
 

Análisis de la volatilidad de series 
financieras mediante modelos 

ARMA-GARCH 
Trabajo Final de Grado 

 

 

 

 

 

 

 

 

 

 

 

 

 

Autor: Sandra Ferrando Latorre 

Director: Manuel Salvador Figueras 

Codirector: Jesús Miguel Álvarez 

 



1 

 

Índice 

Resumen………………………………………………………………………………….2 

1. Introducción…………………………………………………………………………..3 

2. Modelos ARMA-GARCH……………………………………………………………5 

2.1. Planteamiento del problema…………………………………………………...5  

2.2. Extensiones del modelo: modelos APARCH………………………………….8 

3. Estimación y selección de los modelos ARMA-GARCH…………………………...9 

3.1. Estimación del modelo………………………………………………………….9 

3.2. Identificación del modelo……………………………………………………..10 

4. Aplicación empírica: análisis de índices bursátiles………………………………..11 

4.1. Análisis estadístico del IBEX35……………………………………………….11 

4.2. Resultados del proceso de estimación y selección de modelos para el resto de 

índices……………………………………………………………………………….23 

5. Validación predictiva extramuestral de los modelos estimados………………….26 

5.1. Predicción en modelos ARMA-GARCH……………………………………..28 

5.2. Criterios de comparación……………………………………………………..28 

5.2.1. Evaluación del comportamiento predictivo puntual…………......28 

5.2.2. Evaluación del comportamiento predictivo por intervalos………30 

5.3. Resultados obtenidos……………………………………………………….....31 

5.3.1. IBEX35…………………………………………………………….....31 

5.3.2. Resto de los índices…………………………………………………..34 

6. Conclusiones………………………………………………………………………....35 

7. Bibliografía…………………………………………………………………………..36 

 

 

 



2 

 

Resumen 

 

En este trabajo se estima la volatilidad de un conjunto de índices bursátiles analizando 

su impacto sobre la predicción extramuestral. Para ello se utilizan modelos ARMA-

GARCH y APARCH, analizando el impacto ejercido por la volatilidad, la existencia de 

efecto asimétrico y la falta de normalidad de la distribución del error. En el trabajo se 

describe cómo identificar, estimar y analizar la bondad de ajuste de este tipo de modelos 

así como elaborar predicciones extramuestrales. Así mismo se realiza una validación 

predictiva extramuestral de este tipo de modelos, tanto a nivel puntual como a nivel de 

intervalos, utilizando el método rolling. La metodología se aplica a 6 índices bursátiles. 

Los resultados obtenidos muestran que los modelos heteroscedásticos tienen un mejor 

rendimiento a nivel de intervalos, mostrando un comportamiento más adaptativo a las 

oscilaciones de la serie, sin que aprecien diferencias significativas en las predicciones 

elaboradas a nivel puntual debido la eficiencia de los mercados. Por su parte la 

incorporación del efecto asimétrico tiene un carácter más marginal y no apreciándose 

mejora sistemática alguna en la utilización de errores no normales.   

Palabras clave: GARCH, APARCH, Máxima verosimilitud, Validación predictiva 

extramuestral, Método Rolling, Series financieras, Índices bursátiles 

Abstract 

In this work the volatility of a set of stock indices is estimated by means of ARMA 

GARCH and APARCH models and its impact on the out-sampling prediction is 

analyzed, as well as the existence of asymmetric effect and the lack of normality of the 

distribution of the error. The work describes how to identify, estimate and analyze the 

goodness of fit of these models, and to build one-step forward predictions. Also an out-

sampling predictive validation is carried out in terms of point and intervals predictions 

and using a rolling method. The methodology is applied to 6 stock indices. The results 

show that point predictions are very similar for all the models due to the efficiency of 

markets. With respect to prediction by intervals the results show that the heteroscedastic 

models have better performance, by showing a more adaptive behavior to oscillations in 

the return series. The incorporation of an asymmetric effect in the model, even though 

statistically significant, has a marginal impact and it is not appreciated significant 

differences in the use of non-normal distributions.   

Keywords: GARCH, APARCH, Maximum likelihood, Outsampling predictive 

validation, Rolling Method, Financial series, Stock indices. 
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1. Introducción 

En los últimos años los estudios acerca de la volatilidad y su modelización, tanto 

empírica como teórica,  han ido ganando peso en el ámbito de los mercados económicos 

y financieros debido al papel fundamental que juega en la evaluación del riesgo 

asociado a los activos financieros (ver, por ejemplo, Tsay, 2013 capítulos 4 y 5). La  

volatilidad de un activo financiero podría definirse como la intensidad o frecuencia de 

los cambios que se producen en sus precios y suele medirse mediante medidas de  

variabilidad de su rentabilidad. 

En la práctica podemos hablar de la existencia de varios tipos de volatilidad 

como son la volatilidad pasada o histórica, la volatilidad implícita, la volatilidad 

observada o la volatilidad condicional o futura. La volatilidad histórica se puede definir 

como una medida retrospectiva de la volatilidad, la cual refleja el comportamiento de la 

variabilidad de los precios en el pasado. La volatilidad implícita está ligada a la 

valoración de opciones financieras que son instrumentos que ofrecen a sus propietarios 

el derecho a comprar o vender un activo determinado a un precio fijo en algún momento 

en el futuro. En el mercado se utiliza de forma general la fórmula de Black-Scholes que 

permite expresar la volatilidad implícita utilizando como dato de entrada la prima de la 

opción que se está negociando en el mercado. La volatilidad observada se calcula a 

partir de la varianza de la rentabilidad del activo observada con alta frecuencia (cada 5 o 

10 minutos). Finalmente la volatilidad condicional o futura se define como la varianza o 

desviación típica de la rentabilidad futura del activo la cual se calcula a partir de 

modelos econométricos siendo los modelos ARMA-GARCH y los modelos de 

volatilidad estocástica los más utilizados. 

Ambos tipos de modelos estiman la volatilidad mediante la varianza o la 

desviación típica condicional de la serie de rentabilidades, la cual los modelos ARMA-

GARCH modelan como función exacta de las innovaciones del modelo y sus retardos 

mientras que los modelos de volatilidad estocástica utilizan procesos estocásticos. 

La familia de modelos GARCH fue introducida por Engle (1982) que definió los 

modelos ARCH (iniciales en inglés de Condicionalmente Heteroscedástico y 

Autorregresivo) cuya varianza condicional es función lineal de los cuadrados de las 

innovaciones del modelo así como sus retardos dando lugar a un proceso autorregresivo 

(AR) en los cuadrados de dichas innovaciones. Los modelos ajustados resultaron ser 
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poco parsimoniosos precisando inclusión de un número elevado de retardos debido a la 

existencia del fenómeno “volatility clustering” en el que la volatilidad se agrupa en 

bloques de alta persistencia temporal. Con el fin de resolver dicho problema Bollerslev 

(1986) propone los modelos GARCH (iniciales en inglés de Condicionalmente 

Heteroscedástico Autorregresivo Generalizado) que incluye, el ecuación de evolución 

de la varianza condicional, valores retardados de la misma lo cual permite modelar de 

forma más parsimoniosa su evolución, llegando a ser el modelo GARCH (1,1) un 

modelo estándar en la literatura. 

Como Tsay (2013) argumenta, los modelos ARMA-GARCH presentan una serie 

de debilidades que debemos tener en cuenta: 

 Suponen que los shocks positivos y negativos tienen el mismo tipo de efecto 

sobre la volatilidad por lo que son incapaces de capturar el llamado efecto 

asimétrico. 

 Imponen bastantes restricciones sobre los parámetros para tener momentos 

finitos.   

 No proporcionan información acerca de las fuentes de variación de las series 

financieras.  

 Tienden a sobre-predecir la volatilidad debido a que responden lentamente a 

shocks grandes que se producen de forma aislada. 

