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Resumen

En este trabajo se estima la volatilidad de un conjunto de indices bursatiles analizando
su impacto sobre la prediccion extramuestral. Para ello se utilizan modelos ARMA-
GARCH y APARCH, analizando el impacto ejercido por la volatilidad, la existencia de
efecto asimétrico y la falta de normalidad de la distribucion del error. En el trabajo se
describe como identificar, estimar y analizar la bondad de ajuste de este tipo de modelos
asi como elaborar predicciones extramuestrales. Asi mismo se realiza una validacion
predictiva extramuestral de este tipo de modelos, tanto a nivel puntual como a nivel de
intervalos, utilizando el método rolling. La metodologia se aplica a 6 indices bursatiles.
Los resultados obtenidos muestran que los modelos heteroscedasticos tienen un mejor
rendimiento a nivel de intervalos, mostrando un comportamiento mas adaptativo a las
oscilaciones de la serie, sin que aprecien diferencias significativas en las predicciones
elaboradas a nivel puntual debido la eficiencia de los mercados. Por su parte la
incorporacion del efecto asimétrico tiene un caracter mas marginal y no apreciandose
mejora sistematica alguna en la utilizacion de errores no normales.

Palabras clave: GARCH, APARCH, Méaxima verosimilitud, Validacion predictiva
extramuestral, Método Rolling, Series financieras, indices bursatiles

Abstract

In this work the volatility of a set of stock indices is estimated by means of ARMA
GARCH and APARCH models and its impact on the out-sampling prediction is
analyzed, as well as the existence of asymmetric effect and the lack of normality of the
distribution of the error. The work describes how to identify, estimate and analyze the
goodness of fit of these models, and to build one-step forward predictions. Also an out-
sampling predictive validation is carried out in terms of point and intervals predictions
and using a rolling method. The methodology is applied to 6 stock indices. The results
show that point predictions are very similar for all the models due to the efficiency of
markets. With respect to prediction by intervals the results show that the heteroscedastic
models have better performance, by showing a more adaptive behavior to oscillations in
the return series. The incorporation of an asymmetric effect in the model, even though
statistically significant, has a marginal impact and it is not appreciated significant
differences in the use of non-normal distributions.

Keywords: GARCH, APARCH, Maximum likelihood, Outsampling predictive
validation, Rolling Method, Financial series, Stock indices.



1. Introduccion

En los Gltimos afios los estudios acerca de la volatilidad y su modelizacion, tanto
empirica como tedrica, han ido ganando peso en el ambito de los mercados econdmicos
y financieros debido al papel fundamental que juega en la evaluacion del riesgo
asociado a los activos financieros (ver, por ejemplo, Tsay, 2013 capitulos 4 y 5). La
volatilidad de un activo financiero podria definirse como la intensidad o frecuencia de
los cambios que se producen en sus precios y suele medirse mediante medidas de

variabilidad de su rentabilidad.

En la préactica podemos hablar de la existencia de varios tipos de volatilidad
como son la volatilidad pasada o historica, la volatilidad implicita, la volatilidad
observada o la volatilidad condicional o futura. La volatilidad historica se puede definir
como una medida retrospectiva de la volatilidad, la cual refleja el comportamiento de la
variabilidad de los precios en el pasado. La volatilidad implicita est4d ligada a la
valoracion de opciones financieras que son instrumentos que ofrecen a sus propietarios
el derecho a comprar o vender un activo determinado a un precio fijo en alguin momento
en el futuro. En el mercado se utiliza de forma general la formula de Black-Scholes que
permite expresar la volatilidad implicita utilizando como dato de entrada la prima de la
opcidn que se estd negociando en el mercado. La volatilidad observada se calcula a
partir de la varianza de la rentabilidad del activo observada con alta frecuencia (cada 5 o
10 minutos). Finalmente la volatilidad condicional o futura se define como la varianza o
desviacion tipica de la rentabilidad futura del activo la cual se calcula a partir de
modelos economeétricos siendo los modelos ARMA-GARCH vy los modelos de

volatilidad estocéstica los mas utilizados.

Ambos tipos de modelos estiman la volatilidad mediante la varianza o la
desviacion tipica condicional de la serie de rentabilidades, la cual los modelos ARMA-
GARCH modelan como funcion exacta de las innovaciones del modelo y sus retardos

mientras que los modelos de volatilidad estocastica utilizan procesos estocasticos.

La familia de modelos GARCH fue introducida por Engle (1982) que definio los
modelos ARCH (iniciales en inglés de Condicionalmente Heteroscedastico y
Autorregresivo) cuya varianza condicional es funcion lineal de los cuadrados de las
innovaciones del modelo asi como sus retardos dando lugar a un proceso autorregresivo

(AR) en los cuadrados de dichas innovaciones. Los modelos ajustados resultaron ser
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poco parsimoniosos precisando inclusion de un namero elevado de retardos debido a la
existencia del fenomeno “volatility clustering” en el que la volatilidad se agrupa en
bloques de alta persistencia temporal. Con el fin de resolver dicho problema Bollerslev
(1986) propone los modelos GARCH (iniciales en inglés de Condicionalmente
Heteroscedastico Autorregresivo Generalizado) que incluye, el ecuacion de evolucion
de la varianza condicional, valores retardados de la misma lo cual permite modelar de
forma maés parsimoniosa su evolucion, llegando a ser el modelo GARCH (1,1) un

modelo estandar en la literatura.

Como Tsay (2013) argumenta, los modelos ARMA-GARCH presentan una serie

de debilidades que debemos tener en cuenta:

e Suponen que los shocks positivos y negativos tienen el mismo tipo de efecto
sobre la volatilidad por lo que son incapaces de capturar el llamado efecto

asimétrico.

e Imponen bastantes restricciones sobre los parametros para tener momentos

finitos.

e No proporcionan informacién acerca de las fuentes de variacion de las series

financieras.

e Tienden a sobre-predecir la volatilidad debido a que responden lentamente a

shocks grandes que se producen de forma aislada.

e Las estimaciones obtenidas suelen tener alta persistencia y leptocurtosis

condicional y, en algunos casos, asimetria en la distribucion de los errores

Para tratar dichos problemas se han propuesto diversas extensiones en la
literatura: los modelos EGARCH de Nelson (1991), TGARCH de Glosten y otros
(1993), NGARCH de Engle y Ng (1993), APARCH de Ding y otros (1993) o el enfoque
semiparamétrico de Engle y Gonzalez-Rivera (1991) entre muchos otros.

Por su parte, los modelos de volatilidad estocastica modelan la varianza
condicional de la serie de rentabilidades utilizando procesos estocasticos siendo el
proceso AR (1) de Taylor (1994) el mas utilizado. Este tipo de modelos es mas dificil de
estimar debido al caracter latente de la volatilidad, siendo su ajuste muy similar al de los

modelos de la familia GARCH. Por dicha razén nos centraremos en esta Gltima familia.
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En este trabajo se realiza una estimacion de la volatilidad de 6 indices bursatiles
internacionales entre los que se encuentra el IBEX35, y se evalla su impacto en la
prediccion de su rentabilidad. Se analiza, ademas, la existencia de efecto asimétrico y la
falta de normalidad de las innovaciones del modelo utilizando diversos criterios
propuestos en la literatura para evaluar dichas predicciones en términos puntuales y por

intervalos.

