Universidad
Zaragoza

Grado en Ingenieria Informatica
30213 - Estructuras de datos y algoritmos

Guia docente para el curso 2011 - 2012

Curso: 2, Semestre: 1, Créditos: 6.0

Informacion basica

Profesores

- Francisco Javier Campos Laclaustra jcampos@unizar.es
- Fernando Naranjo Palomino fnaranjo@unizar.es

- Fernando Tricas Garcia ftricas@unizar.es

- Maria Yolanda Villate Pérez yvillate@unizar.es

- Jorge Raul Bernad Lusilla jbernad@unizar.es

- Diego Carmelo Pérez Palacin diegop@unizar.es

Recomendaciones para cursar esta asignatura

El alumno que curse esta asignatura ha de contar con una formacién en programacién del nivel de la asignatura de
Programacién Il. Por otra parte una adecuada formacién matematica del nivel de la asignatura Matematica Discreta resulta
muy conveniente.

Actividades y fechas clave de la asignatura

El calendario de exdmenes y las fechas de entrega de trabajos se anunciard con suficiente antelacién.

Inicio

Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, debera demostrar los siguientes resultados...

1:
Es capaz de identificar, disefiar y definir Tipos Abstractos de Datos (TADs) independientemente de su
implementacién.

2:
Disefia e implementa TADs reutilizables y robustos en un lenguaje de programaciéon modular o en un lenguaje



orientado a objetos.

3:
Disefia e implementa programas robustos de tamafio medio identificando, definiendo e implementando los
Tipos Abstractos de Datos (TADs) necesarios.

4:
Es capaz de identificar, utilizar e implementar algunos TADs fundamentales, como: pilas, colas, listas, arboles
de busqueda, tablas hash y grafos.

5:
Es capaz de comparar distintas alternativas de implementacién de TADs con respecto al tiempo de ejecucién
de algoritmos y al uso de la memoria, y de seleccionar la mas adecuada en cada problema o contexto.

6:
Conoce y aplica los esquemas algoritmicos basicos (como dividir para vencer, bUsqueda con retroceso,
voracidad...) a la resolucién de problemas.

Introduccion

Breve presentacion de la asignatura

A la hora de enfrentarse a la resoluciéon de problemas de programacién de tamafio medio surge la necesidad de dividir el
disefio e implementacion de la solucién en una serie de médulos o partes, de tamafio y complejidad menor que el problema
inicial, pero de forma que dichos mddulos interactlien entre si de forma minima y clara, y constituyan en su conjunto la
solucién del problema a resolver. Esta aproximacién nos permitira identificar y disefiar médulos con una misién muy clara y
acotada, lo que reducird su grado de dependencia con el resto, y nos permitira desarrollar médulos reutilizables, eficientes,
y robustos, facilitando también que el trabajo de implementacién y depuraciéon pueda ser repartido entre varios
programadores que trabajen en paralelo.

Gran parte de estos médulos se centraran en la representacidn y gestion de la informacién necesaria para resolver el
problema. De esta forma, cada uno de estos mddulos encapsulard las estructuras de datos necesarias para representar y
almacenar cierta informacién, ocultando los detalles de su implementacién y ofreciendo al exterior Unicamente operaciones
permitidas (su interfaz), robustas y eficientes, lo que facilitarad su reutilizacién.

En este contexto, se puede definir un Tipo Abstracto de Datos (TAD) como el conjunto de valores que pueden tomar los
datos de ese tipo y el conjunto de operaciones para manipularlos, definidos de forma independiente de cualquier
representacién o implementacién. La definicién de TADs es por tanto una herramienta de abstraccién que intuitivamente
responde a la necesidad de enriquecer nuestros lenguajes de programacion permitiéndonos proponer nuevos tipos de datos
gue puedan utilizarse de forma similar a los que suelen ofrecerse predefinidos en un lenguaje de programacion, ocultando al
usuario de dichos tipos los detalles de su implementacién, pero serdn de naturaleza mucho mas compleja que los tipos
habitualmente predefinidos en un lenguaje de programacién.

OBSERVACION IMPORTANTE

Guia Docente pendiente de aprobacion

Este documento es, por el momento, una propuesta de Guia Docente para el curso 2011-12 que deberd ser estudiada y, en
su caso, aprobada por la Comisidn de Garantia de la Calidad de la titulacién.

