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Resumen

El objetivo de este Proyecto Fin de Carrera es el de mostrar la capacidad
del proyectante para diseñar e implementar shaders para la libeŕıa de gráficos
OpenGL en su versión 4.3.

Dichos shaders son pequeños programas que se ejecutan en la unidad de
procesamiento gráfico (GPU) y aplican transformaciones y efectos especiales a
la hora de renderizar una escena.

Para este PFC se ha creado una escena de muestra en tres dimensiones y
se han utilizado distintas técnicas aplicadas en los shaders para modificarla en
tiempo real. Concretamente, las técnicas aplicadas han sido:

• Mapas de desplazamiento: Una técnica que consiste en usar texturas con
la información de la altura de la geometŕıa para desplazar los vértices de
la superficie texturizada.

• Luz ambiental: Una técnica que proporciona una iluminación global y
homogénea a toda la escena.

• Luz difusa: Una técnica que permite reflejar una fuente de luz sobre una
superficie en muchas direcciones.

• Mapas de sombras: Una técnica para reproducir las sombras creadas por
las distintas fuentes de luz.

• Mapas normales: Una técnica que usa texturas para dar una iluminación
y un relieve más detallados a la geometŕıa de la escena.

Además del diseño e implementación de las shaders, se ha analizado su efi-
ciencia en distintos tipos de GPU del fabricante Nvidia.

Figura 1: Escena final renderizada
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1. Introducción

1.1. Palabras clave que definen las herramientas

en las que se basa este PFC

OpenGL (Open Graphics Library) es una especificación estándar
que define una API multilenguaje y multiplataforma para escribir
aplicaciones que produzcan gráficos 2D y 3D. La interfaz consiste
en más de 250 funciones diferentes que pueden usarse para dibujar
escenas tridimensionales complejas a partir de primitivas geométricas
simples, tales como puntos, ĺıneas y triángulos.

La tecnoloǵıa basada en el uso de shaders es una tecnoloǵıa recien-
te y que ha experimentado una gran evolución destinada a proporcio-
nar al programador una interacción con la unidad de procesamiento
gráfico (GPU) hasta ahora imposible. Los shaders son utilizados para
realizar transformaciones y crear efectos especiales, como por ejemplo
iluminación, fuego o niebla. Para su programación los shaders utili-
zan lenguajes espećıficos de alto nivel que permitan la independencia
del hardware.

Unidad de procesamiento gráfico o GPU (Graphics Processing
Unit) es un coprocesador dedicado al procesamiento de gráficos u
operaciones de coma flotante que se utiliza para aligerar la carga de
trabajo del procesador central en aplicaciones como los videojuegos
o aplicaciones 3D interactivas. De esta forma, mientras gran parte de
lo relacionado con los gráficos se procesa en la GPU, la unidad cen-
tral de procesamiento (CPU) puede dedicarse a otro tipo de cálculos
(como la inteligencia artificial o los cálculos mecánicos en el caso de
los videojuegos).
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1.2. Objetivos del proyecto

1. Diseño de una escena de muestra en 3D utilizando las libreŕıas
de OpenGL para C++.

2. Diseño de shaders utilizando el lenguaje GLSL que ofrece OpenGL
en la versión 4.3. Dichos shaders modificarán distintos elemen-
tos de la escena (como pueda ser el suelo, paredes, columnas
o cualquier otro elemento que pueda aparecer en ella). Para
ello, según el elemento a modificar, se hará uso de diferentes
técnicas gráficas, entre las que se pueden encontrar:

• Mapas de desplazamiento

• Mapas normales

• Iluminación

3. Implementación de dichos shaders utilizando tarjetas Nvidia.

4. Análisis del comportamiento (eficiencia) de dichos shaders fren-
te a diferentes tipos de tarjetas. Para ello se hará uso del pro-
grama Nvidia Nsight.

1.3. Resumen de las actividades para realizar el

proyecto

1. Estudio de OpenGL v4.3, GLSL y Nvidia Nsight.

2. Diseño de la escena.

3. Diseño de los shaders.

4. Creación de los modelos, texturas y mapas que compondrán la
escena y que usarán los shaders.

5. Implementación de la escena.

6. Implementación y validación de los shaders sobre GPUs Nvidia.
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7. Análisis de eficiencia en diferentes tipos de GPUs.

8. Escritura de la memoria

1.4. Descripción de la estructura de la memoria

Diseño de los shaders (sección 2)
Diseño de los distintos shaders que ejecutará el programa para
modificar la escena.

Diseño e implementación del programa (sección 3)
Diseño e implementación del programa que mostrará la escena.

Implementación y validación de los shaders (sección 4)
Implementación de los distintos shaders que ejecutará el pro-
grama para modificar la escena.

Análisis de eficiencia (sección 5)
Comparación de los distintos tipos de shaders elaborados en
diferentes tarjetas gráficas.

Conclusiones (sección 6)
Valoración del trabajo realizado.

Horas de trabajo (sección 7)
Información detallada sobre el tiempo que ha llevado realizar
este PFC.

Trabajo futuro (sección 8)
Posibilidades para continuar, ampliar y mejorar el trabajo desa-
rrollado.

Referencias (sección 8)
Referencias y fuentes de información usadas para elaborar este
PFC.

Anexo
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• En la primera parte del anexo se da una visión de la pi-
peline de OpenGL v4.3 y de las diferentes etapas que la
componen, incluyendo una explicación sobre cada una de
las etapas programables usadas en este PFC (sección A
del anexo).

• En la segunda parte del anexo se da información sobre las
caracteŕısticas de las diferentes tarjetas gráficas empleadas
en los análisis de eficiencia. (sección B del anexo).
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2. Diseño de los shaders

2.1. Conceptos básicos

Para entender mejor las técnicas aplicadas, a continuación se de-
tallan algunos conceptos útiles que se emplean durante el desarrollo
de shaders.

2.1.1. Espacios de coordenadas

Cuando se está trabajando en una aplicación en 3D, hay que tener
en cuenta que la posición de un vértice puede ser relativa a distintos
sistemas de coordenadas. Concretamente, la mayoŕıa de las veces ese
sistema pertenece a uno de estos cuatro:

• Coordenadas del modelo: los vértices de un modelo tienen una
posición relativa al centro de dicho modelo.

• Coordenadas del mundo: los vértices de los objetos de la escena
están definidos con relación al centro de la escena.

• Coordenadas de la cámara: la posición de los vértices es relativa
a la cámara.

• Coordenadas homogéneas: la posición de los vértices es relativa
a la pantalla donde se mostrarán.

Se hace pues necesario un sistema para pasar de un espacio de
coordenadas a otro. Para ello, se emplean distintas matrices para
cada uno de los cambios necesarios. Estas matrices se pueden ver en
el diagrama de la figura 2.
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Figura 2: Diagrama de los espacios de coordenadas y sus matrices de
cambio

La matriz de modelo permite situar un modelo en función de la
escena. La matriz de vista contiene la posición donde se encuentra la
cámara, aśı como la dirección y el sentido en que mira. La matriz de
proyección pone la escena en función de los parámetros de la cámara,
como el tipo de proyección (perspectiva, ortográfica...), el campo de
visión, la anchura y altura de la visión o el rango de visión.

Todas estas matrices se pueden multiplicar para formar una sola,
a la que llamaremos matriz MVP. La matriz MVP permite, al mul-
tiplicar el vértice de un modelo, ponerlo directamente en el espacio
de coordenadas homogéneo.

Matemáticamente hablando, la matriz de modelo M se calcula co-
mo el resultado de todas las transformaciones que hay que hacer para
pasar de las coordenadas del modelo a las coordenadas del mundo.
Estas transformaciones pueden ser de traslación T , de rotación R o
de escala S.