En la seccion 2 se realiza una descripcion de los elementos principales en los
modelos ARMA-GARCH, describiendo ademas el efecto llamado persistencia en
volatilidad captada por el modelo GARCH, asi como de su variante APARCH utilizada
para capturar y analizar la existencia de efecto asimétrico. La seccidn finaliza con una
descripcion de los criterios utilizados para evaluar las predicciones del modelo. En la
seccidn 3 se explica cdmo ajustar un modelo ARMA-GARCH a un conjunto de datos:
como identificarlo, estimarlo, analizar su bondad de ajuste y utilizarlo para predecir. En
la seccion 4 se aplicar la metodologia descrita en la seccion anterior al andlisis de 6
indices bursatiles prestando especial atencién al IBEX35. En la seccién 5 se realiza un
estudio comparativo en términos predictivos, de los modelos ajustados en la seccion 4y,
finalmente, la seccion 6 concluye destacando los hechos més relevantes encontrados en
el trabajo. Se incluyen ademas 6 anexos en los que se muestran con mas detalles los
resultados obtenidos en el proceso de estimacion y seleccion de modelos llevado a cabo

para cada uno de los indices anteriores.
2. Modelos ARMA-GARCH
2.1. Planteamiento del problema

Sea {Py; t=1,..., T} la serie de precios de un activo financiero donde P; es el

precio del activo en el periodo t.

La mayoria de los estudios financieros involucran rentabilidades en lugar de
precios. Esto es asi porque para la mayoria de inversores el rendimiento de un activo es
un resumen completo y libre de escala de la oportunidad de inversion; ademas, las
series de rentabilidades son mas faciles de manejar que las series de precios, puesto que
las primeras tienen propiedades méas atractivas como, por ejemplo, la estacionariedad,

que facilitan su tratamiento estadistico.



La rentabilidad de un activo financiero se puede calcular de dos formas: simple o
continua. La rentabilidad simple es la tasa de crecimiento relativa del nivel de precios
: . . P,—P., -
del activo en un periodo y viene dada por R; = 1OOP—; por su parte la rentabilidad
t-1
continua se define como la tasa de crecimiento acumulativa media en un periodo cuando

éste se divide en intervalos de tiempo infinitesimales y viene dada por la expresion

Pt

rt=100Iog( J verificandose que P, =lim__ Pt_1(1+ " j . En este trabajo

100n

t-1
utilizaremos ésta Ultima dado que su tratamiento estadistico es mas ventajoso. Esta

ventaja se derivan de que la rentabilidad continua para un horizonte h>0 verifica que

P - ., .
r(h) = 100 Iog(‘—”] =r + ... + rng lo cual facilita la elaboracion de predicciones a
t-1

varios horizontes.

Nuestro objetivo es construir un modelo que describa la evolucion de las

rentabilidades {r; t = 2,...,T} a lo largo del tiempo asi como de su volatilidad
o2 =Var(r, |Q, ,) donde O = {r...., ri} es la informacién disponible al analista en el

periodo t. Para ello utilizaremos un  ARMA(r,s)-GARCH(p,q) viene dado por las

expresiones:
o(B)(re-p) = 6(B)e:
B(B)or’ = o + a(B)e

con g = ozt Y ziQw.1~D(0,1,A) donde D(0,ot, 1) denota una distribucion con media 0,

desviacion tipica 1 y vector de parametros A.

B es el operador retardo

u = E[r;] media incondicional de la serie r;

d(2), 6(2), a(z) y B(z) polinomios de grados r, s, p y g, respectivamente
d(z), 6(z) sin raices comunes todas ellas fuera del circulo unidad

®>0

o(z) y B(z) sin raices comunes y coeficientes no negativos



a(1) + B(1) < 1 con el fin de garantizar que la varianza incondicional del modelo existe

w

1-o()-BL)

de forma que o® = Var(ry) =

En este caso a(1) + B(1) mide la persistencia en volatilidad del proceso de
forma que cuanto mayor es su valor mayor, mayor es la duracion del impacto que ejerce
una innovacion g; en la volatilidad del proceso y, por tanto, mayor es el fendmeno de
“volatility clustering” de forma que, si en un periodo la volatilidad ha sido alta en el
periodo siguiente también tenderd a ser alta, y si por el contrario, la volatilidad es

pequefia en un periodo, también sera pequefia en el periodo siguiente.

Respecto a la distribucion D(0,1, 1) en la literatura se han propuesto diversas

formas de la misma siendo las mas utilizadas la distribucion normal estandar N(0,1), la
distribucion t de Student centrada y tipificadaW/thv con v>2 grados de libertad o la
V_

distribucion exponencial generalizada (GED) GED(0,1,v) con v grados de libertad
propuesta por Nelson (1991). Sus funciones de densidad vienen dadas por las

expresiones:

1 o
f(x) = —e 2 enel caso de la distribucion N(0,1)
T

J2n

F(v_'_lj v+l

2\ 2
f(x) = 2 L 1+ X enel casodela .| ——t
F(V) v—2)r v—-2 v—2

v

f(x) = V?—l en el caso de la GED(0,1,v)
1+=

Las 3 distribuciones son simétricas en torno a 0. Ademas, la distribucion t de
Student es leptocurtica y su leptocurtosis es mas elevada cuanto menor es el valor de v.
Algo similar ocurre con la distribucién GED que es leptocurtica si v<2, normal si v=2'y

platicurtica si v>2.



En algunas series se observa, ademds, la presencia de una asimetria

(habitualmente negativa) no muy pronunciada en la distribucién de las innovaciones.

Para capturar y analizar la significacion de dicho efecto utilizaremos las
versiones asimétricas de las 3 distribuciones anteriores, SN(0,1,&), St,(0,1,§) vy

SGED(0,1,v,&) cuya funcion de densidad viene dada por la expresion genérica:

Lf(x)six<0

0= 2 f[f]sixzo
¢

siendo f la funcidon de densidad de la distribucion original. Estas distribuciones son

simétricas en torno al 0 si =1, asimétricas a izquierda si &<1 y a derechas si £>1.
2.2. Extensiones del modelo: modelos APARCH

Los modelos GARCH suponen que el impacto ejercido por las innovaciones &;
es independiente de su signo. El trabajo en el modelado de la volatilidad condicional de
la serie de precios de las acciones ha demostrado, en general, que la volatilidad de un
activo responde de forma diferente a los shocks positivos frente a los negativos de la
misma cuantia. Por lo general, un shock negativo produce un efecto mayor en la
volatilidad, que el generado por un shock positivo debido a que una sobrevaloracién del
precio de un activo tiende a incrementar la incertidumbre sobre su valor. Este efecto se

conoce en la literatura con el nombre de “efecto asimétrico”.

Para tratar de capturar este tipo de efecto y analizar su significacion estadistica
se han propuesto en la literatura diversas extensiones del modelo GARCH: modelo
EGARCH (modelo GARCH Exponencial) propuesto por Nelson (1991); TGARCH
(modelo GARCH Umbral, también conocido como modelo GJR) propuesto por Glosten
y otros (1993) , NGARCH (modelo GARCH No Simétrico) propuesto por Engle y Ng
(1993), APARCH (modelo condicional heteroscedastico autorregresivo de potencia
asimétrica) propuesto por Ding y otros (1993), ... . En este trabajo utilizaremos el

modelo ARMA(r,s)-APARCH(p,q) cuya expresion viene dada por:

&(B)(r-p) = 6(B)e; con con g = o1zt Y z2Qw1~D(0,1,1)



0 g
cs?=°°+.Zf°i(|8t-i|—vi8t-i)8+ -Zlﬁjc?-j
| = J:

La existencia de efecto asimétrico de los residuos sobre la volatilidad vendra
marcada por los parametros y de forma que si alguno de ellos es significativo marcara la
existencia de un impacto diferente de los residuos negativos con respecto a los residuos
positivos. En particular si p=q=1 el efecto asimétrico descrito habitualmente en la

literatura existira siempre y cuando y;>0.
3. Estimacion y seleccion de modelos ARMA-GARCH
3.1. Estimacion del modelo

La estimacion de los modelos anteriores se realiza por el método de la maxima

verosimilitud. Todos los modelos son casos particulares del siguiente
= G(Xt;C) + ot(Xe;w)Zt
Zi|Q¢ .1~ D(0,1,1)
donde
Xt= (1, It1, -y Ttp, Et1, -+ -5 Etq)
G(xt; ) es funcion de € dos veces continuamente diferenciable
af(X; W) es funcion de y dos veces continuamente diferenciable

El logaritmo de la funcion de verosimilitud viene dado por:

T
Cmaxgr,sp,a3+1:T(GW,A) = ZEI(Q\%}L)

t=max{r,s,p,q}+1

donde 4(C,y) = Iog( 1 f(“‘G(X‘;Q);xD siendo f la funcion de densidad de Ia
Gt(xt’\lj) Gt

(X w)

distribucion D(0,1,A). El estimador méaximo verosimil de (,y,A) se obtiene
maximizando la funcion anterior y se puede probar que, bajo ciertas condiciones de
regularidad la distribucion del estimador maximo-verosimil es asintéticamente normal

con media el verdadero valor de los pardmetros anteriores (Co,wo,A0) Y matriz de

. : 1 . :
varianzas y covarianzas dada por ?Z, cuyo valor depende del gradiente y el hessiano



de la funcién de verosimilitud evaluado en el estimador maximo-verosimil. La matriz

anterior es diagonal por bloques respecto a los 3 parametros C, v y A lo cual facilita la

labor de identificacion del modelo dado que la estimacion de cada uno de los 3

parametros es asintoticamente independiente del resto.

