Universidad
Zaragoza

(ITITYIT]]
ana

1542

Trabajo Fin de Grado

Desarrollo de una aplicacién movil
multiplataforma para la creacion de
documentos XML utilizando XML Schema
y Schematron

Autor

Sergio Frago Criado

Director

Alvaro Alesanco Iglesias

Universidad de Zaragoza / Escuela de Ingenieria y Arquitectura
2015

Repositorio de la Universidad de Zaragoza - Zaguan
http://zac__:;uan.unizar.es

Escueln de
Ingenieria y Arquitectura

Universidad Zaragoza

{Este documento debe acompaiiar al Trabaja Fin de Grade [TFG}/Trabajo Fin de
Mdster (TFM) cuando sea depositado para su evaluacicn),

D./D2, Sergio Frago Criado

con n2 de DNI 177672241 en aplicacion de lo dispuesto en el art.
14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Mdaster)

Grado , (Thulo del Trabajo)
Desarrollo de una aplicacidn movil multiplataforma para la creacién de

documentos XML utilizando XML Schema y Schematron

J

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 13 de febrero de 2015

y k
SERGIg EMGo CRARg

A mis padres y al resto de personas que me han
ayudado a hacer realidad este proyecto.

II

Agradecimientos

Quiero dar las gracias Alvaro Alesanco por su ayuda, por su paciencia y sobre todo por
darme la oportunidad de trabajar en un proyecto tan interesante. También quiero mostrar
mi agradecimiento a todas aquellas personas que me han mostrado su apoyo y me han
animado a completar este proyecto, especialmente a mi padre.

111

v

Desarrollo de una aplicacion maévil multiplataforma para la
creacion de documentos XML utilizando XML Schema y
Schematron

Resumen

Este trabajo plantea el diseno y la implementacion de una aplicaciéon mévil multipla-
taforma mediante JavaScript, HTML5 y CSS3 que permita al usuario crear documentos
XML validos de manera asistida a partir de XML Schema y opcionalmente Schematron.
Para ello, utilizando la informacién proporcionada por el XML Schema, la aplicacion ge-
nera de forma dindmica un formulario que reproduce la estructura de un documento XML
valido, y el usuario interacciona con los elementos de dicho formulario de manera que el
estado y el propio formulario van evolucionando hasta obtener un documento XML que
es valido respecto del Schema puesto que el formulario se ha construido a partir de él.

El uso de Schematron es una de las caracteristicas que hacen novedosa a la aplicacién
desarrollada frente a otras. Dicho documento define restricciones y relaciones entre dife-
rentes elementos del documento XML y la aplicacién utiliza esta informacion no solo para
informar de restricciones que no se cumplen, sino también para prevenir errores de mane-
ra dindmica y anticipada, evitando que el usuario seleccione opciones que causarian errores.

En la aplicacion también se han tenido en cuenta las necesidades de los usuarios desde
el punto de vista visual y del tipo de documento que quieren obtener, por lo que se permite
utilizar hojas XSLT para transformar el documento XML a otro tipo de documento més
adecuado a las necesidades del usuario, como JSON, HTML o incluso PDF.

La aplicacién se ha adaptado para ser utilizada en el &mbito de la dermatologia median-
te el uso de documentos XML Schema y Schematron que modelan patologias dermatolégi-
cas comunes y que han sido desarrollados en un Trabajo de Fin de Grado anterior [Buel4].
No obstante, la aplicacién es genérica y se adaptard de manera dindmica a los documentos
XML Schema y Schematron proporcionados por el usuario aunque fuesen otros diferentes.

VI

Indice general

1. Introduccién 1
1.1. Imtroducciéon a XML Schema 2
1.2. Acrénimos utilizados 4
1.3. Estructura del documento L 5

2. Paradigma de validacién XML tradicional frente al paradigma de la apli-

cacion 7
2.1. Aplicaciones similares 10

3. Arquitectura general del sistema 11
3.1. Paradigma de desarrollo 11
3.1.1. Andlisis de aproximaciones 11

3.1.2. Solucién adoptada 11

3.2. Componentes del Sistema L0 13
3.2.1. Componentes de la aplicaciéon 13

3.2.2. Componentes del servicioweb 15

4. El uso de XML Schema en la aplicacién: estructura y elementos del

formulario 17
4.1. Evolucién del formulario 20
4.2. Namespace destinado a las mejoras L. 23
5. El uso del Schematron en la aplicacién 25
5.1. Introduccién a Schematron, necesidad y ventajas de suuso 25
5.2. Prevencién dindmica de errores y aviso de errores 26
6. Transformaciones en la aplicacién 31
7. Conclusiones y trabajo futuro 37
7.1. Resultados y conclusiones 37
7.2. Trabajo futuro 41
A. Subconjuntos de XML Schema y Schematron soportados 47
B. Correspondencia entre elementos del formulario de la aplicacién y ele-
mentos del XML Schema 49
C. Tutorial y aplicacién 57
D. Créditos a librerias y contenidos de terceros 59

VII

Indice general

VIII

Capitulo 1

Introduccion

Las virtudes del lenguaje XML (EXtensible Markup Language) [BPSM106], especial-
mente su simplicidad y su flexibilidad, lo convierten en un lenguaje idéneo para la transmi-
sién y el almacenamiento de datos en muchos ambitos. En la mayoria de dichos ambitos no
solo se requiere que los documentos XML estén bien formados, sino que ademas se precisa
que sean validos, es decir que cumplan unas determinadas condiciones que restringen su
estructura, contenidos, tipos de datos etc.

El presente TFG se centra en la concepcién y el desarrollo de una aplicaciéon multi-
plataforma que permita al usuario generar documentos XML vélidos de forma dindmica
y asistida, a partir de XML Schema 1.0 [xsd04a] y opcionalmente Schematron [sch06],
que son dos tecnologias muy potentes dentro de las muchas alternativas disponibles en el
contexto de la validacion XML.

XML Schema es probablemente el lenguaje de validacion XML mdas ampliamente uti-
lizado, ya que permite especificar de manera una manera sencilla pero muy precisa la
estructura la de los documentos XML, asi como restringir su contenidos. XML Schema
define qué elementos pueden aparecer en un documento XML, en qué orden, cudntas veces,
qué tipo de datos y restricciones debe cumplir el valor de cada elemento a nivel individual,
etc.

El uso de documentos Schematron esta menos extendido pero supone una herramienta
muy potente de validacién XML. Los documentos Schematron proporcionan validacién de
documentos XML basada en reglas mediante el uso de XPath [xpa04]. Schematron se suele
usar en conjuncion con la tecnologia XML Schema, ya que ambas se complementan: XML
Schema hace simple definir la estructura general del documento XML y proporciona va-
lidacién avanzada para contenido simple, mientras que Schematron permite definir reglas
que el documento XML debe satisfacer y, lo que es mas importante, relaciones entre los
valores de diferentes elementos del documento, es decir validaciones complejas de conteni-
dos cruzadas, lo cual no puede lograrse con XML Schema.

El resultado principal de este proyecto ha sido la implementaciéon de una aplicacién
multiplataforma, llamada Formulatron, que permite al usuario la creacién de documen-
tos XML validos a partir de XML Schema y opcionalmente Schematron. Esta aplicacién
analiza el XML Schema y presenta de forma dindmica un formulario que reproduce la
estructura del Schema y guia al usuario de manera dindmica y asistida en el proceso de
completado del formulario. Cuando el usuario finaliza el proceso obtiene un documento

1.1. Introduccién a XML Schema

XML que por construccién es valido, ya que el formulario se habia creado reproduciendo
la estructura del XML Schema. Por otra parte la aplicacién utiliza la informacién pro-
porcionada por el documento Schematron para asistir al usuario aun mas en el proceso
de completado del formulario, informandole de fallos y evitando de manera anticipada
que seleccione ciertas opciones del formulario que, dado el estado actual, causarian un
error en caso de ser seleccionadas. Cabe senalar que la aplicacién desarrollada permite
ademads aplicar transformaciones XSLT [Cla99] al documento XML valido, lo que permite
que el usuario final pueda obtener como resultado otro tipo de documentos, como HTML
o incluso documentos de tipo PDF a través de un servicio web que se ha creado para tal fin.

La aplicacién desarrollada es genérica en el sentido de que no espera unos XML Schema
y Schematron concretos sino que se adapta de forma dindmica a los documentos propor-
cionados. No obstante, para comprobar el funcionamiento de la aplicacién se han utilizado
XML Schemas y Schematrones de uso médico que modelan la formulacién magistral de pa-
tologias dermatoldgicas comunes, desarrollados en otro Trabajo de Fin de Grado [Buel4].
Ademids, se ha hecho que la aplicacién incluya estos documentos como ficheros predefini-
dos, y se ha adaptado para dicho uso por parte de dermatdlogos.

1.1. Introduccion a XML Schema

Esta seccién ofrece una breve y bdsica introduccién a XML Schema, una tecnologia
de validacion XML. Un documento XML Schema especifica al estructura y los tipos de
contenidos que debe tener un documento XML para ser valido. Algunos de los elementos
méas importantes de XML Schema y su funcionalidad se resumen en la lista siguiente:

» xs:schema: es el raiz de los documentos XML Schema. Estd asociado al espacio de
nombres http://www.w3.org/2001/XMLSchema cuyo prefijo preferido es xs.

» zxs:element: permite definir un elemento del documento XML. Puede ser de tipo
simple si no contiene otros elementos, o de tipo complejo si los contiene. El tipo
del elemento se especifica en el atributo type o utilizando un hijo zs:simpleType o
xs:complex Type.

» zxs:attribute: especifica un atributo de un elemento del documento XML.

n xs:simple Type: permite definir un tipo simple, es decir, el contenido de texto de un
elemento del documento XML. Puede definirse utilizando los tipos predefinidos en
XML Schema [xsd04c], mediante restricciones, o bien a través de listas y o uniones.

= xs:restriction: permite restringir los valores de un tipo simple mediante el uso de ele-
mentos de restricciones tales como xs:maxInclusive, xs:mazxFExclusive, xs:maxLength,
Ts:enumeration, xs:pattern, etc.

n xs:complexType: define un tipo complejo, es decir que puede contener otros elementos
y atributos. Existen tres tipos complejos principales: xs:sequence, xs:all y xs:choice.

» xs:sequence: especifica una serie de elementos que debe aparecer en el documento
XML en el orden en el que se especifican en la secuencia.

» zs:all: especifica una serie de elementos que pueden aparecer en el documento XML
en cualquier orden.

http://www.w3.org/2001/XMLSchema

Capitulo 1. Introduccién

» zxs:choice: especifica una serie de elementos de los que solamente uno de ellos puede
aparecer en el documento XML.

= Attributos mazOccurs y minOccurs: Son atributos de los elementos que permiten
definir el nimero de veces que puede aparecer como maximo y como minimo dicho
elemento en el documento XML. Su valor es por defecto es 1.

La figura 1.1 muestra un ejemplo bésico de un XML Schema que modela la estructura
de un documento XML que contiene la informacion de una persona. Segin este Schema,
en el documento XML un elemento persona tiene que tener el siguiente contenido y en
este orden puesto que se ha utilizado una secuencia (elemento zs:sequence):

= Elemento obligatorio nombre de tipo string.

= Elemento edad de tipo int que puede no aparecer puesto que el valor su atributo
minOccurs es 0.

Elemento obligatorio sexo cuyo valor puede ser Hombre o Mugjer.

= Elemento obligatorio embarazo de tipo boolean.

Elemento info de tipo string es opcional.