• La matriz de traslación moverá el punto en la dirección mar-
cada por Tx, Ty y Tz:
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T =


1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1


• La matrix de rotación Rx, Ry o Rz rotará sobre su respectivo

eje α grados en sentido antihorario:

Rx =


1 0 0 0
0 cos(α) − sin(α) 0
0 sin(α) cos(α) 0
0 0 0 1



Ry =


cos(α) 0 sin(α) 0

0 1 0 0
− sin(α) 0 cos(α) 0

0 0 0 1



Rz =


cos(α) − sin(α) 0 0
sin(α) cos(α) 0 0

0 0 1 0
0 0 0 1


• La matriz de escala escalará un vector en las direcciones de los

ejes marcadas por Sx, Sy y Sz:

S =


Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
0 0 0 1


Combinando estas matrices de distintas formas podemos posicio-

nar un modelo en nuestro mundo. La matriz resultante de dicha
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combinación es la matriz de modelo M . El siguiente paso es conver-
tir las coordenadas obtenidas a las coordenadas de la cámara usando
la matriz de vista V .

La matriz de vista V es una variante de la matriz de modelo, ya
que lo que haremos realmente es obtener la matriz que posiciona
nuestra cámara en el mundo y luego obtener su inversa para poder
convertir las coordenadas del mundo a las de la cámara. Los datos
necesarios de la matriz de vista son la posición de la cámara (para
poder situarla en el mundo), la dirección en que mira, la dirección
que la cámara considera “hacia arriba” y la dirección que la cáma-
ra considera “hacia la derecha”. Cambiando los valores de estas dos
últimas direcciones se pueden conseguir efectos como la rotación de
la cámara o simular un espejo. La matriz de vista V se define como:

V =
derechax arribax miradax 0
derechay arribay miraday 0
derechaz arribaz miradaz 0

−(posicion · derecha) −(posicion · arriba) −(posicion ·mirada) 1


Por último, para pasar estas coordenadas de la cámara a las coor-

denadas homogéneas, multiplicaremos por la matriz de proyección P .
Puesto que la matriz es diferente según si la proyección es en perspec-
tiva u ortográfica, vamos a distinguir entre la matriz de proyección
en perspectiva Pp y la matriz de proyección ortográfica Po. En am-
bas usaremos la distancia más cercana y la distancia más lejana a
la cámara (Zn y Zf respectivamente), pero puesto que la anchura y
altura en la ortográfica es constante mientras que en la perspectiva
cambia conforme nos alejamos de la cámara, como se puede compro-
bar en la figura 3, vamos a introducir el concepto de campo de visión
o FoV (del inglés “field of view”), que indica el ángulo de la visión.
Aśı pues, tenemos que:
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Pp =


arctan(FoVx

2 ) 0 0 0

0 arctan(
FoVy

2 ) 0 0

0 0 −Zf+Zn

Zf−Zn
−2(ZfZn)

Zf−Zn

0 0 −1 0



Po =


1

anchura 0 0 0
0 1

altura 0 0

0 0 − 2
Zf−Zn

−Zf+Zn

Zf−Zn

0 0 0 1



Figura 3: Proyección ortográfica y en perspectiva
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Aśı pues, tenemos que multiplicando una posición por estas tres
matrices M , V y P podemos pasar de las coordenadas del modelo p
a las coordenadas homogéneas p′ de la forma:

p′ = P ∗ V ∗M ∗ p

Y agrupando estas tres matrices en una sola tenemos la matriz
MVP:

MV P = P ∗ V ∗M

En las figuras 4 y 5 se puede ver el cambio que sufren los objetos de
la escena al multiplicar sus vértices por una matriz de proyección para
pasar de las coordenadas de la cámara a las coordenadas homogéneas.

Figura 4: Una escena en el espacio de coordenadas de la cámara (en
rojo)
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Figura 5: Una escena en el espacio de coordenadas homogéneas (de
la pantalla, en rojo)

2.1.2. Composición de un modelo 3D

Los modelos 3D que usaremos están compuestos por triángulos.
Cada triángulo del modelo se define como un conjunto de tres vérti-
ces, y cada vértice guarda la información de tres datos distintos:
la posición del vértice en el espacio, la normal de la superficie del
triángulo y el mapa UV.

La posición es un vector de cuatro elementos de la forma (X, Y,
Z, W) donde “X‘”, “Y” y “Z” indican la posición en dichos ejes y
“W” es un valor constante 1 para indicar que es una posición en el
espacio.

La normal de la superficie almacenada es la misma en los tres
vértices de una cara y se guarda de la forma (X, Y, Z, W) donde
“X‘”, “Y” y “Z” indican la dirección en dichos ejes y “Wı̈ndica que
se trata de una dirección.
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Los mapas UV sirven para proyectar una textura en 2D sobre un
modelo en 3D. Para ello, a cada vértice se le asigna una posición (U,
V) donde “U” denota el eje horizontal desde 0 hasta 1 de izquierda
a derecha, y “V” indica el eje vertical desde 0 hasta 1 de abajo hacia
arriba, tal como se puede observar en la figura 6

Figura 6: Proyección de una textura en un triángulo con los mapas
UV

2.1.3. La pipeline de OpenGL

La pipeline de OpenGL marca el proceso que siguen los flujos de
datos en su paso por la GPU. Estos datos atraviesan una serie de
etapas, llamadas shaders, algunas de las cuales son programables.
Estas shaders programables son:

• Vertex Shader: Procesa cada vértice individualmente.

• Tessellation Control Shader y Tessellation Evaluation Shader:
Se encargan del proceso de dividir un parche (un conjunto de
vértices) en un conjunto de triángulos más pequeños.

• Geometry Shader: Crea nueva geometŕıa.
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• Fragment Shader: Aplica el color a los ṕıxeles que se mostrarán
en pantalla.

Para una información más detallada de la pipeline y de las shaders
programables, se puede consultar en el anexo A.

2.2. Mapas de desplazamiento

Los mapas de desplazamiento (displacement mapping) consisten
en el uso de una textura que contiene en uno de sus canales RGB
(normalmente en los tres) la información sobre el desplazamiento que
tiene que seguir la superficie donde está aplicada. El desplazamiento
se ejecuta a lo largo de la normal de la superficie.

Esta información se puede interpretar de varias maneras, por ejem-
plo, siendo el 0 negro y el 1 blanco, el negro puede significar que no
hay desplazamiento y el blanco que hay un desplazamiento total, o
puede sifnificar que el negro desplaza en dirección inversa a la normal
y que un tono medio de 0.5 significaŕıa no desplazar.

La figura 7 da una idea del aspecto de un mapa de desplazamiento
comparado con la textura original.

Figura 7: La textura original y su mapa de desplazamiento
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La idea, por tanto, es desplazar los vértices de cada triángulo de
la geometŕıa según su posición en el mapa, pero surge un proble-
ma: con una geometŕıa simple (por ejemplo, triángulos muy gran-
des) apenas hay puntos que desplazar. Es necesario entonces dividir
dichos triángulos en triángulos más pequeños que seamos capaces de
desplazar para poder conseguir un nivel de detalle mayor. Para ello
podemos usar las etapas de teselación de la pipeline de OpenGL, Tes-
selation Control Shader (anexo A.2) y Tesselation Evaluation Shader
(anexo A.3), que permiten dividir un triángulo en otros más pequeños
según los valores que asignemos a cada arista y al interior.

OpenGL divide el triángulo en niveles interiores y exteriores y
permite establecer sus valores individualmente, como se puede ver
en la figura 8.

Figura 8: Niveles de teselación en OpenGL

Para establecer los valores de dichos niveles (o sea, la cantidad de
triángulos en la que se dividirá el triángulo original) podemos darles
un valor fijo, o, para mejorar el rendimiento, podemos darles un valor
en función de la distancia de cada arista a la cámara.
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Una vez tengamos dividido el triángulo ya podemos usar nuestro
mapa de desplazamiento para desplazar los nuevos vértices creados.
Para ello, simplemente cogeremos la posición de cada vértice y ve-
remos en que parte del mapa de desplazamiento está situado, y lo
desplazaremos a lo largo de la normal un porcentaje del factor total
de desplazamiento dependiendo del tono de la textura.

