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SIMULACIÓN Y ANÁLISIS ENERGÉTICO DE SISTEMAS SOLARES DE 

CALEFACCIÓN DE DISTRITO CON ACUMULACIÓN ESTACIONAL 

RESUMEN 

Este proyecto consiste en simular y analizar un sistema solar de distrito con acumulador 

estacional, para abastecer las demandas de ACS y de calefacción de 100 viviendas de 

100 m2 situadas en el Parque Goya de Zaragoza.  

Los principales objetivos de este proyecto son la simulación y análisis de un sistema de 

este tipo utilizando el programa de simulación POLYSUN, partiendo de un modelo 

previamente desarrollado con TRNSYS; una comparativa entre TRNSYS y POLYSUN; y un 

análisis geográfico de diferentes ciudades españolas pertenecientes a distintas zonas 

climáticas. 

La primera parte de esta memoria introduce las centrales solares con acumulación 

estacional en Europa. En la segunda parte, se presenta el sistema escogido como caso 

de estudio explicando sus principales características, y más detalladamente para el 

modelo realizado con POLYSUN, describiendo las propiedades de este programa. En la 

última parte se presentan y analizan los principales resultados que se han obtenido, 

ordenándolos conforme a los principales objetivos planteados en el proyecto. 

De acuerdo con los resultados obtenidos, se puede afirmar que los equipos principales 

(captadores solares, depósitos de almacenamiento de energía térmica e 

intercambiadores de calor) tienen un comportamiento similar en ambos programas 

(TRNSYS y POLYSUN). Asimismo, los resultados obtenidos en base anual son similares en 

los dos programas. No obstante, se han observado grandes diferencias mensuales en 

algunos parámetros, como por ejemplo en la demanda de calefacción calculada por el 

programa POLYSUN. Esta diferencia en concreto ha influido en los elementos del sistema 

de calefacción, haciendo que en los mismos meses existan también grandes diferencias. 

Además esto ha provocado que en el programa POLYSUN se transfiera más calor al 

circuito de ACS y menos al de calefacción que en el programa TRNSYS. 
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1 INTRODUCCIÓN 

La demanda mundial de energía en el sector residencial representa aproximadamente 

el 27% del consumo de energía global [1]. En Europa, la demanda de calefacción y 

refrigeración representan el 49% del total de la demanda de energía [2]. Por todo esto, 

el desarrollo de sistemas solares para cubrir parte de la demanda térmica residencial es 

una opción económicamente viable que además reduce el consumo de combustibles 

fósiles y contribuye, entre otros, a la solución de problemas como el cambio climático, 

la contaminación o la dependencia energética [3].  

Para poder llevar a cabo estos sistemas, la unión europea ha promulgado una nueva 

directiva sobre eficiencia energética en edificios (2010/31/EU) [4], orientada a reducir 

el consumo de energía en edificios y a implementar las energías renovables para 

alcanzar el objetivo de reducir el 20% del consumo de energía para el año 2020 [5]. 

Además, en octubre de 2012, el parlamento europeo aprobó una nueva directiva sobre 

eficiencia energética (2012/27/EU) [6] para mejorar la conversión, el uso y la 

distribución de energía. 

En cuanto a España se refiere, la legislación para nuevos edificios impone cubrir una 

parte de la demanda de agua caliente sanitaria (ACS) con energía solar, aunque también 

es posible cubrir este porcentaje con cualquier otra fuente renovable, si se justifica que 

es posible reducir el consumo de energía y las emisiones de CO2 en la misma proporción 

[7]. 

Los sistemas solares de calefacción de distrito con acumulación estacional constituyen 

una posibilidad técnica y económicamente viable para atender la demanda de agua 

caliente sanitaria (ACS) y calefacción aprovechando el calor de la radiación solar. 

Actualmente estos sistemas, utilizados en el norte de Europa desde hace varios años, 

pueden alcanzar fracciones solares superiores al 50%, es decir son capaces de cubrir con 

energía solar más de la mitad de la demanda térmica. Un ejemplo de este tipo de plantas 

se muestra en la figura 1, correspondiente a un sistema solar térmico de distrito con 

acumulación estacional situado en Marstal, Dinamarca. 

 
Figura 1. Planta solar térmica de distrito con acumulación estacional en Marstal, 

Dinamarca [8]. 
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Los elementos característicos de estos sistemas son los captadores solares utilizados, 

que son de gran tamaño para reducir costes, y el acumulador estacional, también con 

una alta capacidad que hace que el proceso de carga y descarga sea lento, permitiendo 

almacenar fácilmente el exceso de producción de energía térmica del verano, período 

con mayor disponibilidad del recurso solar y con baja demanda térmica, para 

aprovecharla durante el invierno, que es cuando se tiene una alta demanda de energía 

térmica y al mismo tiempo hay poca disponibilidad del recurso solar. Un esquema de 

este tipo de plantas se muestra en la figura 2. 

 
Figura 2. Sistemas solares de calefacción de distrito con acumulación estacional [9]. 

Este proyecto se ha realizado en el marco de la línea de investigación del grupo de 

Ingeniería Térmica y Sistemas Energéticos (GITSE) perteneciente al I3A sobre sistemas 

de poligeneración de distrito con acumulación estacional y elevada fracción solar, y se 

pretende simular y analizar un sistema solar térmico de calefacción con acumulación 

estacional utilizando el programa de simulación POLYSUN [10], partiendo de un modelo 

previamente desarrollado con TRNSYS [11] en anteriores proyectos [12,13]. Una de las 

razones principales del uso de POLYSUN es para facilitar la simulación respecto a 

TRNSYS. 

La simulación dinámica con TRNSYS de este tipo de sistemas proporciona resultados 

precisos de su comportamiento pero exige una información detallada y exhaustiva, y un 

esfuerzo computacional alto. Por otro lado, POLYSUN es un programa concebido para 

simular sistemas solares (fotovoltaicos y térmicos), bombas de calor y cogeneración, que 

dispone de datos climáticos en múltiples localizaciones geográficas de Europa y 

proporciona una representación detallada de las plantas durante la simulación.  

Contiene una amplia librería de catálogos de equipos comerciales y configuraciones 

predefinidas, habitualmente utilizadas en instalaciones solares, lo que facilita 

significativamente el modelado y simulación de estas instalaciones. No obstante, 

POLYSUN está fundamentalmente orientado a instalaciones domésticas pequeñas y no 

a grandes sistemas centralizados de distrito. 
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Los principales objetivos de este proyecto han son:  

a) determinar las posibilidades de POLYSUN para simular y estudiar los sistemas 

solares de distrito con acumulación estacional;  

b) llevar a cabo una comparativa de los resultados y capacidades de TRNSYS y 

POLYSUN para el modelado de estas instalaciones; y  

c) realizar un análisis geográfico de este tipo de instalaciones que permita estudiar 

y determinar cómo varían los principales parámetros de diseño de estas 

instalaciones en diferentes ciudades españolas, pertenecientes a diferentes 

zonas climáticas con elevada radiación solar y necesidades significativas de 

energía térmica para calefacción. 

Es importante destacar que, teniendo en cuenta los objetivos de este proyecto, queda 

fuera del alcance del mismo el análisis de la viabilidad económica de este tipo de 

instalaciones que, por otra parte, ya ha sido realizado con detalle en trabajos anteriores 

[12, 13]. 

La memoria de este proyecto está estructurada del siguiente modo. En primer lugar se 

presenta en el capítulo 2, Estado del arte, una introducción a las centrales solares de 

distrito con acumulación estacional en Europa, en la que se explican los principales 

elementos de este tipo de plantas. A continuación se presenta en el capítulo 3, 

Descripción del caso de estudio, el sistema escogido como modelo de estudio, 

explicando sus principales características. En el capítulo 4, Diseño del sistema en 

POLYSUN, se describe el modelo realizado con POLYSUN, explicando las propiedades y 

características de los módulos empleados en la simulación del sistema analizado en este 

proyecto, así como el procedimiento seguido para la construcción del modelo del 

sistema estudiado. Los principales resultados, clasificados de acuerdo a los objetivos 

propuestos, se muestran en el capítulo 5, Resultados. Primero se analizan los resultados 

obtenidos con el programa POLYSUN, se con una comparativa entre TRNSYS y POLYSUN, 

tanto de las características técnicas de ambos programas como de los resultados 

obtenidos y finalmente se muestran los resultados del análisis geográfico. 

En cuanto a los Anexos, que contienen una descripción detallada del proyecto 

desarrollado, se ha seguido un esquema de desarrollo similar que para la memoria. En 

el Anexo A, Estudio y principales elementos de centrales solares de distrito con 

acumulador estacional, se describen de forma general los grandes sistemas solares 

térmicos en Europa, particularizando también para España, y se describen las centrales 

solares de distrito con acumulador estacional, explicando los diferentes tipos y las 

características de los principales elementos de estos sistemas, que son los captadores 

solares y el acumulador estacional. En el Anexo B, Descripción del caso de estudio y 

caracterización de sus elementos, se explican con detalle las principales características 

del sistema escogido como caso de estudio y el cálculo de los parámetros de cada 

elemento, así como, el procedimiento seguido para modificar estos parámetros para 

llevar a cabo el estudio geográfico en diferentes ciudades. 
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En el Anexo C, Programas, primero se presenta una breve descripción de los programas 

comerciales para el diseño y simulación de este tipo de plantas. A continuación, 

centrando la atención en los programas utilizados en este proyecto, TRNSYS y POLYSUN, 

se explican los parámetros necesarios a introducir para la simulación de cada elemento. 