3.2. Identificacion del modelo

Dado el resultado de la seccion anterior la identificacion del modelo se realiza en

3 pasos:

a)

b)

d)

Se identifican primero los d6rdenes r y s de la parte ARMA utilizando las
herramientas clasicas de identificacion este tipo de modelos: correlogramas,

criterios de seleccién de modelos

Una vez identificados r y s se estima el modelo ARMA(r,s) homoscedastico

con errores normales por maxima verosimilitud y se calculan sus residuos
cuadraticos £7. Se analiza el correlograma de estos residuos y, a partir de

ellos se identifica los 6rdenes p y g de un modelo GARCH. Habitualmente si
el correlograma tiene una estructura de un AR(p) se plantea un modelo
ARCHY(p); en otro caso se plantea un modelo GARCH(1,1) que es el méas
simple

Se estima el modelo ARMA(r,s)-GARCH(p,q) con errores normales y se

A

. . g A € . , . -
calculan los residuos tipificados 2, =—-. Si el modelo esta bien especificado
cSt

en media y varianza esta serie sera ruido blanco débil homoscedastico. Si no

lo es, se re-especifica el modelo ARMA-GARCH en cuanto a sus 6rdenes y

se vuelve a repetir el paso c)

A

. A € . . ., . .
Si 2, =—- es ruido blanco se analiza la hipétesis de normalidad y, en caso
Gt

de ser rechazada se identifica cual de las distribuciones descritas en la
seccion 2.1 se ajusta a los datos utilizando QQ plots o test de bondad de
ajuste como el de Kolmogorov-Smirnov. Si hay varias que se ajustan bien se
estiman los modelos ARMA(r,s)-GARCH(p,q) correspondientes a cada una

de ellas y se selecciona aquél con mejor valor con respecto a algun criterio
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de seleccion de modelos. En nuestro caso utilizaremos el criterio BIC que es

consistente.
4. Aplicacion empirica: analisis de indices bursatiles

En esta seccion se estiman y seleccionan los modelos ARMA-GARCH que
mejor se ajustan a los 6 indices bursatiles analizados en el trabajo aplicando la
metodologia descrita en la seccion anterior. Los datos corresponden a las series de
precios de cierres diarios de los indices BEL20, DAX, DOWJONES, EUROSTOXX,
IBEX35 y NIKKEI desde el 02/01/2001 hasta el 24/04/2015 dando un total de 3644
observaciones por serie. En la seccion se muestra con detalle el proceso seguido para el
IBEX35. Los resultados para el resto de las series se muestran en los anexos
correspondientes. Todos los resultados que se exponen en el trabajo fueron obtenidos

utilizando librerias del programa R 3.1.2.
4.1. Analisis estadistico del IBEX35

Comenzamos nuestro estudio analizando las raices unitarias del logaritmo de la

serie de precios.

1.0
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9.2

Fac
FACP

0.4

0z
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2002-01-01 2008-01-01 2010-01-01 2014-01-01
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Figura 4-1: Grifico de log precios contra el tiempo Figura 4-2: Correlograma log precios

A simple vista podemos observar en el grafico que la serie del logaritmo de
precios (Figura 4-1) presenta no estacionariedad, incluso podriamos afirmar que
presenta tendencia estocastica y determinista, pues tenemos subperiodos grandes con
pauta creciente o decreciente y, ademas, la dispersion de los valores es creciente ya que

a medida que aumenta el tiempo la diferencia en precios es mayor.
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Atendiendo al correlograma (Figura 4-2), vemos que el correspondiente a la
funcion de autocorrelacion (el de la izquierda, FAC) presenta un decrecimiento lento
con valores proximos a 1y, el correlograma de la funcion parcial de autocorrelacion
(el de la derecha, FACP) presenta una primera barra cercana a uno y el resto de valores

oscilan en torno a cero. Volvemos a predecir que estamos ante una serie no estacionaria.

Para confirmar la no estacionariedad de la serie realizamos los dos contrastes
principales: Dickey-Fuller y KPSS, ambos se estimaron con constante pero sin

tendencia, pues ésta Gltima resulté no significativa.

Para el contraste Dickey-Fuller consideramos la hip6tesis nula Ho: Existencia
de raices unitarias 0 No estacionariedad de la serie, frente la hipdtesis alternativa H, :
No existencia de raices unitarias o Estacionariedad de la serie. Mientras que para el
contraste KPSS ocurre lo contrario: bajo la hipdtesis nula el proceso es estacionario vy,

bajo la hipdtesis alternativa presenta una raiz unitaria.

El resultado obtenido para el contraste Dickey-Fuller fue de un p.valor de
0.4427, atendiendo a dicho valor, para los niveles de significatividad del 1% y 5%
resultaron que no se rechaza la hipotesis nula de existencia de raices unitarias, siendo,
por tanto, la serie no estacionaria. Asi mismo, para el contraste KPSS el p.valor es
menor que 0.01 y, por tanto, existe evidencia en contra de la hipdtesis de
estacionariedad para un nivel de significatividad del 1%. Por tanto, ambos tests
proporcionan evidencia de que la serie de precios del IBEX35 no es estacionaria.

Corregimos la no estacionariedad de la serie diferenciando la misma, obteniendo

asi la rentabilidad de cada indice.
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Figura 4-3: Grafico de rentabilidades contra el tiempo Figura 4-4: Correlograma rentabilidades

Gréaficamente podemos observar que la no estacionariedad se ha corregido
(Figura 4-3), la serie de rentabilidades es una serie estacionaria. El correlograma (Figura
4-4) corrobora la estacionariedad de la serie de rentabilidades. Ademas, realizando el
mismo test de raices unitarias, aplicado anteriormente al logaritmo de la serie de
precios, obtenemos un p.valor de 0.01 para el caso del contraste Dickey-Fuller, que
muestra rechazo a la hip6tesis nula de existencia de raices unitarias para un nivel de
significatividad del 5%. Y un p.valor de 0.0799, en el caso del KPSS, para los niveles
de significatividad del 1% y 5% presenta evidencia a favor de la hipétesis nula de
estacionariedad. Asi pues podemos afirmar que la serie de rentabilidades es

estacionaria.