Por último, hay que recordar que al desplazar los vértices hemos
cambiado las normales de cada cara y es necesario recalcularlas usan-
do las nuevas posiciones de los vértices.

En la figura 9 se puede ver el resultado de aplicar sobre una malla
plana un mapa de desplazamiento, consiguiendo que los vértices de
la malla se desplazen a lo largo de la normal según lo indicado en el
mapa.

Figura 9: Mapa de desplazamiento aplicado sobre una malla plana

2.3. Iluminación

Para la iluminación se usarán dos técnicas diferentes en conjunto:
la luz ambiental (ambient lighting) y la luz difusa (diffuse lighting).
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2.3.1. Luz ambiental

La luz ambiental es el tipo de iluminación más simple y representa
la luz que existe en el ambiente sin ningún otro tipo de iluminación
directa. Es homogénea y de valor constante.

Para simular este tipo de luz, simplemente hay que ajustar el color
en la etapa de Fragment Shader según la intensidad y color requeri-
dos.

Para calcular la iluminación ambiental Iambiental en un punto dado
esta depende del coeficiente de reflexión ambiental ka (el color, en
tres componentes RGB en el intervalo [0, 1]) y de la constante de
intensidad ambiental Ia, de la forma:

Iambiental = kaIa

2.3.2. Luz difusa

La luz difusa hace mención a la luz que es reflejada en una su-
perficie en todas direcciones siguiendo la Ley de Lambert [6]. Dicha
ley establece que la iluminación producida por una fuente luminosa
sobre una superficie es directamente proporcional a la intensidad de
la fuente y al coseno del ángulo que forma la normal a la superficie
con la dirección de los rayos de luz y es inversamente proporcional
al cuadrado de la distancia a dicha fuente.

En la figura 10 se puede observar la luz difusa reflejada en una
superficie sobre la que incide una fuente de luz.
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Figura 10: Reflexión de una fuente de luz

Para calcular la iluminación difusa de una fuente de luz en un pun-
to tenemos que tener en cuenta pues el vector normal de la superficie
N en el punto, el vector de incidencia de la luz L (el vector de la
dirección de la fuente de luz al punto), la intensidad de la fuente de
luz Il y el coeficiente de reflexión difusa kd. La iluminación difusa
total será la suma de la iluminación difusa de cada fuente de luz:

Idifusa =
∑
i

kdiIli(N · Li) =
∑
i

kdiIli cos θi

Matemáticamente, podemos definir el modelo de iluminación co-
mo la suma de la iluminación ambiental y la iluminación difusa, tal
que:

I = Iambiental + Idifusa = kaIa +
∑
i

kdiIli(N · Li)

Por lo tanto para simular la luz solo tenemos que aplicar este
modelo de iluminación Fragment Shader (anexo A.5).
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2.4. Mapas de sombras

Los mapas de sombras (shadow mapping) son una de las diferentes
técnicas que nos permiten simular las sombras que producen todas
las luces en una escena.

La técnica consiste en renderizar cada fotograma de la escena en
varias pasadas. Primero, haremos una pasada por cada fuente de luz
existente en la escena, situando la cámara en dicha fuente de luz. En
estas pasadas no nos interesa la salida de color (GL COLOR BUFFER BIT)
sino el buffer de profundidad (GL DEPTH BUFFER BIT), también
conocido como z-buffer, obtenido para cada fuente de luz. Seleccio-
nando un buffer tenemos almacenada la distancia desde la cámara a
cada punto renderizado de la escena visto desde la fuente de luz se-
leccionada. Al no utilizar el buffer de color nos ahorramos los cálculos
del Fragment Shader. Este buffer lo podemos almacenar en el forma-
to de una textura que servirá como dato al algoritmo de cálculo de
sombras.

Figura 11: Ejemplo de cálculo del buffer de profundidad

Una vez calculados los z-buffer de la escena desde el punto de vista
de cada fuente de luz, pasamos a renderizar la escena en śı como lo
haŕıamos normalmente, con la cámara situada en la parte de la escena
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que deseemos y suministrándole al Fragment Shader (anexo A.5) los
z-buffer generados. A la hora de calcular la iluminación de una fuente
de luz dada lo que haremos será relacionar el fragmento que estamos
calculando con el z-buffer generado para decidir si hay sombra o no
en dicho fragmento. Para ello, mediremos otra vez la distancia de
la fuente de luz al fragmento dado (df) y la compararemos con la
distancia de la luz almacenada en el z-buffer de dicha luz (db). Si
la distancia df > db, el fragmento que estamos analizando está a la
sombra.

En la figura 12 se puede observar el proceso de decidir si un frag-
mento P está a la sombra o no al comparar la profundidad almace-
nada en el z-buffer desde el punto de vista de la luz (ZA) con el valor
de profundidad del fragmento que estamos analizando visto desde la
luz (ZB).

Figura 12: Ejemplo de análisis de la sombra de un fragmento

En esta técnica las sombras obtenidas son dinámicas, lo que quiere
decir que se calculan para cada fotograma renderizado, al contario
que en otras técnicas en las que se calcula de antemano las sombras

-29-



Memoria - OpenGL v4.3: Ejemplos de diseño
de shaders e implementación mediante GPUs
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y luego se aplican a la escena sin posibilidad de moverlas o quitarlas
(lo que se conoce como baked lighting o iluminación “cocinada”).

Al tener que calcularse para cada fotograma, su rendimiento es mu-
cho menor, pero como ventaja, nos permiten proyectar las sombras
de modelos animados o las sombras producidas por luces móviles.

2.5. Mapas normales

Hemos hablado de que la luz difusa se refleja según el ángulo que
forma con la normal de la superficie, pero existe un problema: cuanto
mayor es la superficie, menor es el detalle conseguido, ya que toda la
superficie comparte la misma normal.

Con la técnica de los mapas normales (normal mapping), se con-
sigue dar más detalle y relieve a la iluminación de las superficies. La
idea consiste en codificar la información de la normal en cada punto
de una superficie dentro de los canales RGB de una textura, de tal
manera que el canal rojo contiene la componente X de la normal, el
verde tiene la componente Y, y el azul la componente Z. Puesto que
los colores RGB van de 0 a 1 (nada de color a todo el color), el valor
de 0 significa que la normal en dicho punto es -1, el valor de 1 indica
una normal de +1, y el valor intermedio de 0.5 indica una normal en
esa componente de valor 0.
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Figura 13: Descomposición de un mapa normal en los canales RGB

A la hora de renderizar un fragmento de la escena, simplemente
obtenemos la información de la normal del mapa normal en vez de
usar la normal de la superficie y aplicamos la luz difusa.

En la figura 14 podemos ver el efecto resultante de la iluminación
en un cubo antes y después de aplicar un mapa normal.
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Figura 14: Un cubo iluminado antes y después de aplicarle un mapa
normal

2.6. Texto

Por último, para mostrar texto por pantalla OpenGL no dispone de
ninguna instrucción nativa, aśı que tenemos que renderizar nosotros
mismos las letras encima de la escena renderizada seleccionándolas
de un mapa de carácteres con transparencia y dibujándolas una a
una.
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Figura 15: Mapa de carácteres
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3. Diseño e implementación del progra-
ma

Para poder hacer uso de los shaders, hace falta crear un progra-
ma que suministre los datos, las configuraciones y otros parámetros
necesarios. Dicho programa se detalla en esta sección.

