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1 INTRODUCCIÓN

1. Introducción

Durante los últimos 15 años diversos métodos en f́ısica estad́ıstica y modelos no lineales
han sido reformulados con el fin de incluir patrones de interacción realistas entre los cons-
tituyentes de sistemas complejos [1–3]. Esta reformulación surge a ráız de la disponibilidad
de conjuntos de datos que representan las relaciones entre los constituyentes de sistemas ma-
croscópicos de diversa naturaleza, como tecnológicos, biológicos y sociales y su representación
mediante redes complejas [4, 5]. El estudio de redes ha permitido analizar tanto las interac-
ciones entre los elementos que forman el sistema como el papel que juegan en su organización
y en su funcionamiento [6].

Normalmente, estas redes se construyen con un solo tipo de interacción entre sus com-
ponentes, sin tener en cuenta que en los sistemas reales pueden existir diferentes tipos de
interacciones entre ellos. Por ejemplo, en comunidades ecológicas los organismos que forman
parte del sistema pueden interactuar entre ellos de forma positiva (mutualismo, facilitación)
o de forma negativa (competición, parasitismo) dándose todas las interacciones al mismo
tiempo dentro de la misma comunidad.

Las redes que combinan interacciones positivas y negativas se denominan redes con signo
y han sido estudiadas de manera teórica [7, 8] y aplicadas sobre todo a las redes sociales.
Sin embargo, no se tienen muchos ejemplos aplicados a otras áreas como, por ejemplo, los
sistemas ecológicos.

Estas redes presentan una propiedad, denominada balance estructural, basada en la orga-
nización de sus nodos en subgrupos [7]. Una red está balanceada cuando se puede dividir en
grupos de nodos de forma que en el interior de cada grupo solo existan conexiones positivas
y nodos pertenecientes a distintos grupos estén conectados de forma negativa [9]. El balance
estructural se ha relacionado con la estabilidad de redes sociales ya que predice la aparición
de conflictos o tensiones que pueden provocar alteraciones en el sistema [7]. Por ejemplo, se ha
estudiado la evolución del balance estructural entre las alianzas de los páıses que participaron
en la Primera Guerra Mundial [10]. El resultado indica que la guerra estalló cuando todos los
páıses teńıan un alto grado de balance y el sistema presentaba balance estructural (se pod́ıa
dividir en dos grupos enemistados entre śı y formados por páıses aliados) (Figura 1).

Normalmente las redes reales no son capaces de organizarse de una forma perfectamente
balanceada y presentan links negativos entre nodos pertenecientes al mismo grupo y links
positivos entre nodos de distinto grupo [8]. Estos links expresan el grado de frustración del
sistema. Se ha visto en trabajos previos que los sistemas sociales (tanto de humanos como
de animales) presentan un mayor balance estructural (menor frustración) que el esperado
por azar. Además, se ha planteado la hipótesis de que la evolución promueve la estabilidad
del sistema y la evolución de la cooperación mediante la eliminación de estos enlaces que
contribuyen a la frustración del sistema [11–13]. Sin embargo, la escasez de redes reales que
incluyan conexiones positivas y negativas ha impedido el estudio de esta hipótesis más allá de
las redes sociales.

Las comunidades ecológicas suponen un buen punto de partida para estudiar el balance en
redes con signo en la naturaleza. En estas comunidades, las diferentes especies que conviven
en un ecosistema interactúan entre śı de forma tanto positiva como negativa. Por ejemplo,
en zonas áridas y con pocos recursos, hay especies que se benefician de micro-ecosistemas
creados por otras especies en los que las condiciones son más favorables, aumentando aśı su
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1 INTRODUCCIÓN

supervivencia [14]. Por otra parte, las diferentes especies pueden competir entre śı por el
espacio y los recursos [15]. Estas interacciones ocurren a escala local y tienen efecto en el
patrón espacial de las especies de plantas, haciendo posible establecer una relación entre la
distribución espacial de las especies y las interacciones entre ellas.

