Non-invasive techniques for respiratory information extraction based on pulse photoplethysmogram and electrocardiogram

Lázaro Plaza, Jesús
Bailón Luesma, Raquel (dir.) ; Laguna Lasaosa, Pablo (dir.) ; Gil Herrando, Eduardo (dir.)

Universidad de Zaragoza, 2015
(Instituto de Investigación en Ingeniería de Aragón (I3A))


Resumen: El objetivo principal de esta tesis es el desarrollo de métodos no invasivos para la extracción de información respiratoria a partir de dos señales biomédicas ampliamente utilizadas en la rutina clínica: el electrocardiograma (ECG) y la señal fotopletismográfica de pulso (PPG). La motivación de este estudio es la conveniencia de monitorizar información respiratoria a partir de dispositivos no invasivos que permita sustituir las técnicas actuales que podrían interferir con la respiración natural y que presentan inconvenientes en algunas aplicaciones como la prueba de esfuerzo y los estudios del sueño. Además, si estos dispositivos no invasivos son los ya utilizados en la rutina clínica, la información respiratoria extraída de ellos representa un valor añadido que permite tener una visión más completa del paciente. DESARROLLO TEÓRICO Esta tesis se divide en 6 capítulos. El Capítulo 1 introduce la problemática, motivaciones y objetivos del estudio. También introduce el origen fisiológico de las señales estudiadas ECG y PPG, y cómo y por qué tienen información autonómica y respiratoria que se puede extraer de ellas. El Capítulo 2 aborda la obtención de información respiratoria a partir del ECG. Se han propuesto varios métodos para la obtención de la respiración a partir del ECG (EDR, del inglés ¿ECG derived respiration?). Su rendimiento se suele ver muy afectado en entornos altamente no estacionarios y ruidosos como la prueba de esfuerzo. No obstante, se han propuesto algunas alternativas, como una basada en el ángulo de rotación del eje eléctrico (obtenido del ECG), que es el que mejor funciona en prueba de esfuerzo según nuestros conocimientos. Este método requiere de tres derivaciones ortogonales y es muy dependiente de cada una de ellas, i.e., el método no es aplicable o su rendimiento se reduce significativamente si hay algún problema en alguna de las derivaciones requeridas. En el Capítulo 2 se propone un método EDR nuevo basado en las pendientes del QRS y el ángulo de la onda R. El Capítulo 3 aborda a obtención de información respiratoria a partir de la señal PPG. Se propone un método nuevo para obtener la tasa respiratoria a partir de la señal PPG. Explota una modulación respiratoria en la variabilidad de anchura de pulso (PWV) relacionada con la velocidad y dispersión de la onda de pulso. El Capítulo 4 aborda la extracción de información respiratoria a partir de señales PPG registradas con smarthpones (SCPPG), mediante la adaptación de los métodos basados en la señal PPG presentados en el Capítulo 3. En el Capítulo 5 se propone un método para el diagnóstico del síndrome de apnea obstructiva del sueño (OSAS) en niños basado únicamente en la señal PPG. El OSAS es una disfunción relacionada con la respiración y el sueño que se diagnostica mediante polisomnografía (PSG). La PSG es el registro nocturno de muchas señales durante el sueño, siendo muy difícil de aplicar en entornos ambulatorios. El método que presenta esta tesis está enfocado a diagnosticar el OSAS en niños utilizando únicamente la señal PPG que permitiría considerar un diagnóstico ambulatorio con sus ventajas económicas y sociales. Finalmente, el Capítulo 6 resume las contribuciones originales y las conclusiones principales de esta tesis, y propone posibles extensiones del trabajo. CONCLUSIÓN El método presentado en el Capítulo 2 para estimar la tasa respiratoria a partir de las pendientes del complejo QRS y el ángulo de la onda R en el ECG demostró ser robusto en entornos altamente no estacionarios y ruidosos y por tanto ser aplicable durante ejercicio incluyendo entrenamiento deportivo. Además, es independiente de un conjunto específico de derivaciones y, por tanto, un problema en alguna de ellas no implica una reducción considerable del rendimiento. El método presentado en el Capítulo 3 para estimar la tasa respiratoria a partir de la PWV extraída de la señal PPG está mucho menos afectada por el tono simpático que otros métodos presentados en la literatura que suelen basarse en la amplitud y/o la tasa de pulso. Esto permite una mayor precisión que otros métodos basados en PPG. Además, se propone un método para combinar información de diferentes señales respiratorias, y se utiliza para estimar la tasa respiratoria a partir de la PWV en combinación con otros métodos basados en la señal PPG, mejorando la precisión de la estimación incluso en comparación con otros métodos en la literatura que requieren el ECG o la presión sanguínea. Los métodos propuestos en el Capítulo 4 para estimar la tasa respiratoria mediante señales SCPPG estimaron de forma precisa la tasa respiratoria en sus rangos espontáneos habituales (0.2-0.4 Hz) e incluso a tasas más altas (hasta 0.5 Hz o 0.6 Hz, dependiendo del dispositivo utilizado). El único requerimiento es que el smartphone tenga un luz tipo flash y una cámara para grabar una yema del dedo sobre ella. La popularidad de los smartphones los convierte en dispositivos de acceso y aceptación r¿apidos. Así, para la población general es potencialmente aceptable un método que funciona en smartphones, pudiendo facilitar la medida de algunas constantes vitales utilizando solo la yema del dedo. El método presentado en el Capítulo 5 para el diagnóstico del OSAS en niños a partir de la PPG obtuvo una precisión suficiente para la clínica, aunque antes de ser aplicado en dicho entorno, el método debería ser validado en una base de datos más grande.

