000036756 001__ 36756
000036756 005__ 20200221144245.0
000036756 0247_ $$2doi$$a10.3390/s16010084
000036756 0248_ $$2sideral$$a93105
000036756 037__ $$aART-2016-93105
000036756 041__ $$aeng
000036756 100__ $$0(orcid)0000-0002-3069-2736$$aTorralba Gracia, Marta
000036756 245__ $$aDesign optimization for the measurement accuracy improvement of a large range nanopositioning stage
000036756 260__ $$c2016
000036756 5060_ $$aAccess copy available to the general public$$fUnrestricted
000036756 5203_ $$aBoth an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm ˆ 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of  ¿0.1  ¿C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively.
000036756 536__ $$9info:eu-repo/grantAgreement/ES/UZ/PIFUZ-2014-TEC-05$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2010-21629-C02-01
000036756 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000036756 590__ $$a2.677$$b2016
000036756 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b10 / 58 = 0.172$$c2016$$dQ1$$eT1
000036756 591__ $$aCHEMISTRY, ANALYTICAL$$b25 / 76 = 0.329$$c2016$$dQ2$$eT1
000036756 591__ $$aELECTROCHEMISTRY$$b12 / 29 = 0.414$$c2016$$dQ2$$eT2
000036756 592__ $$a0.623$$b2016
000036756 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000036756 593__ $$aAnalytical Chemistry$$c2016$$dQ2
000036756 593__ $$aAtomic and Molecular Physics, and Optics$$c2016$$dQ2
000036756 593__ $$aMedicine (miscellaneous)$$c2016$$dQ2
000036756 593__ $$aInstrumentation$$c2016$$dQ2
000036756 593__ $$aBiochemistry$$c2016$$dQ3
000036756 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000036756 700__ $$0(orcid)0000-0001-7152-4117$$aYagüe Fabra, José Antonio$$uUniversidad de Zaragoza
000036756 700__ $$0(orcid)0000-0003-4839-0610$$aAlbajez García, José Antonio$$uUniversidad de Zaragoza
000036756 700__ $$0(orcid)0000-0002-8609-1358$$aAguilar Martín, Juan José$$uUniversidad de Zaragoza
000036756 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000036756 773__ $$g16, 1 (2016), 84$$pSensors$$tSensors (Switzerland)$$x1424-8220
000036756 8564_ $$s4456826$$uhttps://zaguan.unizar.es/record/36756/files/texto_completo.pdf$$yVersión publicada
000036756 8564_ $$s102764$$uhttps://zaguan.unizar.es/record/36756/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000036756 909CO $$ooai:zaguan.unizar.es:36756$$particulos$$pdriver
000036756 951__ $$a2020-02-21-13:24:15
000036756 980__ $$aARTICLE