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GRADO EN FINANZAS Y CONTABILIDAD 

RESUMEN El objetivo del trabajo es estimar diferentes modelos econométricos para 

calcular el Valor de Riesgo(VaR de Value at Risk en inglés) y el Déficit Esperado (ES 

de Expected Shortfall en inglés) y evaluar su rendimiento a la hora de medir el riesgo 

asociado a la evolución diaria de 6 índices bursátiles. Para ello se han utilizado modelos 

de la familia ARMA-GARCH con errores no necesariamente normales, que tienen en 

cuenta la heterocedasticidad presente en este tipo de series financieras, así como la 

posible existencia del llamado “efecto asimétrico” (leverage effect en inglés) en la 

estimación de su volatilidad. Se realiza, además, análisis estadístico de los resultados 

obtenidos evaluando la importancia de cada uno de los aspectos anteriores en el 

comportamiento predictivo del modelo. 

Los resultados obtenidos ponen de manifiesto que, aunque los modelos que mejor se 

ajustan a los datos tienden a ser modelos heterocedásticos con efecto asimétrico y 

errores no normales, en lo que hace referencia a la evaluación de riesgo mediante el 

VaR y el ES tan sólo la incorporación de la hipótesis de heterocedasticidad muestra 

efectos claramente significativos, siendo la importancia de las otras dos hipótesis (efecto 

asimétrico y no normalidad de la distribución condicional del error) muy marginal. Ello 

puede ser debido a que los índices bursátiles son medias ponderadas de activos de alto 

volumen de contratación, sus oscilaciones está más controladas que las de los precios de 

activos individuales.  

Palabras clave: VaR, ES, ARMA, GARCH, Evaluación Predictiva, Predicción, Series 

Temporales 

ABSTRACT The key objectives of this paper are to estimate different econometric 

models in order to calculate the Value at Risk and the Expected Shortfall, and to 

evaluate their performance when measuring the risk associated to the daily evolution of 

6 stock indexes. For this purposes it has been used models from the ARMA-GARCH 

family with errors not necessarily normal, that take into consideration the 

heterocedasticity embedded in this sort of financial series, in addition to the possible 

existence of the so called leverage effect in the volatility estimations. Moreover, it has 

been performed a statistical analysis of the results evaluating the importance of each 

previous aspect in the predictive behavior of the model. 

The results obtained say, though the best fit models tend to be the heterocedastic ones 

with leverage effect and no normal innovations, in relation with risk evaluation through 
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the VaR and ES, only the addition of the heterocedasticity hypothesis shows 

significative effects, being the importance of the other two hypothesis (leverage effect 

and no normality in the error distribution) marginal. It may be due to the fact that stock 

indexes are weighted averages of assets with high volume of negotiation, having their 

oscillations more controlled than those of the individual assets. 

Keywords: VaR, ES, ARMA, GARCH, Backtesting, Forecast, Time Series 
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1. PLANTEAMIENTO Y MOTIVACIÓN 

La época actual se encuentra marcada por la incertidumbre en casi todos los aspectos de 

la vida, y en los últimos años, el sector financiero ha sufrido gran parte de esa 

incertidumbre de una forma mucho más agresiva. Esta situación en los mercados 

financieros obliga a recurrir al estudio en profundidad de series financieras mediante 

técnicas estadísticas que permitan evaluar esa incertidumbre que en finanzas se suele 

denominar, riesgo. 

Sin embargo, para llevar a cabo este análisis, se deben conocer en detalle las 

características de la evolución de dichas series, buscando modelizar y predecir sus 

movimientos futuros. Esto es lo que la regulación actual sobre riesgos financieros trata 

de imponer a las entidades financieras, con el fin de evitar los problemas asociados a la 

aparición de pérdidas inesperadas de elevada cuantía que afectan a este sector. Estos 

organismos reguladores, encabezados por la SEC (Securities and Exchange Commision) 

estadounidense en un primer momento, y por los Acuerdos de Basilea después, han 

visto incrementado su poder regulatorio después de numerosas crisis a finales del siglo 

XX, aumentando el nivel de exigencia acerca del cálculo de las pérdidas máximas que 

pueden darse en las entidades financieras. 

Vista la creciente necesidad de controlar el nivel de incertidumbre de los activos 

financieros, así como la incapacidad de anteriores medidas de riesgo como, por ejemplo, 

la varianza o la desviación típica de la serie, a la hora identificar el riesgo de mercado 

inherente en ellas, en la actualidad es el Valor de Riesgo (o VaR según sus siglas en 

inglés) la medida de riesgo requerida a toda organización financiera para medir el nivel 

de aprovisionamiento necesario para hacer frente a dichas pérdidas, y no incurrir en 

bancarrota en el caso de una caída del precio de los activos, como sucedió en el 

preámbulo de la crisis financiera global de 2007 en Estados Unidos. Sin embargo, la 

necesidad de aprovisionar parte de la liquidez de las empresas hace que esto suponga un 

coste de oportunidad para las mismas, especialmente en el caso de entidades financieras.  

Motivados por la reducción de ese coste de oportunidad, tanto las empresas del sector 

como los centros de investigación económico-financiera, han desarrollado métodos cada 

vez más exhaustivos en la medición de estos riesgos de mercado. 
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Fiel reflejo de este hecho es la extensa literatura existente acerca de los métodos para 

calcular esta medida de riesgo que van desde los más simples, como el método histórico 

y varianza-covarianza, hasta mucho más complejos como, por ejemplo, los métodos 

centrados en el uso de modelos basados en la modelización de la volatilidad (GARCH, 

volatilidad estocástica) así como en el uso de técnicas de simulación tanto para estimar 

dichos modelos como para predecir la evolución futura de la serie o de su volatilidad. 

En este trabajo se realiza un análisis del cálculo del Valor de Riesgo mediante modelos 

de la familia ARMA-GARCH, que son los más utilizados en la literatura (Bollerslev y 

otros, 1992; Bera y Higgins, 1993), aplicándolo a la medición de riesgos de 6 de los 

índices bursátiles más conocidos a nivel mundial. Se realiza, además, una validación 

predictiva de dichos modelos buscando evaluar la influencia ejercida por diversas 

características de los mismos (heterocedasticidad, efecto asimétrico, no normalidad del 

término de error) en el rendimiento estadístico-financiero de las predicciones efectuadas 

por los modelos comparados. 

El trabajo está estructurado de la siguiente manera; el primer apartado describe cómo 

surgió la necesidad de medir los riesgos de mercado de una forma diferente a la que se 

venía haciendo, además de explicar de qué elementos está formada esta medida y cuáles 

son sus posibles debilidades, además de introducir el Déficit Esperado o"Expected 

Shortfall"(ES) como medida alternativa de riesgo que, aunque más difícil en su cálculo, 

es más coherente que el VaR a la hora de evaluar riesgos. El segundo apartado muestra, 

mediante un ejemplo ilustrativo, como calcular el VaR de acuerdo a los dos métodos 

más simples propuestos en la literatura para, posteriormente, describir métodos más 

avanzados utilizando los modelos ARMA-GARCH. El tercer apartado introduce 

mediante un análisis descriptivo básico los índices objeto de estudio. El cuarto apartado 

explica el proceso de modelización llevado a cabo, indicando la estimación de los 

parámetros de todos ellos. El quinto explica el método seguido para el cálculo de los 

valores de riesgo predichos. El sexto apartado analiza el rendimiento de los VaR y ES 

calculados por el modelo mediante una evaluación predictiva con las últimas 400 

observaciones, para finalizar con el séptimo apartado donde se recogen las conclusiones 

obtenidas. 
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2.¿QUÉ ES EL VaR? 

2.1. LOS COMIENZOS DEL VaR 

El concepto de Valor de Riesgo (VaR) es bastante reciente, ya que comenzó a utilizarse 

a mediados de los años 90. Sin embargo, se puede decir que los fundamentos para su 

cálculo fueron desarrollados por Harry Markowitz en la teoría de selección de carteras a 

mediados del siglo XX, aunque con una finalidad muy distinta a la herramienta de 

gestión de riesgos que ocupa el tema central de este trabajo. En concreto, fueron las 

partes centradas en los riesgos de mercado y los efectos de los movimientos en los 

mismos las que ayudaron a la estimación de esta medida de riesgo tan utilizada en la 

actualidad. 

El desarrollo del VaR fue consecuencia de una imposición por parte del gobierno 

norteamericano, más concretamente por la SEC (Securities and Exchange Commision), 

por la que obligaba a los bancos estadounidenses en el segundo tercio del siglo XX  a 

mantener su deuda por debajo del 2000% de su capitalización como una medida para 

evitar que volviese a suceder otra Gran Depresión en el futuro. Sin embargo, con el 

desarrollo de productos financieros más complejos como los derivados, o unos tipos de 

cambio con una variación mucho mayor a la que se daba en el pasado, cuando el patrón 

oro era utilizado por la mayoría de países desarrollados, el SEC decidió, en 1980, que 

las garantías exigidas a los bancos comenzaban a ser insuficientes, y aumentó esos 

requerimientos a las pérdidas potenciales que incurrirían esas empresas con un 95% de 

confianza en un intervalo mensual. 

Aunque estos requerimientos fueron concebidos como recortes que las empresas debían 

hacer, lo que la SEC estaba pidiendo era la estimación de un VaR mensual de las 

posibles pérdidas con una confianza del 95%. Con estas nuevas necesidades de 

información tan concretas, las firmas financieras más importantes comenzaron el 

desarrollo de técnicas específicas para el cálculo de estas reservas. JP Morgan fue la 

primera compañía en desarrollarlas introduciendo el método "RiskMetrics" para 

"describir la medida del riesgo que surge de los datos financieros". 

Los requerimientos estipulados por la SEC en materia de garantías a las entidades 

bancarias no fueron las únicas medidas que se tomaron para la gestión de riesgos en 

dichas firmas financieras a nivel mundial. En 1974 se creó el "Comité de Basilea" 



9 
 

compuesto por los representantes de los bancos centrales de los diez países más 

industrializados del mundo, aunque en la actualidad están representados 13 países, 

incluida España con pleno derecho desde 2001. El objetivo de la creación de este comité 

fue, y sigue siendo, "el fortalecimiento de la regulación, la supervisión y las prácticas de 

los bancos de todo el mundo con el propósito de mejorarla estabilidad financiera. Para 

ello, proporciona un foro para el intercambio de información en materia de supervisión 

y mediante la formulación de normas y directrices de supervisión para promover la 

estabilidad financiera mundial", según lo recogido en la página WEB oficial de dicha 

organización. 

La creación del Comité de Basilea supuso el compromiso internacional por una 

regulación más exhaustiva de las actividades llevadas a cabo en las instituciones 

financieras, en particular sobre los riesgos que éstas estaban dispuestas a soportar. En 

1988 se publicó el acuerdo Basilea I, donde se recogían recomendaciones a las 

entidades financieras sobre el cálculo de un capital mínimo en balance, que se debiera 

mantener en balance, que cubriera los riesgos de mercado, de crédito y de tipo de 

cambio que estas empresas pudieran soportar en un futuro. Posteriormente, en 2004 se 

publicó la segunda parte de dicho acuerdo, llamado Basilea II, donde se incorporaron 

algunos términos como, por ejemplo, el cálculo de la pérdida mediante cuantiles, en sus 

recomendaciones para el cálculo de la reserva que cubra esos riesgos descritos en el 

primer acuerdo, que recuerdan a las garantías exigidas por la SEC en Estados Unidos en 

los años 80. 

