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GRADO EN FINANZAS Y CONTABILIDAD

RESUMEN ElI obijetivo del trabajo es estimar diferentes modelos econométricos para
calcular el Valor de Riesgo(VaR de Value at Risk en inglés) y el Déficit Esperado (ES
de Expected Shortfall en inglés) y evaluar su rendimiento a la hora de medir el riesgo
asociado a la evolucion diaria de 6 indices bursatiles. Para ello se han utilizado modelos
de la familia ARMA-GARCH con errores no necesariamente normales, que tienen en
cuenta la heterocedasticidad presente en este tipo de series financieras, asi como la
posible existencia del llamado “efecto asimétrico” (leverage effect en inglés) en la
estimacion de su volatilidad. Se realiza, ademas, andlisis estadistico de los resultados
obtenidos evaluando la importancia de cada uno de los aspectos anteriores en el
comportamiento predictivo del modelo.

Los resultados obtenidos ponen de manifiesto que, aunque los modelos que mejor se
ajustan a los datos tienden a ser modelos heterocedasticos con efecto asimétrico y
errores no normales, en lo que hace referencia a la evaluacion de riesgo mediante el
VaR y el ES tan solo la incorporacion de la hipdtesis de heterocedasticidad muestra
efectos claramente significativos, siendo la importancia de las otras dos hipétesis (efecto
asimétrico y no normalidad de la distribucion condicional del error) muy marginal. Ello
puede ser debido a que los indices bursatiles son medias ponderadas de activos de alto
volumen de contratacion, sus oscilaciones estd mas controladas que las de los precios de
activos individuales.

Palabras clave: VaR, ES, ARMA, GARCH, Evaluacion Predictiva, Prediccion, Series
Temporales

ABSTRACT The key objectives of this paper are to estimate different econometric
models in order to calculate the Value at Risk and the Expected Shortfall, and to
evaluate their performance when measuring the risk associated to the daily evolution of
6 stock indexes. For this purposes it has been used models from the ARMA-GARCH
family with errors not necessarily normal, that take into consideration the
heterocedasticity embedded in this sort of financial series, in addition to the possible
existence of the so called leverage effect in the volatility estimations. Moreover, it has
been performed a statistical analysis of the results evaluating the importance of each
previous aspect in the predictive behavior of the model.

The results obtained say, though the best fit models tend to be the heterocedastic ones
with leverage effect and no normal innovations, in relation with risk evaluation through
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the VaR and ES, only the addition of the heterocedasticity hypothesis shows
significative effects, being the importance of the other two hypothesis (leverage effect
and no normality in the error distribution) marginal. It may be due to the fact that stock
indexes are weighted averages of assets with high volume of negotiation, having their
oscillations more controlled than those of the individual assets.

Keywords: VaR, ES, ARMA, GARCH, Backtesting, Forecast, Time Series
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1. PLANTEAMIENTO Y MOTIVACION

La época actual se encuentra marcada por la incertidumbre en casi todos los aspectos de
la vida, y en los ultimos afios, el sector financiero ha sufrido gran parte de esa
incertidumbre de una forma mucho mas agresiva. Esta situacién en los mercados
financieros obliga a recurrir al estudio en profundidad de series financieras mediante
técnicas estadisticas que permitan evaluar esa incertidumbre que en finanzas se suele

denominar, riesgo.

Sin embargo, para llevar a cabo este andlisis, se deben conocer en detalle las
caracteristicas de la evolucion de dichas series, buscando modelizar y predecir sus
movimientos futuros. Esto es lo que la regulacién actual sobre riesgos financieros trata
de imponer a las entidades financieras, con el fin de evitar los problemas asociados a la
aparicion de pérdidas inesperadas de elevada cuantia que afectan a este sector. Estos
organismos reguladores, encabezados por la SEC (Securities and Exchange Commision)
estadounidense en un primer momento, y por los Acuerdos de Basilea después, han
visto incrementado su poder regulatorio después de numerosas crisis a finales del siglo
XX, aumentando el nivel de exigencia acerca del calculo de las pérdidas maximas que

pueden darse en las entidades financieras.

Vista la creciente necesidad de controlar el nivel de incertidumbre de los activos
financieros, asi como la incapacidad de anteriores medidas de riesgo como, por ejemplo,
la varianza o la desviacion tipica de la serie, a la hora identificar el riesgo de mercado
inherente en ellas, en la actualidad es el Valor de Riesgo (o VaR segun sus siglas en
inglés) la medida de riesgo requerida a toda organizacion financiera para medir el nivel
de aprovisionamiento necesario para hacer frente a dichas pérdidas, y no incurrir en
bancarrota en el caso de una caida del precio de los activos, como sucedié en el
preambulo de la crisis financiera global de 2007 en Estados Unidos. Sin embargo, la
necesidad de aprovisionar parte de la liquidez de las empresas hace que esto suponga un

coste de oportunidad para las mismas, especialmente en el caso de entidades financieras.

Motivados por la reduccién de ese coste de oportunidad, tanto las empresas del sector
como los centros de investigacion economico-financiera, han desarrollado métodos cada

vez mas exhaustivos en la medicion de estos riesgos de mercado.



Fiel reflejo de este hecho es la extensa literatura existente acerca de los métodos para
calcular esta medida de riesgo que van desde los mas simples, como el método historico
y varianza-covarianza, hasta mucho mas complejos como, por ejemplo, los métodos
centrados en el uso de modelos basados en la modelizacion de la volatilidad (GARCH,
volatilidad estocéstica) asi como en el uso de técnicas de simulacién tanto para estimar

dichos modelos como para predecir la evolucion futura de la serie o de su volatilidad.

En este trabajo se realiza un analisis del calculo del Valor de Riesgo mediante modelos
de la familia ARMA-GARCH, que son los mas utilizados en la literatura (Bollerslev y
otros, 1992; Bera y Higgins, 1993), aplicAndolo a la medicion de riesgos de 6 de los
indices bursatiles més conocidos a nivel mundial. Se realiza, ademas, una validacion
predictiva de dichos modelos buscando evaluar la influencia ejercida por diversas
caracteristicas de los mismos (heterocedasticidad, efecto asimétrico, no normalidad del
término de error) en el rendimiento estadistico-financiero de las predicciones efectuadas

por los modelos comparados.

El trabajo esta estructurado de la siguiente manera; el primer apartado describe como
surgid la necesidad de medir los riesgos de mercado de una forma diferente a la que se
venia haciendo, ademas de explicar de qué elementos esta formada esta medida y cuéles
son sus posibles debilidades, ademas de introducir el Déficit Esperado o"Expected
Shortfall"(ES) como medida alternativa de riesgo que, aunque mas dificil en su célculo,
es mas coherente que el VaR a la hora de evaluar riesgos. El segundo apartado muestra,
mediante un ejemplo ilustrativo, como calcular el VaR de acuerdo a los dos métodos
mas simples propuestos en la literatura para, posteriormente, describir métodos mas
avanzados utilizando los modelos ARMA-GARCH. EI tercer apartado introduce
mediante un analisis descriptivo basico los indices objeto de estudio. El cuarto apartado
explica el proceso de modelizacion llevado a cabo, indicando la estimacion de los
pardmetros de todos ellos. El quinto explica el método seguido para el célculo de los
valores de riesgo predichos. El sexto apartado analiza el rendimiento de los VaR y ES
calculados por el modelo mediante una evaluacion predictiva con las ultimas 400
observaciones, para finalizar con el séptimo apartado donde se recogen las conclusiones

obtenidas.



2.;QUE ES EL VaR?
2.1. LOS COMIENZOS DEL VaR

El concepto de Valor de Riesgo (VaR) es bastante reciente, ya que comenzo a utilizarse
a mediados de los afios 90. Sin embargo, se puede decir que los fundamentos para su
calculo fueron desarrollados por Harry Markowitz en la teoria de seleccidn de carteras a
mediados del siglo XX, aunque con una finalidad muy distinta a la herramienta de
gestion de riesgos que ocupa el tema central de este trabajo. En concreto, fueron las
partes centradas en los riesgos de mercado y los efectos de los movimientos en los
mismos las que ayudaron a la estimacion de esta medida de riesgo tan utilizada en la

actualidad.

El desarrollo del VaR fue consecuencia de una imposicion por parte del gobierno
norteamericano, mas concretamente por la SEC (Securities and Exchange Commision),
por la que obligaba a los bancos estadounidenses en el segundo tercio del siglo XX a
mantener su deuda por debajo del 2000% de su capitalizaciébn como una medida para
evitar que volviese a suceder otra Gran Depresion en el futuro. Sin embargo, con el
desarrollo de productos financieros mas complejos como los derivados, 0 unos tipos de
cambio con una variacion mucho mayor a la que se daba en el pasado, cuando el patrén
oro era utilizado por la mayoria de paises desarrollados, el SEC decidi6, en 1980, que
las garantias exigidas a los bancos comenzaban a ser insuficientes, y aumentd esos
requerimientos a las pérdidas potenciales que incurririan esas empresas con un 95% de

confianza en un intervalo mensual.

Aunque estos requerimientos fueron concebidos como recortes que las empresas debian
hacer, lo que la SEC estaba pidiendo era la estimacion de un VaR mensual de las
posibles pérdidas con una confianza del 95%. Con estas nuevas necesidades de
informacion tan concretas, las firmas financieras mas importantes comenzaron el
desarrollo de técnicas especificas para el calculo de estas reservas. JP Morgan fue la
primera compafiia en desarrollarlas introduciendo el método "RiskMetrics" para

"describir la medida del riesgo que surge de los datos financieros".

Los requerimientos estipulados por la SEC en materia de garantias a las entidades
bancarias no fueron las Unicas medidas que se tomaron para la gestion de riesgos en

dichas firmas financieras a nivel mundial. En 1974 se cred el "Comité de Basilea"



compuesto por los representantes de los bancos centrales de los diez paises mas
industrializados del mundo, aunque en la actualidad estan representados 13 paises,
incluida Espafia con pleno derecho desde 2001. El objetivo de la creacidn de este comité
fue, y sigue siendo, "el fortalecimiento de la regulacion, la supervision y las practicas de
los bancos de todo el mundo con el propdsito de mejorarla estabilidad financiera. Para
ello, proporciona un foro para el intercambio de informacion en materia de supervision
y mediante la formulacion de normas y directrices de supervisién para promover la
estabilidad financiera mundial”, segun lo recogido en la pagina WEB oficial de dicha

organizacion.