En la Tabla 4.1. y la Figura 4-5 se muestran los resultados obtenidos al realizar
un analisis exploratorio, tanto grafico como numérico, de la serie de rentabilidades del
IBEX35. En dicho andlisis se han aplicado los contrastes de media nula de a t de
Student, mediana nula de Wilcoxon, test de asimetria de Fisher, test de curtosis de
Fisher, test de normalidad de Jarque-Bera (J-B) y de Shapiro-Wilks (S-W). Se observa
que la rentabilidad media no es significativamente distinta de 0 pero la mediana si lo es
reflejando el que en el periodo analizado el IBEX35 tuvo mas periodos de subida que de
bajada aunque su impacto en la rentabilidad media no fue significativo. La desviacion
tipica es significativamente mas alta lo cual refleja que las oscilaciones de la
rentabilidad fueron bastante mas altas que sus valores medios y, por tanto, que los

niveles de riesgo asociados al IBEX35 fueron, en general, altos. Observando, ademaés, la
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evolucion diaria de las rentabilidades (Figura 4-3) se aprecia claramente el caracter
heteroscedastico de la misma asi como la existencia de volatility clustering (es decir,
agrupamiento de la volatilidad en bloques), existiendo periodos en los que la volatilidad
es menor (que coinciden con periodos en los que los rendimientos no sufren grandes
cambios) y periodos en los que la volatilidad es mayor (momentos en los que la

variacion de los rendimientos respecto de su media es mayor).

Existe ademas una clara falta de normalidad en la serie, rechazada por los
contrastes JB como SW. Ello es debido a la existencia de una clara leptocurtosis (ver
histograma y QQ plot en la Figura 4-5) con un coeficiente de curtosis elevado (5,206) y
una ligera asimetria positiva (0,0996 aunque ésta ultima se debe a un atipico positivo
muy fuerte), siendo todas ellas significativas (los resultados de los test de asimetria y
curtosis son significativos). Ello es debido a la existencia de periodos de tiempo con
elevados valores de la rentabilidad en valor absoluto (los valores minimo y méximo de
la rentabilidad diaria fuero de un -9.58% y un 13.48%, respectivamente) junto a la
existencia de otros periodos en los que la rentabilidad fue esencialmente nula. Todo ello

pone de manifiesto los altos niveles de riesgo asociados a la evolucién diaria de la serie.

Tabla 4.1. Anélisis exploratorio de las rentabilidades de IBEX35

Media | Desv. Tipica | Mediana | Minimo Maximo | Asimetria | Curtosis J-B S-w

0.0064 1.5153 0.0706 ** | -9.5859 13.4836 0.0996 * | 5.206 ** | 4128.28 ** | 0.95**

*significativo al 5% (1%)
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Si analizamos las dependencias en media (ver correlogramas de la Figura 4-4)
no se aprecia una estructura clara con autocorrelaciones significativas en los retardos 1,
2, 3 y 5. Por dicha razon recurrimos a criterios de seleccién de modelos y, mas
concretamente al criterio BIC de Schwarz (1976) que es consistente. En la Figura 4-6 se

muestran los valores obtenidos para modelos ARMA(r,s) con 0<r<2, 0<s<2.
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Figura 4-6: Grafico BIC
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residuos®2

El criterio a tener en cuenta para seleccionar un modelo es que el valor de BIC
debe ser el menor de todos. Se observa (Figura 4-6) que el menor valor BIC, sefialado
con un circulo amarillo corresponde a un ARMA (0,0), también conocido como ruido

blanco no apreciandose, por tanto, la existencia de dependencias en media relevantes.

Una vez identificado el orden del proceso ARMA que se ajusta al IBEX35,
vamos a determinar qué modelo es el mas adecuado para describir la evolucion de la
volatilidad. Dado que la serie parece ser ruido blanco, analizaremos los cuadrados de la
misma, sus correlogramas y aplicaremos los contrastes ARCH y de Box-Ljung con el
fin de analizar si la serie es homoscedastica. En la Tabla 4.3 y las Figuras 4-7 y 4-8 se
muestran los resultados obtenidos. Se observa que todos los contrastes rechazan la
hipdtesis de homoscedasticidad, existiendo dependencias significativas positivas en
todos los retardos en el correlograma de la Figura 4-8. Este hecho pone de manifiesto,
de nuevo, la existencia de volatility clustering con una alta persistencia de la volatilidad
a lo largo del tiempo, reflejando la tendencia a de la serie a tener largos periodos de

altas (bajas) oscilaciones como consecuencia de dicha persistencia.
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Figura 4-7: Grifico de la serie Figura 4-8: Correlograma dela serie de residuos al cuadrado

dela serie de residuos al cuadrado

Dado que hay valores significativos tanto en las autocorrelaciones como en las
autocorrelaciones parciales, ajustamos un modelo GARCH a la serie analizando el
comportamiento de los residuos tipificados. Realizado este proceso para diversos
procesos GARCH (cuyos resultados omitimos por brevedad) ajustamos un modelo
GARCH (4,1) que es el que muestra una menor autocorrelacién en los cuadrados de los
residuos. En la Tabla 4.2 se muestran las estimaciones obtenidas para los modelos
GARCH con mejores niveles de ajuste tanto para innovaciones normales como para
innovaciones no normales. Estos ultimos fueron seleccionados considerando las

distribuciones descritas en la seccién 2.1 para las innovaciones, analizando su bondad
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de ajuste y eligiendo el mejor modelo de acuerdo al criterio BIC. Se aprecia que los

modelos GARCH presentan menores valores de dicho criterio que los modelos

homoscedésticos, siendo significativos tanto los pardmetros o como B de dichos

modelos y observandose altos niveles de persistencia (superiores a 0.99) en todos ellos

fiel reflejo del elevado grado de volatility clustering presente en la serie.

Finalmente se observa que las estimaciones de los parametros v y & de los

modelos con innovaciones t de Student asimétricas ponen de manifiesto la existencia de

leptocurtosis condicional (valores de v pequefios) y asimetria negativa (&E<1)

significativas, si bien ésta ultima no muy fuerte, corroborando la falta de normalidad de

los residuos tipificados apreciada en los resultados mostrados en la Tabla 4.3 y en la

Figura 4-12.

Tabla 4.2: Resultados de la estimacién de los modelos ajustados a las

rentabilidades del IBEX35

ARMA(0,0) ARMA(0,0)- ARMA(0,0)-
GARCH(4,1) APARCH(1,1)
Exponencial tde tde
Normal | Generalizada | Normal Student Normal Student
Asimétrica asimétrica asimétrica
ﬁt 0.0064 0.0064 0.0640 ** | 0.0558 **
& 2.295 2.295 0.0254 ** | 0.0132** | 0.0237 ** | 0.0205 **
Gia 0.0618 ** | 0.0610 ** | 0.0620 ** | 0.0609 **
Qo 0.0325 0.0234
Gis 0.0126 0.0014
Gl 0.0000 0.0000
B 0.8844 ** | 0.9108 ** | 0.9318 ** | 0.9351 **
1
Persistencia
A > 0.000 0.000 0.9913 0.9966
a (D)+p(1)
A 1 ** 1 **
Y1
8 1.0732 ** | 1.0892 **
{) 9 *% 10 *x
% 0.9166 ** 0.8919 **
BIC 3.669 3.519 3.353 3.327 3.299 3.283

“Msignificativo al 5% (1%)
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En la Tabla 4.3 y en las Figuras 4-9 a 4-12 se muestran los resultados del analisis

de la bondad de ajuste de los modelos estimados a los datos. El estudio de la bondad de

&
[AZ
Gt

donde £, son los residuos estimados y 67 son las volatilidades estimadas, por el modelo

ajuste de un modelo GARCH se basa en el analisis de los residuos tipificados z, =

ajustado. Si el modelo ajustado es el verdadero, dichos residuos seran ruido blanco débil
homoscedéstico. En las Figuras 4-9 y 4-10 se analizan las dependencias en media de
los residuos correspondientes al modelo ARMA(0,0)-GARCH(4,1) con errores
normales y errores t de Student asimétricas. No se aprecia la existencia de dependencias

significativas en media.
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Figura 4-9: Grafico de los residuos contra el tiempo Figura 4-10: Correlograma de los residuos