Como ya se ha podido observar, la necesidad de control de las entidades financieras ha 

llevado al desarrollo de medidas, entre otras el Valor de Riesgo, para poder medir con 

mayor o menor precisión, en función del grado de complejidad que se asuma en las 

estimaciones, el riesgo al menos de mercado de las diferentes posiciones financieras que 

se encuentran en un mercado financiero global como es el actual. Tras comprobar que el 

VaR no tenía como única utilidad el cálculo de las previsiones que requería la SEC y los 

acuerdos conseguidos por el Comité de Basilea, sino que podía ser una eficaz 

herramienta en la estimación del riesgo de cualquier activo financiero, las empresas 

financieras comenzaron a utilizarlo como medida de gestión del riesgo para todas sus 

actividades. Incluso hoy en día se ha instaurado en organizaciones para medir el riesgo 

de mercado, no sólo de carteras de inversión, sino de otros aspectos de la actividad 

empresarial. Antes de analizar la utilidad que se da hoy en día al VaR, y la importancia 
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que tiene en la actividad empresarial, en el próximo apartado se detallan tanto su 

significado como los elementos que lo componen, para, más adelante, ir analizando en 

profundidad su estructura en cada uno de los métodos que existen para calcularlo. 

2.2. SIGNIFICADO Y ELEMENTOS DEL VaR 

Incluso desde la época en la que Markowitz desarrollaba su teoría de selección de 

carteras, la técnica más utilizada para medir el riesgo de mercado en activos financieros 

ha sido la desviación típica, ya que representa la dispersión de las observaciones con 

respecto a su valor medio; en otras palabras, el riesgo de volatilidad de un activo 

financiero. Sin embargo, en la información que ofrece la desviación típica están 

incluidas tanto las pérdidas como las ganancias, por lo que no siempre se verá como una 

medida del riesgo, ya que trata las dos colas de la distribución por igual. De esta forma 

surgió el VaR, para dar una respuesta más centrada en el riesgo de las pérdidas 

potenciales, centrándose en los valores negativos de la rentabilidad o pérdidas en lugar 

de en los valores positivos o ganancias. 

Para hacerse una idea de qué es el VaR y su utilidad, es interesante formularse la 

siguiente pregunta, ¿cuánto se puede perder, como máximo, al invertir en un activo 

financiero, o una cartera formada por varios activos, dados un horizonte temporal y una 

probabilidad de ocurrencia? La respuesta a esa pregunta es lo que se conoce como Valor 

de Riesgo, y es una medida estadística del riego de mercado, ya sea de una inversión 

particular o una cartera de inversión formada por varios activos financieros, que denota 

la posible pérdida máxima derivada de esas inversiones en términos absolutos o 

porcentuales con una probabilidad de ocurrencia  y un horizonte temporal establecidos. 

Una definición más formal es la que proporcionan Zalbidegoitia y Abasolo (2011), "una 

medida que representa un dato de pérdidas potenciales en circunstancias normales. Es 

el límite de pérdidas potenciales de un periodo temporal determinado (por ejemplo en 

un día) que está incluido en un porcentaje determinado de las ocasiones (habitualmente 

el 95%). Este porcentaje se corresponde estadísticamente con el intervalo de 

confianza". Es muy importante el concepto de "en circunstancias normales", ya que 

como se irá viendo en sucesivos apartados, en la mayoría de los casos, el VaR está 

calculado suponiendo normalidad en la distribución de las rentabilidades de los activos 

financieros, cuando la realidad es muy diferente. Matemáticamente el Valor de Riesgo 
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de un activo financiero para un nivel de confianza 1-<1) viene dado por el valor 

VaRt, tal que 

P(rt ≤ -VaRt,|It-1) = 

donde rt es la rentabilidad del activo financiero y It denota la información disponible 

hasta el periodo t, es decir, -VaRt, es el cuantil de la distribución condicional rt|It-1. 

De la misma definición se pueden obtener los elementos fundamentales que componen 

el VaR: el primero de ellos es la inversión, o inversiones para las que se desea calcular 

el riesgo de mercado. El segundo elemento es el periodo de tiempo, el VaR puede 

calcularse en torno a cualquier intervalo de tiempo, aunque, según el profesor 

Mascareñas (2008), "la idoneidad del mismo dependerá de la actividad de la cartera de 

inversión, siendo preferible un VaR mensual para aquellas con un nivel más bajo de 

actividad, y un VaR diario para carteras mucho más activas en los mercados 

financieros". El tercer elemento es el nivel de confianza, en términos más concretos, se 

trata de la probabilidad de incurrir en unas pérdidas tan grandes como las que señala el 

VaR, los dos más utilizados son el 95% y el 99% aunque no significa que siempre se 

tenga que recurrir a ambos porcentajes, siendo también bastante interesante el 99.9%. 

Finalmente, el último elemento que forma la estimación del VaR es la pérdida máxima. 

Esta pérdida se puede expresar en términos porcentuales o monetarios, y representa el 

resultado final de la estimación del riesgo. Es interesante observar como la 

interpretación de los resultados obtenidos puede ser de dos tipos, ya sea observando la 

cantidad o porcentaje estimado de pérdida con un nivel de confianza determinado, o 

bien el número de días, semanas, meses... que se incurrirá unas pérdidas al menos tan 

grandes como el valor estimado por el VaR, lo que le proporciona un aspecto bastante 

visual a la hora de interpretación de resultados. 

Una de las hipótesis más comunes para su estimación es la distribución normal para 

explicar las rentabilidades de un activo financiero. La figura 2.1 lo representa 

gráficamente donde se puede observar la función de densidad de esta distribución donde 

se representan las frecuencias de las rentabilidades de un activo financiero. La parte 

sombreada de la distribución representa el nivel de confianza utilizado para su cálculo, y 

la diferencia entre la esperanza de esas rentabilidades y el valor en ese nivel de 

ocurrencia es propiamente dicho el valor del VaR. Es habitual atribuir un valor de cero a 
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la media de rentabilidades cuando los datos son diarios y, en este caso, el VaR es la 

diferencia entre cero y el valor que resulte de aplicar ese nivel de confianza.  

 

Figura 2.1: Representación gráfica del VaR 

Fuente: "Value at Risk: Teoría y Aplicaciones" Christian A. Johnson (2001) 

Como un avance sobre la estimación de este Valor de Riesgo, se puede decir que la 

mayor complejidad en sus cálculos, no es su obtención una vez delimitada su 

distribución de frecuencias, ya que en función del grado de confianza requerido el 

procedimiento es buscar un cuantil determinado, sino delimitar esa distribución, y es 

este uno de los aspectos en los que el presente trabajo va a profundizar. 

2.3. IMPORTANCIA Y UTILIDAD 

El uso y la necesidad del VaR como medida de riesgo para las entidades financieras es 

un hecho tras las medidas impuestas por la SEC en primera instancia, y por la 

implantación internacional de los acuerdos de Basilea en regulación bancaria que vino a 

continuación. Sin embargo, las utilidades que actualmente se le atribuyen a esta 

estimación del riesgo de mercado son cada vez mayores. De hecho, Luque (2006) 

advierte que se ha llegado a crear una categoría de fondos de inversión llamados "de 

gestión por VaR", en los que no importa el tipo de activo en los que se invierte sino que 

la pérdida máxima no supere un valor determinado estipulado en el folleto del fondo de 

inversión, y el estilo de gestión de los mismos no es otro que el de basar las decisiones 

de abrir o cerrar posiciones en función de las estimaciones del VaR de los activos 

analizados. 
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Este cambio en la utilización de esta herramienta de gestión de riesgos como medida 

obligatoria por las entidades financieras más grandes, al uso general que actualmente 

tiene en el mundo financiero, se debe en parte a las ventajas que aporta su uso cotidiano 

en una gestión del riesgo a un nivel diferente al que imponía la SEC o Basilea. Según 

Jara y Melgar (2007), las utilidades o ventajas de esta herramienta de medición de 

riesgos son dos; en primer lugar, la obtención de información, ya que se trata de un 

indicador fácil de interpretar por su expresión en términos monetarios o porcentuales, 

además de tener la ventaja de poderse utilizar en la medición del riesgo de cualquier 

activo financiero; y en segundo lugar, la gestión de riesgos, ya que puede utilizarse para 

fijar límites en el riesgo que un inversor está dispuesto a soportar. 

Teniendo en cuenta las ventajas que aporta el VaR en términos de gestión del riesgo, 

han sido muchas las investigaciones que se han llevado a cabo para hacer evolucionar 

esta herramienta, existiendo numerosos métodos para su estimación y cálculo, de los 

cuales se hablará en profundidad más adelante. 

2.4. LIMITACIONES DEL VAR 

Después de conocer las ventajas y el por qué es tan popular en la gestión de riesgos, es 

conveniente hacer un análisis cualitativo de qué posibles limitaciones se presentan tanto 

en su obtención como en la interpretación de los resultados. 

Damodaran (2005) describe tres tipos de limitaciones; en primer lugar habla de la 

posibilidad de que la estimación no sea la correcta debido a algunos de los siguientes 

factores: 

 La hipótesis en la distribución de rentabilidades no es la adecuada; si esto sucede 

la estimación del riesgo resultante del VaR será incorrecta. Como se verá en el 

siguiente apartado existen diferentes formas de estimar el VaR, y cada una de 

ellas asume una distribución distinta. 

 La historia de la serie de rentabilidades de un activo puede no ser útil a la hora 

de predecir: todos los modelos de estimación del VaR utilizan datos históricos 

en mayor o menor medida, y dependiendo del horizonte temporal muestral y las 

características del mismo se pueden subestimar determinados aspectos como la 

volatilidad que puede hacer fallar la predicción. 
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En segundo lugar, el VaR se centra en la medición únicamente en el riesgo de mercado, 

entendiendo como tal la probabilidad de incurrir en pérdidas como consecuencia de las 

variaciones de los precios de los activos en cartera, dejando sin tratar otros tipos de 

riesgos como son los riesgos políticos, de liquidez y legales por citar algunos. En 

definitiva, en el caso de gestionar el riesgo de una cartera de inversión, es aconsejable 

no utilizar en exclusiva el VaR para ello, sino tratar de analizar el riesgo de manera 

conjunta con otras técnicas, quizás, más cualitativas. 