El programa está implementado en C++, mientras que los shaders
están implementados en el lenguaje GLSL. Para tratar con OpenGL
nos ayudaremos de un conjunto de libreŕıas que nos facilitarán la
tarea:

• GLEW: La libreŕıa GLEW (The OpenGL Extension Wrangler
Library) [7] es una libreŕıa de carga de extensiones de código
abierto y multiplataforma que provee de mecanismos para de-
terminar que extensiones de OpenGL admite la plataforma en
la que se ejecuta.

• GLFW: La libreŕıa GLFW (OpenGL FrameWork) [8] es una
libreŕıa de código abierto y multiplataforma que ayuda en la
creación de ventanas de OpenGL aśı como con su contexto,
eventos y entrada de teclado y ratón.

• GLM: La libreŕıa GLM (OpenGL Mathematics) [9] proporciona
clases y funciones matemáticas que siguen las convenciones de
nombres y funcionalidades usadas en GLSL de tal manera que
se puedan relacionar fácilmente en C++.

En la figura 16 se puede ver el diagrama de clases que componen
el programa.
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Figura 16: Diagrama de clases del programa

3.1. Programa principal

El programa principal será el encargado de inicializar los datos de
OpenGL y de controlar los eventos de teclado. Creará la ventana y
delegará la creación, composición y renderizado de la escena en una
clase creada a tal fin.

La ventana se crea con una serie de parámetros gracias a GLFW
(usar versión 4.3 de OpenGL, antialiasing 4x, sincronización vertical,
ventana redimensionable). Después pasa al bucle principal, en el que
llama continuamente a la clase renderizadora para que le suministre
fotogramas.

3.2. Composición de la escena

3.2.1. Renderizador

La clase del renderizador será la encargada de crear y posicionar
los objetos en la escena, aśı como de indicarles el momento y el modo
en el que deben de dibujarse en pantalla (ver figura 16).
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También será la encargada de controlar la cámara, la iluminación
y las sombras de la escena.

Según el modo de renderizado, controlado por una variable, decide
si tiene que renderizar la escena una sola vez o varias para incluir los
mapas de sombras. A continuación, llama a la función de renderizado
de cada uno de los objetos que componen la escena, suministrándoles
la matriz MVP, la iluminación y el modo de renderizado.

3.2.2. Cámara

La clase de la cámara será la encargada de posicionar y mover la
cámara a lo largo de la ejecución (ver figura 16).

Esta clase contiene también la matriz MVP de la cámara. La ma-
triz está compuesta por tres mastrices de 4x4: la proyección (contiene
que la vista está perspectiva, el campo de visión, la anchura y altura
de la visión y el rango de cerca y de lejos), la vista (contiene la po-
sición donde se encuentra la cámara, la posición a la que mira y el
sentido en el que mira) y el modelo (que en este caso es una matriz
identidad).

La posición de la cámara se puede cambiar modificando la matriz
de vista y rehaciendo la matriz MVP.

3.2.3. Iluminación

La clase de iluminación contiene los datos de posición, intensidad
y color de los dos tipos de luces que vamos a usar (ver figura 16).

Además contiene la matriz MVP desde el punto de vista de la
luz difusa, lo cual nos servirá para calcular las sombras. Como la
luz difusa que emplearemos pretende simular una luz muy lejana,
como la solar, donde los rayos inciden paralelamente, la matriz de
proyección es ortográfica en vez de en perspectiva.
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3.2.4. Sombras

La clase de sombras se encargará de guardar en un buffer un foto-
grama renderizado desde el punto de vista de una luz concreta, que
será su mapa de sombras, y lo suministrará cuando sea llamada con
otra función (ver figura 16).

3.3. Herramientas

3.3.1. Carga de shaders

La clase de carga de shaders lee archivos GLSL y los almacena para
compilarlos en la etapa que se le indique. Una vez tiene todas las
etapas a usar con los archivos GLSL cargados, compila el programa
notificando si ha habido algún error (ver figura 16).

3.3.2. Carga de texturas

La clase de carga de texturas debe ser capaz de leer una textura
en formato DDS (DirectDraw Surface) [10], un formato muy usado
para almacenar texturas, y convertirlas al formato de texturas usado
por OpenGL (ver figura 16).

Estas texturas permiten el uso de mipmaps (la misma textura
contiene versiones de distintos tamaños en potencias de dos desde
1x1 ṕıxeles hasta el tamaño mayor, de manera que según el tamaño
que ocupa en pantalla la textura, carga una u otra para optimizar).

3.3.3. Carga de modelos

La clase de carga de modelos permitirá cargar modelos en el for-
mato FBX (Filmbox) [11], un formato que permite almacenar los
vértices, las normales y los mapas UV de un modelo 3D, de mane-
ra que al leer el archivo, pueda cargar estos datos en los buffers de
OpenGL (ver figura 16).
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3.3.4. Texto

Una clase para poder imprimir texto por pantalla, ya que OpenGL
no dispone de ninguna instrucción nativa (ver figura 16).

La clase de texto relaciona el número ASCII de cada carácter con
la posición de dicho carácter en la textura del mapa de carácteres.

3.4. Objetos

Cada objeto de la escena heredará de una clase padre para poder
compartir la función de renderizado (ver figura 16). Además, cada
objeto ha de ser capaz de guardar la información de:

• Programa de shaders: Un programa compilado con los shaders
de las distintas etapas que usará el objeto para renderizarse.

• Posición de vértices: La posición de cada vértice en el espacio
de coordenadas de la escena, ya sea cargada desde un archivo
FBX o codificada a mano. Dichos vértices deben componer
siempre las caras de un triángulo, ya que solo vamos a trabajar
con triángulos.

• Mapas de UV: Los mapas UV de los vértices, ya sea cargado
desde un archivo FBX o codificado a mano.

• Normales de vértices: La normal de la superficie en cada uno
de los tres vértices que intervienen, ya sea cargada desde un
archivo FBX o codificada a mano.

• Textura principal: La textura que le da color al objeto.

• Textura de mapa de desplazamiento: La textura necesaria para
poder usar mapas de desplazamiento.

• Textura de mapa normal: La textura necesaria para poder usar
mapas normales.

-39-



Memoria - OpenGL v4.3: Ejemplos de diseño
de shaders e implementación mediante GPUs
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Los distintos objetos usan las herramientas para cargar el progra-
ma de shaders, las texturas y los modelos, guardando todo en los
distintos buffers de OpenGL habilitados para ello. A la hora de ren-
derizar, según el modo de renderizado suministrado, indican a los
shaders de distintas etapas que opciones quieren que usen, y les su-
ministra las variables de entrada.
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4. Implementación y validación de los
shaders

A la hora de implementar los shaders, vamos a usar las ventajas
de OpenGL v4.3 para programar varias funciones intercambiables
dentro de cada shader, de manera que podamos elegir una u otra
en función del modo de renderizado que deseemos. Aśı por ejemplo,
una misma función de calcular la iluminación se comportará de forma
diferente según los modos de renderizado que queramos.

Para comprobar la correcta ejecución de los shaders, se han imple-
mentado dos modos extra de visualización, uno que ofrece la escena
vista en modo de trazado solo de aristas (wireframe) y otra que ofre-
ce una visión de las normales de cada superficie según los códigos de
colores explicados en la sección 2.5 y en la figura 13.

En la figura 17 se puede comprobar la renderización por defecto de
la escena sin ninguna técnica aplicada, mientras que en las figuras 18
y 19 se puede observar la misma escena vista en modo de trazado solo
de aristas y en modo de visualización de normales respectivamente.
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Figura 17: La escena original

Figura 18: La escena original en modo wireframe
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Figura 19: La escena original en modo de mostrar normales

Hay que recalcar antes de explicar la implementación de cada técni-
ca que aunque puedan parecer escasos en cuanto a código, los shaders
son muy complejos y requieren de muchas ĺıneas de código en el pro-
grama que los crea para hacerlos funcionar. Puesto que los shaders
se tienen que ejecutar multitud de veces, precisamente el conseguir
que funcionen con el mı́nimo código posible es una de las dificultades
de su implementación.

