Registro de imagenes medicas

Trabajo Fin de Master

Ana Pilar Mateo Sanz

Universidad de Zaragoza
Curso 2014-2015



REGISTRO DE IMAGENES.

Indice

1.

2.

Introduccidon

Célculo de variaciones

2.1. Descripcién del problema . . . . ... ... ... . ...
2.2. Condicionesdecontorno . . . . . . . . . . . . ... ...

El registro de imagenes como problema variacional

3.1. Medida de similitud . .. .. ... ... .........
3.2. Regularizaciéon . . . .. ... ... ... .. ... ...,
3.21. Difusién . . .. ... ...
322. Elastico. . . .. ... . ... ... ... .. ...

Resolucion numérica

4.1. Regularizador de Difusiéon . . . . ... ... ... ....
4.2. Regularizador Elastico . . ... ..............

Resultados numéricos

. Anexos
A.l. Matriz Laplaciano . . . .. .. ...............
A2 Imnterpolaciéon. . . . ... ... ... ... L.
A.3. Programa Regularizador Difusién . . ... ... . ...
A.4. Matriz Elasticidad . . . . .. ... ... ... .......
A.5. Programa Regularizador Eldstico . . . ... .. ... ..

Bibliografia

33

35
35
36
37
40
43

48



REGISTRO DE IMAGENES. 2

1. Introduccion

El problema de registro en imégenes consiste en encontrar la transfor-
macién geométrica que ponga dos imédgenes dadas a la mejor correspon-
dencia posible.

El registro de imagenes surge en una gran variedad de aplicaciones
como solucién a la comparaciéon de una serie de imagenes. Una de estas
aplicaciones es la medicina, donde existe la necesidad de detectar cambios
en imdgenes de un mismo paciente en momentos diferentes, o imagenes
del mismo 6rgano de diferentes pacientes.

El registro de imédgenes basado en la intensidad es impulsado por una
medida de similitud que tiene dos, o mds, imdgenes de entrada y calcu-
la un valor numérico que proporciona informacién acerca de la bondad
de ajuste. En el registro de imagenes rigidas sé6lo se aplican rotaciones y
traslaciones para realizar la transformacién del espacio. Por lo general es
necesario para alinear las imdgenes de un mismo sujeto sin ningan tipo
de deformacion. Las principales contribuciones del registro de este tipo de
imagenes se compone de métodos automaticos de estimacion de parame-
tros para las medidas de la imagen de similitud, estadisticos y mejoras del
rendimiento mediante técnicas de optimizacion.

Una de las aplicaciones de este tipo de registro de imégenes consiste
en reajustar los pardmetros 6ptimos para una imagen realizada mediante
una tomografia computarizada por emisién de positrones (PET/TC).

Por otro lado, el registro de imagenes no rigidas es una extensiéon
natural del registro de imagenes rigidas, lo que permite también deforma-
ciones, con el fin de lograr una buena concordancia. Esto es necesario en
todos los casos en los que se produce un movimiento en el paciente, tales
como los latidos del corazén o la respiracién. También es necesario cuando
hay que registrar los conjuntos de datos de diferentes pacientes, como por
ejemplo, en las solicitudes del registro de altas.

Los algoritmos desarrollados se basan en una formulacién paramétrica
no rigida, y se utilzan en las solicitudes relativas a la compensacién de
movimiento en general, la tomografia por emisién de positrén (PET) y la
tomografia por emisiéon de fotén tnico (SPECT)y correccién de la atenua-
cién en las resonancias magnéticas (PET-MR).
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El registro de imagenes rigidas y la fusiéon de datos 3D con imagenes
en 2D de Rayos-X son una tarea importante para muchas de las aplicacio-
nes clinicas, como por ejemplo para el tratamiento del cdncer no invasivo
mediante radioterapia. Un tipo de algoritmos para el registro de imagenes
2D/3D se basa tinicamente en la intensidad de la imagen. Estos métodos
también abordan el problema del registro de computacién de radiografias
reconstriidas digitalmente (DRR) que se comparan con imagenes reales de
la radiografia por medio de medidas de similitud. Las principales contri-
buciones son el desarrollo de técnicas de optimizacién robustos y rapidos
y la utilizaciéon de unidades de procesamiento de graficos modernos para
acelerar el cadlculo RRD.

A lo largo de este trabajo estudiaremos dos regularizadores no rigidos
distintos para hacer frente a la deformacién del paciente y compararemos
los resultados obtenidos con cada uno de ellos sobre nuestros datos. Estos
regularizadores son:

» Difusién
n Fl4stico

Consideraremos el registro de imagenes como un problema variacional
y realizaremos la discretizaciéon de cada uno de estos operadores de regu-
larizacion.
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2. Calculo de variaciones

Los procedimientos de minimizacién forman uno de los medios més
amplios en la formulacién de modelos matematicos que regulan el equili-
brio en la configuracién de sistemas fisicos.

Desarrollaremos el anélisis matemaético bésico de los modelos de mini-
mizacion no lineal en espacios de funciones de dimensién infinita, esto es
conocido como el “célculo de variaciones ”.

Las técnicas matemadticas que se han desarrollado para manejar este
tipo de problemas de optimizacién son fundamentales en muchas areas de
las matematicas, fisica, ingenieria y otras aplicaciones.

Las soluciones a los problemas cldsicos de minimizacién en el cdlculo de
variaciones son obtenidas a través de problemas de contorno que implican
ciertos tipos de ecuaciones diferenciales conocidas, como las ecuaciones de
Euler-Lagrange. La minimizacién de un funcional cuadrético requiere la
solucién de un problema de contorno lineal asociado.

2.1. Descripcién del problema

Dado un dominio €2 y un conjunto de funciones diferenciables
U : QO - R? dado por

U = {u | ueC*Q,R?, u satisface las condiciones de contorno}, (1)
consideraremos el problema de minimizacién de un funcional J : ¢« — R
Jlu] > min  en Q. ()

Llamaremos a U el espacio de soluciones admisibles. En la Seccién 2.2 se
dardn ejemplos de condiciones de contorno.

Por “V denotamos el espacio de funciones test, el cual consta de todas
las funciones que pueden ser escritas como la diferencia de cualquier par
de funciones admisibles,

V={v|v=u—-1,u1eU}.

Sus condiciones de contorno vendran dadas segtin las condiciones de
contorno dadas en U. Notemos que V, por construccién, es un espacio
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vectorial.

Definicién 2.1 (Minimo local). Sea U el espacio de solucionesy J : U — R
un funcional, se dice que 71 € U es un minimo local de J si existe € > 0 tal
que

Jl < Jul  Yu € B(i),

donde B.(11) := {u |u € U, ||lu — ||, < €} es un entorno de 1.

Definicién 2.2 (Derivada Gateaux). Dado el espacio de soluciones U, el
espacio de funciones test V y el funcional J : U — R, se dice que J es
diferenciable en el sentido de Gateaux en u € U en la direccién de v € V
si:

1. 3t >0talqueu, :=u+7tv€ Uparatodotr € Rtalque|t| <71,y
2. la funcién J(7) := J[u.] es diferenciable en 7 = 0.

Se define la derivada de Gateaux de primer orden de J en u en la direccién
de v € V como:

dJu + 1t o]

0J ;0] == J'(0) = e

7=0

Ahora podemos definir el concepto de punto estacionario.

Definicién 2.3 (Punto estacionario). Sean el espacio de soluciones U, el
espacio de funciones test V y el funcional J : U — R anteriormente
descritos. Supongamos que en algin i € U, J es diferenciable-Gateaux
para todas las funciones test v € V. Entonces decimos que il es un punto
estacionario de J si

o0J[i;v] =0 VYoeV.

Podemos formular una condicién necesaria para ser minimo local vin-
culando este concepto con el de punto estacionario.

Teorema 2.1 (Condicién necesaria para ser minimo local). Sean el espacio de
soluciones U y el espacio de funciones test V anteriormente dados. Sea J : U —
R un funcional que es diferenciable-Gateaux en il € U en todas las direcciones
veV.

