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Resumen

El objetivo de este Proyecto Fin de Carrera es el de mostrar la capacidad
del proyectante para disenar e implementar shaders para la liberia de graficos
OpenGL en su versién 4.3.

Dichos shaders son pequenos programas que se ejecutan en la unidad de
procesamiento grafico (GPU) y aplican transformaciones y efectos especiales a
la hora de renderizar una escena.

Para este PFC se ha creado una escena de muestra en tres dimensiones y
se han utilizado distintas técnicas aplicadas en los shaders para modificarla en
tiempo real. Concretamente, las técnicas aplicadas han sido:

e Mapas de desplazamiento: Una técnica que consiste en usar texturas con
la informacion de la altura de la geometria para desplazar los vértices de
la superficie texturizada.

e Luz ambiental: Una técnica que proporciona una iluminacién global y
homogénea a toda la escena.

e Luz difusa: Una técnica que permite reflejar una fuente de luz sobre una
superficie en muchas direcciones.

e Mapas de sombras: Una técnica para reproducir las sombras creadas por
las distintas fuentes de luz.

e Mapas normales: Una técnica que usa texturas para dar una iluminacién
y un relieve mas detallados a la geometria de la escena.

Ademas del diseno e implementacién de las shaders, se ha analizado su efi-
ciencia en distintos tipos de GPU del fabricante Nvidia.

OpenGL Shaders - FPS: 60

Figura 1: Escena final renderizada
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1. Introduccion

1.1. Palabras clave que definen las herramientas
en las que se basa este PFC

OpenGL (Open Graphics Library) es una especificacién estandar
que define una API multilenguaje y multiplataforma para escribir
aplicaciones que produzcan graficos 2D y 3D. La interfaz consiste
en mas de 250 funciones diferentes que pueden usarse para dibujar
escenas tridimensionales complejas a partir de primitivas geométricas
simples, tales como puntos, lineas y tridngulos.

La tecnologia basada en el uso de shaders es una tecnologia recien-
te y que ha experimentado una gran evolucién destinada a proporcio-
nar al programador una interaccién con la unidad de procesamiento
grafico (GPU) hasta ahora imposible. Los shaders son utilizados para
realizar transformaciones y crear efectos especiales, como por ejemplo
iluminacion, fuego o niebla. Para su programacion los shaders utili-
zan lenguajes especificos de alto nivel que permitan la independencia
del hardware.

Unidad de procesamiento grifico o GPU (Graphics Processing
Unit) es un coprocesador dedicado al procesamiento de graficos u
operaciones de coma flotante que se utiliza para aligerar la carga de
trabajo del procesador central en aplicaciones como los videojuegos
o aplicaciones 3D interactivas. De esta forma, mientras gran parte de
lo relacionado con los graficos se procesa en la GPU, la unidad cen-
tral de procesamiento (CPU) puede dedicarse a otro tipo de calculos
(como la inteligencia artificial o los calculos mecanicos en el caso de
los videojuegos).

-11-
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1.2.

Objetivos del proyecto

1. Diseno de una escena de muestra en 3D utilizando las librerias

DO

de OpenGL para C++.

. Diseno de shaders utilizando el lenguaje GLSL que ofrece OpenGL

en la versién 4.3. Dichos shaders modificaran distintos elemen-
tos de la escena (como pueda ser el suelo, paredes, columnas
o cualquier otro elemento que pueda aparecer en ella). Para
ello, segin el elemento a modificar, se hara uso de diferentes
técnicas graficas, entre las que se pueden encontrar:

e Mapas de desplazamiento
e Mapas normales

e [luminacion

. Implementacion de dichos shaders utilizando tarjetas Nvidia.

Anélisis del comportamiento (eficiencia) de dichos shaders fren-
te a diferentes tipos de tarjetas. Para ello se hara uso del pro-
grama Nvidia Nsight.

Resumen de las actividades para realizar el
proyecto

Estudio de OpenGL v4.3, GLSL y Nvidia Nsight.
Diseno de la escena.
Diseno de los shaders.

Creacién de los modelos, texturas y mapas que compondran la
escena y que usaran los shaders.

. Implementacion de la escena.

. Implementacién y validacion de los shaders sobre GPUs Nvidia.

-12-
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7. Analisis de eficiencia en diferentes tipos de GPUs.

8. Escritura de la memoria

1.4. Descripcién de la estructura de la memoria

Diseno de los shaders (seccién 2)
Diseno de los distintos shaders que ejecutara el programa para
modificar la escena.

Diseno e implementacién del programa (seccién 3)
Diseno e implementacion del programa que mostrara la escena.

Implementacién y validacién de los shaders (seccién 4)
Implementacién de los distintos shaders que ejecutara el pro-
grama para modificar la escena.

Anilisis de eficiencia (seccién 5)
Comparacion de los distintos tipos de shaders elaborados en
diferentes tarjetas gréficas.

Conclusiones (seccion 6)
Valoracion del trabajo realizado.

Horas de trabajo (seccién 7)
Informacion detallada sobre el tiempo que ha llevado realizar
este PFC.

Trabajo futuro (seccién 8)
Posibilidades para continuar, ampliar y mejorar el trabajo desa-
rrollado.

Referencias (seccién 8)
Referencias y fuentes de informacion usadas para elaborar este

PFC.

Anexo

13-
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e En la primera parte del anexo se da una visién de la pi-
peline de OpenGL v4.3 y de las diferentes etapas que la
componen, incluyendo una explicaciéon sobre cada una de
las etapas programables usadas en este PFC (seccién A
del anexo).

e En la segunda parte del anexo se da informacion sobre las
caracteristicas de las diferentes tarjetas graficas empleadas
en los andlisis de eficiencia. (seccién B del anexo).

-14-
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2. Diseno de los shaders

2.1. Conceptos basicos

Para entender mejor las técnicas aplicadas, a continuacion se de-
tallan algunos conceptos tutiles que se emplean durante el desarrollo
de shaders.

2.1.1. Espacios de coordenadas

Cuando se esta trabajando en una aplicacién en 3D, hay que tener
en cuenta que la posicién de un vértice puede ser relativa a distintos
sistemas de coordenadas. Concretamente, la mayoria de las veces ese
sistema pertenece a uno de estos cuatro:

e Coordenadas del modelo: los vértices de un modelo tienen una
posicién relativa al centro de dicho modelo.

e Coordenadas del mundo: los vértices de los objetos de la escena
estan definidos con relacion al centro de la escena.

e Coordenadas de la camara: la posicién de los vértices es relativa
a la camara.

e Coordenadas homogéneas: la posicion de los vértices es relativa
a la pantalla donde se mostraran.

Se hace pues necesario un sistema para pasar de un espacio de
coordenadas a otro. Para ello, se emplean distintas matrices para
cada uno de los cambios necesarios. Estas matrices se pueden ver en
el diagrama de la figura 2.

_15-
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Coordenadas del modelo J

[ Matriz modelo ]

)

Coordenadas del mundo )

[ Matriz vista ]

Coordenadas de la camara J

[ Matriz proyeccidn ]

Coordenadas homogéneas]

Figura 2: Diagrama de los espacios de coordenadas y sus matrices de
cambio

La matriz de modelo permite situar un modelo en funcién de la
escena. La matriz de vista contiene la posicién donde se encuentra la
camara, asi como la direcciéon y el sentido en que mira. La matriz de
proyeccion pone la escena en funcién de los parametros de la camara,
como el tipo de proyeccién (perspectiva, ortografica...), el campo de
vision, la anchura y altura de la visién o el rango de vision.

Todas estas matrices se pueden multiplicar para formar una sola,
a la que llamaremos matriz MVP. La matriz MVP permite, al mul-
tiplicar el vértice de un modelo, ponerlo directamente en el espacio
de coordenadas homogéneo.

Matematicamente hablando, la matriz de modelo M se calcula co-
mo el resultado de todas las transformaciones que hay que hacer para
pasar de las coordenadas del modelo a las coordenadas del mundo.
Estas transformaciones pueden ser de traslacion T', de rotacion R o
de escala S.

e La matriz de traslacion movera el punto en la direccién mar-
cada por T, T}, y T%:

-16-
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o OO =
O O = O
O =k OO

e La matrix de rotacién R,, I%, o R, rotard sobre su respectivo
eje o grados en sentido antihorario:

(10 0 0]
P 0 cos(a) —sin(a) 0
“ 10 sin(a) cos(a) 0
0 0 0 1

[ cos(a) 0 sin(a) O]

p_| 0 1 0 0
Y | —sin(a) 0 cos(a) 0
0 0 o0 1]
[cos(a) —sin(a) 0 0]
R sin(a) cos(a) 0 0
= 0 0 10
0 0 01

e [La matriz de escala escalara un vector en las direcciones de los
ejes marcadas por Sy, S, vy S.:

cocon
cono
o WnNo o
—o oo

Combinando estas matrices de distintas formas podemos posicio-
nar un modelo en nuestro mundo. La matriz resultante de dicha

_17-
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combinacion es la matriz de modelo M. El siguiente paso es conver-
tir las coordenadas obtenidas a las coordenadas de la caAmara usando
la matriz de vista V.