Contexto y competencias

Sentido, contexto, relevancia y objetivos generales de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y
objetivos:

En esta asignatura el alumno mejorara su capacidad para disefiar y desarrollar programas de ordenador haciendo énfasis en



la identificacién, disefio y definicién de Tipos Abstractos de Datos (TADs) independientemente de su implementacién. El
alumno aprenderd a disefiar e implementar TADs para que sean reutilizables, eficientes y robustos, y a implementarlos
garantizando dichas propiedades. Se presentardn algunos de los TADs fundamentales de uso mas frecuente, como: pilas,
colas, listas, arboles de busqueda, tablas, etc., para los que se estudiardn y compararan distintas alternativas de
implementacion. También se introducirdn una serie de esquemas algoritmicos basicos (como dividir para vencer, busqueda
con retroceso, voracidad...) y el alumno aprenderd a reconocer los problemas que requieren este tipo de esquemas para su
resoluciéon y cémo aplicarlos.

Contexto y sentido de la asignatura en la titulacién

Estructuras de Datos y Algoritmos (EDA) es una asignatura obligatoria englobada en la materia de formacién comuin en
Programacién y Computacion.

Esta asignatura completa la formacion recibida por el alumno en las asignaturas de Programacién | y Programacién Il, y le
prepara para abordar proyectos de programacion de cada vez mayor tamafio y complejidad, y a hacerlo aplicando mejores
técnicas y estrategias en el disefio e implementacién, permitiendo ademas el reparto efectivo de la carga del trabajo de
implementacion y desarrollo de las diferentes partes del sistema a desarrollar. Esta linea de formacién continuard
amplidndose en las asignaturas de Tecnologia de Programacién, Programacién de Sistemas Concurrentes y Distribuidos, e
Ingenieria de Software, asi como en otras asignaturas posteriores en el plan de estudios

Ademas, algunos de los TADs y algoritmos estudiados en EDA serdn necesarios para diversas asignaturas que tienen a EDA
como prerrequisito directo o indirecto, tales como Tecnologia de Programacién, Bases de Datos, e Inteligencia Artificial.

Al superar la asignatura, el estudiante sera mas competente para...
1:

Reconocer y aplicar los procedimientos algoritmicos basicos de las tecnologias informaticas para disefiar
soluciones a problemas, analizando la idoneidad y complejidad de los algoritmos propuestos.

Resolver problemas reconociendo o disefiando, y utilizando de forma eficiente, los tipos y estructuras de
datos mas adecuados a la resolucién de un problema.

Resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento critico.

Aprender de forma continuada y desarrollar estrategias de aprendizaje auténomo.

Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

Estructuras de Datos y Algoritmos constituira una base sélida en la formacién del alumno para el disefio y desarrollo de
sistemas o proyectos de programacién de cada vez mayor tamafio y complejidad, ya sean basados en el disefio modular o
en el disefio orientado a objetos, buscando siempre la encapsulacién, calidad, eficiencia y reutilizacion del software.

Se presentaran ademas un conjunto de TADs y algoritmos de uso frecuente, y que todo futuro Ingeniero Informéatico debe
conocer y saber utilizar para poder disefiar soluciones en los nuevos contextos o problemas a los que se enfrente.

Evaluacion

Actividades de evaluacion

El estudiante debera demostrar que ha alcanzado los resultados de aprendizaje previstos
mediante las siguientes actividades de evaluacion

1:



A continuacién se describen las actividades que contribuirdn a la evaluacién del estudiante y la prueba de
evaluacién global que se realizard en cada convocatoria para evaluar a los estudiantes de la asignatura.

1. A lo largo del semestre se desarrollardn clases de practicas en laboratorio, para las que se formaran
equipos integrados como maximo por dos alumnos. Con los trabajos practicos de programacién se realizara
un seguimiento del trabajo realizado por los alumnos durante el semestre y del progreso de su aprendizaje.
Los trabajos presentados por el alumno se calificaran con una nota cuantitativa de 0 a 10. Para obtener
dichas notas se valorara el funcionamiento de los programas segun especificaciones, la calidad de su disefio y
su presentacién, la adecuada aplicacién de los métodos de resolucién, el tiempo empleado, asi como la
capacidad de los integrantes del equipo para explicar y justificar el disefio realizado.

