

1/4

1

RESUMEN

El trabajo realizado ha consistido en el estudio de una librería de

renderizado gráfico llamada Ogre3D y una librería de simulación física

llamada BulletPhysics para su posterior aplicación al mundo de los

videojuegos.

El resultado final muestra una escena que podría ser de cualquier

videojuego, renderizada en Tiempo Real. En ella se muestran varios

objetos entre los que se encuentran el suelo, el cielo, el personaje

principal y varios objetos con comportamientos físicos diferentes. Todos

ellos interactúan físicamente de manera real.

El estudio y posterior desarrollo e implementación del trabajo ha

estado centrado en crear y gestionar objetos con comportamiento físico

de objetos blandos.

2

A mis padres y mi hermano, por hace esto posible

 y aguantarme estos cuatro años.

A África, porque me dio el empujón necesario.

3

Este Trabajo Fin de Grado corresponde al plan de Estudios del Grado de Ingeniería

Informática de la Universidad de Zaragoza.

El número de créditos definidos en el plan de estudios es de 12 créditos.

4

1. Índice

2. Introducción ... 5

2.1 Ámbito de conocimientos .. 5

2.2 Objetivo .. 5

3 Trabajo desarrollado .. 7

3.1 Aplicación vista desde alto nivel .. 7

3.2 Diagrama de clases ... 9

3.3 BaseApplication .. 10

3.3.1 Creación de la escena ... 11

3.4 MyFrameListener ... 12

3.4.1 Eventos cada frame .. 12

3.4.2 Eventos de periféricos de entrada y salida ... 13

3.4.3 Eventos relacionados con la gestión de ventanas 13

3.5 MyCameraController .. 14

3.6 Physics .. 16

3.7 MyMotionState .. 19

3.8 MySoftBody .. 20

3.9 Character .. 21

3.10 CharacterController .. 22

3.11 CharacterPhysics ... 23

3.12 Ragdoll .. 26

3.13 OgreBulletUtils ... 28

3.14 DebugDraw y DynamicLineDrawer ... 28

3.15 Análisis de eficiencia ... 29

4. Resultados (salidas gráficas) .. 30

5. Conclusiones y trabajo futuro .. 33

6. Diagrama de tiempos ... 34

7. Bibliografía ... 35

5

2. Introducción

2.1 Ámbito de conocimientos

El mundo de los videojuegos está en constante cambio y evolución. No es difícil

ver las diferencias entre los videojuegos de hace veinte años y los actuales. Se puede

decir que el mayor cambio que estos han sufrido está relacionado con los gráficos, y

con la jugabilidad.

El consumidor de videojuegos, además de la diversión inherente a un buen diseño

del producto, busca una apariencia cada vez más real que le proporcione una

experiencia de inmersión en sus horas de juego.

En relación a ello, es fundamental la simulación de fenómenos físicos que haga

creíble aquello que vemos en la pantalla. No es extraño ver en un videojuego caídas de

objetos o choques entre ellos que nos parecen irreales, que no se ajustan a lo que

nuestro cerebro suele procesar en la realidad; esto es, principalmente, porque muchas

veces las físicas están hechas por artistas, animadores, y no simuladas teniendo en

cuenta buenos modelos.

Los productos de software que proporcionan simulaciones físicas en los

videojuegos se denominan motores de físicas y son los encargados de especificar un

modelo físico creíble del mundo.

Como bien sabemos, el mundo de los videojuegos es Tiempo Real, por ello el

tiempo del que disponemos para calcular cada frame está muy limitado, y además,

gran parte de éste, es consumido por el propio motor gráfico. Por lo tanto, es crucial

una gestión eficiente de los recursos para consumir el menor tiempo posible a la hora

de simular las físicas.

2.2 Objetivo

El objetivo principal de este trabajo fin de grado consiste en simular cuerpos rígidos

y blandos sometidos a la acción de fuerzas externas y gravedad.

Para ello, se han elegido dos herramientas de código libre, con las ventajas que

esto supone: su uso es gratuito, existe la posibilidad de modificar el código para cubrir

alguna necesidad, y tienen una comunidad muy activa dispuesta a resolver cualquier

problema que surja.

Para la renderización de los gráficos se utiliza Ogre3D1. Ogre3D es una interfaz

orientada a objetos escrita en el lenguaje de programación C++. Esta interfaz es capaz

6

de establecer un bucle de renderización que mostrará por pantalla con una calidad

suficientemente real objetos que añadamos a la escena.

Para el análisis de la herramienta, así como el aprendizaje de la misma, se ha

consultado la página principal (1-Sitio web de Ogre3D), la wiki (2-Wiki de Ogre3D), el

foro (3-Foro de Ogre3D) y la documentación de la API (4-API de Ogre3D) Una

explicación más detallada sobre Ogre3D puede ser encontrada en el anexo I.