Si 1l es un minimo local de J, entonces 1l es un punto estacionario de J .
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Para ilustrar los conceptos introducidos anteriormente, vamos a consi-
derar un funcional de la forma

Jlu] ::fF[x,u(x),Vu(x)] dx, (3)
Q

donde F : OXRYXR™ — R es un funcional que depende de x, u(x) y Vu(x).
De aqui en adelante consideraremos que J es un funcional diferenciable-
Gateaux en todas las direcciones del espacio test correspondiente. En conse-
cuencia, asumimos que F tiene derivadas parciales continuas con respecto
a todos sus argumentos.

Para distinguir el gradiente usual VF = (JF/dxy,...,dF/dx;)T del gra-
diente de F respecto de u, es decir, respecto del segundo argumento:

8F/8u1
V.F = : eRY,
8F/8ud

hacemos hincapié en la dependencia del gradiente afladiendo un subindice
‘u’en el operador. De forma similar, el gradiente de F respecto Vu, es decir,
el tercer argumento, viene dado por

8F/8u1,1 ce 8F/8u1,d
VeF=| S D
8F/8ud,1 Ce 8F/8ud,d

y es de nuevo indexado por la variable dependiente. Aqui, u;; es la abre-
viatura de du;/du;.

Podemos ahora caracterizar la condicién de ser punto estacionario de
J para el funcional definido en (3). Consideramos unas condiciones de
contorno especificas con las que los espacios U y V vendran dadas como

U:={u|ueC¥Q R, u=cendQ)},
V:={v | veC¥QRY),v=0endN)}.

Denotando el producto escalar y el operador de divergencia como (-,-) y
V- respectivamente, se puede obtener la siguiente condicién para ser punto
estacionario de 7.
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Lema 2.2 (Punto estacionario de J). Una funcién u € U es un punto estacio-
nario para el funcional ;J definido en (3) si

f(VuF—V'VWP, v)dx=0 VYoveV.
0

Teorema 2.3 (Lema fundamental del cdlculo de variaciones). Sea la funcién
continua 6 : Q — RY. Entonces,

L(G,v)dx =0

para todas las funciones test v € V si y solo si 6 = 0 en €.

De los teoremas anteriores, deducimos que u € U es un punto estacio-
nario para el funcional diferenciable-Gateaux J definido en (3) si

V.F-V-Vy,F=0 enQ. 4)

Aplicando el Teorema 2.1 podemos concluir que (4) es una condicién
necesaria para ser minimo local del funcional (3).

En la préctica se suele considerar d > 1 por lo que (4) constituye un
sistema de ecuaciones en derivadas parciales denominadas ecuaciones de
Euler-Lagrange. Junto a unas condiciones de contorno adecuadas nos en-
contraremos ante un problema de contorno relacionado con el problema de
minimizacioén (2) del funcional definido en (3), denominado formulacion
variacional.

2.2. Condiciones de contorno

En el apartado anterior, al definir el espacio de soluciones en (1), hemos
introducido el concepto de condiciones de contorno que deben ser satisfe-
chas para cada funcién u € U. Lo que implica que cada punto estacionario
del funcional 7 satisface también estas condiciones.

Las condiciones de contorno que consideraremos en este trabajo son:

» Condiciénes de contorno de tipo Dirichlet en las que se especifican
los valores de la funcién sobre la frontera del dominio.
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» Condiciénes de contorno de tipo Neumann en las que se especifican
los valores de las derivadas de la funcién en la frontera del dominio.

Silas condiciones de contorno sobre el espacio de soluciones U se espe-
cifican de forma explicita se denominan condiciones esenciales. Al contrario,
si las condiciones de contorno no vienen dadas de forma explicita son de-
nominadas como condiciones naturales.

Ahora podemos formular la condicién necesaria para ser un minimo
de J en el caso general.

Lema 2.4 (Condicién Necesaria). Toda solucién u* € C*(Q,R?) del problema
de minimizacion (2), con J el funcional diferenciable-Giteaux dado en (3), es
solucion del problema de contorno formado por el sistema de ecuaciones de Euler-
Lagrange

V.F-V-Vy,F=0, en(Q),

con condiciones de contorno que pueden ser de tipo esencial (incorporadas en la
deficion del espacio de soluciones U) o de tipo natural,

(Vv ,ER) =0 endQ, k=1,...,4d, 5)
donde 1 es el vector normal a la frontera de Q).

La condicién (5) es denominada condicién de contorno natural para el
problema de minimizacién dado en (2) con J de la forma (3) y que debe
de ser satisfecha por la solucién del problema de contorno resultante.
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3. Elregistro de imagenes como problema varia-
cional

Una imagen puede ser interpretada como una exposicién de una escena
del mundo real. Normalmente, suponemos que la escena es en tres dimen-
siones mientras que la exposicién muestra una extraccion de la escena. Esta
extraccion puede variar de dimension, la cual denotaremos por d € IN.

Consideramos Q) un abierto, acotado y conexo en R%.

Una exposicién de una escena puede ser vista como una aplicacién des-
de el dominio de la exposicién a un conjunto de valores que representan la
intensidad. Supondremos que estos valores de intensidad, en nuestro caso
escala de grises, de una exposicién pueden ser descritos por una funcién
suficientemente diferenciable.

Definicién 3.1 (Imagen). Dado un dominio ), una imagen I viene definida
como una funcién diferenciable I : QO — [0, 1].
Ademas, definimos como Img((2) el conjunto de imagenes del dominio Q.

Las imadgenes que no vienen dadas por funciones diferenciables son las
denominadas imdgenes digitales.

A continuacién vamos a desarrollar un modelo matemético para for-
mular el problema del registro de imagenes. En general, este problema
consiste en

encontrar una transformacion geométrica entre dos imdgenes.

Normalmente una de las imédgenes es considerada como una imagen
de referencia R € Img(Qr) definida en un dominio Qg, mientras que la otra
imagen es considerada como una imagen patrén T € Img(Qr) definida en
un dominio Qr. El dominio de la imagen de referencia estd relacionado con
el dominio de la imagen patrén a través de una transformacion geométrica
(/38 QR — QT.

En general una transformacioén ¢ tal que T o ¢ = R puede no existir. Sin
embargo, buscamos ¢ de forma que laimagen transformada Tog sea similar
a laimagen de referencia R. Para un trato matematico, la similitud debe ser
medida de alguna forma. Por tanto se requiere una medida de similitud (6
distancia) que asigne un valor determinado al par de imagenes dado. As{



REGISTRO DE IMAGENES. 10

podemos separar ¢ en la aplicacién identidad como la parte trivial y una
parte de desplazamiento u, es decir, @(x) := x + u(x).

Problema 3.1 (Problema de Registro). Dados dos dominios Qr y Qg, las
imdgenes T € Img(Qr), R € Img(Qr), y D : Img(Qr) X Img(Qr)x CP(Qr, RY) —
Ry como una medida de similitud, el problema de registro de imdgenes consiste en
encontrar una aplicacion

9 € CQr Q) p) = x+u(),

tal que para algiin funcional F
Drrlu] := f F[T o ¢, R]dx 5 min.
Qr

Asi, el problema del registro de imagenes puede ser formulado como
la minimizacién del funcional D cuya solucién es el desplazamiento u tal
que la similitud de T o ¢ y R se maximiza.

Sin embargo, la minimizacién del problema 3.1 no nos garantiza una
solucién tnica, por lo que debemos de afiadir una restriccién en la solucién
u a través de un factor de regularizaciéon S(u) para penalizar a las solucio-
nes irregulares e indeseadas.

Asipues, podemos plantear el problema del registro de imdgenes como
un problema de minimizacién del funcional dado por

Jlul = Drrlu] + a S[u] (6)

con a € R™ un factor de ponderacion positivo.

A continuacién vamos a describir una medida de similitud O y dos
factores de regularizacién llamados de difusion y elastico.

3.1. Medida de similitud

Por simplicidad omitiremos la diferencia entre Qr y Qg definiendo un
tnico dominio Q := Qr U Q7.

Definicion 3.2 (Medida de la suma de las diferencias al cuadrado, SSD).
Dadas dosimdagenes T, R € Img(€)) y un campo de desplazamientosu € U,
definimos la suma de diferencias al cuadrado como

DIP[u] = % fQ [R6) - Tu)] dx,
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donde T, es la abreviacién de la imagen transformada T(x + u(x)).

