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bles. - 4. Teorema fundamental de los conjuntos medibles. - 5. Los
conjunt<;>s borelianos y la medida exterior métrica.
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rac te rización de con juntos rnedi hles por continen tes y con tenidos
medibles.

CAP. IU. - I ntegral de LEBESGUE en conjuntos de m edida infinita. - 1. In­
troducci ón, - 2. D efin ición y lema. fundamental. - 3. Identi ficación con
la integral de LEBESGUE - VALLÉE POUSSIN. -- 4. Convergencia a cero de
la integral con I Xr• I - 5. Aditividael numerable de la integral como fun ­
ción ele conjunto . - 6. Teorema ele convergencia acotada ele LEBESGUE.
7. Teorema ele FATOU.

(I) . El contenido de este art ículo figu ra en vario s capítulos de la memoria in6dita qu e fue presentada
como becario de la «Fundad ón Ju an Marcb», y en parte aparece también en el volumen III de la obra
de J. R EY PASTOR, P : PI C ALLEJ A y C . A. T REJ O : Análisis mat emático, C ap. XXIV: Teoria de la
medida (Kapelusz, Buenos Aires, XI -1959) .
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CONTENIDO

En el capítulo 1 de',este artículo se da un a simplificación del teorema
fundamental de los conjuntos medibles respecto a una medida exterior de
CARATHEODORY, y en el capítulo II se relaciona la teoría general d e la me­
dida con las definiciones clásicas de los conjuntos medibles (L), ,según ex­
posición original que aclara y completa muchos puntos de los textos cono­
cid os. Más importante es el capítulo In donde se extiende la definición y
los teoremas de la teoría de LEBESGt!E al caso de conjuntos d e medida infi-
nita, dando así vastísimo alcan ce al método de REY PASTOR, que tanto sim­
plifica el desarrollo de dicha ' teoría.

CAPÍTULO 1

TEOREMA FUNDAMENTAL D E LOS CONJUNTOS MEDIBLES

RESPECTO A UNA MEDIDA EXTERIOR DE CARATH:ÉODORY

&1 - 1. Introducción. - Es bien sabido que C. CARATHÉOOORY en sus
"Vorl esungen iibe r reelle Funktionen" (2." ed., Leipzig, Teubner, 1927) de­
sarrolló en forma axiomática, de tipo esencialmente geométrico, la teoría
general de la medida, que a partir de la idea fundamental de 'adit ividad
'num erable de E. BOREL (1898), dio 'paso al proceso de integración de H. LE­
BESGUE (1902), tan importante por hacer permutables La integral y el paso
al límite en condiciones amplias. Esta propiedad y el teorema de F . RIESZ
(1911) demostrando que las integrales de LEBESGUE .:STIELTJES eran las fun ­
cionales lineales continuas más generales sobre el espacio de -funciones nu­
méricas continuas con la topología de la convergencia uniforme, sugirieron
a J. RAooN (1913) la idea de definir la integral de LEBESGUE por métodos
funcionales que daban lugar a una "medida de RADON" sobre ,.e l espacio
euclídeo Rm que abarcaba con gran generalidad las teorías de la 'int:egración
y de la medida de LEBESGUE y de STIELTJES. Pero en ella se utilizaba aún
esencialmente la topología d e Rm • Su generalización a espacios abstractos
cualesquiera fu e lograd a por O. NIKODYM (1930) y perfeccionada por J. VON
NEUMANN (1940).

Sin embargo, la idea de prescindir de la teona 'de la medida para
gene ralizar por método puramente funcional el concepto de integral se debe
a W. H. YOUNG (1911), y dicho método fu e desarrollado en forma abstracta
y general por P. J. DANIELL (1918). En el m étodo geométrico de CARATHÉo­
OORY la medida juega un papel ' fundamental, y así, según dice etpolicefá-.
lico autor N. BOURBAKI ("Eléments de Math ématique", Liv. VI: "Intégra­
tion", Cap. V: "Intégration des mesures", París, Hermann, Act. ScL et
Ind. n." 1.244, ' 1956), "depuis lors, les auteurs qui ont traité ' d 'lntégration se
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SOBRE LAS DEFINICIONES Y TEORRMAS FUNDAMENTALES DE LA TEORIA DE LA MEDIDA

sont partagés entre ces deux points de vue, non san s entrer dans des d ébats
qui ont Iait couler beaucoup d 'encre sinon beau coup de sang" (refir iéndo se
a ' la crítica que del primer volumen de su "Intégration", Act. Sci. et Ind.
n." 1.175, 1952, hizo P. HAL~OS en el Bull . Amer. Math. Soc., 59, 1953 , p. 249).

Se ach aca al nn étodo de CARATHÉoOORY la form a p enosa cóm o se llega a
demostrar que los conjuntos medibles respecto a un a medida exte rior fo r­
m~1TI una familia numerab lemente aditiva , ASÍ, pues, es importante dar de:
rnostracíón simplificada ' de este teorema fundam ent al, lo que se inte nt a en su
forma más general, combinando divers as ideas ' sugeridas en los principales
textos 'que tra tan la cuestión, mientras que en éstos se encue ntran demos­
traciones múchomás complicadas que la exp uesta más adelante .

En espacios abstractos, se han ocupado sobre medidas exteriore s en ge­
neral, los libros :
S. SAKS: Theory of ihe integral (2.a ed ., Monog. .Matern. .VII, Varsovi a, 1937 ;

Stechert, Nueva York);
H. lLu-m y A. ROSh'NTHAL: Set Fun ctions (Albuque rque, Univ. New Mexico

Press, 1948);
P. R. HALMOS: M easure Théonj tver: Nost rand, Nueva York , 1950);
J. ,van NEUMANN: Functional Operators . Measures and Integrals (Princeton

Univ. .Press, 1950);
~L E. MUN~OE: Introdu ction to Measure and Lti i egrati on (Addison -Wesley,

Cambridge, Mass ., 1953);
A., ZAANEN : An introdu ction to th e th eory of integration (North - Holl and,

Arnsterdarri, 1958). ' .

&1-2. Nomenclatura. - Un espacio" topológico E (E, G) es un conjunto
total E de puntos x y una clase G ,<;le subconjuntos G de E, llamados 10<;
conjuntos abiertos del espacio, tales qu e la clase G contenga el conjunto
vacío 0 , y el total E, siendo G cerrada respecto a intersecciones (n), en
número finito y respecto a <u nion es (U) arbitrarias ,. (no necesariamente · €!l
número finito o numerable) . Entorno U", de un punto x (6 U; dé un sub~'

conjuntó X de E) es un conjunto que conten ga ' un abierto al 'q ue perte­
nezca x (o en el que esté contenido' X). 'Entorno reducido de x es un en­
torno del que ~ se ha .suprimido iel punto x, designado por. . ' . ~, . _. . ..

U; , 'U", - h }. (1-1)

Una base de 'entom oe es úhafarnilia V d e entornos tal que para todo U'"
exista un entorno V a, E .V con V," ;;; lJ"" donde " E " significa "pe rtenecien­
'te a", y "~ " significa "contenido eh", reservan do "e " para "parte propia de".

El espacio topológico es un espa-do de HAUSOORFl?' . si cada dos puntos
dístíntos tienen entornos disjuntos (sin' punto común).

Un cOI,1junto F es cerrado si su complemento E-F -es abierto.
Se llama ' clausura del' conjunto X a la inte rsección X d e tod os. los

cerrados que contienen el conjunto X. Una familia A de conjuntos es un
cubrimiento de ·X si cada punto de · X pertenece a un conjunto de la fa­
milia A. Si ésta consta sólo de un n úmero finito de conjuntos, el cubri-
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(1-2)

(1-6)

(1-7)X- Y=X-(X n Y).

ti (a, E) 1= i x tal qu e Q(a,x) < E}.

d(X) = sup Q Xl, X2 '

xl, X2 E X

La diferencia entre dos conjuntos X - Y es el conjunto de los elemen­
tos de X qu e no pertenecen a Y, es decir:

. m
t L (1)= rr (bi - ai ) > O . (1-9)

i = l

Se llama diámetro d(X) de un conjunto X al extrem o superior ("sup")
de las distancias de cada par de puntos xl, X2 de' X:

Q (X, Y) = inf Q (x, y) ' (1-4)
xEX,y EY

donde el segundo miembro rep resenta el ext remo inferior ("inf") de las
distanciás de cad a punto x E X a cada punto y E Y. En particular, si X
consta de un solo punto x, es

Q (x, Y) = Q ( i x}, Y). (1-5)

Los entornos esfér icos de un esp acio métrico form an una base de entor­
110S de di cho espacio. Un entorno esiérico reducido es el conjunto:

U' (a, E) = i x tal qu e O< Q(a, x) < E}. ' (1-3)

La distancia 'entre dos conjuntos X, Y de un espacio métrico se de­
fine por

En el e spacio euclíde o Rm, con distancia euclíde a dada por:

Q(x, y) =+ Vi~\xi - Yi) 2 (1-8)

un inte rvalo abierto 1 d e puntos x = (Xl , X2, ••• , Xm) es el ortoedro .i x tal que
, a.¡ < xi < bi , i = 1,2, ... , m } con medida elementa l (L) dada por:

miento se llama finito. Referida a A, toda familia parc ial de A que sea t-un­
bí én cubrimiento de X se llama subcubrim iento de X. El cub rimiento se
llama abierto si son abier tos los conjuntos que forman ' la familia A. El con­
junto X se llama compacto si todo cubrimi ento abierto de X contiene un
subcubrimiento finito de X.

Un espacio m étri co E' (E, Q) es un conjunto total E de puntos x E E,
donde se ha definido una fun ción real Q (llam ada distan cia) sobre el pro­
du cto cartesiano E X E, tal que Q(x, y) = O'< = = > x = y , Q (y, z ) :::;
:::; Q(x, y) + Q (x, z ), donde "<= = >" significa "e quivalente a", D e esto
se deduce fácilmente que además es Q (x, y)~ O; Q (x, y) = Q (¡j, x). Es­
pacio métrico es caso muy particular de espacio de HAUSDORFF.

En un espacio mét rico, un entorno esfé rico de a de radio E es la esfe ra
abierta de centro a y radio E dada por el conjunto:
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(1-10)

(1-11)

00 cr¡

a(UXn)=¿'a(X Il ) E R¡ ;
Tt =l n cx ]

3.a) Es a (0) 1=,= O.

Si en la condición La, la fam ilia H es sólo finitamente aditiva , la condi­
ción 2.a 'se sustituye po r :

S; se considera ai ::;; Xi ::;; bi , se obtiene el intercale cerrado 1 qu e es
clausura del anterior, en caso de ser a¡ < bi pa ra todo i . Si algún a, = b, ,
el intervalo se llama degenerado.

En un espacio topológico general se dirá que un a familia H de con­
jun tos es numerabl emente (finitam ente) aditiva si cumple : 1.0) El conjunto
vacío 0 pertenece a H; 2.°) Si X pertenec e a H, también su complemento
E - X pertenece a H; 3.°) La unión infinita-numerabl e (finita) de conjuntos
pertenecientes a H, también pertenece a H .

Es importante obs ervar que este concepto varía ligera.men te según dis­
tintos autores, los que también emp lea n nom enclaturas variadas . Aquí se
adopta la más ad ecuada y sencilla al caso tratado.

Si la familia aditiva (finita o numerable) H ' contiene todos los con­
juntos cerrados F , contiene tam bién todos los abiertos G (y recíprocamente) .
Entonces la familia minima numerabl em ente aditiva que cumpla estas condi­
cienes (intersección de todas las fannilias nume rablem ente aditivas que con­
tienen los abiertos y cerrados de E) forma 'la familia numerablemente aditi­

va B de conjuntos borelianos ,o de conjuntos (B) del espacio E. Este con­
cepto es importante en los espacios ,métricos y en los espacios completos
(es d ecir, donde se cumple el criterio gen eral de conve rgencia de CAUCHY) .

Una función numérica uniforme ' de conju nto a (X) que toma sus va lo­
res en la recta acabada Rl (nom enclatura ele B OURBAKI , designando así la
recta euclídea R¡ a la que se han agregad o los p untos - co, + ca con las
convenciones de H . HAHN en "Reelle Eunktionen" , Leipzig, 1932, pp. 177
y ] 80) se dirá que es numerablemente aditiva si cumple las condiciones :
1.") Está definida en una familia numerab lemente aditiva .'H de conjuntos;
2.a) Si 1Xn } es una sucesión numerable de conjuntos d isjuntos de H , se
cumple:

para todo par de conjuntos disjuntos X, y X2 de H, y subsiste la condi­
ción 3.a, en tonces se dirá que a (X) es un a funci ón [iniiamente aditiva de con­
junto (o aditiva, pues es fácil ver, medi ante el conjunto vacío 0, que un a
función numerablemente aditiva también lo es finitam ente). La aditividad
numerable tamb ién se llama aditividad completa o aditividad infinita .

Si para dos conjuntos cualesquiera X ~ Y (con "~" significando, "con ­
tiene a") de la familia H donde está definida la fun ción de conjunto a, es
a (X) ~ a (Y), se dirá que a es creciente, mientras que si es a (X) ::;; a (Y),
se dirá que es decreciente, y en uno y. otro caso se dirá (en sentido amplio)
que es monótona (propiamente si a ::) corresp ond e siempre > o a e ' co­
rresponde siempre > ). Es fác il ver que un a función aditiva de conjunto es
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(1-14)

(1-12)

(1-13)

(1,.)1inf
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X S U In
n=1

ro ro ..
¡.t (U Xn) ::;; ~ ¡.t (Xn)

n cc I . n = 1

,

donde "~" significa "implica";
M2) Es suhaditiva numerable, es decir:

no-negativa si y sólo si es creciente, mientras que es no-positiva si y sólo
si es decreciente. _

Se dirá que un a función de conjunto es una función de m edida (o más
senc illamente un a m edida) si es numerabl emente aditiva y es no-n egativa (es
dec ir, creciente) .

& 1-3. Medidas exteriores de CARATHEODé>RY. Conjuntos medibles. - Toda .
función numérica uniforme de conjunto ¡.t (X) que loma .sus valores en la rec-
ts acab ada RI, d efinida en un a familia numerablem ente aditiva H de un es­
pacio topológico general E, se dirá que es una medida exte rior 'si cumple
los postulados: .
MI) Es creciente, es decir,

para cualquier .sucesión finita o infinitamente numerable de conjunto X" EH:
Ms) ~l (0) '= O. ..
. Generalmente, la familia H consta de todos los subconjuntos del conjun­
lo tot al E. Los p ostul ados MI y Ms imp lican que ¡.t (X) ;:: O. También es

fácil ver qu e si una medida exterior es finitamente aditiva, entonces lo es
tambi én nran erablemente y, por tanto, la medida 'exterior es entonces una
medida en la misma familia H.

