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Summary (Spanish)

§1. Grupos libres y presentaciones de grupos

Sin entrar en muchos detalles, podŕıamos decir que la teoŕıa combinatoria de grupos trata de describir

la estructura de un grupo por medio de lo que se llama una presentación. Como veremos más

adelante, una presentación consiste en una pareja (X,R) , donde X es un conjunto de generadores y

R es un conjunto de relaciones.

Sin embargo, antes de trabajar con presentaciones es necesario introducir el concepto de grupo

libre. Los grupos libres son los bloques básicos de la teoŕıa combinatoria de grupos, razón por la cual

dedicamos toda la atención inicial a definirlos con precisión, siguiendo el enfoque de [1].

Definición (Grupo libre). Dado un grupo F , un conjunto no vaćıo X y una función

σ : X −→ F , decimos que (F, σ) es libre en X si a cada función α de X a un grupo G le

corresponde un único homomorfismo β : F −→ G tal que α = β ◦ σ, i.e. el siguiente diagrama

es conmutativo.
F

X G

βσ

α

Dada esta definición, nos hacemos unas preguntas muy naturales como la existencia y unicidad

de los grupos libres. La respuesta queda resumida en los dos siguientes teoremas, fundamentales en

el primer caṕıtulo.

Teorema (Existencia de grupos libres). Dado un conjunto no vaćıo X, existen un grupo

F y una función σ : X −→ F tales que el par (F, σ) es libre en X.

Teorema (Unicidad de grupos libres). Sean F1 y F2 grupos libres sobre X1 y X2 respec-

tivamente. Entonces F1 ' F2 si y solo si |X1| = |X2|.

Una vez establecida esta base, nos disponemos a estudiar la estructura de grupo libre. En

este contexto surgen de forma natural los conceptos de palabra reducida sobre un conjunto X,

fundamentales en el estudio de grupos libres. Además, nos permite estudiar diferentes ejemplos de

grupos libres que aparecen en la naturaleza.

Una vez estudiados los grupos libres, establecemos la relación con grupos arbitarios por medio

de las llamadas presentaciones. La idea es partir de un grupo libre y forzar ciertas igualdades entre
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elementos haciendo un cociente. Es común llamar X al conjunto de generadores del grupo libre y R

a un conjunto que genere normalmente el grupo por el que tomamos el cociente. Aśı, el nuevo grupo

se denota 〈X | R〉.

Aunque la definición sea un poco opaca (al igual que la de grupos libres), la idea es ciertamente

sencilla. Por ejemplo, tenemos las siguientes presentaciones de grupo ćıclico y diédrico.

Zn = 〈a | an = 1〉, Dn = 〈r, s | rn = 1, s2 = 1, srs = r−1〉.

La aplicabilidad de las presentaciones queda recogida en el siguiente teorema.

Teorema (Existencia de presentaciones). Todo grupo admite una presentación.

§2. Grafos de Cayley

Cambiamos ahora el terreno de juego y pasamos a estudiar conceptos más geométricos. El objetivo

que perseguimos es estudiar la estructura de los grupos a través de su relación con la geometŕıa, la

cual se ilustra de forma magistral en [2]. En particular, el objeto central de este caṕıtulo será el

grafo de Cayley de un grupo.

Definición (Grafo de Cayley). Sea G un grupo con conjunto generador X. El grafo de

Cayley de G con respecto a X es el grafo:

• cuyos vértices son los elementos de G, y

• cuyas aristas unen g y g′ si y solo si g′ = gx para algún x ∈ X.

Este grafo será denotado por ΓG,X .

Resulta que los grupos actúan de forma natural sobre sus grafos de Cayley, siendo esta acción

precisamente la conexión que buscábamos entre grupos y geometŕıa. Esto nos permite estudiar los

grupos desde una nueva perspectiva. En esta ĺınea, encontramos la siguiente caracterización de

grupos libres.

Teorema (Grupos libres y árboles). Un grupo es libre si y solo si actúa libremente sobre

un árbol.

De aqúı se deduce fácilmente que los subgrupos de grupos libres también son libres. Notar que

de otra manera, este resultado no es para nada trivial.

Terminamos el caṕıtulo con la noción de grupo fundamental, dando un método para construir

espacios con un grupo fundamental predeterminado. Esto lo haremos tomando una presentación del

grupo, construyendo el grafo de Cayley y aprovechando la acción que mencionábamos.
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§3. Construyendo nuevos grupos

En este caṕıtulo volvemos a trabajar con presentaciones de grupos, haciendo diversas manipulaciones

con ellas. En particular, estudiaremos qué sucede cuando juntamos presentaciones de dos grupos y

cuando añadimos algunas relaciones. Un buen compendio de estas manipulaciones se puede encontrar

en [3].

De hecho, la primera construcción que estudiamos es el conocido producto directo de dos grupos.

La novedad es que utilizaremos una propiedad universal para definirlo, algo que puede parecer

forzado en este ejemplo pero resulta inevitable en otras construcciones. Por otra parte, es un primer

ejemplo fácil de entender para ver qué pasa cuando mezclamos presentaciones de dos grupos.

Lo que sigue en el caṕıtulo es una lista de construcciones habituales, y su caracterización en

términos de presentaciones. En particular, estudiamos productos semidirectos, productos libres,

productos libres con amalgama y extensiones HNN.

Por último, hacemos una mención a la teoŕıa de Bass-Serre, que de nuevo se centra en describir

la estructura de grupos estudiando cómo éstos actúan sobre árboles. Esto nos permitirá describir el

grupo SL2(Z) como un producto libre con amalgama de grupos ćıclicos. Una referencia clásica en

esta teoŕıa es [4].

§4. Problemas de decisión y criptograf́ıa

En este último caṕıtulo estudiamos algunas cuestiones algoŕıtmicas que surgen de forma natural

cuando trabajamos con presentaciones de grupos. En particular, estudiamos los llamados problemas

de decisión que introdujo Max Dehn en su estudio de grupos fundamentales. Una bonita introducción

histórica puede encontrarse en [5].

En concreto, presentamos el problema de la palabra (conocido como word problem), el problema

de la conjugación (conjugacy problem) y el problema del isomorfismo (isomorphism problem). Las

preguntas que plantean estos problemas son sencillas de entender, pero su solución parece escapar

siempre de una respuesta simple. Esta situación nos lleva a estudiar qué significa resolver un problema,

y enunciamos sin demostración que existen grupos para los cuáles los problemas mencionados son

indecidibles.