El objetivo de este trabajo es estudiar el balance estructural de distintas redes ecológicas
construidas a partir del patrón de asociación espacial entre las especies que lo forman. . Para
ello hemos analizado 31 redes de diferentes comunidades ecológicas en España pertenecien-
tes a ecosistemas mediterráneos y alpinos. Además, hemos desarrollado un algoritmo que
combina algunas propiedades relacionadas con el balance estructural, como la modularidad
y la frustración, con el fin de obtener un resultado óptimo en el menor tiempo posible. Por
último, hemos analizado el balance estructural a nivel local mediante la proporción de triadas
balanceadas y no balanceadas que encontramos en cada red. Estudios sociológicos plantean
que las triadas no balanceadas son fuentes de estrés para el sistema y provocan la aparición
de conflictos [7].

Nuestra hipótesis es la siguiente: si el balance estructural promueve la estabilidad de
los sistemas, las redes ecológicas deben estar balanceadas. Espećıficamente esperamos que,
independientemente del tipo de comunidad ecológica, las redes presenten una frustración
menor y un menor número de triadas no balanceadas que lo esperado por azar.

Figura 1: Evolución del balance global entre los seis participantes principales de la Primera Guerra
Mundial a lo largo del tiempo. Las ĺıneas azules representan alianzas mientras que las ĺıneas rojas
discontinuas representan enemistad. El grado de balance de cada páıs esta representado por el
tamaño del ćırculo. GB representa Gran Bretaña; Ru, Rusia; Ge, Alemania; Fr, Francia; AH,
Imperio Austro-Húngaro y It, Italia. [10]
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2 TEORÍA DE REDES

2. Teoŕıa de redes

Una red es, en su forma más simple, una colección de puntos que llamamos vértices o
nodos unidos entre śı por links [5] (Figura 2). Diferentes sistemas en f́ısica, bioloǵıa o ciencias
sociales pueden ser representados mediante redes. Éstas nos proporcionan una herramienta
para estudiar las conexiones e interacciones entre los distintos componentes del sistema y
analizar el papel que éstas juegan en su funcionamiento global.

Figura 2: Esquema de una red.

La mayoŕıa de las redes se construyen con un solo
tipo de interacción entre sus componentes. Sin embar-
go, esto puede ser una simplificación de los sistemas
reales donde los componentes normalmente interaccio-
nan de diferentes maneras. Aśı, por ejemplo, en una
red social podŕıamos considerar la amistad como una
interacción positiva y la enemistad como negativa. Es
decir, tendŕıamos links tanto positivos como negati-
vos.

En este trabajo nos centraremos en estudiar re-
des ecológicas, en las que los nodos representan las
diferentes especies que conviven en un ecosistema de-
terminado y los links las conexiones, tanto positivas
como negativas, que se establecen entre ellas.

Es importante, con el fin de simplificar el análisis de las redes, poder representarlas en
forma matemática, lo que nos será útil para realizar cálculos. La forma más cómoda de
representar una red es mediante la matriz de adyacencia (1).

Aij =


1 Interacción positiva entre los nodos i y j
0 Nodos i y j no conectados o interacción neutra
−1 Interacción negativa entre los nodos i y j

(1)

La matriz de adyacencia de una red con signo como la de la figura 3 será de la forma:

Figura 3: Ejemplo de una red
con signo.

A =



0 −1 0 0 1 0
−1 0 1 1 0 0
0 1 0 1 −1 1
0 1 1 0 0 0
1 0 −1 0 0 0
0 0 1 0 0 0

 (2)

Como vemos los elementos de la diagonal son 0 ya que no
existen self-links, los nodos no se conectan consigo mismos.
Además, la matriz es simétrica, si el nodo i está conectado
al nodo j, el j estará conectado al i.