Así mismo se describe el procedimiento seguido en POLYSUN para construir el modelo 

del sistema estudiado, poniendo especial atención en la descripción de las 

características de cada regulación del sistema. Finalmente, en el Anexo D, Resultados, 

se presentan para cada elemento del sistema los resultados obtenidos por cada 

programa y se analizan las diferencias existentes entre ambos. También se muestran y 

analizan los resultados obtenidos en el análisis geográfico. 
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2 ESTADO DEL ARTE 

El estudio de grandes sistemas solares térmicos con acumulación estacional se inició en 

los años setenta por el interés de desarrollar sistemas solares con elevada fracción solar 

que fueran capaces de cubrir una elevada fracción de demanda de energía térmica en 

los edificios. La primera planta fue construida en Suecia en 1980 [14]. A finales del año 

2013, existían 131 grandes sistemas solares en Europa mayores de 700 kWth, de los 

cuales 23 son centrales solares de distrito con acumulador estacional. Estas centrales se 

muestran en la tabla 1, donde se aprecia que en España no se han construido ninguna 

planta de este tipo. 

Tabla 1. Centrales solares de distrito con acumuladores estacionales mayores de 700 
kWth en Europa a finales de 2013 [15]. 

Planta 

Año de puesta 

en marcha Localización País 

Área de 

aper. [m2] 
Capacidad 

[kWth] 

Col. 

solares Acu. 

Ingelstad 1979 Ingelstad, Suecia 1320 924 FPC WTES 

Lambohov 1980 Lambohov, Suecia 2700 1890 FPC WTES 

Lyckebo 1983 Lyckebo, Suecia 4320 3024 FPC WTES 

Ingelstad 1984 Ingelstad, Suecia 2460 1722 FPC WTES 

Groningen 1985 Groningen, Holanda 2400 1680 ETC BTES 

Kerava 1985 Kerava, Finlandia 1100 770 FPC BTES 

Tubberupvænge 1991 Tubberupvænge, Dinamarca 1030 721 FPC WTES 

Friedrichshafen 1996 Friedrichshafen, Alemania 4050 2835 FPC WTES 

Hamburg 1996 Hamburg, Alemania 3000 2100 FPC WTES 

Marstal 1996 Marstal, Dinamarca 33300 23300 FPC WTES 

Neckarsulm 1997 Neckarsulm, Alemania 5670 3969 FPC BTES 

Neuchatel 1997 Neuchatel, Suiza 1120 784 UG WTES 

Augsburg 1998 Augsburg, Alemania 2000 1400 FPC ATES 

Hannover-Kronsberg 2000 Hannover-Kronsberg, Alemania 1350 945 FPC WGTES 

Rostock, B-höhe 2000 Rostock, Alemania 1000 700 FPC ATES 

Rise 2001 Rise, Dinamarca 3750 2503 FPC WTES 

2MW 2002 2MW, Holanda 2900 2030 FPC ATES 

Anneberg 2002 Anneberg, Suecia 2400 1680 FPC BTES 

Crailsheim 2003 Crailsheim, Alemania 7300 5110 FPC BTES 

Braedstrup 2007 Braedstrup, Dinamarca 18612 13027 FPC BTES 

München 2007 München, Alemania 2900 2030 FPC WTES 

Eggenstein 2008 Eggenstein, Alemania 1600 1120 FPC WGTES 

Łódź 2008 Łódź, Polonia 7368 5100 FPC ATES 

WTES = Water Thermal Energy Storage (Acumuladores térmicos en tanque de agua)  

ATES = Aquifer Thermal Energy Storage  

(Acumuladores térmicos en acuíferos) 

BTES = Borehole Thermal Energy Storage 

(Acumuladores térmicos en perforaciones en tierra)  

WGTES = Water / Gravel Thermal Energy Storage (Acumuladores térmicos de agua y grava)    

La planta más grande del mundo se puso en operación en febrero de 2014 en 

Dronninglund, Dinamarca. El campo solar consiste en un área de captadores de 37275 

m2 (26 MWth) y está diseñado para cubrir aproximadamente el 50% de la demanda 

anual de unos 1400 consumidores. El acumulador estacional es del tipo de 

acumuladores térmicos en balsa (“pit termal energy storage”, PTES) con un volumen de 

60000 m3 [16]. 
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En España, la gran mayoría de las grandes plantas solares construidas son con depósitos 

de pequeña capacidad o para sistemas de refrigeración. Una de las principales razones 

de que en España no exista ninguna central solar de distrito con acumulación estacional 

es la falta de redes de distrito de calor y frio [17]. 

Los principales equipos de las centrales solares de distrito con acumulación estacional 

son los captadores solares y los acumuladores estacionales. 

Existen cuatro tipos diferentes de captadores solares, los captadores planos sin cubierta 

(“unglazed EPDM collector”), los captadores planos (“flat plate”), los captadores de 

tubos de vacío (“evacuated tubes”) y los parabólicos (“parabolic trough”). Los 

captadores más utilizados en las centrales solares de distrito con acumulación estacional 

son los captadores planos de gran tamaño, ya que están especialmente diseñados para 

estas aplicaciones. Las ventajas de este tipo de captadores (ver figura 3) son su 

simplicidad, su robustez, el diseño de bajo mantenimiento y su grande y efectiva área 

[18].  

 
Figura 3. Captadores planos de gran tamaño de una planta solar térmica de distrito 

(Jaegerspris, Dinamarca). 

En cuanto a los acumuladores estacionales, existen principalmente cuatro tipos de 

acumuladores estacionales: 

- Acumuladores térmicos en tanque de agua (“tank thermal energy storage”, 

TTES); 

- Acumuladores térmicos en balsa (“pit thermal energy storage”, PTES); 

- Acumuladores térmicos en perforaciones en tierra (“borehole thermal energy 

storage”, BTES); 

- Acumuladores térmicos en acuíferos (“aquifer thermal energy storage”, ATES). 

El acumulador estacional escogido para este proyecto es del tipo de tanque de agua, 

que son estructuras sólidas aisladas y ubicadas sobre tierra o enterradas construidas “in-

situ” y su principal material de construcción es hormigón reforzado. Además, almacenan 

agua, que gracias a su alta capacidad calorífica favorece los procesos de carga y descarga 

del acumulador. Las principales ventajas de este tipo de acumulador son la buena 

adaptabilidad a cualquier condición del suelo, el mínimo impacto medio ambiental y la 

optimización del aislamiento térmico. Sin embargo, su principal desventaja es la alta 
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inversión necesaria debido a su complejidad geométrica, la construcción y materiales de 

aislamiento, y la excavación. 

En la figura 4, se observa el esquema del acumulador estacional utilizado en la planta 

solar de distrito con acumulador estacional localizada en Munich, Alemania [19]. 

 
Figura 4. Esquema de un acumulador estacional de tanque de agua construido en 

Munich, Alemania [19]. 

Una descripción más detallada de las grandes centrales solares en Europa y en España, 

y de sus equipos principales se encuentra en el Anexo A, Estudio y principales elementos 

de centrales solares de distrito con acumulador estacional. 
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3 DESCRIPCIÓN DEL CASO DE ESTUDIO 

El caso de estudio escogido como modelo en anteriores proyectos [12, 13] consistía en 

500 viviendas de 100 m2 situadas en el “Parque Goya” de Zaragoza. Debido a las 

limitaciones del programa POLYSUN se decidió utilizar el mismo caso pero reduciendo 

el número de viviendas a 200, cuyos resultados fueron expuestos en la Tesis de Máster 

en Sistemas Energéticos en la universidad de Gävle, Suecia [20]. Al comparar y analizar 

estos resultados se observaron ciertos problemas, por lo que se planteó reducir el 

número de viviendas a 100 para no trabajar en el límite superior del programa, y son los 

datos que se presentan en este proyecto. 

El sistema se subdivide en tres circuitos principales: circuito solar, circuito de ACS y 

circuito de calefacción. Además, este sistema produce agua caliente sanitaria a 60 ºC y 

agua caliente a 50 ºC para el sistema de calefacción, que es de baja temperatura porque 

se considera que se utiliza suelo radiante en las viviendas.  

 
Figura 5. Diagrama del sistema solar de distrito con acumulación estacional estudiado. 

En el circuito solar una mezcla compuesta por 33% de etilenglicol y agua, para proteger 

los captadores solares del peligro de congelación en las noches de invierno, circula por 

los captadores solares y la bomba del circuito solar (Psol). Los intercambiadores de calor, 

ex1 y ex2, conectan el circuito solar con el circuito de calefacción y el de ACS, 

respectivamente. La válvula V1 está diseñada para transferir el calor proveniente de los 

captadores solares, en primer lugar al depósito de ACS y cuando éste está lleno al 

depósito de acumulación estacional. Al contrario que el circuito de ACS, el depósito de 

acumulación estacional está conectado al sistema de distribución de calefacción a través 

de un tercer intercambiador de calor, ex3, el cual precalienta el agua de retorno del 

sistema de distribución de calefacción. El sistema también está formado por dos 

calderas auxiliares, las cuales pueden soportar toda la demanda, si fuera necesario. 
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Los captadores solares escogidos son ARCON HT-SA 28/8, que son captadores planos de 

gran tamaño, es decir, tienen un área mayor de 10 m2. Este tipo de captadores están 

diseñados para grandes instalaciones, y permiten un menor número de conexiones con 

el consiguiente ahorro de costes. Las principales características de estos captadores 

obtenidas del fabricante, se muestran en la figura 6. 

 
Figura 6. Características de los captadores solares del sistema [21]. 

El acumulador estacional es del tipo de tanque de agua. Debido a su gran capacidad, el 

proceso de carga y descarga es lento, lo que permite fácilmente almacenar energía del 

verano al invierno. Dos de las características más importantes de este tipo de 

acumuladores es que tienen que ser construidos “in situ” y su principal elemento de 

fabricación es hormigón reforzado. Por otro lado, se ha diseñado un depósito para el 

ACS, mucho más pequeño que el acumulador estacional, para conseguir en pocas horas 

de funcionamiento la temperatura requerida y para cubrir dos días de demanda de ACS 

sin contribución de energía solar. 