<?zml wversion="1.0"2>
<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">
<xs:element name="persona'">
<xs:complexType>
<xs:sequence>
<xs:element name="nombre" type="xs:string"/>
<xs:element name="edad" type="xs:int" minOccurs="0" />
<xs:element name="sexo">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Hombre"/>
<xs:enumeration value="Mujer"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="embarazo" type="xs:boolean"/>
<xs:element name="info" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figura 1.1: Ejemplo de documento XML Schema que modela la estructura de un
documento XML que contiene la informacién de una persona.

La figura 1.2 muestra un ejemplo de documento XML valido respecto del XML Schema
de la figura 1.1. A continuacién, para facilitar la comprensiéon de XML Schema, se explican
otros casos que podrian darse con un XML Schema y un documento XML similares a los
de las figuras 1.1 y 1.2 pero ligeramente modificados:

3

1.2. Acrénimos utilizados

El documento XML no seria valido si el valor del elemento embarazo fuera “no” ya
que no es de tipo boolean.

El documento XML seguiria siendo vélido si el elemento edad y /o el elemento info no
estuvieran presentes, puesto que en el Schema ambos tienen el atributo minOccurs
con valor 0.

El documento XML no seria valido si el elemento edad apareciera antes que el ele-
mento nombre puesto que no se estaria respetando el orden de la secuencia. Sin
embargo, si que seria vélido si en lugar de un elemento zs:sequence se utilizase un
elemento zs:all, ya que seria valido independientemente del orden en el que apare-
cieran sus hijos.

El documento XML no seria vélido si en lugar de utilizar xs:sequence hubiésemos
utilizado el elemento zs:choice. En ese caso, para que el documento fuese valido solo
deberia aparecer uno de sus hijos.

<?xml version="1.0"?>

<persona>
<nombre>Sergio Frago</nombre>
<edad>22</edad>
<sexo>Hombre</sexo>
<embarazo>false</embarazo>
<info>Nacido en Zaragoza en 1992</info>
</persona>

Figura 1.2: Ejemplo de documento XML viélido respecto del XML Schema de la
figura 1.1.

El XML Schema presentado como ejemplo en la figura 1.1 modela una estructura rela-
tivamente simple, no obstante, la estructura modelada podria ser arbitrariamente compleja
y recursiva si, por ejemplo, anadiéramos otros elementos complejos dentro del elemento
complejo persona.

Puede encontrarse toda la informacién relativa a XML Schema 1.0 en las tres partes
de la especificacién del W3C' [xsd04a] [xsd04b] [xsd04c].

1.2.

Acronimos utilizados

La lista siguiente muestra los acrénimos que se utilizan en este documento y su signi-
ficado:

AJAX: Asynchronous JavaScript And XML.
API: Application Programming Interface.
CSS: Cascading Style Sheets.

CSV: Comma-Separated Values.

DOM: Document Object Model.

Capitulo 1. Introduccién

1.3.

HTML: HyperText Markup Language.

IEC: International Electrotechnical Commission.
ISO: International Organization for Standardization.
JSON: JavaScript Object Notation.

PHP: PHP: Hypertext Preprocessor.

TFG: Trabajo de Fin de Grado.

W3C: World Wide Web Consortium.

XML: eXtensible Markup Language.

XPath: XML Path Language.

XSLT: Eztensible Stylesheet Language Transformations.

Estructura del documento

El resto del documento presenta la siguiente estructura y contenidos:

Paradigma de validaciéon XML tradicional frente al paradigma de la apli-
cacion. En este capitulo se explica qué es lo que hace diferente y novedosa a la
aplicacién desarrollada frente al paradigma de validacion XML clasico. Se exponen
otras aplicaciones con un funcionamiento similar que también estén basadas en ge-
nerar un formulario a partir de un XML Schema para obtener un documento XML
vélido.

Arquitectura general del sistema. Se da una visién de alto nivel del sistema
desarrollado, se explican las diferentes alternativas de desarrollo de la aplicacion, la
solucién que se escogio, y las tecnologias utilizadas para desarrollar este proyecto.

El uso de XML Schema en la aplicaciéon. En este capitulo se detallan los
usos de XML Schema en la aplicacion y se explican los elementos que componen el
formulario.

El uso del Schematron en la aplicacién. Este capitulo da una introduccién a
Schematron y detalla los usos que hace la aplicacion del proporcionado por el usuario.

Transformaciones en la aplicaciéon. Explica el uso de las transformaciones y de
XSLT en la aplicacién, muestra la hoja XSLT creada para su uso en dermatologia y
explica el servicio web creado para la transformacion de HTML a PDF.

Conclusiones y trabajo futuro. Detalla los resultados y conclusiones obtenidos
del desarrollo de este Trabajo de Fin de Grado asi como posibles futuras vias de
ampliacién y uso de los resultados del Trabajo.

1.3. Estructura del documento

Capitulo 2

Paradigma de validacion XML
tradicional frente al paradigma de
la aplicacion

La aplicacién desarrollada plantea un enfoque novedoso y completamente diferente al
de la validacion XML tradicional. Las diferencias entre ambos enfoques se dan principal-
mente en estos cuatro aspectos:

1.

2.

Los datos de entrada: cudles son los documentos o elementos de los que partimos.
El objetivo: qué es lo que se quiere conseguir.

El flujo de procesos: qué pasos se siguen desde que se tienen los datos de entrada
hasta que se obtienen los resultados.

Resultados: qué se obtiene como resultado del proceso seguido.

El enfoque de la validacién XML tradicional y el enfoque de la aplicacién, asi como sus
caracteristicas desde los cuatro puntos de vista citados anteriormente, se muestran en la
figura 2.1 y se explican a continuacién:

1.

2.

Enfoque de la validacién XML tradicional:

= Datos de entrada: se parte de un Documento XML, un XML Schema y opcio-
nalmente un Schematron. Aunque es posible utilizar otro tipo de documentos
diferentes de XML Schema y Schematron, el uso de estos documentos es rela-
tivamente comun.

= Objetivo: comprobar si el documento XML es valido respecto al XML Schema
y al Schematron si lo hubiera.
= Flujo de procesos: se valida el documento XML inicial utilizando el XML Sche-

ma, si es valido se valida también con el Schematron.

= Resultado: el resultado del proceso es una afirmacion, podriamos decir que es
un dato booleano, ya que el resultado es simplemente una conclusién sobre si el
documento XML inicial es o no vélido respecto al XML Schema y al Schematron
si lo hubiera.

Enfoque de la aplicacién desarrollada:

= Datos de entrada: en la aplicacién desarrollada se parte de un XML Schema y
opcionalmente un Schematron. También se puede anadir un documento XSLT
aunque no tiene relevancia en cuanto a la generacion y validacién del documento
XML.

= Objetivo: que el usuario obtenga de manera dindmica y asistida un documento
XML valido respecto del XML Schema que ha proporcionado y respecto del
Schematron si lo hubiera.

= Flujo de procesos: la informacién del XML Schema inicial se usa para presentar
al usuario un formulario que reproduce la estructura que debe cumplir un docu-
mento XML vélido. Dicha informacién, asi como la del Schematron si lo hubiera,
se utiliza para asistir al usuario en el proceso de creacién del documento.

= Resultado: el resultado del proceso es un documento XML que es vélido res-
pecto del XML Schema y respecto del Schematron si lo hubiera, puesto que el
formulario presentado al usuario se ha construido a partir del XML Schema de
forma que el documento resultante es vélido por construccion.

Ademas de todo eso, una vez acabado el proceso, en la propia aplicacién se permite
al usuario transformar el documento XML resultante mediante XSLT, obteniéndose como
resultado otro documento XML u otro tipo de documento (como por ejemplo HTML que
puede resultar mucho mds atractivo visualmente), y se permite también transformarlo a
PDF como paso posterior a la transformacion HTML, lo cual aporta una gran ventaja de
cara al usuario final, ya que le permite tener la informacion en un formato méas adecuado
a sus necesidades y mejor desde el punto de vista de la visualizacién y presentacién. Aun-
que esto también seria posible hacerlo por otros medios después del proceso de validacion
XML tradicional, es algo que estd completamente fuera de dicho proceso, mientras que
estd completamente integrado en la aplicacién desarrollada.

Capitulo 2. Paradigma de validacion XML tradicional frente al paradigma de la
aplicacién

Enfoque de validacién XML tradicional frente a la aplicacién desarrollada

Validacion XML tradicional Aplicacion desarrollada
& Documento XML XML Schema
©
= Schematron
=]
g XML Schema [Opcional]
) Schematron
3 [Opcional]
©
(=]
o | Comprobar si el documento XML es valido Obtener un documento XML valido
= | respecto al XML Schema y al Schematron respecto al XML Schema y al Schematron
-_“Q—’- si lo hubiera si lo hubiera
O
Documento
XML
Y
Validar contra Schematron
XML Schema XML SERSEE [Opcional]

—

Presentacion del
formulario
" adecuado
o
2 . v 4
§ Vgllgar cc;ntra Interaccion del
(=3 ((:)ema r?n usuario con el
= [Opcional] formulario
o N
5 [o] *
i
Documento XML
vélido
Si N *
QO
El documento Transformar con
El documento XML no es XSLT o XSLT+PDF.
XML es valido e A
vélido [Opcional]
Transformar con
XSLT o XSLT+PDF.
[Opcional]
o
B El resultado es booleano: el documento El resultado es un documento XML
S | XML es (o no es) valido respecto al XML que es valido respecto al XML Schema
@ | Schemay al Schematron silo hubiera y al Schematron si lo hubiera
oc

Figura 2.1: Diferencias entre el enfoque tradicional de validacién XML vy el enfo-
que de la aplicacién desde el punto de vista de los datos de entrada, el objetivo,
el flujo de procesos y el resultado.

2.1. Aplicaciones similares

2.1.

Aplicaciones similares

Aunque Formulatron presenta funcionalidades que la hacen novedosa, existen aplica-
ciones similares, en el sentido de que siguen un flujo de procesos parecido. Algunas de las
aplicaciones similares encontradas, asi como algunas de sus caracteristicas se describen
brevemente en la lista siguiente:

Xsd-forms [dav14]

Es un generador de formularios web (JavaScript, HTML, CSS) a partir de XML
Schema. Estd implementado utilizando Scala y Java. Permite un subconjunto de los
elementos de XML Schema aunque no soporta atributos. Permite anadir informa-
cién para mejorar la presentacién mediante la edicién del XML Schema con unas
anotaciones determinadas. Permite también sobrescribir estilos y enviar el XML re-
sultante al servidor que el usuario elija. La aplicacion puede usarse también desde
un servidor que proporciona el autor. El proyecto estd hospedado en la direccién
https://github.com/davidmoten/xsd-forms.

XSDForm [Sof]

Es una aplicacién comercial cuya licencia cuesta 503$, aunque cuentan con versién de
prueba gratuita durante 20 dias. Estd basada en PHP y Ajax y es capaz de generar
un formulario web a partir de XML Schema. Cuenta con entradas de datos adaptadas
al tipo de datos, estilos configurables y permite que el documento XML se pueda
enviar a un servidor. Puede obtenerse de la direcciéon http://www.ilerian.com/
xsd-web-form-overview.

DynaForm [Raul0]

Esta aplicacién estda implementada en Java y basada en el framework web Ara-
nea. Es capaz de generar dindmicamente un formulario web a partir de un XML
Schema y opcionalmente una instancia XML usada para la inicializacién de da-
tos. Es altamente configurable utilizando un lenguaje denominado DynaData crea-
do por el autor que permite cambiar la distribucién de los elementos, su estilo
etc. Permite realizar cambios en el Schema o el XML que se reflejan de mane-
ra dindmica en la aplicacién. El proyecto se encuentra hospedado en la direccién
https://github.com/reinra/dynaform.