Lema 3.1 (Ecuaciones de Euler-Lagrange para la medida SSD). EI sistema
de ecuaciones de Euler-Lagrange para la medida SSD viene dado por

- [R®) - T.@)| VT =0, xeQ. )

Demostracién. Aplicamos el Lema (2.4) para el funcional F[x, u(x)] = [R(x)—
Tu(X)]*. Basta ver que V- Vy,F = 0y Vo, F = =2 [R(x) — Tu(X)] VTu(x). O

Notemos que el signo no se suprime ya que estamos interesados en el
sistema de ecuaciones de Euler-Lagrange para todo el funcional 7, el cual
incluye el término de regularizacion.

3.2. Regularizacién

Primero estudiaremos el caso mas simple, el denominado regularizador
de difusién, y continuaremos con el regularizador eléstico el cual permite
tratar de forma adecuada otros tipos de problemas.

3.2.1. Difusion

El regularizador de difusién permite obtener un campo de desplaza-
mientos que es més suave. Fue introducido por FiscHER & MoDERsITZKI [6].

Definicién 3.3 (Regularizador de Difusién). Dado un campo de desplaza-
mientos u € U, el regularizador de difusién se define de la forma

d
Sdiff[u] = %LZ || Vu,(x) ||§ dx. (8)
n=1

Lema 3.2 (Ecuaciones de Euler-Lagrange para el Regularizador de Di-
tusién). El sistema de ecuaciones de Euler-Lagrange para el regularizador de
difusion viene dado por

—Au(x) =0, xeQ. 9)

Demostracién. Aplicacion del Lema (2.4).

1
ParaF := 5 Z‘flzl | Vu,,(x) ||§, se tiene que V,F = 0y Vy,F es el Jacobiano
de u. O
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Las ecuaciones de Euler-Lagrange (9) pueden ser vistas como un sua-
vizado isotrépico del campo de desplazamiento.

Dado que Vy,F = Vu,, las condiciones de contorno naturales para el
regularizador de difusién vienen dadas por la condicién de Neumann

(Vu(x),A(x)) =0, x€ Q.
También podrian utilizarse condiciones de contorno esenciales.

El sistema de ecuaciones de Euler-Lagrange del funcional

2
1 2 1
Tl =3 [ [Reo-Tuf dx+az [ 31 Vu0lB dx
2 Jo [ ] 2 Jo ; 2
viene dado por el sistema de ecuaciones en derivadas parciales

—a Au(x) = [Tu(x) = RX)| VTu(x).

3.2.2. Elastico

El regularizador elastico se remonta a principios de los afios 80 cuando
Brorr [?] sugiere la siguiente definicién

Definicién 3.4 (Regularizador Eléstico). Dado un campo de desplazamien-
tou € Uy dosescalares A € Rj y u € R, definimos el regularizador elastico
como

d

SEAM;[U] = fQ % Z (ax]'“i(x) + axi”f(x))z * %(V ' u(x))2 dx. (10)

i,j=1

Esta formulacion se basa en el potencial eléstico lineal. Se asume un
comportamiento isotrépico y tener en cuenta las propiedades del material
a través de los pardmetros de Lamé A y u. Estos pardmetros pueden re-
lacionarse con el médulo de Young, E € IR], y el coeficiente de Poisson,
v € [0,1/2), por las relaciones (cf., e.g. MALVERN, 1969)[8],

uQu +3A) A
E=—m Tt
: Ev E

A= drna-y K= oa sy
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La cantidad 1/E describe la elasticidad relativa de un objeto en direc-
cién longitudinal dependiendo de las fuerzas aplicadas. Es equivalente a
1/p con A = 0. La cantidad v relaciona la contraccién transversal de un
objeto con su dilatacién longitudinal relativa. Un valor pequefio de v co-
rresponde a tomar A < u e indica compresibilidad. Por otro lado, un valor
cercano a 0,5 corresponde a la conservacién del volumen. En este caso, el
objeto es incompresible y se vuelve méas delgado conforme se estira. Notar
que estos argumentos estan basados en la Ley de Hooke, y por tanto son
s6lo vélidos para desplazamientos pequefios.

Lema 3.3 (Ecuaciones de Euler-Lagrange para el Regularizador El4stico).
El sistema de ecuaciones de Euler-Lagrange para el reqularizador eldstico viene
dado por

—uAu(x)—(A+u)V-Vux) =0, xe€Q.

Demostracién. Aplicaciéon del Lema (2.4) tomando F = F; + F, donde

Fi1= %Zijﬂ(ax;”i(x) + 8xl.u]-(x))z

F> = 5(V - u(x))?

Se tiene que Vy F;/u es la suma del Jacobiano de u y su traspuesta. Por
tanto
V-Vy Fi = uAu+uV-Vvu

Ademas,
V-Vy,F,=AV.-Vu

O

Notemos que tomando los valores A = =1y u = 1 este regularizador se
simplifica en el regularizador de difusién ya estudiado.

Recordando la definicién del funcional (6) se tiene que el funcional a
minimizar viene dado por

d

Jlu] = % fQ [R(x)—Tu(x)]Z dx +a f %Z (ax],ui(x)mxiuj(x))ﬁ%(v u(x))2 dx,

Q= gi=1

cuyo sistema de ecuaciones de Euler-Lagrange queda determinado por

a—pAux) - (A +p) V- Vu) = [Tu(x) - R(x)] VTa(%)
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A continuacién introducimos dos conceptos que seran fundamentales
en el siguiente capitulo para discretizar el problema de la elasticidad: el
tensor de deformaciones € y el tensor de tensiones o.

Definicién 3.5 (Tensor de deformaciones €). El tensor de deformaciones es
un tensor simétrico usado en mecanica de medios continuos y mecénica
de s6lidos deformables para caracterizar el cambio de forma y volumen de
un cuerpo. Su forma general, en tres dimensiones, es

€11 €12 €13
€= & €xn &3 |,
€31 €3 €33
donde cada uno de los elementos que forman esta matriz son una fun-
cién cuyo dominio es el conjunto de puntos del cuerpo cuya deformaciéon
pretende caracterizarse.

En mecénica de medios continuos se distinguen varios tipos de tensores
para representar la deformacién, cuando las deformaciones son pequefias,
como ocurre en nuestro caso, es adecuado utilizar el tensor infinitesimal
de deformaciones.

Utilizaremos el tensor infinitesimal de Green-Cauchy, que constituye
una aproximacion para caracterizar las deformaciones en el caso de que
estas sean pequefas. En el caso bidimensional dicho tensor se expresa de
la forma

1

€= %(Vu + (Vu)T) = E(

donde u = (u, v) representa el campo vectorial de desplazamiento del cuer-
po vy x = (x,y) son las coordenadas de cada punto material del cuerpo.

2uy Uy + 0y )
7
uy+0, 20

Definicién 3.6 (Tensor de tensiones ¢). En mecanica de medios continuos,
el tensor de tensiones es el tensor que da cuenta de la distribucién de
tensiones y esfuerzos internos en el medio continuo.

Para nuestro problema utilizaremos el tensor de tensiones de Cauchy.
El teorema de Cauchy sobre las tensiones de un cuerpo establece que,
dada una distribucién de tensiones internas sobre la geometria de un me-
dio continuo deformado que satisfaga las condiciones del principio de
Cauchy, existe un campo tensorial o simétrico definido sobre la geometria
deformada con dos de sus propiedades:
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= V-o(u®) + f(x,u(x)) =0,
= o(u(x) = o(u(x))".

Por la segunda propiedad, deducimos que este tensor vendrd dado
sobre las coordenadas especificas por una matriz simétrica. Cuando las
deformaciones son pequefias empleamos este tensor definidos sobre las
coordenadas del cuerpo sin deformar. Asi, fijado un sistema de referencia
ortogonal, el tensor de tensiones de Cauchy viene dado por

011 O12 013
0= 021 O22 023 |-
031 032 033

En nuestro problema, definimos el tensor de tensiones de la forma
o=2ue+ Atr(e) L.
Por tanto, en el caso bidimensional se tiene que:

5= Qu+A)u,+ Ao, p(uy + 0y)
 (uy + 0y) Qu+A)v, + Auy

Y asilas ecuaciones de Euler-Lagrange se pueden escribir también como

aV-o(ux) = [Tu(x) - R(x)] VT (x).
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4. Resolucion numérica

4.1. Regularizador de Difusién

Recordemos que las ecuaciones de Euler-Lagrange que se obtienen para
este regularizador son

—a Au(x) = [Tu(x) - RX)| VTu(x).