En un espacio métrico se dirá que la función de conjunto ¡.t (X) .an terior
(cumpliendo los postulados MI, M2, Ms) es una m edida exterior métrica si
además cumple el postulado:
M4) Si para dos conjuntos Xl, X2 de H es positiva la distancia Q (Xl, X2) >
> O, entonces es ¡.t rx, U X2) = ~l (Xl) + !-' (X2) .

Dado un conjunto cualquiera de un espacio euclídeo R"., todo cubrimien­
lo de X mediante intervalos abiertos puede reducirse a un subcubrimiento
numerable (teorema d e LINDELOF - HAUSDORFF, propiedad que tomando abier­
tos cualesquiera en lugar ele intervalos, puede generalizarse a los espacios
de LINDELOF, es e1ecir, a los esp acios perfectamente separables o que cum­
plan el segundo axioma de numerahilidad según el cual existe en el espacio
1111:'1' base numerabl e de entornos). La suma de m edidas elementales (L)
(& 1-2) ele esta infinidad numerable de intervalos abiertos es la suma de una
serie incondicionalmente convergente o divergente de términos positivos. Al
extremo inferior de las sumas de las medidas elementales (L) correspondien­
tes a todos los cubrimientos numerables de X por intervalos, designado por:
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Es fácil ver que esta definición (de CARATHÉOOORY) es equiv alente a decir
(con H. KESTELMAN: Mod ern Th eories of Integration, Oxford Univ. Press,
]9S7) que X E (I-l) cuando y sólo cuando para todo p ar de conjunt os A y B
d e la familia H tales que:

(1-18)

(1-17)

(1-15)

(1-16),

I-l (W) = I-l (W n X ) + ~ I-l (W - X) "

I-l (W) ::: I-l (W n X) + !J (W - X) ,

A S X . B S 1- X se cumpla I-l (A U B) = f.l (A) + I-l (B),

y como ésta es ev idente para I-l (\IV)= + 00, ' bastará comprobar (1-17) o
(1-15) para todo W E= H d e me dida exterior finita para afirmar que X E (I-l) ,
& 1-4. T eorema fu?,!dariwntal de los coniuntos medib les. - La importancia
de los conjuntos m edibles radica en la aditivida d nume rable de su medida exte­
rior restringida a- ellos y en que forman una familia num er abl emente aditiva ,
es decir, que la restricción de una medida exte rior I-l a la familia de conjuntos
medibles (I-l) es una m edida. Esto se va a demostrar por sucesivos teo remas,
donde se supondrá que I-l (X) es una medida exte rior definida en una fami­
lia numerablemente aditivaH de un espa cio topológico general E y que curm­
ple, por tanto, los postulados Mj, M2, M3 del & I-S.

TEOR. 1-1. - Si X es un conjunto m edible Ül) e Y E H con m edida exte-
rior finita I-l (Y) < + 'co, para cualquier V E H, es: .

designando x, = X n V , I v =y n v.
En efecto, por ser X medible, para cualquie r W E H se verifica (1-15), y

- J71 ~

pues en el teorem a di rect o b asta tom ar \V1= A U B Y en el teorema re­
cíproco, tomar A = W n X, B = W - X.

Es inmediato deducir que E E (u), ~t (X) = O~ X E (I-l) ; X E (~t)"~E­
-X E (u).

En virtud de la condición M2 de su baditivida d numerabl e, se cumple
(1-15) si y sólo si es:

se le llama m edida exte rior de LEBESGUE o medida exterior (L) del conj un ­
to X. Puede emplearse la notación I1 I en lugar de 1: L (1) p ara la medida ele­
mental (L),de 1, porque se pued e probar que para todo conj unto X que con­
tenga un intervalo 1 y esté contenido en su clausura 1, 'se cump le .me (X )=
=1: L (D . Ad emás, se demuestra que la m ed ida exte rior (L) dada por (1-14)
es un a medida exterior m étrica.

Resp ecto a una medida exte rior ~ de un espacio topológico general de ­
finida en un a familia numerablemente adi tiva H, se d irá que un conjunto
X E H es m edible (I-l), o sencillamen te medible, escr ib iendo X E (~l ) , cuan­
do para todo conjunto W E H se cumple:
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f! (& 1-3), se obtiene :

(1-20)

(1-21)

k -1 . ':
U X II) + f! (V n X I.) ,

n =1 .

ce ce
¡.t. (V n U X,,) = ¿ f! (V n X,,) .

n = 1 n cc l

f.t (X v U y v) = f! (X v) + ¡.t (Yv) .

k
f! (V n U X n) = f.l (V n

n=1

ce le le

!L(V n U X ,,) ~ f! (V n U X n) = L f! (V n X n)
n= 1 11 = 1 n =1

'ce k
Por ser V n U X " 2 V n U XII-' de ' la condición MI de monotonía de

. n= 1 n ee I

le le
f! (V n U X n) = ¿' f! (V n X n) .

n ee I n =1

k - I
En efecto, U X II es disjunto con X"' medible, d e donde por el teor.

n =1

f! (Yv) = f! (X n Y v) + ~l (Yv - X) =

:7 J.1 (VV n Y v) + 11 (Yv -Xv);

f! (X v U 1'17 )= f! (X n (X v U 1'17 )) + f! ~(Xv U 1'17) - X) =
=f!(Xv) + 11 (Yv-Xv) ,

si en es ta igualdad se toma primero W = Yv Y luego \V = X v U y v' se
obtiene :

Por ser f! (1'v) < + = , podremos despejar f! (1' 17 - X v) en la primera
y sustituir en la segunda, obteniendo así (1-18). Para V = E, se obtiene en
lugar de (1-18) la igualdad .

~l (XU Y) = f! (X) + ¡.t (Y) - f! (X n Y) , (1-19)

TEOR, 1-2. - Si X es un conjunto medible (f!) y V e Y son conjuntos
cualesquiera de la familia H, tales qu e X e Y sean disjuntos, designando como
antes x, = X n V, 1'17 =Y n V, entonces es:

En efe cto, si f! (Yv) = + oo la (1-20) es evidente, mien tras que si f! (Yv) <
< + co el teor. 1-2 es un corolario inmediato del teor. 1-1. .

TEOR. 1-3. _ .. Si { XII } as una sucesión de conjuntos m edibles (u), dis­
juntos dos a dos y V es un conjunto cualquiera de la familia H, entonce'S es:

y aplicando inducción completa, para, todo k finito se obtiene:

1-2 es:
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(1-22)
00

I! ,(U Xn) = 2:' I! (Xn) ,

n =l n=l

I! (W n Xl) = I! «W n Xl) n X2) + I! «Wn Xl) -X2) =
= I! (W n D) + I! «W n Xl) - D) .

.Eliminando I! «W n'Xl) - D) entre ambas igualdad es anteriores, se ob­
tiene, por ser X, medible:

I! (W n D) + I! (W - D) = I! (W n Xl) + I! (W - X~) = I! (W),

lo que prueba es D medible , en virtud de la observación final del &1-3.

. TEOR,' 1-5. ...:- La unión ,de doe conjuntos m edibles es m edible.
'~~;~:- -'

En efecto, si X¡ y X2 son medibles, tambi én lo son sus complementos
E - Xl y ' E - X2 y, por tanto, su inters ección (teor, 1-4):

Si ahora se aplica (1.,15) al conjunto medible X2 con W n X, en lug ar
de W, será:

,

I! (W -D) = I! «W-D) n Xl) + lA T(W-D) -Xl) =
= I! «vv n Xl) -D) + I! (W -Xl)'

juntos medibles (lA) sea infinitamente aditiva y I! sea una medida.

llQ .

I! (V n U X n) ~ 2: I! (V n Xn) ,

.. = 1 n =l

00 .

lo que aún no demuestra sea U X, E. (I!), es decir, que la famili a de con­
n=l

TEOR. 1-4. - La intersección D de dos coniuntos m edibles X, y X2 es
medible.

En efecto, sea W ún conjunto cualquiera de la fam ilia H de medida ex­
terior finita. Aplicando (1-15) al con junto m edible X, con W - D en lugar
de W, será:

es decir, X, U X2 E. (I!), como se querí a demostrar. Por inducción completa
resulta qu e los conjuntos medibles forman una fam ilia finitamente ad itiva.

TEOR. 1-6. - La familia de conjuntos -medibles es numerablem ente aditiva
y la fun ción I! (X) restringid a a ella es una m edida .

y haciendo k~ CX) resulta:

que con la desigualdad de sentido contrario. ob ten ida de la condición M2

de subaditividad numerable de I! (&1-3), prueba (1-21).
En particular, para V = E, la (1-21) se convierte en :
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Se va a probar qu e si X, E (fL) , (n = 1, 2, 3, ... ), entonces

00

. 'S = U 'X" E (fL) ·
11=1

En efecto, para cualqu ier W E H , p o'r el teor. 1-5 es :

k
SI.; = U XII E (rl) .

11=1

Con Y,• = XI.; - S¡.;-¡ = x, - (Xk n Sn) es S"= Sk'1J. U v, con YI.; , S¡.;-¡ dis-
K co

jun tos, y si YI = X¿ queda SI.; = U Y", S= U Y" con Y, (n = 1,2,...) disjun-
. n=1 n=1 .

tos dos a dos. Aplicando (1-15), se obtiene :

le
l.l (W) = fL (W - S,,) + fL (W - SI.;) - '2: ~L (W n Yn) + f! (W - Sk)'

11=1 .

en virtud de (1-21) del teo r, 1-3.

Como W - SI.; ~ 'W -:- S, si se aplica la, condición MI d e monotonía
de fL (&5 - 3) a la anterior, se obtiene:

K
fL (W) ~ ¿' fL (W n YII) + fL (W - S).

11 = 1

Si en ésta se hace tender k -7 QO, Y se vuelve a aplicar (1-21) del teor.
1-3, se ob tiene:

ce 00 00 00

f! (W) ~ 2:1 fL (W n Y,,) + fL (W - U Yn) = fL (W n U yn) + fL(W - U Yn) =
11=1 n = 1 11= 1 " 11=1

00
qu e en virtud de (1-17) prueba que U X" E (u), como se quería demostrar. ,

11=1

Eso y (1-22) hace ver que ¡.t (X), restringida a la familia de conjuntos medibles,
es una medida. .

TEDR. 1-7. - La intersección de una infinidad numerable de conjuntos
medibles es medible.

Pues, si X, E (p), (n= 1, 2,23, ... ), también es E -'--X" E (fL) , ' y por tanto
su unión (teor. 1-6):

ce 00

U (E- X,,) = E- n X" E (fL),
11=1 11=1

00

de donde n X" E (p), como se quería demostrar.
n=1

&1- 5. Los conjuntos borelianos y la medida ' exterior métrica. - Aun
cuando la familia de conjuntos medíbles sea numerablemente aditiva, puede no
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contener los abiertos, y por tanto un conjunto boreliano puede no ser
medible (u),
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,·,·f
.~ ...-; ' ,I

EJEMPLO. Sea E (E, G) un espacio topológico general cu alquiera (por
ejemplo, la recta real RI ) y sean a, b números reales fijos tales que O~a~b

b~2a, definiendo ¡,t (0) = 0, ¡,t (E) = Ú y /l (X) = a para todos los demás
conjuntos. Entonces ¡,t es un a medida exterior, pues aun en el caso de qu e E
conste de sólo dos puntos distintos, se cumple el postulado M2 del &1-3,
en virtud de ser' b ~ ?a. Aplicando (1-15) se ve qu e en los casos O< a~ b < 2a
ó bien O< a < b = 2a con E distinto a dos puntos , los único, conjuntos
medibles son el conjunto vacío 0 y el total E, siendo los demás, incluso
los . borelianos, no> medibles. En otro caso, es decir, cuando O. a = b ó

cuando O< a < b = 2acon el 'conjunto 'total reducido a dos puntos dis­
tintos,resulta en cambio ' que todo conjunto' X es medible; obsérvese qu e
O= a < b no es posible 'si ha de ser b ~ 2a. En el espacio métrico que
forma la recta real - RI , la medida exterior anterior es métrica (es decir,
cumple el postulado M4 del &1-3) sólo si es O= a = b.

~. ~ . .
La importancia de una medida exterior métrica está en que respecto a

ella los conjuntos abiertos son siempre medibles, según un teorema clásico
de CARATHÉoOORY, cuya demostración, también clásica, es muy ingeniosa,
pero . bastante penosa, desarrollándose en forma análoga a la dada por CA­
flATHÉoOORY para probar que los conjuntos medibles forman una familia
riuanerab lemente aditiva.

Pero aun" más, .se puede afirmar que en un espacio métrico cualquiera,
laecondioioti necesaria y suficiente para qu e respecto a una det erminada
medida exterior ¡,t, tos conjuntos borelianos sean m edibles, es que ¡,t sea una
medida exterior métrica.
:- D~sde luego, . la l condición . es suficiente, pues si entonces los conjuntos

abiertos son rnedibles (según el mencionado teorema de C ARATHÉoOORY) , la
familia numerablemente aditiva de conjuntos medibles contendrá los borelia­
nos .(&1-2). Recíprocamente, la condición es necesaria, I pues si todo con­
junto boreliano es medible, también será medible todo abierto y entonces

, de esto se deduce que se cumple el postulado M4 del &1-3 y qu e por tanto
la medida exterior ji dada es métrica. En efecto, dados dos conjuntos X,
y Xl! .de la farnilia numerablernente aditiva H donde es tá definida la medida
exterior ¡,t tales que Po = P (Xl ' X2) > O existirá un abierto G que cont én­
'ga X¡ y sea disjunto con X2, pues por ejemplo .basta considerar la unión
de todos los entornos esféricos de los puntos de X¡ de radio Po/ 2. Corno por
hipótesis G es m edible, puede aplicarse (1-15) tomando W = Xl U X2

y X . G,dando así:

~. ~. (X1. U Xz) ,= W((XI U X 2) n G) + ~l «x. U X 2) - G) = fA. (Xl) + fA. (X2) ,

que -es lo afirmado en el postulado M4 del &1-3, como se quería de­
mostrar.
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CAPÍTULO Il

LAS DEFINICIONES CLASICAS DE CONJUNTOS MEDIBLES (L)
COMO CASO PARTICULAR DE LA TEORIA GENERAL

DE LA MEDIDA

&II - 1 Introducción. - Parece interesante .destacar la forma en que
rápidamente puede llegarse a estudiar las condiciones restrictivas que deben
cumplir espacíos topológicos generales y medidas exteriores para que los
respectivos conjuntos medibles se ajusten a coincidir con los definidos clá­
sicamente en las obras básicas de la teoría que tratan de la medida (L),
tales como las siguientes: .
H. LEBESGUE: "Lecons sur l'intégration et la recherche des fonctions pri­

mitiues" (París , Gauthier-Villars, I. " ed., 1904; 2.a ed., 1928).
CH. J. DE LA VALLÉE POUSSIN: "Inté grales de LEBESGUE, Fonctions d'ensemble,

Classes de Baras" (Pa rís, Cauthier-Villars , 2.a ed ., 1934).
Introducida la función caracteristica .cx(x) del conjunto X contenido en

el inte rvalo fin ito 1 del esp acio euclíde o R"" com o la .funcl ón definida
en 1 que vale 1 en los p untos de X y O en los de su complemento 1 - X,
se define la extensió n del conjunto X, o también su ' m edida de PEAND­

TORDAN o medida (R), al va lor, en caso de existir, de la intezral de
J I ~

RIEMANN :

(II -1)

En canibio, siempre existen, definidas por las integrales superior e infe­
rior de DARBoux, las llamadas:

extensión exterior =e (X) = I cx(x) dx,

JI
(II-2)

extensión interior = e (X) = cx(x) dx,

y sólo si estas dos coinciden , el conjunto X tiene extensión .
La extensión de un intervalo 1 coincide con su medida elemental 'tL (1)

(& 1-2), que tien e la propiedad de aditividad finita (& 1-2).
Se ve qu e la ex tensión exterior del conjunto X contenido en 1 .es el

extrem o inferior de la suma de las medidas elementales de los subintervalos
continentes a los que p ertenece algún punto de X respecto de todas las
p articiones de 1 en número finito de subintervalos no-rampantes (sin punto .
interior común), mientras que el extremo superior de la suma de las me-
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elidas elementa les de los subintervalos contenidos, todos cuyos puntos, per­
tenecen a X, da la ex tensión interior.

