Twist, tilt, and orientational order at the nematic to twist-bend nematic phase transition of 1¿, 9¿-bis(4-cyanobiphenyl-4'-yl) nonane: A dielectric, H 2 NMR, and calorimetric study
Resumen: The nature of the nematic-nematic phase transition in the liquid crystal dimer 1¿, 9¿-bis(4-cyanobiphenyl-4'-yl) nonane (CB9CB) has been investigated using techniques of calorimetry, dynamic dielectric response measurements, and H2 NMR spectroscopy. The experimental results for CB9CB show that, like the shorter homologue CB7CB, the studied material exhibits a normal nematic phase, which on cooling undergoes a transition to the twist-bend nematic phase (NTB), a uniaxial nematic phase, promoted by the average bent molecular shape, in which the director tilts and precesses describing a conical helix. Modulated differential scanning calorimetry has been used to analyze the nature of the NTB-N phase transition, which is found to be weakly first order, but close to tricritical. Additionally broadband dielectric spectroscopy and H2 magnetic resonance studies have revealed information on the structural characteristics of the recently discovered twist-bend nematic phase. Analysis of the dynamic dielectric response in both nematic phases has provided an estimate of the conical angle of the heliconical structure for the NTB phase. Capacitance measurements of the electric-field realignment of the director in initially planar aligned cells have yielded values for the splay and bend elastic constants in the high temperature nematic phase. The bend elastic constant is small and decreases with decreasing temperature as the twist-bend phase is approached. This behavior is expected theoretically and has been observed in materials that form the twist-bend nematic phase. H2 NMR measurements characterize the chiral helical twist identified in the twist-bend nematic phase and also allow the determination of the temperature dependence of the conical angle and the orientational order parameter with respect to the director.
Idioma: Inglés
DOI: 10.1103/PhysRevE.92.062505
Año: 2015
Publicado en: Physical Review E 92, 6 (2015), 062505[16 pp]
ISSN: 2470-0045

Factor impacto JCR: 2.252 (2015)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 6 / 53 = 0.113 (2015) - Q1 - T1
Categ. JCR: PHYSICS, FLUIDS & PLASMAS rank: 10 / 30 = 0.333 (2015) - Q2 - T2

Factor impacto SCIMAGO:

Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2012-35358-C03-02
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2012-35358-C03-03
Tipo y forma: Article (Published version)
Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2018-08-30-11:41:29)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-01-19, last modified 2018-08-30


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)