Una forma de resolver las ecuaciones en derivadas parciales no lineales
es afiadir un término temporal d;u y calcular la correspondiente solucién
estacionaria. De esta forma, resulta el siguiente sistema de ecuaciones en
derivadas parciales no lineales

dru(x, ) = |Tulx, t) = R(x, )| VTu(x £) + 2 Au(x, 1), x€Q,t 2 0.

Para discretizar este problema, vamos a usar un esquema semi-implicito
que Consiste en tratar el término difusivo de forma implicita y el de reac-
cién de forma explicita. Dada una malla uniforme temporal con paso 7, la
discretizacion correspondiente es

u(x/ tk+1) - u(x/ tk)
T

, ¥V —alAu(x, tig) = f(x,ulx, ), k=0,1,...

donde
FOxulx, £)) = | Tulx, £) = R(x, )| VTu(x, 1)

u(x, tp) se toma por simplicidad u(x, ty) = 0.

Una propiedad importante del sistema de ecuaciones en derivadas
parciales a resolver es que es desacoplado, esto es, podemos obtener una
aproximaciéon numérica u;, 1 = 1,2, de cada una de las ecuaciones de forma
independiente. En lo siguiente, por conveniencia denotaremos a las com-
ponentes de u como (1, v) en lugar de (11, u»). Obtenemos el problema para
la incoégnita u:

u(x, ti1) — u(x, ty)
T

(Dif,) = u(x, ty) =0, x € Q,

8u(x, tk+1) _

o

= a Au(x, tr1) + fi(x, u(x, t)), xe,k=0,1,...,

0 x € d0,k=0.
(11)
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Para la segunda componente v obtendremos un problema similar que
denotaremos aqui por (Dif,).

A continuacién realizamos la discretizacién espacial del problema (Dif,,)
descrito en (11) mediante el método de diferencias finitas. Este método nos
permite la resolucién aproximada de ecuaciones diferenciales en deriva-
das parciales definidas en un recinto finito, en nuestro caso Q = (0,1)%,
Es de una gran sencillez conceptual y constituye un procedimiento muy
adecuado para la resolucién de una ecuacién bidimensional como la que
se nos ha planteado.

Comenzamos construyendo una malla uniforme €, de pasoh = 1/(n —
1) en ambas direcciones:

Qh = {xi,j = ((1_ 1)h/(]_ 1)h) | Z/] = 1,...,1’1}.
Aproximando el Laplaciano de la forma usual,

Uip1,j + Uijer — 4 Ui+ Uiyj+ Ujj
12

Obtenemos la siguiente ecuacion para cada uno de los nodos interiores

Apu;j = i,j=2,...,n—1.

(I-tah)ut =uf+ff, ij=2,...,n=1k=0,1,...,
donde uf denota la solucién aproximada en el nodo x;; y en el tiempo #;.

Eso es valido para los nodos interiores de la malla. En la frontera hay
que tener en cuenta las condiciones de contorno que se nos especifican en
la definicién del problema (11). Aqui emplearemos la técnica del nodo fan-
tasma, la cual consiste en considerar nodos fuera del dominio para aplicar
la condicién de contorno.

Ilustramos esta técnica considerando un nodod arbitrario en el lado
derecho del cuadrado, es decir, cuandoi=nyj=2,...,n—-1.
Por la condicién de contorno sabemos que
u ou duy R=(1,0) Ju
—=0 = (=, =—)n=0 =" —=0.
an (8x 8y> dx
Consideramos la aproximaciéon de diferencias centrales de segundo

orden para la primera derivada

- Ups1,j — Un-1,j 1,=0 _
(ux)i,j ~ oY = Ups1,j = Up-,j-
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Finalmente sustituyendo el valor de u,,;,; en la discretizacién del La-
placiano para el nodo 7, j resulta
2 un—l,j + un,j+1 -4 un,]' + un,j—l
12
De la misma forma procedemos con el resto de nodos en los lados de
la frontera obteniendo:

Apttyj = j=2,...,n—-1.

2 U, + Upjr1 — 4111,]‘ + Uy,j-1

Apuyj = 7 j=2,...,n—-1.
Uipin + 2Uip1 — 4 Uiy + Uis1 .

AVITIES 7 1=2,...,n—1.
Uiz +2uip —4Uig + Ui, .

Apuiq = 7 i=2,...,n—1.

En cuanto a los vértices se procede de forma andloga. Por ejemplo para

el vértice superior derecho tendriamos las condiciones de contorno
Ju du 0
ox dy

Realizando el proceso andlogo al caso de los nodos en los lados de la
frontera, se obtienen las discretizaciones del Laplaciano siguientes:

2 Up-1n +2 Upn-1— 4 un,j

Ahun,n = 12 ’
2Upp + 22Uy — 4y,
Ahul,n = hz 7
2 Upp + 2 U p-1— 4 Uip
Ahul,Vl = hz 7
2Up 10+ 2upp — 4y,
Ahun,1 = 2 .

A partir de la discretizacién del Laplaciano formamos una matriz L,
cuyos coeficientes en cada elemento (i, j) son los coeficientes que acompa-
fan a cada u;;. En el Anexo A.1 se presenta el programa de Matlab que
construye dicha matriz.

Finalmente los sistemas a resolver en cada paso de tiempo son:
AU = b,y AV = b, (12)

donde
A=1- T(th,
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y U1, V¥ son los vectores de incégnitas compuestos por las aproxima-
ciones de las soluciones en los nodos de la malla.

Para finalizar veamos cémo se calcula el término b, para cada iteracion,
b, se calcula de forma andloga. Para ello recordamos

O ux, b)) = [Tu(x, ) = R VTu(x, )

Para calcular Ty(x,tx) en cada iteracién realizamos una interpolaciéon
bilineal de la imagen T ya que para cada pixel (i, j) de la imagen este
término queda determinado por

k k k
(Tu)l.’]. = T(xl-,]- + 15, Yij + vi,j).

Notemos que va variando en cada paso de tiempo, ya que depende de
las soluciones u y v obtenidas en el paso de itempo anterior. La interpola-
cién utilizada puede verse con mds detalle en el Anexo A.2.

Para el término VT, (x, t) realizamos una aproximacién por diferencias
finitas centrales.

En la Seccién 5 se presentaran resultados obtenidos este método para
distintas imdgenes y comentaremos la eleccién de los parametros 7 y a.

4.2. Regularizador Elastico

Recordemos que las ecuaciones de Euler-Lagrange que se obtienen para
este regularizador son

a V- o(u) = [Tu() - RX)| VTu(x).

Resolvemos la ecuacién en derivadas parciales afiadiendo un término
artificial de la misma forma que hicimos para el regularizador anterior, asi
nos queda

du(x, t) = f(x,u(x, 1)) +aV-o(u(x,t)), xe€Q,t>0

donde
fx,ux, ) == [Tu(x, ) = R(x, )] VTu(x, 1)

Utilizando el esquema semi-implicito como en el caso anterior se tiene
que la ecuacion en derivadas parciales a resolver es

u(xl tk+1) - u(x/ tk) _
T

aV-o(u(x tiy)) = f(x,ulx, tr), x€Q,k=0,1,...
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Anadiendo las condiciones de contorno y el desplazamiento inicial,
obtenemos el siguiente problema a resolver

u(x, tk+1)T_ u(x, t) =aV-o(u(x, ty)) + f(X, u(x, ty), x€Q,k=0,1,...
(Elas) = § u(x,ty) = 0, x € (),

oh =0 x€d,k=0,1,....
(13)

Observamos que en este caso el sistema de ecuaciones en derivadas
parciales a resolver esta acoplado.