La creacion del Comité de Basilea supuso el compromiso internacional por una
regulacion mas exhaustiva de las actividades llevadas a cabo en las instituciones
financieras, en particular sobre los riesgos que éstas estaban dispuestas a soportar. En
1988 se publico el acuerdo Basilea |, donde se recogian recomendaciones a las
entidades financieras sobre el calculo de un capital minimo en balance, que se debiera
mantener en balance, que cubriera los riesgos de mercado, de crédito y de tipo de
cambio que estas empresas pudieran soportar en un futuro. Posteriormente, en 2004 se
publicé la segunda parte de dicho acuerdo, llamado Basilea 1l, donde se incorporaron
algunos términos como, por ejemplo, el célculo de la pérdida mediante cuantiles, en sus
recomendaciones para el calculo de la reserva que cubra esos riesgos descritos en el
primer acuerdo, que recuerdan a las garantias exigidas por la SEC en Estados Unidos en

los afios 80.

Como ya se ha podido observar, la necesidad de control de las entidades financieras ha
Ilevado al desarrollo de medidas, entre otras el Valor de Riesgo, para poder medir con
mayor o menor precision, en funcion del grado de complejidad que se asuma en las
estimaciones, el riesgo al menos de mercado de las diferentes posiciones financieras que
se encuentran en un mercado financiero global como es el actual. Tras comprobar que el
VaR no tenia como Unica utilidad el calculo de las previsiones que requeria la SEC y los
acuerdos conseguidos por el Comité de Basilea, sino que podia ser una eficaz
herramienta en la estimacion del riesgo de cualquier activo financiero, las empresas
financieras comenzaron a utilizarlo como medida de gestion del riesgo para todas sus
actividades. Incluso hoy en dia se ha instaurado en organizaciones para medir el riesgo
de mercado, no solo de carteras de inversion, sino de otros aspectos de la actividad

empresarial. Antes de analizar la utilidad que se da hoy en dia al VaR, y la importancia
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que tiene en la actividad empresarial, en el proximo apartado se detallan tanto su
significado como los elementos que lo componen, para, mas adelante, ir analizando en

profundidad su estructura en cada uno de los métodos que existen para calcularlo.
2.2. SIGNIFICADO Y ELEMENTOS DEL VaR

Incluso desde la época en la que Markowitz desarrollaba su teoria de seleccion de
carteras, la técnica mas utilizada para medir el riesgo de mercado en activos financieros
ha sido la desviacion tipica, ya que representa la dispersion de las observaciones con
respecto a su valor medio; en otras palabras, el riesgo de volatilidad de un activo
financiero. Sin embargo, en la informacién que ofrece la desviacidn tipica estan
incluidas tanto las pérdidas como las ganancias, por lo que no siempre se vera como una
medida del riesgo, ya que trata las dos colas de la distribucion por igual. De esta forma
surgié el VaR, para dar una respuesta mas centrada en el riesgo de las peérdidas
potenciales, centrandose en los valores negativos de la rentabilidad o pérdidas en lugar

de en los valores positivos 0 ganancias.

Para hacerse una idea de qué es el VaR y su utilidad, es interesante formularse la
siguiente pregunta, ;cuanto se puede perder, como méaximo, al invertir en un activo
financiero, o una cartera formada por varios activos, dados un horizonte temporal y una
probabilidad de ocurrencia? La respuesta a esa pregunta es lo que se conoce como Valor
de Riesgo, y es una medida estadistica del riego de mercado, ya sea de una inversién
particular o una cartera de inversion formada por varios activos financieros, que denota
la posible pérdida maxima derivada de esas inversiones en términos absolutos o

porcentuales con una probabilidad de ocurrencia y un horizonte temporal establecidos.

Una definicion més formal es la que proporcionan Zalbidegoitia y Abasolo (2011), "una
medida que representa un dato de pérdidas potenciales en circunstancias normales. Es
el limite de pérdidas potenciales de un periodo temporal determinado (por ejemplo en
un dia) que esta incluido en un porcentaje determinado de las ocasiones (habitualmente
el 95%). Este porcentaje se corresponde estadisticamente con el intervalo de
confianza™. Es muy importante el concepto de "en circunstancias normales”, ya que
como se ird viendo en sucesivos apartados, en la mayoria de los casos, el VaR esta
calculado suponiendo normalidad en la distribucion de las rentabilidades de los activos

financieros, cuando la realidad es muy diferente. Matematicamente el Valor de Riesgo
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de un activo financiero para un nivel de confianza 1-a (0<a<1) viene dado por el valor

VaR; tal que
P(nS -VaRt,a“t.l) =a

donde r; es la rentabilidad del activo financiero y I; denota la informacion disponible

hasta el periodo t, es decir, -VaR; es el cuantil o de la distribucion condicional ril;.;.

De la misma definicion se pueden obtener los elementos fundamentales que componen
el VaR: el primero de ellos es la inversidn, o inversiones para las que se desea calcular
el riesgo de mercado. El segundo elemento es el periodo de tiempo, el VaR puede
calcularse en torno a cualquier intervalo de tiempo, aunque, seglin el profesor
Mascarefias (2008), "la idoneidad del mismo dependera de la actividad de la cartera de
inversion, siendo preferible un VaR mensual para aquellas con un nivel mas bajo de
actividad, y un VaR diario para carteras mucho mas activas en los mercados
financieros”. El tercer elemento es el nivel de confianza, en términos mas concretos, se
trata de la probabilidad de incurrir en unas pérdidas tan grandes como las que sefiala el
VaR, los dos méas utilizados son el 95% y el 99% aunque no significa que siempre se
tenga que recurrir a ambos porcentajes, siendo también bastante interesante el 99.9%.
Finalmente, el ultimo elemento que forma la estimacion del VaR es la pérdida maxima.
Esta pérdida se puede expresar en términos porcentuales 0 monetarios, y representa el
resultado final de la estimacion del riesgo. Es interesante observar como la
interpretacion de los resultados obtenidos puede ser de dos tipos, ya sea observando la
cantidad o porcentaje estimado de pérdida con un nivel de confianza determinado, o
bien el nimero de dias, semanas, meses... que se incurrird unas pérdidas al menos tan
grandes como el valor estimado por el VaR, lo que le proporciona un aspecto bastante
visual a la hora de interpretacion de resultados.

Una de las hipotesis mas comunes para su estimacion es la distribucién normal para
explicar las rentabilidades de un activo financiero. La figura 2.1 lo representa
graficamente donde se puede observar la funcion de densidad de esta distribucion donde
se representan las frecuencias de las rentabilidades de un activo financiero. La parte
sombreada de la distribucion representa el nivel de confianza utilizado para su célculo, y
la diferencia entre la esperanza de esas rentabilidades y el valor en ese nivel de

ocurrencia es propiamente dicho el valor del VVaR. Es habitual atribuir un valor de cero a
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la media de rentabilidades cuando los datos son diarios y, en este caso, el VaR es la
diferencia entre cero y el valor que resulte de aplicar ese nivel de confianza.

4
Desviacion \
Estandar .
' "\ Dismbucion d= Retomes
1
\
N/
- 1.643%ds \ /
_\_.., /
\ Value at Risk

Fetomo Esperade
Figura 2.1: Representacion gréfica del VaR
Fuente: "Value at Risk: Teoria y Aplicaciones" Christian A. Johnson (2001)

Como un avance sobre la estimacion de este Valor de Riesgo, se puede decir que la
mayor complejidad en sus calculos, no es su obtencion una vez delimitada su
distribucion de frecuencias, ya que en funcion del grado de confianza requerido el
procedimiento es buscar un cuantil determinado, sino delimitar esa distribucion, y es

este uno de los aspectos en los que el presente trabajo va a profundizar.
2.3. IMPORTANCIA Y UTILIDAD

El uso y la necesidad del VaR como medida de riesgo para las entidades financieras es
un hecho tras las medidas impuestas por la SEC en primera instancia, y por la
implantacion internacional de los acuerdos de Basilea en regulacion bancaria que vino a
continuacion. Sin embargo, las utilidades que actualmente se le atribuyen a esta
estimacion del riesgo de mercado son cada vez mayores. De hecho, Luque (2006)
advierte que se ha llegado a crear una categoria de fondos de inversion llamados "de
gestion por VaR", en los que no importa el tipo de activo en los que se invierte sino que
la pérdida maxima no supere un valor determinado estipulado en el folleto del fondo de
inversion, y el estilo de gestion de los mismos no es otro que el de basar las decisiones
de abrir o cerrar posiciones en funcion de las estimaciones del VaR de los activos

analizados.
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Este cambio en la utilizacion de esta herramienta de gestion de riesgos como medida
obligatoria por las entidades financieras méas grandes, al uso general que actualmente
tiene en el mundo financiero, se debe en parte a las ventajas que aporta su uso cotidiano
en una gestion del riesgo a un nivel diferente al que imponia la SEC o Basilea. Segun
Jara y Melgar (2007), las utilidades o ventajas de esta herramienta de medicion de
riesgos son dos; en primer lugar, la obtencidén de informacién, ya que se trata de un
indicador facil de interpretar por su expresion en términos monetarios o porcentuales,
ademas de tener la ventaja de poderse utilizar en la medicion del riesgo de cualquier
activo financiero; y en segundo lugar, la gestion de riesgos, ya que puede utilizarse para

fijar limites en el riesgo que un inversor esta dispuesto a soportar.

Teniendo en cuenta las ventajas que aporta el VaR en términos de gestion del riesgo,
han sido muchas las investigaciones que se han llevado a cabo para hacer evolucionar
esta herramienta, existiendo numerosos métodos para su estimacion y calculo, de los

cuales se hablara en profundidad més adelante.
2.4. LIMITACIONES DEL VAR

Después de conocer las ventajas y el por qué es tan popular en la gestion de riesgos, es
conveniente hacer un analisis cualitativo de qué posibles limitaciones se presentan tanto

en su obtencion como en la interpretacion de los resultados.

Damodaran (2005) describe tres tipos de limitaciones; en primer lugar habla de la
posibilidad de que la estimacion no sea la correcta debido a algunos de los siguientes

factores:

e La hipdtesis en la distribucion de rentabilidades no es la adecuada; si esto sucede
la estimacion del riesgo resultante del VaR sera incorrecta. Como se vera en el
siguiente apartado existen diferentes formas de estimar el VaR, y cada una de
ellas asume una distribucion distinta.

e La historia de la serie de rentabilidades de un activo puede no ser util a la hora
de predecir: todos los modelos de estimacion del VaR utilizan datos histéricos
en mayor o menor medida, y dependiendo del horizonte temporal muestral y las
caracteristicas del mismo se pueden subestimar determinados aspectos como la

volatilidad que puede hacer fallar la prediccion.
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En segundo lugar, el VVaR se centra en la medicion Unicamente en el riesgo de mercado,
entendiendo como tal la probabilidad de incurrir en pérdidas como consecuencia de las
variaciones de los precios de los activos en cartera, dejando sin tratar otros tipos de
riesgos como son los riesgos politicos, de liquidez y legales por citar algunos. En
definitiva, en el caso de gestionar el riesgo de una cartera de inversion, es aconsejable
no utilizar en exclusiva el VaR para ello, sino tratar de analizar el riesgo de manera

conjunta con otras técnicas, quizas, mas cualitativas.

