra dentro de ninguno de los dos grupos anteriores. Permiten al usuario
escribir un valor libre. Ejemplo en figura B.3.

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Hombre" />

<xs:enumeration value="Mujer" />

</xs:restriction>

</xs:simpleType>

Figura B.3: Ejemplo de parte de un XML Schema y vista del ValueInput que
produce.

Elemento XML o XMLElement
Esta asociado al elemento del Schema xs:element. Representa un nodo de tipo ele-
mento del documento XML. Puede ser de tipo simple si solo tiene un nodo de texto

50

Apéndice B. Correspondencia entre elementos del formulario de la aplicación y
elementos del XML Schema

o complejo si tiene contenido. Por ejemplo, en el ejemplo de la figura B.4 Nombre,
Edad y Sexo son elementos XML simples, puesto que simplemente tienen un valor,
mientras que Persona es un elemento de tipo complejo, puesto que está compuesto
por otros elementos (Nombre, Edad y Sexo).

51

<xs:element name="persona">

<xs:complexType>

<xs:sequence>

<xs:element name="Nombre" type="xs:string" />

<xs:element name="Edad">

<xs:simpleType>

<xs:restriction base="xs:int">

<xs:minInclusive value="0" />

<xs:maxInclusive value="120" />

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Sexo">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Hombre" />

<xs:enumeration value="Mujer" />

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

Figura B.4: Ejemplo de parte de un XML Schema y vista del XMLElement que
produce.

52

Apéndice B. Correspondencia entre elementos del formulario de la aplicación y
elementos del XML Schema

Secuencia o Sequence
Está asociado al elemento del Schema xs:sequence. Representa un elemento que es-
pecifica que sus hijos deben aparecer en el orden especificado en la secuencia. El
ejemplo anterior de la figura B.4 contiene una secuencia. El orden definido por la
secuencia debe reproducirse en el documento XML para considerarse válido, es de-
cir, dentro del elemento XML Persona, debe aparecer primero el elemento Nombre,
después el elemento Edad y por último el elemento Sexo.

Elemento sin orden o All
Está asociado al elemento del Schema xs:all. Representa un elemento que especi-
fica que sus hijos pueden aparecer en cualquier orden. En el siguiente ejemplo, el
documento XML seŕıa válido independientemente del orden de Nombre y Edad en
Persona. Por ello, cuando se utiliza este elemento, la aplicación permite al usuario
reordenar los elementos presentes a su antojo tal y como se muestra en la figura B.5.

Figura B.5: Ejemplo de un All producido por un XML Schema idéntico al de la
figura B.4 utilizando xs:all en lugar de xs:sequence y tras mover algunos elementos.

Selección o Choice
Está asociado al elemento del Schema xs:choice. Representa que uno y solo uno de
sus elementos debe aparecer en el documento XML válido. Para representar este
elemento solamente se permite que se seleccione uno de sus hijos, y por tanto que
solo uno de sus hijos esté en el documento XML. Obsérvese la diferencia de que
en un Choice hay que elegir uno entre varios elementos arbitrariamente complejos,
mientras que en un ValueEnum hay que elegir un valor de texto entre un conjunto
de varios valores. La figura B.6 muestra un ejemplo de este tipo de elemento.

53

Figura B.6: Ejemplo de un Choice producido por un XML Schema idéntico al
de la figura B.4 utilizando xs:choice en lugar de xs:sequence y tras seleccionar su
segundo elemento y darle valor.

Atributo o Attribute
Está asociado a un elemento del Schema xs:attribute. Representa un atributo de un
elemento del documento XML. Su valor corresponde a un tipo simple similar a los
explicados anteriormente. Su vista es similar a la de un elemento simple puesto que
su valor se corresponde con un tipo simple.

Lista o List
Representa otro elemento del formulario (correspondiente a xs:element, xs:sequence,
xs:choice, xs:all o xs:attribute) que o bien es opcional, o bien puede repetirse varias
veces. Por defecto el valor de la cardinalidad de los elementos (atributos maxOccurs
y minOccurs) es 1-1. Aunque la implementación de la lista es la misma existen
visualizaciones de dos tipos para facilitar las cosas al usuario:

1. Opcional El elemento puede aparecer 0 o 1 veces. En la figura B.7 se da un
ejemplo en el que el elemento Edad es opcional, este seŕıa el equivalente si el
elemento Edad tuviera el atributo minOccurs=0 en el Schema de la figura B.4.

Deshabilitar Habilitar

Figura B.7: Ejemplo de la vista de un List opcional. Se muestra que el usuario
puede interaccionar con el elemento y activarlo o desactivarlo cuando quiera.

2. Común El elemento puede aparecer otro número de veces (diferente de 0-1 y 1-1).
En la figura B.8 se da un ejemplo en el que el elemento nombre es repetible, este
seŕıa el equivalente si el elemento Nombre tuviera los atributos minOccurs=2
y maxOccurs=5 en el Schema de la figura B.4.

54

Apéndice B. Correspondencia entre elementos del formulario de la aplicación y
elementos del XML Schema

Figura B.8: Ejemplo de la vista de un List común. El usuario puede interaccionar
con el elemento y añadir o quitar elementos de la lista dentro de los ĺımites de
cardinalidad. En este ejemplo están deshabilitados los botones de borrar elemento
porque la lista debe de tener como ḿınimo dos elementos.