Además, aunque la estimación del riesgo obtenida sea la correcta, esto no significa que 

los encargados de tomar decisiones elijan aquellas que resulten óptimas para la empresa, 

o para el cliente al que gestionan su patrimonio. A esta afirmación llegaron Basak y 

Shapiro(2001) tras realizar un estudio sobre los efectos que tenía el uso de técnicas 

estadísticas en medición de riesgos, como el VaR, en la actitud de los gestores en los 

mercados financieros. Concluyendo que aquellos gestores que miden su grado de 

aversión al riesgo exclusivamente con el VaR, a menudo invierten en activos más 

arriesgados que aquellos que no lo usan, tal vez por la simplicidad y la facilidad de 

interpretación del mismo a la hora de tomar decisiones, lo que hace que esas decisiones 

se conviertan en sistemáticas y que no se tengan en cuenta otras medidas de riesgos, 

como se ha dicho anteriormente, mas cualitativas. 

Finalmente, el VaR no verifica la propiedad de sub-aditividad por la que si (X, Y) son 

los rendimientos de dos activos financieros y es una medida de riesgo entonces ( X + 

Y ) ≤  (X) + (Y) lo cual implica que cuanto mayor diversificadas estén las carteras de 

inversión, menor será el riesgo de mercado de las mismas (Artnez et al., 1997). Por esta 

razón, en la literatura se han propuesto diversas alternativas para remediar este hecho 

que contradice a la teoría financiera.  Una de ellas es la que se conoce con el nombre de 

Déficit Esperado o ES por sus siglas en inglés (Expected Shortfall), que se define como 

la esperanza matemática de la pérdida en la que incurre un activo financiero cuando 

toma valores menos o iguales que el valor de riesgo, es decir, en términos matemáticos: 

ESt, = -E[rt|It-1,rt≤-VaRt,] 

Esta medida de riesgo se desarrolló además para tratar otro de los problemas que 

acompaña al VaR, el comportamiento de las colas de la distribución una vez superado el 

nivel que éste devuelve. La figura 2.2 identifica este problema a la perfección, en ella se 
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pueden observar las funciones de densidad de dos variables aleatorias de pérdidas que 

se comportan de igual forma hasta el cuantil del VaR, pero a partir de ese punto la que 

es representada por la línea de puntos se observa mucho más arriesgada en términos de 

unas posibles pérdidas más grandes. 

 

Figura 2.2: Funciones de densidad de dos variables aleatorias de pérdidas que 

tienen el mismo VaR pero distintas implicaciones de las pérdidas. 

Fuente: "An Introduction to Analysis of Financial Data with R" (Ruey S. Tsay) 2013 

3. MÉTODOS DE CÁLCULO DEL VaR Y EL ES 

Aunque en la literatura relacionada con el Valor de Riesgo existen varios métodos para 

calcularlo, los dos que se pueden considerar más básicos son los denominados "Método 

histórico" y "Método varianza-covarianza", siendo el método más utilizado en la 

literatura el llamado "Método econométrico" que se basa en la utilización explícita de 

un modelo que describa la evolución de la serie financiera a lo largo del tiempo. 

Los dos primeros métodos presentan determinadas características que hacen que las 

estimaciones obtenidas del VaR no sean, quizás, demasiado realistas, por lo que serán 

analizados a continuación de forma más simple indicando los posibles fallos que 

pudieran tener, añadiendo un ejemplo del cálculo del riesgo de mercado en ambos para 

la serie de rentabilidades diarias del índice IBEX35, con observaciones disponibles 

desde enero de 2007. 
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3.1 MÉTODO HISTÓRICO 

La base que hay detrás de este primer método es la creencia de que el futuro de la serie 

financiera se va a comportar como ya lo ha hecho en el pasado, lo que como bien se ha 

observado en numerosas ocasiones no es del todo cierto, haciendo de éste su principal 

defecto a la hora de la predicción de riesgos en activos financieros. 

Este método utiliza los datos históricos disponibles para anticipar los factores de riesgo 

en vez de suponer una distribución en concreto, primero reorganiza los rendimientos 

históricos previos al periodo actual, ordenándolos de menor a mayor, para a 

continuación construir la función de distribución de frecuencias de la serie y calcular el 

VaR como el cuantil correspondiente a dichos datos en función del nivel de confianza 

requerido. 

La ventaja fundamental de este método radica en que no realiza ninguna hipótesis 

acerca de la distribución que siguen las series financieras, por lo que todo el peso de las 

predicciones recae en la información disponible hasta la fecha. Sin embargo, puede 

resultar complicado elegir la ventana temporal adecuada en concepto de información 

histórica utilizada en la estimación de valores de riesgo, ya que si se utiliza demasiada 

información en la construcción de la distribución de frecuencias el resultado puede estar 

condicionado a sucesos pasados con mucha anterioridad pero si utiliza una ventana 

demasiado pequeña puede hacerse demasiado irregular e impreciso debido al escaso 

tamaño muestral seleccionado para su estimación.  

Comenzando con el ejemplo del VaR diario al 95% y 99% de confianza del IBEX35, la 

figura 3.1 representa el histograma de las rentabilidades diarias de la serie, mientras que 

la figura 3.2 ordena esos mismos datos de menor a mayor y los distribuye en percentiles 

obteniendo así la función de distribución de frecuencias que se observa en el gráfico.  

Como se puede observar en esta última figura, la línea verde denota el valor del VaR 

para una confianza del 95%, exactamente el percentil 95 devuelve aproximadamente un 

-2.695% de rentabilidad, o lo que es lo mismo, el IBEX35 sólo perderá más de un 

2.695% el 5% de los días, o un día de cada mes. La línea roja hace lo mismo para un 

nivel de confianza del 99%, obteniendo un VaR aproximado en el percentil 99 de -

4.717%, es obvio que conforme se aumente el nivel de confianza exigido el valor 

devuelto será también mayor. 
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Figura 3.1: Histograma de frecuencias de rentabilidades de IBEX35 

Fuente: Elaboración propia a partir de datos proporcionados por YahooFinance 

 

Figura 3.2: Percentiles de la distribución de frecuencias de IBEX35 

Fuente: Elaboración propia a partir de datos proporcionados por YahooFinance 

3.2. MÉTODO VARIANZA COVARIANZA 

A diferencia del método anterior, por el que se asume que el futuro va a depender 

enteramente de los datos pasados de la muestra, y por tanto no se presuponía ninguna 

distribución estocástica en la serie de rentabilidades del activo financiero, en el método 

varianza-covarianza, o también llamado delta-normal, se supone que los rendimientos 

del activo se distribuyen de acuerdo a la distribución normal. Esta afirmación resulta 

muy útil en tanto que simplemente es necesario conocer el rendimiento esperado y la 

desviación típica de la serie para representar su distribución de frecuencias y, por tanto, 

obtener el valor del VaR requerido. 
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Sin embargo, aunque esta afirmación aporta simplicidad al cálculo del VaR, la realidad 

es muy diferente a la que se asume en este método, ya que suele ocurrir que cuanto más 

alta es la frecuencia de observación de la serie, más leptocúrtica es, rechazándose la 

hipótesis de normalidad. No ocurre lo mismo si la frecuencia de observación es más 

baja (quincenal, mensual) debido a que las series de rentabilidades con frecuencias más 

bajas se obtienen como suma de series de rentabilidades con frecuencias más altas en la 

observación de los datos, por lo que aplicando el Teorema Central del Límite su 

distribución se aproximará a una distribución normal con independencia de la 

distribución de las variables. 

Siguiendo con el ejemplo del método anterior donde se analiza el riesgo diario del 

IBEX35, la forma de obtener el VaR mediante el método varianza-covarianza es 

prácticamente la misma, e incluso más simple en los cálculos ya que se asume la normal 

como la distribución donde obtener los percentiles 95 y 99. La tabla 3.1 representa los 

valores del VaR para una distribución N() para unos niveles de confianza del 95 y 

99 por ciento. 

Tabla 3.1: Distribución normal para niveles de 95 y 99 % 

Nivel de confianza -VaR 

95% (alto) μ-1,65 x ζ 

99% (muy alto) μ-2,33 x ζ 

 

Fuente: "Introducción al VaR" Juan Mascareñas 

De esta forma la obtención del VaR es automática si se conocen la media y desviación 

típica de la muestra de datos histórica, que en el caso del IBEX35 diario desde 2007 son 

0,003217% y 1,657274% respectivamente, por lo que aplicando un sencillo cálculo en 

la tabla 3.2 se obtienen los VaR para el IBEX35 de 2,7313% y 3,8582% dependiendo de 

los niveles de confianza de 95% y 99% respectivamente: 

Tabla 3.2: Obtención del VaR sobre el IBEX35 con 95% y 99% de confianza: 

Nivel de confianza -VaR 

95% (alto) 0,003217% - 1,65 x 1,657274% = -2,7313% 

99% (muy alto) 0,003217% - 2,33 x 1,657274% = -3,8582% 

 

Fuente: Elaboración propia 
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Para la representación gráfica de ambos valores, la figura 3.3 dibuja el histograma de la 

serie diaria del IBEX35 desde 2007 superpuesta la línea que representa una distribución 

normal con la media y la desviación típica de la serie representada. En dicha figura la 

línea verde representa el valor del VaR para un nivel de confianza del 95% mientras que 

la línea roja lo hace para el 99%. Como se puede observar la distribución de las 

rentabilidades diarias es más leptocúrtica que la normal (el test de Jarque-Bera rechaza 

la hipótesis de normalidad debido a que el coeficiente de curtosis es igual a 5,4845)  y 

de ahí la falta de validez de este método para frecuencias altas. 

 

Figura 3.3: Histograma del IBEX35 diario y función de densidad de la normal con 

la misma media y desviación típica que los datos 

Fuente: Elaboración propia. Datos: YahooFinance 

Sin embargo si disminuimos la frecuencia de observación aumenta el grado de 

normalidad de la serie. Así, la figura 3.4 representa el histograma de frecuencias de la 

rentabilidad mensual del IBEX35, incorporando además la función de distribución de 

una normal con la media y desviación típica de la serie. Como se puede observar, las 

diferencias han disminuido (el coeficiente de asimetría de Fisher vale -0,3174, el de 

curtosis 0,6647 y el test de Jarque Bera no rechaza la hipótesis nula de normalidad). 

Ello es debido a que cuando disminuye la frecuencia de observación, la rentabilidad se 

calcula como suma de rentabilidades diarias y, aplicando el TCL, tiende a la 

normalidad.  
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Figura 3.4: Histograma del IBEX35 mensual y función de densidad de la normal 

con la misma media y desviación típica que los datos 

Fuente: Elaboración propia. Datos: YahooFinance 

3.3. MÉTODOS ECONOMÉTRICOS 

El último de los métodos analizados en este trabajo para el cálculo de valores de riesgo 

y ES es el llamado método econométrico, por el que los valores observados de las series 

temporales son considerados como resultado de un proceso estocástico, y se basan en la 

utilización de un modelo econométrico para describir dicho proceso. En la literatura 

existen diferentes modelos con este fin, aunque en este apartado se va a hacer especial 

mención a los modelos ARMA-GARCH, debido a que son los más utilizados en 

modelización de series financieras. 

Como avance del caso de estudio a realizar en posteriores apartados, se va a analizar 

además la metodología existente en la literatura para modelar diferentes series de 

rentabilidades, como son los procesos ARIMA, GARCH y APARCH. Además de 

comprobar la influencia que tiene en la estimación de valores de riesgo la distribución 

de las innovaciones en los modelos generados, como pueden ser la normal, la normal 

asimétrica, la t de Student, la t de Student asimétrica, la exponencial generalizada 

(GED) y la exponencial generalizada asimétrica (SGED). 