La matriz de vista V' es una variante de la matriz de modelo, ya
que lo que haremos realmente es obtener la matriz que posiciona
nuestra camara en el mundo y luego obtener su inversa para poder
convertir las coordenadas del mundo a las de la caAmara. Los datos
necesarios de la matriz de vista son la posicién de la cdmara (para
poder situarla en el mundo), la direccién en que mira, la direccién
que la camara considera “hacia arriba” y la direcciéon que la cama-
ra considera “hacia la derecha”. Cambiando los valores de estas dos
ultimas direcciones se pueden conseguir efectos como la rotacién de
la cdmara o simular un espejo. La matriz de vista V' se define como:

derecha, arriba, mirada,
derecha, arriba, mirada,
derecha, arriba, mirada,

—(posicion - derecha) —(posicion - arriba) —(posicion - mirada)

Por dltimo, para pasar estas coordenadas de la camara a las coor-
denadas homogéneas, multiplicaremos por la matriz de proyeccion P.
Puesto que la matriz es diferente segin si la proyeccién es en perspec-
tiva u ortografica, vamos a distinguir entre la matriz de proyeccion
en perspectiva P, y la matriz de proyeccion ortografica F,. En am-
bas usaremos la distancia mas cercana y la distancia mas lejana a
la cdmara (Z,, y Zy respectivamente), pero puesto que la anchura y
altura en la ortografica es constante mientras que en la perspectiva
cambia conforme nos alejamos de la camara, como se puede compro-
bar en la figura 3, vamos a introducir el concepto de campo de vision
o FoV (del inglés “field of view”), que indica el dngulo de la visién.
Asi pues, tenemos que:

18-
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arctan(9%) 0 0 0
FoV,
P 0 arctan(—5+) 0 0
p 0 0 _Zf+Zn _2(Zon)
Z—Z,  Z;—Zn
0 0 —1 0
1
anchura (1) 0 0
0 0
altura
P 0o — 0 O o 2 o Z f+Zn
Z—Z,  Z;—Zn
0 0 0 1

Figura 3: Proyeccién ortografica y en perspectiva

-19-
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Asi pues, tenemos que multiplicando una posicién por estas tres
matrices M, V y P podemos pasar de las coordenadas del modelo p
a las coordenadas homogéneas p’ de la forma:

p=PxVxMxp

Y agrupando estas tres matrices en una sola tenemos la matriz
MVP:

MVP=PxVxM

En las figuras 4 y 5 se puede ver el cambio que sufren los objetos de
la escena al multiplicar sus vértices por una matriz de proyeccién para
pasar de las coordenadas de la camara a las coordenadas homogéneas.

Figura 4: Una escena en el espacio de coordenadas de la camara (en
1r0jo)

-920-
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Figura 5: Una escena en el espacio de coordenadas homogéneas (de
la pantalla, en rojo)

2.1.2. Composicién de un modelo 3D

Los modelos 3D que usaremos estan compuestos por triangulos.
Cada triangulo del modelo se define como un conjunto de tres vérti-
ces, y cada vértice guarda la informacion de tres datos distintos:
la posicion del vértice en el espacio, la normal de la superficie del
triangulo y el mapa UV.

La posicién es un vector de cuatro elementos de la forma (X, Y,
Z, W) donde “X7, “Y” y “Z” indican la posicién en dichos ejes y
“W” es un valor constante 1 para indicar que es una posicién en el
espacio.

La normal de la superficie almacenada es la misma en los tres
vértices de una cara y se guarda de la forma (X, Y, Z, W) donde
“X77, Y7 y “Z7 indican la direccion en dichos ejes y “Windica que
se trata de una direccion.

91-



T Memoria - OpenGL v4.3: Ejemplos de diseno

aAe Escuela de . . . .
it Ingenieria y Arquitectura de shaders e implementacion mediante GPUs
1542 Universidad Zaragoza Joaquin David Palomares Garcia

Los mapas UV sirven para proyectar una textura en 2D sobre un
modelo en 3D. Para ello, a cada vértice se le asigna una posiciéon (U,
V) donde “U” denota el eje horizontal desde 0 hasta 1 de izquierda
a derecha, y “V” indica el eje vertical desde 0 hasta 1 de abajo hacia
arriba, tal como se puede observar en la figura 6

Figura 6: Proyeccion de una textura en un tridngulo con los mapas
[SAY
2.1.3. La pipeline de OpenGL

La pipeline de OpenGL marca el proceso que siguen los flujos de
datos en su paso por la GPU. Estos datos atraviesan una serie de
etapas, llamadas shaders, algunas de las cuales son programables.
Estas shaders programables son:

e Vertex Shader: Procesa cada vértice individualmente.

e Tessellation Control Shader y Tessellation Evaluation Shader:
Se encargan del proceso de dividir un parche (un conjunto de
vértices) en un conjunto de tridngulos més pequenos.

e Geometry Shader: Crea nueva geometria.

_99_
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e Fragment Shader: Aplica el color a los pixeles que se mostraran
en pantalla.

Para una informacién mas detallada de la pipeline y de las shaders
programables, se puede consultar en el anexo A.

2.2. Mapas de desplazamiento

Los mapas de desplazamiento (displacement mapping) consisten
en el uso de una textura que contiene en uno de sus canales RGB
(normalmente en los tres) la informacién sobre el desplazamiento que
tiene que seguir la superficie donde esta aplicada. El desplazamiento
se ejecuta a lo largo de la normal de la superficie.

Esta informacién se puede interpretar de varias maneras, por ejem-
plo, siendo el 0 negro y el 1 blanco, el negro puede significar que no
hay desplazamiento y el blanco que hay un desplazamiento total, o
puede sifnificar que el negro desplaza en direccién inversa a la normal
y que un tono medio de 0.5 significaria no desplazar.

La figura 7 da una idea del aspecto de un mapa de desplazamiento
comparado con la textura original.

Figura 7: La textura original y su mapa de desplazamiento
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La idea, por tanto, es desplazar los vértices de cada triangulo de
la geometria segin su posicion en el mapa, pero surge un proble-
ma: con una geometria simple (por ejemplo, tridngulos muy gran-
des) apenas hay puntos que desplazar. Es necesario entonces dividir
dichos triangulos en triangulos mas pequenos que seamos capaces de
desplazar para poder conseguir un nivel de detalle mayor. Para ello
podemos usar las etapas de teselacion de la pipeline de OpenGL, Tes-
selation Control Shader (anexo A.2) y Tesselation Evaluation Shader
(anexo A.3), que permiten dividir un tridngulo en otros mas pequenos
segin los valores que asignemos a cada arista y al interior.

OpenGL divide el tridngulo en niveles interiores y exteriores y
permite establecer sus valores individualmente, como se puede ver
en la figura 8.

(0.1.0)

(1,0,00

Figura 8: Niveles de teselacion en OpenGL

Para establecer los valores de dichos niveles (o sea, la cantidad de
triangulos en la que se dividira el tridngulo original) podemos darles
un valor fijo, o, para mejorar el rendimiento, podemos darles un valor
en funcién de la distancia de cada arista a la camara.
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Una vez tengamos dividido el tridngulo ya podemos usar nuestro
mapa de desplazamiento para desplazar los nuevos vértices creados.
Para ello, simplemente cogeremos la posicion de cada vértice y ve-
remos en que parte del mapa de desplazamiento esta situado, y lo
desplazaremos a lo largo de la normal un porcentaje del factor total
de desplazamiento dependiendo del tono de la textura.

Por ultimo, hay que recordar que al desplazar los vértices hemos
cambiado las normales de cada cara y es necesario recalcularlas usan-
do las nuevas posiciones de los vértices.

En la figura 9 se puede ver el resultado de aplicar sobre una malla
plana un mapa de desplazamiento, consiguiendo que los vértices de
la malla se desplazen a lo largo de la normal segun lo indicado en el
mapa.

ORIGINAL MESH

A B ' MESH WITH DISPLACEMENT

DISPLACEMENT MAP

Figura 9: Mapa de desplazamiento aplicado sobre una malla plana

2.3. Iluminacion

Para la iluminacion se usaran dos técnicas diferentes en conjunto:
la luz ambiental (ambient lighting) y la luz difusa (diffuse lighting).
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2.3.1. Luz ambiental

La luz ambiental es el tipo de iluminaciéon mas simple y representa
la luz que existe en el ambiente sin ningin otro tipo de iluminacion
directa. Es homogénea y de valor constante.