El método empleado para la discretizacion del problema también sera
distinto, puesto que el método en diferencias finitas se vuelve demasiado
complejo, sobre todo al tratar las condiciones de contorno. Por ello utili-
zaremos el método de volumenes finitos, el cual es una alternativa a los
métodos de diferencias finitas y elementos finitos.

Consideramos una malla espacial uniforme de pasoh =1/(n—1) conn
el tamafio de la imagen como en el caso anterior. Para cada punto de esta
malla construiremos un volumen de control de manera que el dominio sea
la unién disjunta de todos los volimenes de control. Construida la malla,
se integrard sobre cada uno de estos volimenes de control la ecuacién di-
ferencial a resolver.

De la misma forma que en el problema anterior, comenzamos con
una discretizacion temporal del problema utilizando un esquema semi-
implicito. De esta forma aproximando

ou(x, trs1) _ou(x, ten) —ulx, f)
ot T ’

se obitene

u(x, ter1) = u(x, t) + Ta Vo(x, u(x, tee1)) + 7 f(x, u(x, t))

U
(I —taVo)u(x, tir1) = u(x, ty) + 7 f(x, u(x, t))

Para discretizar V - 0 tendremos en cuenta que
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donn  dor

ax  dy
Vo = doy  doy
—_— + —_—

ox  dy

Procederemos de la misma forma que para el método de difusién, dis-
cretizando de forma separada los nodos interiores, los lados y las esquinas,
ya que para cada uno de estos subconjuntos del dominio varian las ecua-
ciones a aproximar.

Comenzamos con los nodos interiores, coni, j = 2,...,n—1. Elesquema
sobre el que vamos a trabajar es el que se observa en la Figura 1, donde el
recinto en color es el volimen de control sobre el cual vamos a integrar.

El esquema general de integraciéon del método de discretizacién a través
de voltiimenes finitos consiste en

fVﬁzf a-ﬁ:fa-ﬁ+fa-ﬁ+fa~ﬁ+fa-ﬁ
0 o0 r I, I3 Iy

Para la componente u del desplazamiento tenemos que aproximar el
término
do 11 do 12

ox  dy

Siguiendo el esquema de la Figura 1 las integrales anteriores se reducen

fﬁnfﬁlz—fml—fﬁlz-
I I I's Iy

Teniendo en cuenta que

011 = (A+2y)ux+Avy,
o12 = W (Uy +0y),

Se obtiene que

A +2u)u,+ A vy]m/z,j A vx)]i, o

—h [(A +2u)uy + A vy]i_l/z,], —h [.U (uy +0y) ij-1/2

Aproximando cada funcién mediante diferencias finitas centrales en
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(i-1,j+1) i,j+1) (i+1,j+1)
@) ‘ @)
Iy
]
W,j+1/2)
F3 Fl
- . ® * -
. . (-1/2,)) o (i+1/2,)) . .
(1_11]) (l/]) (l+11])
®
I'y (i,j=1/2)
o} 4 o
(i-1,j—1) (i,j—-1) (i+1,j-1)

Figura 1: Esquema correspondiente a los nodos interiores para la discreti-
zacién por volimenes finitos.
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sus nodos correspondientes obtenemos

+h _(A 12 Mi+1,jh— Ui, N %(Uz'+l,j+12_hvi+1,j—1 4 Ui,j+12—hvz‘,j—1)]+
(ui,j+1 — Ujj1 N 1(0i+1,j+1 = Vi-1,j+1 N Uiy1,j — Ui—l,j))]+
h 2 2h 2h
_h (A L2 ‘Ll) uz,] uz—l,] n &(Uz,]+12hvl,]—1 " Z71—1,]+1 2hvz—1,]—1 )]
(ui,j — Ujj1 N 1(0i+1,j — Ui N Vit1,j-1 — Ui-1,j-1 ))]

h 2
h 2 2h 2

+h —(u

~h|u

Se obtiene que los coeficientes que acompafian a cada nodo son:

A+
Ui A+2U B
A+
Ujj: -2 (A +3 [.l) OUi-1,j+1 + — 1
A+u
Uji—1,j - A+ Z[J Oir1,j-1 - — Z
A+
Uije1 U 0i-1,j-1 - 4 £
Ujj1 U

De forma andloga se obtiene una discretizacién para la componente v
del desplazamiento, teniendo en cuenta el término

doy  dog
ox dy’

conoyp = (A+2u)v, + A,y oy = o1a.
Ahora la integracién sobre I';, i = 1, ...,4 queda

fﬁlz‘*'fﬁzz—fﬁlz—fﬁzz
Iy Iy I3 Ty

+h [ (g + vx)]i+1/2,j +h[(A+2w)v, + Au,|
—h [y (uy + U’C)]i

Sustituyendo

A
i,j+1/2

—h[(A+2y)vy+Aux],

-1/2,j i,j=1/2
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Procediendo de forma analoga

A+u
Vijs1 i A+2u Uirljel 1 =
A+u
Ui —=2(A+3u) Uj1,j+1 0 — 1
A+pu
Ujj-1 - A+ 2[.1 Uip1,j-1 - — 2
A+
Oiv1,j - U Ui1,j-1: 4 a
Ui—l,j U

En cuanto a los nodos de la frontera del dominio, realizamos el proceso
para el lateral derechoconi =ny j=2,...,n— 1. El resto se calculan de
forma andloga. El esquema a seguir ahora se encuentra en la Figura 2.

La condicién de contorno es ¢ - i = 0. En este lateral se tiene i = (1,0)
lo que implica 011 = 01, = 0.

Para calcular los coeficientes que calculan el desplazamiento u, se tiene
que se anulan las integrales sobre todos los caminos excepto para I's. Nos

queda entonces
- f 011
I3

Sustituyendo y aproximando cada funcién en sus nodos correspon-
dientes
- 24—
H[A+2u)u,+ A vy]n_w +H2fi;=0
Upj—Un-1,j A (Onj+1 = Unj-1  Un-1,j+1 = Un-1,j-1
~hf(A+2u) L—" 42 +
[@+20 =, > (T T

Asi los coeficientes que acomparian a cada nodo son

A
Up,j: —(/\ + 2[.1) Up,j+l —Z

Up-1,j A+2 u Up,j-1 -

o |

A
Op—1,j+1 + 1

A

OUp-1,j-1 : Z

Para calcular el desplazamiento v se anula la integral sobre I'y

+f022—f012—f022
I I3 Iy
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(Tl—l,j+1) (n/j+1)
o ¢
I
e
(n,j+1/2)
I3 I
—-@ ® 9
' (=1/2,)) '
(1’1 - 1/ ]) (I’Z, ])
e
I (n,j=1/2)

© ?

(n-1,7-1) (n,j=1)

Figura 2: Esquema correspondiente a los nodos del lateral derecho para la
discretizaciéon por volimenes finitos.
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Sustituyendo y aproximando cada funcién en sus nodos correspon-
dientes nos queda que los coeficientes que acompafian a cada nodo son

A+2
On,js1 - 5 u

Un,j : —(/\ +3 [J)

A+2
On,j-1 - > H

Op-1,j - U

A—
Up,j+1 T‘u
A+
Up,j-1 1 — 4 e
A —
Up-1,j+1 —TH
A+u

Los coeficientes para el resto de laterales se calculan de forma andloga.
La declaraciéon de los caminos I'; con i = 1,...,4 seguird el mismo orden
para todos los lados de los recintos rectangulares que tomemos.

Para el lateral superior coni = 2,...,n =1y j = n, se tiene n=(0,1)
y por tanto 01, = 0x» = 0. Para calcular el desplazamiento u se anula la
integral sobre I'; y quedan los coeficientes

A+2
ui+1,n: 7 ‘u

Uin:—(A+3p)
A+2u
2

Ui1n -

Uin-1: U

A

+

U

vi+1,n .