En este trabajo nos centraremos en estudiar el balance estructural de diferentes redes
ecológicas. Para ello vamos a introducir dos magnitudes diferentes que nos servirán para
analizar las redes: la modularidad y la frustración.
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2 TEORÍA DE REDES

2.1. Modularidad

Dada una partición de una red, es decir, dada una red dividida en diferentes grupos,
clusters o comunidades, decimos que tiene alta modularidad si existe una gran densidad de
conexiones entre nodos pertenecientes a una misma comunidad y escasas conexiones entre
nodos de diferente comunidad [16] (Figura 4).

Figura 4: Red con alta modularidad
[16].

De forma matemática podemos definir la modula-
ridad como el número de links entre nodos pertene-
cientes a un mismo grupo menos los links esperados
en una red equivalente en la que las conexiones se rea-
lizan de forma aleatoria [16].

Si denotamos ci como el grupo o comunidad a la
que pertenece el nodo i, siendo nc el número total
de comunidades, podemos escribir el número total de
links entre nodos pertenecientes a un mismo grupo
mediante la expresión:

∑
i,j

δ(ci, cj) =
1

2

∑
ij

Aijδ(ci, cj), (3)

donde δ(m,n) es la delta de Kronocker, Aij la matriz
de adyacencia y el factor 1

2 es necesario porque cada
par de nodos i, j se cuenta dos veces en el segundo
sumatorio debido a que la matriz es simétrica.

Calculamos ahora el número esperado de links entre nodos en una red construida de forma
aleatoria. Consideramos un link que sale del nodo i, teniendo éste grado ki. Consideramos
un total de 2m extremos de links en toda la red, donde m es el número total de links. Aśı, la
probabilidad de que el extremo de nuestro link sea uno de los kj extremos unidos al nodo j
es kj/2m. Si tenemos en cuenta los ki extremos unidos al nodo i, el número total esperado de
links entre los nodos i y j será kikj/2m y el número esperado de links entre todas las parejas
de vértices del mismo grupo:

1

2

∑
ij

kikj
2m

δ(ci, cj), (4)

donde el factor 1
2 evita que contemos cada link dos veces. Calculando la diferencia entre las

ecuaciones (3) y (4) obtenemos la diferencia entre el número real de links que unen nodos
pertenecientes a un mismo grupo y el esperado:

1

2

∑
ij

Aijδ(ci, cj) −
1

2

∑
ij

kikj
2m

δ(ci, cj) =
1

2

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj). (5)

Normalmente, no se calcula el número de links sino la fracción, que obtenemos dividiendo
por el número total de links, m:
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2 TEORÍA DE REDES

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj). (6)

Esta magnitud se denomina modularidad. Es estrictamente menor que 1, toma valores po-
sitivos si existen más links entre nodos del mismo grupo que los esperados y valores negativos
si hay menos links de los esperados.

Maximizando la expresión (6) obtenemos la mejor partición posible de la red, es decir,
podremos dividir la red en grupos o comunidades, desconociendo su tamaño y su número, de
forma que haya una gran densidad de links en el interior de un mismo grupo y escasos links
entre grupos diferentes. Este proceso se denomina detección de comunidades y resulta muy
útil para estudiar la estructura de las redes.

En el caso de redes con signo, redes con conexiones positivas y negativas, una red con alta
modularidad no solo tiene gran densidad de links entre nodos del mismo grupo sino que éstos
deben ser positivos, mientras que links entre nodos de diferentes grupos deben ser negativos.

En este tipo de redes el número esperado de links positivos y negativos entre dos nodos i
y j será, respectivamente, k+i k

+
j /2m

+ y k−i k
−
j /2m

−. Donde k+i y k−i representan el número

de links positivos y negativos del nodo i y m+ y m− el número total de links positivos y
negativos de la red. Aśı, tenemos dos contribuciones distintas a la modularidad [17]:

Q+ =
1

2m+

∑
ij

(
A+

ij −
k+i k

+
j

2m+

)
δ(ci, cj), (7)

Q− =
1

2m−

∑
ij

(
A−

ij −
k−i k

−
j

2m−

)
δ(ci, cj), (8)

siendo A+
ij y A−

ij las matrices de adyacencia que contienen las conexiones positivas y negativas
respectivamente.