Para simular este tipo de luz, simplemente hay que ajustar el color
en la etapa de Fragment Shader segin la intensidad y color requeri-
dos.

Para calcular la iluminacion ambiental I,,piente; €n un punto dado
esta depende del coeficiente de reflexién ambiental k, (el color, en
tres componentes RGB en el intervalo [0,1]) y de la constante de
intensidad ambiental I,, de la forma:

Iambiental — ka Ia

2.3.2. Luz difusa

La luz difusa hace mencién a la luz que es reflejada en una su-
perficie en todas direcciones siguiendo la Ley de Lambert [6]. Dicha
ley establece que la iluminaciéon producida por una fuente luminosa
sobre una superficie es directamente proporcional a la intensidad de
la fuente y al coseno del angulo que forma la normal a la superficie
con la direccién de los rayos de luz y es inversamente proporcional
al cuadrado de la distancia a dicha fuente.

En la figura 10 se puede observar la luz difusa reflejada en una
superficie sobre la que incide una fuente de luz.
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N T
N \ f specular

o .
2 diffuse reflection
/

z reflection
..
(e

Figura 10: Reflexién de una fuente de luz

Para calcular la iluminacion difusa de una fuente de luz en un pun-
to tenemos que tener en cuenta pues el vector normal de la superficie
N en el punto, el vector de incidencia de la luz L (el vector de la
direccion de la fuente de luz al punto), la intensidad de la fuente de
luz I; y el coeficiente de reflexion difusa k;. La iluminacion difusa
total sera la suma de la iluminacién difusa de cada fuente de luz:

Liifusa = Z kailii(N - L;) = Z Ka; 11 cos 0;

Matematicamente, podemos definir el modelo de iluminacion co-
mo la suma de la iluminacion ambiental y la iluminacion difusa, tal
que:

I = ]ambienta,l + ]difusa = ka]a + Z kdlez(N . Lz)

Por lo tanto para simular la luz solo tenemos que aplicar este
modelo de iluminacién Fragment Shader (anexo A.5).
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2.4. Mapas de sombras

Los mapas de sombras (shadow mapping) son una de las diferentes
técnicas que nos permiten simular las sombras que producen todas
las luces en una escena.

La técnica consiste en renderizar cada fotograma de la escena en
varias pasadas. Primero, haremos una pasada por cada fuente de luz
existente en la escena, situando la camara en dicha fuente de luz. En
estas pasadas no nos interesa la salida de color (GL_.COLOR_BUFFER BIT)
sino el buffer de profundidad (GL_DEPTH BUFFER BIT), también
conocido como z-buffer, obtenido para cada fuente de luz. Seleccio-
nando un buffer tenemos almacenada la distancia desde la camara a
cada punto renderizado de la escena visto desde la fuente de luz se-
leccionada. Al no utilizar el buffer de color nos ahorramos los calculos
del Fragment Shader. Este buffer lo podemos almacenar en el forma-
to de una textura que servird como dato al algoritmo de calculo de
sombras.

e Distances stored in a texture
("shadow map")

Projected shadow

Figura 11: Ejemplo de célculo del buffer de profundidad

Una vez calculados los z-buffer de la escena desde el punto de vista
de cada fuente de luz, pasamos a renderizar la escena en si como lo
hariamos normalmente, con la caAmara situada en la parte de la escena
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que deseemos y suministrandole al Fragment Shader (anexo A.5) los
z-buffer generados. A la hora de calcular la iluminacién de una fuente
de luz dada lo que haremos serd relacionar el fragmento que estamos
calculando con el z-buffer generado para decidir si hay sombra o no
en dicho fragmento. Para ello, mediremos otra vez la distancia de
la fuente de luz al fragmento dado (df) y la compararemos con la
distancia de la luz almacenada en el z-buffer de dicha luz (d;). Si
la distancia dy > dp, el fragmento que estamos analizando esta a la
sombra.

En la figura 12 se puede observar el proceso de decidir si un frag-
mento P esta a la sombra o no al comparar la profundidad almace-
nada en el z-buffer desde el punto de vista de la luz (Z4) con el valor
de profundidad del fragmento que estamos analizando visto desde la

luz (Zp).
= >

Shadow X Shadow '
—_ ... — . . ...
Map - Map —7
f: £ i g
, Zo |
Image - - I N ;o
Plane L . ' 7 =1,
.‘1- ,r"E‘E l‘\-. II_" Px II.- r
“:ﬁ —-:-'—
z,> 12, Za= 2,
Pis in shadow Pis lit

Figura 12: Ejemplo de andlisis de la sombra de un fragmento

En esta técnica las sombras obtenidas son dinamicas, lo que quiere
decir que se calculan para cada fotograma renderizado, al contario
que en otras técnicas en las que se calcula de antemano las sombras
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y luego se aplican a la escena sin posibilidad de moverlas o quitarlas
(lo que se conoce como baked lighting o iluminacién “cocinada”).

Al tener que calcularse para cada fotograma, su rendimiento es mu-
cho menor, pero como ventaja, nos permiten proyectar las sombras
de modelos animados o las sombras producidas por luces méviles.

2.5. Mapas normales

Hemos hablado de que la luz difusa se refleja segtin el angulo que
forma con la normal de la superficie, pero existe un problema: cuanto
mayor es la superficie, menor es el detalle conseguido, ya que toda la
superficie comparte la misma normal.

Con la técnica de los mapas normales (normal mapping), se con-
sigue dar mas detalle y relieve a la iluminacién de las superficies. La
idea consiste en codificar la informacién de la normal en cada punto
de una superficie dentro de los canales RGB de una textura, de tal
manera que el canal rojo contiene la componente X de la normal, el
verde tiene la componente Y, y el azul la componente Z. Puesto que
los colores RGB van de 0 a 1 (nada de color a todo el color), el valor
de 0 significa que la normal en dicho punto es -1, el valor de 1 indica
una normal de +1, y el valor intermedio de 0.5 indica una normal en
esa componente de valor 0.
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Figura 13: Descomposicion de un mapa normal en los canales RGB

A la hora de renderizar un fragmento de la escena, simplemente
obtenemos la informacion de la normal del mapa normal en vez de
usar la normal de la superficie y aplicamos la luz difusa.

En la figura 14 podemos ver el efecto resultante de la iluminacién
en un cubo antes y después de aplicar un mapa normal.
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Figura 14: Un cubo iluminado antes y después de aplicarle un mapa

normal

2.6. Texto

Por ltimo, para mostrar texto por pantalla OpenGL no dispone de
ninguna instruccién nativa, asi que tenemos que renderizar nosotros
mismos las letras encima de la escena renderizada seleccionandolas
de un mapa de caracteres con transparencia y dibujandolas una a

una.
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Figura 15: Mapa de caracteres
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3. Diseno e implementacion del progra-
ma

Para poder hacer uso de los shaders, hace falta crear un progra-
ma que suministre los datos, las configuraciones y otros parametros
necesarios. Dicho programa se detalla en esta seccién.

El programa esta implementado en C++, mientras que los shaders
estan implementados en el lenguaje GLSL. Para tratar con OpenGL
nos ayudaremos de un conjunto de librerias que nos facilitaran la
tarea:

e GLEW: La libreria GLEW (The OpenGL Extension Wrangler
Library) [7] es una libreria de carga de extensiones de cdédigo
abierto y multiplataforma que provee de mecanismos para de-
terminar que extensiones de OpenGL admite la plataforma en
la que se ejecuta.

e GLFW: La librerfa GLFW (OpenGL FrameWork) [8] es una
libreria de cédigo abierto y multiplataforma que ayuda en la
creacién de ventanas de OpenGL asi como con su contexto,
eventos y entrada de teclado y raton.

e GLM: La libreria GLM (OpenGL Mathematics) [9] proporciona
clases y funciones matematicas que siguen las convenciones de
nombres y funcionalidades usadas en GLSL de tal manera que
se puedan relacionar facilmente en C++.

En la figura 16 se puede ver el diagrama de clases que componen
el programa.
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»
Carga de modelos Carga de texturas Carga de shaders
+leer FBX() +leer_DDS() +compilar_shaders()
6..1 1 +generar_programa()
T >
» > 3
Texto
09..*
a.l*] Objeto B..* +imprimir_texto()
-programa_shaders
-vertices
-normales
-uvs
-textura 0.."
-textura_desplazamiento >
-textura_normal
+renderizar() 11 Renderizador
% renderizar_escenal )
Suelo Pilar ‘

|Ca’mara| | llumi nacic’ml |Somb|as |
I 1 L 1 I 1
I ] I

+renderizar() +renderizar()

Figura 16: Diagrama de clases del programa

3.1. Programa principal

El programa principal sera el encargado de inicializar los datos de
OpenGL y de controlar los eventos de teclado. Creara la ventana y
delegara la creacién, composicién y renderizado de la escena en una
clase creada a tal fin.