En la Figuras 4-11 y 4.12 se analizan los residuos cuadraticos. Se observa la
existencia de una dependencia en el retardo 4 significativa pero no importante siendo
los demaés retardos no significativos. Finalmente en la Figura 4.12 se muestran los
ajustes de la distribucion residual a los residuos tipificados mediante QQ plots mientras
que la Tabla 4.3 analiza la bondad de ajuste en términos de los contrastes de hipotesis
de Jarque-Bera y Kolomorov Smirnov. Se rechaza la hipétesis de normalidad pero se
acepta, débilmente al 5%, la hip6tesis de que la distribucion de los errores es una t de

Student asimétrica.
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Tabla 4.3: Bondad de ajuste de los modelos estimados ARMA y GARCH para las
rentabilidades del IBEX35

ARMA(0,0) ARMA(0,0)-GARCH(4,1)
Expone_nual t de Student
Generalizada S
Normal Asimétrica Normal asimétrica
Box-Ljung | 55 4012 | 25.4012 4.4009 3.8535
Residuos x e
(8 retardos)
Box-Ljung | 101960 | 1049.69 18.1319 23.507
Residuos o o - o
(8 retardos)
Test ARCH 6.262 6.262 23.1879 29.3125
(10 retardos) *x ** * xx
4128.28 4128.28 266.440 337.0544
Jarque-Bera ok ok - ok
Testk-s | Y987 | ooug | 0030 00246

"M significativo al 5% (1%)

Finalmente, y con el fin de analizar la posible existencia de efecto asimétrico, en
la Figura 4-14 se muestran las correlaciones cruzadas de los residuos tipificados con sus
cuadrados apreciandose la existencia de correlaciones significativamente negativas en
los retardos negativos. Existe, por tanto, evidencia de una relacion inversa de los
residuos retardados con sus cuadrados (estimaciones de la volatilidad) y, por tanto, de la

existencia de un efecto asimétrico del tipo predicho por la teoria financiera.

Para analizar la significacion de dicho efecto estimamos un modelo APARCH
(1,1) con errores normales y no normales, en este caso distribuidos segin una t de
Student asimétrica. Los resultados de la estimacion se muestran en la Tabla 4.2. Se
observa que el parametro y es significativamente positivo en ambos modelos por lo cual
existe evidencia de la existencia de un efecto asimétrico significativo del mismo tipo
que el pronosticado por la Teoria Financiera. Ademas el ajuste del modelo a los datos es
mejor que el del modelo GARCH dando lugar a un menor valor del criterio BIC. Los
valores estimados del pardmetro & son significativamente distintos de 2 pero no de 1 por
lo que, en ambos modelos, tienden a describir la evolucion de la volatilidad medida en
términos de la desviacion tipica y no de la varianza. Finalmente, si analizamos la
bondad de ajuste (ver Tabla 4.4 y Figuras 4-15 a 4-19) observamos que los residuos

tipificados son ruido blanco homoscedastico pero no es normal, siendo la distribucién
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t de Student asimétrica la que mejor se ajusta a su evolucion. Asi mismo una vez
estimado dicho modelo préacticamente desaparece la significacion de las correlaciones
cruzadas entre los residuos y sus cuadrados (ver Figura 4-14) por lo que podemos
concluir que, de los modelos considerados en el trabajo es el que mejor se ajusta a la

evolucion de las rentabilidades del IBEX35.
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Tabla 4.4: Bondad de ajuste de los modelos estimados APARCH para las
rentabilidades del IBEX35

ARMA(0,0)-
APARCH(1,1)
tde
Normal Student
asimétrica
Jarque-Bera | 131.183 142.671
** **

Test K-S 0.0318 0.0124
**
Box-Ljung 3.8563 3.7722
Residuos
(8 retardos)
Box-Ljung 11.6349 10.9124
Residuos’
(8 retardos)
Test ARCH 17.6493 16.9505
(10 retardos)

“significativo al 5% (1%)
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Figura 4-20:; Grafico de volatilidad estimada

Finalmente en la Figura 4-20 se muestran las volatilidades estimadas por los
modelos ARMA (0,0)-GARCH (4,1) y ARMA (0,0)-APARCH (1,1) con errores no
normales. Se aprecia que dichas volatilidades son muy similares observandose la
existencia de altos valores de la volatilidad en el periodo 0-800 (02/01/2001 a
13/03/2003), un descenso con niveles bajos de volatilidad en el periodo 800-1700
(13/03/2003 a 30/08/2005) y un repunte en el periodo 1700 hasta el final (30/08/2005 a
24/04/2015), podemos observar que los periodos en los que la volatilidad crece
coinciden con el periodo de crisis financiera en Espafia, la crisis del 2001 y la crisis del
2007, especialmente la crisis de 2007 que fue una crisis de caracter financiero afecté en
mayor medida a la volatilidad, pues esta reflej6 con una fuerte subida los cambios

producidos en el precio de dicho activo.

4.2. Resultados del proceso de estimacién y seleccion de modelos para el resto de

los indices

En los anexos se muestran los resultados obtenidos en el proceso de estimacién y
seleccion de modelos para el resto de los indices bursatiles asi como el analisis de la

bondad de ajuste de cada uno de ellos.

Como ocurria con el IBEX35, tenemos que la serie de precios de cada uno de los
demas indices es no estacionaria, como podemos observar graficamente a través de los
gréaficos de precios contra el tiempo y sus respectivos correlogramas (ver grafico en el

punto 1.a), asi como analiticamente a través de los contrastes de raices unitarias de
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Dickey-Fuller y KPSS (ver tabla en el punto 2). Por lo que convertiremos la serie de
precios en serie de rentabilidades a través de la variacion de sus logaritmos.

La serie de rentabilidades si es estacionaria, lo hemos comprobado utilizando el
mismo procedimiento que para la serie de precios (ver grafico en el punto 1.b y tabla en
el punto 2). A través de un analisis exploratorio inicial (ver tabla en el punto 3) tenemos
constancia de que para ningun indice la media es significativa, mientras que la mediana
si, lo que implica que tuvieron mas periodos de subida que de bajada aunque su impacto
en la rentabilidad media no fue significativo. Salvo para el caso del indice
EUROSTOXX, que se rechaza que la mediana sea significativa, es decir, que tuvo mas
periodos de bajada que de subida. Como ocurria con el IBEX35, la desviacion tipica es
significativamente mas alta lo cual refleja que las oscilaciones de la rentabilidad fueron
bastante mas altas que sus valores medios y, por tanto, que los niveles de riesgo
asociados a los indices fueron, en general, altos. Observando, ademas, la evolucién
diaria de las rentabilidades (ver grafico en el punto 1.b) se aprecia claramente el caracter
heteroscedastico de la misma asi como la existencia de volatility clustering (es decir,
agrupamiento de la volatilidad en bloques), existiendo periodos en los que la volatilidad
es menor (que coinciden con periodos en los que los rendimientos no sufren grandes
cambios) y periodos en los que la volatilidad es mayor (momentos en los que la
variacion de los rendimientos respecto de su media es mayor). En términos de
normalidad, mediante el test de curtosis de Fisher y los contrastes de Jarque-Bera y
Shapiro-Wilks, tenemos que en las cinco series se rechaza la hipétesis de normalidad,
como ocurria con el IBEX35, ya que habiamos comentado que es un rasgo caracteristico
de cualquier serie financiera. También podemos observar la existencia de leptocurtosis
(curtosis elevada) y falta de normalidad a través de los graficos cuantil-cuantil (ver
histograma y QQ plot en el punto 4). Por ultimo, respecto al analisis exploratorio, la
hipotesis de simetria no se rechaza salvo en el caso del indice NIKKEI en el que se
aprecia una ligera asimetria negativa debido a la presencia de algunos atipicos

negativos.

En las tablas del punto 5 de los anexos se muestran las estimaciones obtenidas
para los modelos con mejores niveles de ajuste tanto para innovaciones normales como
para innovaciones no normales. Estos Gltimos fueron seleccionados considerando las

distribuciones descritas en la seccién 2.1 para las innovaciones, analizando su bondad
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de ajuste y eligiendo el mejor modelo de acuerdo al criterio BIC. Se aprecia que los
modelos GARCH presentan menores valores de dicho criterio que los modelos
heteroscedasticos, siendo significativos tanto los pardmetros o como [ de dichos
modelos y observandose altos niveles de persistencia (superiores a 0.99) en todos ellos

fiel reflejo del elevado grado de volatility clustering presente en la serie.