Junto a la descripción de la implementación de cada técnica, se
incluyen fragmentos de código de los shaders en el lenguaje GLSL
que ayuden a entenderlas. Estos fragmentos representan el núcleo
funcional de la técnica en cuestión e indican con un comentario al
inicio en que shader están implementados.

4.1. Mapas de desplazamiento

Para implementar los mapas de desplazamiento, vamos a traba-
jar principalmente en tres etapas: Tesselation Control Shader (TCS),
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Tesselation Evaluation Shader (TEV) y Geometry Shader. Los paráme-
tros de entrada que necesitaremos serán la textura con el mapa de
desplazamiento, el factor de desplazamiento que queramos aplicar al
objeto, y la posición de la cámara en las coordenadas de la escena,
aśı como los parámetros básicos (vértices, UVs y normales del objeto
y la matrix MVP de la cámara).

La primera parte es definir como queremos dividir los triángulos,
lo cual se realiza en el TCS. Esta etapa recibe los tres vértices de un
triángulo de golpe y opera con ellos (esta estructura recibe el nombre
de parche). Lo que vamos a hacer es calcular la distancia desde la
cámara al centro de cada arista del triángulo, y dependiendo de ella,
aumentar o disminuir el nivel de teselación. Este proceso lo podemos
comprobar en el código 1. Una vez hayamos definido los niveles de
teselación, pasaremos los tres vértices al TEV.

/* Tessellation Control Shader */

subroutine(renderMode) void renderDisplacement () {

// Calcular la distancia de la camara a cada vertice

float cameraDistance0 = distance(CameraPos , gl_in [0].

gl_Position.xyz);

float cameraDistance1 = distance(CameraPos , gl_in [1].

gl_Position.xyz);

float cameraDistance2 = distance(CameraPos , gl_in [2].

gl_Position.xyz);

// Calcular los niveles de teselado

gl_TessLevelOuter [0] = getTessLevel(cameraDistance1 ,

cameraDistance2);

gl_TessLevelOuter [1] = getTessLevel(cameraDistance2 ,

cameraDistance0);

gl_TessLevelOuter [2] = getTessLevel(cameraDistance0 ,

cameraDistance1);

gl_TessLevelInner [0] = (gl_TessLevelOuter [0] +

gl_TessLevelOuter [1] + gl_TessLevelOuter [2]) / 3.0;

}

float getTessLevel (float distanceA , float distanceB) {

float avgDistance = (distanceA + distanceB) / 2.0;

if (avgDistance <= 2.5) {

return 50.0;

}
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if (avgDistance <= 5.0) {

return 30.0;

}

return 15.0;

}

Código 1: Tessellation Control Shader del mapa de desplazamiento

En el TEV, lo primero que haremos será calcular la posición, UVs
y normales de los nuevos vértices creados ponderándolos con los ori-
ginales. Una vez los tengamos, podemos usar los UVs para acceder a
la posición de la textura que tiene el mapa de desplazamiento y usar
su valor multiplicándolo por el factor de desplazamiento. Multipli-
cando este valor por la normal y sumándoselo a la posición original
conseguimos desplazar los vértices. Todo este proceso se puede ver
en el código 2.

/* Tessellation Evaluation Shader */

// Posicionar

vec4 position = (gl_TessCoord.x * gl_in [0]. gl_Position) +

(gl_TessCoord.y * gl_in [1]. gl_Position) +

(gl_TessCoord.z * gl_in [2]. gl_Position);

vec2 uvs = (vec2(gl_TessCoord.x) * tes_in [0]. uvs) +

(vec2(gl_TessCoord.y) * tes_in [1]. uvs) +

(vec2(gl_TessCoord.z) * tes_in [2]. uvs);

vec4 normals = (gl_TessCoord.x * tes_in [0]. normals) +

(gl_TessCoord.y * tes_in [1]. normals) +

(gl_TessCoord.z * tes_in [2]. normals);

normals = normalize(normals);

// Desplazar

float displacement = texture(DisplacementMap , uvs).x;

position = vec4(( position + (normals * displacement *

DispFactor)).xyz , 1.0f);

// Salida

gl_Position = position;

tes_out.uvs = uvs;

tes_out.normals = normals;

Código 2: Tessellation Evaluation Shader del mapa de
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desplazamiento

El resultado lo podemos comprobar en la figura 20.

Figura 20: La escena original con el mapa de desplazamiento aplicado

Al renderizar en modo wireframe podemos comprobar los nuevos
vértices creados y su desplazamiento (ver figura 21).
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Figura 21: La escena con el mapa de desplazamiento en modo wire-
frame

Por último tenemos que recalcular las normales, ya que al crear
nuevos vértices y moverlos, éstas han cambiado. Como la información
de los vértices la tenemos parche a parche, solo podemos calcular la
normal de la superficie (no podemos calcular la normal en un vértice
ponderando todas las superficies en las que interviene). Esta infor-
macoón la recibimos en el Geometry Shader, donde podremos operar
con ella. Para calcular la nueva normal simplemente calculamos el
producto vectorial de los vectores que van desde el primer vértice
hasta el segundo y el tercero. Además, calculamos la tangente y la
bitangente para formar una matriz TBN con la que poder cambiar
los mapas normales del espacio de cordenadas de la textura al de la
Tangente-Bitangente-Normal. Como en teoŕıa podemos elegir infini-
tas tangentes y bitangentes a la normal, lo que haremos será orien-
tarlas en la misma dirección que las coordenadas de la textura, como
podemos ver en la figura 22.
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Figura 22: Los vectores T, B, y N según las coordenadas de la textura

El cálculo de la matriz TBN se puede ver en el código 3.

/* Geometry Shader */

subroutine(renderMode) normalData_t renderFaceNormals (int i) {

normalData_t nData;

// Calculamos la normal

vec4 edge1 = gl_in [1]. gl_Position - gl_in [0]. gl_Position;

vec4 edge2 = gl_in [2]. gl_Position - gl_in [0]. gl_Position;

nData.normals = normalize(vec4(cross(edge1.xyz , edge2.xyz),

0.0f));

// Calculamos la tangente y bitangente en funcion de las

coordenadas de la textura

vec2 deltaUV1 = gs_in [1]. uvs - gs_in [0]. uvs;

vec2 deltaUV2 = gs_in [2]. uvs - gs_in [0]. uvs;

float r = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x *

deltaUV1.y);

vec4 tangent = (deltaUV2.y * edge1 - deltaUV1.y * edge2) * r

;

tangent = normalize(vec4(tangent.xyz , 0.0f));

vec4 bitangent = (-deltaUV2.x * edge1 - deltaUV1.x * edge2)

* r;

bitangent = normalize(vec4(bitangent.xyz , 0.0f));

// Creamos la matriz TBN

nData.TBN = mat4(tangent , bitangent , nData.normals , vec4 (0.0

f, 0.0f, 0.0f, 0.0f));

return nData;

}

Código 3: Geometry Shader del mapa de desplazamiento
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Una vez calculadas las normales, no tenemos que olvidarnos de
modificar la posición de los vértices del espacio de coordenadas del
mundo al espacio de coordenadas de la cámara usando la matriz
MVP. El resultado del cálculo de las normales lo podemos ver en la
figura 23.

Figura 23: La escena con el mapa de desplazamiento en modo de
mostrar normales

4.2. Iluminación

4.2.1. Luz ambiental

Para la luz ambiental solo hace falta modificar el color de salida de
un fragmento en el Fragment Shader multiplicando el color original
por la intensidad y el color de la luz, que serán los parámetros de
entrada.