Hay que resaltar que ninguna de las aplicaciones similares encontradas presentan una
sola de las siguientes caracteristicas y funcionalidades, que si que estan presentes en la
aplicacién desarrollada:

Soporte de un lenguaje de validacién basado en reglas (Schematron).
Prevencién dindmica de errores.
Navegacién multipagina a través de los elementos del formulario.

Transformaciones del documento XML a otro tipo de documentos mediante XSLT
y XSLT->HTML->PDF.

Aplicacién concebida y desarrollada como aplicaciéon moévil y multiplataforma.

10

https://github.com/davidmoten/xsd-forms
http://www.ilerian.com/xsd-web-form-overview
http://www.ilerian.com/xsd-web-form-overview
https://github.com/reinra/dynaform

Capitulo 3

Arquitectura general del sistema

Este capitulo explica el disefio a alto nivel del sistema desarrollado, entendiendo por
sistema tanto la aplicaciéon implementada como el servicio web externo que se ha puesto
en marcha para su uso en Formulatron, cuya unica funcionalidad es la obtencién de docu-
mentos PDF a partir de documentos HTML que puedan contener CSS. En los capitulos
posteriores se explican con mayor detalle la mayoria de las ideas que aqui se presentan.

3.1. Paradigma de desarrollo

En esta seccién se introducen los dos paradigmas més importantes que existen en el
desarrollo de aplicaciones multiplataforma, asi como las ventajas e inconvenientes de cada
uno de ellos. Finalmente se comenta la solucién elegida y los motivos de escogerla.

3.1.1. Analisis de aproximaciones

En el ambito de los Sistemas Operativos méviles existen basicamente dos alternativas
bien diferenciadas para el desarrollo de aplicaciones multiplataforma:

1. Desarrollar una aplicacién diferente para cada plataforma. Esta aproximacién consis-
te en utilizar el lenguaje de programacion especifico de cada plataforma para obtener
cada aplicacién.

2. Utilizar frameworks que permiten crear aplicaciones para varias plataformas con un
mismo cdédigo. Estas herramientas ahorran gran cantidad de trabajo si se quiere
obtener una aplicacién multiplataforma, puesto que solamente hay que desarrollar
un unico cédigo fuente para todas las plataformas y el framework se encarga de
generar las aplicaciones nativas.

La primera alternativa tiene como principal ventaja el rendimiento de la aplicacion
final, puesto que esta directamente desarrollada en el lenguaje de la plataforma objetivo,
mientras que la segunda aproximacién tiene como principal ventaja la simplicidad de tener
que desarrollar un tnico cédigo fuente.

3.1.2. Solucién adoptada

Para el presente proyecto se optd por utilizar un framework por la enorme ventaja que
supone tener el mismo cédigo fuente para todas las plataformas. No hubiera sido viable

11

3.1. Paradigma de desarrollo

en el tiempo programado para un TFG implementar la aplicacién en un lenguaje de pro-
gramacién distinto para cada plataforma objetivo.

La herramienta elegida ha sido el framework Phonegap [NS14], que tiene como len-
guajes de entrada JavaScript, HTML5 y CSS3, y a partir de ellos genera aplicaciones
nativas para varias plataformas. Phonegap cuenta con varias ventajas que lo hacen maés
atractivo que otros frameworks similares, como la cantidad de plataformas soportadas y
los multiples Plugins disponibles, que dan acceso comun a APIs del Sistema Operativo
movil, como por ejemplo al Sistema de ficheros.

Aplicacion web
JavaScript Aﬁlrfj?glign
S
I e
/ Pad
Aplicacién
g (otras)

Figura 3.1: Obtencién de aplicaciones a partir del cédigo JavaScript, HTML5 y
CSS3. El propio cédigo constituye en si una aplicacién web que puede ser usada en
los navegadores comunes sin necesidad de Phonegap, por otro lado, se esquematiza
el uso de Phonegap para la obtencién de las aplicaciones para las plataformas
moviles.

Las herramientas de desarrollo de Phonegap, y por tanto de la aplicacién desarrollada,
son JavaScript, HTML5 y CSS3, que son las tecnologias més utilizadas en la web y en
el desarrollo web. El proceso de obtencién de aplicaciones méviles a partir de JavaScript,
HTML5 y CSS3 mediante el uso de Phonegap se encuentra esquematizado en la figura 3.1.
El uso de cada una de estas tecnologias es el siguiente:

HTML5 permite definir y disenar las piginas web especificando su arquitectura y es-
tructura, por tanto es el punto de entrada para disenar la interfaz grafica de la
aplicacion.

CSS3 nos permite crear hojas de estilo, que contienen propiedades que especifican el estilo
de visualizacién que deben tener los elementos de las paginas HTML5.

JavaScript es un lenguaje de programacion interpretado orientado a objetos cuyo uso
es habitual en las paginas web aportando dinamismo y permitiendo realizar muchas
funciones entre las que se incluye la interacciéon de manera sencilla con los elementos

de las paginas HTMLS5.

12

Capitulo 3. Arquitectura general del sistema

Ya que la aplicacién se ha desarrollado utilizando estos lenguajes que son la base
de la web, el desarrollo de la aplicacién se puede considerar equivalente al desarrollo de
una pagina web, si bien la aplicacion desarrollada es una aplicacién que puede utilizarse
offline salvo que se quiera utilizar la funcionalidad de transformar el documento a PDF,
para lo cual se utiliza un servicio externo creado. En este sentido, la aplicacién no solo
funciona como aplicacién nativa en plataformas méviles sino que también funciona en los
navegadores de las plataformas de escritorio.

3.2. Componentes del Sistema

En esta seccién se introducen los componentes o médulos en los que estan divididas la
aplicacién y el servicio web, asi como las relaciones que existen entre ellos. La figura 3.3
proporciona una visién general de los principales componentes del sistema asi como de las
comunicaciones entre ellos.

3.2.1. Componentes de la aplicacion

Ya que el lenguaje en el que se desarrolla el cédigo de la aplicacion es JavaScript, el
paradigma de programacion es el de orientacién a objetos, lo que ha permitido dotar de
modularidad a la arquitectura de la aplicacién. A continuacién se explican brevemente los
médulos que componen a alto nivel la aplicacién. El orden de descripcion de los moédulos es
similar al orden en el que se usan en el proceso global de funcionamiento de la aplicacién,
tal y como se esquematiza en la figura 3.2.

SchemaParser (parseador del Schema). Parsea el contenido del fichero o ficheros
XML Schema que el usuario haya seleccionado y genera dindmicamente un formula-
rio cuyos elementos reproducen la estructura definida por el XML Schema.

SchematronParser (parseador del Schematron). Parsea las restricciones del docu-
mento Schematron.

FormElement (elemento del formulario). Este médulo representa los elementos del
formulario, el parseado de cada elemento del XML Schema genera un elemento del
formulario diferente. Estos elementos evolucionan cambiando de estado con la inter-
accién del usuario, y cambiando a su vez el estado del documento XML asociado.

Paginador. Permite al usuario realizar una navegacién basada en paginas a través de
los elementos del formulario, de esta forma el proceso de completado del formulario
puede estructurarse de una manera mucho maés légica y visual.

Estado. Contiene el estado del formulario, y es por tanto un estado intermedio del docu-
mento XML, que va evolucionando con la interaccién del usuario.

Comprobador de las restricciones Schema. Comprueba que se cumplen las restric-
ciones del Schema en un FormElement simple determinado. Este modulo actia en
tiempo real en cuanto el usuario interacciona con el FormElement modificando su
estado.

Comprobador de las restricciones de Schematron. Comprueba que las restriccio-
nes del Schematron se cumplen en el estado intermedio del documento XML. Este
modulo actia cada vez que el usuario ha interaccionado con el formulario producien-
do un cambio que ha hecho evolucionar el estado y el documento XML.

13

3.2. Componentes del Sistema

Médulo de transformaciones. Permite transformar el documento XML a otro tipo de
documentos (tales como HTML u otro XML) utilizando el XSLT seleccionado por el
usuario. Permite también transformar el documento XML a PDF utilizando la hoja
de estilos XSLT para transformar inicialmente a HTML y posteriormente obtener el
PDF a parir del servicio web externo creado.

Sistema de ficheros. Este mdédulo es un explorador de ficheros que se ha implementado
e integrado en la aplicacién y que proporciona funcionalidades para leer o guardar
ficheros del sistema de ficheros del dispositivo.

Ficheros predefinidos. Este médulo permite al usuario no tener que buscar y cargar los
ficheros de entrada (XML Schema y opcionalmente Schematron y/o XSLT') cada vez
que inicia la aplicacion, ya que le habilita para guardar los ficheros y poder comenzar
la edicién en sucesivos inicios de la aplicacién. Este mdédulo incluye precargados
los ficheros XML Schema y Schematron de patologias dermatolégicas desarrollados
en [Buel4] asi como un XSLT que permite transformar el documento XML resultante
a HTML y posteriormente a PDF.

Funcionamiento bésico de la aplicacion

SchemaParser

Obtener el DOM
del XML Schema

v

Construir tabla
de elementos
referenciables

v

Obtener el
elemento raiz
del XML Schema

(—:arseElement()

Y

FormElement

Estado

Schematron Checker

| Prevenir futuros

Actualizar vista }4

Comprobar
restricciones de XML

Actualizar estado

| errores de Schematron

|

Si

afiadir, mover o quitar

Schema del elemento,
elemento, etc. ’

Fin del parseo
inicial del
ML Schema

A Interaccion

del usuario

Mostrar elemento
en el formulario

Obtencion
de documento
XML vélido

Actualizar
documento XML

A

‘| Comprobar errores

'| de Schematron

Figura 3.2: Proceso de funcionamiento basico de la aplicacién. Esquematiza el
trabajo que realizan los principales médulos en la secuencia basica de pasos del
parseado inicial del XML Schema y en el proceso iterativo en el que el usuario va
interactuando con el formulario hasta que obtiene como resultado un documento

XML valido.

14

Capitulo 3. Arquitectura general del sistema

3.2.2. Componentes del servicio web

El servicio web creado tiene como funcionalidad proporcionar documentos PDF a par-
tir de documentos HTML con CSS. Se ha creado un servicio externo con esta funcionalidad
dado que a menudo es necesario o 1til obtener un PDF como resultado, pero no $e han
encontrado bibliotecas JavaScript adecuadas para realizar la transformacién en la propia
aplicacién.

A continuacién se enumeran y describen brevemente las partes en las que se divide
este servicio:

Procesador de parametros. Este componente simplemente lee los parametros de la
peticion POST.

Transformador. Este médulo se encarga de transformar el documento HTML a PDF y
proporciona el PDF resultante.

El servicio creado estd implementado en PHP y presenta la informacién necesaria ac-
cesible en la direccion http://formulatron.hol.es/htmlToPdf/index.html.

15

http://formulatron.hol.es/htmlToPdf/index.html

3.2. Componentes del Sistema

Aplicacion
Schematron Schematron
Parser Checker
/////
nl: é(;?ﬁ]rigis Schema FormElement
Predetinidos = ---> Parser [<---—>
[- I
: F |
| / |
I . / I
: Sistema de F !
| ficheros / |
| / |
I 7 I
/
I Y |
: -7 BN / I
VA4 N K Y
XSLT Transform Estado Checker de las
e restricciones del
elemento
A
Internet
\ Servicio web creado
Transformacion
de HTML a PDF
HTTP:POST

Figura 3.3: Diagrama de los principales componentes de la aplicacién y del servicio
web desarrollados y relaciones de comunicacién entre ellos.