La ventana se crea con una serie de parametros gracias a GLFW
(usar versién 4.3 de OpenGL, antialiasing 4x, sincronizacién vertical,
ventana redimensionable). Después pasa al bucle principal, en el que
llama continuamente a la clase renderizadora para que le suministre
fotogramas.

3.2. Composicion de la escena

3.2.1. Renderizador

La clase del renderizador sera la encargada de crear y posicionar
los objetos en la escena, asi como de indicarles el momento y el modo
en el que deben de dibujarse en pantalla (ver figura 16).
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También serd la encargada de controlar la camara, la iluminacién
y las sombras de la escena.

Segun el modo de renderizado, controlado por una variable, decide
si tiene que renderizar la escena una sola vez o varias para incluir los
mapas de sombras. A continuacion, llama a la funcion de renderizado
de cada uno de los objetos que componen la escena, suministrandoles
la matriz MVP, la iluminacién y el modo de renderizado.

3.2.2. Camara

La clase de la camara sera la encargada de posicionar y mover la
camara a lo largo de la ejecucion (ver figura 16).

Esta clase contiene también la matriz MVP de la caAmara. La ma-
triz estd compuesta por tres mastrices de 4x4: la proyeccion (contiene
que la vista esta perspectiva, el campo de visién, la anchura y altura
de la visién y el rango de cerca y de lejos), la vista (contiene la po-
sicion donde se encuentra la camara, la posicién a la que mira y el

sentido en el que mira) y el modelo (que en este caso es una matriz
identidad).

La posicion de la caAmara se puede cambiar modificando la matriz
de vista y rehaciendo la matriz MVP.

3.2.3. Iluminacién

La clase de iluminacién contiene los datos de posicién, intensidad
y color de los dos tipos de luces que vamos a usar (ver figura 16).

Ademaés contiene la matriz MVP desde el punto de vista de la
luz difusa, lo cual nos servira para calcular las sombras. Como la
luz difusa que emplearemos pretende simular una luz muy lejana,
como la solar, donde los rayos inciden paralelamente, la matriz de
proyeccion es ortografica en vez de en perspectiva.
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3.2.4. Sombras

La clase de sombras se encargara de guardar en un buffer un foto-
grama renderizado desde el punto de vista de una luz concreta, que
serd su mapa de sombras, y lo suministrara cuando sea llamada con
otra funcién (ver figura 16).

3.3. Herramientas

3.3.1. Carga de shaders

La clase de carga de shaders lee archivos GLSL y los almacena para
compilarlos en la etapa que se le indique. Una vez tiene todas las
etapas a usar con los archivos GLSL cargados, compila el programa
notificando si ha habido algun error (ver figura 16).

3.3.2. Carga de texturas

La clase de carga de texturas debe ser capaz de leer una textura
en formato DDS (DirectDraw Surface) [10], un formato muy usado
para almacenar texturas, y convertirlas al formato de texturas usado
por OpenGL (ver figura 16).

Estas texturas permiten el uso de mipmaps (la misma textura
contiene versiones de distintos tamanos en potencias de dos desde
1x1 pixeles hasta el tamano mayor, de manera que segin el tamano
que ocupa en pantalla la textura, carga una u otra para optimizar).

3.3.3. Carga de modelos

La clase de carga de modelos permitira cargar modelos en el for-
mato FBX (Filmbox) [11], un formato que permite almacenar los
vértices, las normales y los mapas UV de un modelo 3D, de mane-

ra que al leer el archivo, pueda cargar estos datos en los buffers de
OpenGL (ver figura 16).
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3.3.4. Texto

Una clase para poder imprimir texto por pantalla, ya que OpenGL
no dispone de ninguna instruccién nativa (ver figura 16).

La clase de texto relaciona el nimero ASCII de cada caracter con
la posicién de dicho caracter en la textura del mapa de caracteres.

3.4. Objetos

Cada objeto de la escena heredara de una clase padre para poder
compartir la funcién de renderizado (ver figura 16). Ademas, cada
objeto ha de ser capaz de guardar la informacion de:

e Programa de shaders: Un programa compilado con los shaders
de las distintas etapas que usara el objeto para renderizarse.

e Posicién de vértices: La posicién de cada vértice en el espacio
de coordenadas de la escena, ya sea cargada desde un archivo
FBX o codificada a mano. Dichos vértices deben componer
siempre las caras de un tridngulo, ya que solo vamos a trabajar
con triangulos.

e Mapas de UV: Los mapas UV de los vértices, ya sea cargado
desde un archivo FBX o codificado a mano.

e Normales de vértices: La normal de la superficie en cada uno
de los tres vértices que intervienen, ya sea cargada desde un
archivo FBX o codificada a mano.

e Textura principal: La textura que le da color al objeto.

e Textura de mapa de desplazamiento: La textura necesaria para
poder usar mapas de desplazamiento.

e Textura de mapa normal: La textura necesaria para poder usar
mapas normales.
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Los distintos objetos usan las herramientas para cargar el progra-
ma de shaders, las texturas y los modelos, guardando todo en los
distintos buffers de OpenGL habilitados para ello. A la hora de ren-
derizar, segin el modo de renderizado suministrado, indican a los
shaders de distintas etapas que opciones quieren que usen, y les su-
ministra las variables de entrada.
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4. Implementacion y validacion de los
shaders

A la hora de implementar los shaders, vamos a usar las ventajas
de OpenGL v4.3 para programar varias funciones intercambiables
dentro de cada shader, de manera que podamos elegir una u otra
en funcién del modo de renderizado que deseemos. Asi por ejemplo,
una misma funcion de calcular la iluminacién se comportara de forma
diferente segtin los modos de renderizado que queramos.

Para comprobar la correcta ejecucion de los shaders, se han imple-
mentado dos modos extra de visualizacion, uno que ofrece la escena
vista en modo de trazado solo de aristas (wireframe) y otra que ofre-
ce una vision de las normales de cada superficie segin los cédigos de
colores explicados en la seccién 2.5 y en la figura 13.

En la figura 17 se puede comprobar la renderizacion por defecto de
la escena sin ninguna técnica aplicada, mientras que en las figuras 18
y 19 se puede observar la misma escena vista en modo de trazado solo
de aristas y en modo de visualizaciéon de normales respectivamente.
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OpenGL Shaders - FPS: 60 - | O

Figura 17: La escena original

OpenGL Shaders - FPS; 60 - | O

Figura 18: La escena original en modo wireframe
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Figura 19: La escena original en modo de mostrar normales

Hay que recalcar antes de explicar la implementacion de cada técni-
ca que aunque puedan parecer escasos en cuanto a cédigo, los shaders
son muy complejos y requieren de muchas lineas de cédigo en el pro-
grama que los crea para hacerlos funcionar. Puesto que los shaders
se tienen que ejecutar multitud de veces, precisamente el conseguir
que funcionen con el minimo cédigo posible es una de las dificultades
de su implementacion.

Junto a la descripcion de la implementacién de cada técnica, se
incluyen fragmentos de codigo de los shaders en el lenguaje GLSL
que ayuden a entenderlas. Estos fragmentos representan el ntcleo
funcional de la técnica en cuestién e indican con un comentario al
inicio en que shader estdan implementados.

4.1. Mapas de desplazamiento

Para implementar los mapas de desplazamiento, vamos a traba-
jar principalmente en tres etapas: Tesselation Control Shader (TCS),
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Tesselation Evaluation Shader (TEV) y Geometry Shader. Los pardme-
tros de entrada que necesitaremos seran la textura con el mapa de
desplazamiento, el factor de desplazamiento que queramos aplicar al
objeto, y la posiciéon de la camara en las coordenadas de la escena,
asi como los parametros basicos (vértices, UVs y normales del objeto
y la matrix MVP de la cdmara).

La primera parte es definir como queremos dividir los triangulos,
lo cual se realiza en el TCS. Esta etapa recibe los tres vértices de un
tridangulo de golpe y opera con ellos (esta estructura recibe el nombre
de parche). Lo que vamos a hacer es calcular la distancia desde la
camara al centro de cada arista del triangulo, y dependiendo de ella,
aumentar o disminuir el nivel de teselacién. Este proceso lo podemos
comprobar en el cédigo 1. Una vez hayamos definido los niveles de
teselacion, pasaremos los tres vértices al TEV.