A—u

Uz’—l,n :

)# ‘

-A+
Oit1,n-1 - 4 £
A+u

Oi—1n-1+— 1

Para el desplazamiento v se anulan todas las integrales excepto la que
se realiza sobre el camino I'y. Quedan los coeficientes

Uiy - —(/\ + 2[,[)

Uin-1: A+ 2[.1

Para el lateral inferior, donde i

A

ui+1,n . 4
A
Ui - Z

A
Uivin-1+ — Z

A

Ui-1pn-1+ =

W

=1,...,n—=1y j =1 se tiene que

n = (0,-1) lo cual implica que 01, = 0y = 0. Al calcular los coeficientes
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para el desplazamiento u se anula la integral sobre I'y. Los coeficientes que
acompafan a cada nodo son

A+2 A+

Uip11 - 5 x Oi+1,2 - 1 x
A-p
U —(A+3u) Uis1,1 * i
A+2 -A+

Ui-11 - > a Vi—12 ¢ A4 a
+

Uip * 1 Oi-11 - — 1 u

Para el desplazamiento v se anulan las integrales sobre todos los cami-
nos excepto la aplicada sobre I'; y sus coeficientes quedan

vi1:—(A+2p) Ui : —%
Vit A+2pu Uiy1) : %
A
Ui - 1
A
Uiy - 1

Por ultimo, en el lateral izquierdo coni =1y j = 2,...,n — 1 se tiene
n=(=1,0) por lo que 011 = 012 = 0. Entonces para calcular los coeficientes
del desplazamiento u se anulan todas las integrales excepto la que opera
sobre I';, y se tiene

A
Uy : —(/\ + 2‘Ll) Ug,j-1 * —Z
A
Up,j: A+ 2[.1 U2,j+1 - Z
A
?)1,]'_1 : —Z

NP

01,j+1 -
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Y para los del desplazamiento v se anula la integral sobre I'; quedando

A+2 -A+
01,j+1 - 2 s Up,j-1: 1 s
A+
Uy, —(A +3 y) Upj+1 - 1
A+2 A—
01,j-1 - > s Ut,j-1: T[J
A+
?)2,]' : [J ul,j+1 L= Z [1

Para finalizar la discretizacién nos quedan las cuatro esquinas. Sobre
% —>
cada una de ellas acttian dos vectores n.

Veamos en la Figura 3 el esquema de la esquina superior derecha, don-
dei=j=n.

(T’l - ]-/ n) (n/ Tl)
I
—-@ 9

(n—-1/2,n)

I's I

r4 (1,1—1/2)

n-1,n-1) (n,n-1)

Figura 3: Esquema correspondiente a la esquina superior derecha para la
discretizaciéon por volimenes finitos.
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Sobre I'; se tiene que ni = (1,0) y por tanto 011 = 012 = 0, y sobre I'; se
tiene fi, = (0,1) y entonces 012 = 9 = 0.

Realizando los cdlculos de la misma forma que anteriormente se tiene
que los coeficientes para el desplazamiento u son

A+2u A
Upp * — B Ot —Z
A+2u A
un—l,n : 2 vn,n—l : Z
Oyt =
n-1n - 4
N
n-1,n-1 - 4

Y para el desplazamiento v

A+2u A
Z)n,n - 7 Uy n _Z
A+2p A
Upn-1 - 2 Upp-1 - 4
Ypin s
n-1n - 4
B
n—-1,n-1 - 4

Anélogmente se obtienen los coeficientes para calcular u y v en el resto
de esquinas.

En la esquina superior izquierda, donde i = 1y j = n se tiene n; =

(=1,0) y por tanto 011 = 012 = Osobrels,y i, = (0, 1) yentonces 012 = 02, =0
sobre T',.

Los coeficientes para el desplazamiento u son

A+ 2p A
Upp t > Oyt 2
A+2u A
Uin : > 02,01 - 2
Dot s
1n-1 - 4

NP

Ol ¢
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Y para el desplazamiento v

A+2
e A 22[J
+
O1,n-1+ > £

A

Upp —Z
..
1in - 4
A

Uz p—1 - Z
A

Ulp-1 - Z

30

En la esquina inferior derecha, donde i =ny j = 1 se tiene ni; = (1,0) y
por tanto 017 = 012 = 0 sobre Iy, M, = (0,1) y entonces 012 = 02 = 0 sobre

Iy
Los coeficientes para el desplazamiento u son
A+2
Un-1,1 )IL— , > =
+
Uy - 2 H

Y para el desplazamiento v

A+2
+
Opp : > y

WL
nl - 4
Onz i =
n2 - 4
0 '—&
n-1,2 - 4
SRR
n-1,1 - 4
SRP..
n-1,2 - 4
o1yt
n-1,1 - 4
P
n2 . 4
iyt
nl1 - 4

Por ultimo la esquina inferior izquierda, donde i = 1y j = 1 se tiene
M = (-1,0) y por tanto oy; = 012 = 0 sobre I3, A, = (0,-1) y entonces

012 = 072 = 0 sobre F4.
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Los coeficientes para el desplazamiento u son

A+2p A

Uy : > Uy @ 4
A+2p A
U > 02,1 : 2
o114
LTy

ot

127

Y para el desplazamiento v

A+2 A
U1+~ > = Uip t =~
A+2u A
01,2 > Uiy - "1

T

220 7

ot

21° 7

De la misma forma que en la técnica anterior, en cada paso de tiempo,
resulta un sistema de ecuaciones a resolver

A uk+1 =b

donde
A =I—TOCLh

con L corresponde a la discretizacion del operador elasticidad.

El término b se calcula de la misma forma que los términos b; y b, para
el problema de Difusion.

En el Anexo A.4 se observa la construccion de la matriz A.

Para finalizar esta seccion, se presentan los algoritmos correspondientes
para los dos métodos de regularizacién:
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Algorithm 1 Esquema Regularizador de Difusion.

1: Definir u’;

2: Determinar «, 7;

3: fork=0,... do

4. Calcular £ = V, T(u") (T(u¥) — R);
Calcular b* = 7 £ + u;

5:
6:  Resolver (I — T Ay)u**! = b%;

Algorithm 2 Esquema Regularizador de Elasticidad.

1: Definir u’;

2: Determinar a, 7, A, u;

3. fork=0,... do

4 Calcular ff = V, T(u*) (T(u") — R);
Calcular b* = 7 + ut;

5:
6:  Resolver (I — 7 a Div(o))ut*! = b%;
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5. Resultados numéricos

Para poner en practica todo lo desarrollado en las secciones anteriores
vamos a aplicar los algoritmos anteriormente descritos sobre dos imagenes
que estan desplazadas.

Utilizaremos la ya conocida imagen de Lena.

Figura 4: Imagen de Lena.

@ G

(a) (b)

Figura 5: (a) Imagen patrén de Lena, (b) Imagen referencia de Lena.

Las imégenes que resultan de realizar a la Figura 4 una seccién circular
y posteriormente realizar una traslacion lineal vienen dadas en la Figura
5:

Aplicamos sobre ellas el algoritmo de difusién con parametros 7 = 1
y a = 1/8 y el algoritmo eldstico con los mismos pardmetros 7 y a y con
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A =100y u = —100.

Comparacion de errores en ambos métodos

— Difusidn
Elastico

[ To— R |2
"

1 1 !
0 £0 100 150 200 250
lteraciones

Figura 6: Comparacién del error que cometen los métodos de Difusién y
Eléstico para la resolucién del problema de minimizacién.

Con ambos métodos, tras 250 iteraciones, llegamos a la solucién. En la
Figura 6 se ilustran los errores cometidos por ambos métodos.

Como se puede observar, con el regularizador elastico se alcanza la
convergencia con un namero de iteraciones mucho menor.