La modularidad total será un punto intermedio entre la tendencia de los links positivos
a formar comunidades y la tendencia de los links negativos a destruirlas. Si queremos que
tanto Q+ como Q− contribuyan a la modularidad de forma proporcional al número de links
positivos y negativos de la red:

Q =
2m+

2m+ + 2m−Q
+ − 2m−

2m+ + 2m−Q
−. (9)

Sustituyendo en la ecuación (9) las expresiones (7) y (8) obtenemos:

Q =
1

2m+ + 2m−

∑
i

∑
j

[
Aij −

(
k+i k

+
j

2m+
−
k−i k

−
i

2m−

)]
δ(ci, cj). (10)

Al igual que en el caso de redes con un solo tipo de links, maximizando la ecuación (10)
obtendremos la partición óptima de la red. Sin embargo, en este caso se buscará que dentro de
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2 TEORÍA DE REDES

un mismo grupo solo haya conexiones positivas y entre grupos diferentes haya solo conexiones
negativas.

Este cálculo parece suficiente para estudiar el balance en redes, sin embargo, la modulari-
dad se centra en maximizar la densidad de links dentro de cada grupo en vez de minimizar los
links negativos entre nodos pertenecientes a un mismo grupo. Por ello, necesitamos combinar
la modularidad con otra magnitud, la frustración.

2.2. Frustración y balance estructural

Considerando la partición de una red, el cálculo de la frustración nos permite determinar
si la red está balanceada o no. Una red balanceada se puede separar en grupos de forma
que dentro de ellos solo haya links positivos, mientras que los links negativos conecten nodos
pertenecientes a distintos grupos (Figura 5).

Figura 5: Ejemplo de una red balan-
ceada [5].

Normalmente, en las redes reales existen links que
hacen que la red no esté balanceada. Dada la partición
de una red en grupos el número de estos links expresan
el grado de frustración del sistema y son, por un lado,
los links positivos entre diferentes grupos y, por otro,
los links negativos dentro de un mismo grupo.

Podemos expresar la frustración con la siguiente
expresión [8]:

F =
∑
ij

λA−
ijδ(ci, cj) + (1 − λ)A+

ij(1 − δ(ci, cj)), (11)

donde λ es un parámetro que determina la contribución
de ambos tipos de links. Puesto que el término (1 − λ)A+

ij no depende de la partición de la
red, es irrelevante y podemos simplificar la ecuación (11):

F =
∑
ij

(λA−
ij − (1 − λ)A+

ij)δ(ci, cj). (12)

Considerando la misma contribución para ambos tipos de links, es decir, λ = 1/2 y
sabiendo que Aij = A+

ij −A−
ij la expresión para la frustración nos queda:

F = −
∑
ij

Aijδ(ci, cj). (13)

Aśı, si los nodos i y j pertenecen al mismo grupo y están conectados por un link positivo,
la frustración total se reduce, mientras que si la conexión es negativa la frustración aumenta.

El objetivo es encontrar la partición de la red que minimiza la ecuación (13). Sin embargo,
si trabajamos con redes en las que hay pocas conexiones negativas, la partición que se obtiene
no es la óptima. Esto se debe a la falta de más términos para tener en cuenta los casos en
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2 TEORÍA DE REDES

los que los nodos i y j no se encuentran en el mismo grupo. Para solucionarlo proponemos
añadir dos nuevos términos a la ecuación (13):

F = [−aAij + ε(1 −Aij)] δ(ci, cj) + bA+
ij(1 − δ(ci, cj)), (14)

donde a, b y ε son constantes. Aśı, el término ε(1 − Aij)δ(ci, cj) penaliza, por un lado, la
existencia de links negativos entre nodos pertenecientes al mismo grupo y, por otro, la ausencia
de links positivos entre nodos del mismo grupo y el término bA+

ij(1 − δ(ci, cj)) penaliza la
existencia de links positivos entre nodos pertenecientes a distinto grupo.