Por último, describimos dos esquemas criptográficos basados en la teoŕıa desarrollada. En

particular, la seguridad de estos protocolos estará basada en la dificultad de resolver problemas

similares a los descritos anteriormente. Una multitud de aplicaciones de la teoŕıa de grupos a la

criptograf́ıa puede encontrarse en [6].
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Chapter I

Free Groups and Group presentations

Informally speaking, combinatorial group theory is the study of groups in terms of generators and

relations. In this chapter we will study free groups, the building blocks of combinatorial group

theory. Then we discuss how the elements of a free group can be expressed, introducing the concept

of normal form. In the last section, we make a connection between free groups and arbitrary groups

introducing the concept of presentation of a group.

§1. Free groups

There are several ways to introduce free groups, the following definition is based on the so called

universal properties.

Definition I.1 (Free group). Given a group F , a nonempty set X and a function σ : X −→ F ,

we say that (F, σ) is free on X if to each function α from X to a group G there corresponds a

unique homomorphism β : F −→ G such that α = β ◦ σ, i.e. the following diagram commutes.

F

X G

βσ

α

Usually X ⊂ F and σ : X ↪−→ F is the inclusion. In this situation X is said to be a free basis for

F , and β is the only homomorphism extending α. Let us take a look at several examples to gain

insight into this definition.

Example I.1. Consider the infinite cyclic group F = Z, the set X = {1} and σ : {1} ↪−→ F to be

the inclusion. Then, (F, σ) is free on X. Given any group G and a function α : {1} −→ G, 1 7−→ g,
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we can consider:

Z β−→ G

n 7−→ gn.

Clearly β is a homomorphism extending α. Furthermore, it is unique since any other homomorphism

γ extending α satisfies γ(1) = g = β(1), but this is enough to conclude γ = β, since {1} generates Z.

Example I.2. The group F = Z with the inclusion is not free on X = {1, 2}. Indeed, consider

G = Z3 =
{

0, 1, 2
}

and the function α : {1, 2} → Z3 given by α(1) = α(2) = 1. If we could find a

homomorphism β extending α, the following would be true:

1 = α(2) = β(2) = β(1 + 1) = β(1) + β(1) = α(1) + α(1) = 1 + 1 = 2.

The problem with X is that it is not free enough. For now, it is enough to note that there is some

relationship between elements of X, namely 2 = 1 + 1.

As we will see later, free groups are those where there are no hidden relations. In some sense,

the underlying structure is the simplest possible. Before we continue, let us show that free groups

on a given nonempty set always exist.

Theorem I.1 (Existence of free groups). Given a nonempty set X, there exists a group

F and a function σ : X −→ F such that (F, σ) is free on X. Furthermore, the subset Imσ

generates F .

Proof. The proof has two steps. First, we define a group F using the set X and a function

σ : X −→ F . Then, we check that this group F together with σ is free on X.

Construction of (F, σ). Define the set X−1 = {x−1 | x ∈ X}, where x−1 is just a symbol. Let

{X ∪X−1}∗ denote the set of all finite sequences of elements of X and X−1. For convenience, we

will refer to these sequences as words in X. Each word w ∈ {X ∪X−1}∗ can be written as:

w = xε11 . . . xεnn , where xi ∈ X, εi = ±1.

If n = 0, we say that w is the empty word and we write w = 1. Now define a product in {X ∪X−1}∗

as follows:

w = xε11 . . . xεnn , v = yν11 . . . yνmm =⇒ wv = xε11 . . . xεnn y
ν1
1 . . . yνmm ,

with the convention w1 = w = 1w. The inverse of w is the word w−1 = x−εnn . . . x−ε11 , with 1−1 = 1.

Finally, we need to define an equivalence relation ∼ in {X ∪X−1}∗. We say that two words are

equivalent if we can pass from one to the other inserting or deleting pairs of the form xx−1 or x−1x.

Clearly ∼ is an equivalence relation. Denote by [u] the equivalence class of a word u and let F be

the set of equivalence classes:

F = {X ∪X−1}∗/ ∼ .

Furthermore, if u ∼ u′ and v ∼ v′, obviously uv ∼ u′v′, and it makes sense define the product

[u][v] = [uv]. This operation has the following properties.
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1. Associativity: ([u][v])[w] = [u]([v][w]).

2. Existence of identity: [1][w] = [w] = [w][1].

3. Existence of inverse: [w]−1[w] = [1] = [w][w]−1 with [w]−1 = [w−1].

Thus, F is a group generated by elements of the form [x]. Now we define σ to be:

X
σ−→ F

x 7−→ [x],

so that F = 〈Imσ〉.

The group F together with σ is free on X. Suppose we are given a group G and a function

α : X −→ G. We should find a homomorphism β such that the diagram commutes.

F

X G

βσ

α

To do so, we start defining the function β̄:

{X ∪X−1}∗ β̄−→ G

xε11 . . . xεnn 7−→ α(x1)ε1 . . . α(xn)εn .

Now, it should be clear that w ∼ w′ implies β̄(w) = β̄(w′), since the pairs xx−1 and x−1x map to

pairs of the form gg−1, which are equal to 1G. This allows us to define:

F
β−→ G

[w] 7−→ β̄(w).

Clearly α = β ◦ σ. Finally, we need to check the uniqueness of β. If γ satisfies α = γ ◦ σ, we have

γ([x]) = β([x]), x ∈ X. However, since these elements generate F , it follows that γ = β.

Since the given proof is constructive, we can write specific examples. Suppose we have the set

X = {a}, then we consider the set of words {a, a−1}∗, where we can find elements such as aaa−1 or

a−1a−1. We form the group F identifying words that are the same up to cancellation of aa−1 or

a−1a. Thus, we write:

[aaa−1] = [a] or [a−1a−1] = [a]−2.

In general, we will be sloppy with the notation and drop the brackets, so that we just write:

F = {an | n ∈ Z} ' Z.

Therefore, the group F provided by the theorem is the same as the one we found in our first example.

This suggests the idea of uniqueness of free groups in some sense. The following theorem addresses

this question.

3
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Theorem I.2 (Uniqueness of free groups). Let F1 and F2 be free groups on X1 and X2

respectively. Then F1 ' F2 if and only if |X1| = |X2|.

Proof. In order to avoid set theoretic issues, we will prove the theorem only in the case X1 and X2

are finite. Thus we can write

X1 = {x1, x2, . . . , xn} X2 = {y1, y2, . . . , ym} .