3.3.1 Proceso estocástico estacionario 

Antes de tratar de modelar series temporales, es imprescindible saber lo que se conoce 

como proceso estocástico. Según González (2009), un proceso estocástico se puede 
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definir como "una familia de variables aleatorias que, en general, están relacionadas 

entre sí y siguen una ley de distribución conjunta", además "en el marco estadístico de 

los procesos estocásticos, una serie temporal se puede interpretar como una realización 

muestral de un proceso estocástico que se observa únicamente para un número finito de 

periodos". Esa es precisamente la diferencia entre un proceso estocástico y una serie 

temporal como pueden ser los precios de un determinado índice, mientras que el 

primero se trata de la ley de distribución de una determinada variable aleatoria, la serie 

temporal es la apertura de una ventana en el tiempo de todo ese proceso estocástico 

subyacente. 

En el análisis de series temporales, el objetivo es utilizar la teoría sobre procesos 

estocásticos para caracterizar el comportamiento de la serie y predecir el futuro de la 

misma, aplicado a la gestión de riesgos nuestro objetivo sería obtener unas estimaciones 

lo más consistentes posibles acerca del comportamiento de la función de distribución de 

frecuencias para predecir valores de riesgos futuros. Para poder conseguirlo es necesario 

que la estructura de probabilidad del proceso estocástico sea estable en el tiempo, y aquí 

aparece lo que se denomina proceso estocástico estacionario. 

3.3.2 Estacionariedad 

El concepto de estacionariedad tiene dos alcances, en sentido estricto y en sentido débil, 

el primero de ellos tiene que ver con la invariabilidad del proceso estocástico a lo largo 

de todo el eje temporal, mientras que el segundo trata de la invariabilidad de algunos de 

los momentos del proceso, atendiendo particularmente a la estacionariedad de 2º orden 

que suponen que los momentos de orden 1 (media) y orden 2 (varianzas y covarianzas) 

dependen del número de periodos de tiempo que separan dos observaciones del proceso. 

Además, es conocido que si un proceso es estacionario de 2º orden y gaussiano (es 

decir, todas sus distribuciones marginales son normales) se puede afirmar que también 

lo será en sentido estricto. 

Ventaja de los procesos estacionarios: permiten agregar información proporcionada por 

diversos periodos para estimar las características del proceso que son invariantes a lo 

largo del tiempo. 
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3.3.3 Modelos ARIMA 

Sea {Yt; t=1,…,T} una serie financiera. Se dice que Yt viene descrita por proceso 

ARIMA (p,d,q) si su evolución a lo largo del tiempo es descrita por la expresión: 


d
Yt = μ + ut  

ut =  φ1ut-1+ ...+ φput-p + θ1εt-1 + ... + θqεt-q + εt   ;    εt|It-1 ~ RB(0,ζ²)       

donde Δes el operador diferencia definido por Yt = Yt-Yt-1y dYt = d-1Yt) para d≥2 

y  RB(0,ζ²)  denota ruido blanco débil homocedástico con media 0 y varianza ζ². Por 

tanto, si la serie es diferenciada d veces el proceso resultante es un proceso estacionario 

ARMA(p,q) para lo cual hay que exigir, adicionalmente, que las raíces del polinomio 

característico de la parte autorregresiva del modelo, 1-φ1x - ... -φpx
p
, tengan un módulo 

mayor que 1, y que, además, sea invertible, para lo que será necesario que las raíces del 

polinomio de la parte media móvil, 1+θ1x+ ... + θqx
q
 tengan también un módulo mayor 

que 1. 

3.3.4 Modelos GARCH 

Los modelos GARCH representan el desarrollo de los modelos ARIMA vistos 

anteriormente para tratar de modelizar una varianza que se suponía constante en el 

tiempo pero que no lo es en muchas series financieras. 

Engle (1982) fue el primero que propuso modelizar la varianza a través de un proceso 

autorregresivo de orden m de los cuadrados de la serie (de ahí el nombre de ARCH). Sin 

embargo se vieron algunas debilidades de estos modelos, como apunta Arce (1998) uno 

de los inconvenientes que tiene este tipo de modelización es la posibilidad de que sea 

necesario un número muy elevado de parámetros para una correcta especificación, 

llevando a un engorroso número de iteraciones para alcanzar una solución, e incluso 

siendo a veces imposible obtenerla. 

Para solucionar este problema Bollerslev (1986) propuso la generalización de los 

modelos de Engle mediante la inclusión de valores pasados de la varianza en la 

ecuación de explicación de la misma. A estos modelos los llamó GARCH (Generalized 

AutoRegressive Conditional Heterocedasticity por sus siglas en inglés), y la siguiente 

ecuación representa este modelo para unos órdenes m y s cualquiera: 
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Yt = μ + εt 

εt|It-1~ D (0, 
2

t )   ;   ζ²t = ω+ α1εt-1
2
 + ... + αmεt-m

2
 + β1ζ²t-1 + ... + βsζ²t-s        

con i≥0; i=1,…,m; j≥0; j=1,…,s y donde D (0, 
2

t )  denota una distribución de 

media 0 y varianza 
2

t . Diremos que Yt sigue un proceso GARCH(m,s) y, si s=0 

tendremos un proceso ARCH(m). Observar que E[Yt|It-1]  y V[Yt|It-1] = 
2

t  por lo 

que la serie Yt será condicionalmente heterocedástica. La serie tendrá, además, varianza 

incondicional finita si 1+ … + m + 1 + … + s< 1 y, en este caso, V[Yt] = 







s

1j

j

m

1i

i1

. Es interesante mencionar que  cuanto más se aproxime a la unidad la 

suma de todos los α y β, el efecto heterocedástico será más persistente, de forma que el 

impacto de un shock t sobre la volatilidad ζ²t tenderá a persistir a lo largo del tiempo;  

además si los parámetros β son elevados indicarían también persistencia de los valores 

más antiguos de la varianza en su estimación actual, mientras los parámetros α 

representan el efecto que tiene valores más cercanos al valor de la volatilidad en ζ²t. 

La introducción de estos modelos heterocedásticos desencadenó la propuesta de muchas 

ampliaciones de los mismos, e incluso se disparó su uso en todo el mundo. Bollerslev et 

al. (1992) y Bera y Higgins (1993) llevaron a cabo estudios acerca del alcance que estos 

nuevos modelos podían tener, concluyendo que habían eclipsado completamente a los 

modelos ARIMA homocedásticos. 

Uno de los méritos de estos autores fue el capturar la volatilidad con las mismas 

herramientas utilizadas en la modelización de la media de series temporales, los 

modelos ARIMA. De hecho, la ecuación (4) demuestra que tras un modelo GARCH se 

esconde un proceso ARMA, representándolo para la serie cuadrática de los residuos de 

la serie en media: 

𝜀𝑡
2 = ω +   αi + βi 

𝑚
𝑖=1 εt−i

2 −  βiυt−i
q
i=1 + υt   (4) 

donde 𝜐𝑡= ε
2

t - ζ²t  y m = máx(p,q). Por lo que un modelo GARCH puede verse como 

una aplicación de la idea ARMA para la serie cuadrática 𝜀𝑡
2. 
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Además, las aplicaciones de estos modelos son completamente compatibles con la 

modelización en media de los ARIMA, debido a que ambas partes son asintóticamente 

independientes. Esto hace que los dos modelos se puedan combinar y crear los llamados 

ARMA-GARCH, donde la identificación de los modelos para las ecuaciones de la 

media y de la varianza se realizan de forma independiente. 

Las restricciones impuestas sobre los coeficientes de ambas ecuaciones no cambian en 

absoluto en la especificación de este modelo con respecto a los anteriores, por lo que 

conserva todas las características propias de los modelos ARIMA en media y de los 

modelos GARCH en varianza. 

3.3.5 Modelos APARCH 

En los modelos GARCH se trataba de modelizar la varianza de la serie temporal, lo que 

a la hora de evaluar el riesgo de mercado puede no ser la mejor medida de riesgo debido 

a que en la varianza se encuentran tanto shocks negativos como positivos, mientras que 

el riesgo de mercado no tiene ninguna connotación positiva. Otra de las debilidades de 

los modelos heterocedásticos de Bollerslev es que no recogen el llamado "leverage 

effect" o efecto asimétrico en el sentido de que el impacto de los shocks t negativos 

sobre la volatilidad ζ²t tienden a ser mayores que los de shocks t positivos. 

Como solución a ambos problemas surgieron diversos modelos en la literatura de los 

cuales los modelos APARCH ("AsymmetricPower ARCH Models" por sus siglas en 

inglés) introducidos por Ding et al. (1993) son unos de los más utilizados. Estos 

modelos tratan de modelizar la potencia δ de la desviación típica, además de incluir un 

parámetro γ que determina el signo y la cuantía del efecto asimétrico anterior, que en el 

caso de ser positivo indicaría que el modelo recoge la existencia del efecto asimétrico de 

la serie, ya que como se puede observar en la siguiente ecuación,  si el error es negativo 

el resultado final de la δ potencia de la desviación típica será mayor, incrementando el 

nivel de riesgo. 

Yt = μ + εt        εt|It-1~ D (0,ζ²t)   ;   ζ
δ
t = ω+ ∑αi (|εt-1| -γiεt-1)

 δ 
 + ∑βjζ

δ
t-j    

Sin embargo, como ya se ha comentado, la familia de modelos asimétricos no acaba con 

los APARCH, ya que se han desarrollado muchos otros para solucionar el problema de 

la asimetría en las series temporales, entre ellos se pueden encontrar los modelos 
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EGARCH de Nelson (1991), los GJR de Glosten et al. (1993) y Zakoian (1994), los 

NGARCH de Engle y Ng. (1993) entre muchos otros. 

3.3.6 Distribución del término de error 

Finalmente, en la modelización de series temporales financieras es muy importante 

conocer la distribución del error de los modelos, también llamadas innovaciones, con el 

fin de recoger de una forma veraz las propiedades de dichas series, y por supuesto, 

realizar mejores predicciones. Así, Wong et al. (2012) advierten que "generalmente 

hablando, el ajuste de los modelos de riesgo mejora conforme las propiedades de las 

rentabilidades de acciones, ya sean la asimetría o las colas pesadas de las 

innovaciones entre otros, se tienen en cuenta en la modelización". Por su parte, Chen et 

al. (2012) realizan un estudio sobre el ajuste de diferentes tipos de modelos con distintas 

distribuciones de las innovaciones y sus efectos en las predicciones que se hacían del 

VaR en dos periodos distintos, pre y post la crisis financiera mundial de 2008-09, 

concluyendo que ninguno de los modelos con los que se realizaron las estimaciones 

actuó consistentemente bien, indicando que dependiendo del periodo analizado era más 

importante saber qué distribución del error utilizar, ya que ahí radica una mejor 

actuación del modelo. 