/% Tessellation Control Shader */

subroutine (renderMode) void renderDisplacement () {
// Calcular la distancia de la camara a cada vertice

float cameraDistance0 = distance(CameraPos, gl_in[O].
gl_Position.xyz) ;

float cameraDistancel = distance(CameraPos, gl_in[1].
gl_Position.xyz);

float cameraDistance2 = distance(CameraPos, gl_in[2].

gl_Position.xyz);
// Calcular los niveles de teselado
gl_TessLevelOuter [0] = getTessLevel (cameraDistancel,
cameraDistance2) ;
gl_TessLevelOuter [1]
cameraDistance0) ;
gl_TessLevelOuter [2]
cameraDistancel) ;
gl_TessLevelInner [0] = (gl_TessLevelOuter [0] +
gl_TessLevelOuter [1] + gl_TessLevelOuter[2]) / 3.0;

getTessLevel (cameraDistance?2,

getTessLevel (cameraDistanceO,

}

float getTessLevel (float distanceA, float distanceB) {
float avgDistance = (distanceA + distanceB) / 2.0;
if (avgDistance <= 2.5) {
return 50.0;

}
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if (avgDistance <= 5.0) {
return 30.0;

}

return 15.0;

}
Cédigo 1: Tessellation Control Shader del mapa de desplazamiento

En el TEV, lo primero que haremos sera calcular la posicién, UVs
y normales de los nuevos vértices creados ponderandolos con los ori-
ginales. Una vez los tengamos, podemos usar los UVs para acceder a
la posicion de la textura que tiene el mapa de desplazamiento y usar
su valor multiplicandolo por el factor de desplazamiento. Multipli-
cando este valor por la normal y sumandoselo a la posicién original
conseguimos desplazar los vértices. Todo este proceso se puede ver

en el codigo 2.

/* Tessellation Evaluation Shader */

// Posicionar
vec4d position = (gl_TessCoord.x * gl_in[0].gl_Position) +
(gl_TessCoord.y * gl_in[1].gl_Position) +
(gl_TessCoord.z * gl_in[2].gl_Position);
vec2 uvs = (vec2(gl_TessCoord.x) * tes_in[0].uvs) +
(vec2(gl_TessCoord.y) * tes_in[1].uvs) +
z) * tes_in[2].uvs);

(vec2(gl_TessCoord.
(gl_TessCoord.x * tes_in[0].normals) +

(gl_TessCoord.y * tes_in[1].normals) +
(gl_TessCoord.z * tes_in[2].normals);

vec4 normals =

normals = normalize(normals);

// Desplazar
= texture(DisplacementMap, uvs).x;

float displacement =
= vec4 ((position + (normals * displacement *

position =
DispFactor)) .xyz, 1.0f);

Cédigo 2: Tessellation FEvaluation Shader del mapa
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gl_Position = position;
tes_out.uvs = uvs;
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desplazamiento

El resultado lo podemos comprobar en la figura 20.

T
OpenGL Shaders - FPS; 60 - [ O 3

Figura 20: La escena original con el mapa de desplazamiento aplicado

Al renderizar en modo wireframe podemos comprobar los nuevos
vértices creados y su desplazamiento (ver figura 21).

_46-



T Memoria - OpenGL v4.3: Ejemplos de diseno

YU . .. .
i%i F:;::!Z::y Arquitectura de shaders e implementacion mediante GPUs

1542 Universidad Zaragoza Joaquin David Palomares Garcia

|
OpenGL Shaders - FPS: 60 - | o X

Figura 21: La escena con el mapa de desplazamiento en modo wire-
frame

Por ultimo tenemos que recalcular las normales, ya que al crear
nuevos vértices y moverlos, éstas han cambiado. Como la informacion
de los vértices la tenemos parche a parche, solo podemos calcular la
normal de la superficie (no podemos calcular la normal en un vértice
ponderando todas las superficies en las que interviene). Esta infor-
macoon la recibimos en el Geometry Shader, donde podremos operar
con ella. Para calcular la nueva normal simplemente calculamos el
producto vectorial de los vectores que van desde el primer vértice
hasta el segundo y el tercero. Ademas, calculamos la tangente y la
bitangente para formar una matriz TBN con la que poder cambiar
los mapas normales del espacio de cordenadas de la textura al de la
Tangente-Bitangente-Normal. Como en teoria podemos elegir infini-
tas tangentes y bitangentes a la normal, lo que haremos sera orien-
tarlas en la misma direccion que las coordenadas de la textura, como
podemos ver en la figura 22.
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Figura 22: Los vectores T, B, y N seguin las coordenadas de la textura

El calculo de la matriz TBN se puede ver en el codigo 3.

/* Geometry Shader */

subroutine (renderMode) normalData_t renderFaceNormals (int i) {

normalData_t nData;

// Calculamos la mnormal

vec4 edgel = gl_in[1].gl_Position - gl_in[0].gl_Position;

vec4 edge2 = gl_in[2].gl_Position - gl_in[0].gl_Position;

nData.normals = normalize(vec4(cross(edgel.xyz, edge2.xyz),
0.0£));

// Calculamos la tangente y bitangente en funcion de las
coordenadas de la texztura

vec2 deltaUV1l = gs_in[1].uvs - gs_in[0].uvs;

vec2 deltaUV2 = gs_in[2].uvs - gs_in[0].uvs;

float r = 1.0f / (deltaUV1l.x * deltaUV2.y - deltaUV2.x *
deltaUV1i.y);

vec4 tangent = (deltalUV2.y * edgel - deltaUVl.y * edge2) * r

)

tangent = normalize(vec4(tangent.xyz, 0.0f));
vecd bitangent = (-deltalV2.x * edgel - deltalUVi.x * edge2)
*x r;

bitangent = normalize(vec4(bitangent.xyz, 0.0f));

// Creamos la matriz TBN

nData.TBN = mat4 (tangent, bitangent, nData.normals, vec4 (0.0
f, 0.0f, 0.0f, 0.0f));

return nData;

Cédigo 3: Geometry Shader del mapa de desplazamiento
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Una vez calculadas las normales, no tenemos que olvidarnos de
modificar la posicién de los vértices del espacio de coordenadas del
mundo al espacio de coordenadas de la camara usando la matriz
MVP. El resultado del calculo de las normales lo podemos ver en la
figura 23.

OpenGL Shaders - FPS: 60

Figura 23: La escena con el mapa de desplazamiento en modo de
mostrar normales

4.2. Tluminacion

4.2.1. Luz ambiental

Para la luz ambiental solo hace falta modificar el color de salida de
un fragmento en el Fragment Shader multiplicando el color original
por la intensidad y el color de la luz, que seran los parametros de
entrada.

4.2.2. Luz difusa

En cuanto a la luz difusa, ademés de la intensidad y el color, ne-
cesitaremos su posicion y direcciéon. Con ellas podemos calcular la
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iluminacion en cada punto dependiendo de la distancia y de el angu-
lo que forma la direccién con la normal de la superficie en ese punto.
Una vez calculada, hay que sumarle la luz ambiental para obtener la
iluminacion total. La funcién que calcula la iluminacién se puede ver
en el cédigo 4 y el resultado se puede ver en la figura 24.

/* Fragment Shader */

vec3 getlLighting (vec4 normals) {

vec3 ambLight = AmbientLight.color * AmbientLight.intensity;

// Calculamos el producto escalar de la direccion de la luz
con la mnormal

float difFactor = dot(normalize(normals), vec4(-DiffuselLight
.direction, 0.0f));

vec3 difLight;

if (difFactor > 0) {
difLight = vec3(DiffuselLight.color * DiffuselLight.

intensity * difFactor);

} else {
difLight = vec3(0, 0, 0);

}

return (ambLight + difLight);

Cédigo 4: Fragment Shader de la iluminaciéon
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Figura 24: La escena original con la iluminacién activada

Hay que tener en cuenta que si iluminamos la escena cuando
esta aplicado el mapa de desplazamiento, puesto que la normal es
la misma para toda la superficie de un triangulo, se notaran dife-
rencias en la iluminacion entre triangulos adyacentes con normales
muy diferentes como se puede comprobar en la figura 25. Esto lo
arreglaremos luego con la técnica de los mapas normales.
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Figura 25: La escena con el mapa de desplazamiento y la iluminacién
activadas

4.3. Mapas de sombras

Las sombras las calcularemos como una manera alternativa de ilu-
minacion del punto anterior. Con los z-buffers generados, podemos
calcular en el Fragment Shader la posicion que le corresponde en
el mapa al fragmento que estamos analizando. Necesitaremos como
parametro de entrada la matriz MVP de la luz que gener6 el z-buffer.