La extensión, e n caso de existir, da un a medida que tien e la p ropiedad
de aditividad finita, pero no la de adit iv id ad numerablernen te infinita.

Por ejemp lo, cada uno de los p untos raci on ales de 1 e n R1 t iene exte n­
sión (nula) y su unión (qu e es numerable) no tien e extensión. Análogamen te ,
si. del inter valo 1 en R1 se ex trae n sucesivamen te cada uno de los puntos
raciona les, se obtiene una sucesión de conju n tos de extensión 1, cuy a in­
tersección numerable es el conj unto de nú meros irraci onales sin exte nsión .

T am bién p ue de h aber con juntos ab iertos o conjuntos perfectos sin ex­
tensi ón . Por ejemplo, sea el obtenido as í en el intervalo cerrado [O, 1] de
la _recta re al R1 : D e [O, 1] se extraen el inter val o abier to cen tral 11 de
longitud 1/4, de los dos segmen tos restantes los respectivos intervalos abier­
los centrales h , 13 de lon gitud 1/ 42, d e los 22 segm entos restantes los res­
pec tivos inte rvalos ab ier tos cen trales T4 , T5, Tu, Tí d e longitud 1/ 43 y as í su­
cesivame nte ; entonces, el conjunto ' abie rto e xtraído G = 11 U 12 U 13 U ...
110 tien e extensión, pues p or ser denso en [O, 1] es e (G) . 1, y por suma

.de sus componentes, es:

1 1 1 1
e(G)=-+ 2-+ 22 .-+ oo . = - -< 1 =e(G).-

4 42 43 . 2

El .comp lemen to a [0, 1] es ejem plo de conjunto perfecto sin extensión .
Para que tod o con junto- tu viese medid a, CANTOR prop uso cons iderar

cuma tal su extensión ex terior, p ero és ta no es ni tinit amente adi tiva . Por
ejemp lo, el conju nto Q d e puntos racionales del in tervalo Y= [O, 1] en R1

y el 1-Q de los puntos irracio nales t ienen ambos extensión exte rior 1, lo
mismo que su uni ón disjunta 1.

A partir de la medida elemental d e los intervalos (en los espacios e uclí-
• deos RIIl) puede edificarse toda la teoría d e la medida (según Ch. J. de la

VAÍ..LÉE POUSSIN) basán dose exclusivamen te e n la adi lividad numer a ble, pero
para que este m étod o de medir no sea contrad ict orio, es esencial d emos- .
trar el siguiente teorema de unicidad:

TEOR. II-l. - Si un conjun to X pu ede considerarse de dos man eras dis-
00 00

tintas X = U 1,_= U l. como la unión de una infini dad numerab le de inter-
- . =1 5 = 1
uoios no-nampontes (p osiblemente degenerados o 'vacíos), la suma de las m e­
dida s elem entales de estos intervalos es la mi sma en ambos casos.

La demost ración de este lem a fundam ental de Ch. J. d e la VALLÉE POUSSIN
la efec túa J. REY PASTOR (en sus "Elementos de la T eoría de Fun ciones",
3.a ed ., Ibe ro-American a, Madrid-Buenos Aires, 1953); en forma ingeniosa,
basándose en la ·teo ría de las series do bl es de términos p osi tivos, pero es de­
fectuosa y necesita ser p erfeccion ada, d ebiéndose ap lica r en ell a, como en
la demostración de Ch. J. DE LA VALLtE POUSSIN, el lema de BOREL.

-=..< 177 -
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y por tanto, también:

. 00'l. (Ir) =~ ' 1. (Irs) ,
5 =1

con
ca

Ir = U r.,
5= 1

y por tanto :

le

2:" . I1 s) ~ L,. (U;
5 =1

Como € es arbitrario, haciendo ~ -> 0, de ésta y la desigualdad de sen­
tido contrario, resulta:

ca ca ca .
L,. (1,.) ~ 2:, L (].) ~ 2: (LL (Ir.) + d 2' ) = (2:LL (1,.» + E • .

5 = 1 5 = 1 5 = 1

Por otra parte, para tocio e > 0, se podrá encerra r cada Ir.. en un in­
tervalo abierto J. tal .que su medida elemental' sea:

ca
L,. (Ir) = 2:L,. (IrB ) .

S = 1

m
~LI. (1,.•) ~ LL (q,

5 =1

' 1. (J.•) '< LL (Ir.) + E/2'.

<XI

2:L ,. (Ir.) ~'" (Ir)'
5 =1

REVISTA DE LA ·ACADEMIA . DE CIENCIAS E.YACTAS, F/SICV -Q U/M/(;Ai y NA TURALES

En efecto, sea la intersección 1. rs = 1,. n l B, aca so intervalo degenerado o
vacío. Para r fijo , es:

lo que no es evidente (como se supone en la obra citada), por no poder acep­
tar como 'fundam ento el criterio de aditividad numerable, ya que precisamente
estamos demostrando la no-contradicción del mismo. Por ejemplo, elicho cri­
terio sería contradictorio en la recta racional, tomanclo 1,. no degenerado, tal
que LL (1,.) > O, con 1,.• reducidos a puntos . de" . (I,.s) = O. Precis amente, co­
rolario inmediato de este teorema de unicidad será la no numerabilidad del
continuo, pues el conjunto de puntos [O, 1] tiene. medida 1 > 0, y por tanto
no puede ser numerable; se comprende qu e esta propiedad sustantiva no
debe depender solamente de una definición . (siempre lógicamente convencio­
nal) como la de definir como m edida boreliana de un conjunto compuesto
de la unión de un número finito o infinito numerable de intervalos no-ram­
pantes (posiblemente degen erados) a la suma de las medidas elementales ele
sus . intervalos componentes (Ch. J. ele la V ALLÉE POUSSIN) .

Completando la demostración empeza da, se ve que desde luego, ' por. ser
no-ramp antes los 1,.. S I,~ las sumas parciales serán :

Entonces, cada punto de la clausura 1,. de Ir p ertenecerá 'a un intervalo
abierto Is, bastando un número finito k de éstos, por el lema de BOREL,

. para cubrir Ir' Por las leyes de monotonía de las sumas finitas de números
reales, será :

/
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IGe I~ IXI + E,

•

(II-3)

(II-S)

mi (X) = I1 1- 11-X l.

m~ (X) = IXI = inf I G \,
G ~X

equivalente a poner que para todo E > O existe un abierto Ge ~ X tal que:

Mediante lo. que se ha llamado medida boreliana de conjuntos cornpues ­
tos de intervalos, aplicada previamente a los abiertos y cerrados de -Rm (pues
todo abierto de R", es unión finita o numerable de intervalos cerrados no

Entonces, la definición de LEBESGUE de conjunto medible (L) dice:
Es X <: (L) si y sólo si se cumple m; (X) = mi (X), es decir:

11 1= 1X 1+ I 1- X 1. (II-4)

Desde el punto de vista de CARATHÉoDüRY (& 1-3), la condición (II-4)
exige ap are ntemente m enos que la (1-15) , pues basta tomar en ésta vV = 1,
probándose así la necesidad de (II-4). Lu ego se verá (& II-2, teor. II-S)
que (II-4) es también suficiente para que se cumpla (1-15) en el caso de
medida exte rior (L) en Rm•·

La m edida exterior (L) de un conjunto X en el esp acio euclíde o R", pue­
de darse como extremo inferior de las m edidas exteriores de todos los abier-
tos G qu e contienen . X, es decir: . . . '

ce
y basta tomar G i = U In'

n=l

co
Entonces 2:, L (Ir) es la suma por filas de la .serie doble

r=l

oo . 00

~'L (Ir) = ~'L (18) ,

r = '1 . . s =1

'Primit ivam ente LEBESGUE para un conjunto acotado X S 1 finito de un
espacio euclideo R", cre ó una teoría paralela a la de PEANa-JoRDÁN definien- '
do la medida exterior me (X) . IX I por la anteriormente considerada (1-14)
y la medida .inte.rior mi (X) mediante

rJ'l co
~ ~'t L (Ir8)

r=) s = 1
oo'

que ha de coincidir con 2:'L (18), suma por columnas de dicha serie doble
s =1

de términos no negativos, quedando así probado

.donde puede ponerse .< en lugar de :::;:, si . y sólo si IX I es finita .

. En efecto, dado E > O arbitrario, por (1-14) puede hallarse un cubrimiento
00

numerable de intervalos In' tal que .2; I In I :::;: IX I+ E « si IXI es finita)
n cc I



(U-9)

(II-S)

(U-7)

- --(U-l O)

E > O existe un conjunto con-

con

Ie, 1-1 X I < E,

sólo si PU10 cada número
2 X tal que: -

I Ge-X I < E,

Evidentemente, p ara conjuntos acotados y, por tanto, de medida finita,
donde es I Ge - ' Fel =/ Ge l -I Fel, tenienclo en cuenta (U-5) y (U-7) , la
(U-S) equivale a qu e se cumpla me (X) =!mi (X).

También se verá (& U-S, teor. U-S) que la definición (U-S) equivale a
decir:

Es X E. (L) si y
tinente abierto GE

mi (X) = sup I F !
F- S; X

para el caso de X acotado. Entonces (U-7) resulta de (II-5) y (U-S), pues es :

mi (X) = I 1I - I 1- X 1= I 1I - inf Ie, I = sup (11I - I GIl) =
Gl ~I-X Gl ~I-X -

= sup I 1~-Gl 1= sup 1F 1,
1-Gl ~ X F ~ X

por lo que (II-9) es más restricti vo qu e (U-lO) al probarse (ejemplo de
HAUSOORFF) que existen (idealmente, mediante el postulado de ZERMELO)
conjuntos no rnedibles (L).

definición empleada por S. Ríos en su "Teoría de la Integral" (Rev. Acade­
mía de Ciencias, vol, 36, 1942, Madrid; resumida en "Conceptos de Inte­
gral" , Monogr. Cnjo. Supo Invest. Cient., Madrid, 1946).

Obsérvese que por (JI-6) se sab e que para cualquier conjunto X de me­
dida exterior finita existe un conjunto abierto Ge ~ X tal que:
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donde para- 1- c. = F ~ X, es bo relianamenie I F 1= I 11- 1Gl l.
-La definición (1I-7) no puede aplicarse a conjuntos de medida infinita

p or dar lugar a incongruencias, tal la de que podría sustraerse de un conjunto
medible otro también medible, sin qu e la diferencia" lo fuese.

-Válida p ar a conjuntos no acotados es la definición de Ch. J. de la VALLÉE
POUSSIN de car ácter constructiv o (cfr . & II -S, teor. U-12):

Es X E. (L) . Y sólo si para cada E > O se pu ed en construir efectivamente
un conjunto continente abierto GE. y un conjunto contenido cerrado FE, tales
qu e cumplan:

rampantes con posibles fronteras comunes), se llega a una definición equi­
valente a la de LEBESGUE. Para ell o se introduce me (X) = 1X I median­
te (U-5), pero entendiendo 1G 1 en sentido de medida boreliana.

Correlativamente, se define [a m edida interior mi (X) m ediante el exi re ­
mo sup erior de las me didas boretianas de todos los cerrados F cont enidos
en X, es decir:

- -
- REVISTA DE LA ACADEMIA DE -CIENCIAS EXACTA S, FISICO· QUIMICAS y NATUR"ALFS
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(II-ll)

(Ir-14)'

. (II-13)

G medibles y I1 I finita , por

I 1 I - inf I J..- B I=
1-X ~ 1-B

sup I 1 '- G I = sup " 1F I .
X ~I-G F SX

~li (X) = sup ~l (B) .
X ~ B E (u)

!-ti (X) ~" mi (X) = sup i F l.
FS X

" ~l (X) = inf ~l (A) •
X~A.E (u)

TEOR. II-2. - La m edida exte rior (L) dada por (1-14) es regular, es decir : "

..Pues siendo los conjuntos B y los abiertos
(II-12) y (Ir-5) , es(&1-4, teor. 1~1)': "

sup IB I= sup (l 1 I - I 1-B 1) =
X ~ B E (L) 1- X ~ 1-B

= !1 1- inf I G I =
I-X ~ G

00

11 (X) ~ ¡A l ~ ~ I 111 1,
n =1

& II-2. - Medida exte rior regular. M ed ida interior de C ARATHÉaOORY. ­
En un espacio topológic o gene ral (& 1-2) un a medida exte rior ¡t (que cump la
los postulados MI , .tvb , M, del & 1-S) se ll ama regular (CARATHÉOOORY)
si !-t (X) es el extrem o inferior d e las m edidas de todos los coniuntos m edibles
(& 1-S) que contien en X, es decir: "

IX I = inf I A I (II-12)
X~A E (L)

"Pues llamando 11(X) al segundo .miembro de (II-12) , si X S; A, será IXI ~ IAI
(por la condición M I del &1-S), de donde re sulta I X I ~ 11 (X). Por otra p ar ­
te, si ¡ In} es un cubrimiento por intervalos abie rto s de X, y A es su unión,
por la condición de M2 del &1~3 será: . "

y ap licando (1-14) (donde LL (111) = I 1" 1), resulta 11 (X) ~ I X l. Ambas desigual.
dades de sentido "contrario demuestran (II-12).