In addition, let σ1, σ2 be the usual maps from the corresponding set to the free group.

=⇒) Consider the set Hom (F1,Z2) of homomorphisms from F1 to Z2. This set is a vector space

over Z2 in the obvious way, namely:

F1
θ1+θ2−−−−→ Z2

x 7−−−−→ θ1(x) + θ2(x),

F1
λθ−→ Z2

x 7−→ λθ(x).

Call this vector space V1, now we want to find a basis. To do so, fix xi ∈ X1 and consider the function

αi : X −→ Z2 given by αi(xi) = 1 and αi(xj) = 0 if i 6= j. Then there exists a homomorphism

βi ∈ Hom (F1,Z2) extending αi. We claim that the family

{β1, β2 . . . , βn} ,

is a basis for V1. Indeed, any θ ∈ Hom (F1,Z2) can be written as:

θ = t1β1 + t2β2 + . . .+ tnβn where ti = θ(σ1(xi)),

and this decomposition is unique. Hence, we conclude that

dimV1 = n = |X1|.

In the same vein, the set Hom (F2,Z2) forms another vector space V2 over Z2 with dimension

dimV2 = m = |X2|.

Now we use the hypothesis. If F1 ' F2, there is an isomorphism F2
γ−→ F1 that induces an

isomorphism between V1 and V2 given by θ ∈ V1 7−→ θ ◦ γ ∈ V2. Thus, the two vector spaces are

isomorphic and they must have the same dimension, therefore:

|X1| = |X2|,

as we wanted to show.

⇐=) Assume |X1| = |X2|, so that there exists a bijection X1
α−→ X2. Recall that the definition

of free group ensures the existence of the following diagrams:

F1

X1 F2

β1σ1

σ2◦α

F2

X2 F1

β2σ2

σ1◦α−1

4
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Hence

β2 ◦ (β1 ◦ σ1) = β2 ◦ (σ2 ◦ α) = (σ1 ◦ α−1) ◦ α = σ1,

making the following diagram commutative

F1

X1 F1

β2◦β1σ1

σ1

Now β2 ◦β1 = IdF1 since the identity on F1 is a homomorphism that makes the diagram commutative

and it must be unique. Exchanging the roles of F1 and F2, we see that β1 ◦ β2 = IdF2 . Then β1 and

β2 are inverse isomorphisms and

F1 ' F2,

as we wanted to show.

Now we can define the rank of a free group as the cardinality of any set on which it is free.

Given a natural number n, we have proved that there exists a unique free group of rank n up to

isomorphism. In particular, any free group of rank 1 is isomorphic to Z. Free groups of rank 2 will

appear later, but first we need to develop some ideas.

§2. A word about words

In the light of the proof of the theorems, we are going to play around with words quite often. Given

this situation, we would like to know if some words are somehow more tractable than others. For

example, it seems reasonable to reduce aa−1a−1 to the word a−1, which is certainly easier to use.

Thus, we say that a word is reduced if no further cancellation is possible.

Proposition I.3. Let X be a nonempty set. Each equivalence class of words in X contains

exactly one reduced word.

Proof. Existence is trivial, just reduce the given word until no further cancellation is possible. Let

R denote the set of reduced words and consider u ∈ X ∪ X−1. We can define a permutation

u′ : R −→ R given by

u′(xε11 . . . xεrr ) =

xε11 . . . xεrr u if u 6= x−εrr

xε11 . . . x
εr−1

r−1 if u = x−εrr .

Now, we consider the group G of permutations of R, namely G = Sym R and define the function

α : X −→ G, x 7−→ x′. Thus, there exists a unique homomorphism β : F −→ G such that β([x]) = x′.

Now let v, w ∈ R and assume v = xε11 . . . xεrr , then β([v]) = (xε11 )′ . . . (xεrr )′ sends the empty word to v.

Similarly β([w]) sends the empty word to w. Now, if [v] = [w], then β([v]) = β([w]) as permutations

of R, then they send the empty word to the same element, yielding v = w.

5



Group theory. Decision problems and applications in cryptography. Raúl Alegre

Thus, given an element of a free group, we can always write it as [w], where w is reduced. If

[w] = [x1]ε1 . . . [xs]
εs , we can multiply together consecutive terms involving the same letter and drop

the brackets to write

w = xl11 . . . x
lr
r where xi ∈ X, r ≥ 0, li 6= 0, xi 6= xi+1.

in a unique way. This expression is called the normal form of w. The existence of normal forms

with this behaviour characterizes free groups, as we see in the next proposition.

Proposition I.4 (Characterization of free groups). Let G be a group and X a subset of

G. If every element of G can be written as xl11 . . . x
lr
r where xi ∈ X, li 6= 0, xi 6= xi+1 in a

unique way, then G is free on X.

Proof. Construct a free group F on X and use the defining property of free groups, with α : X ↪−→ G

being the inclusion. Then there exists a unique homomorphism β such that β([x]) = x for each

x ∈ X, we claim that β is an isomorphism. Clearly β is surjective since X generates G. Injectivity

follows by the existence and uniqueness of normals forms, indeed, for any [v], [w], we can assume

that v and w are reduced and follows immediately that β([v]) = β([w]) implies [v] = [w].

The above proposition can be used directly to check whether a given group is free or not.

Example I.3. Consider the group Z× Z and suppose it is free on X. Clearly X has at least two

elements (otherwise Z× Z ' Z). Now take a, b ∈ X and (writing the group operation as a product)

note that ab = ba. Thus we have an element whose decomposition as a product of elements of X is

not unique. This contradiction shows Z× Z is not free.

When the group is free, a direct approach is likely to be unsuccessful, since it is difficult to prove

the uniqueness of the normal form. We can solve this problem if we find a suitable action of the

group on a set, as the next lemma shows.

Proposition I.5 (Ping-Pong Lemma). Let G be a group with a generating set X = {a, b},
acting on a set S. If we can find subsets A,B ⊆ S such that A ∩B = ∅ satisfying an ·B ⊆ A
and bn ·A ⊆ B for all integers n 6= 0, then G is free on X.

Proof. Since X is a generating set, every element of G can be written as a reduced word in X. To

show the uniqueness of this expression, it is enough to prove that no nontrivial product equals the

identity. First suppose that w begins and ends with a power of a, then:

w = an1bm1 . . . anr−1bmr−1anr where ni,mi 6= 0.