 Las estimaciones obtenidas suelen tener alta persistencia y leptocurtosis 

condicional y, en algunos casos, asimetría en la distribución de los errores 

Para tratar dichos problemas se han propuesto diversas extensiones en la 

literatura: los modelos EGARCH de Nelson (1991), TGARCH de Glosten y otros 

(1993), NGARCH de Engle y Ng (1993), APARCH de Ding y otros (1993) o el enfoque 

semiparamétrico de Engle y González-Rivera (1991) entre muchos otros.    

Por su parte, los modelos de volatilidad estocástica modelan la varianza 

condicional de la serie de rentabilidades utilizando procesos estocásticos siendo el 

proceso AR (1) de Taylor (1994) el más utilizado. Este tipo de modelos es más difícil de 

estimar debido al carácter latente de la volatilidad, siendo su ajuste muy similar al de los 

modelos de la familia GARCH. Por dicha razón nos centraremos en esta última familia. 
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 En este trabajo se realiza una estimación de la volatilidad de 6 índices bursátiles 

internacionales entre los que se encuentra el IBEX35, y se evalúa su impacto en la 

predicción  de su rentabilidad. Se analiza, además, la existencia de efecto asimétrico y la 

falta de normalidad de las innovaciones del modelo utilizando diversos criterios 

propuestos en la literatura para evaluar dichas predicciones en términos puntuales y por 

intervalos.      

En la sección 2 se realiza una descripción de los elementos principales en los 

modelos ARMA-GARCH, describiendo además el efecto llamado persistencia en 

volatilidad captada por el modelo GARCH, así como de su variante APARCH utilizada 

para capturar y analizar la existencia de efecto asimétrico. La sección finaliza con una 

descripción de los criterios utilizados para evaluar las predicciones del modelo. En la 

sección 3 se explica cómo ajustar un modelo ARMA-GARCH a un conjunto de datos: 

cómo identificarlo, estimarlo, analizar su bondad de ajuste y utilizarlo para predecir. En 

la sección 4 se aplicar la metodología descrita en la sección anterior al análisis de 6 

índices bursátiles prestando especial atención al IBEX35. En la sección 5 se realiza un 

estudio comparativo en términos predictivos, de los modelos ajustados en la sección 4 y, 

finalmente, la sección 6 concluye destacando los hechos más relevantes encontrados en 

el trabajo. Se incluyen además 6 anexos en los que se muestran con más detalles los 

resultados obtenidos en el proceso de estimación y selección de modelos llevado a cabo 

para cada uno de los índices anteriores. 

2. Modelos ARMA-GARCH 

2.1. Planteamiento del problema 

Sea {Pt; t = 1,…, T} la serie de precios de un activo financiero donde Pt es el 

precio del activo en el periodo t. 

La mayoría de los estudios financieros involucran rentabilidades en lugar de 

precios. Esto es así porque para la mayoría de inversores el rendimiento de un activo es 

un resumen completo y libre de escala de la oportunidad de inversión;  además, las 

series de rentabilidades son más fáciles de manejar que las series de precios, puesto que 

las primeras tienen propiedades más atractivas como, por ejemplo, la estacionariedad, 

que facilitan su tratamiento estadístico.  
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La rentabilidad de un activo financiero se puede calcular de dos formas: simple o 

continua. La rentabilidad simple es la tasa de crecimiento relativa del nivel de precios 

del activo en un periodo y viene dada por Rt = 100
1t

1tt

P

PP




; por su parte la rentabilidad 

continua se define como la tasa de crecimiento acumulativa media en un periodo cuando 

éste se divide en intervalos de tiempo infinitesimales y viene dada por la expresión 













1t

t
t

P

P
log100r  verificándose que 

n

t
1tnt

n100

r
1PlimP 








   . En este trabajo 

utilizaremos ésta última dado que su tratamiento estadístico es más ventajoso. Esta 

ventaja se derivan de que la rentabilidad continua para un horizonte h>0 verifica que 

rt(h) = 100 














1t

ht

P

P
log  = rt + … + rt+h-1 lo cual facilita la elaboración de predicciones a 

varios horizontes.  

Nuestro objetivo es construir un modelo que describa la evolución de las 

rentabilidades {rt; t = 2,…,T} a lo largo del tiempo así como de su volatilidad 

 1tt

2

t |rVar   donde t = {r1,…, rt} es la información disponible al analista en el 

periodo t. Para ello utilizaremos un  ARMA(r,s)-GARCH(p,q) viene dado por las 

expresiones: 

(B)(rt-) = (B)t 

B)t
2
 =  + (B)t

2 

con t = tzt y  zt|t-1~D(0,1, donde D(0,t denota una distribución con media 0, 

desviación típica  y vector de parámetros .  

B es el operador retardo 

 = E[rt] media incondicional de la serie rt 

(z), (z), (z) y (z) polinomios de grados r, s, p y q, respectivamente  

(z), (z) sin raíces comunes todas ellas fuera del círculo unidad  

>0 

(z) y (z) sin raíces comunes y coeficientes no negativos 
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(1) + con el fin de garantizar que la varianza incondicional del modelo existe 

de forma que 2 = Var(rt) = 
)1()1(1 


.  

En este caso (1) + mide la persistencia en volatilidad del proceso de 

forma que cuanto mayor es su valor mayor, mayor es la duración del impacto que ejerce 

una innovación t en la volatilidad del proceso y, por tanto, mayor es el fenómeno de 

“volatility clustering” de forma que, si en un periodo la volatilidad ha sido alta en el 

periodo siguiente también tenderá a ser alta, y si por el contrario, la volatilidad es 

pequeña en un periodo, también será pequeña en el periodo siguiente.  

 Respecto a la distribución D(01, en la literatura se han propuesto diversas 

formas de la misma siendo las más utilizadas la distribución normal estándar N(0,), la 

distribución t de Student centrada y tipificada 



t

2
 con  grados de libertad o la 

distribución exponencial generalizada (GED) GED(0,1,)con grados de libertad 

propuesta por Nelson (1991). Sus funciones de densidad vienen dadas por las 

expresiones:  

f(x) = 
2x

2

1

e
2

1 


 en el caso de la distribución N(0,1) 

f(x) = 
 

2

1
2

2

x
1

2

1

2

2

1 






















 









 


en el caso de la 



t

2
 

f(x) = 





















1
2

e
1

1

x
2

1

 en el caso de la GED(0,1,) 

Las 3 distribuciones son simétricas en torno a 0. Además, la distribución t de 

Student es leptocúrtica  y su leptocurtosis es más elevada cuanto menor es el valor de  

Algo similar ocurre con la distribución GED que es leptocúrtica si , normal si =2 y 

platicúrtica si   
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En algunas series se observa, además, la presencia de una asimetría 

(habitualmente negativa) no muy pronunciada en la distribución de las innovaciones.       

Para capturar y analizar la significación de dicho efecto utilizaremos las 

versiones asimétricas de las 3 distribuciones anteriores, SN(0,1,), St(0,1,) y 

SGED(0,1,) cuya función de densidad viene dada por la expresión genérica: 

g(x) = 






























0 xsi 
1

2

0 xsi )(
1

2









x
f

xf

  

siendo f la función de densidad de la distribución original. Estas distribuciones son 

simétricas en torno al 0 si =1, asimétricas a izquierda si  y a derechas si >1. 

2.2. Extensiones del modelo: modelos APARCH 

      Los modelos GARCH suponen que el impacto ejercido por las innovaciones t 

es independiente de su signo.  El trabajo en el modelado de la volatilidad condicional de 

la serie de precios de las acciones ha demostrado, en general, que la volatilidad de un 

activo responde de forma diferente a los shocks positivos frente a los negativos de la 

misma cuantía. Por lo general, un shock negativo produce un efecto mayor en la 

volatilidad, que el generado por un shock positivo debido a que una sobrevaloración del 

precio de un activo tiende a incrementar la incertidumbre sobre su valor. Este efecto se 

conoce en la literatura con el nombre de  “efecto asimétrico”.  