Para la simulación de físicas se ha utilizado BulletPhysics. Ésta es, igualmente, una

librería orientada a objetos escrita en C++. Es capaz, mediante la utilización de objetos

virtuales, de simular un el mundo físico, detectando colisiones entre los objetos, así

como otras interacciones físicas con el medio, como fricción o gravedad.

Con el fin de estudiar las posibilidades de la librería BulletPhysics y aprender a

usarla, así como consultar errores que han aparecido durante la realización del

proyecto, se ha consultado la página web de la librería (5-Sitio web de BulletPhysics), la

wiki (6-Wiki de BulletPhysics), el manual de uso (7-Manual de BulletPhysics) y el foro

(8-Foro de BulletPhysics).

Con todo esto en mente, los objetivos particulares de este proyecto son:

1. Estudio de la librería de código abierto para física en tiempo real, BulletPhysics.

2. Estudio de la librería de código abierto para renderizado de objetos 3D en

tiempo real, Ogre3D.

3. Desarrollo e implementación de un módulo de integración de BulletPhysics en

Ogre3D.

4. Análisis de sus posibilidades desde el punto de vista de la simulación

fenomenológica.

5. Estudio e implementación de la simulación de cuerpos blandos en videojuegos

usando BulletPhysics + Ogre3D.

6. Análisis de su eficiencia.

7

3 Trabajo desarrollado

El trabajo ha consistido en el desarrollo e implementación necesarios para la

presentación de una escena renderizada en tiempo real en la que se simulan

fenómenos físicos, cuerpos rígidos y blandos sometidos a fuerzas externas y fuerza

gravedad.

En la figura 1 podemos ver una captura de pantalla tomada de la aplicación final.

En ella, se pueden apreciar los diferentes tipos de objetos que incluimos en el sistema.

Además, podemos comprender que existe una cámara desde la que se observa la

escena y una pantalla en la que se renderiza la escena.

Figura 1: Captura de la aplicación finalizada

3.1 Aplicación vista desde alto nivel

Para alcanzar el objetivo del proyecto, se ha programado una aplicación que se

centra en dos pasos fundamentales.

 Creación de la escena y adición de nodos visibles y físicos a la misma.

 Control del bucle de renderización donde se actualizan todas las

informaciones, frame a frame.

Cada una de las clases que se estudiarán más detalladamente a lo largo de la

memoria se puede agrupar en una de estas dos funciones, o en las dos.

Para entender cuáles son los componentes de la aplicación, obsérvese la figura 2,

en ella se puede ver el proceso que se sigue en cada frame desde que se comienza

hasta que se muestra por pantalla.

8

Figura 2: Esquema del proceso de renderización de un frame.

Las clases que se verán a continuación implementan este esquema de renderizado,.

Bien creando los objetos que se utilizarán, o bien siendo las encargadas de

actualizarlos.

9

3.2 Diagrama de clases

La arquitectura de la aplicación desarrollada se puede observar en la figura 3. En

los apartados siguientes se explica de manera detallada cuál es la función de cada clase

y se ha implementado.

Todas ellas salvo Ogre3D y BulletPhysics han sido implementadas en última

instancia por el autor. Los trozos de código que han sido reutilizados de otros usuarios

son debidamente nombrados y enlazados en los comentarios del código.

En el apéndice III se puede encontrar la estructura completa de la aplicación

desarrollada, así como la documentación del código.

Figura 3: Diagrama de clases de la aplicación

10

3.3 BaseApplication

Esta es la clase principal del sistema. Se encargar de la inicialización de los

diferentes componentes, así como de la creación de la escena en Ogre3D.

Para que este motor gráfico funcione correctamente necesita que se inicialicen y

configuren los siguientes componentes:

 Primero, crear el Ogre::Root, éste es el punto de acceso del sistema. Con ello,

Ogre3D cargará las configuraciones necesarias. Es el primer objeto que debe ser

creado, y el último que debe ser destruido.

 Segundo, se cargan los recursos (mallas de polígonos, texturas, etc.) mediante el

uso de un objeto Ogre::ResourceGroupManager.

 Tercero, se crea el objeto Ogre::SceneManager, que consiste en el grafo de la

escena. Ver figura 4.

 Cuarto, se crea la cámara con el objeto Ogre::Camera y el viewport, usando

Ogre::Viewport, que define la parte de la pantalla donde se renderizarán

objetos.