La operación del sistema consta de dos fases principales: carga y descarga. La fase de 

carga consiste en transferir el calor producido por los captadores solares al acumulador 

estacional y al depósito de ACS. Mientras que la fase de descarga consiste en transferir 

el calor almacenado en el acumulador estacional y en el depósito de ACS al sistema de 

distribución de calefacción y al de ACS, respectivamente. La fase de carga está dividida 

en tres modos de operación: carga combinada, solo ACS y solo calefacción, las 

especificaciones de ambas fases y de cada modo de operación se describen en el Anexo 

B, Descripción del caso de estudio y caracterización de sus elementos. Asimismo, en este 

anexo se describe con más detalle el caso de estudio. 
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4 DISEÑO DEL SISTEMA EN POLYSUN 

4.1 Características del modelo de POLYSUN 

El caso de estudio consiste en 100 viviendas de 100 m2 situadas en el “Parque Goya”, de 

Zaragoza. Las principales características de este sistema se muestran en la tabla 2. Como 

se ha comentado anteriormente, se ha tenido que reducir el número de viviendas 

estudiadas por las limitaciones de funcionamiento del programa POLYSUN, el cual tiene 

un límite máximo para el volumen del acumulador estacional y el tamaño de los 

intercambiadores de calor. 

Tabla 2. Características de los elementos del sistema en el caso de 100 
viviendas. 

Principales elementos Valor Unidades 

 
 Demanda 

térmica 

Demanda térmica anual 581,06 MWh/año 

Demanda anual de ACS 101,55 MWh/año 

Demanda anual de calefacción 479,51 MWh/año 

 Caudal específico en el circuito solar 20 kg/(h.m2) 

 
 

Captadores 
solares 

Área del campo solar 551,95 m2 

Área específica 13,57 m2 

Área de apertura 12,56 m2 

ηo 0,778  

a1 2,551 W/( m2.K) 

a2 0 W/( m2.K2) 

 
 

Acumulador 
estacional 

Volumen del acumulador estacional 3035,725 m3 

H/D ratio 0,6  

Altura (H) 11,17 m 

Diámetro (D) 18,16 m 

Conductividad térmica del aislamiento 0,04 W/(m.K) 

Espesor del aislamiento 320 mm 

 
 

Depósito de ACS 

Volumen del depósito de ACS 9,45 m3 

H/D ratio 1,5  

Altura (H) 3 m 

Diámetro (D) 2 m 

Conductividad térmica del aislamiento 0,04 W/(m.K) 

Espesor del aislamiento 90 mm 

Intercambiador 
ex1 y ex2 

U 3647,2 W/( m2.K) 

Área  61,52 m2 

Intercambiador 
ex3 

U 4254,7 W/( m2.K) 

Área  107,1 m2 

Bomba Psol Caudal 12,6 m3/h 

Potencia 3 kW  

Bombas P1 y P2 Caudal 10,3 m3/h 

Potencia 0,36 kW 

Bombas P3 y 
Pheat 

Caudal 21 m3/h 

Potencia 1,1 kW 

Calderas 
auxiliares    

Potencia máxima para ACS 38 kW 

Potencia máxima para calefacción 360 kW 
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En la figura 7, se muestra el diagrama del sistema diseñado con POLYSUN y las 

principales propiedades del campo solar y de los depósitos. 

 
Figura 7. Diagrama del sistema diseñado con POLYSUN. 

POLYSUN tiene una base de datos proporcionada por el programa Meteonorm [22] 

sobre las características de localización y la información climática de todas las ciudades. 

En cuanto al modelo utilizado para calcular la radiación solar corresponde al modelo 

Perez [23]. Estas dos características del programa no pueden ser modificadas por el 

usuario. 

Los captadores escogidos corresponden al catálogo de POLYSUN, aunque se han 

modificado ciertas características para obtener mayores similitudes con TRNSYS: se ha 

despreciado la capacidad térmica del captador y el porcentaje de fuerza del viento que 

afecta al campo solar, se han diseñado todos los captadores en paralelo y se ha 

introducido una inclinación en los captadores de 50º. Las principales características del 

campo solar introducidas en POLYSUN se muestran en la figura 8.  
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Figura 8. Principales características del campo solar. 

En cuanto a las tuberías, todas las tuberías tienen una longitud de 10 m, con la excepción 

de los conductos de entrada y de salida del campo solar que tienen una longitud de 500 

m. 

Con respecto a los depósitos, los principales parámetros introducidos han sido el 

volumen, la altura, el material del depósito, con sus propiedades y su espesor, y el 

material del aislamiento, con sus propiedades y su espesor en el fondo, en la parte de 

arriba y en las paredes laterales. Además, todos los depósitos en POLYSUN están 

divididos en doce niveles para considerar la temperatura de estratificación. En el 

acumulador estacional diseñado en TRNSYS solo se introducía el espesor del 

aislamiento, despreciando la resistencia térmica del material del depósito. Como en 

POLYSUN es necesario introducirlo, se ha supuesto un espesor de 500 mm en el material 

y ha sido necesario buscar las propiedades del aislamiento y del hormigón para 

introducirlas en el programa. También se ha modificado el material del depósito por el 

material del aislamiento para obtener las mismas características de construcción que en 

TRNSYS, en la parte exterior el hormigón y en la interior el aislamiento, estas 

características se pueden observar en la figura 9. Mientras que para el depósito de ACS, 

no ha sido necesario realizar esta modificación debido a que no hay diferencias entre 

los dos programas de simulación. 
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Figura 9. Principales parámetros del acumulador estacional. 

Los principales parámetros introducidos en las calderas han sido la potencia, la potencia 

mínima, el rendimiento, el tipo de fuel y el caudal. Para el caso de estudio, se han elegido 

calderas del catálogo de POLYSUN y se ha modificado el rendimiento. Los controladores 

de las calderas tienen histéresis, y para este caso, se ha elegido ±3ºC de la temperatura 

de referencia, que para calefacción es 50ºC y para ACS es 60ºC. 

Para todos los intercambiadores de calor, los principales parámetros a introducir son la 

capacidad de transmisión (UA), la longitud, la altura, la anchura y el número de placas. 

La anchura y la altura tienen el mismo valor, y se calculan a través del área y del número 

de placas del intercambiador.  

En cuanto a las bombas, se tiene que introducir la curva de la bomba, incluyendo los 

principales puntos de esta curva y para cada punto se tiene que especificar la potencia, 

el caudal y la presión. Además, debido al gran tamaño de las bombas utilizadas en el 

caso de estudio de este proyecto, el catálogo de POLYSUN no posee bombas tan grandes 

y ha sido necesario introducir punto por punto la curva de cada bomba. 

La demanda de calefacción se define a través del edificio, donde es necesario introducir 

la demanda térmica sin contabilizar la demanda de ACS al mes, las pérdidas de energía 

(ventilación + transmisión) al mes, el área calefactada y la temperatura nominal. 

Además, las pérdidas de energía tienen que ser entre 2 y 8 veces la demanda térmica, 

por lo que se ha supuesto un valor de 4. Por otro lado, la demanda de ACS se establece 

en litros por día al mes y POLYSUN calcula la energía térmica requerida para ACS. 

La operación del sistema se controla a través de ocho regulaciones diferentes, que son: 

la regulación de la válvula V1, la de la válvula V2, la de la bomba P3, la regulación de 

calefacción, la regulación de la caldera de calefacción, la de la caldera de ACS, la de la 

válvula V3 y la de la válvula V4. Todas éstas son regulaciones proporcionadas por 

POLYSUN, con la excepción de las regulaciones de la válvula V1, de la válvula V2 y de la 

bomba P3, que son regulaciones específicamente diseñadas para este sistema. En la 

figura 10, se muestra la regulación de la válvula V1, donde ha sido necesario 

implementar todos los casos posibles de operación de esta válvula. 
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Figura 10. Regulación de la válvula V1. 

Una descripción más completa del modelo del sistema analizado que se ha construido 

en POLYSUN se encuentra en el Anexo D, Programas. 
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4.2 Procedimiento utilizado para construir el modelo de POLYSUN 

POLYSUN es un programa de simulación con una gran variedad de configuraciones 

predefinidas de sistemas solares para aplicaciones domésticas, pero está 

fundamentalmente orientado a instalaciones domésticas pequeñas y no a grandes 

sistemas centralizados, por lo que ninguna de las configuraciones proporcionada por el 

programa POLYSUN es similar al caso de estudio analizado en este proyecto. Debido a 

esto, se ha utilizado el nivel de diseñador para construir el modelo del caso de estudio. 

Puesto que la información proporcionada en la documentación del programa es escasa 

y limitada, se ha construido el modelo llevando a cabo los diferentes pasos que se 

explican a continuación.  

A la hora de implementar el caso de estudio en POLYSUN se ha decidido abordarlo 

estudiando por separado los tres circuitos principales: circuito solar, circuito de 

calefacción y circuito de ACS. De esta forma se puede visualizar la forma de trabajar de 

cada circuito de una manera más detallada y se puede comprender mejor como trabaja 

el programa. Además, de este modo es más fácil diseñar las regulaciones de la forma 

más óptima. POLYSUN permite realizar un análisis de simulación, donde se observan los 

valores de caudal y temperatura de cada elemento y en cada paso de simulación y se 

puede conocer cuándo y cómo las regulaciones funcionan y si están alcanzando las 

condiciones requeridas, haciendo que sea más fácil encontrar si existe algún problema 

en el circuito. 

El primer circuito diseñado ha sido el circuito solar, en el que se ha simulado el campo 

solar, la bomba del campo solar, el intercambiador de calor para transferir el calor del 

fluido solar al agua, la bomba del circuito con agua y una piscina. Para que los resultados 

fuesen lo más representativos posibles, se han escogido el número total de captadores 

solares de sistema y se ha dimensionado la piscina con un volumen similar al de ambos 

depósitos y con altas temperaturas. El diagrama de este circuito se muestra en la figura 

11. 