En la figura 26 podemos ver el z-buffer que queda almacenado en
la textura tras ser calculado con la vista desde la posicion de una
luz. Esta textura sera lo se suministre luego al Fragment Shader.
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Figura 26: Textura con el z-buffer generado desde la vista de la luz
difusa

Con estos datos, podemos comparar la distancia de la luz al frag-
mento actual con la distancia guardada en nuestro textura con el
z-buffer en el mismo punto, lo que recibe el nombre de test de pro-
fundidad, y multiplicar la luz difusa calculada por el factor de la
sombra en caso de que el fragmento falle dicho test. El resultado
final lo podemos ver en la figura 27.
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Figura 27: La escena original con las sombras activadas

Para evitar que al activar el mapa de desplazamiento se creen
pequenas sombras triangulares correspondientes a los tridngulos des-
plazados, se puede anadir un margen de error de modo que para
considerar un fragmento a la sombra no se compare la profundidad
del mapa con la distancia de la luz al fragmento sino con dicha distan-
cia menos el ajuste que queramos darle. Este margen de error ayuda
también a evitar el problema del “acné de sombras”, que se produce
cuando algunos de los pixeles fallan el test de profundidad cuando
no deberian. La funcién que calcula la iluminaciéon con las sombras
se puede ver en el codigo 5 y el resultado se puede ver en la figura 28.

/% Fragment Shader */

vec3 getlLightingWithShadows (vec4 normals) {

// Multiplicamos la matriz MVP de la luz por la posicion
actual (este calculo se realiza en una etapa anterior
pero se indica aqui para clarificar)

// wecd lightSpacePosition = LightMVP * gl_in.gl_Postition;

// Como ahora tenemos la posiction en funcion de la °‘camara
’? de la luz

vec3 projCoords = lightSpacePosition.xyz /
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lightSpacePosition.w;

vec2 uvCoords;

uvCoords.x = 0.5 * projCoords.x + 0.5;

uvCoords.y = 0.5 * projCoords.y + 0.5;

float z = 0.5 * projCoords.z + 0.5;

// Usamos un sesgo para evitar el problema de ‘‘acne de
sombras ’’

float bias = 0.005;

float depth = texture(ShadowMap, uvCoords).x;

float shadowFactor = 1.0;

// Comparamos la profundidad actual con la almacenada

if (depth < (z - bias)) {
shadowFactor = 0.25;

}

vec3 ambLight = AmbientLight.color * AmbientLight.intensity;

// Calculamos el producto escalar de la direccion de la luz
con la mormal

float difFactor = dot(normalize(normals), vec4d(-Diffuselight
.direction, 0.0f));

vec3 diflight;

if (difFactor > 0) {
difLight = vec3(DiffuselLight.color * DiffuseLight.

intensity * difFactor);

} else {
difLight = vec3(0, 0, 0);

}

return (ambLight + (shadowFactor * difLight));

Cédigo 5: Fragment Shader del mapa de sombras
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Figura 28: La escena con el mapa de desplazamiento y las sombras
activadas

4.4. Mapas normales

Los mapas normales se pueden aplicar simplemente leyendo el valor
de la textura del mapa correspondiente al fragmento en el Fragment
Shader gracias a su UV y convirtiendo el valor de la textura, que
esta entre 0 y 1, al valor de la normal, que esta entre -1 y 1. Una
vez hecho esto, tenemos que multiplicar esta normal por la matrix
TBN que habiamos calculado previamente en el Geometry Shader
para poder transformar la normal del espacio de coordenadas de la
textura al espacio de coordenadas del mundo. Ahora podemos usar
esta nueva normal calculada en vez de la original para aplicar la ilu-
minacion. El cdlculo se puede ver en el cddigo 6 y el resultado se
puede ver en la figura 29.

/% Fragment Shader */
subroutine (renderMode) vec3 renderShadowNormal () {

vec4 normals = fs_in.TBN * vec4(texture(NormalMap, fs_in.uvs
).rgb *x 2.0f - vec3(1.0f, 1.0f, 1.0£f), 0.0f);
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normals = normalize (normals);

vec3 lighting = getLightingWithShadows (normals);
return texture(TextureSampler, fs_in.uvs).rgb * lighting;

Cddigo 6: Fragment Shader del mapa normal

OpenGL Shaders - FPS: 60 - | o

Figura 29: La escena original con el mapa normal
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Figura 30: La escena original con el mapa normal en modo de mostrar
normales

Como se puede apreciar en la figura 30 ahora la superficie no tiene
una unica normal, sino diferentes segiin el punto de la textura. Como
ahora la normal se calcula con la textura y no con la superficie, hemos
corregido los problemas de iluminacion del mapa de desplazamiento,
como podemos comprobar en las figuras 31 y 32.
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Figura 31: La escena con el mapa de desplazamiento y el mapa nor-
mal

OpenGL Shaders - FPS: 60

Figura 32: La escena con el mapa de desplazamiento y el mapa nor-
mal en modo de mostrar normales
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4.5. Texto

El texto solo necesita hacer uso del Vertex Shader y el Fragment
Shader. En el Vertex Shader se le pasa como parametros de entrada
la altura y anchura de la ventana para mapear la posicion de las
letras, que va dada en una posiciéon entre 0 y la anchura y entre 0 y
la altura, a la posicién de la ventana de OpenGL, que va entre -1 y
1 para el ancho y para el alto. Una vez se tiene la posicién, se aplica
el color dado como parametro de entrada en el Fragment Shader. Se
puede ver la escena con el texto informativo en la figura 33 y las
instrucciones que lo hacen posible en el cédigo 7.

/* Vertex Shader */

// Map [0..WindowWidth][0..WindowHeight] to [-1..1][-1..1]
vec2 pos = vertex_position.xy * 2.0f / vec2(WindowWidth,
WindowHeight) ;

pos -= vec2(1.0f, 1.0f);
gl_Position = vecd4d(pos, -1, 1);
uvs = vertex_uv;

/* Fragment Shader */

color = texture2D(TextureSampler, uvs) * vec4(TextColor, 1.0f);

Coédigo 7: Vertex Shader y Fragment Shader del texto
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Figura 33: La escena final renderizada con el texto informativo
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5. Analisis de eficiencia

5.1. Nvidia Nsight

Nvidia Nsight es una plataforma para depurar y analizar el codi-
go de aplicacines de graficos de distintas tecnologias (entre ellas
OpenGL). La version utilizada se integra en el entorno de desarrollo
Visual Studio 2013 de Microsoft.

Con esta herramienta podemos analizar los shaders que hemos
implementado y ver la carga de trabajo de la GPU, las operaciones
mas costosas, y otros elementos tutiles, como muestran la figura 34 y
la figura 35.

epeUS Juewbeid B

Type Array Size Array Stride Matrix Stride IsRow MajorAtomic Counter Buffer Index Referenced By
Default: 0 {1,000000, 1.000000, 1.000000 } GL_FLOAT VEC3 1Fs

sity Default: 1 {0050000 } GLFLOAT

Default:3 {1,000000, 1,000000, 1.000000 } GLFLOAT VEQ3

n Default 4 {-0333333, 0.666667, -0.666667 } GL_FLOAT VEC3

ity Default:5 {1.250000 } GLFLOAT
Default: 10 2 GL_SAMPLER 20
Default 11 8 GL_SAMPLER 20
Default: 12 0 GL_SAMPLER 20

1Fs
1F
1Fs
1Fs
1Fs
1Fs
1Fs

color 0 GL_FLOAT_VEC3 1Fs 0 0 0

Name Location Type Array Size Referenced By Location Index Is Per Patch Location Component ‘

Figura 34: Nsight analizando el Fragment Shader en Visual Studio

La prueba se ha realizado con la sincronizacién vertical activada
(es decir, se generan tantos fotogramas por segundo como la tasa de
refresco de la pantalla, que en este caso es de 60Hz).

Si nos fijamos en los resultados obtenidos en una ejecuciéon conti-
nua del programa, veremos que la GPU esta ociosa entre el 85 % y el
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95 % del tiempo con la escena original. Tras aplicarle distintas com-
binaciones de las técnicas implementadas mediante shaders (mapas
de desplazamiento, iluminacién, mapas de sombras y mapas norma-
les) vemos que el trabajo de la GPU apenas asciende tras activar
cualquier combinacion de ellas menos los mapas de desplazamiento.

Si los mapas de desplazamiento estan activados, y cualquier otra
técnica menos los mapas de sombras esta activada, la GPU esta ocio-
sa el 50 % del tiempo.

Por 1ultimo, combinando mapas de desplazamiento y mapas de
sombras (independientemente de la iluminacién y de los mapas nor-
males) la GPU se encuentra ociosa entre el 20 % y el 25 % del tiempo.

La inmensa mayoria del trabajo de la GPU en todos los casos se
debe al cémputo de los shaders (siendo las otras dos posibilidades la
carga de geometria o de texturas, que juntas apenas suponen un 2 %
de la carga de trabajo).

] NVIDIA Nsight replay =) X

evert 1221 W
AR EEEEEEE e e

Figura 35: Nsight analizando un fotograma paso a paso
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Por consiguiente, podemos deducir que la iluminacién no nece-
sita optimizacion puesto que apenas anade carga, mientras que se
deberian optimizar los mapas de desplazamiento, que suponen la
mayoria del trabajo. Los mapas de sombras obviamente también su-
ponen un esfuerzo adicional, pero es porque tienen que renderizar la
escena una vez extra por cada punto de luz.