Figura 4: Grafo de escena de Ogre3D

11

La clase BaseApplication también se encarga de inicializar los demás componentes

principales que ha sido necesario programar para la realización de este proyecto y que

serán explicados con detalle posteriormente en la clase que corresponda, estos son:

 MyFrameListener: Es la clase encargada de controlar lo que debe de ocurrir en

cada frame.

 Physics: Objeto cuya función es la de llevar a cabo en cada frame la simulación

fenomenológica de la física.

 MyCameraController: Se encargará de hacer los movimientos necesarios de la

cámara de manera que se puedan observar bien lo que ocurre en la escena.

 Character: Gestiona la creación y el movimiento del personaje principal de la

aplicación.

3.3.1 Creación de la escena

Ogre3D funciona mediante la creación de objetos 3D que son añadidos a una

escena. Posteriormente, en su bucle de renderización, el motor recorrerá todos los

objetos que existen, decidirá cuáles son los que se tienen que ver en ese momento y

los mostrará en la pantalla.

Las escenas son creadas y gestionadas mediante el grafo de la escena, al que

Ogre3D nos proporciona acceso utilizando el objeto Ogre::SceneManager.

Además, los objetos 3D en Ogre3D están compuestos de nodos y entidades. Los

nodos son la posición y la rotación en la escena. Las entidades son las encargadas de

darle forma y apariencia concreta a cada nodo.

La escena que se presenta en esta aplicación consta de los siguientes objetos:

 El cielo: Está creado mediante el uso de una herramienta de Ogre3D llamada

SkyDome a la que se puede asignar una textura y la presenta como una cúpula.

En este caso, se ha texturizado con una textura dinámica, de manera que las

nubes parecen estar en movimiento.

 El personaje principal: Hablaremos de él más adelante en la clase que se

encarga de gestionarlo.

 El suelo: Éste es en principio un objeto Plane de Ogre3D con una textura, pero

de cara a que la textura parezca más real, se le ha aplicado un BumMapping2.

Esta técnica consiste en utilizar un mapa de normales en la etapa de iluminado

para darle aspecto de rugosidad a la superficie sin necesidad de modificar su

malla poligonal. 3

2
 Página de la Wikipedia de BumpMapping: http://en.wikipedia.org/wiki/Bump_mapping

3
 Tutorial de implementación de Bum Mapping:

http://www.ogre3d.org/tikiwiki/Materials#Advanced_Materials

12

 El objeto blando: Es un objeto cuyo comportamiento fenomenológico es el de

un cuerpo blando.

 Objetos rígidos: Son objetos cuyo comportamiento fenomenológico es el de

cuerpos rígidos.

3.4 MyFrameListener

Ogre3D tiene un sistema de trabajo que está basado en eventos. Se producen

eventos cuando un frame va a ser renderizado, cuando está siendo renderizado,

cuando ha acabado, cuando se pulsa una tecla, cuando se mueve el ratón, etc.

Esta clase es la encargada de recibir todos estos eventos y procesarlos.

Es una clase que hereda de Ogre::FrameListener, Ogre::WindowEventListener,

OIS::KeyListener y OIS::MouseListener.

OIS4 es una librería orientada a objetos que controla los dispostivos de entrada.

Todo ello asegura que, implementando los métodos predefinidos que se han

seleccionado es posible gestionar los eventos.

3.4.1 Eventos cada frame

Evento de inicio de renderización de un frame: Cuando Ogre3D comienza a

renderizar un frame, éste invoca el método frameStarted() indicándole mediante un

evento cuánto tiempo ha transcurrido desde la renderización del último frame. Dentro

de este método se realizan llamadas a las funciones de las clases que controlan los

periféricos de entrada y salida de OIS con objeto de capturar sus cambios.

Evento de renderización de un frame: Cuando Ogre3D está renderizando un frame

envía un evento, éste es recogido en el método frameRenderingQueued(), que

actualiza los siguientes componentes:

4
 Explicación de OIS: http://www.ogre3d.org/tikiwiki/tiki-index.php?page=Using+OIS

13

 La actualización del personaje principal se realiza mediante la llamada a la

función:

Character->updateCharacter(timeSinceLastFrame)

 La actualización del mundo físico se realiza llamando a:

Physics->stepSimulation(timeSinceLastFrame)

 La actualización de la malla del objeto blando en función de lo que haya

informado el motor de físicasse realiza llamando a:

Physics->updateSoftBodies()

Evento de finalización de renderizado de un frame: Cuando Ogre3D termina de

renderizar un frame, el método frameEnded() es llamado, este caso, únicamente

utilizamos éste para motivos de debug y mediciones de tiempo.