      Para tratar de capturar este tipo de efecto y analizar su significación estadística 

se han propuesto en la literatura diversas extensiones del modelo GARCH: modelo 

EGARCH (modelo GARCH Exponencial) propuesto por Nelson (1991); TGARCH 

(modelo GARCH Umbral, también conocido como modelo GJR) propuesto por Glosten 

y otros (1993) , NGARCH (modelo GARCH No Simétrico) propuesto por Engle y Ng 

(1993), APARCH (modelo condicional heteroscedástico autorregresivo de potencia 

asimétrica) propuesto por Ding y otros (1993), … . En este trabajo utilizaremos el 

modelo ARMA(r,s)-APARCH(p,q) cuya expresión viene dada por: 

(B)(rt-) = (B)t con con t = tzt y  zt|t-1~D(0,1, 
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






q

1j
j-tj)i-ti

p

1i
i-t(it  

La existencia de efecto asimétrico de los residuos sobre la volatilidad vendrá 

marcada por los parámetros  de forma que si alguno de ellos es significativo marcará la 

existencia de un impacto diferente de los residuos negativos con respecto a los residuos 

positivos. En particular si p=q=1 el efecto asimétrico descrito habitualmente en la 

literatura existirá siempre y cuando 1>0. 

3. Estimación y selección de modelos ARMA-GARCH 

3.1. Estimación del modelo 

      La estimación de los modelos anteriores se realiza por el método de la máxima 

verosimilitud. Todos los modelos son casos particulares del siguiente 

rt = G(xt ;t(xt;)zt 

zt|t-1~ D(0,1,

donde  

xt = (1, rt-1, …, rt-p, t-1, …, t-q) 

G(xt ; es función dedos veces continuamente diferenciable 

  
 (xt;  es función de  dos veces continuamente diferenciable 

 El logaritmo de la función de verosimilitud viene dado por: 

max{r,s,p,q}+1:T( =  
 





T

1q,p,s,rmaxt

t ,,  

donde t() = 
 

 
  































;

;x

;xGr
f

;x

1
log

tt

tt

tt

 siendo f la función de densidad de la 

distribución D(0,1,. El estimador máximo verosímil de () se obtiene 

maximizando la función anterior y se puede probar que, bajo ciertas condiciones de 

regularidad la distribución del estimador máximo-verosimil es asintóticamente normal 

con media el verdadero valor de los parámetros anteriores (000) y matriz de 

varianzas y covarianzas dada por 
T

1
, cuyo valor depende del gradiente y el hessiano 
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de la función de verosimilitud evaluado en el estimador máximo-verosimil. La matriz 

anterior es diagonal por bloques respecto a los 3 parámetros  y  lo cual facilita la 

labor de identificación del modelo dado que la estimación de cada uno de los 3 

parámetros es asintóticamente independiente del resto. 

3.2. Identificación del modelo 

Dado el resultado de la sección anterior la identificación del modelo se realiza en 

3 pasos: 

a) Se identifican primero los órdenes r y s de la parte ARMA utilizando las 

herramientas clásicas de identificación este tipo de modelos: correlogramas, 

criterios de selección de modelos 

b) Una vez identificados r y s se estima el modelo ARMA(r,s) homoscedástico 

con errores normales por máxima verosimilitud y se calculan sus residuos 

cuadráticos 2

t̂ . Se analiza el correlograma de estos residuos y, a partir de 

ellos se identifica los órdenes p y q de un modelo GARCH. Habitualmente si 

el correlograma tiene una estructura de un AR(p) se plantea un modelo 

ARCH(p); en otro caso se plantea un modelo GARCH(1,1) que es el más 

simple 

c) Se estima el modelo ARMA(r,s)-GARCH(p,q) con errores normales y se 

calculan los residuos tipificados 
t

t
t

ˆ

ˆ
ẑ




 . Si el modelo está bien especificado 

en media y varianza esta serie será ruido blanco débil homoscedástico. Si no 

lo es, se re-especifica el modelo ARMA-GARCH en cuanto a sus órdenes y 

se vuelve a repetir el paso c) 

d) Si 
t

t
t

ˆ

ˆ
ẑ




  es ruido blanco se analiza la hipótesis de normalidad y, en caso 

de ser rechazada se identifica cuál de las distribuciones descritas en la 

sección 2.1 se ajusta a los datos utilizando QQ plots o test de bondad de 

ajuste como el de Kolmogorov-Smirnov. Si hay varias que se ajustan bien se 

estiman los modelos ARMA(r,s)-GARCH(p,q) correspondientes a cada una 

de ellas y se selecciona aquél con mejor valor con respecto a algún criterio 
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de selección de modelos. En nuestro caso utilizaremos el criterio BIC que es 

consistente. 

4. Aplicación empírica: análisis de índices bursátiles 

En esta sección se estiman y seleccionan los modelos ARMA-GARCH que 

mejor se ajustan a los 6 índices bursátiles analizados en el trabajo aplicando la 

metodología descrita en la sección anterior. Los datos corresponden a  las series de 

precios de cierres diarios de los índices BEL20, DAX, DOWJONES, EUROSTOXX, 

IBEX35 y NIKKEI desde el 02/01/2001 hasta el 24/04/2015 dando un total de 3644 

observaciones por serie. En la sección se muestra con detalle el proceso seguido para el 

IBEX35. Los resultados para el resto de las series se muestran en los anexos 

correspondientes. Todos los resultados que se exponen en el trabajo fueron obtenidos 

utilizando librerías del programa R 3.1.2.  

4.1. Análisis estadístico del IBEX35 

Comenzamos nuestro estudio analizando las raíces unitarias del logaritmo de la 

serie de precios. 

 

A simple vista podemos observar en el gráfico que la serie del logaritmo de 

precios (Figura 4-1) presenta no estacionariedad, incluso podríamos afirmar que 

presenta tendencia estocástica y determinista, pues tenemos subperíodos grandes con 

pauta creciente o decreciente y, además, la dispersión de los valores es creciente ya que 

a medida que aumenta el tiempo la diferencia en precios es mayor.  
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 Atendiendo al correlograma (Figura 4-2), vemos que el correspondiente a la 

función de autocorrelación (el de la izquierda, FAC) presenta un decrecimiento lento 

con valores próximos a 1 y, el correlograma de la función parcial de autocorrelación   

(el de la derecha, FACP) presenta una primera barra cercana a uno y el resto de valores 

oscilan en torno a cero. Volvemos a predecir que estamos ante una serie no estacionaria. 

     Para confirmar la no estacionariedad de la serie realizamos los dos contrastes 

principales: Dickey-Fuller y  KPSS, ambos se estimaron con constante pero sin 

tendencia, pues ésta última resultó no significativa.  

     Para el contraste Dickey-Fuller consideramos la hipótesis nula H0: Existencia 

de raíces unitarias o No estacionariedad de la serie, frente la hipótesis alternativa Ha : 

No existencia de raíces unitarias o Estacionariedad de la serie. Mientras que para el 

contraste KPSS ocurre lo contrario: bajo la hipótesis nula el proceso es estacionario y, 

bajo la hipótesis alternativa presenta una raíz unitaria. 

     El resultado obtenido para el contraste Dickey-Fuller fue de un p.valor de 

atendiendo a dicho valor, para los niveles de significatividad del 1% y 5% 

resultaron que no se rechaza la hipótesis nula de existencia de raíces unitarias, siendo, 

por tanto, la serie no estacionaria. Así mismo,  para el contraste KPSS el p.valor es 

menor que 0.01 y, por tanto, existe evidencia en contra de la hipótesis de 

estacionariedad para un nivel de significatividad del 1%. Por tanto, ambos tests 

proporcionan evidencia de que la serie de precios del IBEX35 no es estacionaria.  