16

Capitulo 4

El uso de XML Schema en la
aplicacién: estructura y elementos
del formulario

Ya que el objetivo principal es obtener un documento XML valido respecto a un XML
Schema, la aplicacion desarrollada presenta al usuario un formulario que reproduce la
estructura definida en un XML Schema. Cada uno de los elementos que internamente
componen el formulario se denomina elemento del formulario o FormElement. Los FormE-
lements y su estructura se van construyendo en el proceso de parseado de los elementos
del XML Schema, de este modo lo que se logra es que por definicion el documento XML
final cumpla con la estructura especificada en el Schema. Ya que los FormElements siguen
la estructura dada por el XML Schema, son elementos recursivos, es decir, dentro de cada
FormElement puede haber otros FormElements.

Dada esta estructura recursiva del Schema y su posible gran complejidad la aplicacién
no parsea todo el Schema de una sola vez, sino que realiza podas inteligentes para no
parsear los elementos que puedan no aparecer. Por ejemplo, si un elemento es opcional,
inicialmente solo se parseard su nombre y se le presentard al usuario la posibilidad de
activarlo, y solamente en el caso de que el usuario decida activarlo se parseara el elemento
asociado en el XML Schema y su estructura arbitrariamente compleja. Esta optimizacién
de parseado dindmico se ha implementado en varios FormElements y ha permitido a la
aplicacién ahorrar un gran trabajo de parseado de elementos que no se van a utilizar.

En la lista siguiente se describen muy brevemente los tipos de FormElements que
existen. Existe una descripcién completa de cada uno de los tipos de FormElement y los
elementos del XML Schema a partir de los que se generan disponible en el Anexo B.

= ValueEnum: elemento que permite seleccionar un valor entre un conjunto de valores.

Valuelnput: entrada de texto que puede tener un slider asociado.

XMLElement: elemento que representa un nodo de tipo elemento del documento
XML.

Attribute: elemento que representa un atributo de un elemento XML.

Sequence: secuencia de otros elementos que deben aparecer en un orden determinado.

17

= Choice: elemento que permite elegir un elemento de entre todos los que lo compone-
nen.

= All: elemento que contiene otros elementos que pueden aparecer en cualquier orden.
= List: elemento que contiene un FormElement que puede aparecer varias veces.

Aunque cada uno de estos elementos presenta propiedades y operaciones diferentes,
existen propiedades y operaciones que son comunes a todos ellos tal y como se puede ver
en la figura 4.1. Dichas propiedades y su funcionalidad son las siguientes:

Propiedad id: identificador del FormElement.

Propiedad childs: lista de hijos FormElement.

Propiedad parent: FormElement padre.

Propiedad viewNode: contiene la vista, es decir, el nodo HTML DOM asociado.

Propiedad xmlObject: contiene la informacién del FormElement en el documento

XML.
Valuelnput
FormElement ya el LRSI
o e iy X XMLElement
+ childs: [0..n] FormElement A
+ parent: FormElement
+ viewNode: HTML DOM Element <]----- Attribute
+ xmlObject: Object (Element Node, String, Array...)
+ addChild(child: FormElementy | Y TTT= Sequence
+ remove() F—__
+ notifyChildChange(child: FormElement): XMLElement - Choi
+ onXMLChange() N~ olige
S All
List

Figura 4.1: Diagrama de clase que muestra las propiedades y operaciones comunes
a todos los FormElements, asi como los tipos de FormElements existentes.

En la figura 4.2 se da un ejemplo de un XML Schema y los FormElements que se
generarfan a partir de él. Con ello se intenta facilitar la comprensién de la estructura
recursiva de los FormElements y las ideas recientemente expuestas.

18

Capitulo 4. El uso de XML Schema en la aplicacion: estructura y elementos del

formulario

<xs:element name="persona" >
<xs:complexType >
<xs:sequence >

<xs:element name="nombre" type="xs:string" />

<xs:element name="edad" >
<xs:simpleType >
<xs:restriction base="xs:int" >
<xs:minInclusive value="0" />
<xs:maxInclusive value="120" />
</xs:restriction >
</xs:simpleType >
</xs:element >

<xs:element name="sexo" >
<xs:simpleType >
<xs:restriction base="xs:string" >
<xs:enumeration value="Hombre" />
<xs:enumeration value="Mujer" />
</xs:restriction >
</xs:simpleType >
</xs:element >

</xs:sequence >
</xs:complexType >
</xs:element >

XMLElement
(Persona)
+ id: fElem_1
Sequence
+id: fElem_2
XMLElement XMLElement XMLElement
(Nombre) (Edad) (Sexo)
+id: fElem_3 + id: fElem_5 +id: fElem_7
Valuelnput Valuelnput ValueEnum
+id: fElem_4 + id: fElem_6 +id: fElem_8

XML Schema que representa la estructura que debe tener
una persona en el documento XML

Persona
— ([«--- fElem_1 }—
1- Nombre e |
l€-——— fElem_2 ‘
B sergio <jgepea- fElems |
—] i fElem_4 }—
2- Edad B

3- Sexo
— 4-___
O Hombre <l
Mujer

Nodo HTML (tal y como se muestra en la aplicacién) asociado con cada
FormElement generado: propiedad viewNode del FormElement

——— fElem 5

[
- 22 <+

]
i_— fElem_6 }-
]

-—— fElem_7

Estructura con cada FormElement generada por el SchemaParser.
Queda implicito el valor de la propiedad parent y del array childs.

k sexo >Hombre k/ sexo >
__)

</ persona >

FormElements generados

(especificados arriba)

Objeto XML asociado a cada
FormElement: propiedad xmIObject
del FormElement

Figura 4.2: Ejemplo de un XML Schema y la estructura que generaria al ser
parseado. Permite ver la estructura de los FormElements asi como entender sus
propiedades. Nétese que los FormElements amarillos de arriba y de abajo son
los mismos, simplemente se han utilizado los identificadores para simplificar el

diagrama.

19

4.1. Evolucién del formulario

4.1. Evolucion del formulario

Cuando el usuario proporciona su Schema a la aplicacién, obtiene un formulario que
inicialmente no es valido, salvo en el caso extrano de que el XML Schema sea tan simple
que no requiera ningun tipo de interacciéon con el usuario. Por tanto, el formulario es un
formulario vivo, en tanto en cuanto va evolucionando y cambiando de estado conforme el
usuario interacciona con €l para completarlo. Asi mismo, cada cambio en el formulario es
reflejado como cambio en el documento XML que contiene el estado actual.

La evolucién del formulario, guiada por la interacciéon del usuario con los FormEle-
ments, es la que permitird obtener el documento XML valido cuando todos los elementos
se encuentren en un estado valido. Dado que los elementos del formulario pueden cambiar
de estado, se consigue un estado vélido (documento XML vélido) cuando se cumplen las
siguientes premisas:

1. Todas las enumeraciones (FormElements de tipo ValueEnum) tienen un valor selec-
cionado.

2. Todos los sliders e inputs (FormElements de tipo Valuelnput) estén inicializados y
tienen un valor correcto respecto a las restricciones del Schema.

3. Todos los elementos de seleccién (FormElements de tipo Choice) tienen uno de sus
elementos seleccionado.

4. No hay errores de Schematron en el caso de que haya un Schematron seleccionado.
Véase el capitulo Capitulo 5.

Una vez que se cumplan estas condiciones el estado del formulario serd vélido y también
serd valido el estado del documento XML asociado. Esto permitird al usuario guardar
el documento XML, aplicarle transformaciones XSLT, o transformarlo a HTML median-
te XSLT y después a PDF. No obstante, aunque el estado no sea correcto, el usuario
puede ver en cualquier momento el estado del XML, el XML transformado a texto o el
XML transformado como HTML. Asi mismo, también se le muestran comentarios sobre
el estado de los valores de los tipos simples y errores relativos al Schematron si los hubiera.

La figura 4.3 muestra las distintas interacciones que puede hacer el usuario con cada
tipo de FormElement asi como el proceso que desencadenan en la aplicacién. Como se
puede comprobar, cada interaccién del usuario con los FormElemnts provoca cambios en
el documento XML, la comprobaciéon de los errores de Schematron con ese estado del
documento XML, y la prevencién de futuros errores de Schematron. La figura 4.4 muestra
los procesos desencadenados por las notificaciones internas que puede recibir cada tipo de
FormElement mientras trata las notificaciones generadas en las interacciones del usuario
especificadas en la figura 4.3.

20

Capitulo 4. El uso de XML Schema

formulario

en la aplicacion: estructura y elementos del

FormElement
Estado de espera de
interaccién o notificaciones

Mostrar errores que

Sl se producirian si se
seleccionara la opcién

Schematron

¢ Hay errores
de Schematron?

Comprobar
errores de
Schematron

A

Notificar cambio
XML a elemento
padre

\

Eliminar elemento

Seleccionar
opcién
ValueEnum > ¢ Opcion prevenida?
NO Actualizar estado
y valor (xmlObject)
Estado = correcto
SI valor (xmlObject) =
valorIntroducido
Valor o slider o
Valuelnput > ¢ Cumple las restricciones
del XML Schema?
Estado = incorrecto
NO valor (xmlObject) =
Invalido
Seleccién
crot de opcién Parsear IAfiadir elemento a
elemento vista y modelo
Reordenar
elementos « |Intercambiar hijos
All > .
en vista y modelo
Afadir elemento -
IAfadir elemento a
| ——————>»Parsearelemento P> .
vista y modelo
List

Eliminar elemento

de vista y modelo

Figura 4.3: Posibles interacciones del usuario con cada tipo de FormElement y
proceso que se sigue para tratarlas.

21

Prevenir futuros

4.1. Evolucién del formulario

Y

FormElement
Estado de espera de
interaccioén o notificaciones

XMLElement

Notificacién de que
un hijo ha cambiado
su objeto XML

N

Hijo Atributte

Sequence

>

_Hijo Valuelnput o ValueEnum

Choice

All

Notificacién de que
un hijo ha cambiado
su objeto XML

Actualizar el valor
del atributo en mi
nodo elemento XML

atributo valido?

Eliminar el atributo
de mi nodo elemento
XML

Hijo Sequence,
Choice, All o List |

Reemplazar en mi
»| nodo elemento XML
el contenido

Establecer el texto de
mi nodo elemento XML
| valor. Validez=valido

stablecer la validez de
mi nodo elemento XML
como invalida

IActualizar en el modelo

List

Attribute

Notificacién de que

un hijo ha cambiado

su objeto XML

> (array) el objeto XML
del hijo cambiado

Actualizar la propiedad

» valor al objeto XML
del hijo cambiado

¢ Estado de validez

(valido/invalido)
ha cambiado?

Notificar cambio
XML a elemento
padre

Figura 4.4: Posibles notificaciones que puede recibir cada tipo de FormElement
y proceso que se sigue para tratarlas.

22

Capitulo 4. El uso de XML Schema en la aplicacion: estructura y elementos del
formulario

4.2. Namespace destinado a las mejoras

Mas alla de los namespaces de XML Schema y del documento XML final (atributo
targetNamespace del elemento raiz del XML Schema), se ha creado un espacio de nom-
bres para permitir anadir mejoras y nuevas funcionalidades a la aplicacién a través de
atributos en los elementos del XML Schema. Este espacio de nombres tiene como URI
http://ehealthz.unizar.es/formulatron/improvements y como prefijo preferido imp.

