000032477 001__ 32477
000032477 005__ 20180228102246.0
000032477 0247_ $$2doi$$a10.1007/JHEP06(2014)073
000032477 0248_ $$2sideral$$a86627
000032477 037__ $$aART-2014-86627
000032477 041__ $$aeng
000032477 100__ $$aFernández, M.
000032477 245__ $$aNon-Kaehler heterotic string solutions with non-zero fluxes and non-constant dilaton
000032477 260__ $$c2014
000032477 5060_ $$aAccess copy available to the general public$$fUnrestricted
000032477 5203_ $$aConformally compact and complete smooth solutions to the Strominger sys- tem with non vanishing flux, non-trivial instanton and non-constant dilaton using the first Pontrjagin form of the (-)-connection on 6-dimensional non-K ¨ahler nilmanifold are pre- sented. In the conformally compact case the dilaton is determined by the real slices of the elliptic Weierstrass function. The dilaton of non-compact complete solutions is given by the fundamental solution of the Laplacian on R4. All solutions satisfy the heterotic equations of motion up to the first order of a'.
000032477 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/MTM2011-28326-C02-01
000032477 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000032477 590__ $$a6.111$$b2014
000032477 591__ $$aPHYSICS, PARTICLES & FIELDS$$b3 / 27 = 0.111$$c2014$$dQ1$$eT1
000032477 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000032477 700__ $$aIvanov, S.
000032477 700__ $$0(orcid)0000-0003-2207-8653$$aUgarte, L.$$uUniversidad de Zaragoza
000032477 700__ $$aVassilev, D.
000032477 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDepartamento de Matemáticas$$cGeometría y Topología
000032477 773__ $$g2014, 6 (2014), [23 pp]$$pJ. high energy phys.$$tJOURNAL OF HIGH ENERGY PHYSICS$$x1126-6708
000032477 8564_ $$s589851$$uhttp://zaguan.unizar.es/record/32477/files/texto_completo.pdf$$yVersión publicada
000032477 8564_ $$s58872$$uhttp://zaguan.unizar.es/record/32477/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000032477 909CO $$ooai:zaguan.unizar.es:32477$$particulos$$pdriver
000032477 951__ $$a2018-02-28-10:17:09
000032477 980__ $$aARTICLE