Ademas, aunque la estimacion del riesgo obtenida sea la correcta, esto no significa que
los encargados de tomar decisiones elijan aquellas que resulten 6ptimas para la empresa,
o0 para el cliente al que gestionan su patrimonio. A esta afirmacion llegaron Basak y
Shapiro(2001) tras realizar un estudio sobre los efectos que tenia el uso de técnicas
estadisticas en medicion de riesgos, como el VaR, en la actitud de los gestores en los
mercados financieros. Concluyendo que aquellos gestores que miden su grado de
aversion al riesgo exclusivamente con el VaR, a menudo invierten en activos mas
arriesgados que aquellos que no lo usan, tal vez por la simplicidad y la facilidad de
interpretacion del mismo a la hora de tomar decisiones, lo que hace que esas decisiones
se conviertan en sistematicas y que no se tengan en cuenta otras medidas de riesgos,

como se ha dicho anteriormente, mas cualitativas.

Finalmente, el VaR no verifica la propiedad de sub-aditividad por la que si (X, Y) son
los rendimientos de dos activos financieros y p es una medida de riesgo entonces p( X +
Y ) <p (X) + p(Y) lo cual implica que cuanto mayor diversificadas estén las carteras de
inversion, menor seré el riesgo de mercado de las mismas (Artnez et al., 1997). Por esta
razén, en la literatura se han propuesto diversas alternativas para remediar este hecho
que contradice a la teoria financiera. Una de ellas es la que se conoce con el nombre de
Déficit Esperado o ES por sus siglas en inglés (Expected Shortfall), que se define como
la esperanza matematica de la pérdida en la que incurre un activo financiero cuando

toma valores menos o iguales que el valor de riesgo, es decir, en términos matematicos:
ESto = -E[ril-1,r=-VaRyd]

Esta medida de riesgo se desarroll6 ademéas para tratar otro de los problemas que
acomparia al VaR, el comportamiento de las colas de la distribucion una vez superado el

nivel que éste devuelve. La figura 2.2 identifica este problema a la perfeccion, en ella se
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pueden observar las funciones de densidad de dos variables aleatorias de pérdidas que
se comportan de igual forma hasta el cuantil del VVaR, pero a partir de ese punto la que
es representada por la linea de puntos se observa mucho mas arriesgada en términos de

unas posibles pérdidas méas grandes.
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Figura 2.2: Funciones de densidad de dos variables aleatorias de pérdidas que

tienen el mismo VaR pero distintas implicaciones de las pérdidas.
Fuente: "An Introduction to Analysis of Financial Data with R" (Ruey S. Tsay) 2013
3. METODOS DE CALCULO DEL VaR Y EL ES

Aunque en la literatura relacionada con el Valor de Riesgo existen varios métodos para
calcularlo, los dos que se pueden considerar mas basicos son los denominados "Método
histérico” y "Método varianza-covarianza"”, siendo el método mas utilizado en la
literatura el llamado "Método econométrico™ que se basa en la utilizacién explicita de

un modelo que describa la evolucion de la serie financiera a lo largo del tiempo.

Los dos primeros metodos presentan determinadas caracteristicas que hacen que las
estimaciones obtenidas del VaR no sean, quizas, demasiado realistas, por lo que seran
analizados a continuacion de forma mas simple indicando los posibles fallos que
pudieran tener, afiadiendo un ejemplo del célculo del riesgo de mercado en ambos para
la serie de rentabilidades diarias del indice IBEX35, con observaciones disponibles
desde enero de 2007.
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3.1 METODO HISTORICO

La base que hay detras de este primer método es la creencia de que el futuro de la serie
financiera se va a comportar como ya lo ha hecho en el pasado, lo que como bien se ha
observado en numerosas ocasiones no es del todo cierto, haciendo de éste su principal

defecto a la hora de la prediccidn de riesgos en activos financieros.

Este método utiliza los datos historicos disponibles para anticipar los factores de riesgo
en vez de suponer una distribucion en concreto, primero reorganiza los rendimientos
historicos previos al periodo actual, ordendndolos de menor a mayor, para a
continuacion construir la funcion de distribucion de frecuencias de la serie y calcular el
VaR como el cuantil correspondiente a dichos datos en funcion del nivel de confianza

requerido.

La ventaja fundamental de este método radica en que no realiza ninguna hipotesis
acerca de la distribucion que siguen las series financieras, por lo que todo el peso de las
predicciones recae en la informacion disponible hasta la fecha. Sin embargo, puede
resultar complicado elegir la ventana temporal adecuada en concepto de informacion
historica utilizada en la estimacion de valores de riesgo, ya que si se utiliza demasiada
informacion en la construccion de la distribucion de frecuencias el resultado puede estar
condicionado a sucesos pasados con mucha anterioridad pero si utiliza una ventana
demasiado pequefia puede hacerse demasiado irregular e impreciso debido al escaso

tamafio muestral seleccionado para su estimacion.

Comenzando con el ejemplo del VaR diario al 95% y 99% de confianza del IBEX35, la
figura 3.1 representa el histograma de las rentabilidades diarias de la serie, mientras que
la figura 3.2 ordena esos mismos datos de menor a mayor y los distribuye en percentiles
obteniendo asi la funcion de distribucion de frecuencias que se observa en el gréfico.

Como se puede observar en esta ultima figura, la linea verde denota el valor del VaR
para una confianza del 95%, exactamente el percentil 95 devuelve aproximadamente un
-2.695% de rentabilidad, o lo que es lo mismo, el IBEX35 s6lo perdera mas de un
2.695% el 5% de los dias, o un dia de cada mes. La linea roja hace lo mismo para un
nivel de confianza del 99%, obteniendo un VaR aproximado en el percentil 99 de -
4.717%, es obvio que conforme se aumente el nivel de confianza exigido el valor

devuelto serd también mayor.
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Figura 3.1: Histograma de frecuencias de rentabilidades de IBEX35

Fuente: Elaboracion propia a partir de datos proporcionados por YahooFinance
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Figura 3.2: Percentiles de la distribucion de frecuencias de IBEX35
Fuente: Elaboracion propia a partir de datos proporcionados por YahooFinance
3.2. METODO VARIANZA COVARIANZA

A diferencia del método anterior, por el que se asume que el futuro va a depender
enteramente de los datos pasados de la muestra, y por tanto no se presuponia ninguna
distribucion estocéstica en la serie de rentabilidades del activo financiero, en el método
varianza-covarianza, o también Ilamado delta-normal, se supone que los rendimientos
del activo se distribuyen de acuerdo a la distribucion normal. Esta afirmacion resulta
muy Util en tanto que simplemente es necesario conocer el rendimiento esperado y la
desviacion tipica de la serie para representar su distribucion de frecuencias y, por tanto,

obtener el valor del VVaR requerido.
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Sin embargo, aunque esta afirmacion aporta simplicidad al calculo del VaR, la realidad
es muy diferente a la que se asume en este método, ya que suele ocurrir que cuanto mas
alta es la frecuencia de observacion de la serie, mas leptocurtica es, rechazandose la
hipdtesis de normalidad. No ocurre lo mismo si la frecuencia de observacion es mas
baja (quincenal, mensual) debido a que las series de rentabilidades con frecuencias méas
bajas se obtienen como suma de series de rentabilidades con frecuencias mas altas en la
observacion de los datos, por lo que aplicando el Teorema Central del Limite su
distribucion se aproximard a una distribucion normal con independencia de la

distribucién de las variables.

Siguiendo con el ejemplo del método anterior donde se analiza el riesgo diario del
IBEX35, la forma de obtener el VaR mediante el método varianza-covarianza es
practicamente la misma, e incluso mas simple en los calculos ya que se asume la normal
como la distribucion donde obtener los percentiles 95 y 99. La tabla 3.1 representa los
valores del VaR para una distribucion N(u,o) para unos niveles de confianza del 95 y

99 por ciento.

Tabla 3.1: Distribucién normal para niveles de 95y 99 %

Nivel de confianza -VaR
95% (alto) p-1,65 x o
99% (muy alto) u-2,33 x 6

Fuente: "Introduccion al VaR" Juan Mascarefias
De esta forma la obtencion del VaR es automatica si se conocen la media y desviacion
tipica de la muestra de datos historica, que en el caso del IBEX35 diario desde 2007 son
0,003217% y 1,657274% respectivamente, por lo que aplicando un sencillo célculo en
la tabla 3.2 se obtienen los VVaR para el IBEX35 de 2,7313% y 3,8582% dependiendo de

los niveles de confianza de 95% y 99% respectivamente:

Tabla 3.2: Obtencion del VaR sobre el IBEX35 con 95% y 99% de confianza:

Nivel de confianza -VaR
95% (alto) 0,003217% - 1,65 x 1,657274% = -2,7313%
99% (muy alto) 0,003217% - 2,33 x 1,657274% = -3,8582%

Fuente: Elaboracidn propia
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Para la representacién grafica de ambos valores, la figura 3.3 dibuja el histograma de la
serie diaria del IBEX35 desde 2007 superpuesta la linea que representa una distribucién
normal con la media y la desviacion tipica de la serie representada. En dicha figura la
linea verde representa el valor del VVaR para un nivel de confianza del 95% mientras que
la linea roja lo hace para el 99%. Como se puede observar la distribucion de las
rentabilidades diarias es mas leptocdrtica que la normal (el test de Jarque-Bera rechaza
la hipdtesis de normalidad debido a que el coeficiente de curtosis es igual a 5,4845) y

de ahi la falta de validez de este método para frecuencias altas.

Q00 005 040 015 020 025 030 035

N

10 5 0 5 10 15
Figura 3.3: Histograma del IBEX35 diario y funcion de densidad de la normal con

la misma media y desviacion tipica que los datos
Fuente: Elaboracion propia. Datos: YahooFinance

Sin embargo si disminuimos la frecuencia de observacion aumenta el grado de
normalidad de la serie. Asi, la figura 3.4 representa el histograma de frecuencias de la
rentabilidad mensual del IBEX35, incorporando ademas la funcién de distribucion de
una normal con la media y desviacion tipica de la serie. Como se puede observar, las
diferencias han disminuido (el coeficiente de asimetria de Fisher vale -0,3174, el de
curtosis 0,6647 y el test de Jarque Bera no rechaza la hipétesis nula de normalidad).
Ello es debido a que cuando disminuye la frecuencia de observacion, la rentabilidad se
calcula como suma de rentabilidades diarias y, aplicando el TCL, tiende a la

normalidad.
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Figura 3.4: Histograma del IBEX35 mensual y funcion de densidad de la normal

con la misma media y desviacion tipica que los datos

Fuente: Elaboracién propia. Datos: YahooFinance
3.3. METODOS ECONOMETRICOS

El ultimo de los métodos analizados en este trabajo para el calculo de valores de riesgo
y ES es el llamado método econométrico, por el que los valores observados de las series
temporales son considerados como resultado de un proceso estocastico, y se basan en la
utilizacién de un modelo econométrico para describir dicho proceso. En la literatura
existen diferentes modelos con este fin, aunque en este apartado se va a hacer especial
mencion a los modelos ARMA-GARCH, debido a que son los mas utilizados en

modelizacién de series financieras.