2.3. Triadas

Una vez hemos estudiado el balance estructural de una red a nivel global podemos es-
tudiarlo a nivel local analizando el número de triadas balanceadas y no balanceadas que
encontramos en ella. Este estudio se realiza normalmente en redes sociales en las que se ha
demostrado que las triadas no balanceadas aparecen con menor frecuencia que las balancea-
das.

La figura 6 muestra las cuatro posibles configuraciones de tres nodos conectados entre
śı con links positivos y negativos. Si estudiamos estas triadas como redes sociales en las que
los links positivos simbolizan amistad y los negativos enemistad podemos entender fácilmente
por qué algunas de estas configuraciones son estables y otras no.

La configuración (a) es estable, a todo el mundo le gusta todo el mundo. El caso (b),
también estable, es un poco más sutil. Los individuos u y v se gustan mientras que a ninguno
de los dos les gusta w. Se puede entender como estable si consideramos que u y v están de
acuerdo en su enemistad con w. La configuración (c), sin embargo, puede ser problemática,
ya que v tiene una relación de amistad con u y w, quienes a su vez son enemigos entre śı.
Desde el punto de vista de una red social, esta configuración pone a v en una situación dif́ıcil,
teniendo que elegir a quien prefiere. Por último, la configuración (d) es inestable, lo normal
es que tres personas que no se llevan bien no permanezcan juntas.

Se ha observado en redes sociales que son más comunes las triadas con configuraciones
balanceadas que las no balanceadas, indicando que son sistemas estables. Aśı, podemos estu-
diar la estabilidad de sistemas analizando el número de triadas de cada tipo que tenemos en
la red.

Figura 6: Configuraciones posibles de triadas en una red con signo. (a) y (b) están balanceadas
y son estables, (c) y (d), sin embargo, no están balanceadas y no son estables [5].
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3 APLICACIÓN

3. Aplicación

Hasta ahora hemos presentado las propiedades relacionadas con el balance estructural que
presentan las redes. Vamos ahora a aplicarlo a redes reales, en concreto, redes ecológicas que
representan las interacciones entre las diferentes especies que coexisten en un determinado
ecosistema.

Vamos a ver como se construyen las redes ecológicas a partir del patrón de asociación
espacial. Presentaremos los detalles del algoritmo utilizado, que combina las propiedades
explicadas anteriormente con el fin de obtener el resultado óptimo en el menor tiempo posible,
y por último, veremos cuáles son los resultados obtenidos en nuestras redes.

Como hemos comentado anteriormente el resultado esperado es que nuestras redes ecológi-
cas presenten un balance estructural mayor (menor frustración) que lo que se espera por azar.

3.1. Redes ecológicas

Contamos con un total de 31 redes ecológicas construidas a partir de datos recogidos en
cuatro zonas distintas de España: Parque Natural Cabo de Gata-Nı́jar (Almeŕıa), Monegros
(Aragón), Sierra de Guara (Aragón) y Parque Nacional Ordesa-Monte Perdido (Aragón)
(Tabla 1).

En estas redes los nodos representan las diferentes especies vegetales que encontramos
en cada zona y los links las interacciones (positivas, neutras o negativas) que existen entre
ellas. La determinación del tipo de interacción que existe entre dos especies se lleva a cabo
mediante el análisis del patrón de asociación espacial entre pares de especies. Pese a ser
una aproximación, se ha comprobado que el patrón de asociación espacial entre especies es
una valiosa herramienta para estudiar comunidades ecológicas y se ha aplicado en numerosos
trabajos para el estudio de interacciones ecológicas [18,19].