4.2.2. Luz difusa

En cuanto a la luz difusa, además de la intensidad y el color, ne-
cesitaremos su posición y dirección. Con ellas podemos calcular la
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iluminación en cada punto dependiendo de la distancia y de el ángu-
lo que forma la dirección con la normal de la superficie en ese punto.
Una vez calculada, hay que sumarle la luz ambiental para obtener la
iluminación total. La función que calcula la iluminación se puede ver
en el código 4 y el resultado se puede ver en la figura 24.

/* Fragment Shader */

vec3 getLighting (vec4 normals) {

vec3 ambLight = AmbientLight.color * AmbientLight.intensity;

// Calculamos el producto escalar de la direccion de la luz

con la normal

float difFactor = dot(normalize(normals), vec4(-DiffuseLight

.direction , 0.0f));

vec3 difLight;

if (difFactor > 0) {

difLight = vec3(DiffuseLight.color * DiffuseLight.

intensity * difFactor);

} else {

difLight = vec3(0, 0, 0);

}

return (ambLight + difLight);

}

Código 4: Fragment Shader de la iluminación
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Figura 24: La escena original con la iluminación activada

Hay que tener en cuenta que si iluminamos la escena cuando
está aplicado el mapa de desplazamiento, puesto que la normal es
la misma para toda la superficie de un triángulo, se notarán dife-
rencias en la iluminación entre triángulos adyacentes con normales
muy diferentes como se puede comprobar en la figura 25. Esto lo
arreglaremos luego con la técnica de los mapas normales.
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Figura 25: La escena con el mapa de desplazamiento y la iluminación
activadas

4.3. Mapas de sombras

Las sombras las calcularemos como una manera alternativa de ilu-
minación del punto anterior. Con los z-buffers generados, podemos
calcular en el Fragment Shader la posición que le corresponde en
el mapa al fragmento que estamos analizando. Necesitaremos como
parámetro de entrada la matriz MVP de la luz que generó el z-buffer.

En la figura 26 podemos ver el z-buffer que queda almacenado en
la textura tras ser calculado con la vista desde la posición de una
luz. Esta textura será lo se suministre luego al Fragment Shader.
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Figura 26: Textura con el z-buffer generado desde la vista de la luz
difusa

Con estos datos, podemos comparar la distancia de la luz al frag-
mento actual con la distancia guardada en nuestro textura con el
z-buffer en el mismo punto, lo que recibe el nombre de test de pro-
fundidad, y multiplicar la luz difusa calculada por el factor de la
sombra en caso de que el fragmento falle dicho test. El resultado
final lo podemos ver en la figura 27.
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Figura 27: La escena original con las sombras activadas

Para evitar que al activar el mapa de desplazamiento se creen
pequeñas sombras triangulares correspondientes a los triángulos des-
plazados, se puede añadir un margen de error de modo que para
considerar un fragmento a la sombra no se compare la profundidad
del mapa con la distancia de la luz al fragmento sino con dicha distan-
cia menos el ajuste que queramos darle. Este margen de error ayuda
también a evitar el problema del “acné de sombras”, que se produce
cuando algunos de los ṕıxeles fallan el test de profundidad cuando
no debeŕıan. La función que calcula la iluminación con las sombras
se puede ver en el código 5 y el resultado se puede ver en la figura 28.

/* Fragment Shader */

vec3 getLightingWithShadows (vec4 normals) {

// Multiplicamos la matrix MVP de la luz por la posicion

actual (este calculo se realiza en una etapa anterior

pero se indica aqui para clarificar)

// vec4 lightSpacePosition = LightMVP * gl_in.gl_Position;

// Como ahora tenemos la posicion en funcion de la ‘‘camara

’’ de la luz

vec3 projCoords = lightSpacePosition.xyz /
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lightSpacePosition.w;

vec2 uvCoords;

uvCoords.x = 0.5 * projCoords.x + 0.5;

uvCoords.y = 0.5 * projCoords.y + 0.5;

float z = 0.5 * projCoords.z + 0.5;

// Usamos un sesgo para evitar el problema de ‘‘acne de

sombras ’’

float bias = 0.005;

float depth = texture(ShadowMap , uvCoords).x;

float shadowFactor = 1.0;

// Comparamos la profundidad actual con la almacenada

if (depth < (z - bias)) {

shadowFactor = 0.25;

}

vec3 ambLight = AmbientLight.color * AmbientLight.intensity;

// Calculamos el producto escalar de la direccion de la luz

con la normal

float difFactor = dot(normalize(normals), vec4(-DiffuseLight

.direction , 0.0f));

vec3 difLight;

if (difFactor > 0) {

difLight = vec3(DiffuseLight.color * DiffuseLight.

intensity * difFactor);

} else {

difLight = vec3(0, 0, 0);

}

return (ambLight + (shadowFactor * difLight));

}

Código 5: Fragment Shader del mapa de sombras
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Figura 28: La escena con el mapa de desplazamiento y las sombras
activadas

4.4. Mapas normales

Los mapas normales se pueden aplicar simplemente leyendo el valor
de la textura del mapa correspondiente al fragmento en el Fragment
Shader gracias a su UV y convirtiendo el valor de la textura, que
está entre 0 y 1, al valor de la normal, que está entre -1 y 1. Una
vez hecho esto, tenemos que multiplicar esta normal por la matrix
TBN que hab́ıamos calculado previamente en el Geometry Shader
para poder transformar la normal del espacio de coordenadas de la
textura al espacio de coordenadas del mundo. Ahora podemos usar
esta nueva normal calculada en vez de la original para aplicar la ilu-
minación. El cálculo se puede ver en el código 6 y el resultado se
puede ver en la figura 29.

/* Fragment Shader */

subroutine(renderMode) vec3 renderShadowNormal () {

vec4 normals = fs_in.TBN * vec4(texture(NormalMap , fs_in.uvs

).rgb * 2.0f - vec3 (1.0f, 1.0f, 1.0f), 0.0f);
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normals = normalize(normals);

vec3 lighting = getLightingWithShadows(normals);

return texture(TextureSampler , fs_in.uvs).rgb * lighting;

}

Código 6: Fragment Shader del mapa normal

Figura 29: La escena original con el mapa normal
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Figura 30: La escena original con el mapa normal en modo de mostrar
normales

Como se puede apreciar en la figura 30 ahora la superficie no tiene
una única normal, sino diferentes según el punto de la textura. Como
ahora la normal se calcula con la textura y no con la superficie, hemos
corregido los problemas de iluminación del mapa de desplazamiento,
como podemos comprobar en las figuras 31 y 32.
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Figura 31: La escena con el mapa de desplazamiento y el mapa nor-
mal

Figura 32: La escena con el mapa de desplazamiento y el mapa nor-
mal en modo de mostrar normales
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4.5. Texto

El texto solo necesita hacer uso del Vertex Shader y el Fragment
Shader. En el Vertex Shader se le pasa como parámetros de entrada
la altura y anchura de la ventana para mapear la posición de las
letras, que va dada en una posición entre 0 y la anchura y entre 0 y
la altura, a la posición de la ventana de OpenGL, que va entre -1 y
1 para el ancho y para el alto. Una vez se tiene la posición, se aplica
el color dado como parámetro de entrada en el Fragment Shader. Se
puede ver la escena con el texto informativo en la figura 33 y las
instrucciones que lo hacen posible en el código 7.

/* Vertex Shader */

// Map [0.. WindowWidth ][0.. WindowHeight] to [ -1..1][ -1..1]

vec2 pos = vertex_position.xy * 2.0f / vec2(WindowWidth ,

WindowHeight);

pos -= vec2 (1.0f, 1.0f);

gl_Position = vec4(pos , -1, 1);

uvs = vertex_uv;

/* Fragment Shader */

color = texture2D(TextureSampler , uvs) * vec4(TextColor , 1.0f);

Código 7: Vertex Shader y Fragment Shader del texto
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Figura 33: La escena final renderizada con el texto informativo
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5. Análisis de eficiencia

5.1. Nvidia Nsight

Nvidia Nsight es una plataforma para depurar y analizar el códi-
go de aplicacines de gráficos de distintas tecnoloǵıas (entre ellas
OpenGL). La versión utilizada se integra en el entorno de desarrollo
Visual Studio 2013 de Microsoft.