Obsérvese que (II-12) generaliza "(II-5) .
Para una medida exterior regular se defin e en un espacio topológico ge­

neral la m ed ida interior ~li (X) (CA RATHÉonDRY) com o el extrem o superior d e
las m edidas de todos los coniun ios m edibles conte nid os en X, es decir:

TEOR . U-S. - En el espacio euclíde o Hm y para coniuntos acotados X ~ 1
finito, la definición d e m edida interior (II-1S) aplicada a la m edida (L) es
equivalente a la "(II-7) y por tanto (&II-1) a la de LEBESGUE (II-S), es decir

Se verá ahora que el siguiente teorema fundamental de las medidas ex­
" te riores regulares asegura, para cualquier con jun to donde esté definida la
medida exterior, la existencia de un a cápsula m edible isométrica exte rio r,
y también la de un núcleo m edible isométrico interior , lo que per¡mite para
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(II-15)I-li (X) = I-l (S) - ~l (S - X) .

TEOR. II-4 . - En un espacio topológico gene ral, si una m edida exte rior
I-l (X) definida en una familia numerablemente aditiva H , es regular, se cumple:

a) I-li (X) ~ ~l (X). (En n, para !i = L , será mi eX) ~ I X 1);
b) . Para todo conjunto X E H existe un coniun io m edible S conteniendo

X tai .que I-l (S) = I-l (X); se llamará a 1lH tal S cápsula isométrica exte rior.de X;
en particular, en Rm : para I-l = L, pu ed e tomarse com o cápsula bor eliana iso­
métrica exterior un conjunto seudo-abie rta Ts-, intersección numerab le de
abiertos; .

. c) Para todo coniuuto X E H existe un conjunio m edible N contenido
en X tal qu e I-l (N) = ~li (X); se llamará a un tal N núcleo isométrico interior
de X; en particular, en R", pera I-l = L, Y coniutitos acotados X S;; 1 finito,
puede tomarse com o núcleo boreliano isométrico interior un conjunto seudo­
cerrado F (J", unión numerabl e de cerrados;

d) Si es finita la m edida exte rior I-l (X) Y es S su cápsula isom étrica ex­
terior, entonces la m edida interior viene dada por:

I-l(S -X) ~1-l(S -B)=I-l(S) -I-l(B) ,

la que aplicada a la definición (II-1S) , por ser I-l (X) finita, da

I-li (X) ~ I-l (S) - I-l (S - X) .

D EM . - a) Si B S X S;; A, por la condición M1 del &l -S y las defínicío­
nes (U-ll) y (II-1S) se deduce ¡.ti (X) ~ I-l (X).

b) Si es I-l (X) = + 00, se toma S = E total. Si es ~l (X) finita, por ·ser re- .
guIar, para todo número natural k existe un conjunto medible A" contenien­
do X tal qu e ~l (Ak ) ~ I-l (X) + l /k, y basta tomar como cápsula la intersec­
ción (&1-4, teor. 1-7) de todos los Ah' (k = 1, 2, S, oo.) . En el caso de medida
exterior (L) en el espacio e uclíde o R"" por (II-5) puede tomarse para cada
A k un conjunto abi erto Gk y as í su inters ección da como cápsula un seudo­
abierto Gil.

c) Si I-li (X) = 0, puede . tom arse como n úcleo el conjunto vacío 0 . Si
l-li(X) > 0, para todo número- natural k, por. (II-1S) existe un 'conju nto me­
dible E" contenido en X, tal que ji (Bk ) ~ I-li (X)-1/ k de último miembro
positivo desde un cierto valor de k, y bas ta tomar como núcl eo la unión
(&1-4, teor . 1-6) de los B

"
(k =1, 2, ,S oo.) . En caso de medida (L) en el es­

pacio euclídeo R", y conjunto aco tado X S;; 1 finito , por (II-14) puede tomarse
para cada Bk un conjunto F k cerrado; y así su unión da como núcleo un seu ­
do-cerrado F (J" '

d) Si 13 es medible contenido en X, también S - B .es medible, pues
S - B = (E~ B) n S (&1-4, teor. 1-4), de donde (condición MI del &l-S y
&1-4, teor. 1-1) es :

conjuntos de medida regular finita , dar el criterio de mensurabilidad me­
diante la igualdad de las m edidas exterior e interior, como en la teoría
clásica.
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Po r otra p arte, si T es la cápsula isom é trica exte rior de S - X, el con­
junto medibl e S'- T está contenido en el X y por aplicación d e la defini­
ción (II -13), de la condici ón M I del &1-3 y de &1-4, teor. 1-1, al ser
fl (S n T) ::( fl (1') = ~l (5 - X ), resulta :

fli (X) ;?: fl (S - 1') = fl (S) - ~l (S n T) ;?: ~l (S) - - ~l (~ - X) ~

que con la desi gu ald ad de sen tido contra rio an tes obtenida , pru eba en clefi­
nitiva (II -15) .

ESCOLIO. - Los au tores H . HAHN Y A. ROSENTHAL en su lib ro Set Fun c­
tions antes citado (&1",1) usan te rminolog ía .dis tin ta 3 la mas acep tada en ge­
nc ral. Así, po r ejemplo, I-Lu -tN y ROSENTHAL llam an "función de m edida" o
"medida" a lo que aquí se h a llamado ":m ed ida exte rior", . llam an "m edida
exterio r" y "med ida in terior" a los segundos miembros de (11-11) y (11-13) '
respectivam ente, y "medi.da ordinaria" a lo qu e aq uí se ha Ilarnado "med i­
da ex ter ior métrica" . Ade más dan un concepto más restrictivo y complica­
do d e "cápsu la medible" y "núcleo medible" resp ecto a lo que aquí se h a
llamado "cápsula isom étric a ex terior" Y. "núcleo isométrico interior" (donde
se suprimen después las palab ras "exte rior" e " interior" cuando dichos con­
cep tos se ap lican a conjuntos medi bl es para los que vald r á el teor , 11-5) . Se­
gún HAHN y ROSENTHAL, "cáps ula medib le " , que para evitar confusiones se
p uede llamar cápsula medible ajustada de X para la m edida exterior ~l , es
un conjunto -m edib le S, conteni en do X tal que para todo conjunto M m e­
dible (¡.t) (y no sólo para E) sea ~l (S". n M) = f.l (X n M), y correl ativamente
"núcleo medi b le" , que se puede llamar núcleo m edible ajustado , es un con­
junto m ed ible N" contenido en X tal que para todo conjunto M medib le Ül)
(y no sólo para E) sea f.l (Na n M) = ~l i (X n M). .

Cl aro es tá que un S" es un S y un Na es un N, siendo fácil prob ar que
p ar a ~l (X) finita , una cáps ula isométrica ex terior es ta mbién cápsula medi­
ble aju st ad a, y un núcleo isométrico interior es también núcleo medible ajus­
lado. Pere , en cambio, si ~l (X) = + oc, p ue de una cápsu la isométrica ex­
terior no ser cápsula m ed ibl e aju stada y un nú cleo isométrico interior no
se r nú cleo medible ajustado . Por ejemp lo, sean en la recta real. R1 e l con­
juntoA = { x ta l que x'¿ a} , el con junto B t= { x tal que x::,.. b} con a< b,
y el conjunto C = A U B. Entonces, el conjunto to tal E es cápsula isómetrica •
exte rior de B,pero no es cápsula m ed ib le ajustada de B, porque para M =
=A es:

.I B I = I E I = lE n A I= + 00 #- i B n. A I = i 0 I = O,

mientras que B es núcleo isom étrico interior de C, pero no es núcleo medi­
ble ajus tado, porque para M = A es:

IB I = Im i (C) = mi (C n A) = l A I = + :::0 7'=' IB n A I = I 0 ¡= O.

La condición mi (Q - P) = O (mi (P - Q) = O) que es condición nece­
saria p ara que el conjunto medible Q 2 P (Q <;; P) sea cápsula me dibl e
ajustada (núcleo medible ajustado) d e P, ya no lo es para q ue sea cápsu la
ísorn étrica exte rior (núcleo isométrico interior) de P, pues b asta tom ar .en el

~ 183 ~
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(Il-17)

(lI-1B)il;(X) = fl (X) .

para que X sea m edibl e (fl), En particular, si. la m edida exterior fl es mé­
trica, definida en un espacio m étrico (&1-5), es suiicienie exista un continent e
abierto Ce de X E H cumpliendo (U-9) para qu e X sea m edible (fl)'.

. En efec to, tom ando E = l /k , con k número natural, existe por hipótesis
una sucesión d e conjuntos m edibles {Al< 1 tales que Al, 2 X con ~t (Al< - X) <
< l /k , (k =1, 2,3, .. .). Si se toma:

00

A = n Al, E (u} ,
k=l

..
La condición es necesaria, pues si X E (~t) , de (lI -15) y &1-4, se obtiene:

fli (X) = fl (S) -:- fl (S - X) = ~t (S) - [~t (S) - ~t (X) J = ~l (X) "

La condición (U-16) es suficien te , pues de (lI -15) y teor, U-4, b, se ob­
tiene, entonces :

fl (X) = fl (S) - ~t (S - X) = ~t (X) - f,i (S - ,X),

es decir, fl (S - X) = O, con lo que S - X es , medible (&1-3) y también lo
es (&1-4, teor. 1-5) E -- X = (E - S) U ,(S - X) , es decir, X.

Consecuencia inmediata de Iosfeoremas U-S y lI-S ' ,es la equivalencia de
la definición de LEBESGUE m e (X) = mi (X) en el sentido (U-4) con la defini­
ción general de Ci\RATHÉODORY para e l caso particular de medida (L) aplica­
da a conjuntos acotados X S 1 del espacio euclíd eo Rm ,

&U-3. Caracterización de conjunto s m edibl es por coniin entee y conteni­
dos m edibl es. - En la teoría general se va n a ob tener ahora Jos criterios de
mensurabilidad correlativos a los (II-9 ) y (U~8) , ap licables también en la teo­
ría (L) a conjuntos no acotados.

TEOR. lI-B. - Para una medida exte rior cualquiera l-l definida en una [a- '
milia numerablemente aditiva H de un espacio topológico generalE (&1-3), es
suficient e qu e para todo número real E > O p-xista un conjunto m edib le
A e, continente de X E H , cum pliendo:

ejemplo an terior Q = E, P = B con mi (E - B) = + OC) =1= O (Q = B, P i= C
con mi (C - B) = mi (A)!= + o:>'f' O); dicha condición continúa siendo su­
ficiente para que, Q sea cápsula .m ed íb le ajustada (núcleo medible ajustado)
de P, y, por tanto, también cápsula isom étrica exte rior (núcleo isométrico in­
lerior)de P.

Puede p rob arse que en el espacio euclídeo Rm y fl = L, un conjunto
cualquiera X ti ene un núcleo medibl e ajustado qu e es un seudo-cerrado F 1]"

En el leal'. Il-Ll se prueba que si X E (L), au nque no esté acotado y sea de
medida infinita, existe siempre un núcleo isom étrico seudo-cerrado F 1]"

TEOR . lI-5. - Si una medida exterior es regula r, la condición necesaria
IJ suficient e para qu e un conjunto X de m edida exte rior finita sea m edible,
es que se cumpla: '
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r=l
X,. = X n (S,. - U S,) E (~) .

-k = l

(II--l8)
co

X=U X,.
r=l

como se quería probar.

Si ~ (X) = + oo y es X E (u), entonces existe una infinidad numerable ele
conjuntos disjuntos X,. E (~) de medida finita, tales que:

pu es basta considerar (&II-2, teor. II -4, b) las cápsulas isométricas exterio­
res S,. 2 D,. tales que S,. E ( ~l) con medida finita ~ (S,.) = ~ (U,.) < + oo, y te­
mar:

se cu mplir á A ~ X con ~l (A- X) ~ ~l (A,., - '- X) < 11k , qu e siendo válido
para todo numero natural k dará ~l ( A - X) = 0, de donde A - X es me­
dible (ft) y siéndolo A, también lo será X, pues E - X = (E - A) U (A - -­
- X) E (u), (&1-4, teor. 1-5). Si en (II -17) figurase CE en lugar de AE, podría
repe tirse el razonamiento para Gk• en lugar de A", dando :

OO ,

Go = n Gk E (~) ,
k = l

(&1-4, teor: 1-7), con ~ (Ga - X) = 0 , y siendo G¡¡ - X Y Gil medibles, tam­
bi én lo será E - X = (E - G;: ) U (Ga- X), (&1-4, teor. 1-5) y, por tanto, X.

Resp ecto del recíproco, en el espacio euclíde o R",", si X E (L) se cum­
ple (II-1'i) (y aún más (II-9), teor. . U-8 posterio r), pero r sto ya no subsiste
para una med ida exte rior cualquiera ~ en' un espa cio topológico general.
Sólo se pued e afirmar más restringidamente: I
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Por lo qu e se acaba de ver an teriorme nte, existirán conjuntos medibles
Ar ;;; XI" tales qu e ~l (A,. - XI") < <:. / 2' +1 y entonces es :

00

X S U A,. = A e E (u} ,
r=l

según &1-4, teor. 1-6. D e e~to, y ser:

00
Ae - X e U. (Ar-X,.) ,

r=l

se. deduce (&1-3, condiciones MI y Mil):

00 ,v¡

~L(Ae -X) :;:;; ¡.t (U (Ar - X,.) ) :;:;;:¿~L(A,,-XI") :;:;; E/2 <E,
r iz: 1 . r ==1

como se quería de mostrar.

NOTA. - Si se quier e hacer interv eni r en (ll· l 7) abier tos GE en lu gar de rnedibl es AE, pu ede ocurri r
que ni tan sólo los abier tos sean med ibles (&1. 5, eje mplo) , per o aun para una medi da exterior métrica
definid a en un espac io métrico, donde los abier tos son medi bles, puede ucurr ir no exis tan abier tos de
medida fini ta, tal es el caso respecto de la medid a unid imensional u(') de H AUSOORFF respecto a los a bier ­
tos del plan o euclí deo R, .