3.4.2 Eventos de periféricos de entrada y salida

En este proyecto las pulsaciones del teclado pueden se controlan de manera

asíncrona utilizando los siguientes métodos:

 keyPressed(): Se llama a este método cuando se pulsa una tecla para detectar

qué tecla es la que ha activado el evento. En esta aplicación, se utiliza este

evento para:

◦ Activar el debug de las físicas pulsando la tecla L.

◦ Lanzar un cubo pulsando la tecla F.

◦ Cerrar la aplicación pulsando la tecla ESC.

◦ Mandarle el evento a la clase Character que moverá el personaje.

 keyReleased(): Se llama a este método cuando se deja de pulsar una tecla que

había sido pulsada previamente. En este se le manda el evento a la clase

Character para la gestión del movimiento del personaje.

El ratón se controla mediante la conjunción de los métodos mousePressed(),

mouseReleased() y mouseMoved(). En este proyecto, se han utilizado para rotar la

cámara y hacer zoom. En concreto, se rota la cámara si al mover el ratón uno de los

dos botones está pulsado, y se hace zoom cuando se mueve la ruleta.

3.4.3 Eventos relacionados con la gestión de ventanas

El método windowClosed() se utiliza para capturar cuando se ha cerrado la

ventana y así destruir los objetos necesarios y windowsResized() se utiliza para

recalcular tamaños y posiciones del ratón.

14

3.5 MyCameraController

Para observar lo que ocurre en la escena, lo más cómodo es utilizar una cámara en

tercera persona que se pueda manejar con el ratón.

Esta clase es la encargada de gestionar los movimientos de cámara. Lo que hace es

establecer tres nodos. El nodo mainNode es el nodo donde está el personaje, el nodo

sightNode es el nodo hacia donde la cámara tiene que mirar y el nodo

desiredCameraNode es el nodo que se establece como objetivo en las traslaciones de

la cámara.

La cámara es actualizada en cada frame utilizando el método update() y, en función

del tiempo que haya pasado entre frames, actualiza su posición para acercarse a la del

nodo desiredCameraNode. Obsérvese en la figura 5 el funcionamiento del movimiento

de los tres nodos.

15

El nodo desiredCameraNode está emparentado con el nodo sightNode, de manera

que se mueve y mantiene su posición relativa siempre que el padre lo hace. Así, sólo

hay que mover el nodo sightNode cuando el personaje se mueve, para que la cámara

actualice su posición y lo siga en el siguiente frame.

Además, los métodos injectMouseMove() y adjustZoom() de la clase se encargan de

gestionar la rotación en los ejes X e Y y la posición en el eje Z, respectivamente. Estos

movimientos en X e Y se producirán cuando se mueva el ratón y actúan en girando el

nodo sightNode, mientras que el nodo desiredCameraNode mantiene su posición

relativa, ver figura 6. El zoom se produce cuando se mueve la ruleta del ratón y lo que

hace es disminuir la distancia entre el nodo desiredCameraNode y el sightNode.

Obsérvese en la figura 6 su funcionamiento.

En la figura 7, se muestra una captura de pantalla de la aplicación, obsérvese cómo

se puede ver el personaje desde cierto ángulo gracias al funcionamiento de la cámara.

Figura 6: Rotación de cámara

Figura 5: Movimiento de cámara que sigue al personaje principal

16

Figura 7: Personaje principal visto por delante

17

3.6 Physics

Como ya hemos dicho anteriormente, esta clase será la encargada de implementar

el motor de físicas, para ello hace uso de la librería BulletPhysics.

La clase se tiene que encargar tanto de añadir objetos al mundo físico, como de

actualizar su posición y forma (en caso de que sea blando) tras cada frame.

Lo primero que hace es inicializar y configurar las físicas. En este momento se

caracteriza el mundo físico, para ello es necesario decidir lo siguiente:

 El tipo de colisiones que tendrá el mundo se genera creando un objeto que

herede de btDefaultCollisionConfiguration de Bullet, para el proyecto se ha

elegido btSoftBodyRigidBodyCollisionConfiguration porque en nuestra escena

habrá objetos sólidos y blandos.

 Para el cálculo rápido de una primera aproximación de los pares de objetos que

pueden estar colisionando, hay que seleccionar un algoritmo de BroadPhase. La

utilidad de este algoritmo está explicada más extensamente en el anexo II.

 Algoritmo de detección de colisiones (Collision Dispatcher): Éste es el algoritmo

que, de los pares que obtiene por parte de la etapa de BroadPhase, calcula

exactamente aquellos pares entre los que se está produciendo una colisión.

 De cara a resolver las colisiones, necesitamos seleccionar un algoritmo de

Solver.