Como avance del caso de estudio a realizar en posteriores apartados, se va a analizar
ademéas la metodologia existente en la literatura para modelar diferentes series de
rentabilidades, como son los procesos ARIMA, GARCH y APARCH. Ademas de
comprobar la influencia que tiene en la estimacion de valores de riesgo la distribucién
de las innovaciones en los modelos generados, como pueden ser la normal, la normal
asimetrica, la t de Student, la t de Student asimétrica, la exponencial generalizada

(GED) y la exponencial generalizada asimétrica (SGED).
3.3.1 Proceso estocastico estacionario

Antes de tratar de modelar series temporales, es imprescindible saber lo que se conoce

como proceso estocastico. Segun Gonzalez (2009), un proceso estocastico se puede
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definir como "una familia de variables aleatorias que, en general, estan relacionadas
entre si y siguen una ley de distribucion conjunta”, ademas "en el marco estadistico de
los procesos estocasticos, una serie temporal se puede interpretar como una realizacion
muestral de un proceso estocastico que se observa Unicamente para un nimero finito de
periodos”. Esa es precisamente la diferencia entre un proceso estocastico y una serie
temporal como pueden ser los precios de un determinado indice, mientras que el
primero se trata de la ley de distribucion de una determinada variable aleatoria, la serie
temporal es la apertura de una ventana en el tiempo de todo ese proceso estocastico

subyacente.

En el analisis de series temporales, el objetivo es utilizar la teoria sobre procesos
estocasticos para caracterizar el comportamiento de la serie y predecir el futuro de la
misma, aplicado a la gestion de riesgos nuestro objetivo seria obtener unas estimaciones
lo mas consistentes posibles acerca del comportamiento de la funcion de distribucion de
frecuencias para predecir valores de riesgos futuros. Para poder conseguirlo es necesario
que la estructura de probabilidad del proceso estocastico sea estable en el tiempo, y aqui

aparece lo que se denomina proceso estocastico estacionario.
3.3.2 Estacionariedad

El concepto de estacionariedad tiene dos alcances, en sentido estricto y en sentido débil,
el primero de ellos tiene que ver con la invariabilidad del proceso estocastico a lo largo
de todo el eje temporal, mientras que el segundo trata de la invariabilidad de algunos de
los momentos del proceso, atendiendo particularmente a la estacionariedad de 2° orden
que suponen que los momentos de orden 1 (media) y orden 2 (varianzas y covarianzas)
dependen del nimero de periodos de tiempo que separan dos observaciones del proceso.
Ademas, es conocido que si un proceso es estacionario de 2° orden y gaussiano (es
decir, todas sus distribuciones marginales son normales) se puede afirmar que también

lo sera en sentido estricto.

Ventaja de los procesos estacionarios: permiten agregar informacién proporcionada por
diversos periodos para estimar las caracteristicas del proceso que son invariantes a lo

largo del tiempo.
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3.3.3 Modelos ARIMA

Sea {Y t=1,....,T} una serie financiera. Se dice que Y viene descrita por proceso

ARIMA (p,d,q) si su evolucién a lo largo del tiempo es descrita por la expresion:
dy —
AYi= n+ Ut
Ut = QU1+ ...+ PpUt-p + 016 ...+ qut-q + & 8t| |t_1 ~ RB(O,GZ)

donde A es el operador diferencia definido por AY; = Y-Yi1 y A%y = A(A"YYY) para d>2
y RB(0,6%) denota ruido blanco débil homocedastico con media 0 y varianza c2. Por
tanto, si la serie es diferenciada d veces el proceso resultante es un proceso estacionario
ARMA(p,q) para lo cual hay que exigir, adicionalmente, que las raices del polinomio
caracteristico de la parte autorregresiva del modelo, 1-¢iX - ... -ppx®, tengan un médulo
mayor que 1, y que, ademas, sea invertible, para lo que serd necesario que las raices del
polinomio de la parte media movil, 1+6;x+ ... + 04x? tengan también un médulo mayor

que 1.
3.3.4 Modelos GARCH

Los modelos GARCH representan el desarrollo de los modelos ARIMA vistos
anteriormente para tratar de modelizar una varianza que se suponia constante en el

tiempo pero que no lo es en muchas series financieras.

Engle (1982) fue el primero que propuso modelizar la varianza a través de un proceso
autorregresivo de orden m de los cuadrados de la serie (de ahi el nombre de ARCH). Sin
embargo se vieron algunas debilidades de estos modelos, como apunta Arce (1998) uno
de los inconvenientes que tiene este tipo de modelizacién es la posibilidad de que sea
necesario un nimero muy elevado de parametros para una correcta especificacion,
Ilevando a un engorroso nimero de iteraciones para alcanzar una solucion, e incluso

siendo a veces imposible obtenerla.

Para solucionar este problema Bollerslev (1986) propuso la generalizacion de los
modelos de Engle mediante la inclusion de valores pasados de la varianza en la
ecuacion de explicacion de la misma. A estos modelos los Ilamé GARCH (Generalized
AutoRegressive Conditional Heterocedasticity por sus siglas en inglés), y la siguiente

ecuacion representa este modelo para unos 6rdenes my s cualquiera:
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Yi=p+&
2 - 2 2
8t||t-1~ D (0, Gt ) ; Gzt - (D+ (118t-1 + .es + amgt-m + B]_Gzt-]_ + ...+ Bstt.s

con >0, a;>0; i=1,...,m; B=0; j=1,...,s y donde D (O, csf) denota una distribucién de
media 0 y varianza c’. Diremos que Y; sigue un proceso GARCH(m,s) y, si s=0

tendremos un proceso ARCH(m). Observar que E[Y{l1] = n y V[Y{l1] = o2 por lo

que la serie Y ser& condicionalmente heterocedastica. La serie tendrd, ademas, varianza

incondicional finita si ast+ ... + am + B1 + ... + Bs<< 1Yy, en este caso, V[Y{] =

. Es interesante mencionar que cuanto mas se aproxime a la unidad la

suma de todos los a y B, el efecto heterocedastico serd mas persistente, de forma que el
impacto de un shock ¢ sobre la volatilidad o tendera a persistir a lo largo del tiempo;
ademas si los parametros B son elevados indicarian también persistencia de los valores
mas antiguos de la varianza en su estimacidon actual, mientras los pardmetros o

representan el efecto que tiene valores mas cercanos al valor de la volatilidad en 2.

La introduccion de estos modelos heterocedasticos desencadend la propuesta de muchas
ampliaciones de los mismos, e incluso se dispard su uso en todo el mundo. Bollerslev et
al. (1992) y Bera y Higgins (1993) llevaron a cabo estudios acerca del alcance que estos
nuevos modelos podian tener, concluyendo que habian eclipsado completamente a los
modelos ARIMA homocedasticos.

Uno de los méritos de estos autores fue el capturar la volatilidad con las mismas
herramientas utilizadas en la modelizacion de la media de series temporales, los
modelos ARIMA. De hecho, la ecuacion (4) demuestra que tras un modelo GARCH se
esconde un proceso ARMA, representandolo para la serie cuadratica de los residuos de

la serie en media:
e =0+Y"% (aq+ B)el; — Z?:l Bive—i + v (4)

donde v,= €% - 6% y m = max(p,q). Por lo que un modelo GARCH puede verse como

una aplicacion de la idea ARMA para la serie cuadrética 2.
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Ademas, las aplicaciones de estos modelos son completamente compatibles con la
modelizacion en media de los ARIMA, debido a que ambas partes son asintéticamente
independientes. Esto hace que los dos modelos se puedan combinar y crear los Ilamados
ARMA-GARCH, donde la identificacion de los modelos para las ecuaciones de la

media y de la varianza se realizan de forma independiente.

Las restricciones impuestas sobre los coeficientes de ambas ecuaciones no cambian en
absoluto en la especificacion de este modelo con respecto a los anteriores, por lo que
conserva todas las caracteristicas propias de los modelos ARIMA en media y de los

modelos GARCH en varianza.
3.3.5 Modelos APARCH

En los modelos GARCH se trataba de modelizar la varianza de la serie temporal, lo que
a la hora de evaluar el riesgo de mercado puede no ser la mejor medida de riesgo debido
a que en la varianza se encuentran tanto shocks negativos como positivos, mientras que
el riesgo de mercado no tiene ninguna connotacién positiva. Otra de las debilidades de
los modelos heterocedasticos de Bollerslev es que no recogen el Ilamado "leverage

effect" o efecto asimétrico en el sentido de que el impacto de los shocks & negativos

sobre la volatilidad o tienden a ser mayores que los de shocks &; positivos.

Como solucién a ambos problemas surgieron diversos modelos en la literatura de los
cuales los modelos APARCH ("AsymmetricPower ARCH Models" por sus siglas en
inglés) introducidos por Ding et al. (1993) son unos de los més utilizados. Estos
modelos tratan de modelizar la potencia & de la desviacion tipica, ademas de incluir un
parametro y que determina el signo y la cuantia del efecto asimétrico anterior, que en el
caso de ser positivo indicaria que el modelo recoge la existencia del efecto asimétrico de
la serie, ya que como se puede observar en la siguiente ecuacion, si el error es negativo
el resultado final de la 6 potencia de la desviacion tipica sera mayor, incrementando el

nivel de riesgo.
Yi=p+e  &lli~D(0,6%) ; o=t Yoi(|gea| yigr1)® + LBjc’t

Sin embargo, como ya se ha comentado, la familia de modelos asimétricos no acaba con
los APARCH, ya que se han desarrollado muchos otros para solucionar el problema de

la asimetria en las series temporales, entre ellos se pueden encontrar los modelos
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EGARCH de Nelson (1991), los GJR de Glosten et al. (1993) y Zakoian (1994), los
NGARCH de Engle y Ng. (1993) entre muchos otros.

3.3.6 Distribucion del término de error

Finalmente, en la modelizacion de series temporales financieras es muy importante
conocer la distribucion del error de los modelos, también Ilamadas innovaciones, con el
fin de recoger de una forma veraz las propiedades de dichas series, y por supuesto,
realizar mejores predicciones. Asi, Wong et al. (2012) advierten que "generalmente
hablando, el ajuste de los modelos de riesgo mejora conforme las propiedades de las
rentabilidades de acciones, ya sean la asimetria o las colas pesadas de las
innovaciones entre otros, se tienen en cuenta en la modelizacion". Por su parte, Chen et
al. (2012) realizan un estudio sobre el ajuste de diferentes tipos de modelos con distintas
distribuciones de las innovaciones y sus efectos en las predicciones que se hacian del
VaR en dos periodos distintos, pre y post la crisis financiera mundial de 2008-09,
concluyendo que ninguno de los modelos con los que se realizaron las estimaciones
actuo consistentemente bien, indicando que dependiendo del periodo analizado era mas
importante saber qué distribucion del error utilizar, ya que ahi radica una mejor

actuacion del modelo.