Sin emb argo, se cumple :

T EOH. I1-S. - En el espacio euclíde o R"" la condición necesaria y sufi.
ciente para que un conjunto X sea medible (L) es qu e para qu e todo número
red E > O exista. un conjun to abierto continente

e, ;;; X tal qu e:
(II-9)

. Pu es ya se ha demostrado en el teor. I1-S que (I1-9) es suficiente p a ra
ser X E (L). Recíproca mente, si suponem os que X E (L), teni endo en cuenta
(II-IO), si además IX I < -+- 00, por &1-3 será:

I e, - X 1 . I GE I .:..- I X I < E ,

como se querí a demostrar. En el caso de ser IX I=+ oo y X E (L) , se COIl ­

side ra como en el teorema an terior la desc omposición:

00
X = U X, con X,. = :. . X n (Sr - Sr_ 1) E (L) ,

r =l

tomando para S,. = U,. las esferas de radio 'r y centro el origen, y en lugar
'de Al" conjuntos abiertos C, ;;; X tales que IGI" '~ X, I < E/2H 1, siendo en­
tonces:

00

X S U G,. = c.
r=l

- 186-



-187 -

SOBRE ' LAS DEFINICIONES Y TEOREMAS FUNDAMENTALES DE LA ,TE ORIA DE LA MEDIDA

resulta (&1-3, condiciones MI y M2) :

(11-19)1X -t-r- FE I < E • _

TEOR. 11-10. - En el espacio euclídeo R II " la condición necesaria y su fi­
ciente para que un conjunto X sea m edible (L) es qu e para todo número real
E > O exista un conjunto cerrado contenido
FE ~ X tal que:

TEOR. lI-H. - En el espacio euclídeo RlII , la condición necesaria y sufi­
ciente para qu e un conjunto X sea m edible (L) es qu e exista un seudo-cerra­
do Fa contenido en X tal qu e I X - Fa I= O. Todo conjunto X m edibl e (L)
tiene un núcleo boreliano isom étrico Fa ~ X tal qu e I Fa I = IX l.

Pues GE ~ E -X ,es equivalente a .que F E = E-GE S X, siendo:

, X--:F~ = X - (E- GE) = GE - (E-X) '= GE n X.

Entonces' la condición (11-19) es suficiente, pu es ello implica que exista
G

E
~ E - X talque I GE - (E - X) I = 1 X - F E I < E, de donde por el teo­

rema 11-8es E - X medible y, por tanto, lo es X. Recíprocamente, si X E (L),
también es medible E - X y ' por el teor. 11-8 existe UT! abierto GE ~ E - X
tal que 1GE - (E - X) 1= IX - F E 1< Econ F E = E - GE S X, como se que­
ría demostrar.

00

Ga= n Gk ;;: X ,
k=l

se obtiene IG;¡- X I = O, como se quería demostrar.
Recíprocamente, esta condición es suflciente . rpues entonces (&1-3) es Ga­

_ X medible y, por tanto, lo es también E - X = (E - Ga) U (Ga---X),
es decir, X. Si IXI < + oo, de 1Ga- X . = O, se obtiene I Ga 1-\ X 1= 0,
Y si IX I = + oo, se toma como cápsula boreliana isorn étrica. el conjunto to-
tal E.

DO

GE - X ~ U (G,.-X,.) ,
r=J

00 00 '
· ,í G~ ~ X I ~ I U (G,.-·X,.) ¡~¿ IG,.-X,. ' ~ EI2 < E,

r=J r=J

como se quería "demostra r.

abierto (&1"2), Y como:

'T EOR. n.s. - En el espacio euclídeo Rm , la condicion necesaria y suficien­
te para que un conjunto X sea medible (L) es qu e exista un seudo-abierto G~

conteniendo X tal qu e 1ea- X I = O. Todo conjunto X m edible (L) tiene
una cápsula boreliana isom étrica Gil ~ X tal qu e I Ga I = 1X 1.

En efecto, si X E (1,), en el .teor. II-8 se ha visto que para todo k natu­
ral, según (11-9) existe Gk ~ X tal qu e 1G/"-- X I < i /k, (k = 1, 2,3, ...). Si
se toma:
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como se quería demostrar.

00 co
I Fcr I = I U Fa r I = ¿ I Fcr,.! :--=

1 = '] r :--=] .

00

Fcr = U Fcr,. S x, pues es
r=l

TEOH. JI- l2. - Es X E. (L) en el espacio euclídeo Rm., si y sólo si para
todo número real E > O existe un coniunto continente abierto CE y un con­
[unto conte nido cerrado FE' ta les qu e cumplan:

FE S X ·S CE con IG E - FEI < E . (n-8)

Pues si s e cumple (n-8) , con mayor razón se cumplen (JI -9)' Ó (II-19) y
por los teoremas JI-8 ó II-10 será X E (L).

Recíprocamente, si X E (L), por los teoremas 11-8 y 11-10 existirán CE~ X
Y FE~X tales qu é I CE-X 1< E/2 y IX- FEI < .E/2, de . donde, por la
condición M2 del &I-S, será :

I CE-.IFEI:S; I CE-X I + IX-FEI <E,

D e los teoremas JI-8 y JI -i O se deduce inmedia tamente la equivalencia
de la definición (JI-8) de CH. J. DE LA V AL LÉE POUSSIN en los espacios euclídeos
con la de C ARATHÉoOORY. Es decir :

00

= :s I X I' != I XI = + e .
r =] .

ce
Fcr= U F" S X ,

. k = l

se obtiene I X - F a I = O como se quería demostrar. Recíprocamente, esta
condición es suficiente, pues entonces (&I-S) es X - F a medible y, por tanto,
lo es tam bién X = (X-- Fcr) U Fcr. si IX I < + co, ele I X - Fcr I = O se ob­
tien e I X - F cr I = 1X 1-1 Fa I = O Y así Fcr S X es el nú cleo boreliano iso­
mé trico de X. En el caso de ser I X I = + (X) y X E. (L), se consideran como '
antes las esferas D,. - Sr de radio r y centro de origen, para así dete rm inar
la descomposición : . . ', '..

00

X = U X, con X, = X n (S" - Sr- 1) E (L) ,
1= 1 .

En efecto, si X E (L), en el teor. n-lO se h a visto que para todo k natu­
ral, según (JI -19) existe F,. S X tal qu e I X - F" I < 1/ k, (k = 1, 2, S, ...). 81
se toma:

siendo IX; I ~ + 00, por lo que existe un seudo-cerrado F crr S X, tal que
I F crr l = I X, 1; así resu lta el núcleo borelian« )sométrico:



-1&9 -

SOBRE LAS DEFINICIONES Y TEOREMAS FUNDAMENTALES DE LA TEORIA DE LA AtEDIDA

INTEGRAL DE LEBESGUE EN CONJUNTOS DE .MED IDA, INFINITA

(III-1)

si k;::: O,

si k < O,

j. j'+(L) x f(x) dx ' (CR) _ : g(k) dk ,

, ~ I ¡ x E X tal que f(x) ;7 k ¡ 1

g(k) = ( _ I¡ x E X tal que f(x) ~ k } 1,

'Y de esta definición se deduce inmediatamenté que si X = Xl U X 2, con X¡
y X2 medibles disjuntos , la integral de f(x) sobre X es la suma de las inte-

y Il árnase X+ al con junto contenido en X donde f(x) ;::: O Y X- al conjunto
complementario donde f(x) < O, tales que X = X+ U X- o Para k= O resul­
tan los valores límites g(O) 1= IX+ i, g(O-) = - 1X:- \.

Es f(x) integrable (L) en X si existe finita la integral da CAUCHy-RIEMANN
del segundo miembro de : '

C APÍTULO nr

. &III-l. Introducción. - En los "Elem entos de la T eoría. de Funciones"
de J. REY PASTOR (s.a ed ., Ibero-Americana, Madrid, Bu enos Aires , 1953) se
da una definición de integra'! de LFBESGUE m ediante la noción de .integral de
CAUCHy~RIEMANN, que se reduce a la clásica utilizando la' integral d e Srun.r ­
JES, definición que permite una gran simplificación e n las demostraciones
de los teoremas básicos de la teoría . Se in tenta hacer ve r aquí que dicha de­
finición, aplicable a] caso más general de función medible no acotada d cfini- .
da en conjunto medible cualquier a de m edida finita o infinita, permite a un
en 'el caso de conjuntos . medibles de .medid a infinita, establecer dichos teo..
remas 'básicos en forma mucho m ás simplificada de como lo hacen los tex­
tos más acreditados d e otras lenguas .

Aun cuando se d an las d efiniciones y teoremas para el caso particular­
m ente interesante de función real finita o infinit a m edible (L) d efinid a en
un conjunto medible X, de medida de L EBESGUE i X I finita o infinita, en el
espacio euclídeo RII" puede gene ra lizarse fácilmente la exposición a una m e­
dida exterior cualquiera de CARA'IHÉoDORY ele un espacio topológico general,
con la sola restricción (a ve ces, e indicada oportunamente), de la hipótesis
del te al'. II-7.

&III -2. D efinición y' lema [undamental, - Rec ordemos la definición de
REY PAS'IOR de integral (L) . Sea la función real medible f(x), finita o infini­

" ta; definida en e l con junto medible X, de , medida de LEBESGUE IX I finita
o infinita, en el espacio euclídeo Hm'

Sea la función de m edida:



- 190 -

REVISTA DE LA ACADEAiJA DE CIENCJA,S EXACT4s, F/SICO · QímiJcAs y NATURAÚis

más un conjunto m edible X,+ de medida infinita; donde b ~> f(x) ;? O, es
decir :

(III -5)

(III-4)

(III-6)

(III-2)

(III-S)

(L)j' i dx +- (L) l' f dx =
X+ . X- .

+ (L) J (-1 f 1) dx,
X-

g(b) = i X/ 1= I {x E X ¡. .tal que f(x) ;? b } I ,

(L) J f (x) dx .=X .

. (L)j' If ldx
X~

(CR) f'o g(k) dk < E

• o

con g(b) finito; por tanto se llega así al fundamental:

LEMA. - El conjunto X+ de m edida infinita, donde f(x);? O es integra­
bte (L), podrá descomponerse en un conjunto m edible X, + de m edida fini­
ta. donde f(x) ;? 1) > O. es decir:

con X '" = X '" a U X/ .

Análogamente para X-o
&III~. Identificación con la integral de LEBESGUE ..VALLÉE POUSSIN. - .

Se va a recordar cómo REY PASTOR reduce esta noción de integral (L) a la,

y como esto hace ver que una función es integrable (L) si y sólo si es inte­
grable (L) absolutamente, bastará estudiar la integración en X+ y en X- se­
paradamente y aplicar (III-2) .
. Obsérvese ahora que si X medible es de m edida infinita, por ejemplo es
IX+ I= + 00, subsiste la definición (III-l), pero en tonces si existe la inte­
gral con valor finito , como g(O) = I X+I~+ .:xl. la integral (CB) del se­
gundo mi embro d e (III-a) será además impropia en k = O Y para E > O .ar­
bitrario, existirá 1) > O tal que:

grales sobre los conjuntos medibles X, y X2, pues e l integrando del segundo
miembro de (III-l) es la suma g(k) := g¡(k) + g2(k) de los integrandos co­
rrespondientes a estas integrales en virtud de la aditiva finita de la medida,
de conjuntos (& 1-4, teor. 1-2). En particular es:

IXi+ != I { x E X + tal que b > f(x) ;? ú } I=+ 00,

(L)J f(x) dx < E ,
X.+

1 •

_ con E > O arbitrario y ()= b(E), cumpliéndose:

(L) JXf(x) dx = (L) JXIl~(X) dx + (L) JxYx) dx ,.

tal qu e en él sea:
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Al integrar por partes la últim.a integral, resulta la integral de STIELTJES :

(III-7)

(III-8)

(III-lO)

}
'K+ I

= . lim (CR) gK (k) clk . •
K - +...¡. O'J o

. K +I ' K +I

[ k. gK (k)1 ., (R - Sl)Jo k . dgl( (k) =
. /'K+I= - (R - St) k . dg K (k) ,

, o

J f(x) dx - f fl( (x) dx < E

x- X'"

K+I

(CR) Jo gK (k) dk =

(L) j' Idr = (CR) ( + ccg(k) dk = lím (CR) (K g(k) dk =
. X+ [« K~+CO.JO

lim, . j' f(x) dx = O,
XI'

(escribiendo desde ahora las integrales ' (L) sin este distintivo).
Basta demostrarlo para X + donde f(x) ~ O. Si fk (x) es la función truncada

correspondiente a f(x), por la defínicíón (III-l) , a todo E > O corresponde
UD K = K(E) tal que:

Para este K fijo, del teorema del valor medio para función acotada se

&III-4. Con vergencia a cero de la integral con I X,. 1. - La noción de
función truncada sirv e tamblén para. demostrar fácilmente que si f(x) es in­
tegrable (L) en X m edible (L) y es {XI'} una sucesión de conjuntos m edibles .
(L) contenidos en X tales qu e I XI' I~ 0, entonces también es:

Análogamente para el conjunto X~ . Por tanto, en el caso de I XI finita,
la definición de LEBESGUE ~ VALLÉE POUSSIN coincide con lá definición (III-l) ,
pero ésta es más general, pues incluye el caso donde I XI = + oo,

- /). gK (k) = g(k,.-¡) - g(k,.) = ! { x E :X + tal qu e k,.-¡~ f(x) < k,. } ! . (I II -9)

en el caso de I X +I finita, pues entonces . gk (O) es finita y gk (K + 1) = O.
Las sum.as inferiores y sup eriores de último miembro, como integral de
S'Í'IELTJES, son las .clásicas sumas de LEBESGUE para fK (x), pues es:

clásica de LEBESGUE, extend ida por Oh. J. de la VALLÉE POUSSIN a fun ción
no acotada. Si en X +, donde es f(x) ? O, se considera la función truncada
fk(x) que valga f(x) si O ~ f(x) ~ K Y valga K si f(x) > K, con fun ción de
medida gK(k) coincidente con g(k) para k ~ K Y nul a para k > K, entonces,
por definición, es:
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(III -ll)

(III-13)

(III-12)

J fK (x) dx
X"- X/

De ser:
J fK(x) dx :::;:; K !X,.± 1< E.

. X,:+

=J' fK dx +X +
r

como se qu erí a dem ostrar.

deduce que existe un ro= ro(E, K(~) ) = ro(E), tal que p ara todo r > 1'., sea :

."
X = (U X r) U x. ,

r=1

tal que ',Xo I < E, siendo:

J fdx= J fdx- Jn fdx= f fdx-± f fdx. (III-14)
X, X U X,. X r =1 X,.

r = l

De lo dicho en el &III-4 se deduce qu e el prim er miembro se hace tan
pequeño como se qui ere con IX, I , es decir, para 11. -7 + oo, de donde el úl­
timo miembro tenderá a: cero , que es lo afirmado en (III-13) .

Recordemos que para suma finita, la integral (III-l) tiene el integrando
g{k) = 2:,. g,.(k), dando así la descomposición en suma de in tegrales median- _
te la correspondiente a la integral (CR), aun en el caso de IXI infinita.

Si la descomposición es infinita, con IXI finita, se toma:

J'... + f(x) c1x ~
X -X,.