La clase pone a disposición del que la use un serie de métodos que son los que se

encargarán de añadir los objetos al mundo físico. Los métodos, aunque no todos

utilizados en el producto final del proyecto, son los siguientes.

 addRigidBody: Añade un objeto rígido genérico, especificándole todos los

parámetros que son necesarios. Este método es principalmente usado por el

resto de los que añaden cuerpos rígidos (suelo, cubo y volúmenes envolventes

del personaje principal).

18

 addStaticPlane: Añade un plano. Recibe el nodo de Ogre3D al que se quiere

vincular el cuerpo rígido.

 addCube: Añade un cubo. Recibe el nodo de Ogre3D al que se quiere vincular el

cuerpo rígido.

 AddImpulsedCube: Lanza un cubo en la dirección que recibe. También recibe el

nodo de Ogre3D al que se quiere vincular el cuerpo rígido.

 AddSoftFromEntity: Añade un cuerpo blando que tiene la forma de la malla que

se proporciona. Además, recibe el nodo de Ogre3D al que se quiere vincular el

cuerpo blando.

 addSoftSphere: Añade una esfera blanda con presión interna. Recibe el nodo de

Ogre3D al que se quiere vincular el cuerpo blando.

Como vemos, todos los métodos requieren un objeto nodo de Ogre3D. Esto se

debe a que en cada frame el motor de físicas debe actualizar también la posición de

estos nodos para que se el motor de render los muestre por pantalla.

La forma en la que se ha implementado en este proyecto la actualización de los

nodos de Ogre3D pasa por crear una clase que hereda de btDefaultMotionState de

BulletPhysics. Esta clase se llama MyMotionState y será explicada más adelante.

Sin embargo, actualizar con Motion States sólo funciona para los objetos rígidos,

por lo tanto hay que buscar otra solución para los objetos blandos ya que stos

necesitan, además de cambiar la posición y la rotación, modificar la malla del objeto

3D para que muestre las deformaciones que ha sufrido. Esta implementación está

hecha en la clase MySoftBody que encapsula el objeto blando para poder tratarlo

fácilmente y de manera que el motor de físicas sólo tenga que llamar al método

updateOgreMesh() para que su comportamiento sea el esperado.

19

3.7 MyMotionState

Como se ha indicado anteriormente, ésta es la forma de que los nodos visibles de

Ogre3D se vean actualizados en función de lo que les ocurra cuando el mundo físico

realiza un paso temporal en la simulación.

MyMotionState hereda de una clase de BulletPhysics que se llama

btDefaultMotionState. Los objetos de esta clase se instancian a la vez que los cuerpos

rígidos para que, en cada paso de simulación, proporcionen la posición y la rotación a

los cuerpos rígidos.

Sin embargo, es posible extender dicha funcionalidad, de manera que, además de

actualizar su posición y rotación en el mundo físico, se actualicen también la posición y

la rotación del nodo de Ogre3D al que están vinculados.

Esto se hace sobrescribiendo el método al que sabemos que BulletPhysics llama

cuando quiere actualizar un objeto, setWorldTransform, de manera que se y añade

dicha funcionalidad. Se puede ver un ejemplo en el código siguiente.

void MyMotionState::setWorldTransform(const btTransform & worldTrans)

{

if (mVisibleObj == NULL)

return;

mTransform = worldTrans;

btTransform transform = mTransform * mCOM;

btQuaternion rot = transform.getRotation();

btVector3 pos = transform.getOrigin();

mVisibleObj->setOrientation(rot.w(), rot.x(), rot.y(), rot.z());

mVisibleObj->setPosition(pos.x(), pos.y(), pos.z());

}

20

En el código se ve cómo se recibe la transformación y, además de actualizarla en el

objeto principal que es mTransform, actualiza con setOrientation() y setPosition() el

nodo de Ogre3D.

Utilizando de esta manera Motion States no es necesario más que dar un paso más

en la simulación consiguiendo de paso que los elementos de la escena también se

actualicen en el motor gráfico.

3.8 MySoftBody

Ésta clase encapsula un objeto blando de BulletPhysics y el nodo en Ogre3D al que

está vinculado.

El único método que tiene es updateOgreMesh() cuyo funcionamiento no es trivial

y consiste en iterar sobre todos los vértices del cuerpo blando en el mundo físico y

copiar su información de rotación y traslación al nodo del motor de renderización.

La transformación que sufren los vértices es relativa a la posición del cuerpo, por lo

tanto, también hay que actualizar la posición y rotación global del objeto.

21

3.9 Character

Esta clase es la que se encarga de gestionar todo el movimiento del personaje por

pantalla. Hace uso principalmente de otras dos, que son CharacterController y

CharacterPhysics.

Tiene principalmente dos funciones, la primera es recibir la entrada del teclado y

coordinar el funcionamiento de las dos clases anteriores para mover el personaje y la

segunda es actualizar la posición y rotación del personaje en cada frame.