Con esta herramienta podemos analizar los shaders que hemos
implementado y ver la carga de trabajo de la GPU, las operaciones
más costosas, y otros elementos útiles, como muestran la figura 34 y
la figura 35.

Figura 34: Nsight analizando el Fragment Shader en Visual Studio

La prueba se ha realizado con la sincronización vertical activada
(es decir, se generan tantos fotogramas por segundo como la tasa de
refresco de la pantalla, que en este caso es de 60Hz).

Si nos fijamos en los resultados obtenidos en una ejecución conti-
nua del programa, veremos que la GPU está ociosa entre el 85 % y el
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95 % del tiempo con la escena original. Tras aplicarle distintas com-
binaciones de las técnicas implementadas mediante shaders (mapas
de desplazamiento, iluminación, mapas de sombras y mapas norma-
les) vemos que el trabajo de la GPU apenas asciende tras activar
cualquier combinación de ellas menos los mapas de desplazamiento.

Si los mapas de desplazamiento están activados, y cualquier otra
técnica menos los mapas de sombras está activada, la GPU está ocio-
sa el 50 % del tiempo.

Por último, combinando mapas de desplazamiento y mapas de
sombras (independientemente de la iluminación y de los mapas nor-
males) la GPU se encuentra ociosa entre el 20 % y el 25 % del tiempo.

La inmensa mayoŕıa del trabajo de la GPU en todos los casos se
debe al cómputo de los shaders (siendo las otras dos posibilidades la
carga de geometŕıa o de texturas, que juntas apenas suponen un 2 %
de la carga de trabajo).

Figura 35: Nsight analizando un fotograma paso a paso
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Por consiguiente, podemos deducir que la iluminación no nece-
sita optimización puesto que apenas añade carga, mientras que se
debeŕıan optimizar los mapas de desplazamiento, que suponen la
mayoŕıa del trabajo. Los mapas de sombras obviamente también su-
ponen un esfuerzo adicional, pero es porque tienen que renderizar la
escena una vez extra por cada punto de luz.

Llegados a este punto, cabe preguntarse si realmente es necesa-
rio renderizar las sombras con la calidad que ofrecen los mapas de
desplazamiento, en vez de sacrificar dicha calidad para ganar mucho
más rendimiento, de manera que las sombras proyectadas sobre la
escena desplazada correspondan a las sombras de la escena original.

Además, es un buen punto para pensar en el nivel de detalle que
queremos crear en la fase de teselado, ya que el mapa de desplaza-
miento de este PFC se ha diseñado e implementado con la opción de
sacrificar detalle según la distancia a la cámara, y aunque para las
pruebas se ha usado la versión de detalle más alto, se puede adaptar
para mejorar el rendimiento en las tarjetas gráficas que lo necesiten.

5.2. Comparativa con tarjetas gráficas Nvidia

A continuación se presenta una comparativa del programa eje-
cutándose en diferentes tarjetas gráficas cuyas caracteŕısticas se pue-
den consultar en el cuadro 1. Una información más detallada sobre
estas tarjetas se puede encontrar en el anexo B.

GTX 660 GTX 750 GTX 750 Ti GTX 760 GT 650M

GPU

Núcleos CUDA 960 512 640 1152 384
Frecuencia de reloj normal (MHz) 980 1020 1020 980 900

Frecuencia acelerada (MHz) 1033 1085 1085 1033 900
Tasa de relleno de texturas (GTexel/s) 78.4 32.6 40.8 94.1 27.2

Mem

Frecuencia de la memoria (Gbps) 6.0 5.0 5.4 6.0 2.2
Cantidad de memoria (MB ) 2048 2048 2048 2048 1024

Interfaz de memoria (GDDR5) 192-bit 128-bit 128-bit 256-bit 128-bit
Ancho de banda máx. (GB/s) 144.2 80.0 86.4 192.2 80.0

Cuadro 1: Comparativa de las tarjetas gráficas usadas
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Para evaluar el rendimiento, se ha desactivado la sincronización
vertical, de manera que cada GPU genere tantos fotogramas como
pueda. El programa se ejecuta durante 10 segundos en los que la
cámara se mueve rotando alrededor de la escena.

Los resultados de todos los análisis realizados se pueden ver en las
figuras 36, 37, 38, 39 y 40.

Figura 36: Fotogramas por segundo (FPS): Análisis 1
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Figura 37: Fotogramas por segundo (FPS): Análisis 2

Figura 38: Fotogramas por segundo (FPS): Análisis 3
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Figura 39: Fotogramas por segundo (FPS): Análisis 4

Podemos observar como los modelos más potentes (GTX 760 y
GTX 660) son los que mejor resultado dan, seguidos de la siguiente
gama de modelos (GTX 750 y su revisión mejorada GTX 750 Ti). Por
último, la versión móvil para portátiles (GT 650M) es obviamente la
que peor resultado ofrece.
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Figura 40: Fotogramas totales generados renderizando la escena du-
rante diez segundos con todas las técnicas activadas.
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Joaqúın David Palomares Garćıa

6. Conclusiones

A continuación se enumeran los objetivos del proyecto y su grado
de cumplimiento:

1. Diseño de una escena a modo de ejemplo en 3D utilizando las
libreŕıas de OpenGL para C++: realizado.

2. Diseño de shaders utilizando el lenguaje GLSL que ofrece OpenGL
en la versión 4.3:

• Mapas de desplazamiento: realizado.

• Mapas normales: realizado.

• Iluminación: realizado con iluminación ambiental,
iluminación difusa y mapas de sombras.

3. Implementación de dichos shaders utilizando tarjetas Nvidia:
realizado.

4. Análisis del comportamiento de dichos shaders frente a diferen-
tes tipos de tarjetas y uso del programa Nvidia Nsight: reali-
zado usando cinco tarjetas gráficas diferentes.

5. El código implementado (sin contar los shaders) está formado
por unas 2000 ĺıneas de código.

6. Los tamaños aproximados del código de cada shader para cada
tipo de figura diferente en la escena (suelo, columnas y texto)
son:

• Vertex Shader: 20 ĺıneas de código.

• Tessellation Control Shader: 60 ĺıneas de código.

• Tessellation Evaluation Shader: 70 ĺıneas de código.

• Geometry Shader: 70 ĺıneas de código.

• Fragment Shader: 120 ĺıneas de código.
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7. Horas de trabajo

En la figura 41 se puede ver el diagrama de Gantt del tiempo de
dedicación de este PFC.

Figura 41: Diagrama de Gantt del trabajo realizado

El desglose de las horas de trabajo realizadas es:

• Estudio y aprendizaje de OpenGL v4.3: 240 horas.

• Diseño del programa: 20 horas.

• Diseño de los shaders: 40 horas.

• Creación de modelos y texturas: 4 horas.

• Implementación y validación del programa: 48 horas.

• Implementación y validación de los shaders: 76 horas.

• Análisis de eficiencia: 40 horas.
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• Escritura de la memoria: 40 horas.

El tiempo total dedicado a la realización de este PFC ha sido de
508 horas.
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8. Trabajo futuro

Los shaders desarrollados en este PFC se pueden aplicar a otras
geometŕıas para elaborar escenas con más elementos, siempre que
se suministren los modelos en el formato adecuado y los mapas de
texturas necesarios para las técnicas que se quieran aplicar.