 
Figura 11. Diagrama del circuito solar. 
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El siguiente paso ha consistido en modelar y analizar el circuito de ACS, que consiste en 

modificar la piscina del circuito solar e introducir el depósito de ACS, la caldera de ACS y 

la red de distribución de ACS. Como la caldera de ACS se ha dimensionado para poder 

atender sola toda la demanda en caso de parada o avería en el sistema solar, 

previamente a este circuito, se ha modelado el circuito con la caldera de ACS y la red de 

distribución para comprobar esa condición de dimensionamiento y para diseñar las 

regulaciones correspondientes a este circuito de una manera más simple. El diagrama 

del circuito de ACS se muestra en la figura 12, donde se observan todos los elementos 

de este circuito y las regulaciones que han sido necesarios introducir. 

 
Figura 12. Diagrama del circuito de ACS. 

Siguiendo un procedimiento similar al del circuito de ACS, se ha modelado el circuito de 

calefacción. Primero se ha creado el circuito de la caldera de calefacción con la red de 

distribución de calefacción y luego el circuito completo. En este caso, el circuito 

simplificado, formado únicamente por la caldera y la red de distribución, ha tenido 

mayor importancia que el correspondiente al de ACS, ya que la red de distribución de 

calefacción está compuesta por más elementos y las regulaciones a diseñar también son 

más complejas. Para reducir esta complejidad se ha decidido dividir la regulación de la 

calefacción en tres regulaciones diferentes, a pesar de que POLYSUN permite regularlo 

todo junto. En la figura 13, se muestra el diagrama del circuito de calefacción con todas 

las regulaciones necesarias para este circuito. 

 
Figura 13. Diagrama del circuito de calefacción. 
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El último paso ha sido juntar los tres circuitos para crear el sistema del caso de estudio. 

Para ello ha sido necesario diseñar dos nuevas regulaciones, las de las dos válvulas 

pertenecientes al circuito solar, que controlan el caudal entre el campo solar y los 

depósitos y el funcionamiento de las bombas Psol, P1 y P2. POLYSUN no tiene pre-

configurada ningún tipo de regulación con las características de estos controles, por lo 

que ha sido necesario diseñarlas. El diagrama del sistema completo con las 

características de los captadores solares y de los depósitos se muestra en la figura 14. 

 
Figura 14. Diagrama del caso de estudio. 

Una explicación más detallada de cada uno de los pasos seguidos en este procedimiento 

se encuentra en el Anexo C, Programas.  

 

 

 

 

 



20 

 

5 RESULTADOS 

Como se ha explicado en capítulos anteriores, el primer sistema estudiado con POLYSUN 

consistía en 200 viviendas, cuyos resultados fueron expuestos en la Tesis de Máster en 

Sistemas Energéticos presentada en la Universidad de Gävle (Suecia) [20]. Al comparar 

y analizar los resultados obtenidos se detectaron ciertos problemas al encontrarse el 

modelo desarrollado muy próximo al límite máximo de algunos equipos, por lo que se 

planteó el reducir el número de viviendas a 100, que es el número de viviendas utilizado 

en este proyecto. 

La forma de calcular los parámetros característicos de cada elemento del sistema está 

explicada en el Anexo B, Descripción del caso de estudio y caracterización de sus 

elementos, en el que también se explica la manera de modificar estos parámetros para 

modelar el sistema en distintas zonas climáticas. Las características principales y los 

parámetros a introducir en cada elemento de cada programa usado en este proyecto, 

TRNSYS y POLYSUN, se explican en el Anexo C, Programas, y los resultados de cada 

elemento proporcionado por cada programa, la diferencia entre estos y el análisis 

geográfico se presentan en el Anexo D, Resultados. Con esta información, se han 

subdividido los resultados obtenidos atendiendo a los principales objetivos del proyecto 

que son: 

 El análisis del sistema en POLYSUN correspondiente a una instalación que tiene 

que atender las demandas de ACS y calefacción de 100 viviendas de 100 m2 

situadas en Zaragoza; 

 La comparativa entre TRNSYS y POLYSUN; 

 El análisis geográfico de diferentes ciudades de España con diferentes 

condiciones climáticas. 
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5.1 Análisis del sistema en POLYSUN 

El balance energético anual del sistema diseñado con el programa POLYSUN se muestra 

en la figura 15. Los resultados obtenidos son la radiación solar (Rsol), el calor cedido por 

el campo solar (Qsol), el calor cedido al sistema por las bombas (Q), el calor transferido 

por los intercambiadores de calor (Qxfr), el calor de entrada (Qen) y salida de los 

depósitos (Qsal), el consumo de energía (E) y el calor generado por las calderas (Q), la 

demanda térmica calculada por el programa (Qd) y la demanda térmica calculada a 

través de los elementos del sistema (Qin). Además, los resultados en color rojo son 

resultados calculados a través de un balance de energía y los de color negro son 

resultados directamente proporcionados por el programa. 

 
Figura 15. Balance energético anual. 

En la figura 16 se muestra la radiación solar absorbida por los captadores solares, el calor 

cedido al sistema por el campo solar y el rendimiento de los captadores. 
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Figura 16. Radiación solar y calor cedido al sistema (izquierda) y el rendimiento de los 

captadores solares (derecha). 

En cuanto a los intercambiadores de calor, existen tres intercambiadores en el sistema 

(ex1, ex2 y ex3) y en la tabla 3 se muestran el calor a la entrada, a la salida y las pérdidas 

de cada intercambiador. 

Tabla 3. Parámetros característicos de cada intercambiador de calor. 
  POLYSUN 

 [kWh] Qen ex1 P ex1 Qsal ex1 η ex1 Qen ex2 P ex2 Qsal ex2  η ex2 Qen ex3  P ex3 Qsal ex3 η ex3 

Enero 17.377 129,6 17.247 99,3% 9.431 147,4 9.283 98,4% 13.631 146,4 13485 98,9% 

Febrero 21.994 115,3 21.879 99,5% 9.732,4 149,3 9.583 98,5% 21.453 129,5 21324 99,4% 

Marzo 35.467 112,9 35.354 99,7% 10.458,1 159,6 10.299 98,5% 34.411 122,5 34288 99,6% 

Abril 34.279 93,9 34.185 99,7% 8.921,3 141,7 8.780 98,4% 30.808 95,4 30713 99,7% 

Mayo 35.041 90,6 34.951 99,7% 8.185,4 140,4 8.045 98,3% 0 0 0   

Junio 34.305 99,8 34.205 99,7% 7.270 140,6 7.129 98,1% 0 0 0   

Julio 39.074 135,8 38.938 99,7% 4.688 147,6 4.541 96,9% 0 0 0   

Agosto 39.709 173,5 39.536 99,6% 2.929,7 160 2.770 94,5% 0 0 0   

Septiembre 30.311 209,2 30.102 99,3% 6.279 168,9 6.111 97,3% 0 0 0   

Octubre 21.882 192,3 21.689 99,1% 8.739,2 155,7 8.584 98,2% 61.407 208,9 61198 99,7% 

Noviembre 14.282 163,6 14.118 98,9% 10.050,7 158,1 9.893 98,4% 57.392 205,5 57187 99,6% 

Diciembre 11.140 132,9 11.007 98,8% 10.134,7 162,4 9.972 98,4% 68.310 177,5 68132 99,7% 

Anual 334.860 1649,3 333.211 99,5% 96.819 1.831,7 94.987 98,1% 287.413 1108,5 286304 99,6% 

Qen = Calor a la entrada del intercambiador [kWh] Qsal = calor a la salida del intercambiador [kWh] L = pérdidas [kWh] 

Se ha impuesto que los intercambiadores sean adiabáticos y que las capacidades 

caloríficas de las corrientes sean las mismas en ambos lados. Para verificar si estas 

condiciones se cumplen en todos los intercambiadores, se ha calculado la variación de 

temperaturas en cada lado del intercambiador multiplicándola por el caudal, para 

analizar cuándo el intercambiador está en funcionamiento, y se ha comprobado si este 

valor es similar en ambos lados.  
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Para el intercambiador ex1 se ha obtenido una diferencia anual de 1,68% y una 

diferencia máxima de 2,49%, para el intercambiador ex2 la diferencia anual es de 3,36% 

y la máxima de 11,67% y para el intercambiador ex3 la diferencia anual es de 0,2% y la 

máxima de 0,52%. 

En la tabla 4, se observa el calor a la entrada y a la salida, las pérdidas y el rendimiento 

de los depósitos de ACS y el acumulador estacional. 

Tabla 4. Calor a la entrada, a la salida, pérdidas y rendimiento de cada depósito. 
  ACUMULADOR ESTACIONAL DEPÓSITO DE ACS 

[kWh] Qentrada Pérdidas Qsalida η Qentrada Pérdidas Qsalida η 

Enero 17172 2813 13681 83,6% 9207,4 189,3 9018,1 97,9% 

Febrero 21799 2851 21494 86,9% 9503,6 202,9 9300,7 97,9% 

Marzo 35280 1328 34448 96,2% 10219,2 214,3 10004,9 97,9% 

Abril 34127 2875 30849 91,6% 8702,7 204,6 8498,1 97,6% 

Mayo 34895 -786 0 102,3% 7966,2 211,4 7754,8 97,3% 

Junio 34138 1889 0 94,5% 7047,1 228,6 6818,5 96,8% 

Julio 38844 3621 0 90,7% 4442,4 264,1 4178,3 94,1% 

Agosto 39413 5030 0 87,2% 2674,7 272,7 2402,0 89,8% 

Septiembre 29956 7227 0 75,9% 6014,1 267,5 5746,6 95,6% 

Octubre 21581 6964 61552 67,7% 8491,4 269,3 8222,1 96,8% 

Noviembre 14047 6694 57527 52,3% 9800,8 259,2 9541,6 97,4% 

Diciembre 10936 4104 68386 62,5% 9881,3 236,4 9644,9 97,6% 

Anual 332188 44611 287937 86,6% 93950,8 2820,1 91130,7 97% 

Algo importante a remarcar de la tabla 4 es el valor negativo de las pérdidas en mayo, 

debido a esto el rendimiento es mayor del 100%, aunque el valor es pequeño, es un 

1,76% del total de las pérdidas, es significativo su signo negativo. Por este motivo se ha 

comprobado si la temperatura exterior es mayor que la del agua en el interior del 

acumulador a lo largo de este mes, pero lo que se ha obtenido es que la temperatura 

exterior siempre es menor que la temperatura del acumulador. En la figura 17, se 

muestra la temperatura máxima, mínima y a nivel intermedio del acumulador estacional 

durante todo el año, donde se puede observar que el proceso de carga y descarga es 

lento, que es una característica de este tipo de acumuladores estacionales. 