Y de (III-lO) y (III-ll) se deduce:

j' f dx :::;:; J fK dx + J' i dx-
. X + X '" X .+

l' r . I

+(f f dx - f fK
, X+~X/ - X+-X,.+

&III-5.-Aditividad numerable de la integral como función de conjunto. ;:­
Se va a demostrar ahora que la integral (L) com o fun ción de su conjunto de
definición es num erablem ente aditi va, aun en el. caso de ser IXI = + oo. Es

00

d ecir, si f (x) es integrable en X = U X,. (unión finita o infinita numerable
r ze I

de X,. medibles disjuntos dos a dos), entonces es:

J'. f(x) dx = ~ J f(x) dx .
X . r=l X,
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(III-IB)

'(III -15)

J.fdx= 'tJ fdx,
X, r =J X"a

en definitiva, de (In..1B) y (III-B) resultará :'

Jx fdx-~=JJXr fdx= Jx,fdx- Jx
a
fdX +'~lJX,.,:dx-

fJ fdx ' JI' tdx~J fdx<E,
r = X r ,¡ . U X,.,l XI

r;: J

Y como . al ser ¡X, I finita, ya se ha demostrado que es:

Finalmente, en el caso especialmen te estudiado aquí, supóngase que f(x)
es integrable en el conjunto X de m edida infinita, bastando estudiar el caso
de ser f(x) ~ O. Aplíquese la descomposición del lema del &III·2, donde

00
X =?Ca U Xi Y en relación a la d escomposición de la hipótesis X = U x; de-

r= 1
sígnese Xr,a= X, n X, y Xr , ( = . X, n Xl' Para el caso de suma p arcial, en
virtud de lo demostrado al principio y de (III-5) , es:

~J f dx :::; 'r f dx + ~ J' f dx ~ 2 E,
r = J X, . Xl r = n + 1 X,'a

para n suficientemente grande, como se quería demostrar.

Obs érvese que si es infinita IXI = + ca, como la m edida (L) del espa­
cio Rm cumple la hipótesis del teor. II-7, entonces podrá siempre descom­
ponerse X en sumandos X, disjuntos dos a do s, de medida I X, I finita según
,(II-18), y el teorema anterior asegura que la sunna (convergente o no) de las
integrales sobre los X, se rá independiente de la . descomposici ón de X; en­
tonces podrá tomarse dicha suma como generalización d e la integral de LE­

HESGUE - VALLÉE POUSSlN para el caso donde también pueda ser ¡-X I = + = ,
ya incluído en la definición (III-l) y que da así un concepto coin cid ente con
el de esta generalización, la cual es el método emp leado en muchos textos ,
tal el de E. C.TrrcHMARsH : "The theory of fun ctions" (2.a ed ., Oxford, 1939).

&III-B. T eorema .de convergencia acotada de LEBESGUE. - Obsérvese
primeramente que el lema de EGOROFF (que refiere la convergencia puntual
de una sucesión de fun ciones {fn(x)} a convergencia uniforme por exclus ión
de un conjunto Xa de medida arbitrariam ente pequeñ a) no es válido para
el caso de que el conjunto dado 'X sea de m edida IXI infinita.

Sin embargo, el teorema de convergencia acotada de L EB ES GUE continúa
siendo válido para e l caso de que el conjunto base X sea de m edid a IXI in­
finita, y aun este teorema puede seguir demostrándose median te el lema de

,E GOROF F . Es decir:
Si en una sucesión de funciones {fn(x) } m edibl es, acotadas entre dos [un-
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ciones integrables h(x) y H(x) sobre un conjunto X de medida finita o infi­
nita, h(x) ~ f,,(x) ~ .tI(x), y, por tanto, siendo las f,,(x) integrables en X, se ve­
rifica f,,(x) ~ f(x) en casi todo X, entonces existe y es:

en el sentid o de que si el segundo mi em bro es finito , entonces f(x) es finito
en casi todo X e integrable, mi entras qu e si f(x) no es integrable en X, en-

tonces es:

(III-2S)

(III-22)

(III-21)

(III-lB)

J f,,(x) dx = + 00 •

X ·
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O~ f(x) ~ lim "inf f ,,(x)

JX f (x) dr ~ lim "inf fX f,,(x) dx ,

nn casi tod o X, entonces, es: .

J '(fn- f) dx = f (fn- f) dx +f f" dx .: f f dr : (III-19)
X • X-X, X, X,o o o

y aplicar al prianer sumando el lema de EGOROFF y a los otros dos el &III-4,
teniendo en 'cuenta la acotación h(x) ~ f ,,(x) ~ H(x).

Si es X de medida IX I infinita, siendo I H(x) I y Ih(x) I integrables en X,
dado E > O arbitrario, según el &III-2, podrá descomponerse X = X, U X,
de modo que el conjunto medible X, sea de medida I X, I finita y en X, me-
dible valga: . .

J (1H(x) I + Ih(x) i) dx < E •

Xl

En tonc es, para todo n será tamb ién :

Iim .f fn dx = J f dx .
n X X

Para el caso de ser 1X 1 finita, basta efectuar la descomposición del- lema
de EGOnoFF: .

IJ
(fn- f) dx I~J (1fnI + I f 1) dx ~ 2 r (1 H 1+ 1h !) dx ~ 2E; (I II -20)

~ ~ . ~

aplicándose p ara X, el razonamiento expue sto en (II I-19) para completar la
demos tración de (III-~8). . .

&III-7. El teorema de FATOU. - Este teor ema (enunciado corrientemen­
te como "lema" ) subsiste también para el caso de que e l conjunto X sea de
medida I X I infinita. Es decir: .

Si las funciones no negativas f ,,(x) ~ O son medibles en X de m edida fi-
nita o infinita, donde f(x) es también medible, cumpliendo:
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(III-25)

(III-26)

(III-27)

(~ f fn dX ·) ~
r = 1 X r

~. f· f dx~.~· (limninf! r, dx) ~ lirn. inf
r zc ] X, 1 :=1 X,

~ lim inf f r, dx
-...::: n X
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y basta aplicar el teorema de convergencia acotada de LEBESGUE (&III-6)
con h(x) -o y H(x) K, dando:

J f ... dx ~ f (lim, Yn) dx = lim, r y" dx:::;; Iírn.inf
X . X . X

~ lim infJ f" dx.-...::: " X

O:::;; y,,(x) = inf fm, ...(x) ~ f",,,(x) ~ K ,
m~n

f f(x) dx ~ lim.ínf f fn(x) dx ,
Xr ' . X,

y, por tanto, para cada suma parcial resultaría : .

Entonces, si f(x) es finita en casi todo X, se deduce (III-22) de (rII-25)
haciendo K -7 + ca . Si es f(x) F= + ca en un conjunto X¡ de m edida posi­
tiva Ix, I > 0, entonces

. Para IXI finita, basta utilizar las respectivas funciones truncadas f... de
f y f,.,... de f n (&III-8) cumpliendo según (III-21), la acotación:

O~ fK(x) ~ lím.inf fn>...(x). (III-24)

Entonces, para casi todo x· es:

por lo que Yn(x) será integrable, cumpliendo:

lim inf J yn dx ~ lirn.jnf J fn'~ dx ;
n X . X

como al mismo tiempo es ¡Yn(x)} no decreciente para casi todo x fijo, exis­
tirá e!

y se obtiene (III-28).
Sea ahora el caso que particularmente interesa de m edida IXI infinita.

Si f(x) no es integrable en X se obtiene (III-28), pues si fues e lim .jnf
rX fn(x) dx finito , descompuesto X en una unión numerable d e conjuntos
medibles dis juntos X, ·de medida finita (&III-5), por el caso anterior, exis­
tiría y sería:
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finito, es decir (&III-5), sería f(x) integrable en X, contrariamente a lo supuesto.
Si f(x) es integrable en X de medida IXI infinita, se aplica la descom­

posición (III-6) y por ser IX, I finita, de lo anteriormente demostrado, se
deduce:

f f dx ~ limn~nfJ fn dx ~ limninf J r, dx; (III-28)
. X, . X, X ·

si además tenemos en cuenta (III-S) , resulta:

J f dx = J f dx + J f dx ~ lim71inf f fn dx +., (III-29)
X ~ ~ ,X

que prueba (III-22) por la arbitrariedad de E tan pequeño como se quiera.

- 196-



- 197 =-

l. TEORIA DE LA RELAT IVIDAD

FACULTAP DE C ENCIA5 DE' LA UNIVERSIDAD DE ZARAGOZA

R,E L A T IVI S TA

por l. M . G A RRI D O

CINEMATICA CUANTICA

..

JNTRODUCCION

Lord Rutherford llamaba "coleccionista s de sellos" a los científicos que
se contentaban con reunir datos, aunque, en ve rdad, tal apelativo no es muy
generoso ni aun con los filatélicos serios. La Física, solía decir, no es una
colección de números ; más bien ' consiste en formular unas leyes que se de­
ducen de ' esos .datos al intentar descubrir una unidad intelectual .en el mun­
do material.

Es sorprendente la fe del hombre de ciencia en la inteligibilidad del cos­
mos, cuán arraigada tiene la creencia de que todos los fenómenos materia­
les están orden ados según unas leyes que él es capaz de encontra r . Para
el científico, ningún fen ómeno natural es un hecho aislado; responde a una
ley que trata de esclarecer..

,En el alma del investigador está inconscientemente grabado lo que pu­
diéramos llamar principio totalitario de la na turaleza: todo lo que no está
prohibido es obligatorio. No afirma únicamente que puede tener lugar -el
mundo material n ó tiene libre alhedrío-, sino que de hecho ocurre.

La Física Matemática nace al querer satisfacer estos deseos innatos 'del
hombre, ser inteligente.

La' Teoría de la Relatividad de EINSTEIN es un ejemplo más de lo que
acabamos de decir. Nuevas ideas, fruto de una imaginación e inteligencia
poderosas, nos ayudan a adentrarnos en la estructura .del cosmos. Son ,un
paso hac ia adelante. Una barrera quenas separaba de la verdad, ha- caído .
Nuevos horizontes se han abierto; vislumbramos la existencia de regiones
cuya presencia nos era totalmente desconocida. ,

D el espacio y del tiempo todos tenemos una idea "instintiva ", fruto de
nuestra experi encia cotidiana. Espacio y tiempo son formas de existencia
del mundo real; la materia es su substancia. Espacio, tiempo ,y materia están
incluidos en la idea de movimiento, que nec esita de todos ellos para ser.
Pe ro indudablemente, una idea más o menos oscura de los mismos no nos
permitiría dilucidar con claridad cómo entran cada uno de ellos en el mo­
vimiento. DESCARTES cifró el objetivo de las ciencias exactas en describir to­
dos los fenómenos naturales por medio de estos tr es conceptos fundamen­
ta les, y en reducir todos los procesos a movimiento.
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Pero lcu án simple aparece a nuestros ojos el pensamiento d e DESCARTES!
Es cierto que desde que la mente humana despertó d e su sueño, el espacio
y el tiempo han sido objeto constante de sus es fuerzos. Continuamente nos
hemos visto obligados a amp lia r nuestros dogmas . Siempre h a sido miste­
riosa la forma cómo el tiempo trapscurre, siempre será es te ' devenir uno
de es tos últimos proble mas m etafísicos contra los 'cuales batallará la filosofía
en cada época de su 'historia.

Los griegos hicieron de espacio el objeto de una ciencia d e suprema sim­
plicidad y certeza. Con ellos la geometría se convirtió en una de las más
poderosas exp resione s de la majestad de nuestro intelecto. Llegó a ser com o
uno de los más altos id eales de los humanos el pensar "mo re geometrico" .
Pero en el último siglo el matemático minó secretamente la creencia en la

. evidencia de una geometría euclídea. .
De acuerdo con la ley de conservación de la materia, nos imaginába­

mos a la misma como algo ge ne ra l y necesario, que entraba e n toda clase.
de cambio, parte de nuestro conocimiento "a priori". Pero también .el
fundamento objetivo del concepto d e materia se h a tambaleado; físic os como
FARADAY y MAWELL introdujeron la idea de un "cam p o electromagnético"
como un ser real de diferente categoría que la materia. EINSTEIN fu e, final­
mente, quien provocó e l mayo r cataclism o al barrer los conceptos absolutos
del espacio, tiempo y materia, que h abían sido considerados hasta entonces
como los cimientos de la "ciencia nu eva " .

No podemos batirnos en reti rada y tímidamente tratar de buscar de
nuevo una inte rpre tación intuitiva d e los nuevos hechos. Nuestra imagi­
nación sólo dispone de las imágenes obtenidas por medio' de los sentidos
a partir d el macrocosmos. ¿Por qué han de va ler' las imágen es d el macrocos­
mos para representa r e l microcosmos? Debemos estar preparados, nos dice
NIELS BOHR (1), a. encontrar que cuanto más avancemos en el microcosmos
más hemos de renunciar a nuestras concepciones habituales de espacio y
tiempo.

La solución de los difíciles problemas d e la unión del espacio y del tiem­
po, uno de los mayores éxitos de la inteligencia humana, está asociada
principalmente a los nombres de COPÉRNlCü y de EINSTEIN.

En esencia e l descubrimiento d e COPÉRNlCü consistió en ver que las coor­
denadas de un cuerpo en movimiento como funciones del tiempo satisfacen
una ley muy simple . D e hecho COPÉRNICü estud ió el movimiento planetario
y afirmó que existe un sistema de coordenadas en el cual las leyes del
mo vimiento planetario son mucho más sencillas que si las referimos a la
tierra fij a e n el espacio. El trabajo de COPÉRNIOO produjo una auténtica
revoluci ón en el pensamiento filosófico , ya que destruyó el dogma de la
importancia absoluta de la tierra. ' .

NEWTON coronó las reflexion es cinemáticas de COPÉRNlCü y KLEP~, dando
la ley fundamental de la dinámica.

(1) NIELS BOHR : Atomic ·Theory and the Description of N ature. Cambridge University
Press. 1934.
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El Principio de Jnercla de GALILED, que es la primera ley del movimiento

de NEWTON, constituye los cimientos de la mecánica. "En ausencia d e fuer­
zas ext ernas, todo .cuerpo ejecuta el movimiento uniforme de traslación".
Todos los sist emas de referencia en que este principio puede exp resarse di­
ciendo que las coordenadas de un cuerpo no some tido a fuerzas externas
son funciones Iineales del tiempo se llaman sistemas inerciales.

El Principio de Relatividad de GALILEO e~tableció que todas las leyes de
la mecánica tienen la misma forma cuando las expre samos con relación a uno
de estos sistemas inerciales. Por consiguiente, para la mecánica todos los sis­
temas inerciales son equ ivalentes . Podemos saber si un cuerpo está acelerado
comparando su movimiento con el de otro no sometido a fu erza exte rn a
alguna. Pero un cuerpo estará en reposo o en movimiento uniforme de .tras­
lación según el sistema inercial que utilicemos; tales conceptos, pues, no
tienen un significado absoluto; he aquí el Principio de Relatividad. GALILEO
dio unas leyes de transformación para exp re sar este principio.