La primera función se resuelve mediante los métodos injectKeyUp() e

injectKeyDown(). Estos dos métodos se llaman por la clase MyFrameListener cuando

una tecla es pulsada. Lo que hacen es, en función de la tecla que ha sido pulsada,

actualizan los valores de las variables de dirección de movimiento o indican a

CharacterPhysics y CharacterController que el personaje debe saltar, si puede hacerlo.

Con respecto a la segunda, la clase tiene un método llamado updateCharacter()

que recibe el tiempo entre frame y frame, y se encarga precisamente de actualizar la

posición y el estado del personaje.

En función de la variable de dirección de movimiento, la velocidad de movimiento y

la dirección a la que mira la cámara, establece la posición final del personaje en el

tiempo transcurrido. Además, si el motor de físicas ha actualizado la posición del

objeto que simula al personaje y éste ya no se encuentra en el mismo sitio, lo mueve

para que concuerde.

Cuando el personaje está realizando algún tipo de movimiento, llama a la clase

CharacterController para activar la animación que corresponda en ese momento.

Con la clase Character, obtenemos el movimiento del personaje controlado por

entrada y salida de teclado y los movimientos físicos que le afectan, que pueden ser

caídas y saltos.

22

En el proyecto se ha considerado que el personaje no reaccione ante las colisiones

para evitar que el personaje saliese despedido cuando choca contra algo.

3.10 CharacterController

Esta clase utilizada por Character es la que se encarga de gestionar el apartado

visual del personaje. Es decir, se encarga de crear el nodo de Ogre3D, asignarle las

texturas, etc.

El modelo, texturizado y animaciones del personaje se han descargado de la web

de Ogre3D5 y se han modificado mínimamente para que se adaptasen mejor a este

proyecto.

El principal cometido de esta clase es el de crear la estructura para activar y

desactivar las animaciones del personaje cuando se requiera.

Para ello implementa un conjunto de métodos que se utilizarán para que el

personaje comience o termine una animación. Los métodos son los siguientes:

 animRunStart() y animRunEnd(): El personaje activa y desactiva la animación de

correr hacia cualquier dirección.

 animJumpStart(), animJumpEnd() y animJumpLoop(): Se encargarán de empezar

y terminar la animación de salto, además, se tiene la animación en la que el

personaje está en el aire.

 animSliceStart() y animSliceEnd(): Son las animaciones de golpear del personaje,

que se activan cuando la tecla “1” es pulsada.

El otro método principal que esta clase implementa es updateAnimations(). Se

llama cada vez que una animación tiene que actualizarase, es decir, cada frame. Y

actualiza la animación en función del tiempo que haya pasado y la termina si es

5
 Sitio web del modelo: http://www.ogre3d.org/tikiwiki/Sinbad+Model

23

necesario; además, en caso de tratar con la animación de salto, cambia a

animJumpLoop si animJumpStart ya ha finalizado.

3.11 CharacterPhysics

Esta clase utilizada por Character se encargará de simular el comportamiento físico

del personaje.

El personaje se modela de tres formas diferente. Una, la malla más precisa, para

renderizar. Otra, para el movimiento y la caída, para lo que el personaje se engloba

una cápsula aproximadamente de su tamaño. Y la tercera para las colisiones con

objetos, en este caso, el personaje se modela con más precisión mediante el uso de

varias cápsulas.

En la figura 8, las líneas blancas se corresponden con el segundo modelado y las

verdes con el tercero.

24

CharacterPhysics es la clase que utiliza la segunda aproximación geométrica.

Simula el personaje no como un cuerpo rígido normal, sino como un

btPairCachingGhostObject, es decir, un cuerpo fantasma.

Estos cuerpos no reaccionan ante las colisiones y tampoco las provocan de la

manera habitual, por lo tanto no afectarán al mundo, pero utilizando otro tipo de

algoritmos, permiten calcular qué objetos están colisionando con él.

Para simplificar la programación del control del personaje, la clase

CharacterPhysics hereda de la clase btCharacterControllerInterface de BulletPhysics,

que es una interfaz que establece un orden de llamadas a métodos que recibirá

cualquier implementación de la misma cuando se añada a un mundo.

La asignación de CharacterPhysics como controlador de personaje se ha hecho en

la clase principal de la aplicación, BaseApplication en la siguiente línea de código:

Figura 8: Personaje principal con modo debug activo

25

Physics->getDynamicsWorld()->addAction(mCharacterController);

El método al que Bullet Physics llama en cada frame para actualizar

CharacterPhysics es updateAction(), donde se describe y calcula todo lo que va a pasar

en un frame. En este caso, por simplicidad de código, se ha subdividido este método

en los siguientes métodos:

1. preStep():

En este método se comprueba el estado actual del personaje en función de lo

que el motor de físicas le haya comunicado que ha ocurrido.