      Corregimos la no estacionariedad de la serie diferenciando la misma, obteniendo 

así la rentabilidad de cada índice. 
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Gráficamente podemos observar que la no estacionariedad se ha corregido 

(Figura 4-3), la serie de rentabilidades es una serie estacionaria. El correlograma (Figura 

4-4) corrobora la estacionariedad de la serie de rentabilidades. Además, realizando el 

mismo test de raíces unitarias, aplicado anteriormente al logaritmo de la serie de 

precios, obtenemos un p.valor de 0.01 para el caso del contraste Dickey-Fuller, que 

muestra rechazo a la hipótesis nula de existencia de raíces unitarias para un nivel de 

significatividad del 5%. Y un p.valor de 0.0799, en el caso del KPSS, para los niveles 

de significatividad del 1% y 5% presenta evidencia a favor de la hipótesis nula de 

estacionariedad. Así pues podemos afirmar que la serie de rentabilidades es 

estacionaria.  

En la Tabla 4.1. y la Figura 4-5 se muestran los resultados obtenidos al realizar 

un análisis exploratorio, tanto gráfico como numérico, de la serie de rentabilidades del 

IBEX35.  En dicho análisis se han aplicado los contrastes de media nula de a t de 

Student, mediana nula de Wilcoxon, test de asimetría de Fisher, test de curtosis de 

Fisher, test de normalidad de Jarque-Bera (J-B) y de Shapiro-Wilks (S-W). Se observa 

que la rentabilidad media no es significativamente distinta de 0 pero la mediana sí lo es 

reflejando el que en el periodo analizado el IBEX35 tuvo más periodos de subida que de 

bajada aunque su impacto en la rentabilidad media no fue significativo. La desviación 

típica es significativamente más alta lo cual refleja que las oscilaciones de la 

rentabilidad fueron bastante más altas que sus valores medios y, por tanto, que los 

niveles de riesgo asociados al IBEX35 fueron, en general, altos. Observando, además, la 
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evolución diaria de las rentabilidades (Figura 4-3) se aprecia claramente el carácter 

heteroscedástico de la misma así como la existencia de volatility clustering (es decir, 

agrupamiento de la volatilidad en bloques), existiendo periodos en los que la volatilidad 

es menor (que coinciden con periodos en los que los rendimientos no sufren grandes 

cambios) y periodos en los que la volatilidad es mayor (momentos en los que la 

variación de los rendimientos respecto de su media es mayor). 

Existe además una clara falta de normalidad en la serie, rechazada por los 

contrastes JB como SW. Ello es debido a la existencia de una clara leptocurtosis (ver 

histograma y QQ plot en la Figura 4-5) con un coeficiente de curtosis elevado (5,206) y 

una ligera asimetría positiva (0,0996 aunque ésta última se debe a un atípico positivo 

muy fuerte), siendo todas ellas significativas (los resultados de los test de asimetría y 

curtosis son significativos).  Ello es debido a la existencia de periodos de tiempo con 

elevados valores de la rentabilidad en valor absoluto (los valores mínimo y máximo de 

la rentabilidad diaria fuero de un -9.58% y un 13.48%, respectivamente) junto a la 

existencia de otros periodos en los que la rentabilidad fue esencialmente nula. Todo ello 

pone de manifiesto los altos niveles de riesgo asociados a la evolución diaria de la serie. 

 

Tabla 4.1. Análisis exploratorio de las rentabilidades de IBEX35 

Media Desv. Típica Mediana Mínimo Máximo Asimetría Curtosis J-B S-W 

0.0064 1.5153 0.0706 ** -9.5859 13.4836 0.0996 * 5.206 ** 4128.28 ** 0.95 ** 

* (**) significativo al 5% (1%) 
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Si analizamos las dependencias en media (ver correlogramas de la Figura 4-4) 

no se aprecia una estructura clara con autocorrelaciones significativas en los retardos 1, 

2, 3 y 5. Por dicha razón recurrimos a criterios de selección de modelos y, más 

concretamente al criterio BIC de Schwarz (1976) que es consistente. En la Figura 4-6 se 

muestran los valores obtenidos para modelos ARMA(r,s) con 0≤r≤2, 0≤s≤2. 
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El criterio a tener en cuenta para seleccionar un modelo es que el valor de BIC 

debe ser el menor de todos. Se observa (Figura 4-6) que el menor valor BIC, señalado 

con un círculo amarillo corresponde a un ARMA (0,0), también conocido como ruido 

blanco no apreciándose, por tanto, la existencia de dependencias en media relevantes. 

Una vez identificado el orden del proceso ARMA que se ajusta al IBEX35, 

vamos a determinar qué modelo es el más adecuado para describir la evolución de la 

volatilidad. Dado que la serie parece ser ruido blanco, analizaremos los cuadrados de la 

misma, sus correlogramas y aplicaremos los contrastes ARCH y de Box-Ljung con el 

fin de analizar si la serie es homoscedástica. En la Tabla 4.3 y las Figuras 4-7 y 4-8 se 

muestran los resultados obtenidos. Se observa que todos los contrastes rechazan la 

hipótesis de homoscedasticidad, existiendo dependencias significativas positivas en 

todos los retardos en el correlograma de la Figura 4-8. Este hecho pone de manifiesto, 

de nuevo, la existencia de volatility clustering con una alta persistencia de la volatilidad 

a lo largo del tiempo, reflejando la tendencia a de la serie a tener largos periodos de  

altas (bajas) oscilaciones como consecuencia de dicha persistencia.   

 

Dado que hay valores significativos tanto en las autocorrelaciones como en las 

autocorrelaciones parciales, ajustamos un modelo GARCH a la serie analizando el 

comportamiento de los residuos tipificados. Realizado este proceso para diversos 

procesos GARCH (cuyos resultados omitimos por brevedad) ajustamos un modelo 

GARCH (4,1) que es el que muestra una menor autocorrelación en los cuadrados de los 

residuos. En la Tabla 4.2 se muestran las estimaciones obtenidas para los modelos 

GARCH con mejores niveles de ajuste tanto para innovaciones normales como para 

innovaciones no normales. Estos últimos fueron seleccionados considerando las 

distribuciones descritas en la sección 2.1 para las innovaciones, analizando su bondad 
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de ajuste y eligiendo el mejor modelo de acuerdo al criterio BIC. Se aprecia que los 

modelos GARCH presentan menores valores de dicho criterio que los modelos 

homoscedásticos, siendo significativos tanto los parámetros  como  de dichos 

modelos y observándose altos niveles de persistencia (superiores a 0.99) en todos ellos 

fiel reflejo del elevado grado de volatility clustering presente en la serie. 

Finalmente se observa que las estimaciones de los parámetros  y  de los 

modelos con innovaciones t de Student asimétricas ponen de manifiesto la existencia de 

leptocurtosis condicional (valores de  pequeños) y asimetría negativa ( 

significativas, si bien ésta última no muy fuerte, corroborando la falta de normalidad de 

los residuos tipificados apreciada en los resultados mostrados en la Tabla 4.3 y en la 

Figura 4-12. 

Tabla 4.2: Resultados de la estimación de los modelos ajustados a las 

rentabilidades del IBEX35 

 ARMA(0,0) ARMA(0,0)-

GARCH(4,1) 

ARMA(0,0)-

APARCH(1,1) 

 

Normal 

Exponencial 

Generalizada 

Asimétrica 

 

Normal 

t de 

Student 

asimétrica 

 

Normal 

t de 

Student 

asimétrica 

̂  0.0064 0.0064 0.0640 ** 0.0558 **   

̂  2.295 2.295 0.0254 ** 0.0132 ** 0.0237 ** 0.0205 ** 

̂1 
  0.0618 ** 0.0610 ** 0.0620 ** 0.0609 ** 

̂ 2    0.0325 0.0234   

̂3 
  0.0126 0.0014   

̂4    0.0000 0.0000   

̂
1


  0.8844 ** 0.9108 ** 0.9318 ** 0.9351 ** 

Persistencia 

  ˆˆ  

 

0.000 

 

0.000 

 

0.9913 

 

0.9966 

  

̂
1


    1 ** 1 ** 

̂      1.0732 ** 1.0892 ** 

̂     9 **  10 ** 

̂     0.9166 **  0.8919 ** 

BIC 3.669 3.519 3.353 3.327 3.299 3.283 

* (**) significativo al 5% (1%) 
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En la Tabla 4.3 y en las Figuras 4-9 a 4-12 se muestran los resultados del análisis 

de la bondad de ajuste de los modelos estimados a los datos. El estudio de la bondad de 

ajuste de un modelo GARCH se basa en el análisis de los residuos tipificados 
2

t

t
t

ˆ

ˆ
ẑ




  

donde t̂ son los residuos estimados y 2

t̂  son las volatilidades estimadas, por el modelo 

ajustado. Si el modelo ajustado es el verdadero, dichos residuos serán ruido blanco débil 

homoscedástico.  En las Figuras 4-9 y 4-10 se analizan las dependencias en media de 

los residuos correspondientes al modelo ARMA(0,0)-GARCH(4,1) con errores 

normales y errores t de Student asimétricas. No se aprecia la existencia de dependencias 

significativas en media. 