Para aplicar este método se identifican las diferentes especies que viven en la zona que
queremos estudiar, registrando su posición espacial. Además se genera una distribución es-
pacial aleatoria de estas especies en función de su abundancia en la zona. Comparando la
distribución espacial real y la aleatoria podemos obtener tres resultados distintos (Figura 7):

Cuando dos especies aparecen asociadas más de lo que cabŕıa esperar por azar se de-
duce un beneficio de dicha asociación y se asume una interacción positiva entre ambas
(facilitación).

Si dos especies aparecen asociadas menos de lo que cabŕıa esperar por azar se conside-
ra un perjuicio de dicha asociación y se asume una interacción negativa entre ambas
(competición).

Cuando dos especies aparecen asociadas según lo esperado por azar se considera que
no existe interacción entre ambas o que dicha interacción es neutra (neutralidad).

Con esta información somos capaces de codificar las interacciones entre especies que se
dan en cada zona en una matriz de adyacencia similar a la que véıamos en la ecuación (1)
(Caṕıtulo 2), lo que nos va a permitir estudiar las propiedades de cada una de las redes.
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3 APLICACIÓN

Localización Nombre Número de Nodos

Alfa-estepaC 67
Alfa-estepaL 56

Parque Natural Alfa-estepaM 69
Cabo de Gata-Nı́jar Romesab 104

(Almeŕıa) Brujo 62
Fraile 117
Isleta 49

Lecinena 32
Lomaza 50

Monegros Planeron 42
(Aragón) Sariñena 75

NofragN 37
NofragS 39

GorizN2004 76
GorizN2005 56
GorizS2004 75

Parque Nacional GorizS2005 21
Ordesa-Monte Perdido SesaN2004 70

(Huesca) SesaN2005 61
SesaS2004 72
SesaS2005 56

Abena 83
Aras 91

Arguis 72
Belsue 65

Sierra de Guara Ibort 60
(Huesca) Ipies 63

Lucera 71
Nocito 83
Rapun 70
Rasal 125

Cuadro 1: Tamaño de las redes utilizadas y su localización.

Figura 7: Tipos de asociación entre especies en un ecosistema. (Imagen cedida por H. Saiz)
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3 APLICACIÓN

3.2. Algoritmo

Hemos visto que el problema de evaluar el balance estructural en una red con signo
(encontrar la partición que maximiza el número de links positivos y minimiza el de negativos
dentro de un mismo grupo) es similar al problema de detección de comunidades, ya que en
ninguno de los dos casos conocemos ni el número total de grupos ni su tamaño. Aśı, encontrar
la partición óptima es un problema NP-complejo y requiere de técnicas de optimización.

Nuestro algoritmo consta de dos partes (Figura 8):

1. Primero, aprovechando la similitud entre el problema de detección de comunidades y el
de estudiar el balance estructural en redes con signo, comenzamos buscando la partición
que maximiza la modularidad. Para ello, hemos utilizado el algoritmo determinista
presentado en [20] que maximiza la ecuación (10) anteriormente descrita (Caṕıtulo
2.1).

Como hemos comentado, la modularidad se centra en maximizar la densidad de nodos
dentro de un mismo grupo en vez de minimizar los links negativos. Por esta razón,
la partición que obtenemos maximizando la ecuación (10) no es la que tiene menor
frustración. Sin embargo, podemos utilizar el resultado obtenido como condición inicial
para el siguiente paso.

2. La segunda parte del algoritmo consiste en encontrar la partición de la red que mi-
nimice la frustración (Caṕıtulo 2.2). Para ello, implementamos el método Simulated
Annealing [21] para minimizar la ecuación (12) teniendo como partición inicial la que
hemos obtenido en el paso 1.

Red
Red dividida
en módulos

Partición
óptima

1. Maximizar

modularidad

2. Minimizar

frustración

Algoritmo

determinista

Simulated

annealing

Figura 8: Esquema del algoritmo utilizado.