La hipótesis de que los fenómenos naturales existen simultáne am ente
con su percepción fue ·definitivam ent e rechazada al saber que la luz, se pro­
paga con una velocidad finita , m edida en el año 1675 por Romer.

Las e cuaciones de MAXWELL para los fenómenos el ectromagnéticos eran
aparentemente incompatibles con e l Principio de Relatividad, ya que la ve­
locidad de la luz no podí a . ser la misma en .dos sistem as inerciales en movi­
miento relativo. El sistema de ' referencia con respecto al cual la velocidad
de la radiación el ectromagnética fuera la misma en todas las direcciones ,
podía ser usado para definir el reposo absoluto. Todos los experime ntos rea­
lizados para encontra r este sistema absoluto fueron vanos. H. A. LORENTZ
propuso una teoría en la que se postulaba la existe ncia de un sistema iner­
cial privilegiado que nunca podría ser detectado; pero evidentemente esta
manera de p ensar no tenía mucho sentido físico .

La propagaci ón de la luz en esferas concéntricas que no son invariantes
respecto a la transformaci ón que GALILEo dio para pasar de un sistema inercial
". otro, no podía ser considerada como una objeción seria al principio de
relatividad, si suponemos la existenciá de un m edio material, el éter, en
el que se realiza la propagación de la luz. Pero tampoco pudimos detectar
este éter.

No solamente el experimento de MICHELSON MORLEY, sino también toda
una serie de medidas, mostraron que no existía correlación alguna entre
el movimiento d e la tierra y los fenómenos mecánicos y electromagnéticos.

EINSTEIN aceptó el principio según el cual lo que no se podía medir no
existía para la Física, y, basándose en los diversos experimentos, negó la
existencia de un sistema inercial privilegado y de un fluido, como el éter,
en el que se verifique la propagación de la luz. Afirmó; que el Principio
de Relatividad e ra válido para la mecánica y para los fenómenos electro­
magnéticos. Sus esfuerzos se dirigieron hacia un análisis y modificación de
las ecuaciones que nos dan la transformación de GALILEO que expresaba
para la mecánica el Principio de Relatividad.

EINSTEIN llegó a la conclusión de que era imposible definir un tiempo

'C I N E M A TI C A CU AN T IC A RELATIVI STA
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o longitud absolutos. Con estás premisas, evidenteme nte, .p odemos conseguir
que la velocidad de Ia luz sea la misma en cualquier sistema inercial.

Un gran avance en la comprensión y presentación de la teoría de la
relatividad fue dado -por MINKOWSKI. Hasta entonces tal teoría consistía en
una serie de reglas, coherentes, sí, p ero muy complicadas, que nos permitían
traducir los resultados de las m edid as hechas p or un observador a la s que

otros obs ervadores obtendrían; p ero era necesario unificarlas, deducirlas de
un principio genera l, de id éntica forma a como el principio de relatividad
ga lileano e ra equivalente a la invariancia de las leyes de la m ecánica bajo
el "Gru po" de tr ansformaci ones lineales del espacio e n espacio-tiemp o, y que
conservaban el carácter absoluto del tiempo y la forma métrica euclídea
fundamental. Guiado por esta idea, MINKOWSKI dota al universo d e una­
estructu ra métrica, en forma fundamental indefinida, que caracteriza y de-'

. termina a las transformaciones de _LORENTz, como aquell as transformaciones
lineales del espacio-tiempo en sí mismo, que le dejan invariante. Una vez
más, la realidad física se geometriza.

EINSTEIN nos dijo que debíamos olvidarnos de nuestra cr eencia en un
significado objetivo de simultan eidad . Esta fu e una d e sus ideas geniales.

Los resultados de estos estudios fu er on afirmar que el Principio de Re­
latividad, que hac e equivalentes a tod os los sistemas inerciales , es válido
para todas las leyes físi cas. Sin embargo, las leyes d e transform ación d e un
sistem a a otro deben ser las de LORENTz, exp resadas en el espacio d e MIN- _
KOWSKI, las cuales se convie rt en en las de GALILEO, cuando consid eramos la

velocidad de la' luz como infinitamente grande. Estos h echos constituyeron
lo que hoy se llama Teoría Restringida d e la Relatividad.

Ahora bien, también la Teoría d e la Relatividad Restringida h a partido
de una premisa cuyo va lor positivist a es nulo, a sab er: la posibilidad de
definir los sistemas in erciales. ¿Cómo es posible aislar un cuerpo de prueba
de lá acción del resto d el universo, con e l fin de asegurarnos sus movi­
mi entos -uniformes? A ' tod as luces, es to es imposible , y, p or lo tanto, adoptar
tal p remisa restringe la ·validez d e _los resultados a pequeñas regiones d el
cosmos, e n las que,~ práct icamente , las acciones de éste se compensa n. La
ideal genial de E INSTEIN frente a esta situación, tu vo sus raíces en la obser­
·vación de la igualdad de las masas p esantes y de inercia, que. hacía impo­
sib le el . distinguir físicamente los sistemas no in erci ales , de aquellos que ,
siendo inerciales, se. sumergían en un campo gravitatorio. Ayudado por es ­
tas consideraciones , y teniendo a mano el poderoso instrumento de las geo­
metrías ele R IEMAl\'N, form ula la Teo ría General de la Relatividad, d otando
aJ Universo de una métrica y top ología riemannianas, cuya .est ru ctu ra loc al
está d ete rminada p or la d istri bución d e m ateria. La física del fenómeno gra­
vitatorio sigue siendo geometría; no ya . euc lídea (GALILEO) ni pseudoeu clídea
(LoRENTz), sino riemanniana. La generalización a todos los aspectos fenome­
no lógicos es evidente . Todas las leyes físicas deben ser invariantes frente a
cualquie r cambio 'de coordenadas curvilíneas, que conserven la signatura
de la métrica. . '

Esto que EINSTEIN formula explícita me nte, había ya pasado por las mentes
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2. MECANICA CUANTICA.

(2) H . WEYL: Space. Time M atter ,
(3) M. PLANCK : V erhandl. Deutsch. Phys. Ces ·2, 237, 1900.
(4) A. E INSTEINS: Ann. Physik . (4) 17, 132, 1905.
(5) N . BOHR, H . KRAME RS , J. C. SLATER: Z.Phys. 24 69, 1924

REL A TI VI STACU AN T I CACI NEMATI CA

Con el nacimiento del siglo tuvo su origen la teoría cuántica . Las ideas
de PLANK (3) empezaron a germinar en la Física simult áneamente con los
trab ajos de EINSTEIN (4) sobre la luz en 1905. Los veinte año.s que siguieron
no clarificaron en absoluto los principios que iban a constitu ir la Mecánica
Cuántica.

El sistema mental de aquellos estudiosos contenía muchas ideas, abstrac­
ciones de 'la realidad sensible, que aplicaban descuidadamente al microcos­
mos. Los científicos aprendieron lentamente difíciles lecciones sobre la na­
turaleza, sobre lo objetivo y lo subjetivo; purificaron sus conceptos de es­
pacio y tiempo, llegando á eliminar de sus raz onami entos el lastre que
creaban en su entendimiento las imágenes de los fenómenos que tenían lugar
en su experiencia cotidiana en el macroscosmos.

. En 1924 EOHR, KRAMERS y SLATER (5) introdujeron la hipótesis de que las
ondas luminosas -que presentaban la dualidad onda corpúsculo- debían
ser interpretadas como ondas de probabilidad; que no representan. una rea­
lidad obj etiva, sino más bien la posibilidad de tal realidad. Medimos ' átomos
por medie> de átomos, y así el concepto de realidad obj etiva des aparece de
un modo curioso. No se transforma en la neblina de un nuevo concepto,
oscuro y no bien entendido, de la realidad objetiva, sino en la claridad trans ­
parente de las matemáticas, que representan nuestro conocimiento del mi-

de. los otros hombres de ciencia. Recordemos que NEWroN, en su corres pon­
dencia epistolar con BENTLEY y BOYLE, expresa su repugnancia a admitir la
acción gravitacional a distancia, así como su idea de sustituir ésta p or una
"p resión del medio"; idea que no elabora en vista de la imposibilidad d e
bacerla m anifiesta experimentalmente . También CLIFFORD y RIEMANN medi­
taron sobre :estos problemas, y la id ea de rel acionar la cu rvatura del es­
pacio-tiempo con la materia· les p ertenece a ellos.

Introduciendo la métrica de Ríemann podemos formular leyes físicas que
sean invariantes para una transformación arbitraria. Pero esta propi edad
de "invariación es un hecho meramente matemático, que nada dice de la
esencia física de tales leyes. Un nuevo concepto físico aparece 'únicamente
cuando suponemos que la estructura m étrica del mundano nos ha sido
dada "a priori", sino que está relaciona da con el mundo físico por medio
de leyes generales. Solamente con esta concepción podemos hablar de la
Teoría General de la Relatividad, y, corno nos dic e WEYL (2), solamente así
podemos considerar que el campo gravitatorio es un modo · de expresión del
campo métrico.
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crocosmos pero no tal microcosmos. La clasificación familiar del mundo en
objeto y sujeto no puede ser aplicada aquí, puesto que, en verdad, nos
lleva a contradicciones. El objeto de la Investigación científica no es la na­
turaleza en sí, sino la naturaleza como se presenta al estudio del hombre,
y, por consiguiente, de nuevo aquí el hombre se encuentra consigo mismo.

El resultado más importante fue la introducción del concepto de proba­
bilidad como una nueva clase de realidad obj etiva. Esta probabilidad está
íntimamente relacionada con cierta posibilidad , la "p otencia" de la filosofía
natural de los filósofos de la antigüedad clásica tales como ARISTÓTELES; es,
en cierto aspecto, la .transform aci ón de tal "potencia" de un punto de vista
cualitativo a su formulación cuantativa.

Una vez el concepto de probabilidad hubo sido introducido, el de caus a­
lidad fue sometido a severa crítica. La id ea de determinismo, o sea, la id ea
de qu e ' el microcosmos estaba regido por leyes causales, fue considerada
inmediatamente como una extrapolación del macrocosmos. "No olvidemos

. que el principio de causalidad y su necesidad ha nacido exclusivamente
de experiencias o fenómenos macroscómicos y que la transferencia de este
principio a los fenómenos microcósmicos, el supuesto de qu e todo suc eso
está estrictamente determinado causalmente , no tien e justificación alguna
bas ada en la experi encia" (6). La validez de esta extrapolación fu e puesta
en duda tan pronto como aprendimos que las leyes causales del macrocosmos
po dían ser obtenidas aunque causalidad no rigi era en el microcosmos, pues­
to que la ley de los grandes números convertiría el carácter probabilístico
de los fenómenos eleme ntales en la certeza de las leyes estadísticas. T al he­
cho, 'sin em bargo, no hace de la Mecánica Cuántica un saber fortuito o ar­
bitrario; sigue siendo Ciencia, ya que probabilidad es el conocimiento cierto
de algo incierto. .
. D ecimos que una leyes causal cu ando con ella podemos predecir el

tu turo con cierta probabilidad y podemos empujar esta probabilidad tan
cerca de la un idad como queremos, si nuestros métodos de analizar el fenó ­
meno son sucifientemente ex actos. Cuando formulamos causalidad en este
sen tido, vernos su significado, no como principio admitido "a priori" , sino
corno principio qu é ' puede' ser comprobado expe rimentalmente . Con esta
interpretación de causalidad y, como consecuenci a del principio de indeter­
minación de HEISENBERG, determinismo causal aparece como incompatible
con la Mecánica Cuántica.

No se crea que todos los científicos aceptaron este punto de vista. EINS­
TEIN (7), SCHRODING~R (8), VON LAVE (9) ' 10 han criticado dura y constante­
mente. Existen otros, como son los rusos , cuyas críticas a esta interpretación
son más bien un acto de fe comunista. Todos los opon~ntes de esta inter-

(6) EXNER: Vorlem ngen tlber die physikalis~hen gn tndlagen der N aiurwissenschaii en ,
Vienna 1919, pg. 691.

(7) A. EINSTEIN: Albert Einstein, Philosopher. Scientist The Líbrary of Living · Phil oso­
phu s, Vol. 7, pg. 665. E variston 1949.

(8) E . SCHRODINGER. Brit. J. Phi!. Sci. 3, 109, 233 (52). '
(9) M. VON· LAUE:, N atnr'wissenshaften 38,60 (51).
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(l O) Existe un a ambigüedad en la elección de las coordenadas del hamiltoniano y, además,
para el caso de partículas idénticas, en las soluciones simétricas o antisimétricas.

(II) W . HEISm rnERG : Z~ Phys 43, I n , 1927.
(I2) P . JORD AN Y C. KLE I N . Z. Phys 45, 75 1, 1927.

P. J ORDAN y E. WIGNER. Z. Phys 47, 63 1, 1928.

p re tación, ll am ada de Copenhague, comúnmente aceptada como la ortodo xa,
desean volver al concepto de realidad d e la ' F ísica : Clásica, o sea, a la
ontología d el m at e rialismo; p rop ugnan un mu nd o real ob jetivo, cuyo mi cro­
cosmos también nos sea conocido objetivam ente. Lo ún ico que no nos dicen
es cómo podemos alcanza r tal pan acea. La interpretación, que nació en Co-

. penhague en 1927, ti en e muchas ventajas sobre las críticas de sus adver­
sarios. Tal filosofía de los fen ómenos eleme ntales nos indicó claramente cómo
reproducir los datos experime ntales por medio del formulismo mat emático,
y, ésto, de hecho, es enorme ventaja, ya que ha venido confirmada con e l
éxito. .

En la p rim avera de 1926 SCHRODlNGER dedujo su ecuación d e ondas, y en
el otoño fue a Copenhague. Largas charlas tuvieron lugar entre BOHR,
SCHRODINGEH y HEISENBERG, en las que si bien e l primero mantenía la con ­
cepción cuántic a, a saltos, del microcosmos, el segundo sostenía la ondu-
latoria. .

Al final de una de estas charlas SCHRODINGER, llevado por la tensión d e
la discusión, dijo : "Si hemos de seguir m anteniendo es tos saltos cuánticos,
lo siento, pero yo no quiero seguir tr abajando en esta materia" . A lo cual
BOHR contestó: "Le estamos muy agradecidos por lo que ya hizo".

Los meses q ue sigu ieron fu eron d e intenso trabajo en Cop enhague, D e
e llos surgió la "Interpretac ión de Copenhague de la Mecánica Cu ántica" .
HEISENBERG recuerda con placer tan largas discusiones que muchas veces se
prolongaron hasta bien entrada la noche .y en las cuales se es tudiaron ca si
todos los posibles cam inos de: .in te rp re tacl ón de los fenó menos del micro­
cosmos.