 
Figura 17. Temperatura mínima (azul), máxima (rojo) y a nivel intermedio (morado) del 

acumulador estacional. 
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En POLYSUN, la demanda de ACS y de calefacción es un dato de entrada proporcionado 

por el usuario. Sin embargo, el programa calcula el calor necesitado, que es el calor que 

finalmente se obtiene del sistema. En el caso de ACS, el programa intenta llegar a la 

demanda especificada en todos los meses. Sin embargo, en el caso de la calefacción, el 

calor necesitado se obtiene a partir de la simulación del suelo radiante, tal y como se 

explica en el manual de POLYSUN: “La modelización del módulo calentador se puede 

inferir de sus características específicas de emisión, de su relación de potencia y caudal 

y de la temperatura de ida y retorno. Basándose en los valores indicados, se podrá llevar 

a cabo una simulación incluso sin utilizar los datos inherentes al edificio definidos en la 

ventana de diálogo usuarios. Las dinámicas estacionales lado usuario, sin embargo, ya 

no serán relevantes para este componente.” [24].  

En la figura 18 se muestra la demanda de calefacción introducida y la calculada por el 

programa y la diferencia entre estos valores. 

 
Figura 18. Demanda de calefacción introducida y la calculada (izquierda) y la diferencia 

entre estos valores (derecha). 

De la figura 18, es importante remarcar que a pesar de la pequeña diferencia anual entre 

la demanda de calefacción introducida y la calculada se aprecian unas grandes 

diferencias en octubre y abril. De acuerdo con la demanda de ACS, no hay una gran 

diferencia entre la demanda introducida y la calculada, la diferencia anual es de 3,34% 

y la máxima corresponde a enero es de 9,87%. 
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Para calcular la fracción solar se pueden aplicar dos procedimientos diferentes: 

A. Consiste en calcular la ratio de calor cedido por el campo solar con respecto al 

calor total necesitado, es decir el calor cedido por el campo solar más el calor 

generado por las calderas. 

B. Consiste en calcular la ratio de la suma del calor a la salida del intercambiador 

ex3 y el del depósito de ACS con respecto al calor total necesitado, que 

corresponde a la suma del calor a la salida del intercambiador ex3, el del depósito 

de ACS y el calor generado por las calderas. Con este procedimiento, se puede 

calcular separadamente la fracción solar correspondiente al ACS y a la 

calefacción. 

En la tabla 5, se observan los valores para este sistema de cada fracción solar, que son 

la fracción solar de ACS (FSACS), la fracción solar de calefacción (FScal), la fracción solar 

calculada por el procedimiento B (FS) y la fracción solar calculada por el procedimiento 

A (FS solar). Además, el programa POLYSUN genera como dato la fracción solar calculada 

por el procedimiento A, que corresponde a FS solar dada. 

Tabla 5. Fracciones solares. 
  POLYSUN 

  FS ACS FS cal FS FS solar FS solar dada 

Enero 78,1% 14,4% 21,4% 26,4% 26,4% 

Febrero 87,9% 27,9% 35,1% 37,9% 37,9% 

Marzo 92,6% 61,6% 66,7% 68,7% 68,7% 

Abril 90,5% 84,2% 85,5% 87,2% 87,2% 

Mayo 94,2%   94,2% 99% 99% 

Junio 100%   100% 100% 100% 

Julio 100%   100% 100% 100% 

Agosto 100%   100% 100% 100% 

Septiembre 100%   100% 100% 100% 

Octubre 99,3% 100% 99,9% 99,8% 100% 

Noviembre 93,7% 100% 99% 97,8% 100% 

Diciembre 86,1% 73,7% 75% 48,7% 48,7% 

Anual 92% 60,8% 66,2% 71% 71% 

De la tabla 5, es importante remarcar la pequeña diferencia entre la fracción solar 

calculada a través del procedimiento A y la proporcionada por el programa, siendo la 

diferencia anual de 0,04% y la máxima diferencia, que corresponde a noviembre, de 

2,29%. 

De los resultados explicados del programa POLYSUN, el mayor problema encontrado ha 

sido la diferencia en algunos meses entre la demanda introducida y la calculada por 

POLYSUN, a pesar de la pequeña diferencia anual existente. 
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5.2 Comparativa entre TRNSYS y POLYSUN 

5.2.1 Diferencias entre TRNSYS y POLYSUN 

Una de las principales diferencias entre ambos programas es que POLYSUN tiene una 

interfaz más visual y atractiva que TRNSYS. Además, POLYSUN tiene la posibilidad de 

crear un análisis en la simulación, que es una parte visual del programa, donde se 

pueden observar los valores de caudal y temperatura en cada elemento y en cada paso 

de simulación, y también se puede conocer cuándo y cómo las regulaciones funcionan y 

si están alcanzando las condiciones requeridas. Sin embargo, la cantidad de datos 

necesarios para caracterizar los elementos del sistema es mayor en POLYSUN que en 

TRNSYS y hay un elemento, el suelo radiante, que es necesario introducirlo en POLYSUN 

pero no en TRNSYS. 

Tanto POLYSUN como TRNSYS obtienen los parámetros de las condiciones ambientales, 

tales como la información climática y el perfil de las temperaturas del agua fría, de otros 

programas, los valores utilizados en POLYSUN son proporcionados por Meteonorm [22] 

y los de TRNSYS por Energy Plus [25]. Además, los valores obtenidos con POLYSUN no 

pueden ser modificados por el usuario, mientras que los de TRNSYS son introducidos a 

través de ficheros de texto y sí que se pueden modificar. En cuanto a los modelos para 

calcular la radiación absorbida por los captadores solares, TRNSYS proporciona cuatro 

modelos diferentes, el modelo isotrópico, el modelo Hay y Davies, el modelo Reindl y el 

modelo Perez [23]. Mientras que con POLYSUN sólo se puede utilizar el modelo Perez, y 

por esta razón, se ha elegido este modelo para llevar a cabo la comparativa entre 

TRNSYS y POLYSUN. 

La demanda de ACS y la de calefacción se definen en TRNSYS a través de ficheros de 

texto, donde se introduce la demanda por hora, y en POLYSUN, se introduce la demanda 

al mes en kWh para calefacción y el caudal diario al mes para la demanda de ACS. 

En el sistema modelado con POLYSUN, se han conectado todos los componentes a través 

de tuberías con una longitud de 10 metros, con la excepción de las tuberías de entrada 

y de salida del campo solar que tienen una longitud de 500 m. Sin embargo en TRNSYS, 

solo se han considerado dos tuberías, la de entrada y la de salida del campo solar, con 

una longitud cada una de 500 m. 

Para el modelado de los depósitos, en POLYSUN es necesario especificar el material de 

construcción del depósito y el material del aislamiento, sin embargo en TRNSYS solo se 

requiere el material del aislamiento, despreciando la resistencia térmica 

correspondiente al material del depósito. 

En cuanto a los datos a introducir para caracterizar los parámetros principales de las 

bombas, en TRNSYS sólo es necesario introducir la potencia máxima y el caudal máximo 

de cada bomba. Mientras que en POLYSUN es necesario introducir los puntos 

característicos de la curva de la bomba. 
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En relación a los controladores, se han intentado diseñar todas las regulaciones de 

POLYSUN de la misma manera que las definidas en TRNSYS, pero en las regulaciones de 

las calderas auxiliares no ha sido posible, porque POLYSUN obliga a introducir una 

histéresis en la regulación, mientras que TRNSYS trabaja sin ésta. La histéresis elegida 

ha sido ±3ºC con respecto a la temperatura de referencia, que es 50ºC para la 

calefacción y 60ºC para el ACS. 

Al comparar los dos sistemas, es importante conocer el modelo de cálculo de los equipos 

a la hora de realizar las simulaciones. Para POLYSUN, no ha sido posible conocer una 

parte de esta información, debido a la poca información proporcionada en el manual del 

programa y por la ayuda técnica. 

La manera de obtener los resultados en cada programa es distinta. En TRNSYS, los 

resultados son escogidos por el usuario y para el caso de estudio ya fueron seleccionados 

en anteriores proyectos [11,12], por lo que en este proyecto, solo ha sido necesario 

realizar un cambio de unidades, ya que TRNSYS genera los resultados en GJ y POLYSUN 

en kWh. En cambio, POLYSUN siempre genera los mismos resultados en forma mensual, 

ya que están pre-configurados y no da la posibilidad de seleccionar los resultados que el 

usuario crea más convenientes. Los resultados necesarios para realizar el análisis y la 

comparativa se han obtenido de POLYSUN de tres formas diferentes, una pequeña parte 

ha sido proporcionada por el programa en forma mensual, otra parte en base horaria y 

con la ayuda de una tabla dinámica se han modificado a base mensual, y el resto han 

sido calculados a través de un balance energético. 

En la tabla 6 se recogen de forma resumida las principales diferencias entre TRNSYS y 

POLYSUN, que han sido explicadas de manera más detallada a lo largo de este capítulo. 
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Tabla 6. Principales diferencias entre TRNSYS y POLYSUN. 
ELEMENTOS POLYSUN TRNSYS 

 
Interface 

Más visual. Tiene la posibilidad 
de crear un análisis de 
simulación. 

Diferentes tipos de elementos. 

Programa del que se obtiene la 
información climática 

Metenorm. Energy Plus. 

Información climática y perfil de 
temperaturas de agua fría. 

Dado por el programa eligiendo 
la localización. 

Introducido a través de un fichero 
de texto. 