Con respecto a las mejoras que podŕıan recibir los shaders, el apar-
tado más indicado es el de la iluminación y sombreado. Por un lado,
el programa actual solo ilumina con una luz de ambiente y una luz
direccional, aśı que seŕıa interesante implementar los otros dos tipos
de luces que se suelen utilizar en la iluminación de gráficos 3D: el
punto de luz (similar a una bombilla, que ilumina alrededor de un
punto dado) y la luz de foco (una mezcla de la luz direccional y el
punto de luz, ya que ilumina desde un punto dado pero solo en una
dirección concreta).

Por otro lado, además de la técnica usada de luz difusa, se puede
emplear otra ténica de iluminación, la luz especular (specular ligh-
ting), que consiste en reflejar la luz en un único ángulo en vez de
en varios (como hace la luz difusa), de manera que se crea un efecto
de espejo que se puede regular dependiendo del material al que se
quiera aplicar (por ejemplo un metal pulido reflejaŕıa más la luz que
una pared de hormigón).

Por último, el aspecto de la luz ambiental se puede mejorar usando
la técnica de oclusión ambiental (ambient occlusion), que consiste en
calcular cómo de expuesto está cada punto a la luz ambiental (por
ejemplo, el interior de una cueva estaŕıa menos expuesto a la luz
ambiental conforme más nos adentrásemos en ella).
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Anexo

A. La pipeline de OpenGL 4.3

Una pipeline consiste en ir transformando un flujo de datos en un
proceso comprendido por varias fases secuenciales, siendo la entrada
de cada una la salida de la anterior. En el caso de OpenGL, esta
pipeline tiene una serie de fases o etapas, algunas de las cuales son
programables y reciben el nombre de shaders. Cada una de estas
etapas se ejecutan en paralelo tantas veces como sea necesario según
los datos de entrada.

En este anexo se da una visión de la nueva pipeline empleada por
OpenGL en su versión 4.3 y del recorrido que siguen los datos, aśı co-
mo una explicación más detallada de las etapas programables. En la
figura 42 se puede ver un diagrama simplificado de dicha pipeline y
sus etapas.

Figura 42: La pipeline simplificada de OpenGL 4.3, con las etapas
no programables en amarillo y las programables en azul
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La pipeline empieza con un proceso que dicta como serán intro-
ducidos los vértices de una figura en la pipeline y los prepara para
la primera etapa programable. Por ejemplo, los vértices pueden ser
puntos, triángulos, parches (caras de múltiples vértices) y se pueden
especificar de multiples formas, como en listas, o todos seguidos.

Esta primera etapa programable (Vertex Shader) es la única que
tiene que estar siempre presente, siendo las demás etapas progra-
mables opcionales (aunque sin la última etapa, el Fragment Shader,
no se verá nada en la pantalla). Si una de las etapas opcionales no
está presente (programada) se saltará a la siguiente).

Una vez se han preparado los vértices, existe la opción de teselar,
esto es, partir las primitivas recibidas (como parches) en primitivas
más pequeñas (como triángulos). Esto se controla con tres etapas
seguidas, dos de las cuales son programables y controlan el proce-
so antes y después, y otra no programable que es la que realmente
ejecuta la teselación.

Despúes viene la etapa de Geometry Shader, la única etapa que
deja crear geometŕıa nueva.

Lo siguiente que se realiza es el proceso de rasterización, un pro-
ceso automático que consiste en convertir las primitivas recibidas en
un conjunto de ṕıxeles o puntos. Concretamente OpenGL convierte
las primitivas en fragmentos, que son la representación de un trozo
de las primitivas. Los fragmentos producidos están relacionados con
los ṕıxeles disponibles, de manera que siempre hay al menos un frag-
mento por ṕıxel, pero se pueden llegar a producir más fragmentos
para un mismo ṕıxel, dependiendo de los parámetros de OpenGL.

Estos fragmentos pasan al Fragment Shader, que es la etapa pro-
gramable capaz de tratarlos.
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Por último, se realizan una serie de operaciones con la salida final,
de forma que esta salida se pueda mostar por pantalla.

A.1. Vertex Shader

El Vertex Shader se encarga del procesamiento de vértices indivi-
duales: recibe siempre un vértice de entrada y genera uno de salida.
Es el sitio donde se suelen aplicar las transformaciones para cambiar
el espacio de coordenadas.

A.2. Tessellation Control Shader

El Tessellation Control Shader recibe como entrada un parche (un
conjunto de varios vértices) y controla la forma en la que será tese-
lado. También define el número de vértices que componen el parche.

A.3. Tessellation Evaluation Shader

El Tessellation Evaluation Shader opera con las posiciones interpo-
ladas de los vértices resultantes del proceso de teselación. Su labor
es la de coger el parche abstracto generado durante la teselación
aśı como los vértices originales del parche y generar con ellos nuevos
vértices.

El TES se ejecuta al menos una vez por cada vértice generado en
el parche abstracto y cada invocacion genera un solo vértice.

A.4. Geometry Shader

El Geometry Shader recibe una sola primitiva como entrada (por
ejemplo, un triángulo) y genera cero o más primitivas. Es la única
etapa que puede crear nueva geometŕıa.
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A.5. Fragment Shader

El Fragment Shader es la etapa que recibe un fragmento del pro-
ceso de rasterización y le asigna un conjunto de colores.

Al poder cambiar el color de los fragmentos, es la etapa utilizada
para las tareas de iluminación.

B. Tarjetas gráficas utilizadas

Para analizar el rendimiento del programa se han usado una serie
de tarjetas gráficas, todas diseñadas por Nvidia. Estas tarjetas gráfi-
cas son fabricadas por distintas empresas (como Gigabyte o Asus)
que las fabrican según las especificaciones de Nvidia pero otorgándo-
les ligeras personalizaciones, como por ejemplo la cantidad y tipo de
memoria.

Las tarjetas gráficas usadas han sido:

• Gigabyte GeForce GTX 660 OC 2GB GDDR5

• Gigabyte GeForce GTX 750 OC 2GB GDDR5

• Gigabyte GeForce GTX 750 Ti OC Windforce 2GB GDDR5

• Asus GeForce GTX 760 DirectCU II OC 2GB GDDR5

• Nvidia GeForce GT 650M

Para ponerlas en contexto, Nvidia nombra las tarjetas gráficas
según la serie (serie 600, serie 700...) siendo cada serie superior la
siguiente generación, y dentro de cada serie, se distinguen por la ga-
ma (50, 60, 80...). Además, si realizan una revisión de un modelo
para mejorarlo, le añaden el sufijo Ti, y si se trata de una versión
móvil (tarjetas gráficas para portátiles) el sufijo M.
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Siguiendo estas indicaciones, podemos avanzar que el modelo más
potente será la GTX 760, seguido del modelo de la misma gama pero
de la serie anterior, la GTX 660. Después viene la gama inferior,
primero la revisión GTX 750 Ti, luego la GTX 750, y por último,
muy inferior a todas las demás, el modelo móvil GT 650M.

En el cuadro 2 se exponen las caracteŕısticas de las tarjetas gráficas
de Nvidia utilizadas para los análisis de rendimiento.

GTX 660 GTX 750 GTX 750 Ti GTX 760 GT 650M

GPU

Núcleos CUDA 960 512 640 1152 384
Frecuencia de reloj normal (MHz) 980 1020 1020 980 900

Frecuencia acelerada (MHz) 1033 1085 1085 1033 900
Tasa de relleno de texturas (GTexel/s) 78.4 32.6 40.8 94.1 27.2

Mem

Frecuencia de la memoria (Gbps) 6.0 5.0 5.4 6.0 2.2
Cantidad de memoria (MB ) 2048 2048 2048 2048 1024

Interfaz de memoria (GDDR5) 192-bit 128-bit 128-bit 256-bit 128-bit
Ancho de banda máx. (GB/s) 144.2 80.0 86.4 192.2 80.0

Cuadro 2: Comparativa de las tarjetas gráficas usadas
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