 

En la Figuras 4-11 y 4.12 se analizan los residuos cuadráticos.  Se observa la 

existencia de una dependencia en el retardo 4 significativa pero no importante siendo 

los demás retardos no significativos. Finalmente en la Figura 4.12 se muestran los 

ajustes de la distribución residual a los residuos tipificados mediante QQ plots mientras 

que la Tabla 4.3 analiza la bondad de ajuste en términos de los contrastes de hipótesis 

de Jarque-Bera y Kolomorov Smirnov. Se rechaza la hipótesis de normalidad pero se 

acepta, débilmente al 5%, la hipótesis de que la distribución de los errores es una t de 

Student asimétrica.  
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Tabla 4.3: Bondad de ajuste de los modelos estimados ARMA y GARCH para las 

rentabilidades del IBEX35 

 

ARMA(0,0) ARMA(0,0)-GARCH(4,1) 

 

Normal 

Exponencial 

Generalizada 

Asimétrica 

 

Normal 

t de Student 

asimétrica 

Box-Ljung 

Residuos       

(8 retardos) 

25.4012 

** 

25.4012 

** 

4.4009 

 

3.8535 

 

Box-Ljung 

Residuos
2
      

(8 retardos) 

1049.69 

** 

1049.69 

** 

18.1319 

* 

23.507 

** 

Test ARCH 

(10 retardos) 

6.262 

** 

6.262 

** 

23.1879 

* 

29.3125 

** 

Jarque-Bera 
4128.28 

** 

4128.28 

** 

266.440 

** 

337.0544 

** 

Test K-S 
0.0587 

** 
0.0118  

0.0346 

** 

0.0246                         

* 

* (**) significativo al 5% (1%) 

    Finalmente, y con el fin de analizar la posible existencia de efecto asimétrico, en 

la Figura 4-14 se muestran las correlaciones cruzadas de los residuos tipificados con sus 

cuadrados apreciándose la existencia de correlaciones significativamente negativas en 

los retardos negativos. Existe, por tanto, evidencia de una relación inversa de los 

residuos retardados con sus cuadrados (estimaciones de la volatilidad) y, por tanto, de la 

existencia de un efecto asimétrico del tipo predicho por la teoría financiera. 

 Para analizar la significación de dicho efecto estimamos un modelo APARCH 

(1,1) con errores normales y no normales, en este caso distribuidos según una t de 

Student asimétrica. Los resultados de la estimación se muestran en la Tabla 4.2. Se 

observa que el parámetro es significativamente positivo en ambos modelos por lo cual 

existe evidencia de la existencia de un efecto asimétrico significativo del mismo tipo 

que el pronosticado por la Teoría Financiera. Además el ajuste del modelo a los datos es 

mejor que el del modelo GARCH dando lugar a un menor valor del criterio BIC. Los 

valores estimados del parámetro  son significativamente distintos de 2 pero no de 1 por 

lo que, en ambos modelos, tienden a describir la evolución de la volatilidad medida en 

términos de la desviación típica y no de la varianza. Finalmente, si analizamos la 

bondad de ajuste (ver Tabla 4.4 y Figuras 4-15 a 4-19) observamos que los residuos 

tipificados son ruido blanco homoscedástico pero no es normal, siendo la distribución    
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t de Student asimétrica la que mejor se ajusta a su evolución. Así mismo una vez 

estimado dicho modelo prácticamente desaparece la significación de las correlaciones 

cruzadas entre los residuos y sus cuadrados (ver Figura 4-14) por lo que podemos 

concluir que, de los modelos considerados en el trabajo es el que mejor se ajusta a la 

evolución de las rentabilidades del IBEX35.   
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Tabla 4.4: Bondad de ajuste de los modelos estimados APARCH para las 

rentabilidades del IBEX35 

 ARMA(0,0)-

APARCH(1,1) 

 

Normal 

t de 

Student 

asimétrica 

Jarque-Bera  131.183 

** 

142.671 

** 

Test K-S 0.0318 

** 

0.0124 

Box-Ljung 

Residuos       

(8 retardos) 

3.8563 

 

3.7722 

 

Box-Ljung 

Residuos
2
      

(8 retardos) 

11.6349 

 

10.9124 

 

Test ARCH 

(10 retardos) 

17.6493 

 

16.9505 

 
* (**) significativo al 5% (1%) 



23 

 

 

 

 Finalmente en la Figura 4-20 se muestran las volatilidades estimadas por los 

modelos ARMA (0,0)-GARCH (4,1) y ARMA (0,0)-APARCH (1,1) con errores no 

normales. Se aprecia que dichas volatilidades son muy similares observándose la 

existencia de altos valores de la volatilidad en el periodo 0-800 (02/01/2001 a 

13/03/2003), un descenso con niveles bajos de volatilidad en el periodo 800-1700 

(13/03/2003 a 30/08/2005) y un repunte en el periodo 1700 hasta el final (30/08/2005 a 

24/04/2015), podemos observar que los periodos en los que la volatilidad crece 

coinciden con el periodo de crisis financiera en España, la crisis del 2001 y la crisis del 

2007, especialmente la crisis de 2007 que fue una crisis de carácter financiero afectó en 

mayor medida a la volatilidad, pues está reflejó con una fuerte subida los cambios 

producidos en el precio de dicho activo.   

4.2. Resultados del proceso de estimación y selección de modelos para el resto de 

los índices 

En los anexos se muestran los resultados obtenidos en el proceso de estimación y 

selección de modelos para el resto de los índices bursátiles  así como el análisis de la 

bondad de ajuste de cada uno de ellos.  

Como ocurría con el IBEX35, tenemos que la serie de precios de cada uno de los 

demás índices es no estacionaria, como podemos observar gráficamente a través de los 

gráficos de precios contra el tiempo y sus respectivos correlogramas (ver gráfico en el 

punto 1.a), así como analíticamente a través de los contrastes de raíces unitarias de 
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Dickey-Fuller y KPSS (ver tabla en el punto 2). Por lo que convertiremos la serie de 

precios en serie de rentabilidades a través de la variación de sus logaritmos.  