Ya que se ha demostrado que la eleccion de la distribucion del error es una parte
fundamental en la modelizacidn de series financieras, en especial en aquellos modelos
destinados al célculo o estimacion de valores de riesgo, en este trabajo se van a

proponer seis distintas distribuciones ademas de los modelos comentados anteriormente.

En primer lugar, y a modo de distribucion de referencia, se ha escogido la distribucion
normal ya que son muchas las afirmaciones que se realizan de que las series financieras
se distribuyen de acuerdo a esa distribucion. En segundo lugar, la t de Student aporta
alguna caracteristica que suele ser frecuente en series financieras con frecuencia de
observacion alta, esta caracteristica es una leptocurtosis elevada cuanto menor sea el
numero de grados de libertad usado en su formacion, es decir, un mayor peso de las
colas de la distribucién, es importante resaltar que si el nimero de grados de libertad
tiende a infinito la distribucion t de Student tendra la forma de una normal. Finalmente,
es interesante estudiar el efecto que puede tener una distribucion exponencial

generalizada (GED) en los modelos que se van a obtener, tiene como principal
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caracteristica la leptocurtosis si la potencia elegida es menor que 2, mientras que es
platicurtica si es mayor, siendo la distribucion normal un caso concreto de GED si la

potencia es igual a 2.

Y para finalizar, y dado que en muchas series financieras se aprecia la existencia de
asimetria negativa, es interesante comprobar como influye la asimetria en las series
financieras, por lo que se utilizaran las versiones asimétricas de las distribuciones
comentadas anteriormente para analizar este efecto en las estimaciones del VaR, lo que
reflejard la dependencia en las rentabilidades cuando se obtienen ganancias o pérdidas

no esperadas.

Para mostrar las caracteristicas de cada una de ellas de manera grafica, la figura 3.5
representa algunas de dichas distribuciones. La linea azul define la distribucion normal
estandar de media cero y desviacion tipica 1, mientras que la verde hace lo propio para
la t de Student de media cero, desviacion tipica 1 y 5 grados de libertad, mucho mas
apuntada y con unas colas mas pesadas, y finalmente la linea roja describe el
comportamiento de una GED, también leptocurtica con potencia 1. Ademas, aparecen
representadas sus formas asimétricas del mismo color con pardmetro de asimetria de 1.5

en todas ellas.
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Figura 3.5: Distribuciones normal, t de Student, GED y asimétricas:

Fuente: Elaboracién propia
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4. DATOS UTILIZADOS EN EL ANALISIS EMPIRICO

Los datos utilizados para este trabajo son las rentabilidades diarias de seis de los indices
de renta variable méas conocidos a nivel internacional. Se han elegido de forma que
simulen una cartera de inversion diversificada, con el objetivo de comprobar los efectos
de las estimaciones de valores de riesgo en funcion de los mercados financieros
elegidos. Los indices elegidos han sido, IBEX35, DAX30, EUROSTOXX50,
NIKKEI225, STI (indice de referencia en Singapur) y S&P500, siendo el rango de
observacion el mismo en cada uno de los seis, partiendo del comienzo de 2007 (2 de
enero) hasta el 15 de mayo de 2015.

Se ha optado por analizar las series de rentabilidades y no la de precios ya que las
primeras son estacionarias, lo que facilita la estimacién de modelos y el desarrollo de
toda la practica de series temporales. Las rentabilidades utilizadas en las estimaciones
han sido las rentabilidades continuas y no las simples, ya que proporcionan algunas
ventajas muy Utiles a la hora de tratar los datos muestrales. La siguiente ecuacién
muestra cdmo se han calculado dichas rentabilidades continuas, siendo P; el precio de

cierre diario de los diferentes indices:
= 100*|n(Pt/Pt.1)

Una de las ventajas de utilizar las rentabilidades continuas frente a las simples es la
amortiguacion del efecto de la volatilidad implicita en la serie, consiguiendo cambiar la
escala en la que trabajar, con lo que se podria disminuir el efecto que tienen los atipicos
en las estimaciones de los modelos en el caso de que los hubiera. La segunda ventaja
trata de la manejabilidad de los datos a la hora de hacer estimaciones. Esto es debido a
que en el caso de las rentabilidades simples multiperiodo, donde se trata de obtener una
rentabilidad entre espacios de tiempo superiores a 1, el resultado es una progresion
geométrica de rentabilidades intermedias. Mientras que en el caso de las continuas, por
las propiedades de los logaritmos, el resultado es una progresion aritmética, lo que
proporciona una mayor facilidad en el trabajo de los datos. La tabla 4.1 muestra los
resultados obtenidos al realizar un estudio estadistico-descriptivo de cada una de las
series analizadas, indicando con asterisco las medias, asimetrias y curtosis

significativas, mientras que la figura 4.1 las representa graficamente.

27



Tabla 4.1: Caracteristicas estadistico-descriptivas de las series analizadas

IBEX35 DAX30 EUROSTOXX50 NIKKEI225 S&P500 STI

Observaciones 2134 2135 2128 2064 2107 2128
Media -0,0112*  0,0252*% -0,0066 0,0062  0,0192*  -0,0060
_'?ﬁ)si‘(’:;ac'on 1,6514 1,4803 1,5489 1,6510 1,3837  1,2249
Asimetria 0,1461* 0,0526 0,0420 -0,5596*  -0,3192*  -0,1820*
Curtosis 5,4845%  6,1371* 5,4050* 7,0825%  95555%  6,2696%
Minimo -9,5859 -7,4335 -8,2079 12,1110  -9,4695  -8,6960
Maximo 13,4836 10,7974 10,4376 13,2346 10,9572  7,5305
Estadistico

Jarque-Bera 2690,02  3360,82 2598,51 5602,55 807186  3506,72
P valor 0,000 0,000 0,000 0,000 0,000 0,000

Fuente: Elaboracidn propia
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Figura 4.1: Representacion gréafica de las series analizadas

Fuente: Elaboracion propia
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El nimero de observaciones se encuentra en torno a 2100 en cada indice, esta diferencia
entre las series es debida a que los dias festivos en los que los mercados financieros no
cotizan son diferentes en cada pais, dando lugar a muestras de distinto tamafio. La
media de las rentabilidades de las series giran sobre el 0%, lo que concuerda con la
teoria del mercado eficiente. Sin embargo, algunas de ellas como el DAX alemén o el
S&P500 estadounidense destacan con una media significativamente positiva, siendo el
IBEX35 espafiol el caso opuesto con una media negativa algo significativa. Ademas, el
coeficiente de asimetria de Fisher desvela problemas de asimetria en particular en el
mercado japonés, y con menor fuerza en el S&P500 y el STI, siendo las tres series
asimétricas a izquierdas. Sin embargo, es la leptocurtosis el problema generalizado en
todas las series temporales, con todos los coeficientes de curtosis de Fisher superiores a
3. Este problema es debido, como ya se ha comentado con anterioridad, a la alta
frecuencia en la observacion de los datos. Finalmente, aparecen los estadisticos del test
de normalidad de Jarque-Bera junto a sus p valores. Ya que éstos se forman al juntar los
coeficientes de asimetria y curtosis de Fisher, era de esperar que se rechazara la
hipdtesis nula de normalidad en todos ellos taxativamente, siendo todas las series

leptocurticas y algunas de ellas asimétricas.
5. IDENTIFICACION Y ESTIMACION DE LOS MODELOS

En el proceso de obtencion de valores de riesgo por el método econométrico la correcta
identificacion y estimacion de los modelos representa una parte fundamental del mismo,
ya que un modelo infra o sobre parametrizado repercutird negativamente en las

estimaciones del VaR en forma de predicciones que no se ajustan a la serie modelizada.

En la literatura existen varios criterios de seleccion de modelos, los dos mas utilizados y
conocidos son los llamados AIC (Akaike Information Criterion)de Akaike (1973) y BIC
(Bayesian Information Criterion) de Schwarz (1978). En la seleccion de los modelos de
riesgo para los indices expuestos en el apartado anterior se ha utilizado el criterio
Bayesiano, ya que en su estimacion penaliza por sobreparametrizacién eligiendo
modelos méas simples. Ademas, Caballero (2011) advierte que el AIC no es
asintéticamente consistente, ya que elige el mismo numero de parametros para muestras

pequefas que para muestras grandes.
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Tabla 5.1: Estimacién de los modelos para cada serie

IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI
| Panel A: Modelos ARMA normales homocedasticos |
M -0,0112 0,0252 -0,0006 0,0192 0,0062 0,006
i} -0,7867** -0,1225**
07 -0,0697*
01 0,7504**
0. -0,0834
03 -0,0995*
| Panel B: Modelos ARMA Student asimétricos homocedésticos |
s} -0,0164 0,0200 -0,0157 0,0278 0,0147 0,0017
i} -0,7261** -0,0808**
7 -0,0027
01 0,6964**
0, -0,0578
03 -0,0353
v | 4,1234** 3,1424** 2,5307** 2,9900** 2,5770** 2,5116**
E | 0,9443** 0,9333** 0,9448** 0,9064** 0,9522** 0,9524**
| Panel C: Modelos ARMA-GARCH con errores normales |
I} 0,0419 0,0802** 0,0517* 0,0723** 0,0513 0,0280
o1 -0,0791**
© | 0,1394** 0,0373** 0,0504** 0,0417** 0,0634** 0,0058**
o 0,0377 0,0990** 0,1077** 0,0000 0,1225** 0,0910**
0 0,0366 0,1564**
03 0,0443
as | 0,0696*
B | 0,7604** 0,8838** 0,8713** 0,8147** 0,8534** 0,9064**
Panel D: Modelos ARMA-GARCH con errores no normales
STD SGED | GED |  SGED | GED SGED
s} 0,0411 0,0641** 0,0441 0,0656** 0,0622** 0,0217
i} -0,0957**
o | 0,0785** 0,0284** 0,0428** 0,0362** 0,0558** 0,0048*
o 0,0410 0,0949** 0,1001** 0,0000 0,1117** 0,0843**
0 0,0291 0,1660**
03 0,0284
04 0,0295
B | 0,8441** 0,8931** 0,8824** 0,8105** 0,8669** 0,9133**
v | 7,8810** 1,3245** 1,3701** 1,3016** 1,4822** 1,5483**
& 0,9277** 0,8721** 0,9143**
| Panel E: Modelos APARCH con errores normales |
M -0,0281 0,0176 -0,0245 0,0253 0,0096 0,0069
b1 -0,0716**
o | 0,0380** 0,0384** 0,0429** 0,0317** 0,0594** 0,0064**
a; | 0,0723** 0,0720** 0,0902** 0,0919** 0,1122** 0,0695**
y | 1,0000** 1,0000** 1,0000** 1,0000** 0,4090** 0,3788**
B | 0,9190** 0,9104** 0,9019** 0,9036** 0,8706** 0,9216**
5 | 1,0185** 1,1488** 0,9720** 0,9606** 1,2828** 1,8379**
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Panel F: Modelos APARCH con errores no normales