La especificacién de XML Schema permite que un documento XML Schema sea ex-
tendido utilizando espacios de nombres definidos por el usuario para uso propio de las
aplicaciones, por lo que el XML Schema extendido que utilice el espacio de nombres creado
seguird siendo valido de cara a otros procesadores y validadores, aunque dicha informacién
solo serd utilizada por nuestra aplicacion.

Estas mejoras se han implementado como atributos opcionales de los elementos del
XML Schema, y en ningin caso alteran el documento XML final, simplemente modifican
la vista que se presenta al usuario para facilitar el uso de la aplicacién. A continuacién se
describen brevemente cada una de las mejoras disponibles:

= imp:inNewPage si su valor es true el elemento se mostrara en una nueva pagina.
Permite una navegacion basada en paginas mucho mas intuitiva y eficaz de cara al
usuario.

s smp:listinNewPage si su valor es true la lista asociada al elemento se mostrard en
una nueva pagina.

= imp:image se mostrara la imagen de la url especificada junto al elemento.

» imp:listimage se mostrard la imagen de la url especificada junto a la lista asociada
al elemento.

= imp:label se mostrara el texto especificado junto al elemento.

» smp:listLabel se mostrara el texto especificado junto a la lista asociada al elemento.

23

4.2. Namespace destinado a las mejoras

24

Capitulo 5

El uso del Schematron en la
aplicacion

Este capitulo contiene una breve introduccion a la tecnologia Schematron, una explica-
cién de las ventajas que aporta su uso y un resumen del uso que se hace de dicha tecnologia
en el &mbito de este proyecto.

5.1. Introduccién a Schematron, necesidad y ventajas de su
uso

Schematron es un lenguaje de validacién XML basado en reglas soportadas por XPath
que ha sido estandarizado en una norma ISO/IEC [sch06]. Es un lenguaje simple pero
potente, ya que estd basado en XPath, que es un lenguaje de procesamiento de nodos
XML. Seguidamente se presentan y explican dos de los elementos mas importantes en
Schematron:

Elemento sch:rule
Contiene un conjunto de reglas que se evalian sobre un contexto establecido en el
atributo context.

Elemento sch:report
Es una regla que contiene una expresion XPath en el atributo test y un mensaje.
Si la expresiéon XPath evaluada sobre el contexto se cumple entonces se produce un
error y se muestra el mensaje asociado.

Elemento sch:assert
Es también una regla que contiene una expresiéon XPath en el atributo test y un
mensaje. Si la expresién XPath evaluada sobre el contexto no se cumple entonces
se produce un error y se muestra el mensaje asociado. Es similar a un elemento
sch:report, aunque en el caso del elemento sch:assert el error se genera cuando su
condicién no se cumple.

A continuacién, en la figura 5.1, se presenta un ejemplo sencillo de una regla de Sche-
matron para ayudar a la comprension de esta tecnologia, junto a él se da un ejemplo de
documento XML que se intentaria validar contra el Schematron, y que dispararia el error
de la regla ya que se cumple.

25

5.2. Prevencion dinamica de errores y aviso de errores

<!-- Ejemplo de regla que contendria el Schematron -->
<rule context="factura">
<report test="precio < 6 and tipoDePago = ’Con tarjeta’">
No pueden pagarse con tarjeta facturas de menos de 6 euros.
</report>
</rule>
<!-- XML con una factura vdlida respecto del Schema pero no del Schematron-->
<factura>
<precio>5</precio>
<tipoDePago>Con tarjeta</tipoDePago>
</factura>
<!-- Documento XML Schema que modela la factura -->

<xs:element name="factura" imp:inNewPage="true">
<xs:complexType>
<xs:sequence>
<xs:element name="precio" type="xs:float" />
<xs:element name="tipoDePago"><html>Se deshabilita un valor ya que si se seleccionara causaria error</htn
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Con tarjeta" />
<xs:enumeration value="En efectivo" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

Figura 5.1: Ejemplo de regla de Schematron, XML Schema y documento XML a
validar. Se produciria un error de Schematron en la validacién porque la regla se
cumple, y por tanto, se mostraria el mensaje de error asociado.

Con el ejemplo anterior ha quedado de manifiesto que con Schematron se consigue
algo que no podemos hacer con XML Schema 1.0: modelar restricciones entre distintos
elementos. Utilizando XML Schema podemos definir de una manera sencilla y precisa la
estructura de un documento XML (qué elementos aparecen, en qué orden, qué valores
pueden tener a nivel individual, etc.), pero no podemos expresar relaciones ni restricciones
entre distintos elementos. XML Schema y Schematron son lenguajes que se complementan
muy bien y juntos hacen de la aplicaciéon una herramienta mas potente y poderosa.

5.2. Prevencion dinamica de errores y aviso de errores

La aplicacién permite el uso de Schematron, ya con él podemos expresar las restriccio-
nes y relaciones existentes entre elementos distintos. Aunque al comienzo de la aplicacién
el usuario solamente estd obligado a elegir un XML Schema, si elige también un Schema-
tron, la aplicacién se encargara de garantizar que el documento XML finalmente generado
sea también valido respecto al Schematron. En el ambito de la aplicacion la informacién
proporcionada en el Schematron se usa principalmente para dos propésitos: advertir al
usuario cuando el estado del XML no es vélido respecto del Schematron y evitar de ma-
nera anticipada que ocurran errores de Schematron cuando sea posible.

La advertencia de errores era el uso méas evidente del Schematron en la aplicacién, esta
funcionalidad simplemente advierte al usuario de las restricciones del Schematron que no
se cumplen mostrandole el mensaje asociado. En este sentido se hace un uso del Schema-
tron similar al que se haria en la validacién XML tradicional, con la peculiaridad de que

26

Capitulo 5. El uso del Schematron en la aplicacién

en la aplicacién el documento XML va evolucionando con la interaccion del usuario, por
lo que también cambian o desaparecen los errores relativos al Schematron.

Por otro lado, en esta aplicacién se ha querido ir mas alld de simplemente mostrar los
errores relativos al Schematron por las restricciones que no se cumplen, y se ha anadido
una prevencién dindmica de errores. La funcionalidad de prevencién dindmica de errores
trata de evitar errores antes de que se produzcan, para ello, impide que el usuario seleccio-
ne opciones de las enumeraciones que causarian un error del Schematron. Se trata de una
prevencion porque ocurre de manera anticipada a la accién del usuario, impidiendo que co-
meta errores, y es dindmica puesto que se adapta al estado cambiante del documento XML.

Esta prevencion de errores esta basada en comprobar qué casos futuros causarian un
error. Para ello se prueban los valores de las enumeraciones como si fuesen seleccionados,
alterando temporalmente el estado del documento XML, si dado ese estado se generan
errores de Schematron, entonces se deshabilita esa opcién, impidiendo que el usuario la
seleccione, porque en caso de hacerlo llegaria a un estado erréneo. Se ha decidido realizar
la prevencién de errores analizando solamente los posibles casos futuros provocados por
cambios en las enumeraciones y se han descartado otros casos por los siguientes motivos:

= El espacio de casos futuros de una enumeracién esta definido y corresponde al con-
junto de valores que puede tener. En otros elementos, como por ejemplo los valores
numéricos, existen infinitos valores posibles, y por tanto infinitos casos futuros posi-
bles, por lo que no se pueden analizar todos ellos.

= Modificar el valor de una enumeracién es un cambio de orden temporal constante
(O(1)) en un documento XML, ya que simplemente consiste en alterar el contenido
de un nodo DOM, por lo que es muy rapido.

= La prevencién de errores de Schematron sobre los valores de las enumeraciones es
muy util y sirve de gran ayuda al usuario, ya que su uso es muy comun. Todavia es
mas util cuando una enumeracion tiene muchos posibles valores pero pocos de ellos
llevarian a un estado valido.

= Analizar otros posibles casos futuros supondria un deterioro en el rendimiento. Por
ejemplo, si analizamos el caso futuro de activar un elemento opcional tendriamos
que parsear dicho elemento, lo que podria causar un gran sobrecoste temporal, ya
que el elemento puede ser arbitrariamente complejo.

= Elinterés de otros casos es muy reducido. Por ejemplo podriamos analizar los posibles
casos futuros de que un usuario reordenara los elementos de un All, pero este caso
no presenta interés ya que es poco probable que el intercambio de posicién de dos
nodos cause un error, ya que si asi fuese no se hubiera utilizado un elemento de tipo
zs:all en el Schema para definir el elemento.

En la figura 5.2 se esquematiza el proceso de prevencién de errores de Schematron
que se sigue en la aplicacién, y en la figura 5.3 se presenta un ejemplo real de uso de la
aplicacién utilizando el XML Schema y la regla de Schematron contenida en la figura 5.1.

27

5.2. Prevencién dinamica de errores y aviso de errores

Estado

estable

Interaccion del usuario

Y

Cambio en el
documento XML
(xmIDoc)

Y

Comprobacién de

check(xmlDoc)

[Errores de Schematron]

AN

SchematronChecker]

errores de
Schematron

. [Errores de Schematron]
Y

+ check(xml: documento XML) : [0..n] Errores J

A
check(xmlIDoc)

¢Hay errores?

->(P

Prevencion de futuros errores de Schematron

Mostrar errores y
habilitar valores
deshabilitados.

for valor en Enumeracién (ValueEnum)

Cambiar documento
XML (xmIDoc) como si
este valor fuera el
valor seleccionado

check(xmlIDoc)

Comprobacion de 5
> errores de
Schematron

¢ Hay errores?

Deshabilitar valor.
(Si el usuario lo
seleccionara se

producirian errores)

Habilitar valor.
(El usuario puede
seleccionarlo y no se
produciran errores)

Restaurar documento
XML (xmlIDoc) a su
estado real

Figura 5.2: Diagrama del proceso que se sigue en la aplicacién para evitar futuros

errores de Schematron.

28

Capitulo 5. El uso del Schematron en la aplicacién

Factura Factura
1- Precio 1- Precio
.| . s
2- TipoDePago 2- TipoDePago
Con tarjeta ﬂ Cont
Ususario
= cambia un valor =
En efectivo s En efectivo
Atras Estado g Menu Atras Estado g Menu
No hay valores deshabilitados Se deshabilita un valor que causaria error seleccionado
Usuario hace click en el valor para saber
v el motivo de que esté deshabilitada
Factura
1- Precio
. Aceptar
2- TipoDePago 2- TipoDePago
[i . El usuario i U
ﬁ BRI SR selecciona la ﬂ
| Unica opcién
© En efectivo habilitada En efectivo
At.rés Estado g Menu At.rés Estado g Menu
Usuario llega a estado valido ayudado por la aplicacién Clickando el valor muestra porque esta deshabilitado

Figura 5.3: Ejemplo real del uso de la prevencién dinamica de errores de Sche-
matron en la aplicacién. El Schema que da lugar a estas pantallas y la regla de

Schematron que da lugar a esta prevencién de
29

errores son los de la figura 5.1.

5.2. Prevencion dinamica de errores y aviso de errores

30

Capitulo 6

Transformaciones en la aplicacion

Tal y como se especificd en la propuesta de este trabajo el objetivo de la aplicacién
a desarrollar deberia ser obtener un documento XML valido respecto a un XML Schema
y Schematron si lo hubiera, no obstante finalmente se han ampliado las posibilidades de
manera que la aplicaciéon permite al usuario obtener otros tipos de documentos, tales como
HTML o PDF, utilizando transformaciones y XSLT sobre el documento XML. El presente
capitulo explica los motivos del uso de las transformaciones y las posibilidades que ofrece.