La serie de rentabilidades sí es estacionaria, lo hemos comprobado utilizando el 

mismo procedimiento que para la serie de precios (ver gráfico en el punto 1.b y tabla en 

el punto 2). A través de un análisis exploratorio inicial (ver tabla en el punto 3) tenemos 

constancia de que para ningún índice la media es significativa, mientras que la mediana 

sí, lo que implica que tuvieron más periodos de subida que de bajada aunque su impacto 

en la rentabilidad media no fue significativo. Salvo para el caso del índice 

EUROSTOXX, que se rechaza que la mediana sea significativa, es decir, que tuvo más 

periodos de bajada que de subida. Como ocurría con el IBEX35, la desviación típica es 

significativamente más alta lo cual refleja que las oscilaciones de la rentabilidad fueron 

bastante más altas que sus valores medios y, por tanto, que los niveles de riesgo 

asociados a los índices fueron, en general, altos. Observando, además, la evolución 

diaria de las rentabilidades (ver gráfico en el punto 1.b) se aprecia claramente el carácter 

heteroscedástico de la misma así como la existencia de volatility clustering (es decir, 

agrupamiento de la volatilidad en bloques), existiendo periodos en los que la volatilidad 

es menor (que coinciden con periodos en los que los rendimientos no sufren grandes 

cambios) y periodos en los que la volatilidad es mayor (momentos en los que la 

variación de los rendimientos respecto de su media es mayor). En términos de 

normalidad, mediante el test de curtosis de Fisher y los contrastes de Jarque-Bera y 

Shapiro-Wilks, tenemos que en las cinco series se rechaza la hipótesis de normalidad, 

como ocurría con el IBEX35, ya que habíamos comentado que es un rasgo característico 

de cualquier serie financiera. También podemos observar la existencia de leptocurtosis 

(curtosis elevada) y falta de normalidad a través de los gráficos cuantil-cuantil (ver 

histograma y QQ plot en el punto 4). Por último, respecto al análisis exploratorio, la 

hipótesis de simetría no se rechaza salvo en el caso del índice NIKKEI en el que se 

aprecia una ligera asimetría negativa debido a la presencia de algunos atípicos 

negativos. 

En las tablas del punto 5 de los anexos se muestran las estimaciones obtenidas 

para los modelos con mejores niveles de ajuste tanto para innovaciones normales como 

para innovaciones no normales. Estos últimos fueron seleccionados considerando las 

distribuciones descritas en la sección 2.1 para las innovaciones, analizando su bondad 
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de ajuste y eligiendo el mejor modelo de acuerdo al criterio BIC. Se aprecia que los 

modelos GARCH presentan menores valores de dicho criterio que los modelos 

heteroscedásticos, siendo significativos tanto los parámetros  como  de dichos 

modelos y observándose altos niveles de persistencia (superiores a 0.99) en todos ellos 

fiel reflejo del elevado grado de volatility clustering presente en la serie. 

Finalmente se observa que las estimaciones de los parámetros  y  de los 

modelos con innovaciones t de Student asimétrica ponen de manifiesto la existencia de 

leptocurtosis condicional (valores de  pequeños) y ligera asimetría negativa (con 

valores en torno a 0.9 significativas. 

Pasamos al análisis de los residuos de las series de rentabilidades mediante el 

estudio de la bondad de ajuste (ver tabla en el punto 6 y gráficos en los puntos 7, 8 y 

10). Vamos a estudiar los tres problemas mencionados anteriormente en el estudio del 

IBEX35: falta de normalidad (test Jarque-Bera y prueba de Kolmogorov-Smirnov), 

autocorrelación (contraste Box-Ljung) y heteroscedasticidad (test ARCH). En primer 

lugar, vemos que el problema de falta de normalidad continúa en la serie de residuos de 

las rentabilidades para cada uno de los índices. En cuanto a la autocorrelación, tenemos 

que para los índices BEL20, DAX y DOWJONES, la autocorrelación de los residuos así 

como la de los residuos cuadráticos se corrige al introducir en el modelo inicial tanto la 

parte GARCH como la APARCH. Para el índice EUROSTOXX también existen 

problemas de autocorrelación en el modelo ARMA que se solucionan al introducir los 

modelos GARCH y APARCH, pero con la salvedad de que en este caso el modelo 

GARCH donde se distribuyen los residuos según una t de Student asimétrica, existen 

problemas de autocorrelación al 5%. Y ya para acabar con el análisis de autocorrelación 

de los residuos y los residuos al cuadrado, el índice NIKKEI no muestra problemas de 

autocorrelación en los residuos pero sí en los residuos cuadráticos, que se corrige al 

incorporar los modelos GARCH y APARCH al modelo inicial. Por último, el problema 

de heteroscedasticidad, medido a través del test ARCH, el problema de que la varianza 

no sea constante se corrige para todos los índices incorporando al modelo las partes 

GARCH y APARCH, sin embargo, para el índice BEL20, la heteroscedasticidad 

continúa en el modelo GARCH. Atendiendo al criterio BIC, los modelos elegidos son 

los siguientes: para BEL20, APARCH-t de Student asimétrica (2.872); para DAX, 

APARCH-exponencial generalizada asimétrica (3.265); para DOWJONES, APARCH- 
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exponencial generalizada asimétrica (2.659); para EUROSTOXX, APARCH-t de 

Student asimétrica (3.246) y; para NIKKEI, APARCH-exponencial generalizada 

asimétrica (3.446). En todos los casos se rechaza, por tanto, la hipótesis de normalidad 

para la distribución condicional del error, siendo todas las distribuciones leptocúrticas y 

con asimetría negativa significativa pero no muy fuerte. 

Si se analiza el gráfico 9 de las correlaciones cruzadas de los residuos 

cuadráticos con los residuos retardados se aprecia la existencia de correlaciones 

significativa de signo negativo en los retardos negativos señalando la posible presencia 

de efecto asimétrico en la serie. La introducción del modelo APARCH mejora, en 

general, el ajuste del modelo a los datos medido a través del criterio BIC y es capaz de 

corregir problemas de autocorrelación y heteroscedasticidad, como hemos visto en el 

estudio de la bondad de ajuste de los residuos de la serie de rentabilidades. Analizando 

las estimaciones de dicho modelo se observa que los coeficientes  son, en general, 

positivos, lo cual concuerda con lo predicho por la teoría financiera acerca de la 

existencia de efecto asimétrico: existe e implica que el impacto ejercido sobre la 

volatilidad por una sobrevaloración del mercado (residuo negativo) es superior al 

ejercido por una infravaloración.  

Finalmente en el gráfico 11 se muestran las volatilidades estimadas por los 

modelos ARMA-GARCH y ARMA-APARCH con errores no normales. Se aprecia que 

dichas volatilidades son muy similares observándose la existencia de altos valores de la 

volatilidad en el periodo 0-800 (02/01/2001 a 13/03/2003), un descenso con niveles 

bajos de volatilidad en el periodo 800-1700 (13/03/2003 a 30/08/2005) y un repunte en 

el periodo 1700 hasta el final (30/08/2005 a 24/04/2015). 

5. Validación predictiva extramuestral de los modelos estimados 

La evaluación de los pronósticos es un paso clave en cualquier ejercicio de esta 

naturaleza. Sin embargo, el estudio de la calidad de los diferentes modelos de 

volatilidad puede ser muy complejo, debido a que no existe un único criterio capaz de 

seleccionar el mejor modelo. Debido a ello, muchos autores han destacado la 

importancia de evaluar los pronósticos de la volatilidad por medio de funciones de 

pérdida reales que enfrenta el usuario final, proponiendo criterios basados en los 

beneficios o en la utilidad. Desafortunadamente, no podemos contar con esa 
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información, pues las funciones de pérdida dependen de las preferencias desconocidas y 

no observables de los agentes económicos. 

En esta sección se realiza un estudio comparativo del comportamiento predictivo 

extramuestral de los modelos estimados en la sección anterior. Para ello realizaremos 

una validación predictiva tipo “rolling” de cada uno de ellos en el que, para cada 

periodo de tiempo t, estimaremos los parámetros del modelo utilizando la información 

disponible hasta el periodo t-1 y luego realizaremos una predicción de la rentabilidad de 

la serie (o del precio según el criterio utilizado) en el periodo t. La validación de la 

predicción se hará en términos puntuales analizando el comportamiento del error de 

predicción a 1 paso vista  1t)1t:(1)1t:(1ttt ,ˆ,ˆ|rErê    donde )1t(:1)1t(:1
ˆ,ˆ

   son los 

valores estimados de los parámetros de la media y la varianza utilizando la información 

t-1, y en términos de intervalos de predicción a 1 paso vista de un nivel de confianza 1-

 con 0<donde analizaremos el comportamiento predictivo de los intervalos de 

predicción: 

IPRED1-(rt) =      1r̂,1r̂ sup,tinf,t  = 

       










  1t)1t:(1)1t:(1t

2

1t)1t:(1)1t:(1t1t)1t:(1)1t:(1t

2

1t)1t:(1)1t:(1t ,ˆ,ˆ|rDd,ˆ,ˆ|rE,,ˆ,ˆ|rDd,ˆ,ˆ|rE

  

donde  

 1t)1t(:1)1t(:1t ,ˆ,ˆ|rE    y  1t)1t(:1)1t(:1t ,ˆ,ˆ|rD    denotan la media y desviación típica 

condicionales y d denota el cuantil 1-de la distribución condicional del error 

tipificado zt. 