We study the action of w on B.

w ·B = an1bm1 . . . anr−1bmr−1anr ·B ⊆ an1bm1 . . . anr−1bmr−1 ·A
⊆ an1bm1 . . . anr−1 ·B ⊆ . . . ⊆ an1 ·B ⊆ A.

6
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Therefore w 6= 1. For any other word w we can find conjugates a−mwam that begin and end

with a power of a (for m large enough). Since a−mwam 6= 1, then w 6= 1. Now we can use the

characterization of free groups to deduce that G is free on X.

Now we are ready to work with some examples that appear in nature. Recall that SL2(Z) is the

group consisting of 2× 2 matrices with integer entries and determinant 1.

Example I.4. The group SL2(Z) has a free subgroup of rank 2. Indeed, let

a =

[
1 0

2 1

]
, b =

[
1 2

0 1

]
,

and define X = {a, b}. Then G = 〈X〉 is free on X.

Proof. We will make use of the ping-pong lemma. Since G acts on the euclidean plane by left

multiplication, consider the subsets A, B ⊆ R2 defined as:

A =

{[
x

y

]
∈ R2

∣∣∣∣∣ |x| < |y|
}
, B =

{[
x

y

]
∈ R2

∣∣∣∣∣ |x| > |y|
}
.

The region A. The region B.

Figure I.1: Two disjoints subsets of the euclidean plane are indicated.

Elementary calculations show that, for each integer n:

an =

[
1 0

2n 1

]
, bn =

[
1 2n

0 1

]
.

Therefore

an ·

[
x

y

]
=

[
x

2nx+ y

]
, bn ·

[
x

y

]
=

[
x+ 2ny

y

]
.

Now recall that given |n| ≥ 1.

|x| > |y| =⇒ |2nx+ y| ≥ 2|n||x| − |y| > (2|n| − 1)|x| ≥ |x|,
|x| < |y| =⇒ |x+ 2ny| ≥ 2|n||y| − |x| > (2|n| − 1)|y| ≥ |y|,

7
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yielding

an ·B ⊆ A, bn ·A ⊆ B for all integers n 6= 0.

It follows from the ping-pong lemma that G is free on X.

For the next example, recall that a Möbius transformation is a permutation of the set Ĉ = C∪{∞}
of the form:

z 7→ az + b

cz + d
where a, b, c, d ∈ C satisfy ad− bc 6= 0.

The set of Möbius transformations forms a group, usually denoted as Aut(Ĉ).

Example I.5. The group of Möbius transformations has a free subgroup of rank 2. Consider

α, β ∈ Aut(Ĉ) defined as:

α(z) = z + 2, β(z) =
z

2z + 1
, z ∈ Ĉ,

and define X = {α, β}. The group G = 〈X〉 is free on X.

Proof. The group G acts trivially on Ĉ. The proof in similar to the last example, considering the

sets

A = {z ∈ C | |z| > 1} , B = {z ∈ C | |z| < 1} .

The region A. The region B.

Figure I.2: Two disjoints subsets of Ĉ are indicated.

The similarities between these two examples are not an accident. There exists a trivial cor-

respondence between Möbius transformations and 2 × 2 matrices with nonzero determinant.

Namely: [
a b

c d

]
7−→

(
z 7→ az + b

cz + d

)
.

It is easily seen that this correspondence is an epimorphism. It is not injective since M and

λM map to the same Möbius transformation for any 0 6= λ ∈ C. Then the first isomorphism

theorem applies to deduce:

Aut(Ĉ) ' PGL2(C),

Remark

8
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where PGL2(C) is called projective general linear group.

§3. Group presentations

We promised that free groups would help us to describe other groups. However, so far free groups

have been studied on their own. Now we introduce the relation between free groups and arbitrary

groups, but before we introduce the main result, we provide an illustrative example.

Example I.6. We know that Z× Z is not free on X = {a, b}, where a = (1, 0), b = (0, 1). However

Z× Z behaves as the free group F on X with the additional constraint ab = ba.

In fact, if we let N / F2 denote the normal closure of aba−1b−1 in F , the quotient F/N has the

desired behaviour, since in this group (ab)N = (ba)N . Thus one can show Z× Z ' F/N , and this

construction suggests to write:

Z× Z = 〈a, b | ab = ba〉.

The situation in the example is quite common, so it deserves a general definition.

Definition I.2 (Group presentation). Let F be a free group on a nonempty set X, and R

a subset of F . Let N denote the normal closure of R in F . Then we define the group generated

by X with relations R to be F/N. This group is denoted

〈X | R 〉.

If G ' 〈X | R 〉, we say that 〈X | R〉 is a presentation for G.

We usually do not distinguish between a group and its presentation, so we will write G = 〈X | R 〉.
If X and R are both finite, we say that G is finitely presented, and we will write

G = 〈x1, x2, . . . , xn | r1, r2, . . . , rm〉.

Usually, relations of the form “w̃w−1” will be written as “w̃ = w”.

Note that the relations in 〈X | R〉 allow different spellings for the same element. Sometimes we

want to emphasize that two (possibly different) words represent the same element, and we will write

w =G w
′.

Which groups can be described using a presentation? The following theorem generalizes the

previous example and justifies the importance of free groups.

9
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Theorem I.6. Every group can be expressed as the quotient of a free group. In particular,

every group admits a presentation.

Proof. Denote the group by G and take a generating set X (note that always exists one, as we can

take the whole G). Now we construct the free group on X and define α : X ↪−→ G to be the inclusion.

The defining property of free groups says that there exists a unique homomorphism β such that

α = β ◦ σ. Since X is a generating set, β is surjective, and the first isomorphism theorem yields

G ' F/ kerβ.

Thus, G is a quotient of F . Now take a set R that normally generates kerβ and we have the desired

presentation (once again, we can take R to be the whole kerβ).

Informally speaking, R codifies the relations that should hold in the group G. Several examples

will help to understand this notation.

Example I.7. In Z× Z, the crucial constraint is ab = ba, so we define R = {aba−1b−1}. Then a

presentation is

Z× Z = 〈a, b | aba−1b−1〉 or Z× Z = 〈a, b | ab = ba〉.

Example I.8. In Zn, let a = 1 and write the group operation as a product. Then an equals the

identity and we have the presentation:

Zn = 〈a | an = 1〉.

Example I.9. Consider the dihedral group. This group is generated by two elements, a rotation r

and a symmetry s. The properties of these elements are codified in the presentation

Dn = 〈r, s | rn = 1, s2 = 1, srs = r−1〉.