XSLT es un lenguaje basado en XPath que permite transformar documentos XML a
otros formatos o documentos. La aplicacion desarrollada permite al usuario seleccionar un
documento XSLT para obtener como resultado el documento XML transformado a otro
documento. Esto sirve para que el usuario pueda obtener todo tipo de ficheros sin perder
la facilidad de uso y la riqueza seméantica que aportan XML Schema y Schematron a la
aplicacién.

PDF es uno de los formatos de documento mas utilizados hoy en dia, esto, unido a
que muchos usuarios no quieren un documento XML como resultado sino un PDF, ha
llevado a la creacién de un servicio web que permite transformar documentos HTML a
PDF. Por tanto la aplicacién puede utilizar el XSLT para transformar el documento XML
a un documento HTML con CSS y después realizar una peticiéon al servicio web creado
para obtener un PDF.

Teniendo en cuenta que la aplicacion plantea un uso real en el ambito de la dermato-
logia a partir de los documentos XML Schema y Schematron desarrollados en [Buel4], se
ha disenado una hoja XSLT que transforma el documento XML a un documento HTML.
Por tanto se puede transformar a PDF usando el servicio web creado, y obteniendo un
formato mucho ma&s usable desde el punto de vista del usuario.

La figura 6.1 resume los documentos que se pueden obtener en la aplicacién asi como su
proceso de obtencién. La figura 6.2 muestra un ejemplo del documento PDF que se obtiene
en la aplicacién utilizando el documento XML de la figura 6.4 y la hoja de la figura 6.3,
creada para ser usada conjuntamente con los documentos desarrollados en [Buel4].

31

Uso de transformaciones y XSLT

Aplicacién Servicio web creado

Documento XML

¢Ap|icar XSLT
Enviar documento

Documento transformado HTML transformado
(JSON, HTML, CSV, etc.) Y

Realizar transformacion
de HTML+CSS a PDF

Documento PDF <€

Devolver PDF

Figura 6.1: Diagrama que muestra los tipos de documentos que se pueden obtener
en la aplicacién y el proceso de obtencién mediante transformaciones XSLT vy el
uso del servicio web creado.

32

Capitulo 6. Transformaciones en la aplicacién

Farmacia:

FORMULA MAGISTRAL

DATOS DEL PACIENTE

NOMBRE EDAD|EMBARAZO|ALERGIASINTOLERANCIA_EXCIPIENTES
Sergio Frago 22 No No No
LOCALIZACION ESTADIO DE LA LESION
CueroCabelludo Androgenetica Masculina

DATOS DE LA FORMULA

Espuma capilar
GRUPO - PRINCIPIO ACTIVO RANGO_DOSIFICACION (%)
Irritantes-Ditranol 0.63
Sensibilizantes-Difenciprona 0.36008

Facultativo prescriptor:
Administracion:
Conservacion:
Caducidad:
Comentarios:

N
lI

DIA[MESANO|

Firma

Figura 6.2: Ejemplo de documento PDF que se obtiene en la aplicacién trans-
formando el documento XML de la figura 6.4 generado usando los documentos
creados en [Bueld] y la hoja XSLT de la figura 6.3 desarrollada como parte de
este proyecto.

33

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>

<head>
<meta charset="utf-8" />
<title>title</title>

<style type="text/css">

#mainHeader {
font-size: 18pt;
font-weight: bold;
text-align: center;
margin: Omm auto 10mm

}

.superHeader {
background: #444;
color: white;
font-size: 14pt;
margin-bottom: 4mm;

}

.normalHeader {
background: #808080;

}

.bordered, table, th, td {
border: 1pt solid black;
border-collapse: collapse;
text-align: center;

}

#pharmacy {
border-bottom: 1pt dotted black;
color: #DDD;
font-size: 12pt;

3
table{
width: 100%;
}
</style>
</head>
<body>
<!-- Zona para los datos de la farmacia -->

<div id="mainHeader">
Farmacia: datos de la farmacia (direccién/teléfono/...)

FORMULA MAGISTRAL
</div>
<!-- Zona para los datos del paciente —-->
<div class="superHeader bordered">DATOS DEL PACIENTE</div>
<table>

<tr class="normalHeader"><th colspan="5">INFORMACION PERSONAL</th></tr>
<tr><th style="width:100%">NOMBRE</th><th>EDAD</th><th>EMBARAZO</th><th>ALERGIAS</th><th>INTOLERANCIA_EXCIPIENTES</t
<tr>
<td><xsl:value-of select="/Enfermedad/DatosPaciente/Nombre"/></td>
<td><xsl:value-of select="/Enfermedad/DatosPaciente/Edad"/></td>
<td><xsl:value-of select="/Enfermedad/DatosPaciente/Embarazo"/></td>
<td><xsl:value-of select="/Enfermedad/DatosPaciente/Alergias"/></td>
<td><xsl:value-of select="/Enfermedad/DatosPaciente/IntoleranciaExcipientes"/></td>
</tr>
<tr class="normalHeader"><th colspan="5">INFORMACION RELATIVA A LA PATOLOGIA</th></tr>
<tr><th>LOCALIZACION</th><th colspan="4">ESTADIO DE LA LESION</th></tr>
<tr>
<td colspan="1"><xsl:value-of select="/Enfermedad/Formula/Localizacion"/></td>
<td colspan="4"><xsl:value-of select="/Enfermedad/Formula/EstadioLesion"/></td>
</tr>
</table>

34

Capitulo 6. Transformaciones en la aplicacién

<!-- Zona para los datos de la formula ——>
<div class="superHeader bordered">DATOS DE LA FORMULA</div>
<table>

<tr class="normalHeader"><th colspan="2">VEHiCULO</th></tr>

<tr><td colspan="2"><xsl:value-of select="/Enfermedad/Formula/Vehiculo"/></td></tr>
<tr class="normalHeader"><th colspan="2">COMPOSICION</th></tr>

<tr><th>GRUPO - PRINCIPIO ACTIVO</th><th>RANGO_DOSIFICACION_(%)</th></tr>

<!-- EJEMPLO: <tr><td>Nombre grupo</td><td>Cantidad</td></tr> -->

<!-- Para cada grupo -->
<xsl:for-each select="/Enfermedad/Formula/Grupos/*">
<!-- Para cada principio activo. Gr-Pr 0.2 -->
<xsl:for-each select="./*">
<tr>
<td><xsl:value-of select="name(..)"/>-<xsl:value-of select="name(.)"/></td>
<td><xsl:value-of select="."/></td>
</tr>

</xsl:for-each>
</xsl:for-each>
</table>

<!-- Zona para informacidén adicional -->
<table>

<tr class="normalHeader"><th>INFORMACION ADICIONAL</th></tr>

<tr><th style="text-align:left">Facultativo prescriptor:</th></tr>

<tr><th style="text-align:left">Administracién:</th></tr>

<tr><th style="text-align:left">Conservacién:</th></tr>

<tr><th style="text-align:left">Caducidad:</th></tr>

<tr><th style="text-align:left;height:6em;vertical-align:top">Comentarios:</th></tr>
</table>

<!-- Zona para firma (o sello??) y fecha —-->
<table>
<tr><td rowspan="3" style="width:100%;vertical-align:bottom">Firma</td><th class="normalHeader" colspan="3">F
<tr><th>DIA</th><th>MES</th><th>AN0</th></tr>
<tr>
<td>-
<!-- <zsl:value-of select="day-from-date(current-date())"/> —->
</td>
<td>-
<!-- <gsl:value-of select="month-from-date(current-date())"/> -->
</td>
<td>-
<!-- <zsl:value-of select="year-from-date(current-date())"/> -->
</td>
</tr>
</table>
</body>

</html>

</xsl:template>
</xsl:stylesheet>

Figura 6.3: Hoja XSLT creada para ser usada en el dmbito de la dermatologia
junto con los XML Schemas y Schematron desarrollados en [Buel4].

35

<?xml version="1.0" encoding="UTF-8"?>
<Enfermedad>
<DatosPaciente>
<Nombre>Sergio Frago</Nombre>
<Edad>
<Adultos>22</Adultos>
</Edad>
<Alergias>No</Alergias>
<Embarazo>No</Embarazo>
<IntoleranciaExcipientes>No</IntoleranciaExcipientes>
</DatosPaciente>
<Formula>
<Localizacion>CueroCabelludo</Localizacion>
<EstadioLesion>Androgenetica Masculina</EstadioLesion>
<Vehiculo>Espuma capilar</Vehiculo>
<Grupos>
<Irritantes>
<Ditranol>0.63</Ditranol>
</Irritantes>
<Sensibilizantes>
<Difenciprona>0.36008</Difenciprona>
</Sensibilizantes>
</Grupos>
</Formula>
</Enfermedad>

Figura 6.4: Ejemplo de documento obtenido en la aplicacién utilizando los XML
Schemas y Schematron desarrollados en [Buel4].

36

Capitulo 7

Conclusiones y trabajo futuro

Este capitulo se centra en las conclusiones finales del proyecto en cuanto a los resultados
obtenidos y al planteamiento de posibles trabajos futuros que utilicen los resultados de
este proyecto.

7.1.

Resultados y conclusiones

Los resultados de este TFG mas importantes son los siguientes:

Se ha desarrollado una aplicacién multiplataforma, que funciona tanto en platafor-
mas méviles como en entornos de escritorio, y que permite crear de documentos
XML vaélidos a partir de XML Schema y opcionalmente Schematron.

Se ha probado y adaptado el funcionamiento de la aplicaciéon para su uso en derma-
tologia utilizando los Schemas y Schematrones desarrollados en [Buel4].

Se ha comprobado el funcionamiento de la aplicaciéon en varias plataformas méviles
y en navegadores de escritorio, tal y como se explicard mas adelante.

Se ha creado una hoja XSLT para dichas formulaciones magistrales de dermato-
logia que permite transformar el documento XML a un documento HTML con CSS,
permitiendo al usuario tener un estilo mas adecuado para la visualizacion.

Se ha creado un servicio web que permite obtener un documento PDF a partir de
un documento HTML con CSS, lo que permite al usuario obtener como resultado
un tipo de documento de uso mas generalizado y adecuado a sus necesidades de
visualizacion.

Las plataformas, dispositivos y navegadores en los que se ha comprobado el funciona-
miento de la aplicacién son las siguientes:

Plataforma mévil Android: comprobado en Samsung Galaxy Core Plus con Android
versién 4.2.2, OnePlus one con Cyanogen 115 y BQ) Edison2 con Android 4.1 Jelly
Bean.

Plataforma mévil FireforOS: comprobado en Alcatel One Touch Fire ¢ con Firefo-
z0S versién 1.3.

Navegadores web de escritorio: comprobado en Firefoxr versién 31, Google Chrome
versién 38 y Safari version 7.1.3.

37

7.1. Resultados y conclusiones

La aplicacién mantiene una visualizacién uniforme en todas las plataformas, siendo el
acceso al sistema de ficheros el tnico aspecto del cédigo (y de la visualizacién) que cambia
entre plataformas. En las figuras 7.1, 7.2 y 7.3 se muestran algunas pantallas reales de
la aplicacién durante su uso en un Samsung Galary Core Plus para generar una férmu-
la magistral para un paciente con Alopecia. Como se ha comentado anteriormente, estos
Schemas y Schematrones utilizados han sido definidos previamente en [Buel4] y se corres-
ponden a casos reales llevados a cabo en colaboracion con dermatdlogos y farmacéuticos.