2. playerStep()

1. Llamada al método setRBForceImpulseBasedOnCollision():

Una vez detectado que hay colisiones, lo que se hace en este método es

realizar la reacción física asociada. Los cuerpos que han colisionado con el

personaje se obtienen haciendo uso de una estructura de datos que ha sido

rellenada por BulletPhysics.

2. Se actualiza la velocidad de salto si la clase Character comunica que el

jugador ha pulsado la barra espaciadora o si lo se ha hecho en frames

anteriores y el personaje aún está en mitad de un salto.

3. Llamada al método stepUp():

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo

encima del personaje que le impida saltar. Si lo hay, no se cambia la posición

del nodo verticalmente.

Además, se comprueba que el salto no haya terminado en función de la

fuerza del salto y el tiempo que el personaje lleva saltando. Si ha terminado, se

cambia de signo para que comience la caída.

4. Llamada al método stepForwardAndStrafe() si y solo si la clase Character()

ha comunicado que el jugador ha pulsado una de las teclas de movimiento y

por lo tanto se han actualizado la velocidad y la dirección del mismo:

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo

delante en la dirección del personaje en la que el personaje tiene que moverse y si

hay algo, no se modifica su posición.

5. Se actualiza la velocidad de caída si, por un salto o por un movimiento, el

personaje está cayendo.

6. Llamada al método stepDown():

26

Mediante la llamada a un convexSweepTest se comprueba si hay algo justo

debajo del personaje que indique que ha tocado suelo. Si lo hay, no se cambia la

posición del nodo verticalmente y se le comunica a la clase Character para que se

actualicen las animaciones; se pone a cero la velocidad vertical.

3.12 Ragdoll

Esta clase utilizada por CharacterPhysics es la que se encarga del modelado

geométrico del tercer tipo para poder calcular el comportamiento físico del personaje

en relación con la colisión con los objetos blandos, de manera que estos se deformen

de forma precisa. El resultado de esta clase se puede ver gráficamente en la figura 8,

son las líneas verdes.

Para entender el funcionamiento de esta clase es fundamental conocer la

existencia de los huesos en los modelos 3D. Cuando se crea un personaje en 3D el

primer paso es hacer la forma del mismo, modelarlo moviendo vértices, etc. A

continuación, se texturiza para que parezca real. Luego, de cara a la animación, que

sería el último paso, se realiza el llamado proceso de rigging. Éste consiste en la

creación de un sistema de esqueleto no renderizable, por debajo de la malla del

personaje que ayudará a los animadores a mover las partes de la malla del cuerpo de

manera realista.

27

En la figura 9 se puede ver una captura de pantalla de Blender, el software que se

ha utilizado para modificar el personaje principal, donde se pueden observar estos

huesos.

Ogre3D pone a disposición del programador un sistema para acceder a la posición

de estos huesos.

La clase Ragdoll lo que hace recorrer un subconjunto de los huesos del esqueleto

que se ha considerado que modelarían con suficiente precisión el cuerpo físico del

personaje y crear objetos rígidos de masa 0 (cápsulas), para que no se vean afectados

por la gravedad.

El personaje principal está modelado, en total, por diecisiete objetos rígidos. Uno

en la cabeza, dos en el torso, dos en cada brazo, uno en cada mano, dos en cada

pierna, uno en cada pie y dos en las vainas de la espalda.

De esta manera, las cápsulas producen movimiento en otros objetos, en concreto,

deformaciones en los cuerpos blandos.

La clase, además, se encarga de, en cada frame modificar la posición y rotación de

estas cápsulas para adaptarlas a la que actualmente tienen los huesos. De esta

manera, con las animaciones de las que ya se ha hablado, también movemos el

exoesqueleto de frprmado por las cápsulas.

Figura 9: Rigging del personaje principal

28

3.13 OgreBulletUtils

Ésta es una de las dos clases auxiliares que tiene el proyecto.

En concreto, esta clase implementa una serie de métodos que hacen más fácil la

comunicación entre BulletPhysics y Ogre3D.

Principalmente se encarga de la conversión de unidades de Ogre3D a BulletPhysics

y viceversa. En concreto, de los vectores y los cuaterniones.

Además, tiene implementados otros métodos de objetos complejos de

BulletPhysics desde una malla de Ogre3D.