Finalmente se observa que las estimaciones de los parametros v y & de los
modelos con innovaciones t de Student asimétrica ponen de manifiesto la existencia de
leptocurtosis condicional (valores de v pequefios) y ligera asimetria negativa (<1 con

valores en torno a 0.9) significativas.

Pasamos al andlisis de los residuos de las series de rentabilidades mediante el
estudio de la bondad de ajuste (ver tabla en el punto 6 y gréficos en los puntos 7, 8 y
10). Vamos a estudiar los tres problemas mencionados anteriormente en el estudio del
IBEX35: falta de normalidad (test Jarque-Bera y prueba de Kolmogorov-Smirnov),
autocorrelacion (contraste Box-Ljung) y heteroscedasticidad (test ARCH). En primer
lugar, vemos que el problema de falta de normalidad continta en la serie de residuos de
las rentabilidades para cada uno de los indices. En cuanto a la autocorrelacién, tenemos
que para los indices BEL20, DAX y DOWJONES, la autocorrelacién de los residuos asi
como la de los residuos cuadraticos se corrige al introducir en el modelo inicial tanto la
parte GARCH como la APARCH. Para el indice EUROSTOXX también existen
problemas de autocorrelacion en el modelo ARMA que se solucionan al introducir los
modelos GARCH y APARCH, pero con la salvedad de que en este caso el modelo
GARCH donde se distribuyen los residuos segun una t de Student asimétrica, existen
problemas de autocorrelacion al 5%. Y ya para acabar con el analisis de autocorrelacion
de los residuos y los residuos al cuadrado, el indice NIKKEI no muestra problemas de
autocorrelacion en los residuos pero si en los residuos cuadraticos, que se corrige al
incorporar los modelos GARCH y APARCH al modelo inicial. Por ultimo, el problema
de heteroscedasticidad, medido a través del test ARCH, el problema de que la varianza
no sea constante se corrige para todos los indices incorporando al modelo las partes
GARCH y APARCH, sin embargo, para el indice BEL20, la heteroscedasticidad
continta en el modelo GARCH. Atendiendo al criterio BIC, los modelos elegidos son
los siguientes: para BEL20, APARCH-t de Student asimetrica (2.872); para DAX,
APARCH-exponencial generalizada asimétrica (3.265); para DOWJONES, APARCH-
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exponencial generalizada asimétrica (2.659); para EUROSTOXX, APARCH-t de
Student asimétrica (3.246) y; para NIKKEI, APARCH-exponencial generalizada
asimeétrica (3.446). En todos los casos se rechaza, por tanto, la hipétesis de normalidad
para la distribucion condicional del error, siendo todas las distribuciones leptocurticas y

con asimetria negativa significativa pero no muy fuerte.

Si se analiza el grafico 9 de las correlaciones cruzadas de los residuos
cuadraticos con los residuos retardados se aprecia la existencia de correlaciones
significativa de signo negativo en los retardos negativos sefialando la posible presencia
de efecto asimétrico en la serie. La introduccion del modelo APARCH mejora, en
general, el ajuste del modelo a los datos medido a través del criterio BIC y es capaz de
corregir problemas de autocorrelacion y heteroscedasticidad, como hemos visto en el
estudio de la bondad de ajuste de los residuos de la serie de rentabilidades. Analizando
las estimaciones de dicho modelo se observa que los coeficientes y son, en general,
positivos, lo cual concuerda con lo predicho por la teoria financiera acerca de la
existencia de efecto asimétrico: existe e implica que el impacto ejercido sobre la
volatilidad por una sobrevaloracién del mercado (residuo negativo) es superior al

ejercido por una infravaloracion.

Finalmente en el grafico 11 se muestran las volatilidades estimadas por los
modelos ARMA-GARCH y ARMA-APARCH con errores no normales. Se aprecia que
dichas volatilidades son muy similares observandose la existencia de altos valores de la
volatilidad en el periodo 0-800 (02/01/2001 a 13/03/2003), un descenso con niveles
bajos de volatilidad en el periodo 800-1700 (13/03/2003 a 30/08/2005) y un repunte en
el periodo 1700 hasta el final (30/08/2005 a 24/04/2015).

5. Validacion predictiva extramuestral de los modelos estimados

La evaluacion de los prondsticos es un paso clave en cualquier ejercicio de esta
naturaleza. Sin embargo, el estudio de la calidad de los diferentes modelos de
volatilidad puede ser muy complejo, debido a que no existe un Unico criterio capaz de
seleccionar el mejor modelo. Debido a ello, muchos autores han destacado la
importancia de evaluar los pronosticos de la volatilidad por medio de funciones de
pérdida reales que enfrenta el usuario final, proponiendo criterios basados en los

beneficios o en la utilidad. Desafortunadamente, no podemos contar con esa
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informacidn, pues las funciones de pérdida dependen de las preferencias desconocidas y

no observables de los agentes econémicos.

En esta seccion se realiza un estudio comparativo del comportamiento predictivo
extramuestral de los modelos estimados en la seccion anterior. Para ello realizaremos
una validacion predictiva tipo “rolling” de cada uno de ellos en el que, para cada
periodo de tiempo t, estimaremos los pardmetros del modelo utilizando la informacion
disponible hasta el periodo t-1 y luego realizaremos una prediccion de la rentabilidad de
la serie (o del precio segun el criterio utilizado) en el periodo t. La validacion de la

prediccion se hard en términos puntuales analizando el comportamiento del error de
prediccién a 1 paso vista &, =r, —E[rt |é1:(t_l),\p1:(t_l),Qt_lJ donde &y, Wiy SON loS
valores estimados de los parametros de la media y la varianza utilizando la informacién
Q:.1, Y en términos de intervalos de prediccion a 1 paso vista de un nivel de confianza 1-
a con O<a<l1, donde analizaremos el comportamiento predictivo de los intervalos de

prediccion:

IPREDo(1) = (7, py(1-a) 7, (1-0) =

rt,sup

| Cl:(t—l) ' \le:(t—l) ' Qt—l]_ dg D[rt | Cl:(t—l) ' \Ill:(t—l) ' Qt—ll E[rt | C]_'(t—l) ' \’I\]l:(t—l) ' Qt—l + ng[rt | Cl:(t—l) ' \’|\Il:(t—1) ' Qt—l U
2 2

donde

E[rt |Cl‘(t—l)’(|\]]_'(t—l)’Qt—lJ y D[rt |C1(t71),q/m71),§2tflj denotan la media y desviacion tipica
condicionales y d, denota el cuantil 1-ode la distribucion condicional del error

tipificado z;.