38

Capitulo 7. Conclusiones y trabajo futuro

Seleccione los ficheros Enfermedad

1- DatosPaciente

Ficheros XML Schema:
2- Formula
Anadir XML Schema
Schematron (opcional):
Afiadir Schematron
Hoja XSL (opcional):
Afadir XSL
Guardar
Alopecia 5
Opciones
Dermatitis # Pagina principal
Mucosa C Reiniciar
Psoriasis W Ver créditos
Rosdcea sion @ Ayuda
% Ficheros predefinidos 3 Configuracion
Atras Confirmar Meni Atras Estado o

o Menu

(a) Pantalla inicial de seleccién de ficheros y sub-(b) Mend principal y pagina inicial del formulario
ment de ficheros predefinidos. para la opcidn predefinida de la patologia Alopecia.

Estado

Seleccione un fichero OK

Elementos incompletos o con errores:

0 Inputs incorrectas

2 Inputs sin inicializar

1. Nombre
i offlineMap
2. IntoleranciaExcipientes
openwapp
5 Enums sin inicializar
osmdroid 1. Alergias
- ScreenCapture 2. Embarazo
- Soreanchats 3. Localizacion
Ll 4. EstadioLesion
watts
5. Vehiculo
I WhatsApp
1 Choices sin inicializar
B 00001.vef -
ﬁ funca.xml 0 Errores de Schematron
& lopl.xml
- Ver XML
Atras Estado g Menu
Atras Confirmar Meni

(d) Péagina de estado: elementos del formulario que

(c) Selector de ficheros integrado en la aplicacién.
quedan por completar.

Figura 7.1: Capturas de la aplicacién en un Samsung Galaxy Core Plus

39

7.1. Resultados y conclusiones

DatosPaciente Formula
1- Nombre 1- Localizacion
- Pepe “ © CueroCabelludo
23k 2- EstadioLesion
' a) Cero-Dos Androgenetica Masculina
b) Tres-Doce © Androgenetica Femenina
c) Adultos arata
[- 52 Cicatricial
3- Alergias 3- Vehiculo
@ s & Lir
O Mo ﬂ ETs Schematron
ﬂ = # Prevenir errores
= ﬂ ul # Informar de errores
Si jj Otros
O No 2 @ Activar transiciones
5- IntoleranciaExcipientes Emulsion Siliconica W/S EMIGEE
- 3 Configuracion Y
)
Atras Estado g Ment Atras Estado g Meni

(a) Pégina del elemento del formulario relativo a los(b) Submend de configuracién y pagina del elemen-
datos del paciente. to del formulario relativo a la férmula.

Grupos
1- Irritantes m
a) TinturaCapsicum
b) Ditranol
c) Resorcina
[|

d) CloralHidrato

2- Corticoides off
3- Minoxidilo off) § Aceptar
4- Retinoides oft
5- Antiandrogenos off
Transformar y ver texto
6- Prostaglandinas off

Transformar y ver HTML

7- Sensibilizantes m

' a) Difenciprona

sformar y guardar

b) DibutilEsterAcidoEscuarico

1_! 0.86006 Transformar y guardar PDF

-

Atras Estado o Menti Atras Estado a Meni
o 0]

(c) Pagina del elemento del formulario relativo a los(d) Pégina de estado: mostrar estado del documen-
grupos de principios activos. to XML.

Figura 7.2: Capturas de la aplicacién en un Samsung Galaxy Core Plus

40

Capitulo 7. Conclusiones y trabajo futuro

Farmacia: = Muestra los elementos del formulario no
FORMULA MAGISTRAL completados y da un acceso directo a
ellos.

DATOS DEL PACIENTE

» Muestra los errores de Schematron ac-

NOMBRE |[EDAD EMBARAZO|ALERGIAS|INTOLERA tuales.
Pepe 52 No No

AL AGION ESTADIO DE LA LESIO = Permite ver el estado del documento
CueroCabelludo| Androgenetica Femeni XML.

TSN I = Permite guardar el documento XML.

s Permite ver el XML transformado co-

GRUPO - PRINCIPIO ACTIVO RANGO_[mo texto.
Irritantes-Resorcina
Sensibilizantes-DibutilEsterAcidoEscuarico - Permite guardar el documento transfor—
mado.

Facultativo prescriptor: = Permite ver el XML transformado co-
[Administracion:

P ——t mo HTML.

Aceptar
Transformar y guardar PDF s Permite guardar un PDF obtenido a

partir del HTML del documento trans-

Atras Estado] Ment
— formado.
(a) Pégina de estado: mostrar estado del documen-
to XML transformado con XSLT como HTML. (b) Funcionalidades de la pa’g|na de estado

Figura 7.3: Captura de la aplicacién en un Samsung Galaxy Core Plus y funcio-
nalidades de la pagina de estado.

7.2. Trabajo futuro

Un trabajo futuro claro consistiria en anadir soporte en la aplicaciéon para un subcon-
junto mayor de los elementos de XML Schema y/o Schematron. Dichos subconjuntos a los
que da soporte la aplicaciéon detallan en el anexo A. Adicionalmente, dada la genericidad
de la aplicacion, es evidente que podria ser usada por otros usuarios.

Otro trabajo futuro préximo planificado es la validacién clinica por parte de los der-
matdlogos para su uso en formulacién magistral. Aunque el resultado final que se ha
conseguido es visualmente atractivo, tendran que ser los especialistas los que expresen sus
opiniones sobre la usabilidad del sistema, posibles mejoras, etc. que se deberian incluir en
la aplicacién para su uso en la practica clinica habitual.

Otra via de ampliacion, que ya estd puesta sobre la mesa como futuro TFG, consiste
en el desarrollo de una aplicacion que permite modelar de manera visual Schemas y Sche-
matrones para dermatologia, que usada en conjuncién con la aplicacién aqui desarrollada
permitiria al dermatdélogo cubrir el proceso completo de creacién de férmulas magistrales,
desde la definiciéon de nuevas patologias hasta la obtencién de férmulas magistrales.

41

7.2. Trabajo futuro

42

Bibliografia

[BPSMT06] Bray, Paoli, Sperberg-McQueen, Maler, Yergeau, and Cowan, Eztensible mar-

[Buel4]

[Cla99]

[dav14]

INS14]

[Raul0]

[sch06]

[Sof]

[xpa04]

[xsd04al

[xsd04b]

[xsd04c]

kup language (xml) 1.1, W3C recommendation, W3C, 2006,
http://www.w3.org/TR/xm111.

Victoria Mingote Bueno, Definicion de xml schemas para la prescripcion de
formulas magistrales en dermatologia, Master’s thesis, Universidad de Zara-
goza, Escuela de Ingenieria y Arquitectura, 2014,
http://deposita.unizar.es/record/1663771n=es.

Clark, Xsl transformations (zslt), W3C recommendation, W3C, 1999,
http://www.w3.org/TR/xslt.

davidmoten, zsd-forms, 2014,
https://github.com/davidmoten/xsd-forms.

Nitobi and Adobe Systems, Phonegap, 2014,
http://phonegap.com/.

Rein Raudjarv, dynaform, 2010,
https://github.com/reinra/dynaform.

Information technology — document schema definition languages (dsdl) —
part 3: Rule-based validation — schematron, Tech. report, ISO/IEC, 2006,
http://www.schematron.com/.

Ilerian Software, Xsdform,
http://www.ilerian.com/xsd-web-form-overview.

Xml path language (xpath), W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xpath/.

Xml schema part 0: Primer, W3C recommendation, W3C, 2004,
http://wuw.w3.org/TR/xmlschema-0/.

Xml schema part 1: Structures, W3C recommendation, W3C, 2004,
http://wuw.w3.org/TR/xmlschema-1/.

Xml schema part 2: Datatypes, W3C recommendation, W3C, 2004,
http://www.w3.org/TR/xmlschema-2/.

43

http://www.w3.org/TR/xml11
http://deposita.unizar.es/record/16637?ln=es
http://www.w3.org/TR/xslt
https://github.com/davidmoten/xsd-forms
http://phonegap.com/
https://github.com/reinra/dynaform
http://www.schematron.com/
http://www.ilerian.com/xsd-web-form-overview
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Bibliografia

44

Anexos

45

Bibliografia

46

Apéndice A

Subconjuntos de XML Schema y
Schematron soportados

La aplicacién desarrollada no da soporte a toda la especificacion de XML Schema y
Schematron, sino que solamente soporta un subconjunto de sus elementos. Se ha intentado
que los elementos a los que se dan soporte sean los mas utiles y los més utilizados.

Subconjunto de elementos de XML Schema a los que se da soporte:
» xs:schema

= zs:include

= zs:element

» zs:attribute

» zs:all

» xs:choice

= IS:Sequence

= xs:complexType

= xs:simpleType

» zs:restriction incluyendo todas las restricciones sobre tipos simples (zs:minInclusive,
xs:enumeration, etc.).

w xs:list

= TSIUNLOM

n zs:simpleContent solo para extender un tipo simple anadiéndole atributos.
Subconjunto de elementos de Schematron a los que se da soporte:

» sch:schema

= sch:pattern

m sch:rule

47

sch:assert
sch:report
sch:value-of

sch:name

48

Apéndice B

Correspondencia entre elementos

del formulario de la aplicacion y
elementos del XML Schema

En este anexo se explican para cada tipo de elemento del formulario y los elementos
del Schema a los que estd asociado. Junto con los ejemplos de XML Schema se adjuntaran
también capturas de la aplicacién para dar una idea mas clara sobre dichas asociaciones y
su modo de presentacién al usuario. Hay que tener en cuenta que esto son solamente ejem-
plos, pero la aplicacién se adapta dindamicamente al Schema proporcionado, y por ejemplo,
soporta el resto de tipos simples, entre los que se incluyen los definidos por restriccion,
lista, unién, derivacién de tipos primitivos o globales, etc.

La siguiente lista contiene los tipos de elementos del formulario (clase FormElement)
y los elementos del Schema a los que estan asociados acompanados de ejemplos:

Tipos simples
Estéan asociados al elemento del XML Schema zs:simple Type. Representan un tipo
simple, es decir el texto de un nodo. La aplicacién presenta al usuario tres visuali-
zaciones diferentes que se adaptan a tres de los tipos de datos mas utilizados:

1. Enumeracién o ValueEnum Se utilizan cuando un elemento puede tener un
valor de entre un conjunto de valores. Permiten al usuario seleccionar facilmente
un valor de entre los valores del conjunto valido. Ejemplo en figura B.1.

49

<xs:simpleType>
<xs:restriction base="xs:int">
<xs:minInclusive value="0" />
<xs:maxInclusive value="120" />
</xs:restriction>
</xs:simpleType>

Hombre

Mujer

Figura B.1: Ejemplo de parte de un XML Schema vy vista del ValueEnum que
produce.

2. Sliders o ValueInput con slider Se utilizan cuando el tipo de dato es numéri-
co y cuenta con un maximo y un minimo. Permiten al usuario introducir con
facilidad un valor numérico dentro del rango. También le permite escribir un

valor libremente para obtener una precision mayor si lo desea. Ejemplo en figura
B.2.

<xs:simpleType>
<xs:restriction base="xs:int">
<xs:minInclusive value="0" />
<xs:maxInclusive value="120" />
</xs:restriction>
</xs:simpleType>

LI

Figura B.2: Ejemplo de parte de un XML Schema vy vista del Valuelnput-slider
que produce.

3. Input o ValueInput Se utilizan cuando un elemento de tipo simple no se en-
cuentra dentro de ninguno de los dos grupos anteriores. Permiten al usuario
escribir un valor libre. Ejemplo en figura B.3.