En la descripcién de ambos problemas ya comentamos que el método
de difusién es un caso particular del de elasticidad, y que se consigue
tomando A = 1y u = -1. Por ello podiamos deducir, antes de realizar
la prueba que este tltimo método seria més acertado que el de difusiéon
por la posibilidad de elegir unos pardmetros que consigan la convergencia
mucho maés répido.
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A. Anexos

A.1. Matriz Laplaciano

Programa de la matriz del Laplaciano.

function A = laplaciano (n,h)
A = sparse(n*n, n=*n);

o)

% Esquina inferior izquierda

j=1;

i=1;

ind = 1;

A (ind, ind+1) = -2/ (hxh);

A (ind, ind+n) = -2/ (hxh);

A (ind, ind) = 4/ (hxh);

% Recta inferior

for i=2:n-1
ind = ind+1;
A (ind, ind+1) = -1/ (h*h);
A(ind, ind-1) = -1/ (hxh);
A (ind, ind+n) = -2/ (h*h);
A (ind, ind) = 4/ (hxh);

end

% Esquina inferior derecha

i=n-1;

ind=ind+1;

A(ind, ind-1) = -2/ (hxh);
A (ind, ind+n) = -2/ (hxh);
A(ind, ind) = 4/ (h«xh);

o)

% Recta izquierda
for j=2:n-1

i=1;

ind = ind+1;

A(ind, ind+1) = -2/ (hxh);

A (ind, ind+n) = -1/ (h*h);

A (ind, ind-n) = -1/ (hxh);

A (ind, ind) = 4/ (hxh);

% Nodos interiores

for i=2:n-1
ind = ind+1;
A (ind, ind+1) = -1/ (hxh);
A(ind, ind-1) = -1/ (hxh);
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A (ind, ind+n) = -1/ h*h)-
A (ind, ind—n) = -1/ (hxh)
A (ind, ind) = 4/ (hxh)
end
% Recta derecha
i=n;
ind=ind+1;
A(ind, ind-1) = -2/ (hxh);
A (ind, ind+n) = -1/ (hxh);
A (ind, ind-n) = -1/ (hxh);
A (ind, ind) = 4/ (hxh);

end

o)

% Esquina superior izquierda

j=n;

i=1;

ind = ind+1;

A (ind, ind+1) = -2/ (h*h)

A (ind, ind—-n) = -2/ (hxh);

A (ind, ind) = 4/ (hxh);

% Recta superior

for i=2:n-1
ind = ind+1;
A (ind, ind+1) = -1/ (hxh);
A(ind, ind-1) = -1/ (h*h);
A(ind,ind-n ) = -2/ (hxh);
A (ind, ind) = 4/ (h+h);

end
% Esquina superior derecha
i=n;

ind=ind+1;

A(ind, ind-1) = -2/ (h*h)
A (ind, ind-n) = =2/ (h*h)
A (ind, ind) = 4/ (hxh);

end

A.2. Interpolacién

Interpolacion bilineal para calcular T,,.

function sol = interpola2(n, TT, x, Vv,

i,

)
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k =i+ n/2 - 1;
1 =3+ n/2 - 1;

omx= (k x) floor (k—-x);

omy= (1 —floor(l-y);

A= T(floor(k x), floor(l-y));

B=TT (ceil (k-x), floor(l-y));

C=TT (floor (k-x), ceil(l-y));

D=TT (ceil (k-x), ceil(l-y));

sol = (l-omx)*(l-omy)*A + (l-omy)*omx*B + (l-omx)xomy*C + omx*omy=xD;

end

A.3. Programa Regularizador Difusién

Programa del Regularizador de Difusién.

function [Edifu] = Difusion

T = double (imread('lena.jpg'))/255;
= T(:r:rl);

H
|

[n,n] = size(T);

h = 1/(n-1);

o

Definimos la imagen T como un sector de esa imagen y el resto blanco

cx 256/2;
cy = 256/2;

for i = 1:n
for 3 = 1l:n
if (((i-cx)”2 + (J-cy)”™2) > 5072)
T(i,3) = 1;
end
end
end

o)

% Definimos la imagen R como la imagen T trasladada 10 pixeles hacia abajo
pix = 20;
R = ones(n,n);

for 1 = pix+l:n
for j = pix+l:n
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R(i,3) = T(i-pix, j-pix);
end
end

figure (1)
imshow (T); % title La imagen T

figure (2)
imshow (R); % title La imagen R

pause

o)

% Inicializamos las matrices u_x, u_y

ux = zeros(n,n);
uy = zeros(n,n);
D = zeros(n,n);
for 1 = 1:n
for 3 = 1:n
D(l/j) = T(i - ux<ilj)l j - uY(i/j)) - R(j—/j);
end
end
Tx = zeros(n,n);
Ty = zeros(n,n);

% Definimos los laplacianos llamando a la funcidn
Lx = laplaciano(n,h);
Ly = Lx;

% Comenzamos el método.
iter = 250;

tau = 1;
alpha = 1/8;

o)

% Definimos las matrices Ax, Ay del sistema que luego resolveremos

Ax = speye(nx*n) + alpha * tau * Lx;
Ay speye (n*xn) + alpha x tau x Ly;

nuevoux = sparse(n*n,1l);

nuevouy = sparse(n*n,1l);

aux = 2+h;



REGISTRO DE IMAGENES.

$% % $PONEMOS LA IMAGEN T EN UNA MAS GRANDE CON 0 EN EL RESTO

Para luego interpolar T con i-ux, j-uy
TT = ones (2xn, 2%*n);

for k = n/2:(3*n/2 - 1)
for 1 = n/2:(3*n/2 - 1)
TT(k,1) = T(k — n/2 + 1, 1 - n/2 + 1);
end
end

Edifu = [];
for k = l:iter

[

% Definimos la diferencia

for i = 1:n
for j = 1:n
D(i,3j) = interpola2(n, TT, ux(i, ),
end
end
Edifu = [Edifu norm(D)];

% Definimos el gradiente de T, Tx y Ty

uy (i, 3), i, J)

for 1 = 2:n-1
for j = 1:n
Tx(i,3j) = (interpola2(n, TT, ux(i+l,3j), uy(i+l, J),
interpola2(n, TT, ux(i-1, 3J), uy(i-1,73)
end
end
for i = 1:n
for j = 2:n-1
Ty (i,3j) = (interpola2(n, TT, ux(i,j+1), uy(i,j+1),
interpola2(n, TT, ux(i,j-1), uy(i,j-1),
end
end

Hay que resolver dos sistemas
Ax ux = bx // By uy = by

bx = ux + tau * D .*x Tx;
tau * D .*x Ty;

o
w
Il
c
<
+

% Tenemos que pasar bx, by a vector (n*n,1)
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o
X
I

reshape (bx', n*n, 1);
by = reshape(by', nxn, 1);

% Ya podemos resolver el sistema:

nuevoux Ax\bx;
nuevouy = Ay\by;

% Rellamamos ux, uy para la siguiente iteracién

ux = reshape (nuevoux,n,n)’';
uy = reshape (nuevouy,n,n)’';
end
sol = zeros(n,n);
for i=1:n
for j=1:n
sol (i, j)= interpola2(n, TT, ux(i,j), uy(i,3j), 1i,
end
end

figure (3);
imshow (sol) ;

end

A.4. Matriz Elasticidad

Matriz del problema de Elasticidad.

function A = matriz_FElasticidad(n,h, lambda, mu)

% DEFINICION DE LOS BLOQUES:
All = sparse(

Al2 sparse ( )
A21 sparse (nxn, n+n);
A22 = sparse( )

n*n, nsn);

n*n, n=*n);

n*n, n=*n);

$ DEFINICION DE CONSTANTES:
aux = hxh;

% (lambda + 2*mu)/ (hxh)

12m = (lambda + 2*mu)/aux;

% 2% (lambda + 3*mu)/ (hxh)
13m = 2x (lambda + 3*mu)/aux;
% mu/ (h*h) ;

muh = mu/aux;
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% (Lambda + mu)/ (4xh«*h)
Im = (lambda + mu)/ (4*aux);

% lambda/ (4+xh*h)

14h = lambda/ (4*aux) ;

lambda/ (2xh*h)

12h = lambda/ (2xaux) ;

% (- lambda + mu)/ (4xhxh)
menoslm = (—-lambda + mu)/ (4*aux);

% Esquina inferior
j=1;
i=1;
ind = 1;
All (ind, ind+1) =
All (ind, ind+n) =
A1l (ind, ind) =
A22 (ind, ind+1) =
A22 (ind, ind+n) =
A22 (ind, ind)
% Recta inferior
for i=2:n-1

ind = ind+1;
All (ind, ind+1)
All (ind, ind-1)
All (ind, ind+n)
A1l (ind, ind)
A22 (ind, ind+1)
A22 (ind, ind-1)
A22 (ind, ind+n)
A22 (ind, ind)
end

izqgquierda

2/ (aux) ;