SGED SGED SGED SGED SSTD SGED
M -0,0266 0,0188 -0,0272 0,0238 0,0123 0,0062
i} -0,0838**
o | 0,0347** 0,0366** 0,0406** 0,0315** 0,0510** 0,0054**
a; | 0,0711** 0,0774** 0,0932** 0,1004** 0,0972** 0,0642**
Y 1,0000** 1,0000** 1,0000** 1,0000** 0,6307** 0,3888**
B. | 0,9218** 0,9091** 0,9041** 0,9013** 0,8897** 0,9287**
o 1,0308** 1,1182** 0,9131** 0,8999** 1,0543** 1,8015**
\% 1,5395** 1,4185** 1,5277** 1,3690** 10,0000** 1,5968**
& 0,8957** 0,9011** 0,9122** 0,8232** 0,8853** 0,9080**

Fuente: Elaboracion propia

En la tabla 5.1 se pueden observar cada uno de los modelos identificados para los seis
indices objeto de estudio, ademas de incluir los parametros estimados mediante el
método de la méxima verosimilitud indicando con un asterisco coeficientes
significativos al 95% y con dos al 99% segun el test t de significacion. Esta estimacion
trata de conseguir los valores de los parametros que hagan maxima la probabilidad de

obtener la muestra observada.

A efectos comparativos, se ha optado por estimar tres tipos de modelos diferentes: uno
homocedastico (ARMA), uno heterocedastico (GARCH) vy finalmente otro
heterocedastico que trate de capturar el posible efecto asimétrico de las series
identificado en el analisis descriptivo de las mismas en el apartado anterior (APARCH).
Ademas, en cada uno de ellos se ha propuesto que en primer lugar la distribucion del
error sea normal, y en segundo lugar que sea diferente, pudiendo ser cualquiera de las
analizadas en el apartado 3.3.6, es decir, normal asimétrica (SNORM), t de Student
(STD), t de Student asimétrica (SSTD), exponencial generalizada (GED) o exponencial
generalizada asimétrica (SGED). Los parametros de asimetria y curtosis de cada modelo
estan representados en la tabla 5.1 por "&" y "v" respectivamente, siendo un modelo méas
asimétrico cuanto mas diferente de 1 sea &, y mas parecido a la curtosis de la normal
cuanto mayor sean los grados de libertad v en las distribuciones Student y si v es igual a
2 en las GED.

De esta forma pretendemos analizar los efectos ejercidos por incorporar las hipétesis de
heterocedasticidad, efecto asimétrico y no normalidad de la distribucién del error al

modelo econométrico utilizado para calcular el VaR y el ES.
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El proceso seguido para la identificacion de cada uno de los modelos se ha basado, en
primer lugar obtener un modelo homocedastico que capture adecuadamente las
dependencias en media de las series mediante el analisis de correlogramas y el contraste
de Box-Ljung (ver Anexo I). En los correlogramas se estiman las dependencias de la
serie en t con sus k retardos, introduciendo dos bandas, superior e inferior, de
significacion, a partir de las cuales se considera que la dependencia en ese retardo en
individualmente significativa y debe tratarse introduciendo estructura determinista en la
ecuacion del modelo. El contraste de Box-Ljung trata de comprobar si esas
dependencias individuales son conjuntamente significativas, estableciendo la hipotesis

nula en que la serie no es dependiente de sus retardos.

En segundo lugar se ha estudiado la invariabilidad de la varianza con el tiempo
mediante los correlogramas de los residuos al cuadrado de los modelos estimados,
suponiendo que estos errores cuadraticos son un buen estimador de la varianza de la
serie, con el fin de encontrar dependencias que tratar mediante los modelos
heterocedasticos GARCH (ver Anexo Il). Ademas también se han llevado a cabo el
contraste de Box-Ljung y el test ARCH para estos errores cuadraticos, siendo la
finalidad de este Gltimo identificar parametros autorregresivos significativos que
expliquen la serie de esos residuos al cuadrado, establecida la hipétesis nula de ambos
en homocedasticidad en la serie. Al observar los correlogramas de los modelos GARCH
estimados no aparece practicamente ninguna dependencia en varianza, por lo que la

heterocedasticidad esta controlada en todos ellos.

En tercer lugar se ha comprobado como los modelos GARCH no recogen el efecto
asimétrico de las series, algo que si hacen los APARCH, mediante la funcion de
covarianzas cruzadas entre los residuos y los residuos cuadraticos de estos modelos,
(ver Anexo IllI). Si los valores que devuelve esta funcion sobrepasan las bandas de
significatividad, excepto en el retardo 0, indicard que existe un efecto asimétrico en el
modelo que no esta capturado, por lo que seria necesario estimar modelos APARCH
para ajustarse mejor a la serie. Como se puede observar, al estimar estos modelos
asimétricos se eliminan practicamente todos los valores significativos de estas

funciones, lo que indica que el efecto asimétrico se puede controlar con estos modelos.

Finalmente, se ha puesto a prueba el ajuste de las distribuciones del error, para ello se

han dibujado todos los graficos QQ y se ha llevado a cabo el contraste de Kolmogorov-
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Smirnov en todos los modelos. El grafico QQ trata de comparar los cuantiles de la serie
analizada con los que tendria la distribucion que se supone en cada caso representada
por una linea recta roja, incorporando ademas unas bandas de confianza para ver cuanto
se alejan los cuantiles de la serie. El test de Kolmogorov-Smirnov funciona de forma
similar, pero de manera mas cuantitativa, la hipotesis nula del contraste se establece
como que la distribucion de la serie es la misma que la que se supone en la serie. Al
comparar tanto el grafico QQ como el contraste en todos los modelos (ver Anexo 1V),
se puede afirmar, como ya se adelantaba en apartados anteriores, que la normal resulta
fallar como distribucion en todos y cada uno de los modelos estimados, siendo
distribuciones leptocurticas y asimétricas a izquierdas las que predominan en las

estimaciones.
Tabla 5.2: Valores de los criterios BIC para cada modelo estimado

(en negrita sefialados los mejores modelos para cada serie)

ARMA  ARMAnNo GARCH GARCH APARCH APARCH

Serie normal normal normal nonormal normal  no normal
IBEX35 3,884067 3,680664 3,607296 3,585610 3,558852 3,542312
DAX 3,621944  3,410210 3,313287 3,273016 3,270770 3,240869
EUROSTOXX50| 3,714375 3,537355 3,425770 3,392666 3,364289 3,347114
SP500 3,476122  3,117198 2,921978 2,863135 2,888786 2,830101
NIKKEI225 3,840212  3,630097 3,515190 3,498459 3,506091 3,487222
STI 3,243122  2,963854 2,699069 2,683608 2,687591 2,676345

Fuente: Elaboracion propia

Una vez analizados todos los graficos y contrastes de los modelos mencionados
anteriormente, el criterio para seleccionar modelos que aparentemente se ajustan de
igual forma a su serie ha sido seleccionar aquellos que presenten los menores valores
del BIC, ya que esto indica que el modelo estimado incorpora un mejor equilibrio entre
el ajuste a la serie y el niUmero de parametros necesario para ello. La tabla 5.2 devuelve
los valores del criterio BIC para cada uno de los modelos estimados, como se puede
observar, bajo este criterio el modelo que mejor se ajusta a sus respectivas series es
siempre un APARCH con errores no normales, debiendo incorporar la exponencial
generalizada asimétrica en todos los indices excepto en el japonés, donde es la Student
asimétrica la que mejor se ajusta a la serie. Estos resultados concuerdan con el analisis

estadistico-descriptivo realizado en apartados anteriores, poniendo de manifiesto la
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importancia intramuestral tanto de la hipdtesis de heterocedasticidad como del efecto
asimétrico y de la falta de normalidad en las distribuciones del error en cada modelo.

6. OBTENCION DE VALORES DE RIESGO Y ES

Con los modelos ya estimados, el proceso de obtencion de valores de riesgo y ES es
recurrente. Con el fin de poder evaluar las estimaciones obtenidas y al igual que en el
trabajo de Chen et al. (2012), se ha optado por calcularlos dentro de la muestra, es decir,
utilizar las altimas 400 observaciones para validar extramuestralmente el modelo vy el

resto para estimarlo.

El horizonte de prediccion establecido ha sido de un dia, ya que de esta forma se puede
utilizar la distribucion del error de cada modelo calculado sin necesidad de simular
valores para calcular el VaR, quedando la expresion matematica para su calculo segun

la ecuacion:

VaRHl,(x =- (?Hl +qdi5tt,cx6t+l)

donde Y,,=E[Y,,|l,]es la prediccion con horizonte 1 dia de la rentabilidad de la

serie, 6,,,= D(Yw1lly) es la desviacion tipica de la distribucion predictiva de la serie y

qdist; , es el cuantil o de la distribucién tipificada del error m ~D(0,1,vy, &).
t+1

El calculo del ES no es, general, trivial y en nuestro caso hemos optado por utilizar el

meétodo de Monte Carlo simulando {Yt(f};s :l....,loOOO} valores de Y1 a partir de la

10000 ©) ©
s s
Z Yt+1 I (Yt+l <-VaR t+1,00 )
1

10000

distribucion Yi.|l; y calculando ES; , =
Z I(Yt(ji <-VeR t+1,(x)
s=1

donde 1(A) denota la

funcién indicador que vale 1 si se verifica A y 0 en caso contrario.

Ademas, y siguiendo a Chen y otros (2011), para las estimaciones de ambas medidas de
riesgo se ha optado por utilizar un proceso "rolling”, que consiste en que cada nueva
estimacion de Y; y o, y por tanto del VaR y ES, se realiza teniendo en cuenta una

ventana dindmica de informacion de los ultimos 2000 datos, que va eliminando la
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informacion més antigua conforme las estimaciones se encuentran mas alejadas del

origen para afiadir los valores estimados mas recientes.

Siguiendo con la dindmica de los primeros apartados donde se ejemplificaba la
obtencion de valores de riesgo mediante los métodos mas simples, la tabla 6.1 devuelve
los VaRs y ES estimados a través de las técnicas descritas anteriormente para el
IBEX35 a 15 de Mayo de 2015, es decir, el Gltimo dia de la muestra, y para cada
modelo estimado. Ademas, los 400 ultimos valores de ambas medidas estan
representados en las figuras 6.2 y 6.3, donde la linea roja representa el 95% de
confianza y la verde el 99%. Los graficos de los VaR y ES de los demas indices se
pueden consultar en el Anexo (ver Anexo V).