El resultado de la combinación de estos dos procesos de optimización es una considerable
reducción del tiempo de computación empleado. Esto es posible gracias a que el resultado
obtenido de la maximización de la modularidad está muy cerca del resultado final y el coste
computacional de este proceso es mucho menor que el de minimizar la frustración desde una
configuración inicial aleatoria.

Por último, con el fin de determinar el número de triadas balanceadas y no balanceadas
que hay en cada una de las redes se ha creado un algoritmo para recorrer todas las conexiones
entre nodos contando los distintos tipos de triadas.
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3.3. Modelo nulo

Una vez desarrollado el algoritmo podemos encontrar para cada red la partición que
minimiza la frustración y podemos conocer el número de triadas de cada tipo que hay en
ellas. En la figura 9 se muestra la partición óptima para una de nuestras redes de estudio.
Cada nodo representa una especie distinta del ecosistema, los links verdes son conexiones
positivas y los rojos conexiones negativas. Se ha escogido la red nofragS (Monegros) por ser
una de las redes con menor tamaño con el fin de poder ver con claridad los distintos grupos que
se forman. Como vemos en la figura la red queda dividida en 9 grupos distintos. Las flechas
señalan los links que contribuyen a la frustración de la red, en este caso 4, dos positivos
entre diferentes grupos y dos negativos conectando nodos del mismo grupo. Además, se han
contado las triadas de cada tipo que encontramos en esta red: 5 triadas (- - -), 5 triadas (- -
+), 4 triadas (- + +) y 1 (+ + +). En la figura 10 se han destacado una triada de cada tipo.

Figura 9: Partición óptima de la red nofragS (Monegros). Las flechas indican los links que con-
tribuyen a la frustración, en total 4.
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3 APLICACIÓN

Figura 10: Ejemplo de una triada de cada tipo en la red nofragS.

Llegados a este punto hemos visto que podemos calcular la partición que minimiza la
frustración de cada una de nuestras redes ecológicas y conocer el número de triadas de cada
tipo que poseen. Sin embargo, no podemos afirmar que el valor obtenido para la frustración
en cada caso indique que las redes son balanceadas. Asimismo, no podemos llegar a ninguna
conclusión a partir del número de triadas balanceadas y no balanceadas obtenido. Necesitamos
comparar los resultados obtenidos para las redes ecológicas con el resultado que se obtendŕıa
en el caso de redes generadas al azar.

Para ello vamos a construir 100 redes equivalentes a cada una de las 31 redes originales.
Estas redes equivalentes tienen el mismo número de nodos que las redes originales, conectados
entre śı de forma aleatoria, manteniendo el número de links positivos y negativos que teńıa
cada nodo en la red original (Figura 11).
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3 APLICACIÓN

Figura 11: Construcción de una red equivalente.

3.4. Resultados

Construidas las 100 redes equivalentes a cada una de las 31 redes originales ya podemos
estudiar el balance estructural de cada una de ellas. En la figura 12 se muestran los resultados
obtenidos. Se ha representado la frustración dividida entre la frustración media del modelo
nulo para cada una de las 31 redes ecológicas. Aśı, si el valor de la frustración está en torno
a 1 significa que la frustración obtenida para la red original es similar a la media de la
obtenida para las redes equivalentes. Sin embargo, valores por debajo de la unidad indican
una frustración menor en la red original, es decir, un mayor balance estructural.

Como vemos en la figura 12 salvo tres de las redes, las demás, independientemente de su
tamaño y localización, tienen una frustración menor que la obtenida para las redes equiva-
lentes, es decir, presentan un mayor balance estructural que el esperado por azar.