Example I.10. The quaternion group can be presented as

Q = 〈i, j, k | i2 = j2 = k2 = ijk〉,

where the identity is denoted 1, the common element i2 = j2 = k2 = ijk is denoted −1 and the

elements i3, j3, k3 are denoted −i,−j,−k respectively.

Example I.11. The Baumslag-Solitar group BS(m,n) is defined to be

BS(m,n) = 〈a, t | t−1amt = an〉.

Example I.12. Any group of the form

G = 〈X | r = 1〉,

is called a one relator group. Z× Z, Zn and BS(m,n) are one relator groups.

Example I.13. A presentation without relations yields a free group. Thus

G = 〈X | ∅〉,

is free of rank |X|.

10



Chapter II

Cayley graphs

§1. Introduction

In this chapter we discuss some aspects of geometric group theory and their relation to combinatorial

group theory. In particular, we will focus our attention on the interplay between groups and graphs.

Given a group G with a generating set X, we can construct a graph ΓG,X called the Cayley graph.

It turns out that the group acts naturally on the graph, making possible to study the properties of

the former when the latter is known. In addition, these graphs give a characterization for free groups.

Finally, we will see how Cayley graphs can be used to construct spaces with a desired fundamental

group.

Of course, the whole relation between groups and geometry will be possible thanks to the

formalism of group presentations we have developed so far.

§2. Cayley Graphs

In this section we start with a group G with a generating set X. The goal is to translate the group

structure into a graph called Cayley graph.

Definition II.1 (Cayley graph). Let G be a group with generating set X. The Cayley Graph

of G with respect to X is the graph whose:

• vertices are the elements of G, and

• edges join g and g′ if and only if g′ = gx for some x ∈ X.

We denote this graph ΓG,X .

11
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Usually, ΓG,X has labels on both the vertices and the edges. The following examples should

clarify these ideas.

Example II.1. The Cayley Graph of the group G = Z with generating set X = {1} is

-2 -1 0 1 2
+1 +1 +1 +1

Figure II.1: Cayley Graph ΓZ,{1}.

In order to make cleaner graphs, we will not write the labels on the edges. Instead, we will plot

the edges using different patterns to denote different generators.

Example II.2. The Cayley Graph depends on the generating set. Consider G = Z8 and the

generating sets X = {1}, Y = {2, 3}. The two Cayley Graphs are shown.

2

1

0

7

6

5

4

3

ΓG,X .

2

1
0

7

6

5 4

3

ΓG,Y .

Figure II.2: Cayley graphs with different generating sets.

Example II.3. Consider the Dihedral group D6 with generating set X = {r, s}.

1

rr2

r3

r4 r5

s

rsr2s

r3s

r4s r5s

Figure II.3: Cayley Graph of a dihedral group.
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§3. Group actions on graphs

We said we could take advantage of the relation between groups and geometry. This section tries to

make this connection a little more precise.

Theorem II.1 (Cayley’s Better Theorem). Every finitely generated group can be faithfully

represented as a symmetry group of a connected, directed, locally finite graph.

Proof. (Sketch) The difficult part is to find the graph, but we already defined it. Consider a Cayley

graph and define the action of G by left multiplication (i.e. the element g moves the vertex h to the

vertex gh). With this definition, the ends of an edge are preserved since they are defined by right

multiplication and the action is well defined. Now the proof is straightforward.

Given a group G = 〈X | R〉, this result allows us to identify a word w ∈ G with a path in the

Cayley graph ΓG,X . It is enough to follow the vertices given by the word.

Example II.4. Consider G = 〈a, b | ab = ba〉. The Cayley graph looks like a grid, as shown in

the figure. We can think of a and b as (1, 0) and (0, 1), and we recover Z × Z. Several paths are

shown in the figure. Note that different words w,w′ result in different paths ending in the same point

precisely when w =G w
′.

(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(−1, 3)

(−1, 4)

(−1, 5)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(3,−1)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(4,−1)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(5,−1)

(5, 0)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

The words a2bab3 and b4a3.
(−1,−1)

(−1, 0)

(−1, 1)

(−1, 2)

(−1, 3)

(−1, 4)

(−1, 5)

(0,−1)

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, 5)

(1,−1)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2,−1)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(2, 5)

(3,−1)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(3, 5)

(4,−1)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(5,−1)

(5, 0)

(5, 1)

(5, 2)

(5, 3)

(5, 4)

(5, 5)

The words (ab)3b−3 and b4a4b−4a−1.

Figure II.4: Cayley Graph of Z× Z with respect to {(1, 0), (0, 1)}.

As wee see, this relationship between words and paths allows us to decide whether or not two

words are the same as elements of the group (if the Cayley graph has been given). Just construct

the two paths and check if they end in the same vertex.
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§4. Free groups and graphs

Our next goal is to give a characterization of free groups in terms of their action on graphs. Before

we introduce the main result, let us show how is the Cayley graph of a free group of rank 2.

Example II.5. Consider the set X = {a, b} and the free group G = 〈X | ∅〉. The Cayley graph is

a tree where every vertex has valence 4.

Figure II.5: Cayley graph of the free group of rank 2.

The fact that a free group has a tree as its Cayley graph it is no surprise. Indeed, any reduced

word in a free group is not equal to the identity. As a consequence, any possible path in the

corresponding Cayley graph is not a cycle. Finally, we note that trees are precisely the graphs

without cycles. Recall that a group acts freely on its Cayley graph, the preceding comments motivate

the main result of this section, which we quote without proof.

Theorem II.2 (Characterization of free groups). A group G is free if and only if it acts

freely on a tree.

The converse requires more advanced tools and a clever use of (a generalization of) ping-pong

lemma. This characterization shows how to take advantage of the interplay between groups and

graphs. Indeed, an immediate consequence is the following.

Theorem II.3 (Nielsen-Schreier Theorem). Every subgroup of a free group is free.
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§5. Fundamental Groups

We end this chapter studying how presentations of groups can be used to construct topological

spaces with a certain fundamental group.

Definition II.2. The fundamental group of a path connected topological space X is the group

whose elements are the equivalence classes of loops under the equivalence relation of homotopy.

We denote it by π1(X).

The spaces we are going to be dealing with are sort of two dimensional extensions of graphs, in

particular, we are going to use 2 dimensional cell complexes. A later example will show the basic

features of their construction. However, we give first the main result.

Proposition II.4. For every group G there is a two dimensional cell complex XG whose

fundamental group is G, i.e. π1(XG) = G.