Tabla 6.1: Valores de riesgo y ES calculados para los distintos modelos
identificados del IBEX35y el dia 15 de Mayo de 2015, en tanto por cien

ARMA ARMAnNo GARCH GARCHno APARCH APARCH

normal normal normal normal normal no normal
VaR g5 2,79176  2,607155 2,120740 2,015088 1,922487 1,996884
VaRgg 3,94279  4,691470  3,016302 3,143247  2,706307 3,017186
ES o5 3,54747  4,022324  2,678492 2,717097 2,384641 2,666023
ES g 455166  6,658094  3,435042  3,886605 3,057576 3,556526

Fuente: Elaboracién propia

Se observa en las representaciones graficas que, en general, los VaR y ES calculados
utilizando los modelos heterocedasticos muestran un comportamiento mas adaptativo a
las oscilaciones inferiores de de la serie merced a la dependencia temporal de la
volatilidad de los errores pasados de prediccion de la serie. En la seccién 7 analizamos

con mas detalle este fendmeno.
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Figura 6.2: Representacion de los VaR al 95 (linea roja) y 99% (linea verde)
predichos para las ultimas 400 observaciones de la serie del IBEX35

Fuente: Elaboracion propia.
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Figura 6.3: Representacion de los ES al 95 (linea roja) y 99% (linea verde)
predichos para las Gltimas 400 observaciones de la serie del IBEX35

Fuente: Elaboracion propia
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7. EVALUACION PREDICTIVA

En esta seccion se realiza una validacion predictiva extramuestral de los VaR y ES
calculados en la seccion anterior. En la literatura existen numerosos contrastes utiles a la
hora de evaluar la calidad de la prediccion de valores de riesgo y ES, en este caso se van
a utilizar el porcentaje de cubrimiento, los contrastes de Christoffersen, de Engle y
Manganelli, el ratio de violaciones, el coste estimado de oportunidad, la pérdida
absoluta, la funcion cuantil, el valor de penalizacion y las zonas de penalizacion del
Acuerdo de Basilea, que son algunos de los procedimientos de “Backtesting” utilizados

en la literatura(ver Chen et al., 2012 y Tsay, 2013 para més detalles).

En primer lugar, el porcentaje de cubrimiento no es otro que la relacion que existe entre
el nimero de veces que la prediccion del VaR o ES ha acertado y el total de las
observaciones, entendiendo como acierto que la rentabilidad de un activo financiero no
sea inferior al valor que devuelve una u otra medida. Se considerard que un modelo
predice el riesgo de forma correcta, si su ratio de cubrimiento es igual o similar al nivel

de confianza establecido.

Los contrastes de Christoffersen tratan de analizar mediante el test de razén de
verosimilitudes(LR) si la esperanza matematica de los fallos predictivos es igual a o,
tanto incondicional como condicionalmente. Ademas incluyen otro test LR para
comprobar si los fallos son independientes entre si o estan correlacionados, teniendo
entonces que capturar esa dependencia. Al contraste de cubrimiento incondicional se le
denota como UC, al de independencia IND, y al de cubrimiento condicional CC. En los
contrastes de cubrimiento la hip6tesis nula se establece como que los fallos son igual a

a, y en el de independencia que los fallos estan incorrelados.

El test de Engle y Manganelli (2004) intenta comprobar mediante una regresion de la
funcién de fallos del VaR o ES sobre sus valores retardados y otras covariables
relevantes, si los coeficientes B que explican dicha funcion son estadisticamente
significativos utilizando un test de la razon de verosimilitud. En nuestro caso utilizamos

el procedimiento descrito en Chen et al. (2011) quienes plantean la regresion:

I = a+ Xi=1 B le—r + Xi=1Pak 9Ue—ie) le—p—1, -+, Re—po Re—g—1, ) + Uy

donde se establece que g(ltx, ltk-1, - , Rtk Rkt -..) = VaRpk1 Y N=1.
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La hipdtesis nula en este caso es que dichos coeficientes son igual a cero, y por tanto el
cubrimiento es el esperado, no existiendo, ademas, dependencia entre los fallos de

prediccion del modelo. A este test de Engle y Manganelli se le denota como DQ.

El siguiente aspecto estudiado es el ratio de violaciones de cada modelo, el cual se
define como el cociente entre los porcentajes de fallos observados y esperados del
modelo, siendo el modelo perfecto aquel que tenga un ratio de violaciones igual a 1. Si
el ratio es superior (inferior) a 1 el modelo tiende a fallar en exceso (defecto) con

respecto al porcentaje de fallos esperado.

Segun los principios de Basilea es sumamente importante que las entidades financieras
doten un fondo de reserva para prevenir posibles pérdidas, sin embargo, también puede
ocurrir que las pérdidas sean superiores a las esperadas, y que un modelo espere siempre
pérdidas menores de las que realmente ocurren, lo que no puede calificarse como buen
modelo. De esta forma se ha calculado la pérdida absoluta media de todas aquellas
ocasiones en que la pérdida observada ha sido peor que la indicada por el VaR o ES la

cual viene dada en el caso del VaR por la expresion

Y por

T-1

Z (Yt+l + ES’HLa )I (Yt+1 2 _ESt+l,a)

t=T-400
T4
Z I(Yt+1 2 _ESH—l,a)

t=T-400

en el caso del ES, siendo un mejor modelo aquel que obtenga un menor valor en este

criterio.

Dado que no sélo es importante estimar bien las pérdidas maximas que pueden ocurrir,
sino que el provisionar demasiado puede suponer un coste de oportunidad a las
entidades financieras, se ha estimado dicho coste como el valor medio de las diferencias
en valor absoluto entre la rentabilidad observada en la serie y los valores de riesgo

estimados, siempre que esas estimaciones sean menores que los valores observados de
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la serie, es decir, que los modelos hayan acertado. Para ello se han utilizado las
expresiones:

T-1

Z (_ VaR t+lLa Yt+1 )I (Yt+l <-VaR t+l,(x)

t=T-400

T
Z I(Yt+l <-VaR t+l,u)

t=T-400

en el caso del VaR y por:

T-1

Z (_ ESI+1,0. - Yt+1 )I (Yt+1 < _ESHl,oc)

t=T—400
T-1
Z I(Yt+1 < _ESt+1,(x)

t=T-400

en el caso del ES, de forma que un modelo se considerard mejor que otro cuando su

coste de oportunidad sea menor.

Otro de los criterios para decidir hasta que punto un modelo predice de forma correcta
es el calculo de la funcién cuantil de cada modelo, obtenida de acuerdo a la ecuacién
T-1

Fe= 3 (Yo +VaR,,, —Jl-a-I(Y,, <-VaR,,,))

t=T-400

en el caso del VaR y por

T-1

FC= Z(YM + ESHl,a —Xl—OL - I(Yt+1 < _ESHl,(x ))
t=T-400
en el caso del ES. Se considerara que un modelo predice mejor valores de riesgo y ES
cuando el valor de esta funcion sea menor, ya que se puede comprobar que el valor

minimo de esta funcién se alcanza en el cuantil o de Yi1.

Uno de los criterios que Basilea recomienda a la hora de evaluar modelos de estimacion
de VaR y ES al 99% es lo que se denomina valor de penalizacion MRC ("Market Risk
Charge" por sus siglas en inglés). Esta medida se establece como el valor maximo entre
el VaR o ES del dia anterior, y la media de los VaR o ES de los ultimos 60 dias
multiplicado por un factor de penalizacion (3+k). Siendo un mejor modelo aquel que

devuelva un menor MRC.
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Finalmente, el segundo acuerdo de Basilea ofrece una guia basica para ayudar a las
entidades financieras a evaluar cbmo de importantes son las violaciones de los modelos
VaR, definiendo violaciones como el hecho de que se produzca una rentabilidad del
indice inferior al valor devuelto por el VaR. Esta ayuda se basa en la delimitacion de
tres zonas, verde, amarilla y roja, por las que eliminar posibles modelos de estimacion
del VaR y ES al 99%, indicando la verde un buen modelo, la amarilla un modelo peor

pero todavia aceptable, y la roja un modelo inaceptable.

Tabla 7.1: Zonas de penalizacion del acuerdo de Basilea, basadas en 588

observaciones con un nivel de confianza del 99%

Zona N° de violaciones Probabilidad Acumulada Mas factor k
Verde 0 0,0180 0,0000
1 0,0905 0,0000
2 0,2366 0,0000
3 0,4325 0,0000
4 0,6288 0,0000
5 0,7859 0,0000
6 0,8904 0,0000
7 0,9498 0,0000
Amarillo 8 0,9792 0,3982
9 0,9922 0,4814
10 0,9973 0,5608
11 0,9992 0,6371
12 0,9998 0,7107
Rojo 13 o mas 1,0000 1,0000

Fuente: "Forecasting VaR using non linear regression quantiles and the intra-day
range"”. Chen et al. (2012)

El criterio para incluir un modelo en una u otra zona se basa en el nimero de
violaciones, el nivel de confianza exigido y el tamafio muestral. Un ejemplo de cémo se
establecen los limites a la hora de clasificar un modelo en una u otra zona es el que
proporcionan Chen et al. (2012) en la tabla 7.1, en este caso se establece el 99% como
nivel de confianza y 588 las observaciones de la serie, como se puede observar, hasta
las 9 violaciones el modelo se consideraria adecuado, siendo a partir de las 10
violaciones cuando la calificacién pasa a ser mejorable, y es a partir de 17 violaciones
cuando el modelo no deberia ser utilizado en la medicion de riesgos. La segunda
columna indica la probabilidad de incurrir en un nimero determinado de violaciones o

menos, y el factor k es la penalizacion para el MRC basada en estas zonas.
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Todos estos contrastes han sido realizados para cada uno de los modelos de cada indice
a estudio, la tabla 7.2 devuelve los resultados de los mismos para la serie del IBEX35,
encontrandose los resultados de las demas series en el Anexo (ver Anexo VI). En esta
tabla se pueden ver en negrita aquellos contrastes que rechazan su hipétesis nula al
99%, ademas de subrayados una vez aquellos modelos que mejor se ajustan a la
prediccion de acuerdo a los diferentes criterios al 95% y dos veces al 99%, incluyendo

también el rechazo o no por parte de Basilea de los modelos.

Como se puede observar, en la serie del IBEX35 la mayoria de los modelos simples
ARMA son rechazados por los contrastes de cubrimiento y de Engle y Manganelli,
tanto para medidas de VaR como de ES, sin embargo Basilea los considera aptos por el
bajo nivel de violaciones. Esta caracteristica no es propia unicamente del indice espafiol,
sino que se transmite por todas las series estudiadas, rechazando casi todos los modelos
homocedasticos para la prediccion de valores de riesgo, incluso aquellos que incorporan
innovaciones distintas a la normal. Esto es debido a la poca adaptabilidad de las
previsiones a la volatilidad de la serie, siendo sus costes de oportunidad los mas altos de

todos los modelos y sus ratios de violaciones los mas distintos de la unidad.