Los alumnos que hayan cumplido con los plazos de entrega fijados para los trabajos practicos de
programacion, y hayan demostrado en ellos un nivel de aprovechamiento y calidad de resultados adecuados,
obteniendo en la valoracién de su trabajo practico una nota de 5.0 como minimo, seran exentos de la
realizacion del examen practico de programacion en laboratorio. Para dichos alumnos, la calificacion obtenida
con sus practicas se utilizard como nota de examen practico de programacién en laboratorio, salvo que el
alumno decida presentarse a la prueba de examen practico en laboratorio, en cuyo caso prevalecera la nota
obtenida en el examen préctico individual.

2. Examen practico e individual de programacién, en laboratorio. En el examen practico se le plantearan al
alumno ejercicios de programacién de naturaleza similar a los realizados en las practicas o vistos en clase. Se
calificard con una nota de 0 a 10, para la que se valorard el correcto funcionamiento y rendimiento de los
programas segun especificaciones, la calidad de su disefio, la adecuada aplicaciéon de los métodos de
resolucién y el tiempo empleado. Para aquellos alumnos que resulten exentos de la realizacién de este
examen y opten por presentarse al mismo prevalecerd la nota obtenida en el examen practico individual.
Serd necesaria una calificacién minima de 5.0 puntos en el examen prdctico para aprobar la asignatura y, en
tal caso, la calificacién obtenida pondera un 30% de la nota final de la asignatura.

3. Examen escrito en el que se deberan resolver problemas de programacién y, en su caso, responder
preguntas conceptuales o resolver algln ejercicio. Se calificaréd con una nota de 0 a 10. En general, se
valorard la calidad y claridad de las respuestas y soluciones propuestas, su adecuacién a las especificaciones
y restricciones planteadas, la calidad del disefio, la adecuada aplicacién de los métodos de resolucion y el
tiempo empleado. Serd necesario obtener una calificacién minima de 4.0 puntos en el examen escrito para
aprobar la asignatura. En tal caso la calificacion obtenida pondera un 70% de la nota final de la asignatura.

Evaluacion global
La prueba global de evaluacién de la asignatura consta de dos partes:

- Examen practico de programacién en laboratorio e individual. En cada convocatoria se realizard un examen
practico de programacién en laboratorio, en el que se le plantearan al alumno ejercicios de programacién de
naturaleza similar a los realizados en las practicas o vistos en clase. Es necesario una calificacién minima de
5.0 puntos en el examen practico para aprobar la asignatura. En tal caso la calificacién obtenida pondera un
30% de la nota final de la asignatura.

Los alumnos que hayan cumplido con los plazos de entrega fijados para los trabajos practicos de
programacién, y hayan demostrado en ellos un nivel de aprovechamiento y calidad de resultados
adecuados obteniendo una valoracién de su trabajo practico de como minimo 5.0, serdn exentos de la
realizacién del examen practico de programacién en laboratorio convirtiéndose automaticamente la nota
numérica obtenida en la evaluaciédn de sus trabajos practicos en su nota final de examen practico de
programacién. No obstante, para los alumnos exentos del examen practico que se presenten al mismo, en
cualquier convocatoria, prevalecera la nota obtenida en el examen practico individual de programacion.

- Examen escrito en el que se deberan resolver problemas de programacién y, en su caso, responder
preguntas conceptuales o resolver algun ejercicio. Es necesaria una calificaciéon minima de 4.0 puntos en el
examen escrito para aprobar la asignatura. En tal caso la calificacién obtenida pondera un 70% de la nota
final de la asignatura.

Si la calificacién obtenida por el alumno en el examen escrito es igual o superior a 4.0 y su calificacién en el
examen prdactico de programacién es igual o superior a 5.0, entonces la calificacién del alumno en la
asignatura se obtendrd como la suma ponderada de las calificaciones del examen escrito con ponderacién del
70%, y del examen practico con ponderacion del 30%. Si la calificacién en el examen escrito es inferior a 4.0,
la calificacién del alumno en la asignatura serd la obtenida en el examen escrito, independientemente de la
nota obtenida en el examen préctico. Si, por el contrario, no se alcanza la calificacién minima de 5.0 en el



examen prdctico, entonces la calificacién del alumno en la asignatura se obtendrd como el minimo entre: la
nota del examen practico, y la suma ponderada de ambas partes. Las calificaciones obtenidas en las dos
partes en la primera convocatoria se guardan para la siguiente convocatoria del mismo curso académico en el
caso de que el alumno no logre aprobar la asignatura.