Modelo para calcular la radiación 
solar absorbida por el campo solar 

Modelo Perez. Tiene cinco diferentes modelos, 
entre ellos el modelo Perez. 

Demanda de ACS Se introduce el caudal diario al 
mes. 

Se introduce la demanda por 
hora en un fichero de texto. 

Demanda de calefacción Se introducen los kWh al mes. Se introduce la demanda por 
hora en un fichero de texto. 

Parámetros introducidos para 
cada elemento del sistema 

Necesita más información para 
caracterizar cada elemento. 

Necesita menos información. 

Tuberías Todos los elementos están 
conectados a través de tuberías. 

Solo hay dos, a la entrada y a la 
salida del campo solar. 

Materiales de los depósitos Necesita los valores para el 
material de construcción y el del 
aislamiento. 

Necesita la información solo para 
el aislamiento. 

Características de construcción de 
los depósitos 

En la parte interior el material 
de construcción y en la parte 
exterior el aislamiento. 

En la parte interior el aislamiento. 
Se desprecia el material de 
construcción. 

Suelo radiante Es un elemento esencial para 
calcular la demanda de 
calefacción. 

No existe. 

Reguladores de las calderas 
auxiliares 

Tienen histéresis con un valor 
de ±3ºC de la temperatura de 
referencia. 

No tienen histéresis. 

Características de las bombas Hay que introducir los 
principales puntos de la curva 
de la bomba. 

Se introduce la potencia máxima 
y el caudal máximo. 

Cambio del número de viviendas o 
de la localización 

Es necesario modificar todos los 
parámetros de cada elemento. 

Solo es necesario modificar unos 
pocos valores, aplicando 
relaciones de semejanza. 

 
Forma de obtener los resultados 

No es posible elegir los 
resultados. Algunos de ellos hay 
que calcularlos a través de un 
balance de energía. 

Es posible elegir los resultados. 
Para la comparativa, solo es 
necesario cambiar de unidades. 
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5.2.2  Comparativa de resultados entre TRNSYS y POLYSUN 

La comparativa de los resultados entre TRNSYS y POLYSUN se ha hecho tomando como 

referencia TRNSYS, por lo que todos los valores negativos significan que los resultados 

de POLYSUN son mayores que los de TRNSYS, y todos los valores positivos significan lo 

contrario. 

La diferencia en el balance energético anual entre ambos programas para el caso 

analizado de 100 viviendas de 100 m2 situadas en Zaragoza se muestra en la figura 19. 

 
Figura 19. Diferencia en el balance energético anual entre ambos programas. 

Observando la figura 19, se puede remarcar la pequeña diferencia existente en los 

rendimientos de los depósitos, del campo solar, y de la caldera de calefacción y en la 

variación anual entre las demandas de ambos programas. Por otro lado, hay una gran 

diferencia en el consumo de energía de las bombas; en las pérdidas y en el calor cedido 

al sistema por la bomba P3 y en el calor generado, el consumo de energía y las pérdidas 

en ambas calderas. Una de las principales razones de la diferencia existente en los 

resultados de las bombas es la manera de introducir los parámetros característicos de 

estas en cada programa. En TRNSYS sólo se introduce la potencia máxima y el caudal 

máximo, mientras que en POLYSUN es necesario introducir los puntos principales de la 

curva de cada bomba. 

En la tabla 7 se observan las diferencias en los principales parámetros del circuito solar, 

que son la radiación global, la temperatura exterior, la radiación solar absorbida por los 

captadores, el calor cedido al sistema por el campo solar, el rendimiento de los 

captadores, el calor a la salida del intercambiador ex1 y el ex2 y la suma de ambos 

calores. 



30 

 

Tabla 7. Diferencia en los principales parámetros del circuito solar. 

Diferencia Radiación global 
Temperatura 

exterior 
Radiación solar 

Calor 

cedido 
η Q salida ex1 Q salida ex2 ex1+ex2 

Enero 2,2% -6,5% 4% 8,4% 4,6% 17,9% -4,8% 11,2% 

Febrero 0,3% 3,3% 5,8% 13,3% 7,9% 23,4% -6,2% 16,3% 

Marzo -6,8% -9,6% 1,1% 9,2% 8,2% 16,4% -13,3% 11,1% 

Abril -6,5% -5,6% 2,6% 12,3% 10% 16,7% 0,3% 13,8% 

Mayo -3,4% -4,8% 6,1% 18,5% 13,2% 24% -3,5% 20,1% 

Junio -3,3% -8,7% 6% 17,4% 12,1% 23,2% -13,6% 18,7% 

Julio 0% 0,1% 8,5% 17,9% 10,3% 21,9% -7,5% 19,6% 

Agosto 1,4% -2% 9,2% 13,5% 4,7% 16,5% -19,6% 14,8% 

Septiembre -1,2% 1,9% 3,5% -22% -26,4% -26,2% -8,6% -22,9% 

Octubre 5,3% -3,7% 10,7% 2,7% -8,9% 5,9% -14,2% 1% 

Noviembre 34,5% 0,4% 5,7% 14,6% 9,4% 36,9% -33,1% 19,5% 

Diciembre 4,5% -2,4% 9,8% 17,5% 8,5% 43% -24,7% 23,2% 

Anual -- --      6,1% 11,3% 5,5% 18,6% -11,8% 13,4% 

La diferencia entre la radiación global y la radiación solar es la inclinación de los 

captadores solares, que para el caso de estudio es de 50º. A pesar de este dato, existe 

una variación en el mes donde se produce la máxima diferencia en la radiación solar y 

en la global, noviembre para la global y octubre para la solar. Una de las razones de esta 

diferencia es que los datos de las condiciones ambientales son obtenidos de diferentes 

programas para cada caso. 

Al comparar la radiación solar y el calor cedido al sistema, se puede apreciar que la 

diferencia máxima también varía, siendo mayor para el calor cedido y obteniéndose en 

septiembre, mientras que para la radiación solar es en octubre, a pesar de haber elegido 

los mismos captadores solares en ambos programas. Una explicación de esto puede ser 

que ha sido necesario introducir más información sobre los captadores solares en 

POLYSUN que en TRNSYS, y este hecho ha afectado a los resultados obtenidos. 

En valores anuales no hay una gran diferencia en el rendimiento de los captadores entre 

ambos programas, pero al observar los valores mensuales, se puede apreciar que la 

máxima diferencia corresponde a septiembre con un valor de -26,44%, que significa que 

el rendimiento calculado con POLYSUN es mayor que con TRNSYS. 

De la tabla 7, también es importante remarcar el valor negativo en septiembre de la 

suma del calor a la salida de los intercambiadores ex1 y ex2, que coincide con el mismo 

mes que el calor cedido por el campo solar. Además, tienen valores anuales parecidos, 

teniendo en cuenta que es el calor a la salida y no a la entrada, que no se ha podido 

obtener porque TRNSYS no lo proporciona. También se observa que en POLYSUN 

transfiere más calor al circuito de ACS que TRNSYS y menos al de calefacción. 

En la tabla 8 se muestran las diferencias entre los resultados más importantes del 

circuito de ACS, que son el calor a la salida del intercambiador ex2, el calor a la entrada, 

a la salida y el rendimiento del depósito de ACS y el consumo de energía, el calor 

generado, las pérdidas y el rendimiento de la caldera de ACS. 
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Tabla 8. Diferencias entre los resultados más importantes del circuito de ACS. 

Diferencia Q salida ex2 
Q entrada 

depósito 

Q salida 

depósito 
η depósito 

Energía 

caldera 
Q caldera 

Pérdidas 

caldera 
η caldera 

Enero -4,8% -3,6% -4% -0,4% 33,1% 36,1% -38,7% 4,5% 

Febrero -6,2% -5% -7% -1,9% 39,6% 44,3% -72,5% 7,7% 

Marzo -13,3% -12,1% -12,4% -0,3% 61,3% 66% -53,3% 12,3% 

Abril 0,3% 1,4% 0,3% -1,1% -28,5% -15,1% -350,2% 10,4% 

Mayo -3,5% -2,3% -2,8% -0,5% -7,1% 11% -441,7% 16,9% 

Junio -13,6% -12% -12,7% -0,6% 95,2% -- -249,4% -- 

Julio -7,5% -5% -6% -0,9% 99,1% -- -1607,1% -- 

Agosto -19,6% -15,4% -9,1% 5,4% -- -- -3878,6% -- 

Septiembre -8,6% -6,7% -5,8% 0,9% 98,7% -- -939,3% -- 

Octubre -14,2% -12,8% -9,3% 3,1% 77,8% 92,1% -265,3% 64,5% 

Noviembre -33,1% -31,4% -32,8% -1,1% 76,4% 80% -10,6% 15,3% 

Diciembre -24,7% -23,1% -22,4% 0,6% 58,6% 61,6% -12,9% 7,2% 

Anual -11,8% -10,3% -10,4% -0,1% 51,8% 58,3% -106,4% 13,6% 

De los resultados del depósito de ACS, se aprecia que las diferencias anuales de todos 

los parámetros son negativas, lo que significa que los valores de POLYSUN son mayores 

que los de TRNSYS. Además, es importante remarcar la pequeña diferencia en el 

rendimiento del depósito, de lo que se puede deducir que ambos depósitos están 

funcionando de una forma similar. Por otro lado, también es importante remarcar las 

grandes diferencias en noviembre y diciembre en el calor a la entrada y a la salida del 

depósito, que también ocurren en el calor a la salida de intercambiador ex2. 

En la caldera de ACS, donde no aparecen valores del consumo de energía, del calor 

generado y del rendimiento significan que en esos meses la caldera en POLYSUN no está 

trabajando. Además, hay una gran diferencia en las pérdidas de la caldera de ACS en 

agosto y julio. 

En POLYSUN, no hay una gran diferencia entre la demanda de ACS introducida y la 

calculada, la diferencia anual es de 3,34% y la máxima corresponde a enero y es de 9,87% 

y al compararlo con TRNSYS no hay ninguna diferencia entre ambas demandas. 