Example II.6. Consider G = Z× Z = 〈a, b | aba−1b−1 = 1〉. We outline the construction of XG.

1. Construct the Cayley graph as in (a).

2. Each relation is associated with a cycle in the Cayley graph. Starting on each vertex, we add

2-cells corresponding to the cycles as in (b).

3. Since we have an action of the group on the Cayley graph, we can take the corresponding

quotient and obtain a space like the one in (c), where every vertex is identified, as well as edges

corresponding to the same generator. However, the action extends naturally to the 2-cells, so

we have to attach them identifying the edges shown in (d).

(a) (b)

ba

(c)

a
b

a
b

(d)

The following diagram helps to visualize how the attaching yields a torus. Then, the fundamental

group of a torus is Z× Z.
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Chapter III

Constructing new groups

In this chapter we take advantage of the machinery developed in the first chapter to construct new

groups. In particular, we will study what happens when we “mix” different presentations in a variety

of ways. In addition, we will discuss how we can write the elements of the groups in each case.

§1. Normal forms

Suppose we are given a presentation of a group G = 〈X | R〉. When the group is not free, each word

will have several spellings in terms of the generators, and this might cause some confusion. However,

if we agree on a particular spelling, such a problem does not appear. We will call that particular

spelling a normal form.

Normal forms are important in practice. For example, they are needed for several cryptographic

schemes, where often one needs to check whether two words are the same. We will see later how

hard this problem can be in general, however, if we agree on a normal form the solution is trivial

once we are able to recognize the particular spelling.

Example III.1. In free groups, we already focused our attention in a particular spelling. Of course,

we are talking about the normal form defined in the first chapter.

Example III.2. In a group G = 〈X | R〉, we define an arbitrary order between elements of X. Now,

for each element g ∈ G take the set of words w such that w =G g and w has minimal length (these

are called geodesic words). Finally, among these words, take the first one regarding the lexicographic

order induced by the order in X. This particular choice is called short-lex normal form.

For example, in Z×Z = 〈a, b | ab = ba〉, we can define the order a < b. Now, the geodesics word

of a particular element are aibj and bjai, and the short-lex normal form is w = aibj.
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§2. Direct product

Although this construction may be familiar to the reader, we will introduce it here in a new fashion.

As we did with free groups, we can define the direct product of two groups by means of a universal

property.

Definition III.1. Let H,K,D be groups. We say that D is the direct product of H and K

if there are homomorphisms pH : D → H, pK : D → K such that: for each group G and

homomorphisms fH : G → H, fK : G → K there exists a unique homomorphism γ : G → D

such that fH = pH ◦ γ and fK = pK ◦ γ.

In this situation, we write D = H ×K. The following diagram summarizes the definition.

G

H H ×K K

fH γ
fK

pH pK

The well-known construction of direct product H ×K fits this definition. Moreover, a diagram

chase using uniqueness shows the direct product is unique. However, now we want to see how group

presentations help us to describe this group. Recall that the commutator of two subsets A,B of a

group is

[A,B] = {aba−1b−1 | a ∈ A, b ∈ B}.

Proposition III.1. If H = 〈X | R〉, K = 〈Y | S〉, then

H ×K = 〈X, Y | R, S, [X,Y ]〉.

Proof. Let D = 〈X, Y | R, S, [R,S]〉. Now note that, since words in X and Y commute, every

element w in D is a word in X,Y which can be written as w = uv, where u, v are words in X and Y

respectively. Now define the homomorphisms pH : D → H, pK : D → K as follows:

pH(w) = u, pK(w) = v, where w = uv.

Now suppose we are given a group G and homomorphisms fH : G→ H, fK : G→ K. Then we can

define γ : G→ D to be:

γ(g) = uv where u = pH(g), v = pK(g),

where u and v are expressed as words in X and Y . Clearly, γ satisfies fH = pH ◦ γ and fK = pK ◦ γ.

Uniqueness is an immediate consequence of the commutativity of the diagram.

In this case, there is not too much to say about normal forms. Using the commuting relations,

every word can be written as w = uv in a unique way, where u is a word in X and v is a word in Y .

Of course, u and v will be expressed in the corresponding normal form of the groups H and K.

17
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What about semi direct-products? There is not an easy way to mimic the last definition. In

fact, there is a universal property for semi-direct products, but it explains how the elements

behave, rather than the groups. Thus, we can not write a commutative diagram to introduce it.

However, group presentations still provide a nice description, which is encapsulated in the

following proposition.

Proposition III.2. Let N = 〈X | R〉, H = 〈Y | S〉, φ : H −→ Aut N . Then

H oφ K = 〈X, Y | R, S, φ(h)(n) = hnh−1 for all n ∈ N, h ∈ H〉.

The given commuting relations lead to the same comments regarding normal forms.

Example III.3. The dihedral group Dn is a semi-direct product of Zn and Z2. In fact, we have

the presentations

Zn = 〈r | rn = 1〉, Z2 = 〈s | s2 = 1〉,

and we can let φ : Z2 −→ Aut Zn be the homomorphism defined by φ(s)(r) = r−1. Then we have

Zn oφ Z2 = 〈r, s | rn = 1, s2 = 1, srs = r−1〉 = Dn.

Remark

§3. Free product

The direct product is a natural construction. However, it is not the “freest” group containing the

two initial groups. This is due to the commuting relations that appear in the presentation. This

suggest the idea of a new construction which we call free product.

Definition III.2. Let H,K,F be groups. We say that F is the free product of H and K

if there are homomorphisms ιH : H → F , ιK : K → F such that: for each group G and

homomorphisms fH : H → G, fK : K → G there exists a unique homomorphism γ : F → G

such that fH = γ ◦ ιH and fK = γ ◦ ιK .

In this situation, we write F = H ?K. The following diagram summarizes the definition.

H H ?K K

G

ιH

fH
γ

ιK

fK

As usual, the universal property may not be very illustrative. However, it can be shown in

a similar fashion that free products admit the following description in terms of generators and
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relations.

Proposition III.3. If H = 〈X | R〉, K = 〈Y | S〉, then

H ?K = 〈X, Y | R, S〉.

How can we write the elements in this group? Every element can be written uniquely as an

alternating expression of the form h1k1 . . . hmkm with hi 6= 1, ki 6= 1 when present. Here uniqueness

means

h1k1 . . . hmkm =H?K h′1k
′
1 . . . h

′
nk
′
n =⇒ n = m, hi =H h′i, ki =K k′i.