En lo que sigue comenzaremos describiendo como se calculan E[ri| C,w, Q1] Y
D[r{ C,y,Q:1] para los modelos considerados en el trabajo; posteriormente se mostraran
los criterios utilizados para evaluar las predicciones realizadas para, finalmente,

presentar los resultados obtenidos.
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5.1. Prediccion en modelos ARMA-GARCH
Todos los modelos ajustados son casos particulares del modelo
ri=G(X¢;C) + oi(Xe;y)zt
2{Qu1~ D(0,1,1)

donde x; son las variables explicativas del modelo que, en nuestro caso son valores
pasados de la serie de los residuos o de los residuos cuadraticos. Para estos casos se

verifica que:

E[rt | C.\V,K,Qt_l] = G(xy¢) donde Q¢ = {ry,..., 1y, X1,..., X1}

Var[rt |€’W'>\"Qt—l] = Gtz(Xt,\V)
y do (1) seré el cuantil 1-a de la distribucion D(0,1,1).
5.2. Criterios de comparacion

En esta seccion describimos, brevemente, los criterios empleados en el proceso
de validacién predictiva de los modelos. Dichos criterios se pueden agrupar en dos
grupos: aquéllos que evalian su comportamiento predictivo puntual y aquéllos que

evalUan su comportamiento predictivo en términos de intervalos.
5.2.1. Evaluacién del comportamiento predictivo puntual

Utilizamos dos criterios que evaltan el comportamiento del error predictivo de

la rentabilidad r, -1, : la raiz del error cuadratico medio (RMSE) y el error absoluto

medio (MAD) cuyas expresiones vienen dadas por:

T _ 3 2
RMSE = /z—(r‘ )
o T-t,+1

A

MAD—i It
& Tt +1

donde f, = E[rt |él:(tfl),\ifl:(tfl),QHJ. También utilizamos el coeficiente de desigualdad
de Theil que viene dado por:

Z(rt - IA’t )2

t=t,

/iff+ /irf 28
t=t, t=t,

THEIL=




que evalla dicho error en términos relativos comparando el valor predictivo del modelo
con el ruido blanco. Este coeficiente toma valores entre 0 y 1 de forma que cuanto mas
(menos) cercano esté su valor a 1 peor (mejor) es su comportamiento con respecto al
modelo de ruido blanco. Finalmente también utilizamos el error absoluto medio de

prediccion del precio medio en términos relativos PMAD que viene dado por:

A

PP
P

T
PMAD=100
T-t,+1 Z‘

donde P, =exp[f,]. En los 4 casos t; denota el inicio del periodo de validacion

predictiva extramuestral dejando los to.; primeros periodos de tiempo para obtener la

estimacion inicial del modelo.

Un segundo subgrupo de criterios se basa en la descomposicion del error
cuadratico medio de prediccion en la suma de 3 términos: el sesgo, la varianza y la

covarianza, analizando qué proporcion de dicho error corresponde a cada término.
Dichas proporciones vienen dadas por:

e Proporciéon del sesgo:

LS
T T-t+1 ST T-t,+1
T(rt_?t)z
ZT—t +1

0

t=t,

gue mide la cuantia de posibles errores sistematicos en la prediccion.

e Proporcion de la varianza:

(sf _Sr)2

. (rt_i;t)z
;T—to+l

dondes; ys, son las desviaciones tipicasde{r,;t =t,,..., T}y{f,;t =t,,..., T}y que mide

si las predicciones puntuales del modelo capturan las oscilaciones de la serie

e Proporcion de la covarianza:
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donde Corr(r,, 7, )es la correlacion entre{r,;t = t,,..., T}y {f,;t = t,,..., T}, y que mide

el grado de concordancia entre los valores predichos por el modelo y los observados.
5.2.2. Evaluacion del comportamiento predictivo por intervalos

Los criterios utilizados evaltan, por un lado, el nivel de cubrimiento empirico de
los intervalos de prediccion y, por el otro, la precision de la misma teniendo en cuenta,
por un lado, la longitud de los intervalos de prediccion vy, por el otro , la magnitud de

los errores de cubrimiento.

El nivel de cubrimiento empirico viene dado por la expresion:

100 ¢
CUB(1-a) = Tt Z wrep, () (M)

0 tto

donde I denota la funcién indicadora del conjunto A y 1-a es el nivel de confianza.
Ademas, para evaluar la significacion estadistica de dichos cubrimientos utilizamos los
contrastes de Christoffersen (1998) que analizan los niveles de cubrimiento condicional

e incondicional de los intervalos elaborados asi como su independencia. Si I =
lieren, . ) (Fe) S€ tiene que:
e Test LR de cubrimiento incondicional:

Contrasta si E[l{] = 1-o utilizando el contraste LR que viene dado por

(a1, IT)J [anl(l_a)noJ "
LRUC:—ZIog(TO—) =-2log| ———— |donde & = —

L@ [T, 1y a"(1—a)" No+N;

pvalor,, = P[xf > LR uc]obs]

.
donde ng = ZI,PREDl_ wy(ry) es el nimero de aciertos y ny = T-no es el numero de fallos.
t=t,

e Test LR de independencia:

Contrasta si {l; t=to, ..., T} son independientes

Sean n,, = thlt, 0= thl 1)

t=ty+1 t=ty+1

Noy = i(l_ It—l)lt’ Noo = i(l_ It—l)(l_ It)

t=t+1 t=ty+1
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El estadistico del contraste es:

LR _ _2 Iog L(& | Ito yerry IT) _ _2 Iog ( _ d)noo+n1o A Ngp+Ngy
Ul s 1, v ) ()™ g (L A ) A

pvalor,, = P[xf > I—Rind,obs]

A n A n A Ny, +N n
donde floy = 01 Ry = 11 Q= 01 11 _ 1
Moo +Noy Nyo+Nyy Nop + N+ Ny Ny N +1Ny

e Test LR de cubrimiento condicional:
Contrasta si E[l| It.1] = o
El estadistico del contrastes es:
LR, =LR, +LR,, conpvalor, =P}’ >LR,,.]

Por su parte, para evaluar el nivel de exactitud del intervalo utilizamos la pérdida

de Gneiting y Raftery (1007) que viene dada por:

T

T 2Z‘,(?tinf (OL)— i )I(rt < IAftinf (OL))+ ZZT:(rt - IAﬁtsup(‘x))l (rt >

LOSS(]'_ OL) - 22 (ftSUp(a)_ Frint (a))+ = =

t=t, o

5.3. Resultados obtenidos
5.3.1. IBEX35

Para realizar la evaluacion predictiva se tom6 como periodo inicial t,=1316
(11/08/2004). En la Tabla 5.1. se muestran los resultados obtenidos en la evaluacion
predictiva puntual mientras que las Tablas 5.2 y 5.3. contienen los resultados
correspondientes a la evaluacion predictiva por intervalos para los niveles de confianza
del 95% y 99%, respetivamente. Finalmente la Figura 5.1 analiza los resultados
gréficamente mostrando, la prediccion puntual, los limites de los intervalos predictivos
del 95% y 99% vy los valores observados de la serie de rentabilidades para cada uno de

los 6 modelos ajustados a la serie.

Se observa que, a nivel de rentabilidades, el comportamiento de los 6 modelos
ajustados es muy similar, con diferencias existentes a nivel del tercer decimal. Ello es
I6gico debido a que, al ser todos los modelos ruido blanco, los valores de las medias de

prediccion coinciden con el valor estimado de p que es muy similar para los 6 modelos.
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Tabla 5.1: Resultados de la validacion predictiva puntual

ARMA(0,0) ARMA(0,0)- ARMA(0,0)-
GARCH(4,1) APARCH(1,1)
Exponencial tde tde
Normal Gen_era}l|z_ada Normal S_tugler]t Normal S_tu@er_ﬂ
Asimétrica asimétrica asimétrica
RMSE 1.6015 1.6015 1.6026 1.6025 1.6017 1.6018
MAD 1.1283 1.1283 1.1274 1.1274 1.1277 1.1276
PMAD 0.0351 0.0351 0.0337 0.0337 0.0542 0.0540
Theil 0.9917 0.9917 0.9669 0.9681 0.9841 0.9814
Sesgo 0.0026 0.0026 0.1059 0.0992 0.0218 0.0321
Varianza | 98.5276 98.5276 97.0338 97.1969 98.3068 98.2755
Covarianza | 1.4698 1.4698 2.8603 2.7039 1.6714 1.6924

Dado que la prediccion es esencialmente constante (ver Figura 5.1) la mayor
proporcion del error cuadratico medio corresponde a la varianza siendo los niveles de
sesgo, en general, despreciables con los modelos homoscedasticos mostrando los
niveles de sesgo mas bajo debido a su menor grado de complejidad. Algo similar ocurre
a nivel de prediccion del precio en el que los modelos GARCH son los que mejor
comportamiento muestran pero con diferencias poco relevantes con el resto de los

modelos.