En lo que sigue comenzaremos describiendo cómo se calculan E[rt| t-1] y 

D[rt| t-1] para los modelos considerados en el trabajo; posteriormente se mostrarán 

los criterios utilizados para evaluar las predicciones realizadas para, finalmente, 

presentar los resultados obtenidos.   
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5.1. Predicción en modelos ARMA-GARCH 

Todos los modelos ajustados son casos particulares del modelo  

     rt = G(xt ;t(xt;)zt 

zt|t-1~ D(0,1,

donde  xt son las variables explicativas del modelo que, en nuestro caso son valores 

pasados de la serie de los residuos o de los residuos cuadráticos. Para estos casos se 

verifica que: 

 1tt ,,,|rE   = G(xt;) donde t = {r1,…, rt, x1,…, xt+1} 

 1tt ,,,|rVar   =   ,x t

2

t  

y d() será el cuantil 1- de la distribución D(0,1,. 

5.2. Criterios de comparación 

En esta sección describimos, brevemente, los criterios empleados en el proceso 

de validación predictiva de los modelos. Dichos criterios se pueden agrupar en dos 

grupos: aquéllos que evalúan su comportamiento predictivo puntual y aquéllos que 

evalúan su comportamiento predictivo en términos de intervalos. 

5.2.1. Evaluación del comportamiento predictivo puntual 

Utilizamos dos criterios que evalúan el comportamiento del error predictivo de 

la rentabilidad tt r̂r   : la raíz del error cuadrático medio (RMSE) y el error absoluto 

medio (MAD) cuyas expresiones vienen dadas por:  

 

 

 

 

donde  1t)1t:(1)1t:(1tt ,ˆ,ˆ|rEr̂   . También utilizamos el coeficiente de desigualdad 

de Theil que viene dado por: 
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que evalúa dicho error en términos relativos comparando el valor predictivo del modelo 

con el ruido blanco. Este coeficiente toma valores entre 0 y 1 de forma que cuánto más 

(menos) cercano esté su valor a 1 peor (mejor) es su comportamiento con respecto al 

modelo de ruido blanco. Finalmente también utilizamos el error absoluto medio de 

predicción del precio medio en términos relativos PMAD que viene dado por:  

 

 

donde  tt r̂expP̂  . En los 4 casos t0 denota el inicio del periodo de validación 

predictiva extramuestral dejando los t0-1 primeros periodos de tiempo para obtener la 

estimación inicial del modelo. 

Un segundo subgrupo de criterios se basa en la descomposición del error 

cuadrático medio de predicción en la suma de 3 términos: el sesgo, la varianza y la 

covarianza, analizando qué proporción de dicho error corresponde a cada término.  

Dichas proporciones vienen dadas por:  

 Proporción del sesgo: 

 

 

 

 

que mide la cuantía de posibles errores sistemáticos en la predicción. 

 Proporción de la varianza: 

 

 

}T,...,tt;r̂{y  T},...,tt;{r de  típicasesdesviacion lasson  sy  s donde 0t0trr̂  y que mide 

si las predicciones puntuales del modelo capturan las oscilaciones de la serie 

 Proporción de la covarianza: 
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el grado de concordancia entre los valores predichos por el modelo y los observados. 

5.2.2. Evaluación del comportamiento predictivo por intervalos 

Los criterios utilizados evalúan, por un lado, el nivel de cubrimiento empírico de 

los intervalos de predicción y, por el otro, la precisión de la misma teniendo en cuenta, 

por un lado, la longitud de los intervalos de predicción  y, por el otro , la magnitud de 

los errores de cubrimiento. 

El nivel de cubrimiento empírico viene dado por la expresión: 

CUB(1-) = 




T

tt

t)r(IPRED

0 0

t1
)r(I

1tT

100
 

donde IA denota la función indicadora del conjunto A y 1- es el nivel de confianza. 

Además, para evaluar la significación estadística de dichos cubrimientos utilizamos los 

contrastes de Christoffersen (1998) que analizan los niveles de cubrimiento condicional 

e incondicional de los intervalos elaborados así como su independencia. Si It = 

)r(I t)r(IPRED t1 
 se tiene que:  

 Test LR de cubrimiento incondicional: 

Contrasta si E[It] = 1- utilizando el contraste LR que viene dado por 

 

 

 

donde n0 = 




T

tt

t)r(IPRED

0

t1
)r(I   es el número de aciertos y n1 = T-n0 es el número de fallos. 

 Test LR de independencia: 

Contrasta si {It; t=t0, …, T} son independientes 
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El estadístico del contraste es: 

 

 

 

 

 Test LR de cubrimiento condicional: 

Contrasta si E[It | It-1] =  

 El estadístico del contrastes es: 

 

Por su parte, para evaluar el nivel de exactitud del intervalo utilizamos la pérdida 

de Gneiting y Raftery (1007) que viene dada por: 

 

 

 

5.3. Resultados obtenidos 

5.3.1. IBEX35 

Para realizar la evaluación predictiva se tomó como periodo inicial t0=1316 

(11/08/2004). En la Tabla 5.1. se muestran los resultados obtenidos en la evaluación 

predictiva puntual mientras que las Tablas 5.2 y 5.3. contienen los resultados 

correspondientes a la evaluación predictiva por intervalos para los niveles de confianza 

del 95% y 99%, respetivamente. Finalmente la Figura 5.1 analiza los resultados 

gráficamente mostrando, la predicción puntual,  los límites de los intervalos predictivos 

del 95% y 99% y los valores observados de la serie de rentabilidades para cada uno de 

los 6 modelos ajustados a la serie. 

Se observa que, a nivel de rentabilidades, el comportamiento de los 6 modelos 

ajustados es muy similar,  con diferencias existentes a nivel del tercer decimal. Ello es 

lógico debido a que, al ser todos los modelos ruido blanco, los valores de las medias de 

predicción coinciden con el valor estimado de  que es muy similar para los 6 modelos. 
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Tabla 5.1: Resultados de la validación predictiva puntual 

 ARMA(0,0) ARMA(0,0)-

GARCH(4,1) 

ARMA(0,0)-

APARCH(1,1) 

 

Normal 

Exponencial 

Generalizada 

Asimétrica 

 

Normal 

t de 

Student 

asimétrica 

 

Normal 

t de 

Student 

asimétrica 

RMSE 1.6015 1.6015 1.6026 1.6025 1.6017 1.6018 

MAD 1.1283 1.1283 1.1274 1.1274 1.1277 1.1276 

PMAD 0.0351 0.0351 0.0337 0.0337 0.0542 0.0540 

Theil 0.9917 0.9917 0.9669 0.9681 0.9841 0.9814 

Sesgo 0.0026 0.0026 0.1059 0.0992 0.0218 0.0321 

Varianza 98.5276 98.5276 97.0338 97.1969 98.3068 98.2755 

Covarianza 1.4698 1.4698 2.8603 2.7039 1.6714 1.6924 

 

Dado que la predicción es esencialmente constante (ver Figura 5.1) la mayor 

proporción del error cuadrático medio corresponde a la varianza siendo los niveles de 

sesgo, en general, despreciables con los modelos homoscedásticos mostrando los 

niveles de sesgo más bajo debido a su menor grado de complejidad. Algo similar ocurre 

a nivel de predicción del precio en el que los modelos GARCH son los que mejor 

comportamiento muestran pero con diferencias poco relevantes con el resto de los 

modelos.  