En la tabla 9, se presentan las diferencias de los principales resultados obtenidos del 

circuito de calefacción, que son el calor a la salida del intercambiador ex1, el calor a la 

entrada, a la salida y el rendimiento del acumulador estacional, el consumo de energía, 

el calor generado y el rendimiento de la caldera de calefacción y la diferencia entre la 

demanda introducida y la calculada en POLYSUN. 
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Tabla 9. Diferencia de los principales resultados del circuito de calefacción. 

Diferencia 
Q salida 

ex1 

Q entrada 

acumulador 

Q salida 

acumulador 

η 

acumulador 

Q salida 

ex3 

Energía 

caldera 
Q caldera η caldera Demanda 

Enero 17,9% 18,4% 75,4% 5,1% 75,8% -34,8% -33,5% 1% 19,4% 

Febrero 23,4% 23,7% 21,3% 6,5% 22,1% -5% -3,6% 1,3% 5,3% 

Marzo 16,4% 16,6% 10,9% -2% 11,5% -31,9% -28% 2,9% -0,1% 

Abril 16,7% 16,9% -69,3% 2,1% -68,2% -2442% -2292% 5,9% -97,3% 

Mayo 24% 24,2%   -10,8%           

Junio 23,2% 23,4%   -5,7%           

Julio 21,9% 22,2%   -3,8%           

Agosto 16,5% 16,8%   -3,9%           

Septiembre -26,2% -25,4%   -15,3%           

Octubre 5,9% 6,5% -493,2% -7,7% -487,6%      -476% 

Noviembre 36,9% 37,3% 13,7% 23,6% 14,2%       15,8% 

Diciembre 43% 43,4% 48,3% 14,7% 48,5%       30,2% 

Anual 18,6% 18,9% 17,5% -1,6% 18,1% -46,1% -42,2% 2,7% 2% 

De la tabla 9, es importante remarcar las pequeñas diferencias existentes en el 

rendimiento del acumulador estacional y en el de la caldera de calefacción, a pesar de 

tener grandes diferencias en el consumo de energía y el calor generado en la caldera en 

el mes de abril. 

Como se ha explicado anteriormente, el principal problema es la diferencia entre la 

demanda introducida y la calculada en POLYSUN, ya que no hay ninguna diferencia entre 

la demanda de TRNSYS y la demanda introducida en POLYSUN. Como se ha comentado 

con anterioridad, este problema es debido a que POLYSUN calcula la demanda a partir 

de los datos del suelo radiante en lugar de tomar la demanda térmica introducida por el 

usuario. Además, también se observa la influencia ejercida en los elementos del circuito 

de calefacción por esta diferencia, observando un desplazamiento de esta diferencia en 

el calor a la salida del intercambiador ex3 y del acumulador estacional. A partir de los 

resultados obtenidos, se puede afirmar que a pesar de esta diferencia el 

comportamiento de los elementos del circuito es similar en ambos programas. 

En la tabla 10, se muestran las fracciones solares de cada programa, que son la fracción 

solar de ACS (FSACS), la fracción solar de calefacción (FScal), la fracción solar calculada a 

través del calor a la salida del intercambiador ex3 y del depósito de ACS (FS) y la fracción 

solar calculada a través del calor cedido por el campo solar (FS solar), también se 

muestran las diferencias entre estas fracciones. 
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Tabla 10. Fracciones solares de cada programa y las diferencias entre estas fracciones. 
  TRNSYS POLYSUN Diferencia 

  FS ACS FS cal FS FS solar FS ACS FS cal FS FS solar FS ACS FS cal FS FS solar 

Enero 68,7% 48,2% 50,2% 33,6% 78,1% 14,4% 21,4% 26,4% -13,7% 70,1% 57,3% 21,4% 

Febrero 79% 33,9% 39,3% 41,7% 87,9% 27,9% 35,1% 37,9% -11,2% 17,9% 10,7% 9,1% 

Marzo 79% 69,9% 71,4% 73,8% 92,6% 61,6% 66,7% 68,7% -17,2% 11,8% 6,7% 6,9% 

Abril 91,7% 98,7% 96,3% 98,1% 90,5% 84,2% 85,5% 87,2% 1,3% 14,7% 11,3% 11,1% 

Mayo 93,3%   93,3% 99% 94,2%   94,2% 99% -0,9%   -0,9% 0,1% 

Junio 90,7%   90,7% 98,9% 100%   100% 100% -10,2%   -10,2% -1,2% 

Julio 97%   97% 99,8% 100%   100% 100% -3,1%   -3,1% -0,2% 

Agosto 97,6%   97,6% 99,9% 100%   100% 100% -2,4%   -2,4% -0,1% 

Septiembre 96%   96% 99,3% 100%   100% 100% -4,2%   -4,2% -0,7% 

Octubre 90,8% 100% 95,9% 97,9% 99,3% 100% 99,9% 99,8% -9,4% 0% -4,2% -1,9% 

Noviembre 69,1% 100% 95,8% 91,1% 93,7% 100% 99% 97,8% -35,7% 0% -3,4% -7,3% 

Diciembre 66,1% 100% 97,2% 88% 86,1% 73,7% 75% 48,7% -30,4% 26,3% 22,8% 44,7% 

Anual 81,3% 72,9% 74,3% 78,1% 92% 60,8% 66,2% 71% -13,2% 16,6% 11% 9,1% 

Observando las diferencias en las fracciones solares, se aprecia una gran diferencia en 

la fracción de ACS en noviembre y diciembre y en la fracción solar de calefacción y la 

fracción solar en enero. Una de las razones de esto es que al haber grandes diferencias 

entre la demanda introducida y la calculada en POLYSUN en algunos meses, POLYSUN 

introduce más calor en el circuito de ACS que TRNSYS en noviembre y en diciembre, pero 

la consecuencia de esto es que en enero no puede transferir tanto calor como TRNSYS. 

Además, esta es la explicación de porqué se transfiere más calor al circuito de ACS que 

al de calefacción con POLYSUN, y por ello la máxima diferencia en el calor a la salida del 

intercambiador ex2 se produce en noviembre y diciembre. 

Al comparar los resultados obtenidos con 200 viviendas, se ha observado que no hay 

grandes diferencias en los problemas encontrados con el modelo de 200 viviendas, 

aunque, sí que se han reducido las diferencias en el consumo de energía de las bombas, 

puesto que en éstas se ha definido con mayor precisión su curva de funcionamiento a 

carga parcial. 

En resumen, de los resultados obtenidos con la comparativa se pueden extraer las 

siguientes conclusiones. Los depósitos y el campo solar funcionan de la misma manera 

en ambos programas, ya que tienen rendimientos similares. En cuanto al sistema de 

calefacción se observa que a pesar de la diferencia entre la demanda introducida y la 

calculada por POLYSUN, los elementos de este circuito trabajan de una forma similar. 

Además, estas diferencias también han afectado al comportamiento completo del 

sistema, ya que debido a que la demanda de calefacción calculada por POLYSUN es 

menor, se transmite más calor solar al circuito de ACS y menos al de calefacción que en 

TRNSYS. En cuanto a la radiación solar, se observa que el programa utilizado para 

obtener los datos climáticos influye en los datos de este valor. Por otro lado, las grandes 

diferencias encontradas en la energía de las bombas, se debe a la diferente definición 
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de los modelos hidráulicos empleados, siendo el modelo de TRNSYS un modelo más 

simplificado que el de POLYSUN. 

5.3 Análisis geográfico 

En el análisis geográfico se han seleccionado once capitales de provincia españolas de 

diferentes zonas climáticas con elevada radiación solar y necesidades significativas de 

energía térmica para calefacción, las cuales son: Zaragoza, Oviedo, Burgos, Vitoria, La 

Coruña, Barcelona, Soria, Salamanca, Ávila, Jaén y Granada.  

En el diseño del sistema propuesto para cada ciudad se ha manteniendo constante el 

número de viviendas (de 100 m2 cada una) y la relación entre la superficie de captación 

y la demanda anual (A/GD = 0,95) para todas las ciudades, pero se ha determinado una 

relación V/A apropiada, con la cual el acumulador estacional alcanzaría su capacidad 

máxima de carga al inicio del período de calefacción [12, 13]. Para el cálculo de cada 

elemento en cada ciudad se ha seguido el mismo procedimiento que para Zaragoza, 

explicado en el Anexo B, Descripción del caso de estudio y caracterización de sus 

elementos. 

El modelo de TRNSYS se construyó de forma que el cálculo para distintas ciudades se 

lleve a cabo a través de relaciones dimensionales programadas en el modelo que 

permiten redimensionar los equipos de forma automática, por lo que sólo es necesario 

modificar la ratio V/A, la ratio de la demanda de calefacción con respecto al caso de 

referencia (Zaragoza) y la ratio de la demanda de ACS también con respecto al caso de 

referencia (Zaragoza). Mientras que en POLYSUN no es posible seguir este 

procedimiento y es necesario modificar todas las propiedades de cada elemento, por lo 

que se han dimensionado los equipos para cada ciudad. 

En la tabla 11 se muestran los parámetros más característicos de estas ciudades, que 

son el valor de la ratio V/A, el área del campo solar, el volumen del acumulador 

estacional, la ratio de la demanda de calefacción y la ratio de la demanda de ACS. 

Tabla 11. Parámetros característicos de cada ciudad. 

Ciudad Ratio V/A  Área [m2] Volumen [m3] 
Ratio demanda 

de calefacción 

Ratio demanda 

de ACS 

Zaragoza 5,5 552 3036 1 1 

La Coruña 3,8 434 1648 0,74 1,01 

Barcelona 4,8 413 1983 0,7 0,99 

Oviedo 2,6 641 1668 1,19 1,03 

Vitoria 4 831 3325 1,6 1,05 

Burgos 5 968 4841 1,9 1,07 

Soria 5,5 911 5013 1,78 1,06 

Salamanca 6,2 800 4960 1,53 1,05 

Ávila 5,9 882 5205 1,71 1,06 

Jaén 6,7 386 2586 0,65 0,95 

Granada 6,8 516 3509 0,92 1 
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En las tablas 12 y 13 se muestran los resultados anuales más importantes obtenidos con 

cada programa que son la radiación solar, el calor cedido al sistema por el campo solar 

y las fracciones solares, y para los datos de POLYSUN, se incluye además la diferencia 

entre la demanda introducida y la demanda calculada.  