A nivel de intervalos, si analizamos los niveles de cubrimiento de los mismos
todos los modelos tienden a infracubrir tanto al 95% como al 99% siendo los modelos
con errores no normales los que mejor comportamiento tienen tanto a nivel
incondicional como condicional. Las mayores diferencias, sin embargo, se dan a nivel
de exactitud apreciandose que los modelos heteroscedasticos tienen niveles de exactitud
significativamente mas elevados que los homoscedasticos debido a su mayor adaptacion
a las fluctuaciones de la serie (ver Figura 5.1). La influencia del efecto asimétrico tiene
un caracter mas marginal, mejorando los niveles de exactitud pero en menor cuantia que

la mejora lograda con respecto a los modelos homoscedasticos tanto a niveles del 95%
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como del 99%. Finalmente el uso de distribuciones no normales no parece tener un

efecto de mejora del nivel de exactitud siendo el modelo ARMA (0,0)-APARCH (1,1)

con errores normales el que mejor comportamiento tiene a ambos niveles de confianza

aunque con niveles de cubrimiento ligeramente inferiores.

Tabla 5.2: Resultados de la validacion predictiva por intervalo al 95%

ARMA(0,0) ARMA(0,0)- ARMA(0,0)-
GARCH(4,1) APARCH(1,1)
Exponencial tde tde
Normal Gen_erghz_ada Normal S_tuc/jer_lt Normal S_tugler)t
Asimétrica asimétrica asimétrica
CUB(0.95) 93.1985% 94.3607% 03.371% | 93.8872% | 93.026% | 93.6289%
pvalor LRu 0.0002 0.1656 0.0006 0.0172 0.0000 0.0036
pvalor LRind 0.0000 0.0000 0.0699 0.0741 0.0048 0.0163
pvalor LRc 0.0000 0.0000 0.0005 0.0119 0.0000 0.0008
LOSS(0.95) 34786.74 35557.98 31947.08 | 32126.44 | 30902.04 | 31018.22

Tabla 5.3: Resultados de la validacion predictiva por intervalo al 99%

ARMA(0,0) ARMA(0,0)- ARMA(0,0)-
GARCH(4,1) APARCH(1,1)
Exponencial tde tde
Normal Gen_ere}llz_ada Normal S_tugler]t Normal S_tut;ler_lt
Asimétrica asimétrica asimétrica
CUB(0.99) 97.1158% 98.6225% 97.675% | 98.4933% | 97.374% | 98.4072%
pvalor LRu 0.0000 0.0837 0.0000 0.0224 0.0000 0.0082
pvalor LRind 0.0000 0.0788 0.0087 0.0156 0.3088 0.1399
pvalor LRc 0.0000 0.0478 0.0000 0.0039 0.0000 0.0102
LOSS(0.99) 56393.98 56256.75 4635158 | 47232.84 | 45748.86 | 45909.59
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Rentabilidades
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Figura 5-1: Resultados grificos dela validacién predictiva

5.3.2. Resto de los indices

Pasamos al Gltimo punto, analizando las predicciones, tanto puntuales como en
intervalos realizadas por los diversos modelos ajustados a cada indice. Por un lado, las
predicciones puntuales, muestran analiticamente que para los indices BELZ20,
EUROSTOXX y NIKKEI el modelo APARCH tendria menos error a la hora de
predecir que el modelo GARCH, mientras que para DAX y DOWJONES el error en

ambos modelos es practicamente equivalente.

Respecto a la prediccion por intervalos y, empezando con el indice BEL20,
tenemos cobertura incondicional correcta para los modelos ARMA distribuido segun
una exponencial generalizada asimétrica y para el GARCH con una t de Student
asimétrica, en este caso sélo al 1%, para todos los modelos se rechaza la hipétesis de
independencia y, la unién de ambos, la cobertura condicional resulta incorrecta para los
seis modelos. Para el indice DAX, observamos que si se distribuyen los residuos segun
una exponencial generalizada asimétrica, los modelos ARMA y GARCH aceptan la
hipdtesis de cobertura incondicional correcta, aceptamos independencia para el modelo
ARMA (segun una exponencial generalizada asimétrica) y para el modelo APARCH
(seguin una normal), en este caso solo al 1%, la cobertura condicional correcta sélo se da
en el caso del modelo ARMA (segun una exponencial generalizada asimétrica). El
indice DOWJONES, para los tres modelos se acepta la cobertura incondicional correcta

solo si se distribuyen segin una exponencial generalizada asimétrica, aceptamos
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independencia para el modelo APARCH y para el modelo GARCH, pero en el caso de
estar distribuido segin una exponencial generalizada asimétrica s6lo aceptamos al 1%;
y rechazamos que la cobertura condicional sea correcta salvo para el modelo GARCH
(segun una exponencial generalizada asimétrica), que se acepta al 1% y para el modelo
APARCH (segin una exponencial generalizada asimétrica), que se acepta tanto al 1%
como al 5%. Para el EUROSTOXX, aceptamos cobertura incondicional correcta en los
modelos ARMA (segun una t de Student) y el modelo GARCH (segun una t de Student
asimétrica), la independencia es aceptada al 1% en los modelos ARMA (segun una t de
Student) y APARCH (segun uno normal) vy, la cobertura condicional es incorrecta en
todos los modelos salvo en el ARMA (segun una t de Student). EI ultimo indice, el
NIKKEI, aceptamos cobertura incondicional correcta en el modelo ARMA (segln una t
de Student), aceptamos dependencia en los seis modelos y, la cobertura condicional es

incorrecta también para los seis modelos.

Si analizamos las pérdidas de Gneiting y Raftery se observa que, en general, los
modelos heteroscedasticos son los que mayor nivel de exactitud tienen debido a su
mayor poder adaptativo a la evolucién de la serie de rentabilidades (ver graficos 14),
siendo los modelos APARCH con errores normales (salvo el caso del indice BEL20) los
que tienen un comportamiento mas exacto, con la Unica excepcion del indice DAX en

el que el mejor comportamiento corresponde a un GARCH con errores normales.
6. Conclusiones

En el presente trabajo se ha estimado la volatilidad presente en la evolucién
diaria de 6 indices bursatiles mediante el uso de modelos ARMA-GARCH y ARMA-
APARCH, analizando el comportamiento predictivo de los modelos ajustados, tanto en
términos puntuales como de intervalos, asi como el impacto ejercido no so6lo por la
volatilidad estimada sino también por la existencia del Ilamado efecto asimétrico y la

falta de normalidad de las distribuciones condicionales del error.

Se observa, con caracter general, la existencia de una volatilidad cambiante en el
tiempo, con altos niveles de persistencia, efectos asimétricos significativos (con un
mayor impacto sobre la volatilidad de la sobre-prediccién de la rentabilidad) asi como
falta de normalidad por la presencia de una fuerte leptocurtosis y una ligera asimetria
negativa significativas. Todo ello provoca que, en general, los modelos con mejores

niveles de ajuste a los datos son los APARCH con errores no normales.
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A nivel predictivo puntual todos los modelos predicen de forma similar debido a
la ausencia de dependencias en media significativas (todos los modelos ajustados son
ruido blanco). Las diferencias se muestran en la prediccion por intervalos en la que se
observa que los modelos heteroscedasticos muestran un comportamiento mas adaptativo
a las oscilaciones de la serie dando lugar a intervalos més acurados tanto en términos de
longitud como de menor nivel de error de infra y sobreprediccion. La incorporacion del
efecto asimétrico al modelo mejora ligeramente los niveles de exactitud no
observandose un comportamiento muy diferenciado entre modelos con errores no
normales y no normales. Estos comportamientos son muy interesantes de cara a estimar
los llamados valores de riesgo (VaR) que se construyen a partir de los extremos inferior
(en operaciones a largo) y superior (en operaciones a corto) de los intervalos de
prediccion de las rentabilidades lo cual justifica el éxito de este tipo de modelos en la

evaluacion diaria de los niveles de riesgo de las series financieras.
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