A nivel de intervalos, si analizamos los niveles de cubrimiento de los mismos 

todos los modelos tienden a infracubrir tanto al 95% como al 99% siendo los modelos 

con errores no normales los que mejor comportamiento tienen tanto a nivel 

incondicional como condicional. Las mayores diferencias, sin embargo, se dan a nivel 

de exactitud apreciándose que los modelos heteroscedásticos tienen niveles de exactitud 

significativamente más elevados que los homoscedásticos debido a su mayor adaptación 

a las fluctuaciones de la serie (ver Figura 5.1). La influencia del efecto asimétrico tiene 

un carácter más marginal, mejorando los niveles de exactitud pero en menor cuantía que 

la mejora lograda con respecto a los modelos homoscedásticos tanto a niveles del 95% 
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como del 99%. Finalmente el uso de  distribuciones no normales no parece tener un 

efecto de mejora del nivel de exactitud siendo el modelo ARMA (0,0)-APARCH (1,1) 

con errores normales el que mejor comportamiento tiene a ambos niveles de confianza 

aunque con niveles de cubrimiento ligeramente inferiores. 

 

Tabla 5.2: Resultados de la validación predictiva por intervalo al 95% 

 ARMA(0,0) ARMA(0,0)-

GARCH(4,1) 

ARMA(0,0)-

APARCH(1,1) 

 

Normal 

Exponencial 

Generalizada 

Asimétrica 

 

Normal 

t de 

Student 

asimétrica 

 

Normal 

t de 

Student 

asimétrica 

CUB(0.95) 93.1985% 94.3607% 93.371% 93.8872% 93.026% 93.6289% 

pvalor  LRu 0.0002 0.1656 0.0006 0.0172 0.0000 0.0036 

pvalor LRind 0.0000 0.0000 0.0699 0.0741 0.0048 0.0163 

pvalor LRc 0.0000 0.0000 0.0005 0.0119 0.0000 0.0008 

LOSS(0.95) 34786.74 35557.98 31947.08 32126.44 30902.04 31018.22 

 

Tabla 5.3: Resultados de la validación predictiva por intervalo al 99% 

 ARMA(0,0) ARMA(0,0)-

GARCH(4,1) 

ARMA(0,0)-

APARCH(1,1) 

 

Normal 

Exponencial 

Generalizada 

Asimétrica 

 

Normal 

t de 

Student 

asimétrica 

 

Normal 

t de 

Student 

asimétrica 

CUB(0.99) 97.1158% 98.6225% 97.675% 98.4933% 97.374% 98.4072% 

pvalor  LRu 0.0000 0.0837 0.0000 0.0224 0.0000 0.0082 

pvalor LRind 0.0000 0.0788 0.0087 0.0156 0.3088 0.1399 

pvalor LRc 0.0000 0.0478 0.0000 0.0039 0.0000 0.0102 

LOSS(0.99) 56393.98 56256.75 46351.58 47232.84 45748.86 45909.59 
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5.3.2. Resto de los índices 

Pasamos al último punto, analizando las predicciones, tanto puntuales como en 

intervalos realizadas por los diversos modelos ajustados a cada índice. Por un lado, las 

predicciones puntuales, muestran analíticamente que para los índices BEL20, 

EUROSTOXX y NIKKEI el modelo APARCH tendría menos error a la hora de 

predecir que el modelo GARCH, mientras que para DAX y DOWJONES el error en 

ambos modelos es prácticamente equivalente.  

Respecto a la predicción por intervalos y, empezando con el índice BEL20, 

tenemos cobertura incondicional correcta para los modelos ARMA distribuido según 

una exponencial generalizada asimétrica y para el GARCH con una t de Student 

asimétrica, en este caso sólo al 1%, para todos los modelos se rechaza la hipótesis de 

independencia y, la unión de ambos, la cobertura condicional resulta incorrecta para los 

seis modelos. Para el índice DAX, observamos que si se distribuyen los residuos según 

una exponencial generalizada asimétrica, los modelos ARMA y GARCH aceptan la 

hipótesis de cobertura incondicional correcta, aceptamos independencia para el modelo 

ARMA (según una exponencial generalizada asimétrica) y para el modelo APARCH 

(según una normal), en este caso sólo al 1%, la cobertura condicional correcta sólo se da 

en el caso del modelo ARMA (según una exponencial generalizada asimétrica). El 

índice DOWJONES, para los tres modelos se acepta la cobertura incondicional correcta 

sólo si se distribuyen según una exponencial generalizada asimétrica, aceptamos 
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independencia para el modelo APARCH y para el modelo GARCH, pero en el caso de 

estar distribuido según una exponencial generalizada asimétrica sólo aceptamos al 1%; 

y rechazamos que la cobertura condicional sea correcta salvo para el modelo GARCH 

(según una exponencial generalizada asimétrica), que se acepta al 1% y para el modelo 

APARCH (según una exponencial generalizada asimétrica), que se acepta tanto al 1% 

como al 5%. Para el EUROSTOXX, aceptamos cobertura incondicional correcta en los 

modelos ARMA (según una t de Student) y el modelo GARCH (según una t de Student 

asimétrica), la independencia es aceptada al 1% en los modelos ARMA (según una t de 

Student) y APARCH (según uno normal) y, la cobertura condicional es incorrecta en 

todos los modelos salvo en el ARMA (según una t de Student). El último índice, el 

NIKKEI, aceptamos cobertura incondicional correcta en el modelo ARMA (según una t 

de Student), aceptamos dependencia en los seis modelos y, la cobertura condicional es 

incorrecta también para los seis modelos.  

Si analizamos las pérdidas de Gneiting y Raftery se observa que, en general, los 

modelos heteroscedásticos son los que mayor nivel de exactitud tienen debido a su 

mayor poder adaptativo a la evolución de la serie de rentabilidades (ver gráficos 14), 

siendo los modelos APARCH con errores normales (salvo el caso del índice BEL20) los 

que tienen un comportamiento más exacto, con la única excepción  del índice DAX en 

el que el mejor comportamiento corresponde a un GARCH con errores normales. 

6. Conclusiones 

En el presente trabajo se ha estimado la volatilidad presente en la evolución 

diaria de 6 índices bursátiles mediante el uso de modelos ARMA-GARCH y ARMA-

APARCH, analizando el comportamiento predictivo de los modelos ajustados, tanto en 

términos puntuales como de intervalos, así como el impacto ejercido no sólo por la 

volatilidad estimada sino también por la existencia del llamado efecto asimétrico y la 

falta de normalidad de las distribuciones condicionales del error. 

Se observa, con carácter general, la existencia de una volatilidad cambiante en el 

tiempo, con altos niveles de persistencia, efectos asimétricos significativos (con un 

mayor impacto sobre la volatilidad de la sobre-predicción de la rentabilidad) así como 

falta de normalidad por la presencia de una fuerte leptocurtosis y una ligera asimetría 

negativa significativas. Todo ello provoca que, en general, los modelos con mejores 

niveles de ajuste a los datos son los APARCH con errores no normales. 
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A nivel predictivo puntual todos los modelos predicen de forma similar debido a 

la ausencia de dependencias en media significativas (todos los modelos ajustados son 

ruido blanco). Las diferencias se muestran en la predicción por intervalos en la que se 

observa que los modelos heteroscedásticos muestran un comportamiento más adaptativo 

a las oscilaciones de la serie dando lugar a intervalos más acurados tanto en términos de 

longitud como de menor nivel de error de infra y sobrepredicción. La incorporación del 

efecto asimétrico al modelo mejora ligeramente los niveles de exactitud no 

observándose un comportamiento muy diferenciado entre modelos con errores no 

normales y no normales. Estos comportamientos son muy interesantes de cara a estimar 

los llamados valores de riesgo (VaR) que se construyen a partir de los extremos inferior 

(en operaciones a largo) y superior (en operaciones a corto) de los intervalos de 

predicción de las rentabilidades lo cual  justifica el éxito de este tipo de modelos en la 

evaluación diaria de los niveles de riesgo de las series financieras. 
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