Ya que se ha demostrado que la elección de la distribución del error es una parte 

fundamental en la modelización de series financieras, en especial en aquellos modelos 

destinados al cálculo o estimación de valores de riesgo, en este trabajo se van a 

proponer seis distintas distribuciones además de los modelos comentados anteriormente. 

En primer lugar, y a modo de distribución de referencia, se ha escogido la distribución 

normal ya que son muchas las afirmaciones que se realizan de que las series financieras 

se distribuyen de acuerdo a esa distribución. En segundo lugar, la t de Student aporta 

alguna característica que suele ser frecuente en series financieras con frecuencia de 

observación alta, esta característica es una leptocurtosis elevada cuanto menor sea el 

número de grados de libertad usado en su formación, es decir, un mayor peso de las 

colas de la distribución, es importante resaltar que si el número de grados de libertad 

tiende a infinito la distribución t de Student tendrá la forma de una normal. Finalmente, 

es interesante estudiar el efecto que puede tener una distribución exponencial 

generalizada (GED) en los modelos que se van a obtener, tiene como principal 
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característica la leptocurtosis si la potencia elegida es menor que 2, mientras que es 

platicúrtica si es mayor, siendo la distribución normal un caso concreto de GED si la 

potencia es igual a 2. 

Y para finalizar, y dado que en muchas series financieras se aprecia la existencia de 

asimetría negativa, es interesante comprobar cómo influye la asimetría en las series 

financieras, por lo que se utilizarán las versiones asimétricas de las distribuciones 

comentadas anteriormente para analizar este efecto en las estimaciones del VaR, lo que 

reflejará la dependencia en las rentabilidades cuando se obtienen ganancias o pérdidas 

no esperadas. 

Para mostrar las características de cada una de ellas de manera gráfica, la figura 3.5 

representa algunas de dichas distribuciones. La línea azul define la distribución normal 

estándar de media cero y desviación típica 1, mientras que la verde hace lo propio para 

la t de Student de media cero, desviación típica 1 y 5 grados de libertad, mucho más 

apuntada y con unas colas más pesadas, y finalmente la línea roja describe el 

comportamiento de una GED, también leptocúrtica con potencia 1. Además, aparecen 

representadas sus formas asimétricas del mismo color con parámetro de asimetría de 1.5 

en todas ellas. 

 

Figura 3.5: Distribuciones normal, t de Student, GED y asimétricas: 

Fuente: Elaboración propia 
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4. DATOS UTILIZADOS EN EL ANÁLISIS EMPÍRICO 

Los datos utilizados para este trabajo son las rentabilidades diarias de seis de los índices 

de renta variable más conocidos a nivel internacional. Se han elegido de forma que 

simulen una cartera de inversión diversificada, con el objetivo de comprobar los efectos 

de las estimaciones de valores de riesgo en función de los mercados financieros 

elegidos. Los índices elegidos han sido, IBEX35, DAX30, EUROSTOXX50, 

NIKKEI225, STI (Índice de referencia en Singapur) y S&P500, siendo el rango de 

observación el mismo en cada uno de los seis, partiendo del comienzo de 2007 (2 de 

enero) hasta el 15 de mayo de 2015.  

Se ha optado por analizar las series de rentabilidades y no la de precios ya que las 

primeras son estacionarias, lo que facilita la estimación de modelos y el desarrollo de 

toda la práctica de series temporales. Las rentabilidades utilizadas en las estimaciones 

han sido las rentabilidades continuas y no las simples, ya que proporcionan algunas 

ventajas muy útiles a la hora de tratar los datos muestrales. La siguiente ecuación 

muestra cómo se han calculado dichas rentabilidades continuas, siendo Pt el precio de 

cierre diario de los diferentes índices: 

rt = 100*ln(Pt/Pt-1)             

Una de las ventajas de utilizar las rentabilidades continuas frente a las simples es la 

amortiguación del efecto de la volatilidad implícita en la serie, consiguiendo cambiar la 

escala en la que trabajar, con lo que se podría disminuir el efecto que tienen los atípicos 

en las estimaciones de los modelos en el caso de que los hubiera. La segunda ventaja 

trata de la manejabilidad de los datos a la hora de hacer estimaciones. Esto es debido a 

que en el caso de las rentabilidades simples multiperiodo, donde se trata de obtener una 

rentabilidad entre espacios de tiempo superiores a 1, el resultado es una progresión 

geométrica de rentabilidades intermedias. Mientras que en el caso de las continuas, por 

las propiedades de los logaritmos, el resultado es una progresión aritmética, lo que 

proporciona una mayor facilidad en el trabajo de los datos. La tabla 4.1 muestra los 

resultados obtenidos al realizar un estudio estadístico-descriptivo de cada una de las 

series analizadas, indicando con asterisco las medias, asimetrías y curtosis 

significativas, mientras que la figura 4.1 las representa gráficamente. 
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Tabla 4.1: Características estadístico-descriptivas de las series analizadas 

  IBEX35 DAX30 EUROSTOXX50 NIKKEI225 S&P500 STI 

Observaciones 2134 2135 2128 2064 2107 2128 

Media -0,0112* 0,0252* -0,0066 0,0062 0,0192* -0,0060 

Desviación 

Típica 
1,6514 1,4803 1,5489 1,6510 1,3837 1,2249 

Asimetría 0,1461* 0,0526 0,0420 -0,5596* -0,3192* -0,1820* 

Curtosis 5,4845* 6,1371* 5,4050* 7,9825* 9,5555* 6,2696* 

Mínimo -9,5859 -7,4335 -8,2079 -12,1110 -9,4695 -8,6960 

Máximo 13,4836 10,7974 10,4376 13,2346 10,9572 7,5305 

Estadístico 

Jarque-Bera 2690,02 3360,82 2598,51 5602,55 8071,86 3506,72 

P valor 0,000 0,000 0,000 0,000 0,000 0,000 

Fuente: Elaboración propia 

 

Figura 4.1: Representación gráfica de las series analizadas 

Fuente: Elaboración propia 
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El número de observaciones se encuentra en torno a 2100 en cada índice, esta diferencia 

entre las series es debida a que los días festivos en los que los mercados financieros no 

cotizan son diferentes en cada país, dando lugar a muestras de distinto tamaño. La 

media de las rentabilidades de las series giran sobre el 0%, lo que concuerda con la 

teoría del mercado eficiente. Sin embargo, algunas de ellas como el DAX alemán o el 

S&P500 estadounidense destacan con una media significativamente positiva, siendo el 

IBEX35 español el caso opuesto con una media negativa algo significativa. Además, el 

coeficiente de asimetría de Fisher desvela problemas de asimetría en particular en el 

mercado japonés, y con menor fuerza en el S&P500 y el STI, siendo las tres series 

asimétricas a izquierdas. Sin embargo, es la leptocurtosis el problema generalizado en 

todas las series temporales, con todos los coeficientes de curtosis de Fisher superiores a 

3. Este problema es debido, como ya se ha comentado con anterioridad, a la alta 

frecuencia en la observación de los datos. Finalmente, aparecen los estadísticos del test 

de normalidad de Jarque-Bera junto a sus p valores. Ya que éstos se forman al juntar los 

coeficientes de asimetría y curtosis de Fisher, era de esperar que se rechazara la 

hipótesis nula de normalidad en todos ellos taxativamente, siendo todas las series 

leptocúrticas y algunas de ellas asimétricas. 

5. IDENTIFICACIÓN Y ESTIMACIÓN DE LOS MODELOS 

En el proceso de obtención de valores de riesgo por el método econométrico la correcta 

identificación y estimación de los modelos representa una parte fundamental del mismo, 

ya que un modelo infra o sobre parametrizado repercutirá negativamente en las 

estimaciones del VaR en forma de predicciones que no se ajustan a la serie modelizada. 

En la literatura existen varios criterios de selección de modelos, los dos más utilizados y 

conocidos son los llamados AIC (Akaike Information Criterion)de Akaike (1973) y BIC 

(Bayesian Information Criterion) de Schwarz (1978). En la selección de los modelos de 

riesgo para los índices expuestos en el apartado anterior se ha utilizado el criterio 

Bayesiano, ya que en su estimación penaliza por sobreparametrización eligiendo 

modelos más simples. Además, Caballero (2011) advierte que el AIC no es 

asintóticamente consistente, ya que elige el mismo número de parámetros para muestras 

pequeñas que para muestras grandes. 
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Tabla 5.1: Estimación de los modelos para cada serie 

 
IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI 

  

Panel A: Modelos ARMA normales homocedásticos 

 µ -0,0112 0,0252 -0,0006 0,0192 0,0062 0,006 

ϕ1 

  

-0,7867** -0,1225** 

 

  

ϕ2 

   

-0,0697* 

 

  

θ1 

  

0,7504** 

  

  

θ2 

  

-0,0834 

  

  

θ3     -0,0995*       

  

 

Panel B: Modelos ARMA Student asimétricos homocedásticos 

 µ -0,0164 0,0200 -0,0157 0,0278 0,0147 0,0017 

ϕ1 

  

-0,7261** -0,0808** 

 

  

ϕ2 

   

-0,0027 

 

  

θ1 

  

0,6964** 

  

  

θ2 

  

-0,0578 

  

  

θ3 

  

-0,0353 

  

  

ν 4,1234** 3,1424** 2,5307** 2,9900** 2,5770** 2,5116** 

ξ 0,9443** 0,9333** 0,9448** 0,9064** 0,9522** 0,9524** 

  

 

Panel C: Modelos ARMA-GARCH con errores normales 

 µ 0,0419 0,0802** 0,0517* 0,0723** 0,0513 0,0280 

ϕ1 

   

-0,0791** 

 

  

ω 0,1394** 0,0373** 0,0504** 0,0417** 0,0634** 0,0058** 

α1 0,0377 0,0990** 0,1077** 0,0000 0,1225** 0,0910** 

α2 0,0366 

  

0,1564** 

 

  

α3 0,0443 

    

  

α4 0,0696* 

    

  

β1 0,7604** 0,8838** 0,8713** 0,8147** 0,8534** 0,9064** 

  

 

Panel D: Modelos ARMA-GARCH con errores no normales 

   STD SGED GED SGED GED SGED 

µ 0,0411 0,0641** 0,0441 0,0656** 0,0622** 0,0217 

ϕ1 

   

-0,0957** 

 

  

ω 0,0785** 0,0284** 0,0428** 0,0362** 0,0558** 0,0048* 

α1 0,0410 0,0949** 0,1001** 0,0000 0,1117** 0,0843** 

α2 0,0291 

  

0,1660** 

 

  

α3 0,0284 

    

  

α4 0,0295 

    

  

β1 0,8441** 0,8931** 0,8824** 0,8105** 0,8669** 0,9133** 

ν 7,8810** 1,3245** 1,3701** 1,3016** 1,4822** 1,5483** 

ξ   0,9277**   0,8721**   0,9143** 

  

 

Panel E: Modelos APARCH con errores normales 

 µ -0,0281 0,0176 -0,0245 0,0253 0,0096 0,0069 

ϕ1 

   

-0,0716** 

 

  