Tabla 12.Parámetros anuales principales de diferentes ciudades con TRNSYS. 
Ciudad Radiación [kWh] Qsol [kWh] FS ACS FS cal FS FS solar 

Zaragoza 956465 532975 81,3% 72,9% 74,3% 78,1% 

La Coruña 630675 338135 72,9% 52,8% 57,3% 63,4% 

Barcelona 726160 411546 79,5% 73,6% 74,9% 79,1% 

Oviedo 830724 411009 77,2% 42,9% 48,3% 54,1% 

Vitoria 1196409 596265 80,2% 51,7% 55,1% 60,3% 

Burgos 1524704 761385 82,4% 58,7% 61,2% 65,8% 

Soria 1516903 766540 86,2% 61,3% 64,1% 69% 

Salamanca 1456222 792042 88% 76,2% 77,7% 80,8% 

Ávila 1593595 849604 87,9% 74,3% 75,8% 79,1% 

Jaén 751248 451429 82,9% 90,1% 88,4% 90,6% 

Granada 1004378 588333 87,2% 88,5% 88,3% 90,2% 

Tabla 13. Parámetros anuales principales de diferentes ciudades con POLYSUN. 
Ciudad Radiación [kWh] Qsol [kWh] Diferencia demanda FS ACS FS cal FS FS solar 

Zaragoza 897926 472866 2% 92% 60,8% 66,2% 71% 

La Coruña 606103 308289 2,2% 84,9% 42,5% 51,7% 58,9% 

Barcelona 706578 376646 2,6% 92,1% 61,3% 68,4% 73,7% 

Oviedo 866840 411964 1,4% 86,1% 39,4% 46,5% 53,6% 

Vitoria 1163454 576235 1,3% 88,9% 47,2% 52,1% 58,3% 

Burgos 1531149 767331 2,9% 91,5% 58% 61,5% 66,8% 

Soria 1485028 753277 1,5% 92,3% 59,6% 63,3% 68,4% 

Salamanca 1324545 687183 1,6% 92% 62,2% 65,9% 70,9% 

Ávila 1488249 769370 1% 93,2% 63,8% 67,2% 71,8% 

Jaén 697884 381068 2,4% 93,3% 66,5% 72,9% 77,9% 

Granada 983924 536193 1,3% 95,1% 77,4% 80,7% 83,8% 

En todas las ciudades se consigue una cobertura solar elevada, especialmente en el caso 

de ACS. La cobertura solar de la calefacción varía significativamente entre ciudades con 

demanda media de calefacción y baja radiación solar y ciudades con demandas bajas de 

calefacción y elevada radiación solar. 

Los resultados obtenidos ponen de manifiesto que en España estas instalaciones son 

técnicamente viables y presentan un potencial elevado. Además, teniendo en cuenta los 

resultados obtenidos en otros estudios [26] en el caso de España se pueden alcanzar 

fracciones solares mayores que en el centro y norte de Europa con instalaciones más 

pequeñas, es decir con menor superficie de captadores solares y acumuladores 

estacionales más pequeños.  
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En la tabla 14 se muestran las diferencias entre los resultados obtenidos por cada 

programa. 

Tabla 14. Diferencia en los parámetros de las diferentes ciudades. 
Ciudad Radiación [kWh] Qsol [kWh] FS ACS FS cal FS FS solar 

Zaragoza 6,1% 11,3% -13,2% 16,6% 11% 9,1% 

La Coruña 3,9% 8,8% -16,4% 19,6% 9,8% 7,1% 

Barcelona 2,7% 8,5% -15,9% 16,7% 8,7% 6,8% 

Oviedo -4,3% -0,2% -11,5% 8,3% 3,6% 0,8% 

Vitoria 2,8% 3,4% -10,8% 8,7% 5,4% 3,4% 

Burgos -0,4% -0,8% -11,1% 1,2% -0,6% -1,5% 

Soria 2,1% 1,7% -7,1% 2,7% 1,2% 0,8% 

Salamanca 9% 13,2% -4,6% 18,4% 15,1% 12,3% 

Ávila 6,6% 9,4% -6,1% 14,2% 11,5% 9,2% 

Jaén 7,1% 15,6% -12,5% 26,3% 17,6% 14,0% 

Granada 2% 8,9% -9,1% 12,5% 8,5% 7,1% 

Los resultados obtenidos, ponen de manifiesto el efecto del suelo radiante en el cálculo 

de la demanda de calefacción. Como ya se explicó anteriormente, a pesar de introducir 

los datos de la demanda de calefacción, el programa recalcula este valor a partir de la 

simulación del suelo radiante y del edificio, lo que provoca una diferencia sensible con 

respecto a TRNSYS en la distribución de las demandas térmicas entre calefacción y ACS. 

Se puede observar que existe una relación entre la diferencia anual del calor cedido por 

el campo solar, Qsol, la fracción solar calculada a través del calor a la salida del depósito 

de ACS y del intercambiador ex3, FS, y la fracción solar calculada a través del calor cedido 

por el campo solar, FSsolar. Además, es importante remarcar las diferencias en los datos 

climáticos cuando se utilizan distintas fuentes de información (Meteonorm en el caso 

del programa POLYSUN y EnergyPlus en el caso de TRNSYS).  
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6 CONCLUSIONES 

En este proyecto se ha simulado y analizado con el programa POLYSUN un sistema solar 

de calefacción distrito con acumulador estacional, para abastecer las demandas de ACS 

y de calefacción de 100 viviendas de 100 m2 situadas en el Parque Goya de Zaragoza, 

partiendo de un modelo previamente desarrollado con TRNSYS. Así mismo, se ha llevado 

un análisis geográfico en diferentes ciudades españolas pertenecientes a distintas zonas 

climáticas, para estudiar y determinar cómo varían los principales parámetros de diseño 

de estas instalaciones. Esto ha permitido llevar a cabo una comparativa detallada entre 

los programas de simulación dinámica TRNSYS y POLYSUN, y determinar la conveniencia 

y viabilidad del programa POLYSUN para la simulación y estudio de este tipo de 

instalaciones.   

Con relación a POLYSUN, a pesar de que éste es un programa con una gran variedad de 

configuraciones predefinidas, ninguna es similar al caso de estudio de este proyecto por 

lo que ha sido necesario construir un modelo completamente nuevo. Una de las razones 

de esto es que el programa está más orientado a instalaciones domésticas pequeñas y 

no a grandes sistemas centralizados. Debido a la escasa información proporcionada en 

la documentación del programa, el procedimiento seguido para construir el modelo del 

sistema ha consistido en subdividir el modelo en pequeños circuitos para facilitar el 

diseño. Además, ha sido necesario reducir el número de viviendas utilizadas a 100, 

debido a las limitaciones de funcionamiento del propio programa. 

En cuanto a la comparativa entre TRNSYS y POLYSUN, existen diferencias significativas 

entre ambos programas, tales como: 

i) la cantidad de datos a introducir para caracterizar los elementos del sistema, 

que en POLYSUN es mayor que en TRNSYS, de lo que se puede deducir que 

POLYSUN utiliza modelos de simulación más detallados que TRNSYS;  

ii) el elemento del suelo radiante, que no se introduce en TRNSYS, es necesario 

introducirlo en POLYSUN, puesto que es un elemento importante para el 

cálculo de la demanda;  

iii) un aspecto necesario para comparar ambos sistemas son los modelos de 

cálculo disponibles a la hora de realizar las simulaciones, pero en POLYSUN 

no ha sido posible conocer parte de esta información, debido a la poca 

información obtenida del manual y de la ayuda técnica;  

iv) los resultados obtenidos en base anual son similares en los dos programas, 

sin embargo cuando se lleva a cabo el análisis mensual de la instalación, se 

observan diferencias muy significativas en algunos meses. 
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El principal problema encontrado al analizar los resultados obtenidos con el programa 

POLYSUN ha sido que a pesar de introducir los datos de la demanda de calefacción, el 

programa recalcula este valor a partir de la simulación del suelo radiante y del edificio, 

llegando a producirse grandes diferencias mensuales entre ambos valores. Al observar 

los resultados obtenidos de la comparativa en los equipos del circuito de calefacción, se 

aprecia la influencia ejercida en estos elementos por la diferencia entre la demanda 

introducida y la calculada en POLYSUN, que influye al funcionamiento del sistema 

completo, obteniendo como resultado que en POLYSUN se transfiere más calor solar al 

circuito de ACS y menos al de calefacción que en TRNSYS. No obstante, a pesar de esta 

diferencia los resultados obtenidos ponen de manifiesto que el comportamiento de los 

principales equipos de los circuitos de calefacción y ACS es similar en ambos programas. 

Al comparar el balance energético anual de ambos programas se observa que los 

resultados obtenidos son similares. Se aprecian pequeñas diferencias en los 

rendimientos de los depósitos y del campo solar, puesto que el comportamiento de los 

equipos principales es similar en ambos programas. Sin embargo, también se observan 

diferencias significativas en el comportamiento de las bombas y de las calderas. Una de 

las principales razones de la gran diferencia obtenida en las energías de las bombas se 

debe a la diferente definición de los modelos hidráulicos empleados, siendo el modelo 

de TRNSYS un modelo más simplificado que el de POLYSUN. 

Los resultados obtenidos en este proyecto ponen de manifiesto la viabilidad técnica e 

interés de estas instalaciones en España. Además, al comparar los resultados de las 

diferentes ciudades estudiadas se aprecia la influencia ejercida por el programa utilizado 

para obtener la información climática y se puede observar la relación existente entre el 

calor cedido por el campo solar y las fracciones solares. 
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