3.14 DebugDraw y DynamicLineDrawer

Ésta es la otra clase auxiliar presente en el sistema. Es la encargada de dibujar las

líneas que vemos en la figura 5 y que, como veremos en las capturas del final del

proyecto, están presentes en todos los objetos. Muestra por pantalla, renderizado

gráficamente, el mundo físico de BulletPhysics.

En concreto, DebugDraw hereda del sistema de debug de BulletPhysics y

DynamicLineDrawer hereda de un objeto renderizable de Ogre3D. De esta manera, en

conjunción, es posible renderizar en Ogre3D los objetos de BulletPhysics.

29

3.15 Análisis de eficiencia

Como ya hemos explicado, Ogre3D ofrece acceso al programador a su bucle de

renderización mediante los eventos producidos en la clase MyFrameListener, de esta

manera, ha resultado muy simple calcular el tiempo que le cuesta a la aplicación el

cálculo de cada frame, así como el cálculo de cada una de sus partes.

Los datos medios para un frame de cada una de las partes, son:

Tiempo total (100%): 6.307 ms.

Tiempo de captura de periféricos de entrada (0,06%): 0.004 ms.

Tiempo de actualización de personaje y animaciones (1%): 0,057 ms.

Tiempo de cálculo de físicas (21%): 1.347 ms.

Tiempo de renderización gráfica (77,1%): 4.863 ms.

Figura 10: Gráfico del tiempo medio de frame

Estas pruebas han sido ejecutadas sobre una tarjeta gráfica integrada de un

procesador Intel modelo i7-4770K

El chipset gráfico tiene las siguientes especificaciones:

Gráficos de procesador Intel® HD Graphics 4600

Frecuencia base de los gráficos 350 MHz

Frecuencia dinámica máxima de los gráficos 1.25 GHz

Memoria máxima de vídeo de los gráficos 1.7 GB

Tiempo de frame

Entrada de perifericos

Actualización del personaje

Cálculo de físicas

Render gráfico

30

4. Resultados (salidas gráficas)

Figura 11: Interacción objetos rígidos 1.

Figura 12: Interacción objetos rígidos 2.

31

Figura 13: Deformación cuerpo blando 1.

Figura 11: Deformación cuerpos blandos 2. Figura 14: Deformación cuerpo blando 2.

32

Figura 13: Deformación cuerpo blando 4.
Figura 15: Deformación cuerpo blando 3.

Figura 16: Deformación cuerpo blando 4.

33

5. Conclusiones y trabajo futuro

El objetivo principal de este Trabajo Fin de Grado era simular cuerpos rígidos y

blandos sometidos a la acción de fuerzas externas y gravedad. (Ver apartado 2).

Para ello se ha hecho una aplicación completa formada por trece clases diseñadas

por el autor. (Ver apartado 3).

Se han utilizado dos librerías de código libre. Ogre3D y BulletPhysics.

La primera de ellas ofrece un sistema capaz de renderizar objetos 3D en Tiempo

Real, así como de configurar todos los aspectos que tienen que ver con el motor

gráfico de un videojuego.

La segunda de ellas ofrece un motor capaz de simular físicas en tiempo real, así

como de configurar todos los aspectos que tienen que ver con el motor de físicas de un

videojuego.

Como se ha demostrado de forma visual mediante imágenes estáticas en el

apartado 4, y se verá mediante vídeo o ejecución en tiempo real el día de la defensa, el

objetivo propuesto ha sido plenamente cumplido.

Las líneas futuras de trabajo pasar por programar una librería genérica de uso de

BulletPhysics sobre Ogre3D que se despegue de la programación de este ejemplo en

concreto. Para ello, sirve la misma estructura de clases que se ha planteado,

únicamente es necesaria la extensión de las mismas.

34

6. Diagrama de tiempos

Figura 17: Diagrama de tiempos.

35

7. Bibliografía

1 - Sitio web de Ogre3D. http://www.ogre3d.org/

2 - Wiki de Ogre3D. Obtenido de http://www.ogre3d.org/tikiwiki/tiki-index.php

3 - Foro de Ogre3D. http://www.ogre3d.org/forums/

4 - API de Ogre3D. http://www.ogre3d.org/docs/api/1.9/

5 - Sitio web de BulletPhysics. Obtenido de http://www.bulletphysics.org/

6 - Wiki de BulletPhysics. http://bulletphysics.org/mediawiki-

1.5.8/index.php/Main_Page

7 - BulletPhysics. Bullet 2.82 Physics SDK Manual. Apéndice III

8 - Foro de BulletPhysics. http://www.bulletphysics.org/Bullet/phpBB3/

9-Nvidia CG tutorials.

http://http.developer.nvidia.com/CgTutorial/cg_tutorial_chapter01.html

10 - Wikipedia. https://www.wikipedia.org/