ω 0,0380** 0,0384** 0,0429** 0,0317** 0,0594** 0,0064** 

α1 0,0723** 0,0720** 0,0902** 0,0919** 0,1122** 0,0695** 

γ 1,0000** 1,0000** 1,0000** 1,0000** 0,4090** 0,3788** 

β1 0,9190** 0,9104** 0,9019** 0,9036** 0,8706** 0,9216** 

δ 1,0185** 1,1488** 0,9720** 0,9606** 1,2828** 1,8379** 
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Panel F: Modelos APARCH con errores no normales 

 

 
SGED SGED SGED SGED SSTD SGED 

µ -0,0266 0,0188 -0,0272 0,0238 0,0123 0,0062 

ϕ1   

  

-0,0838** 

 

  

ω 0,0347** 0,0366** 0,0406** 0,0315** 0,0510** 0,0054** 

α1 0,0711** 0,0774** 0,0932** 0,1004** 0,0972** 0,0642** 

γ 1,0000** 1,0000** 1,0000** 1,0000** 0,6307** 0,3888** 

β1 0,9218** 0,9091** 0,9041** 0,9013** 0,8897** 0,9287** 

δ 1,0308** 1,1182** 0,9131** 0,8999** 1,0543** 1,8015** 

ν 1,5395** 1,4185** 1,5277** 1,3690** 10,0000** 1,5968** 

ξ 0,8957** 0,9011** 0,9122** 0,8232** 0,8853** 0,9080** 

Fuente: Elaboración propia 

En la tabla 5.1 se pueden observar cada uno de los modelos identificados para los seis 

índices objeto de estudio, además de incluir los parámetros estimados mediante el 

método de la máxima verosimilitud indicando con un asterisco coeficientes 

significativos al 95% y con dos al 99% según el test t de significación. Esta estimación 

trata de conseguir los valores de los parámetros que hagan máxima la probabilidad de 

obtener la muestra observada.  

A efectos comparativos, se ha optado por estimar tres tipos de modelos diferentes: uno 

homocedástico (ARMA), uno heterocedástico (GARCH) y finalmente otro 

heterocedástico que trate de capturar el posible efecto asimétrico de las series 

identificado en el análisis descriptivo de las mismas en el apartado anterior (APARCH).  

Además, en cada uno de ellos se ha propuesto que en primer lugar la distribución del 

error sea normal, y en segundo lugar que sea diferente, pudiendo ser cualquiera de las 

analizadas en el apartado 3.3.6, es decir, normal asimétrica (SNORM), t de Student 

(STD), t de Student asimétrica (SSTD), exponencial generalizada (GED) o exponencial 

generalizada asimétrica (SGED). Los parámetros de asimetría y curtosis de cada modelo 

están representados en la tabla 5.1 por "ξ" y "ν" respectivamente, siendo un modelo más 

asimétrico cuanto más diferente de 1 sea ξ, y más parecido a la curtosis de la normal 

cuanto mayor sean los grados de libertad ν en las distribuciones Student y si ν es igual a 

2 en las GED.  

De esta forma pretendemos analizar los efectos ejercidos por incorporar las hipótesis de 

heterocedasticidad, efecto asimétrico y no normalidad de la distribución del error al 

modelo econométrico utilizado para calcular el VaR y el ES. 



32 
 

El proceso seguido para la identificación de cada uno de los modelos se ha basado, en 

primer lugar obtener un modelo homocedástico que capture adecuadamente las 

dependencias en media de las series mediante el análisis de correlogramas y el contraste 

de Box-Ljung (ver Anexo I). En los correlogramas se estiman las dependencias de la 

serie en t con sus k retardos, introduciendo dos bandas, superior e inferior, de 

significación, a partir de las cuales se considera que la dependencia en ese retardo en 

individualmente significativa y debe tratarse introduciendo estructura determinista en la 

ecuación del modelo. El contraste de Box-Ljung trata de comprobar si esas 

dependencias individuales son conjuntamente significativas, estableciendo la hipótesis 

nula en que la serie no es dependiente de sus retardos. 

En segundo lugar se ha estudiado la invariabilidad de la varianza con el tiempo 

mediante los correlogramas de los residuos al cuadrado de los modelos estimados, 

suponiendo que estos errores cuadráticos son un buen estimador de la varianza de la 

serie, con el fin de encontrar dependencias que tratar mediante los modelos 

heterocedásticos GARCH (ver Anexo II). Además también se han llevado a cabo el 

contraste de Box-Ljung y el test ARCH para estos errores cuadráticos, siendo la 

finalidad de este último identificar parámetros autorregresivos significativos que 

expliquen la serie de esos residuos al cuadrado, establecida la hipótesis nula de ambos 

en homocedasticidad en la serie. Al observar los correlogramas de los modelos GARCH 

estimados no aparece prácticamente ninguna dependencia en varianza, por lo que la 

heterocedasticidad está controlada en todos ellos. 

En tercer lugar se ha comprobado como los modelos GARCH no recogen el efecto 

asimétrico de las series, algo que sí hacen los APARCH, mediante la función de 

covarianzas cruzadas entre los residuos y los residuos cuadráticos de estos modelos, 

(ver Anexo III). Si los valores que devuelve esta función sobrepasan las bandas de 

significatividad, excepto en el retardo 0, indicará que existe un efecto asimétrico en el 

modelo que no está capturado, por lo que sería necesario estimar modelos APARCH 

para ajustarse mejor a la serie. Como se puede observar, al estimar estos modelos 

asimétricos se eliminan prácticamente todos los valores significativos de estas 

funciones, lo que indica que el efecto asimétrico se puede controlar con estos modelos. 

Finalmente, se ha puesto a prueba el ajuste de las distribuciones del error, para ello se 

han dibujado todos los gráficos QQ y se ha llevado a cabo el contraste de Kolmogorov-
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Smirnov en todos los modelos. El gráfico QQ trata de comparar los cuantiles de la serie 

analizada con los que tendría la distribución que se supone en cada caso representada 

por una línea recta roja, incorporando además unas bandas de confianza para ver cuánto 

se alejan los cuantiles de la serie. El test de Kolmogorov-Smirnov funciona de forma 

similar, pero de manera más cuantitativa, la hipótesis nula del contraste se establece 

como que la distribución de la serie es la misma que la que se supone en la serie. Al 

comparar tanto el gráfico QQ como el contraste en todos  los modelos (ver Anexo IV), 

se puede afirmar, como ya se adelantaba en apartados anteriores, que la normal resulta 

fallar como distribución en todos y cada uno de los modelos estimados, siendo 

distribuciones leptocúrticas y asimétricas a izquierdas las que predominan en las 

estimaciones. 

Tabla 5.2: Valores de los criterios BIC para cada modelo estimado 

(en negrita señalados los mejores modelos para cada serie) 

 
ARMA 

normal 

ARMA no 

normal 

GARCH 

normal 

GARCH 

no normal 

APARCH 

normal 

APARCH 

no normal Serie 

IBEX35 3,884067 3,680664 3,607296 3,585610 3,558852 3,542312 

DAX 3,621944 3,410210 3,313287 3,273016 3,270770 3,240869 

EUROSTOXX50 3,714375 3,537355 3,425770 3,392666 3,364289 3,347114 

SP500 3,476122 3,117198 2,921978 2,863135 2,888786 2,830101 

NIKKEI225 3,840212 3,630097 3,515190 3,498459 3,506091 3,487222 

STI 3,243122 2,963854 2,699069 2,683608 2,687591 2,676345 

Fuente: Elaboración propia 

Una vez analizados todos los gráficos y contrastes de los modelos mencionados 

anteriormente, el criterio para seleccionar modelos que aparentemente se ajustan de 

igual forma a su serie ha sido seleccionar aquellos que presenten los menores valores 

del BIC, ya que esto indica que el modelo estimado incorpora un mejor equilibrio entre 

el ajuste a la serie y el número de parámetros necesario para ello. La tabla 5.2 devuelve 

los valores del criterio BIC para cada uno de los modelos estimados, como se puede 

observar, bajo este criterio el modelo que mejor se ajusta a sus respectivas series es 

siempre un APARCH con errores no normales, debiendo incorporar la exponencial 

generalizada asimétrica en todos los índices excepto en el japonés, donde es la Student 

asimétrica la que mejor se ajusta a la serie. Estos resultados concuerdan con el análisis 

estadístico-descriptivo realizado en apartados anteriores, poniendo de manifiesto la 
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importancia intramuestral tanto de la hipótesis de heterocedasticidad como del efecto 

asimétrico y de la falta de normalidad en las distribuciones del error en cada modelo. 

6. OBTENCIÓN DE VALORES DE RIESGO Y ES 

Con los modelos ya estimados, el proceso de obtención de valores de riesgo y ES es 

recurrente. Con el fin de poder evaluar las estimaciones obtenidas y al igual que en el 

trabajo de Chen et al. (2012), se ha optado por calcularlos dentro de la muestra, es decir, 

utilizar las últimas 400 observaciones para validar extramuestralmente el modelo y el 

resto para estimarlo. 

El horizonte de predicción establecido ha sido de un día, ya que de esta forma se puede 

utilizar la distribución del error de cada modelo calculado sin necesidad de simular 

valores para calcular el VaR, quedando la expresión matemática para su cálculo según 

la ecuación: 

VaRt+1, = -  1t,t1t
ˆqdistŶ      

donde ]I|Y[EŶ t1t1t   es la predicción con horizonte 1 día de la rentabilidad de la 

serie, 1t
ˆ

 = D(Yt+1|It) es la desviación típica de la distribución predictiva de la serie y  

qdistt, es el cuantil  de la distribución tipificada del error 
1t

1t

ˆ







~ D(0,1,t, t). 

El cálculo del ES no es, general, trivial y en nuestro caso hemos optado por utilizar el 

método de Monte Carlo simulando  10000,....,1s;Y )s(

1t   valores de Yt+1 a partir de la 

distribución Yt+1|It y calculando ESt, = 

 

 










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 donde I(A) denota la 

función indicador que vale 1 si se verifica A y 0 en caso contrario. 

Además, y siguiendo a Chen y otros (2011), para las estimaciones de ambas medidas de 

riesgo se ha optado por utilizar un proceso "rolling", que consiste en que cada nueva 

estimación de Yt y ζt, y por tanto del VaR y ES, se realiza teniendo en cuenta una 

ventana dinámica de información de los últimos 2000 datos, que va eliminando la 
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información más antigua conforme las estimaciones se encuentran más alejadas del 

origen para añadir los valores estimados más recientes. 

Siguiendo con la dinámica de los primeros apartados donde se ejemplificaba la 

obtención de valores de riesgo mediante los métodos más simples, la tabla 6.1 devuelve 

los VaRs y ES estimados a través de las técnicas descritas anteriormente para el 

IBEX35 a 15 de Mayo de 2015, es decir, el último día de la muestra, y para cada 

modelo estimado. Además, los 400 últimos valores de ambas medidas están 

representados en las figuras 6.2 y 6.3, donde la línea roja representa el 95% de 

confianza y la verde el 99%. Los gráficos de los VaR y ES de los demás índices se 

pueden consultar en el Anexo (ver Anexo V). 