§4. Free products with amalgamation

The following construction will be a generalization of the free product. Suppose M is a group

isomorphic to subgroups of H and K, then we would like to construct a product where these

subgroups are identified.

Definition III.3. Let H,K,M,L be groups and τH : M −→ H, τK : M −→ K be monomor-

phisms. We say that L is the free product of H and K with amalgamated subgroup M if there

are homomorphisms ιH : H → L, ιK : L→ L satisfying ιH ◦ τH = ιK ◦ τK such that: for each

group G and homomorphisms fH : H → G, fK : K → G satisfying fH ◦ τH = fK ◦ τK there

exists a unique homomorphism γ : L→ G such that fH = γ ◦ ιH and fK = γ ◦ ιK .

In this situation, we write L = H ?
M
K. The following diagram summarizes the definition.

M

H H ?
M
K K

G

τH τK

ιH

fH
γ

ιK

fK

Letting A = τH(M), B = τK(M) (the subgroups isomorphic to M), we can denote the product

as H ?
A=B

K. As usual, let’s see a presentation for this new group.

Proposition III.4. If H = 〈X | R〉, K = 〈Y | S〉, M = 〈Z | T 〉 then

H ?
M
K = 〈X, Y | R, S, τH(z) = τK(z) for all z ∈ Z〉.
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Normal forms in these groups are not trivial at all. It is required to choose some particular

transversals W , Z for the right cosets of A and B in H and K respectively. Then every product can

be written uniquely as ah1k1 . . . hmkm, where a ∈ A, hi ∈ H, ki ∈ K.

Example III.4. Consider the free groups H = 〈a | ∅〉, K = 〈b | ∅〉, M = 〈c | ∅〉 with the

monomorphisms τH : M −→ H, τK : M −→ K given by τH(c) = a3, τK(c) = b2. Then we have

A = 〈a3〉, B = 〈b2〉.
H ?

A=B
K = 〈a, b | a3 = b2〉.

Free products with amalgamation can be used to compute some fundamental groups. The

Seifert-van Kampen theorem makes this idea concrete.

Theorem III.5 (Seifert-van Kampen). Let X be a path connected topological space.

Suppose X = U1∪U2, where U1, U2 are open, path connected sets such that U1∩U2 is open

and path connected. Then the fundamental group π1(X) admits the following expression.

π1(X) = π1(U1) ?
π1(U1∩U2)

π1(U2).

Remark

§5. HNN extensions

We end this sequence of definitions with another common construction. The setting is the following:

we have a group G with two subgroups A,B with an explicit isomorphism between them. We

want to extend G so that the isomorphism becomes an inner automorphism. We will achieve this

introducing a new letter and adding some relations.

Definition III.4. Let G = 〈X | R〉 be a group with subgroups A,B such that there exists an

isomorphism ϕ : A −→ B. The HNN extension of G with respect to associated subgroups A

and B is the group denoted G?ϕ and defined by

G?ϕ = 〈X, p | R, p−1ap = ϕ(a) for all a ∈ A〉.

The new generator p is called the stable letter.

Many similarities arise between HNN extensions (named after G. Higman, B.H. Neumann, and

H. Neumann) and free products with amalgamation. The main results about HNN extensions are

consequences of a technical lemma known as Britton Lemma. In particular, it gives a normal form

similar to those studied in free products with amalgamation (more details may be found on [3]).
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§6. The structure of SL2(Z)

We end this chapter with a mention to Bass Serre theory. This theory aims to describe the structure

of groups analyzing their action on trees. In particular, groups are described using iterated free

products with amalgamation and HNN extensions.

As an example, we will describe the group SL2(Z) finding a tree on which it acts to obtain the

groups as a free product with amalgamation. To do so, we need a previous definition.

Definition III.5. Let G be a group acting on a graph Γ. A fundamental domain for Γ mod G

is a subgraph of Γ isomorphic to the quotient of Γ by the action of G.

Recall that a segment is an edge and its two ends. Now we state the main result.

Proposition III.6. Let G be a group acting on a tree Γ. Let a segment T in Γ be a fundamental

domain for Γ mod G. Let G1, G2 and Ge be the stabilizers of the vertex and the edge of T

respectively. Then G ' G1 ?
Ge

G2.

With this idea in mind, let G = SL2(Z). It is well known that G acts on the upper half of the

complex plane as follows: [
a b

c d

]
· z =

az + b

cz + d
.

Now consider the points v1 = eiπ/2, v2 = eiπ/3 and the arc e of the circle |z| = 1 between them. If

we let T be this segment, we can construct a graph attaching all the translates of T under the action

of G. Trivially T will be a fundamental domain and the graph turns out to be a tree.

e
v2

v1

(a) (b)

Figure III.1: Geometric realization of a tree out of a segment.

Now it is a simple exercise to compute the stabilizers of v1, v2 and the edge e, to find G1 = Z4,

G2 = Z6 and Ge = Z2. This finally allows to obtain the structure of SL2(Z) as a free product with

amalgamation.

SL2(Z) = Z4 ?
Z2

Z6.
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Chapter IV

Decision problems and applications to

cryptography

This chapter will introduce the problems that led to the development of combinatorial group theory.

In particular, we will focus our attention on the so-called decision problems. The history behind

these problems leads us to algebraic topology, however we are mainly interested in the applications

of these problems in cryptography.

§1. Decision Problems and undecidability

Essentially, a decision problem is to determine if a given object has a particular property. Max Dehn

raised the three following decision problems about finitely presented groups.

Definition IV.1 (The word problem). Let G = 〈X | R〉 be a finitely presented group. Is

there an algorithm which decides whether or not a given word w respresents the identity in G?

Definition IV.2 (The conjugacy problem). Let G = 〈X | R〉 be a finitely presented group.

Is there an algorithm which decides whether or not any pair of words u, v represent conjugate

elements in G?

Definition IV.3 (The isomorphism problem). Is there an algorithm which decides whether

or not any pair of finitely presented groups are isomorphic?

These problems arose naturally in Dehn’s work of fundamental groups. Is a given loop contractible?

(word problem) are two given loops freely homotopic? (conjugacy problem) are two given surfaces
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homeomorphic? (isomorphism problem) (homeomorphic surfaces have the same fundamental group,

but the converse is not true).