Actividades y recursos

Presentacion metodoldgica general

El proceso de aprendizaje que se ha disenado para esta asignatura se basa en lo siguiente:

1. El estudio y trabajo continuado desde el primer dia de clase.

2. El aprendizaje de conceptos y metodologias para el disefio e implementacién de TADs correctos, reutilizables y eficientes
a través de las clases magistrales, en las que se favorecera la participacién de los alumnos.

3. La aplicacién de tales conocimientos al disefio y andlisis de algoritmos y programas en las clases de problemas. En estas
clases los alumnos desempenaran un papel activo en la discusidn y resolucién de los problemas.

4. Las clases de practicas en laboratorio en las que el alumno deberda poner en practica la tecnologia necesaria para
desarrollar proyectos de programaciéon de tamafo pequefio o medio, utilizando un lenguaje de programacioén
determinado y aplicando los conceptos y técnicas estudiadas en esta asignatura.

5. El trabajo en equipo desarrollado para resolver las practicas de la asignatura, equipos integrados como maximo por dos
alumnos, y cuyo resultado se plasma en la entrega de programas resultantes convenientemente disefiados y
documentados, asi como en la explicacion y justificacién del disefio realizado y decisiones adoptadas, que se expondran
al profesor tutor de practicas.

6. Un trabajo continuado en el que se conjugue la comprensidn de conceptos, el andlisis y la resolucién de problemas de
programacion utilizando “lapiz y papel” y la puesta a punto en computador de algunos proyectos de programacién de
tamafio pequefio o medio.

Actividades de aprendizaje programadas (Se incluye programa)

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos
comprende las siguientes actividades...

1:
En las clases impartidas en el aula se desarrollara el temario de la asignatura.

En las clases de problemas se resolveran problemas de aplicacién de los conceptos y técnicas presentadas en
el programa de la asignatura. Se propondran problemas y ejercicios para ser resueltos antes de la clase de
problemas en la que se presentaran y discutirdn diferentes soluciones a dichos problemas. También se
propondrdn ejercicios durante la sesién de problemas para ser resueltos durante la misma, algunos de forma
individual y otros para ser trabajados en grupo.

Las sesiones de practicas de desarrollan en un laboratorio informatico. En estas sesiones el alumno debera
trabajar en equipo y realizar una serie de trabajos de programacion directamente relacionados con los temas
estudiados en la asignatura. Para las practicas de laboratorio se propondran una serie de trabajos o ejercicios
de programacién para que el alumno los resuelva, desarrolle parte del trabajo en el laboratorio, los complete
como trabajo en casa, y los entregue dentro de los plazos de tiempo que se fijen en cada caso.

Planificacion y calendario

Calendario de sesiones presenciales y presentacion de trabajos
La organizacién docente de la asignatura prevista es la siguiente.

. Clases tedricas (2 horas semanales)
- Clases de problemas (1 hora semanal)



- Clases practicas de laboratorio distribuidas en sesiones de 2 o 3 horas (unas 15 horas en total). Son sesiones de trabajo de
programacion en laboratorio, tuteladas por un profesor, en las que participan los alumnos de cada uno de los subgrupos en
los que se divide el grupo.

Presentacién de trabajos practicos de programacion:

Los trabajos de programacién a desarrollar en las practicas de la asignatura deberan ser realizados y presentados de
acuerdo a lo especificado para cada uno de ellos, y dentro de las fechas limite que se anunciaran en el enunciado de cada
uno de los trabajos propuestos o con suficiente antelacion.