Tabla 6.1: Valores de riesgo y ES calculados para los distintos modelos 

identificados del IBEX35 y el día 15 de Mayo de 2015, en tanto por cien 

 
ARMA 

normal 

ARMA no 

normal 

GARCH 

normal 

GARCH no 

normal 

APARCH 

normal 

APARCH 

no normal 

 
VaR 95 2,79176 2,607155 2,120740 2,015088 1,922487 1,996884 

VaR99 3,94279 4,691470 3,016302 3,143247 2,706307 3,017186 

ES 95 3,54747 4,022324 2,678492 2,717097 2,384641 2,666023 

ES 99 4,55166 6,658094 3,435042 3,886605 3,057576 3,556526 

Fuente: Elaboración propia 

Se observa en las representaciones gráficas que, en general, los VaR y ES calculados 

utilizando los modelos heterocedásticos muestran un comportamiento más adaptativo a 

las oscilaciones inferiores de de la serie merced a la dependencia temporal de la 

volatilidad de los errores pasados de predicción de la serie. En la sección 7 analizamos 

con más detalle este fenómeno.   
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Figura 6.2: Representación de los VaR al 95 (línea roja) y 99% (línea verde) 

predichos para las últimas 400 observaciones de la serie del IBEX35 

Fuente: Elaboración propia. 

 

 

Figura 6.3: Representación de los ES al 95 (línea roja) y 99% (línea verde) 

predichos para las últimas 400 observaciones de la serie del IBEX35 

Fuente: Elaboración propia  



37 
 

7. EVALUACIÓN PREDICTIVA 

En esta sección se realiza una validación predictiva extramuestral de los VaR y ES 

calculados en la sección anterior. En la literatura existen numerosos contrastes útiles a la 

hora de evaluar la calidad de la predicción de valores de riesgo y ES, en este caso se van 

a utilizar el porcentaje de cubrimiento, los contrastes de Christoffersen, de Engle y 

Manganelli, el ratio de violaciones, el coste estimado de oportunidad, la pérdida 

absoluta, la función cuantil, el valor de penalización y las zonas de penalización del 

Acuerdo de Basilea, que son algunos de los procedimientos de “Backtesting” utilizados 

en la literatura(ver Chen et al., 2012 y Tsay, 2013 para más detalles). 

En primer lugar, el porcentaje de cubrimiento no es otro que la relación que existe entre 

el número de veces que la predicción del VaR o ES ha acertado y el total de las 

observaciones, entendiendo como acierto que la rentabilidad de un activo financiero no 

sea inferior al valor que devuelve una u otra medida. Se considerará que un modelo 

predice el riesgo de forma correcta, si su ratio de cubrimiento es igual o similar al nivel 

de confianza establecido. 

Los contrastes de Christoffersen tratan de analizar mediante el test de razón de 

verosimilitudes(LR) si la esperanza matemática de los fallos predictivos es igual a α, 

tanto incondicional como condicionalmente. Además incluyen otro test LR para 

comprobar si los fallos son independientes entre sí o están correlacionados, teniendo 

entonces que capturar esa dependencia. Al contraste de cubrimiento incondicional se le 

denota como UC, al de independencia IND, y al de cubrimiento condicional CC. En los 

contrastes de cubrimiento la hipótesis nula se establece como que los fallos son igual a 

α, y en el de independencia que los fallos están incorrelados. 

El test de Engle y Manganelli (2004) intenta comprobar mediante una regresión de la 

función de fallos del VaR o ES sobre sus valores retardados y otras covariables 

relevantes, si los coeficientes β que explican dicha función son estadísticamente 

significativos utilizando un test de la razón de verosimilitud. En nuestro caso utilizamos 

el procedimiento descrito en Chen et al. (2011) quienes plantean la regresión:  

𝐼𝑡 =  𝛼 +   𝛽1𝑘
𝑛
𝑘=1 𝐼𝑡−𝑘 +   𝛽2𝑘

𝑛
𝑘=1 𝑔 𝐼𝑡−𝑘 , 𝐼𝑡−𝑘−1, … , 𝑅𝑡−𝑘 , 𝑅𝑡−𝑘−1, …  +  𝑢𝑡     

donde se establece que g(It-k, It-k-1, ... , Rt-k, Rt-k-1, ...) = VaRt-k-1 y n=1. 
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La hipótesis nula en este caso es que dichos coeficientes son igual a cero, y por tanto el 

cubrimiento es el esperado, no existiendo, además, dependencia entre los fallos de 

predicción del modelo. A este test de Engle y Manganelli se le denota como DQ. 

El siguiente aspecto estudiado es el ratio de violaciones de cada modelo, el cual se 

define como el cociente entre los porcentajes de fallos observados y esperados del 

modelo, siendo el modelo perfecto aquel que tenga un ratio de violaciones igual a 1. Si 

el ratio es superior (inferior) a 1 el modelo tiende a fallar en exceso (defecto) con 

respecto al porcentaje de fallos esperado. 

Según los principios de Basilea es sumamente importante que las entidades financieras 

doten un fondo de reserva para prevenir posibles pérdidas, sin embargo, también puede 

ocurrir que las pérdidas sean superiores a las esperadas, y que un modelo espere siempre 

pérdidas menores de las que realmente ocurren, lo que no puede calificarse como buen 

modelo. De esta forma se ha calculado la pérdida absoluta media de todas aquellas 

ocasiones en que la pérdida observada ha sido peor que la indicada por el VaR o ES la 

cual viene dada en el caso del VaR por la expresión 

   

 









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
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400Tt

,1t1t
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400Tt
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   

 


















1T

400Tt

,1t1t

1T

400Tt

,1t1t,1t1t

ESYI
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en el caso del ES, siendo un mejor modelo aquel que obtenga un menor valor en este 

criterio.  

Dado que no sólo es importante estimar bien las pérdidas máximas que pueden ocurrir, 

sino que el provisionar demasiado puede suponer un coste de oportunidad a las 

entidades financieras, se ha estimado dicho coste como el valor medio de las diferencias 

en valor absoluto entre la rentabilidad observada en la serie y los valores de riesgo 

estimados, siempre que esas estimaciones sean menores que los valores observados de 
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la serie, es decir, que los modelos hayan acertado. Para ello se han utilizado las 

expresiones: 

   

 









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





1T

400Tt

,1t1t

1T

400Tt

,1t1t1t,1t

VaRYI

VaRYIYVaR

 

en el caso del VaR y  por: 

   

 









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



1T

400Tt
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400Tt
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en el caso del ES, de forma que un modelo se considerará mejor que otro cuando su 

coste de oportunidad sea menor. 

Otro de los criterios para decidir hasta que punto un modelo predice de forma correcta 

es el cálculo de la función cuantil de cada modelo, obtenida de acuerdo a la ecuación 

FC =     




 
1T

400Tt

,1t1t,1t1t VaRYI1VaRY  

en el caso del VaR y por 

FC =     




 
1T

400Tt

,1t1t,1t1t ESYI1ESY  

en el caso del ES. Se considerará que un modelo predice mejor valores de riesgo y ES 

cuando el valor de esta función sea menor, ya que se puede comprobar que el valor 

mínimo de esta función se alcanza en el cuantil  de Yt+1. 

Uno de los criterios que Basilea recomienda a la hora de evaluar modelos de estimación 

de VaR y ES al 99% es lo que se denomina valor de penalización MRC ("Market Risk 

Charge" por sus siglas en inglés). Esta medida se establece como el valor máximo entre 

el VaR o ES del día anterior, y la media de los VaR o ES de los últimos 60 días 

multiplicado por un factor de penalización (3+k). Siendo un mejor modelo aquel que 

devuelva un menor MRC. 
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Finalmente, el segundo acuerdo de Basilea ofrece una guía básica para ayudar a las 

entidades financieras a evaluar cómo de importantes son las violaciones de los modelos 

VaR, definiendo violaciones como el hecho de que se produzca una rentabilidad del 

índice inferior al valor devuelto por el VaR. Esta ayuda se basa en la delimitación de 

tres zonas, verde, amarilla y roja, por las que eliminar posibles modelos de estimación 

del VaR y ES al 99%, indicando la verde un buen modelo, la amarilla un modelo peor 

pero todavía aceptable, y la roja un modelo inaceptable.  

Tabla 7.1: Zonas de penalización del acuerdo de Basilea, basadas en 588 

observaciones con un nivel de confianza del 99% 

Zona Nº de violaciones Probabilidad Acumulada Mas factor k 

Verde 0 0,0180 0,0000 

 

1 0,0905 0,0000 

 

2 0,2366 0,0000 

 

3 0,4325 0,0000 

 

4 0,6288 0,0000 

 

5 0,7859 0,0000 

 

6 0,8904 0,0000 

 

7 0,9498 0,0000 

Amarillo 8 0,9792 0,3982 

 

9 0,9922 0,4814 

 
10 0,9973 0,5608 

 

11 0,9992 0,6371 

 

12 0,9998 0,7107 

Rojo 13 o más 1,0000 1,0000 

Fuente: "Forecasting VaR using non linear regression quantiles and the intra-day 

range". Chen et al. (2012) 

El criterio para incluir un modelo en una u otra zona se basa en el número de 

violaciones, el nivel de confianza exigido y el tamaño muestral. Un ejemplo de cómo se 

establecen los límites a la hora de clasificar un modelo en una u otra zona es el que 

proporcionan Chen et al. (2012) en la tabla 7.1, en este caso se establece el 99% como 

nivel de confianza y 588 las observaciones de la serie, como se puede observar, hasta 

las 9 violaciones el modelo se consideraría adecuado, siendo a partir de las 10 

violaciones cuando la calificación pasa a ser mejorable, y es a partir de 17 violaciones 

cuando el modelo no debería ser utilizado en la medición de riesgos. La segunda 

columna indica la probabilidad de incurrir en un número determinado de violaciones o 

menos, y el factor k es la penalización para el MRC basada en estas zonas. 
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Todos estos contrastes han sido realizados para cada uno de los modelos de cada índice 

a estudio, la tabla 7.2 devuelve los resultados de los mismos para la serie del IBEX35, 

encontrándose los resultados de las demás series en el Anexo (ver Anexo VI). En esta 

tabla se pueden ver en negrita aquellos contrastes que rechazan su hipótesis nula al 

99%, además de subrayados una vez aquellos modelos que mejor se ajustan a la 

predicción de acuerdo a los diferentes criterios al 95% y dos veces al 99%, incluyendo 

también el rechazo o no por parte de Basilea de los modelos. 

Como se puede observar, en la serie del IBEX35 la mayoría de los modelos simples 

ARMA son rechazados por los contrastes de cubrimiento y de Engle y Manganelli, 

tanto para medidas de VaR como de ES, sin embargo Basilea los considera aptos por el 

bajo nivel de violaciones. Esta característica no es propia únicamente del índice español, 

sino que se transmite por todas las series estudiadas, rechazando casi todos los modelos 

homocedásticos para la predicción de valores de riesgo, incluso aquellos que incorporan 

innovaciones distintas a la normal. Esto es debido a la poca adaptabilidad de las 

previsiones a la volatilidad de la serie, siendo sus costes de oportunidad los más altos de 

todos los modelos y sus ratios de violaciones los más distintos de la unidad. 