2/ ( aux)

-4/ (aux) ;

2/ ( aux),

2/ ( aux)

-4/ (aux) ;
= 1/ (aux);
= 1/ (aux);
= 2/ (aux) ;
= -4/ (aux)
= 1/ (aux);
= 1/ (aux);
= 2/ (aux) ;
= -4/ (aux)

% Esquina inferior derecha

i=n-1;
ind=ind+1;
All (ind, ind-1)
All (ind, ind+n)
All (ind, ind)
A22 (ind, ind-1)
A22 (ind, ind+n)
A22 (ind, ind)

% Recta izquierda
for j=2:n-1
i=1;
ind = ind+1;
All (ind, ind+1)
All (ind, ind+n)

= 2/ (aux
= 2/(aux
= -4/

) r
)i
X
= 2/(aux),
)i
ux)

I

= 2/ (aux

= -4/

’

(
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end

All
All
A22
A22
A22
A22

(
(
(
(ind, ind+n) =
(
(

ind, ind-n) =
ind, ind) =
ind, ind+1) =

ind, ind-n) =
ind, ind)

% Nodos interiores

for

end

i=2:n-1

ind = ind+1;

$ All:

All (ind, ind+1)
All (ind, ind-1)
All (ind, ind+n)
All (ind, ind-n)
All (ind, ind)

% Al2:

Al2 (ind, ind+n-
Al2 (ind, ind-n-
Al2 (ind, ind+n+1
Al2 (ind, ind-n+1

% A21:

A21 (ind, ind+n-1)

A21 (ind, ind-n-1)

A21 (ind, ind+n+1l) = 1m;
A21 (ind, ind-n+1) =

% A22:

A22 (ind, ind+1)
A22 (ind, ind-1)
A22 (ind, ind+n)
A22 (ind, ind—-n)
A22 (ind, ind)

—~ o~ o~ —~

% Recta derecha
i=n;

ind=

All
All
All
All
A22
A22
A22
A22

ind+1;
ind, ind-1)
ind, ind+n)
ind, ind-n)
ind, ind)
ind, ind-1)
ind, ind+n)
ind, ind-n)
ind, ind)

~ o~ o~~~ o~~~

1/ (aux) ;
-4/ (aux) ;
2/ (aux) ;
1/ (aux)
1/ (aux)
—4/(aux
= 12m;
= 12m;
= muh;
= muh;
= —-13m;
1) = —-1m;
1) = 1lm;
) = 1lm;
) = —1lm;
1) = -1m;
1) = 1m;

2/ ( aux)'
1/ (aux)
1/(aux
-4/ (aux)
= 2/ (aux)
1/ (aux)
1/ ( aux)
= -4/ (aux)

% Esquina superior izquierda

J=n;

4
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i=1;

ind = ind+1;

All (ind, ind+1) = 2/ (aux);

All (ind, ind—-n) = 2/ (aux)

All (ind, ind) = -4/ (aux)

A22 (ind, ind+1) = 2/ (aux);

A22 (ind, ind-n) = 2/ (aux) ;

A22 (ind, ind) = -4/ (aux) ;

% Recta superior

for i=2:n-1
ind = ind+1;
All (ind, ind+1) = 1/ (aux);
All (ind, ind-1) = 1/ (aux);
All (ind,ind-n ) = 2/ (aux);
All (ind, ind) = -4/ (aux) ;
A22 (ind, ind+1) = 1/ (aux);
A22 (ind, ind-1) = 1/ (aux);
A22 (ind,ind-n ) = 2/( aux)
A22 (ind, ind) = -4/ (aux)

end

% Esguina superior derecha

i=n;

ind=ind+1;

All (ind, ind-1) = 2/ (aux);

All (ind, ind-n) = 2/ aux)

All (ind, ind) = -4/ (aux) ;

A22 (ind, ind-1) = 2/ aux),

A22 (ind, ind—-n) =2/ aux)

A22 (ind, ind) = -4/ (aux);

A = sparse (2xn*n, 2xn*n);

A = [All Al2; Al2 All];

end

A.5. Programa Regularizador Elastico

Programa del Regularizador Elastico.

function [Eelas] = Elastico

T double (imread('lena. jpg')) /255;
T = T(:I:ll);

[n,n] = size(T);
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h = 1/(n-1);
% Definimos la imagen T como un sector de esa imagen y el resto blanco

cx 256/2;
cy = 256/2;

for i = 1:n
for 3 = 1l:n
if (((i-cx)”2 + (j-cy)”™2) > 5072)
T(i,3) = 1;
end
end
end

% Definimos la imagen R como la imagen T trasladada 20 pixeles hacia abajo
pix = 20;
R = ones(n,n);

for i = pix+l:n
for j = pix+l:n

R(i,3) = T(i-pix,j-pix);
end
end
for i = 1l:pix
for j = 1l:pix
R(i,3) = 1;
end
end
figure (1)

imshow (T); % title La imagen T

figure (2)
imshow (R); % title La imagen R

Q

% Inicializamos las matrices u_x, U_Yy

ux = zeros(n,n);
uy = zeros(n,n);
D = zeros(n,n);
for i = 1:n

for 3 = 1l:n
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D(i,J) = T(i - ux(i,3), J — uy(i,3J)) - R(i,3J);
end
end
Tx = zeros(n,n);
Ty = zeros(n,n);

o)

% Definimos la matriz y los pardmetros lambda y mu.
lambda = 100;

mu = —-100;

Lh = — matriz_FElasticidad(n, h, lambda,mu) ;

% Comenzamos el método.

iter = 75;

tau = 1;
alpha = 1/8;

% Definimos la matriz A del sistema que luego resolveremos
A = speye (2xnxn) + tau * alpha x Lh;

nuevou = sparse(2xn=*n,1);
nuevoux = sparse(n*n,1l);
nuevouy = sparse(nxn,l);
aux = 2+*h;

$$ $ $PONEMOS LA IMAGEN T EN UNA MAS GRANDE CON 0 EN EL RESTO
% Para luego interpolar T con i-ux, Jj-uy

TT = ones (2*n, 2%*n);

for k = n/2:(3xn/2 - 1)
for 1 = n/2:(3*xn/2 - 1)

TT(k,1l) = T(k - n/2 + 1, 1 - n/2 + 1);
end
end
Eelas = [];
for k = 1l:iter
k

for i =1:n
for j=1:n
IT<j—rj) = il’lterPOla(l’lr TT, U-X(i/j>l UY(i/j), i, j)/
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end
end
% Definimos la diferencia
for i = 1:n
for j = 1:n
D(l/j) = IT(i/j) - R(i/j);
end
end
Eelas = [Eelas norm(D)];
% Definimos el gradiente de T, Tx y Ty
for 1 = 2:n-1
for j = 1l:n
Tx(i,3) = (IT(i+1,3) - IT(i-1,7))/aux;
end
end
for i = 1:n
for § = 2:n-1
Ty{j—lj) = (IT<i1j+l) - IT(i,j—l))/auxi
end
end
% Hay que resolver dos sistemas
% AxX ux = bx // Ay uy = by
bx ux + tau * D .x Tx;
by = uy + tau » D .x Ty;
% Tenemos que pasar bx, by a vector (2+nxn,1)
$A u=>D>b

bx = reshape(bx', nxn, 1);
by = reshape(by', nxn, 1);

b = sparse(2xn*n,1);
b(l:n*n) bx;
b(n*xn+l:2%n*n) = by;

% Ya podemos resolver el sistema:

nuevou =

[)

nuevoux
nuevouy

% Rellamamos ux,

A\Db;

nuevou (l:n*n);
nuevou (nxn+1l:2xn=*n) ;

46

para resolver el sistema

uy para la siguiente iteracidn
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nux = reshape (nuevoux,n,n)

nuy reshape (nuevouy, n, n)
ux = nux;
uy = nuy;
end
sol = zeros(n,n);
i=1:n
for j=1:n

sol (i, j)= interpola(n,
end
end

for

figure (3);
imshow (sol) ;

end

14

14

TT, ux (i, 3),

uy (i, 3),

i,

3)i
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