Llegados a este punto, cabe preguntarse si realmente es necesa-
rio renderizar las sombras con la calidad que ofrecen los mapas de
desplazamiento, en vez de sacrificar dicha calidad para ganar mucho
mas rendimiento, de manera que las sombras proyectadas sobre la
escena desplazada correspondan a las sombras de la escena original.

Ademads, es un buen punto para pensar en el nivel de detalle que
queremos crear en la fase de teselado, ya que el mapa de desplaza-
miento de este PFC se ha disennado e implementado con la opcion de
sacrificar detalle segin la distancia a la cdmara, y aunque para las
pruebas se ha usado la versién de detalle mas alto, se puede adaptar
para mejorar el rendimiento en las tarjetas graficas que lo necesiten.

5.2. Comparativa con tarjetas graficas Nvidia

A continuacién se presenta una comparativa del programa eje-
cutandose en diferentes tarjetas graficas cuyas caracteristicas se pue-
den consultar en el cuadro 1. Una informaciéon més detallada sobre
estas tarjetas se puede encontrar en el anexo B.

| [GTX 660 | GTX 750 | GTX 750 Ti | GTX 760 [ GT 650M |

Ntcleos CUDA 960 512 640 1152 384

GPU Frecuencia de reloj normal (MHz) 980 1020 1020 980 900

Frecuencia acelerada (MHz) 1033 1085 1085 1033 900

Tasa de relleno de texturas (GTexel/s) 78.4 32.6 40.8 94.1 27.2

Frecuencia de la memoria (Gbps) 6.0 5.0 5.4 6.0 2.2

Mem Cantidad de memoria (MB ) 2048 2048 2048 2048 1024
Interfaz de memoria (GDDRb) 192-bit 128-bit 128-bit 256-bit 128-bit

Ancho de banda méx. (GB/s) 144.2 80.0 86.4 192.2 80.0

Cuadro 1: Comparativa de las tarjetas graficas usadas
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Para evaluar el rendimiento, se ha desactivado la sincronizacién
vertical, de manera que cada GPU genere tantos fotogramas como
pueda. El programa se ejecuta durante 10 segundos en los que la
camara se mueve rotando alrededor de la escena.

Los resultados de todos los anélisis realizados se pueden ver en las
figuras 36, 37, 38, 39 y 40.

lluminacion + Mapas normales
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@ 2000 GTX 750 T
1500 g GTX 760
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0
1 2 3 4 5 G i & ] 10
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Figura 36: Fotogramas por segundo (FPS): Anélisis 1
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Figura 37: Fotogramas por segundo (FPS): Analisis 2
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Figura 38: Fotogramas por segundo (FPS): Analisis 3
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Figura 39: Fotogramas por segundo (FPS): Andlisis 4

Podemos observar como los modelos méas potentes (GTX 760 y
GTX 660) son los que mejor resultado dan, seguidos de la siguiente
gama de modelos (GTX 750 y su revisién mejorada GTX 750 Ti). Por
ultimo, la versién movil para portatiles (GT 650M) es obviamente la

que peor resultado ofrece.
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Fotogramas totales generados

Mapas de desplazamiento + lluminacién + Mapas de sombras + Mapas normales

Fotogramas

Modelo de gréfica

Figura 40: Fotogramas totales generados renderizando
rante diez segundos con todas las técnicas activadas.
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6.

Conclusiones

A continuacién se enumeran los objetivos del proyecto y su grado
de cumplimiento:

1.

Diseno de una escena a modo de ejemplo en 3D utilizando las
librerias de OpenGL para C++: realizado.

Diseno de shaders utilizando el lenguaje GLSL que ofrece OpenGL
en la version 4.3:

e Mapas de desplazamiento: realizado.

e Mapas normales: realizado.

e [luminacion: realizado con iluminacién ambiental,

iluminacion difusa y mapas de sombras.

Implementacién de dichos shaders utilizando tarjetas Nvidia:
realizado.

Analisis del comportamiento de dichos shaders frente a diferen-
tes tipos de tarjetas y uso del programa Nvidia Nsight: reali-
zado usando cinco tarjetas graficas diferentes.

El cédigo implementado (sin contar los shaders) estd formado
por unas 2000 lineas de codigo.

Los tamanos aproximados del cédigo de cada shader para cada
tipo de figura diferente en la escena (suelo, columnas y texto)
son:

e Vertex Shader: 20 lineas de cédigo.

Tessellation Control Shader: 60 lineas de cédigo.

Tessellation Evaluation Shader: 70 lineas de codigo.

Geometry Shader: 70 lineas de cddigo.

Fragment Shader: 120 lineas de cédigo.
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7. Horas de trabajo

En la figura 41 se puede ver el diagrama de Gantt del tiempo de
dedicacion de este PFC.

labr 2015 mary 2015 iun 2015 Jiwl 2015 Ig.];o 2015 |sep 201t
foe Ti3 T T I e o Toe Tis Tee o Toe Tz Fo Tz foz Tio Tiz Fea Ta1 for

Nombre Duracion Inicio Terminado
Estudio y aprendizaje de OpenGL 4.3 &0 days 2/03/15 10:00 22/05/15 1400
[l Diseiio 15 days|25/05/15 10:00 12/06/15 14:00
Disefio del programa 5 days |25/05/15 10:00 25/05/15 14:00
Disefio de los shaders 10 days 1/06/15 10:00 12/06/15 14:00
ElImplementacién 32 days/15/06/15 10:00 28/07/15 14:00
Creacion de modelos v texturas 1day 15/06/15 10:00 15/06/15 14:00
Implementacion y validacidn del progra 12 days 16/06/15 10:00 1/07/15 14:.00
Implementacidn y validacidn de los sha 19 days 2/07/15 10:00 28/07/15 1400
Andlisis de eficenda 10 days 25/07/15 10:00 11/08/15 14:00
Escritura de la memoria 10 days 120815 10:00 25/08/15 14:00

Figura 41: Diagrama de Gantt del trabajo realizado

El desglose de las horas de trabajo realizadas es:

e Estudio y aprendizaje de OpenGL v4.3: 240 horas.

e Diseno del programa: 20 horas.

e Diseno de los shaders: 40 horas.

e Creacion de modelos y texturas: 4 horas.

e Implementacién y validacién del programa: 48 horas.
e Implementaciéon y validacién de los shaders: 76 horas.

e Andlisis de eficiencia: 40 horas.
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e Liscritura de la memoria: 40 horas.
El tiempo total dedicado a la realizacion de este PFC ha sido de

508 horas.
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8. Trabajo futuro

Los shaders desarrollados en este PFC se pueden aplicar a otras
geometrias para elaborar escenas con mas elementos, siempre que
se suministren los modelos en el formato adecuado y los mapas de
texturas necesarios para las técnicas que se quieran aplicar.

Con respecto a las mejoras que podrian recibir los shaders, el apar-
tado mas indicado es el de la iluminacién y sombreado. Por un lado,
el programa actual solo ilumina con una luz de ambiente y una luz
direccional, asi que seria interesante implementar los otros dos tipos
de luces que se suelen utilizar en la iluminacion de gréaficos 3D: el
punto de luz (similar a una bombilla, que ilumina alrededor de un
punto dado) y la luz de foco (una mezcla de la luz direccional y el
punto de luz, ya que ilumina desde un punto dado pero solo en una
direccién concreta).

Por otro lado, ademas de la técnica usada de luz difusa, se puede
emplear otra ténica de iluminacion, la luz especular (specular ligh-
ting), que consiste en reflejar la luz en un tnico angulo en vez de
en varios (como hace la luz difusa), de manera que se crea un efecto
de espejo que se puede regular dependiendo del material al que se
quiera aplicar (por ejemplo un metal pulido reflejaria més la luz que
una pared de hormigén).

Por 1ltimo, el aspecto de la luz ambiental se puede mejorar usando
la técnica de oclusion ambiental (ambient occlusion), que consiste en
calcular como de expuesto estd cada punto a la luz ambiental (por
ejemplo, el interior de una cueva estaria menos expuesto a la luz
ambiental conforme mas nos adentrasemos en ella).

-75-






T Memoria - OpenGL v4.3: Ejemplos de diseno
A Escuela de de shaders e implementacién mediante GPUs

il Ingenieria y Arquitectura
1542 Universidad Zaragoza Joaquin David Palomares Garcia
Referencias

1]

2]

Graham Sellers and Richard S. Wright, Jr. and Nicholas Haemel,
OpenGL SuperBible Sixth Edition, Addison Wesley, 2013.

opengl-tutorial.org, Tutorials for modern OpenGL, http://www.
opengl-tutorial.org/, 2012-2015.