Igual que con la frustración, podemos representar el número de triadas encontradas en las
redes originales dividido por el número medio de triadas encontradas en las redes equivalentes
(Figura 13). Los resultados coinciden con nuestras predicciones, en el caso de las triadas
balanceadas (tipos (- - +) y (+ + +)) los valores obtenidos para nuestras redes ecológicas
se encuentran por encima de la unidad en ambos casos. En el caso de las configuraciones no
balanceadas (tipos (- - -) y (- + +)), encontramos el caso contrario, los valores obtenidos se
encuentran por debajo de la unidad. De esta forma, hemos visto que las triadas balanceadas
son más abundantes en nuestras redes ecológicas que lo esperado por azar y las triadas no
balanceadas se encuentran en menor número.
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Los resultados obtenidos indican que las redes ecológicas son un ejemplo de sistemas
robustos. Hemos visto que estas redes presentan un balance estructural mayor que el esperado
por azar lo que sugiere que el balance estructural es una propiedad de las redes con signo
estables. Además el equilibrio estructural puede ser un buen candidato para ser una propiedad
general de las redes reales con signo y habŕıa que comprobarlo en otros sistemas.

Figura 12: Frustración real dividida entre la frustración media del modelo nulo para cada una
de las redes. Los puntos degradados representan el valor de la frustración de las redes originales
dividido entre el valor medio de la frustración obtenida para el modelo nulo. Los puntos morados
muestran la frustración de cada una de las redes equivalentes dividida entre el valor medio.
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3 APLICACIÓN

Figura 13: Número de triadas de cada tipo encontradas en cada una de las redes dividido por
el número medio de triadas del mismo tipo encontrado en las redes equivalentes. Las dos gráficas
de la parte superior respresentan las triadas balanceadas mientras que las de la parte inferior las
triadas no balanceadas. El color de cada punto representa el valor de la frustración de la red.
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4. Conclusiones

El objetivo de este trabajo es estudiar una propiedad caracteŕıstica de las redes con
signo, el balance estructural y aplicarlo a un sistema real concreto, las redes ecológicas, que
representan las interacciones entre las distintas especies que coexisten en un ecosistema. Para
ello, hemos desarrollado diferentes puntos en este trabajo:

Estudio teórico de dos magnitudes, la modularidad y la frustración. Ambas nos per-
miten encontrar la partición de la red en la que los links positivos conectan nodos
pertenecientes al mismo grupo y los negativos conectan links pertenecientes a diferente
grupo. Sin embargo, hemos visto que la modularidad da más importancia a la densidad
de links que a su signo y la minimización de la frustración es un problema NP-complejo
que requiere mucho tiempo de computación, por lo que necesitamos ambas magnitudes
para lograr nuestro objetivo.

Desarrollo de un algoritmo que combina ambas magnitudes. Mediante la maximización
de la modularidad y tomando el resultado como condición inicial para la minimización
de la frustración hemos conseguido obtener el resultado óptimo en el menor tiempo
posible.

Aplicación de los dos puntos anteriores al estudio de 31 redes ecológicas de diferente
tamaño y localización, obteniendo la frustración y el número de triadas balanceadas y no
balanceadas que encontramos en ellas. Mediante la construcción de redes equivalentes
hemos podido comparar los resultados obtenidos en las redes originales con los obtenidos
en redes generadas de forma aleatoria concluyendo que las redes ecológicas tienen un
mayor balance estructural y poseen un mayor número de triadas balanceadas que las
esperadas por azar.

Hasta ahora, el estudio de redes sociales ha mostrado que las relaciones sociales no se
organizan de forma aleatoria sino de forma que se minimice su frustración, es decir, presen-
tan balance estructural. En este trabajo hemos ampliado estos resultados a otros sistemas
reales, las redes ecológicas, que representan las interacciones entre las diferentes especies que
conviven en un ecosistema. Los resultados obtenidos presentan la estructura que minimiza la
frustración como una organización óptima para redes con signo. Este resultado sugiere que
esta organización que promueve el balance estructural puede ser la norma en redes reales con
signo.
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