```000003266 001__ 3266
000003266 037__ \$\$aART--2009-002
000003266 041__ \$\$aeng
000003266 100__ \$\$aCalvo, M.\$\$bcalvo@unizar.es
000003266 245__ \$\$aInitializers for RK-Gauss methods based on pseudo-symplecticity
000003266 260__ \$\$c2006
000003266 300__ \$\$amult. p
000003266 520__ \$\$aSymplectic Runge–Kutta (RK) methods for general Hamiltonian systems are implicit and an iterative scheme must be used to obtain the solution at each step. In this paper the classical order and the pseudo-symplecticity order [Pseudo-symplectic Runge–Kutta methods, BIT 38 (1998) 439–461] of the one step method that results after σ fixed point iterations for solving the implicit equations of stages in an implicit RK method are studied. In the numerical experiments with some RK-Gauss methods, σ is chosen so that the pseudo-symplecticity order is twice the classical order. Thus, the pseudo-symplectic method retains some important properties of the original symplectic one. Further, new starting algorithms are constructed taking into account their pseudo-symplecticity properties and are compared with other initializers existing in the literature.
000003266 700__ \$\$aLaburta Santamaría, María Pilar\$\$blaburta@unizar.es
000003266 700__ \$\$aMontijano, Juan I.\$\$bmonti@unizar.es
000003266 773__ \$\$gVol. 189, issues 1-2, pp. 228-241 (Mayo 2006) \$\$pJ. Comput. Appl. Math.\$\$tJournal of Computational and Applied Mathematics\$\$x
000003266 8560_ \$\$fmiguelm@unizar.es
000003266 8564_ \$\$uhttp://dx.doi.org/10.1016/j.cam.2005.04.029\$\$zTexto completo
000003266 909CO \$\$ooai:zaguan.unizar.es:3266\$\$pdriver