Resumen (otro idioma): The main objective of this thesis is to develop non-invasive methods for respiration information extraction from two biomedical signals which are widely adopted in clinical routine: the electrocardiogram (ECG) and the pulse photoplethysmographic (PPG) signal. This study is motivated by the desirability of monitoring respiratory information from non-invasive devices allowing to substitute the current respiration-monitoring techniques which may interfere with natural breathing and which are unmanageable in some applications such as stress test or sleep studies. Furthermore, if these noninvasive devices are those already used in the clinical routine, the respiratory information obtained from them represents an added value which allows a more complete overview of the patient status. This thesis is divided into 6 chapters. Chapter 1 of this thesis introduces the problematic, motivations and objectives of this study. It also introduces the physiological origin of studied ECG and PPG signals, and why and how they carry autonomic- and respiration-related information which can be extracted from them. Chapter 2 of this thesis addresses the derivation of respiratory information from ECG signal. Several ECG derived respiration (EDR) methods have been presented in literature. Their performance usually decrease considerably in highly non-stationary and noisy environments such as stress test. However, some alternatives aimed to this kind of environments have been presented, such as one based on electrical axis rotation angles (obtained from the ECG), which to the best of our knowledge was the best suited for stress test. This method requires three orthogonal leads, and it is very dependent on each one of those leads, i.e., the performance of the method is significantly decreased if there is any problem at any one of the required leads. A novel EDR method based on QRS slopes and R-wave angle is presented in this thesis. The proposed method demonstrated to be robust in highly non-stationary and noisy environments and so to be applicable to exercise conditions including sports training. Furthermore, it is independent on a specific lead set, and so, a problem at any lead do not imply a significantly reduction of the performance. Chapter 3 addresses the derivation of respiratory information from PPG signals. A novel method for deriving respiratory rate from PPG signal is presented. It exploits respiration-related modulations in pulse width variability (PWV) which is related to pulse wave velocity and dispersion. The proposed method is much less affected by the sympathetic tone than other methods in literature which are usually based on pulses amplitude and/or rate. This leads to highest accuracy than other PPG-based method. Furthermore, a method for combining information from several respiratory signals was developed and used to obtain a respiratory rate estimation from the proposed PWV-based in combination with other known PPG-based methods, improving the accuracy of the estimation and outperforming other methods in literature which involve ECG or BP recording. Chapter 4 addresses the derivation of respiratory information from smartphone- camera-acquired-PPG (SCPPG) signals by adapting the methods for deriving respiratory rate from PPG signal presented in Chapter 3. The proposed method accurately estimates respiratory rate from SCPPG signals at its normal spontaneous ranges (0.2-0.4 Hz) and even at higher rates (up to 0.5 Hz or 0.6 Hz, depending on the used device). The only requirement is that these smartphones and tablets contain a flashlight and a video camera to image a fingertip pressed to it. As smartphones and tablets have become common, they meet the criteria of ready access and acceptance. Hence, a mobile phone/tablet approach has the potential to be widely-accepted by the general population and can facilitate the capability to measure some of the vital signs using only fingertip of the subject. Chapter 5 of this thesis proposes a methodology for obstructive sleep apnea syndrome (OSAS) screening in children just based on PPG signal. OSAS is a sleep-respiration-related dysfunction for which polysomnography (PSG) is the gold standard for diagnosis. PSG consists of overnight recording of many signals during sleep, therefore, it is quite involved and difficult to use in ambulatory scenario. The method presented in this thesis is aimed to diagnose the OSAS in children based just on PPG signal which would allow us to consider an ambulatory diagnosis with both its social and economic advantages. Finally, Chapter 6 summarizes the original contributions and main conclusions of the thesis, and proposes possible extensions of the work.

Pal. clave: tratamiento de señales ; fisiología cardiovascular

Área de conocimiento: Tecnología electrónica

Departamento: Instituto de Investigación en Ingeniería de Aragón (I3A)

Nota: Presentado: 15 07 2015
Nota: Tesis-Univ. Zaragoza, Instituto de Investigación en Ingeniería de Aragón (I3A), 2015

Creative Commons License



 Registro creado el 2015-09-25, última modificación el 2019-02-19


Texto completo:
Descargar el texto completo
PDF

Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)