Es importante mencionar que en los Acuerdos de Basilea se establece el 99% de 

confianza como el nivel de significación establecido a las entidades financieras para 

realizar cualquier medición de riesgos. Por esta razón en la literatura sólo aparecen 

calculados los factores k de penalización a este nivel, por lo que en los contrastes 

llevados a cabo de cada uno de los índices únicamente se han podido obtener los valores 

de MRC y las zonas de Basilea al 99%. 

Si se rechazan los modelos en los que el p valor de los contrastes de Christoffersen, y 

Engle y Manganelli es inferior al 1%, además de los que Basilea sitúa en zona roja, los 

modelos seleccionados que mejor predicen valores de riesgo pueden encontrarse en la 

tabla 7.3. Para elegir entre varios que cumplan los requisitos mencionados se ha optado 

por seleccionar aquel que tenga más valores mínimos de los demás contrastes, y si aun 

así no se puede elegir uno en concreto se ha evaluado la relación entre todas las 

magnitudes para escoger el mejor modelo. 
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Tabla 7.2: Evaluación predictiva de los modelos del IBEX35 

 
Cubrimiento Pvalor UC Pvalor IND Pvalor CC DQ 

Ratio 
Violaciones 

Pérdida 
absoluta 

Coste de 
oportunidad 

Función 
Cuantil 

MRC Zona 

 VaR95 ARMA NORMAL 98,25 0,0006 0,6171 0,0026 0,0016 0,3509 0,6479 2,9070 61,4303   

VaR99 ARMA NORMAL 99,75 0,0721 0,9435 0,1979 0,2850 0,2506 0,0585 4,0128 16,0692 11,8191 Verde 

VaR95 ARMA SSTD 97,99 0,0019 0,5672 0,0068 0,0108 0,4010 0,7755 2,6958 58,7310   

VaR99 ARMA SSTD 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 4,7407 18,9626 14,0390 Verde 

VaR95 GARCH NORMAL 95,74 0,4874 0,2186 0,3686 0,3932 0,8521 0,7596 2,1742 53,9025   

VaR99 GARCH NORMAL 98,75 0,6249 0,7217 0,8328 0,7037 1,2531 0,6616 2,9466 14,9140 7,9713 Verde 

VaR95 GARCH STD 95,49 0,6490 0,1921 0,3851 0,7804 0,9023 0,7643 2,1225 53,6085   

VaR99 GARCH STD 98,75 0,6249 0,7217 0,8328 0,8396 1,2531 0,4041 3,1430 14,4149 8,4715 Verde 

VaR95 APARCH NORMAL 94,99 0,9908 0,1462 0,3479 0,7335 1,0025 0,6535 2,1734 53,7108   

VaR99 APARCH NORMAL 97,74 0,0304 0,5192 0,0780 0,1889 2,2556 0,3144 2,9197 14,2178 8,4706 Amarillo 

VaR95 APARCH SGED 95,74 0,4874 0,2186 0,3686 0,4818 0,8521 0,6984 2,2310 54,0037   

VaR99 APARCH SGED 99,25 0,6024 0,8312 0,8535 0,3444 0,7519 0,4319 3,1951 13,9673 8,1087 Verde 

ES95 ARMA NORMAL 99,00 0,0000 0,7759 0,0001 0,0001 0,2005 0,2297 3,5932 72,0190   

ES99 ARMA NORMAL 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 4,5790 18,3161 13,5411 Verde 

ES95 ARMA SSTD 100,00 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 4,0430 80,8608   

ES99 ARMA SSTD 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 6,7693 27,0773 19,8930 Verde 

ES95 GARCH NORMAL 97,49 0,0118 0,4733 0,0324 0,0959 0,5013 0,5841 2,6531 57,2841   

ES99 GARCH NORMAL 99,00 0,9960 0,7759 0,9603 0,9692 1,0025 0,3752 3,3635 14,8054 9,1558 Verde 

ES95 GARCH STD 97,99 0,0019 0,5672 0,0068 0,0211 0,4010 0,6075 2,7568 58,6507   

ES99 GARCH STD 99,75 0,0721 0,9435 0,1979 0,1748 0,2506 0,6125 3,8520 15,9759 10,4847 Verde 

ES95 APARCH NORMAL 96,99 0,0493 0,3883 0,0998 0,2618 0,6015 0,5082 2,6283 56,7819   

ES99 APARCH NORMAL 99,50 0,2679 0,8871 0,5359 0,6637 0,5013 0,5253 3,2712 14,0597 8,3490 Verde 

ES95 APARCH SGED 97,49 0,0118 0,4733 0,0324 0,0957 0,5013 0,3737 2,8403 58,9368   

ES99 APARCH SGED 99,75 0,0721 0,9435 0,1979 0,2715 0,2506 0,6522 3,7531 15,6206 9,5513 Verde 

 

Fuente: Elaboración propia.
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Tabla 7.3: Modelos que mejor predicen Valores de Riesgo para cada índice y nivel 

de confianza 

 

IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI 

95% 
GARCH 

STD 

GARCH 

normal 

APARCH 

normal 

APARCH 

normal 

GARCH 

SGED 

GARCH 

normal 

99% 
APARCH 

normal 

GARCH 

normal 

APARCH 

normal 

GARCH 

normal 

APARCH 

SSTD 

APARCH 

SGED 

Fuente: Elaboración propia. 

Como se puede observar, hay bastante disparidad entre los modelos aceptados por el 

VaR, tanto del modelo elegido como la distribución del error escogida, teniendo la 

única característica en común la necesidad de controlar el efecto producido por la 

heterocedasticidad.  

Tabla 7.4: Modelos que mejor predicen ES para cada índice y nivel de confianza 

 

IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI 

95% 
APARCH 

normal 

GARCH 

normal 

APARCH 

normal 

GARCH 

normal 

APARCH  

SSTD 

GARCH 

normal 

99% 
APARCH 

normal 

APARCH 

normal 

APARCH 

normal 

GARCH 

normal 

APARCH 

normal 

GARCH 

normal 

Fuente: Elaboración propia. 

Siguiendo los mismos criterios de selección, la tabla 7.4 muestra los mejores modelos 

para cada índice en términos de predicción del ES. En este caso ningún modelo ARMA 

ha vuelto a ser seleccionado, además, una coincidencia en todos los modelos excepto en 

uno, es la elección de distribuciones normales para sus innovaciones, lo que contrasta 

con el criterio de selección de modelos BIC, ya que éste apostaba en todos los casos por 

modelos con errores no normales para un mejor ajuste a la serie.  

8. CONCLUSIONES 

El objetivo central del trabajo ha sido analizar el riesgo de incurrir  en pérdidas elevadas 

en series financieras utilizando modelos econométricos de la familia ARMA-GARCH. 

Para ello se han calculado el Valor de Riesgo (VaR) y el Déficit Esperado (ES) diario de 

6 índices bursátiles (IBEX35, SP500, NIKKEI225, STI, DAX y EUROSTOXX500) 

analizando el impacto ejercido por la incorporación de las hipótesis de 

heterocedasticidad (modelos GARCH), efecto asimétrico (modelos APARCH) y no 
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normalidad de la distribución del error de predicción presentes en muchas análisis 

financieras, y se ha realizado una validación predictiva extramuestral tipo Rolling 

similar a la llevada a cabo en Chen et al. (2012).  

Todas las series analizadas presentaban una clara heterocedasticidad y leptocurtosis, y 

algunas (IBEX35, SP500, NIKKEI225 y STI) una asimetría negativa significativa, 

rechazándose la hipótesis de normalidad para todas ellas tanto a nivel condicional como 

incondicional. Consecuente con estos hechos, la incorporación de errores no normales al 

modelo incrementó la bondad de ajuste a los datos observados, estando en la mayor 

parte de los casos distribuidos según una exponencial generalizada GED (DAX, 

EUROSTOXX50, SP500 Y STI) o una t de Student STD (IBEX35 Y NIKKEI225) 

asimétricas con un número bajo de grados de libertad (entre 1,30-1,59 para las GED y 

entre 2,53-10 para las STD), y parámetros de asimetría ligeramente menores que 1 

(entre 0,82-0,95), indicando la presencia de una leve asimetría a izquierdas en todas las 

series. 

En términos generales los modelos APARCH con errores no normales son los que han  

mostrado una mayor bondad de ajuste a los datos, medida en términos del criterio BIC, 

observándose la presencia de un efecto asimétrico consistente con la teoría financiera. 

Si analizamos el  comportamiento de los VaR calculados por los modelos, observamos 

en primer lugar, que los modelos heterocedásticos son los que muestran un 

comportamiento más adecuado (al 95% y al 99%) tanto en términos de predicción por 

intervalos como de costes de oportunidad, pérdida absoluta, función cuantil y MRC por 

su mayor poder de adaptación a las oscilaciones de las series proporcionado por la 

dependencia temporal de la volatilidad. No se aprecia una pauta clara respecto a la 

influencia del efecto asimétrico o de la utilización de errores no normales en los 

resultados obtenidos: en las series IBEX35 (95%) o DAX tienden a mostrar un mejor 

comportamiento los modelos GARCH; en las series IBEX35 (99%), EUROSTOXX y 

NIKKEI son los modelos APARCH y no se aprecia una pauta clara ni en SP500 ni en 

STI. Tampoco se aprecia la existencia de diferencias claras entre los modelos con 

errores normales o no normales en ninguna de las series analizadas. 

Si analizamos el comportamiento de los ES los resultados son similares si bien con 

mayores niveles de cubrimiento, costes de oportunidad, pérdida absoluta y MRC debido 

a que sus valores son más elevados que los de los VaR por su mayor sensibilidad a la 
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forma de la cola izquierda de las distribuciones condicionales del error. En la mayor 

parte de las series el comportamiento de los modelos APARCH tiende a ser mejor que 

el de los modelos GARCH sin que se aprecie una mejora significativa de los modelos 

con errores no normales. 

Por todo ello podemos concluir que aunque los modelos APARCH con errores no 

normales, distribuciones leptocúrticas y ligeramente asimétricas a izquierdas tienden a 

mostrar una mejor bondad de ajuste a los datos observados, su influencia en el 

comportamiento de los VaR y ES calculados a partir de ellas no es, en general, muy 

significativa. Tan solo la incorporación de la hipótesis de heterocedasticidad al modelo 

es relevante. La presencia del efecto asimétrico tiende a mejorar el comportamiento de 

los ES sin que se aprecien pautas claras de dicho efecto en el comportamiento del VaR 

ni tampoco de la falta de normalidad de la distribución condicional del error. Todo esto 

puede ser debido al ser los índices bursátiles medias ponderadas de la evolución de 

activos bursátiles con altos volúmenes de negociación, por lo que sus oscilaciones 

tienden a estar más controladas que las de activos individuales concretos y de ahí el 

buen comportamiento de los modelos GARCH con errores normales en las series 

analizadas.  
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