Programa de la asignatura

Temario

1. Programacién con Tipos Abstractos de Datos.
2. Tipos de datos lineales.

3. Tipos de datos arborescentes.

4. Tipos de datos funcionales.

5. Introduccién a los grafos.

6. Introduccion a los esquemas algoritmicos.

Trabajo del estudiante

La dedicacién del estudiante para alcanzar los resultados de aprendizaje en esta asignhatura se estima en 157 horas
distribuidas del siguiente modo:

- 60 horas, aproximadamente, de actividades presenciales (clases tedricas, de problemas y practicas en laboratorio)

- 30 horas de trabajo de programacion en equipos de 2 personas para desarrollar los programas propuestos en las practicas
de laboratorio

. 61 horas de estudio personal efectivo (estudio de apuntes y textos, resoluciéon de problemas, preparacién clases y
practicas, desarrollo de programas)

- 6 horas de examen final de teoria escrito y de practicas en laboratorio

Bibliografia

Bibliografia de la asignatura

Bibliografia Basica:

- Weiss, M.A.: Data Structures and Algorithm Analysis in Java, 3rd Edition, Pearson/Addison Wesley, 2011.
- Hernandez, Z.). y otros: Fundamentos de Estructuras de Datos. Soluciones en Ada, Java y C++, Thomson, 2005.
- Weiss, M.A.: Estructuras de datos en Java, Pearson/Addison Wesley, 2000.

Ejercicios:

- Marti Ollet, N., Ortega Mallén, Y., Verdejo Lopez, J.A.: Estructura de datos y algoritmos. Ejercicios y problemas resueltos,
Pearson Prentice Hall, 2003.
- Joyanes, L., Zahonero, I., Ferndndez, M. y Sédnchez, L.: Estructura de datos. Libro de problemas, McGraw Hill, 1999.

Bibliografia sobre Java:

- Deitel, P.J. y Deitel, H.M.: Java. Cémo programar (72 edicién), Prentice Hall, 2008.

Bibliografia Complementaria:



- Campos Laclaustra, ).: Estructuras de Datos y Algoritmos, Prensas Universitarias de Zaragoza, Coleccién Textos Docentes,
1995.

- Franch Gutiérrez, X.: Estructuras de Datos. Especificacién, Disefio e Implementacién, 32 edicién, Ed. Edicions UPC, 2001.

- Mehta, D.P. y Sahni, S.: Handbook of Data Structures and Applications, Chapman & Hall/CRC, 2005.

Referencias bibliograficas de la bibliografia recomendada

- Campos Laclaustra, Javier. Estructuras de datos y algoritmos / Javier Campos Lacaustra . [1a. ed.] Zaragoza : Prensas
Universitarias de Zaragoza, 1995

- Deitel, Paul J.. Java : cémo programar / P. ). Deitel, H. M. Deitel ; traduccién Alfonso Vidal Romero Elizondo ; revisién técnica
Gabriela Azucena Campos Garcia, Roberto Martinez Roman, Jorge Armando Aparicio Lemus. 72 ed. Naucalpan de Juérez
(Estado de México) : Pearson Educacién, 2008

- Estructura de datos. Libro de problemas / Luis Joyanes Aguilar [et al.] . Madrid [etc.] : McGraw-Hill, D.L.1999

- Franch Gutiérrez, Xavier. Estructuras de datos : especificacién, disefio e implementacién / Xavier Franch Gutiérrez . - 3a ed.
Barcelona : Edicions UPC, 1999

- Fundamentos de estructura de datos : soluciones en Ada, Java y C++ / Zendn José Herndndez Figueroa ... [et al.] . Madrid :
Thomson, D.L. 2005

- Handbook of data structures and applications / edited by Dinesh P. Mehta and Sartaj Sahni. Boca Raton, Florida [etc.] :
Chapman & Hall/CRC, cop. 2005

- Joyanes Aguilar, Luis. Estructuras de datos en Java / Luis Joyanes Aguilar, Ignacio Zahonero Martinez Aravaca (Madrid) :
McGraw-Hill, D. L. 2007

- Marti Oliet, Narciso. Estructuras de datos y métodos algoritmicos : ejercicios resueltos / Narciso Marti Oliet, Yolanda Ortega
Mallén, José Alberto Verdejo Lépez . Madrid [etc.] : Prentice Hall, D.L. 2003

- Weiss, Mark Allen. Data structures and problem solving using Java / Mark Allen Weiss . Reading, Massachusetts [etc.] :
Addison-Wesley, cop. 1998

- Weiss, Mark Allen. Estructuras de datos en Java : compatible con Java 2 / Mark Allen Weiss . 1a ed. en espafiol Madrid :
Addison Wesley, cop. 2000