Etay Meiri, Modern OpenGL Tutorials, http://ogldev.
atspace.co.uk/, 2014.

Anton Gerdelan, Anton’s OpenGL 4 Tutorials, http://
antongerdelan.net/opengl/, 2014.

Lighthouse3d.com, GLSL Tutorial -~ Core, http://www.
lighthouse3d.com/tutorials/glsl-tutorial/, 2015.

Wikipedia, Ley de Lambert, https://es.wikipedia.org/wiki/
Ley_de_Lambert

GLEW, The OpenGL FExtension Wrangler Library, https://
github.com/nigels-com/glew

GLFW, OpenGL FrameWork, http://www.glfw.org/

GLM, OpenGL Mathematics, http://glm.g-truc.net/

[10] Microsoft, Formato DDS, https://msdn.microsoft.com/

en-us/library/windows/desktop/bb943990%28v=vs.85%29.
aspx

[11] Autodesk,  Formato FBX, http://www.autodesk.com/

products/fbx/overview

_77-


http://www.opengl-tutorial.org/
http://www.opengl-tutorial.org/
http://ogldev.atspace.co.uk/
http://ogldev.atspace.co.uk/
http://antongerdelan.net/opengl/
http://antongerdelan.net/opengl/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/
http://www.lighthouse3d.com/tutorials/glsl-tutorial/
https://es.wikipedia.org/wiki/Ley_de_Lambert
https://es.wikipedia.org/wiki/Ley_de_Lambert
https://github.com/nigels-com/glew
https://github.com/nigels-com/glew
http://www.glfw.org/
http://glm.g-truc.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb943990%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb943990%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb943990%28v=vs.85%29.aspx
http://www.autodesk.com/products/fbx/overview
http://www.autodesk.com/products/fbx/overview




Anexo






W Memoria - OpenGL v4.3: Ejemplos de diseno
A Escuela de de shaders e implementacién mediante GPUs

il Ingenieria y Arquitectura
1542 Universidad Zaragoza Joaquin David Palomares Garcia
Anexo

A. La pipeline de OpenGL 4.3

Una pipeline consiste en ir transformando un flujo de datos en un
proceso comprendido por varias fases secuenciales, siendo la entrada
de cada una la salida de la anterior. En el caso de OpenGL, esta
pipeline tiene una serie de fases o etapas, algunas de las cuales son
programables y reciben el nombre de shaders. Cada una de estas
etapas se ejecutan en paralelo tantas veces como sea necesario segin
los datos de entrada.

En este anexo se da una vision de la nueva pipeline empleada por
OpenGL en su versiéon 4.3 y del recorrido que siguen los datos, asi co-
mo una explicaciéon mas detallada de las etapas programables. En la
figura 42 se puede ver un diagrama simplificado de dicha pipeline y
sus etapas.

Vertex
fetch

Tessellation

Framebuffer
operations

Rasterization

Figura 42: La pipeline simplificada de OpenGL 4.3, con las etapas
no programables en amarillo y las programables en azul
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La pipeline empieza con un proceso que dicta como seran intro-
ducidos los vértices de una figura en la pipeline y los prepara para
la primera etapa programable. Por ejemplo, los vértices pueden ser
puntos, tridngulos, parches (caras de multiples vértices) y se pueden
especificar de multiples formas, como en listas, o todos seguidos.

Esta primera etapa programable (Vertex Shader) es la unica que
tiene que estar siempre presente, siendo las demds etapas progra-
mables opcionales (aunque sin la ultima etapa, el Fragment Shader,
no se vera nada en la pantalla). Si una de las etapas opcionales no
estd presente (programada) se saltard a la siguiente).

Una vez se han preparado los vértices, existe la opcién de teselar,
esto es, partir las primitivas recibidas (como parches) en primitivas
més pequenas (como tridngulos). Esto se controla con tres etapas
seguidas, dos de las cuales son programables y controlan el proce-
so antes y después, y otra no programable que es la que realmente
ejecuta la teselacion.

Despiies viene la etapa de Geometry Shader, la tnica etapa que
deja crear geometria nueva.

Lo siguiente que se realiza es el proceso de rasterizacion, un pro-
ceso automatico que consiste en convertir las primitivas recibidas en
un conjunto de pixeles o puntos. Concretamente OpenGL convierte
las primitivas en fragmentos, que son la representacion de un trozo
de las primitivas. Los fragmentos producidos estan relacionados con
los pixeles disponibles, de manera que siempre hay al menos un frag-
mento por pixel, pero se pueden llegar a producir mas fragmentos
para un mismo pixel, dependiendo de los parametros de OpenGL.

Estos fragmentos pasan al Fragment Shader, que es la etapa pro-
gramable capaz de tratarlos.
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Por ultimo, se realizan una serie de operaciones con la salida final,
de forma que esta salida se pueda mostar por pantalla.

A.1. Vertex Shader

El Vertex Shader se encarga del procesamiento de vértices indivi-
duales: recibe siempre un vértice de entrada y genera uno de salida.
Es el sitio donde se suelen aplicar las transformaciones para cambiar
el espacio de coordenadas.

A.2. Tessellation Control Shader

El Tessellation Control Shader recibe como entrada un parche (un
conjunto de varios vértices) y controla la forma en la que serd tese-
lado. También define el nimero de vértices que componen el parche.

A.3. Tessellation Evaluation Shader

El Tessellation Evaluation Shader opera con las posiciones interpo-
ladas de los vértices resultantes del proceso de teselacion. Su labor
es la de coger el parche abstracto generado durante la teselacion
asi como los vértices originales del parche y generar con ellos nuevos
vértices.

El TES se ejecuta al menos una vez por cada vértice generado en
el parche abstracto y cada invocacion genera un solo vértice.

A.4. Geometry Shader

El Geometry Shader recibe una sola primitiva como entrada (por
ejemplo, un tridngulo) y genera cero o més primitivas. Es la tnica
etapa que puede crear nueva geometria.
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A.5. Fragment Shader

El Fragment Shader es la etapa que recibe un fragmento del pro-
ceso de rasterizacion y le asigna un conjunto de colores.

Al poder cambiar el color de los fragmentos, es la etapa utilizada
para las tareas de iluminacion.

B. Tarjetas graficas utilizadas

Para analizar el rendimiento del programa se han usado una serie
de tarjetas graficas, todas disenadas por Nvidia. Estas tarjetas grafi-
cas son fabricadas por distintas empresas (como Gigabyte o Asus)
que las fabrican segun las especificaciones de Nvidia pero otorgando-
les ligeras personalizaciones, como por ejemplo la cantidad y tipo de
memoria.

Las tarjetas graficas usadas han sido:

e Gigabyte GeForce GTX 660 OC 2GB GDDRb5

Gigabyte GeForce GTX 750 OC 2GB GDDR5

Gigabyte GeForce GTX 750 Ti OC Windforce 2GB GDDR5

Asus GeForce GTX 760 DirectCU II OC 2GB GDDRA5

Nvidia GeForce GT 650M

Para ponerlas en contexto, Nvidia nombra las tarjetas graficas
segin la serie (serie 600, serie 700...) siendo cada serie superior la
siguiente generacion, y dentro de cada serie, se distinguen por la ga-
ma (50, 60, 80...). Ademads, si realizan una revisién de un modelo
para mejorarlo, le anaden el sufijo Ti, y si se trata de una version
movil (tarjetas graficas para portatiles) el sufijo M.
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Siguiendo estas indicaciones, podemos avanzar que el modelo mas
potente serd la GTX 760, seguido del modelo de la misma gama pero
de la serie anterior, la GTX 660. Después viene la gama inferior,
primero la revision GTX 750 Ti, luego la GTX 750, y por ultimo,
muy inferior a todas las demas, el modelo mévil GT 650M.

En el cuadro 2 se exponen las caracteristicas de las tarjetas graficas
de Nvidia utilizadas para los analisis de rendimiento.

| [GTX 660 [ GTX 750 [ GTX 750 Ti | GTX 760 | GT 650M |

Ntcleos CUDA 960 512 640 1152 384

GPU Frecuencia de reloj normal (MHz) 980 1020 1020 980 900

Frecuencia acelerada (MHz) 1033 1085 1085 1033 900

Tasa de relleno de texturas (GTexel/s) 78.4 32.6 40.8 94.1 27.2

Frecuencia de la memoria (Gbps) 6.0 5.0 5.4 6.0 2.2

Mem Cantidad de memoria (MB ) 2048 2048 2048 2048 1024
Interfaz de memoria (GDDR5) 192-bit 128-bit 128-bit 256-bit 128-bit

Ancho de banda max. (GB/s) 144.2 80.0 86.4 192.2 80.0

Cuadro 2: Comparativa de las tarjetas graficas usadas
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