Es importante mencionar que en los Acuerdos de Basilea se establece el 99% de
confianza como el nivel de significacion establecido a las entidades financieras para
realizar cualquier medicion de riesgos. Por esta razén en la literatura sélo aparecen
calculados los factores k de penalizacion a este nivel, por lo que en los contrastes
Ilevados a cabo de cada uno de los indices Unicamente se han podido obtener los valores
de MRC y las zonas de Basilea al 99%.

Si se rechazan los modelos en los que el p valor de los contrastes de Christoffersen, y
Engle y Manganelli es inferior al 1%, ademas de los que Basilea sitda en zona roja, los
modelos seleccionados que mejor predicen valores de riesgo pueden encontrarse en la
tabla 7.3. Para elegir entre varios que cumplan los requisitos mencionados se ha optado
por seleccionar aquel que tenga mas valores minimos de los demas contrastes, y si aun
asi no se puede elegir uno en concreto se ha evaluado la relacion entre todas las

magnitudes para escoger el mejor modelo.
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Tabla 7.2: Evaluacion predictiva de los modelos del IBEX35

Ratio

Pérdida

Coste de

Funcion

Cubrimiento  Pvalor UC  Pvalor IND  Pvalor CC DQ Violaciones absoluta spErTEe Cuantil MRC Zona
VaRgs ARMA NORMAL 98,25 0,0006 0,6171 0,0026 0,0016 0,3509 0,6479 2,9070 61,4303
VaRgg ARMA NORMAL 99,75 0,0721 0,9435 0,1979 0,2850 0,2506 0,0585 4,0128 16,0692 11,8191 Verde
VaRgs arma ssTD 97,99 0,0019 0,5672 0,0068 0,0108 0,4010 0,7755 2,6958 58,7310
VaRg9 ArMA ssTD 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 4,7407 18,9626 14,0390 Verde
VaRgs GarcH NORMAL 95,74 0,4874 0,2186 0,3686 0,3932 0,8521 0,7596 2,1742 53,9025
VIR enmas MemaAL 98,75 0,6249 0,7217 0,8328 0,7037 1,2531 0,6616 2,9466 14,9140 7,9713 Verde
VaRos garcH sTo 95,49 0,6490 0,1921 0,3851 0,7804 0,9023 0,7643 2,1225 53,6085
VaRgg garcH sTD 98,75 0,6249 0,7217 0,8328 0,8396 1,2531 0,4041 3,1430 14,4149 8,4715 Verde
VaRos apaRCH NORMAL 94,99 0,9908 0,1462 0,3479 0,7335 1,0025 0,6535 2,1734 53,7108
Vel Re senaas MernaaL 97,74 0,0304 0,5192 0,0780 0,1889 2,2556 0,3144 2,9197 14,2178 8,4706 Amarillo
VaRgs aparcH saeD 95,74 0,4874 0,2186 0,3686 0,4818 0,8521 0,6984 2,2310 54,0037
VaRsg aparcH sGeD 99,25 0,6024 0,8312 0,8535 0,3444 0,7519 0,4319 3,1951 13,9673 8,1087 Verde
ESos ARMA NORMAL 99,00 0,0000 0,7759 0,0001 0,0001 0,2005 0,2297 3,5932 72,0190
ESem mmnas memaL 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 4,5790 18,3161 13,5411 Verde
ESo5 ARMA sSTD 100,00 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000 4,0430 80,8608
ESsg ARMA $STD 100,00 0,0046 1,0000 0,0181 0,0456 0,0000 0,0000 6,7693 27,0773 19,8930 Verde
ESoqs GARCH NORMAL 97,49 0,0118 0,4733 0,0324 0,0959 0,5013 0,5841 2,6531 57,2841
ESq GARCH NORMAL 99,00 0,9960 0,7759 0,9603 0,9692 1,0025 0,3752 3,3635 14,8054 9,1558 Verde
ESg5 GARCH sTD 97,99 0,0019 0,5672 0,0068 0,0211 0,4010 0,6075 2,7568 58,6507
ESqq GaRCH sTD 99,75 0,0721 0,9435 0,1979 0,1748 0,2506 0,6125 3,8520 15,9759 10,4847 Verde
ESyTrre T o 96,99 0,0493 0,3883 0,0998 0,2618 0,6015 0,5082 2,6283 56,7819
ESqo APARCH NORMAL 99,50 0,2679 0,8871 0,5359 0,6637 0,5013 0,5253 3,2712 14,0597 8,3490 Verde
ESq5 ApARCH SGED 97,49 0,0118 0,4733 0,0324 0,0957 0,5013 0,3737 2,8403 58,9368
ESgo ApARCH SGED 99,75 0,0721 0,9435 0,1979 0,2715 0,2506 0,6522 3,7531 15,6206 9,5513 Verde

Fuente: Elaboracion propia.
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Tabla 7.3: Modelos que mejor predicen Valores de Riesgo para cada indice y nivel

de confianza

IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI
95% GARCH GARCH APARCH APARCH GARCH GARCH
STD normal normal normal SGED normal
99% APARCH GARCH APARCH GARCH APARCH APARCH
normal normal normal normal SSTD SGED

Fuente: Elaboracion propia.

Como se puede observar, hay bastante disparidad entre los modelos aceptados por el
VaR, tanto del modelo elegido como la distribucion del error escogida, teniendo la
Unica caracteristica en comun la necesidad de controlar el efecto producido por la

heterocedasticidad.

Tabla 7.4: Modelos que mejor predicen ES para cada indice y nivel de confianza

IBEX35 DAX EUROSTOXX50 SP500 NIKKEI225 STI
APARCH GARCH APARCH GARCH APARCH GARCH
95%
normal normal normal normal SSTD normal
99% APARCH APARCH APARCH GARCH APARCH GARCH
normal normal normal normal normal normal

Fuente: Elaboracion propia.

Siguiendo los mismos criterios de seleccion, la tabla 7.4 muestra los mejores modelos
para cada indice en términos de prediccion del ES. En este caso ningun modelo ARMA
ha vuelto a ser seleccionado, ademas, una coincidencia en todos los modelos excepto en
uno, es la eleccion de distribuciones normales para sus innovaciones, lo que contrasta
con el criterio de seleccién de modelos BIC, ya que éste apostaba en todos los casos por

modelos con errores no normales para un mejor ajuste a la serie.

8. CONCLUSIONES

El objetivo central del trabajo ha sido analizar el riesgo de incurrir en pérdidas elevadas
en series financieras utilizando modelos econométricos de la familia ARMA-GARCH.
Para ello se han calculado el Valor de Riesgo (VaR) y el Déficit Esperado (ES) diario de
6 indices bursatiles (IBEX35, SP500, NIKKEI225, STI, DAX y EUROSTOXX500)
analizando el impacto ejercido por la incorporacion de las hipotesis de
heterocedasticidad (modelos GARCH), efecto asimétrico (modelos APARCH) y no
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normalidad de la distribucion del error de prediccion presentes en muchas analisis
financieras, y se ha realizado una validaciéon predictiva extramuestral tipo Rolling
similar a la llevada a cabo en Chen et al. (2012).

Todas las series analizadas presentaban una clara heterocedasticidad y leptocurtosis, y
algunas (IBEX35, SP500, NIKKEI225 y STI) una asimetria negativa significativa,
rechazandose la hipotesis de normalidad para todas ellas tanto a nivel condicional como
incondicional. Consecuente con estos hechos, la incorporacion de errores no normales al
modelo incrementd la bondad de ajuste a los datos observados, estando en la mayor
parte de los casos distribuidos segun una exponencial generalizada GED (DAX,
EUROSTOXX50, SP500 Y STI) o una t de Student STD (IBEX35 Y NIKKEI225)
asimétricas con un nimero bajo de grados de libertad (entre 1,30-1,59 para las GED y
entre 2,53-10 para las STD), y parametros de asimetria ligeramente menores que 1
(entre 0,82-0,95), indicando la presencia de una leve asimetria a izquierdas en todas las

series.

En términos generales los modelos APARCH con errores no normales son los que han
mostrado una mayor bondad de ajuste a los datos, medida en términos del criterio BIC,

observandose la presencia de un efecto asimétrico consistente con la teoria financiera.

Si analizamos el comportamiento de los VaR calculados por los modelos, observamos
en primer lugar, que los modelos heterocedasticos son los que muestran un
comportamiento mas adecuado (al 95% y al 99%) tanto en términos de prediccion por
intervalos como de costes de oportunidad, pérdida absoluta, funcion cuantil y MRC por
su mayor poder de adaptacion a las oscilaciones de las series proporcionado por la
dependencia temporal de la volatilidad. No se aprecia una pauta clara respecto a la
influencia del efecto asimétrico o de la utilizacion de errores no normales en los
resultados obtenidos: en las series IBEX35 (95%) o DAX tienden a mostrar un mejor
comportamiento los modelos GARCH; en las series IBEX35 (99%), EUROSTOXX y
NIKKEI son los modelos APARCH y no se aprecia una pauta clara ni en SP500 ni en
STI. Tampoco se aprecia la existencia de diferencias claras entre los modelos con

errores normales o no normales en ninguna de las series analizadas.

Si analizamos el comportamiento de los ES los resultados son similares si bien con
mayores niveles de cubrimiento, costes de oportunidad, pérdida absoluta y MRC debido

a que sus valores son mas elevados que los de los VaR por su mayor sensibilidad a la
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forma de la cola izquierda de las distribuciones condicionales del error. En la mayor
parte de las series el comportamiento de los modelos APARCH tiende a ser mejor que
el de los modelos GARCH sin que se aprecie una mejora significativa de los modelos

con errores no normales.

Por todo ello podemos concluir que aunque los modelos APARCH con errores no
normales, distribuciones leptocurticas y ligeramente asimétricas a izquierdas tienden a
mostrar una mejor bondad de ajuste a los datos observados, su influencia en el
comportamiento de los VaR y ES calculados a partir de ellas no es, en general, muy
significativa. Tan solo la incorporacion de la hipotesis de heterocedasticidad al modelo
es relevante. La presencia del efecto asimétrico tiende a mejorar el comportamiento de
los ES sin que se aprecien pautas claras de dicho efecto en el comportamiento del VaR
ni tampoco de la falta de normalidad de la distribucion condicional del error. Todo esto
puede ser debido al ser los indices bursatiles medias ponderadas de la evolucion de
activos bursétiles con altos volumenes de negociacion, por lo que sus oscilaciones
tienden a estar més controladas que las de activos individuales concretos y de ahi el
buen comportamiento de los modelos GARCH con errores normales en las series

analizadas.
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