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Hombre" />
<xs:enumeration value="Mujer" />
</xs:restriction>
</xs:simpleType>

Figura B.3: Ejemplo de parte de un XML Schema y vista del Valuelnput que
produce.

Elemento XML o XMLFElement
Esta asociado al elemento del Schema zs:element. Representa un nodo de tipo ele-
mento del documento XML. Puede ser de tipo simple si solo tiene un nodo de texto

20

Apéndice B. Correspondencia entre elementos del formulario de la aplicacién y
elementos del XML Schema

o complejo si tiene contenido. Por ejemplo, en el ejemplo de la figura B.4 Nombre,
Edad y Sexo son elementos XML simples, puesto que simplemente tienen un valor,
mientras que Persona es un elemento de tipo complejo, puesto que estd compuesto
por otros elementos (Nombre, Edad y Sexo).

o1

<xs:element name="persona'>
<xs:complexType>
<xs:sequence>
<xs:element name="Nombre" type="xs:string" />
<xs:element name="Edad">
<xs:simpleType>
<xs:restriction base="xs:int">
<xs:minInclusive value="0" />
<xs:maxInclusive value="120" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Sexo">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="Hombre" />
<xs:enumeration value="Mujer" />
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>

Persona

1- Nombre

2- Edad

[] 0

3- Sexo

Hombre

Mujer

Figura B.4: Ejemplo de parte de un XML Schema y vista del XMLElement que
produce.

92

Apéndice B. Correspondencia entre elementos del formulario de la aplicacién y
elementos del XML Schema

Secuencia o Sequence
Estd asociado al elemento del Schema xs:sequence. Representa un elemento que es-
pecifica que sus hijos deben aparecer en el orden especificado en la secuencia. El
ejemplo anterior de la figura B.4 contiene una secuencia. El orden definido por la
secuencia debe reproducirse en el documento XML para considerarse valido, es de-
cir, dentro del elemento XML Persona, debe aparecer primero el elemento Nombre,
después el elemento Edad y por iltimo el elemento Sexo.

Elemento sin orden o All
Estd asociado al elemento del Schema zs:all. Representa un elemento que especi-
fica que sus hijos pueden aparecer en cualquier orden. En el siguiente ejemplo, el
documento XML serfa valido independientemente del orden de Nombre y Edad en
Persona. Por ello, cuando se utiliza este elemento, la aplicacién permite al usuario
reordenar los elementos presentes a su antojo tal y como se muestra en la figura B.5.

Persona

1- Sexo

Hombre

Mujer

2- Edad
L] 0

3- Nombre

Figura B.5: Ejemplo de un All producido por un XML Schema idéntico al de la
figura B.4 utilizando xs:all en lugar de xs:sequence y tras mover algunos elementos.

Seleccién o Choice

Estd asociado al elemento del Schema zs:choice. Representa que uno y solo uno de
sus elementos debe aparecer en el documento XML valido. Para representar este
elemento solamente se permite que se seleccione uno de sus hijos, y por tanto que
solo uno de sus hijos esté en el documento XML. Obsérvese la diferencia de que
en un Choice hay que elegir uno entre varios elementos arbitrariamente complejos,
mientras que en un ValueEnum hay que elegir un valor de texto entre un conjunto
de varios valores. La figura B.6 muestra un ejemplo de este tipo de elemento.

93

Persona

a) nombre

b) edad

- 86

c) sexo

Figura B.6: Ejemplo de un Choice producido por un XML Schema idéntico al
de la figura B.4 utilizando xs:choice en lugar de xs:sequence y tras seleccionar su
segundo elemento y darle valor.

Atributo o Attribute
Esta asociado a un elemento del Schema zs:attribute. Representa un atributo de un
elemento del documento XML. Su valor corresponde a un tipo simple similar a los
explicados anteriormente. Su vista es similar a la de un elemento simple puesto que
su valor se corresponde con un tipo simple.

Lista o List
Representa otro elemento del formulario (correspondiente a zs:element, zs:sequence,
xs:choice, xs:all o xs:attribute) que o bien es opcional, o bien puede repetirse varias
veces. Por defecto el valor de la cardinalidad de los elementos (atributos mazOccurs
y minOccurs) es 1-1. Aunque la implementacién de la lista es la misma existen
visualizaciones de dos tipos para facilitar las cosas al usuario:

1. Opcional El elemento puede aparecer 0 o 1 veces. En la figura B.7 se da un
ejemplo en el que el elemento Edad es opcional, este seria el equivalente si el
elemento Edad tuviera el atributo minOccurs=0 en el Schema de la figura B.4.

2- Edad off

T Deshabilitar Habilitar l

2- Edad m:]
LK |

Figura B.7: Ejemplo de la vista de un List opcional. Se muestra que el usuario
puede interaccionar con el elemento y activarlo o desactivarlo cuando quiera.

2. Comun El elemento puede aparecer otro niimero de veces (diferente de 0-1y 1-1).
En la figura B.8 se da un ejemplo en el que el elemento nombre es repetible, este
seria el equivalente si el elemento Nombre tuviera los atributos minOccurs=2
y mazOccurs=5 en el Schema de la figura B.4.

o4

Apéndice B. Correspondencia entre elementos del formulario de la aplicacién y
elementos del XML Schema

1- Nombre [2,5]

- Item n21:
1.1- Nombre
- Pepe

- Item n22:
1.2- Nombre
- Pedro

Figura B.8: Ejemplo de la vista de un List comdn. El usuario puede interaccionar
con el elemento y anadir o quitar elementos de la lista dentro de los limites de
cardinalidad. En este ejemplo estdn deshabilitados los botones de borrar elemento
porque la lista debe de tener como minimo dos elementos.

95

o6

Apéndice C
Tutorial y aplicacion

Este anexo presenta enlaces a un video con un tutorial de uso de la aplicacién y
a la propia aplicacién para ser usada en android. El video estd orientado al uso de la
aplicacién en el &mbito de la dermatologia, aunque puede ser de utilidad para cualquier tipo
de usuarios. Dicho video se encuentra disponible en la direccion https://www.youtube.
com/watch?v=D6UEvVZsJPw. La aplicacién para android puede obtenerse de la siguiente
direccion: https://www.dropbox.com/s/i12yulee206£563/formulatron.apk?dl=0.

o7

https://www.youtube.com/watch?v=D6UEvVZsJPw
https://www.youtube.com/watch?v=D6UEvVZsJPw
https://www.dropbox.com/s/il2yu1ee2o6f563/formulatron.apk?dl=0

o8

Apéndice D

Créditos a librerias y contenidos
de terceros

Este anexo presenta una lista de las librerias y contenidos de terceros utilizadas en la
realizacién de este trabajo. Desde la aplicacién desarrollada puede accederse a una lista de
créditos similar utilizando la opcién créditos del ment, que lleva a una pagina que contiene
informacién de las librerias, de los autores, de las licencias de cada elemento, etc.

Librerias y contenidos de terceros utilizadas:

Phonegap
Framework usado para crear las aplicaciones moviles multiplataforma a partir de
cbédigo HTML5, JavaScript y CSS3.
Direccién: http://phonegap.com/.
Se ha utilizado los siguientes plugins de Phonegap:

= org.apache.cordova.file 1.5.2 7File”: para la API de ficheros.
= org.apache.cordova.file-transfer 0.4.8 "File Transfer”: para descargar el PDF.

= org.apache.cordova.inappbrowser 0.5.4 InAppBrowser”: para abrir enlaces ex-
ternos en el navegador.

jQuery
Biblioteca JavaScript (DOM, eventos, animaciones, etc).
Direccién: http://jquery.com.

jQuery Mobile
Biblioteca JavaScript para la interfaz grafica mévil (disenio interfaz, transiciones,
iconos, etc.).
Direccién http://jquerymobile. com.

jQuery xpath
Plugin que implementa XPath 2.0 para jquery. - Modificado/extendido para evaluar
una expresién varias veces parseandola solo una. Utilizado para el XPath del Sche-
matron.
Direccién https://github.com/ilinsky/jquery-xpath.

Schemas y Schematrones predefinidos (de Victoria Mingote Bueno)
Los Schemas y Schematrones predefinidos forman parte del Trabajo de Fin de Gra-
do de Victoria Mingote Bueno en la Universidad de Zaragoza. Se les han anadido

99

http://phonegap.com/
http://jquery.com
http://jquerymobile.com
https://github.com/ilinsky/jquery-xpath

pequenas modificaciones y existe consentimiento por parte de dicha autora para el
uso de dichos ficheros en esta aplicacion.
Direccién http://deposita.unizar.es/record/1663771n=es.

Mustache.js
Sistema de plantillas JavaScript. Modificado para anadir soporte a variables @Qindex
y @indexLetter.
Direccién https://github.com/janl/mustache. js.

vkBeautify
Embellecedor (identacién, etc.) de cédigo (XML).
Direccién http://www.eslinstructor.net/vkbeautify.

highlight.js
Embellecedor (coloreado, resaltado de sintaxis, etc.) de cédigo (XML).
Direccién https://highlightjs.org.

FileSaver.js
Implementacién de funcién javascript saveAs() para guardar un fichero especificada

en el HTML5 W3C.
Direccién https://github.com/eligrey/FileSaver. js.

AJAXSLT
Implementaciéon de transformaciones XSL-T.
Direccién http://goog-ajaxslt.sourceforge.net/.

Otros iconos
Icono carpeta usado en el selector de ficheros obtenido de http://findicons.com/
icon/64167/folder?id=64346.
Icono fichero utilizado en el selector de ficheros obtenido de https://www.iconfinder.
com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_
psd_rar_text_windows_explorer_zip_icon#size=128.
Iconos de ficheros y carpetas usados en firefoxOS obtenidos de http://dojotoolkit.
org.

dompdf
Para transformar HTML a PDF se utiliza la libreria dompdf en el servicio externo
creado.
Direccién https://github. com/dompdf/dompdf.

60

http://deposita.unizar.es/record/16637?ln=es
https://github.com/janl/mustache.js
http://www.eslinstructor.net/vkbeautify
https://highlightjs.org
https://github.com/eligrey/FileSaver.js
http://goog-ajaxslt.sourceforge.net/
http://findicons.com/icon/64167/folder?id=64346
http://findicons.com/icon/64167/folder?id=64346
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
https://www.iconfinder.com/icons/283040/browser_document_explorer_file_finder_folder_format_pdf_psd_rar_text_windows_explorer_zip_icon#size=128
http://dojotoolkit.org
http://dojotoolkit.org
https://github.com/dompdf/dompdf

	Introducción
	Introducción a XML Schema
	Acrónimos utilizados
	Estructura del documento

	Paradigma de validación XML tradicional frente al paradigma de la aplicación
	Aplicaciones similares

	Arquitectura general del sistema
	Paradigma de desarrollo
	Análisis de aproximaciones
	Solución adoptada

	Componentes del Sistema
	Componentes de la aplicación
	Componentes del servicio web

	El uso de XML Schema en la aplicación: estructura y elementos del formulario
	Evolución del formulario
	Namespace destinado a las mejoras

	El uso del Schematron en la aplicación
	Introducción a Schematron, necesidad y ventajas de su uso
	Prevención dinámica de errores y aviso de errores

	Transformaciones en la aplicación
	Conclusiones y trabajo futuro
	Resultados y conclusiones
	Trabajo futuro

	Subconjuntos de XML Schema y Schematron soportados
	Correspondencia entre elementos del formulario de la aplicación y elementos del XML Schema
	Tutorial y aplicación
	Créditos a librerías y contenidos de terceros