55

56

Apéndice C

Tutorial y aplicación

Este anexo presenta enlaces a un v́ıdeo con un tutorial de uso de la aplicación y
a la propia aplicación para ser usada en android. El v́ıdeo está orientado al uso de la
aplicación en el ámbito de la dermatoloǵıa, aunque puede ser de utilidad para cualquier tipo
de usuarios. Dicho v́ıdeo se encuentra disponible en la dirección https://www.youtube.

com/watch?v=D6UEvVZsJPw. La aplicación para android puede obtenerse de la siguiente
dirección: https://www.dropbox.com/s/il2yu1ee2o6f563/formulatron.apk?dl=0.

57

https://www.youtube.com/watch?v=D6UEvVZsJPw
https://www.youtube.com/watch?v=D6UEvVZsJPw
https://www.dropbox.com/s/il2yu1ee2o6f563/formulatron.apk?dl=0

58

Apéndice D

Créditos a libreŕıas y contenidos
de terceros

Este anexo presenta una lista de las libreŕıas y contenidos de terceros utilizadas en la
realización de este trabajo. Desde la aplicación desarrollada puede accederse a una lista de
créditos similar utilizando la opción créditos del menú, que lleva a una página que contiene
información de las libreŕıas, de los autores, de las licencias de cada elemento, etc.

Libreŕıas y contenidos de terceros utilizadas:

Phonegap
Framework usado para crear las aplicaciones móviles multiplataforma a partir de
código HTML5, JavaScript y CSS3.
Dirección: http://phonegap.com/.
Se ha utilizado los siguientes plugins de Phonegap:

org.apache.cordova.file 1.3.2 ”File”: para la API de ficheros.

org.apache.cordova.file-transfer 0.4.8 ”File Transfer”: para descargar el PDF.

org.apache.cordova.inappbrowser 0.5.4 ÏnAppBrowser”: para abrir enlaces ex-
ternos en el navegador.

jQuery
Biblioteca JavaScript (DOM, eventos, animaciones, etc).
Dirección: http://jquery.com.

jQuery Mobile
Biblioteca JavaScript para la interfaz gráfica móvil (diseño interfaz, transiciones,
iconos, etc.).
Dirección http://jquerymobile.com.

jQuery xpath
Plugin que implementa XPath 2.0 para jquery. - Modificado/extendido para evaluar
una expresión varias veces parseándola solo una. Utilizado para el XPath del Sche-
matron.
Dirección https://github.com/ilinsky/jquery-xpath.

Schemas y Schematrones predefinidos (de Victoria Mingote Bueno)
Los Schemas y Schematrones predefinidos forman parte del Trabajo de Fin de Gra-
do de Victoria Mingote Bueno en la Universidad de Zaragoza. Se les han añadido

59

http://phonegap.com/
http://jquery.com
http://jquerymobile.com
https://github.com/ilinsky/jquery-xpath

pequeñas modificaciones y existe consentimiento por parte de dicha autora para el
uso de dichos ficheros en esta aplicación.
Dirección http://deposita.unizar.es/record/16637?ln=es.

Mustache.js
Sistema de plantillas JavaScript. Modificado para añadir soporte a variables @index
y @indexLetter.
Dirección https://github.com/janl/mustache.js.

vkBeautify
Embellecedor (identación, etc.) de código (XML).
Dirección http://www.eslinstructor.net/vkbeautify.

highlight.js
Embellecedor (coloreado, resaltado de sintaxis, etc.) de código (XML).
Dirección https://highlightjs.org.

FileSaver.js
Implementación de función javascript saveAs() para guardar un fichero especificada
en el HTML5 W3C.
Dirección https://github.com/eligrey/FileSaver.js.

AJAXSLT
Implementación de transformaciones XSL-T.
Dirección http://goog-ajaxslt.sourceforge.net/.

Otros iconos
Icono carpeta usado en el selector de ficheros obtenido de http://findicons.com/

icon/64167/folder?id=64346.
Icono fichero utilizado en el selector de ficheros obtenido de https://www.iconfinder.
com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_

psd_rar_text_windows_explorer_zip_icon#size=128.
Iconos de ficheros y carpetas usados en firefoxOS obtenidos de http://dojotoolkit.
org.

dompdf
Para transformar HTML a PDF se utiliza la libreŕıa dompdf en el servicio externo
creado.
Dirección https://github.com/dompdf/dompdf.

60

http://deposita.unizar.es/record/16637?ln=es
https://github.com/janl/mustache.js
http://www.eslinstructor.net/vkbeautify
https://highlightjs.org
https://github.com/eligrey/FileSaver.js
http://goog-ajaxslt.sourceforge.net/
http://findicons.com/icon/64167/folder?id=64346
http://findicons.com/icon/64167/folder?id=64346
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
http://dojotoolkit.org
http://dojotoolkit.org
https://github.com/dompdf/dompdf

	Introducción
	Introducción a XML Schema
	Acrónimos utilizados
	Estructura del documento

	Paradigma de validación XML tradicional frente al paradigma de la aplicación
	Aplicaciones similares

	Arquitectura general del sistema
	Paradigma de desarrollo
	Análisis de aproximaciones
	Solución adoptada

	Componentes del Sistema
	Componentes de la aplicación
	Componentes del servicio web

	El uso de XML Schema en la aplicación: estructura y elementos del formulario
	Evolución del formulario
	Namespace destinado a las mejoras

	El uso del Schematron en la aplicación
	Introducción a Schematron, necesidad y ventajas de su uso
	Prevención dinámica de errores y aviso de errores

	Transformaciones en la aplicación
	Conclusiones y trabajo futuro
	Resultados y conclusiones
	Trabajo futuro

	Subconjuntos de XML Schema y Schematron soportados
	Correspondencia entre elementos del formulario de la aplicación y elementos del XML Schema
	Tutorial y aplicación
	Créditos a librerías y contenidos de terceros