Example IV.1. Consider the quaternion group Q = 〈i, j, k | i2 = j2 = k2 = ijk〉. It is well known

that i4 = 1, but this is not an immediate consequence of the presentation. An instance of the word

problem is to determine whether or not i4 = 1. The proof is ad-hoc: it is easy to check that ij = k

and ki = j, yielding j = iji. Now

i2 = j2 = (iji)2 = iji2ji = ijj2ji = ij4i = i6 =⇒ i4 = 1.

These problems fall into the domains of theory of algorithms and recursive functions. Thus, we

will not be able to give all the details of the answers. However, we give some basic definitions.

Definition IV.4. A set of objects is recursive is there is an algorithm for deciding membership

in the set. Similarly, a set of objects is recursively enumerable if there is an algorithm for

listing all the elements in the set.

Clearly, a set S (living in some bigger set) is recursive if and only if S and its complement are

recursively enumerable. Now we can formulate the word problem (for example) as follows.

The word problem. Let G be a finitely presented group. Is the set {w ∈ G |w =G 1} recursive?

In our finitely presented case, we can solve a part of the problem. The set {w ∈ G | w =G 1} is

recursively enumerable, since we can list all the words corresponding to the identity writing products

of relations, their conjugates and inverses. Thus, if we are given a word w such that w =G 1, it will

be eventually listed. However, if w 6=G 1, we have a problem. There is no way to know if the word

will appear later in our list or not, no matter how long we wait.

If we were able to list all the elements in {w ∈ G | w 6=G 1}, the set {w ∈ G | w =G 1} would be

recursive and the problem would be solved. However, there is no reason to make that assumption. If

{w ∈ G | w =G 1} is not recursive, we say that the problem is undecidable.

Note that verifying w = 1 is equivalent to verifying if w is conjugate to 1. In particular, a group

with undecidable word problem has undecidable conjugacy problem. The existence of such groups

was shown by Nokivov and Boone in 1959.

Theorem IV.1 (Undecidability of the word and conjugacy problems). There exists

a finitely presented group whose word problem is undecidable. As a consequence, its conjugacy

problem is undecidable.

Which groups have a decidable word problem? A lot of research has been done to answer this

question. There are many known properties that imply solvability of the word problem. For example,

one relator groups, residually finite groups, nilpotent groups or metabelian groups have solvable

word problem.
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Once again, we are going to take advantage of the Cayley Graph to solve a problem about the

group. As we know, to each word there corresponds a path in Cayley Graph, and this path is a

cycle when the word is the identity. Thus, the following proposition is immediate.

Proposition IV.2. A finitely presented group has solvable word problem if and only if we

know a Cayley Graph.

Remark

For the sake of completeness, we give a negative solution to the last problem.

Theorem IV.3 (Undecidability of the isomorphism problem). The isomorphism prob-

lem for finitely presented groups is undecidable.

This theorem is a consequence of a theorem by Adian and Rabin in 1958, which established that

almost any property of finitely presented groups is undecidable.

§2. Applications to cryptography

In this section we outline the description of a couple of cryptographic schemes whose theoretical

background relies on the concepts we have been dealing with. Recall that the most widely used

protocols are based in the difficulty of solving mathematical problems, such as factorization of

integers (RSA) or the “discrete log” problem (ElGamal cryptosystem).

A protocol based on the conjugacy search problem

Let G be a group with solvable word problem. From now on, we write wa to denote the conjugation

a−1wa, where w, a ∈ G. The protocol is based on the following problem.

Conjugacy search problem. Given conjugate elements v, w ∈ G, find a ∈ G such that wa = v.

Note that this is not a decision problem, since we know that the elements are conjugate. Indeed,

the problem is recursively solvable, since we can list all the elements conjugate to w until v appears.

However, this approach in infeasible in practice, making this problem interesting from the complexity

theory point of view. In fact, using a search variant of a well known decision problem is a quite

common approach.

In the parlance of the field, we would say that the map a 7−→ wa is a one-way function. As a

consequence, we can build a cryptographic protocol based on conjugation. In particular, we explain

now a key exchange protocol between Alice and Bob.
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1. An element w ∈ G is published.

2. Alice picks a private a ∈ G and sends wa to Bob.

3. Bob picks a private b ∈ G and sends wb to Alice.

4. Alice computes (wb)a = wba and Bob computes (wa)b = wab.

This protocol is due to Ko, Lee, et. al. [7]. If a and b are chosen such that ab = ba, the two

parties will have computed the same element K = wab = wba, so that they have a shared key. Note

that this key can not be computed if one does not know either a or b. In addition, several questions

arise, which groups should be used? How do we choose commuting elements? In [6] we can find

some requirements the group G should satisfy. In particular, the creators of the protocol used Braid

groups, which turn out to have some commuting subgroups.

A protocol based on the word problem

The following protocol is due to Shpilrain and Zapata. In this protocol, Alice decrypts with

probability very close to 1 a binary sequence Bob has sent.

1. A pool of group presentations with efficiently solvable word problem is considered public.

2. Alice picks a group presentation Γ, modifies it by means of isomorphism-preserving transfor-

mations to get Γ′ and eliminates some relations to get Γ̂. The new presentation Γ̂ is sent to

Bob (and should be considered public).

3. Bob sends its binary sequence as follows. For each “1” in the sequence, he sends a word w = 1

in Γ̂ and for each “0”, he sends a long, random word w in Γ̂.

4. Alice receives the words w and treats them as elements of Γ′ (rather than Γ̂), now applies the

isomorphism to get back to the original presentation Γ, where she solves the word problem.

There are several points to be made regarding this protocol. For example, which groups can we

take? We have mentioned several examples of group with solvable word problem, but the creators

suggest to consider the so-called small cancellation groups. Secondly, how is Alice supposed to diffuse

the presentation into another one? The answer is given by Tiezte transformations. In addition, Alice

should take the initial presentation (with solvable word problem) to another one where the word

problem is undecidable. Lastly, if w = 1 in Γ̂, then the same is true in Γ′. However, if w 6= 1 in Γ̂,

we can say nothing about w in Γ′. This is why we say that Alice decrypts correctly with probability

close to 1. The idea is to choose w long enough, so that (with overwhelming probability) w is not a

product of relations, conjugates and their inverses in Γ′.

It is worth noting that one can not decrypt the sequence without knowledge of the original

presentation Γ. This is true because decryption in Γ̂ implies solving the word problem. A further

analysis of the security may be found in [6].
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[12] Clara Löh. Geometric group theory, an introduction. 2015.

[13] A. Raghuram & B. Sury. Groups acting on trees.

[14] Billy Wonderly. Combinatorial Group Theory: An Introduction. 2012.

26