Por aque l entonces HEISENBERG estud ió la forma matricia l de la Me cánica
. Cuántica y dedujo toda la teoría de matrices de transformación.

La Mecánica Cuántica nó rela tiv ista establece una correspo ndencia en
e l sentido de que una cierta aplicación formal de las reglas de cua ntifica­
ci ón al formulism o correspond ien te d e la Mecáni ca Clásica es casi in­
am biguo (10) y nos da los resultados apetecidos . Este principio de com­
p leme ntaridad fue desarolla do po r HEISENBEHG en el invierno de 1927 du -

l rante un as vacaciones en Noruega. Mientras BOHR se hallaba esquiando
en esta ' última na ción , H EISENBERG estudió el problema de cómo represen­
·tar matemáticamente una situación experime nta l utilizando únicam ente el
espacio de HILBEIlT. La consecue ncia inme dia ta fue su principio de inc er­
tidumbre (11).

Sólo qued aba un p aso que dar, y era la unífi cación ' de los puntos d e
vistacuántico-corposcular y del ondulatoric . JORDAN, KLElN y WIGNER (12)

R E L A T · 1 V 1 S T ACUANT ICAC INE-MAT ICA
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mostraron qu e comenzando de la teoría de ',SCHRODINGER podíamos obtener
el espacio de HILBERT al realizar la cuantificación.

En el otoño de 1927 tuvo lugar la conferencia de SOLVAY, en Bruselas,'
donde todos estos trabajos fueron hechos públicos. Enemigo decidido de
las ideas de la Escuela de 'Cop enhague fue EINSTEIN. Sabemos cuán inge­
niosamente EINSTEIN defendía su punto de vista ' según el cual la Mecánica
Cuántica que se le presentaba no podía esencialmente describir de una
forma completa los fenómenos naturales. Sin embargo, BO:H:R volvía la m a­
yo ría de los argumentos de EINSTEIN en su contra. EINSTEIN confesaba 'sus
derrotas, pero no cambió de opinión a la qu e permaneció aferrado hasta'
el fin de sus días; creyó que la Teoría General de la Rel atividad de bía
form ar parte importante de los estudios del microcosmos. A partir de es ta
conferencia de Solvay, la "Interpreta ción de Solvay " de los fenómenos cuán­
ticos, fue la aceptada corrientemente y ha sido la base para todas las apli­
caciones prácticas de la teoría. Llegó a ser la teoría "or todoxa".

Siguieron veinte años, interrumpidos por la última conflagración mun-
dial, .en que se recogió los frutos de lo sembrado. , .

Históricamente ha quedado bien probado la necesidad de fundir en
uno sola síntesis Helatlvidad y Mecánica Cu ántica. Tal unión h a: sido siem­
pre seguida ele grandes adelantos; citemos la teo ría elel electrón de DI­
RAC (1927) y las del efecto LAMB (1947), entre otros, conseguido mediante
las ideas de SC'HWINGER. . ' _

Si, pues, la m ecánica del microcosmos deb e ser simultáneamente rel a­
tivista y cuántica hemos de introducir tales estudios mediante un Algeb ra
de la Medida que sea compatible con tal armonía preestablecida y hemos
de presentar un principio dinámico lo suficientemente general para ser vá­
lido en cualquier sistema de LORENTZ. La Mecánica Cuántica no relativística
aparece, de una forma natural, del mismo formalismo al esta blecer una
disimetría entre espacio y tiempo, es decir, al fijar el sistema de LORENTz.
Este es el punto de vista seguido en nu estro programa.

Una de las críticas serias que se puede hacer a la formulación de BOHR
del principio de complementariedad; es el haber ignorado sistemáticamente
la Teoría de la Relatividad restringida y la Teoría Cuántica de Campos
que nació en aquella época. Y así, aunque fenomenológicamente tal for­
mulación es exacta, epistemológicamente es muy discutible por ' las difi­
cultades que puede presentar al físico en su trabajo y por las peligrosas
interpretaciones que ha suscitado entre los filósofos.

Sin embargo, tal unión no fu e cons eguida hasta hace una docena de años.
La motivación principal para esta síntesis fue , evidentemente, la presión
de los datos experimentales, además de una cierta necesidad de presentar
todo el formulismo de la Mecáni'ca Cuántica de una forma coherente y rigu­
rosa que no era satisfecha por la presentaci ón imperfecta, llena de oscuri­
dad y contradicciones que se nos ofrecía hasta entonces.

TOMONAGA (13) y SCHWINGER (14) fueron eminentemente guiados por un

.
(13) S. TOMONAGA: Progr. Theor. Ph ys 1, 27 (46).
(14) J. SCHWINGER : Phys Rev. ·74, 1439 (48).
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(I5) O. C~STA DE B E AURE GARD: Therie Synthétique de la Relativité. Restreinte et Des
Quanta. - 1957.
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deseo de coherencia interna. Su pensamiento, aislado durante la última
guerra mundial, se hizo más profundo. Sus resultados han sid o sorprenden­
tes; entre ellos está la imagen de interacción de la Mecánica Cuántica, qu e
es totalmente covariante I relativista.

De nuevo han surgido serias discusiones sobre la interpretación ob jetiva
o subjetiva del concep to de probabilidad (15). Entre los que se oponen
a la interpretación de Copenhague hay que citar a DAVID B OHM, quien co­
menzó su interpretación de la Mecánica Cuántica a p artir de las ide as origi-
nales de L. DE BROGUE. .

En las páginas que siguen trataremos de. exp oner la Cinemática Cuántica
de un a forma compatible con la Teoría Restringida de la Relatividad. Muy
recientemente han aparecido algunos trabajos que tratan de conseguir una
nueva síntesis para presentar la Mecánica Cuántica de acuerdo con el
Principio de Relatividad General, pero, por ser extraordinariamen te pocos,
no constituyen aún un cuerpo de doctrina. .
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CAPITULO I

PRINCIPIO DE RELATIVIDAD DE EINSTEIN

l . NECESIDAD DE UNA NUEVA ALGEBRA DE LA MEDIDA

Las características peculiares de los resultados experimentales en siste-
mas físicos del microcosmos son:

1) Atomicidad (de partículas, carga, accion, energía, etc.).
2) Naturaleza estadística de los fenómenos.
3) Dualidad partícula-onda.

La teoría clásica de la m edida se basa en el siguiente supuesto : la in­
terferen cia del aparato de m edida con el sistema físico a estu d ia r puede
se r h echa despreciablemente p equeña, y de -este modo no modifica la evolu ­
ción futura del sistema. Y así, el sistema queda en el mismo estado en que
se 'encontraría si no se hubiese realizado la medición , o si la medida inter­
fiere , la interferencia es tal que podemos calcular sus efectos. .

Los sist em as físicos son, desde el punto de vista clásico, completamen te
.deterministas, en el sentido de que el estado del siste ma en cualquier instante .
.de termina completamente el curso pasado y futuro de la historia del siste­
ma. La teoría de medida de los sistemas d el macrocosmos era e nteramente
trivial.

La s cara cte rísticas del microcosmos enu nciadas antes, que , e n .cier to
g rado , son propiedades de todos los sistemas físic os, son incompatibles con
los supuestos hechos en la Físic a Clásica, y requ ieren una nu eva formulación
de la teoría de la medida. En efe cto, es fá cil comprender que:

1. El supuesto de la teo ría clásica que ad~ite la posibilidad d e hacer
desprecla blerrren te pequeña la interacción del aparato de medida con el sis­
lema medido es imposible, puesto que la ene rgía y 1& acción. :. aparecen e n
el microcosmos a "saltos" finitos e indivisibles.

2. La interacción en tre el 'siste ma físico a estud iar y e l aparato d e medida
no puede ser prevista y, p or consiguiente , no podemos h acer las correcciones
oportunas.

La interacción entre sistemas es de carácter estadístico, y, ' por lo tanto,
nada se puede predecir en los casos individuales . Los sistemas físicos d el
mic rocosmos no son deterministas en el sentido clásico.

3 . La tercera propiedad nos dice que los conceptos de partícula y de
onda son dos casos límites del comportamiento de los "objetos" físicos , y
que la situaci ón ve rd adera se halla en medio de estos dos casos extremos.

Así, pues, procederemos a construir una nueva teoría de la medida com­
patible con los tres hechos experimentales señalados.
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2. SISTEMAS DE REFERENCIA

e = 2,9971"6 X 1010 cm/seg

R E L AT I V 1S T AC UAN TICACIN E MATIC A

La invariancia de la velocidad de la luz respecto a los diferentes siste­
mas inerciales fue comprobada por los experimentos de MICHELSON en 188I.

Cerno consecuencia de esto, EINSTEIN dio una ley de transformación de
los valores de los datos experimentales expresados en un sistemá inercial
a los correspondientes en otro sistema inerolal, distinta .de la presentada por

·GALILEO para exp res ar e l Principio de Relatividad.
Todas las mecánicas son, pues, relativistas, ya que verifican e l Princi­

pio de Relatividad. Pero aquélla construída según la interpretación de EINS-

Llamamos sistema de referencia ' al - sistema de coordenadas que sirve
para fijar físicamente --en espacio y en tiempo-- el fenómeno a estud iar.

Empezamos a edificar nuestra teoría a partir de los sistemas de referen­
cia llamados inerciales, aquellos en que un cuerpo no sometido a fuer­
zas externas se mueve con velocidad constante. Todo otro sistema de re­
.le re ncia que se mueva con una velocidad constante relativa a un sistema
inercial es, a su vez , un sistema inercial. Tenernos, pues , un método general
'para obtener sistemas in erciales a partir de uno dado. .

Experimentalmente se demuestra que la naturaleza satisface el llamado
"Principio de Relatividad", según el cual las ley es físicas tienen la misma for­
ma cualquiera que sea I el sistema inercial que us amos como sistema d e re­
ferencia para describir los fenómenos físicos . Más ad elante estud iaremos cui­
-d adosame nte el alcance de- este principio.

Los experimentos muestran también que la interacción ent~e dos pun­
tos materiales no se realiza instantáneamente. Llamamos "señales" a las in­
teracciones propagándose desde un punto mat erial a otro. Una señal es emi­
tida por un punto mat erial y es recibida por otro. La velocidad de propa­

.gación de la interacción es la velocidad de la señ al correspondiente.
La interpretación del Principio de Relatividad daelo por EINSTEIN se di­

.Ierencia de la de GALILEO e n que el primero amplió el principio y lo aplicó
a la velocidad de propagación de . las señales , llegando a la conclusión de
-que existe una velocidad máxima; igual en todos los sistemas inerciales. El
valor de tal invariante universal coincide con la velo cidad de la luz en el
vacío, o sea, es .

Antes de empezar a estudiar los resultados de nuestros experimentos en
e l microcosmos y criticarlos de manera que, al conocer sus características y
forma peculiar de comportarse, podamos construir una teoría consistente ,
hemos de presentar Jos sistemas de referencia en los que los experimentos
pueden realizarse, y Jos principios por los cuales podamos establecer que
los resultados obtenidos en los mismos no sean p eculiares del sistema par­
ticular de referencia elegido, sino que representen relaciones intrínsecas entre
Ios -fenómenos físicos .
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(1.1)X4 = ict

n=3

AIBI = ¿AoBn
0=1

X3 = Z

3. INVARIANTE FUNDAMENTAL

TEIN se llam a Mecánica Rel ati vista, y la qu e utiliza las id eas de Galileo,
Mecánica Clásica .

GALILEO consideró qu e las señales podían propagarse con una ve locidad
infinita, y así, nuestra percepción de. un fenómeno era simultánea con su ve­
rifi cación, Para él, el tiempo era absoluto; si dos fenóm enos eran simultá-
neos en un sistema inercial, lo serían en todo otro sistema inercial. .

Pe ro, según veremos; la inte rp re tación de EINSTEIN nos obliga a admitir'
que el tiemp o no es abs oluto, no es una cantida d invariante respecto a las'
transformaciones que nos lleven de un sistema ine rcial a otro. El ti empo­
trans curre de difer ente forma en los distintos sistemas inerciales. Por con­
siguiente, afi rmar que un fenómeno dura un cierto intervalo de tiempo sólo, '
tendrá sentido cuando demos el sistem a inercial en qu e h emos medido esa ,
duración. En particular, dos fenómenos qu e son simultáneos en un sistema.
inercial pueden no serlo en otro. .

El principio de relatividad de EINSTEIN introduce cambios fundamenta-­
les en nu estros conceptos intuitivos de espacio y tiempo. Tales nociones las­
hemos obtenido de nuestra experien cia cotidian a, y han de ser válidas , a l"
menos aproximadamente, dentro del grado de precisión con que nuestros:
sen tidos pueden p ercibir los fenómenos físicos. Hemos de exigir qu e de la:
Mecánica Relativista poda mos ob tener la Mecánica Clásic a cuando ciertas con-o

diciones, relacionadas con nuestra incapacidad natural de precisión, sean im­
puestas. Este principio de correspondencia entre ambas ramas de la Mecá- :
nica nos se rviría como guía para construir la Mecánica Relatívista.

. Supongamos la existencia de un foc o puntual luminoso en el origen de '

donde x, y z, nos dan la posición del suceso, y' t el' instante en que se veri-
. fica. Las 'cuatro coordenadas serán representadas por XI-t-, entendiendo que.

los subíndices griegos van de uno a cuatro mientras que llamaremos Xi a las
tres primeras coordenadas suponiendo que los subíndices latinos van de
uno a tres. En este espacio de MINKOWSKI los sucesos son puntos del mismo
llamados puntos universo. La línea ficti cia tetradimensional que correspon­
de a la trayectoria física de un suceso se llama línea universo.

Utilizamos también la convención de EINSTEIN, según la cual dos sub­
índices iguales implican sumación respecto al dominio de definición de los.
mismos. Así, pues,

Llamaremos suceso al fenómeno que es descrito conociendo dónde y
cuándo tien e lugar. Es conveniente utilizar un espacio ficticio tetradirnen­
sional, ll amad o esp acio de MINKOWSKI, cuyos. cuatro ejes, normales entre

. sí dos a dos , son: .



A la cantidad

(1.3)

(1.2)

(l A)

(1.6)

(1.5)

(1.7)

- _ .- ".,
- .- (1.8)
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ds= a ds'

d s' = a.ds

a2 = +1= a2(u)
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a = a (I.;;j) = a(u); ',u = 1;1

..

10 cual dice que .

D e acuerdo con el principio de invariancia de la velocidad de la luz, si
la señal que un ía x y X era la luz , teníamos ' Sxx = ° y, por consiguiente,
S'xx = o, o sea , escrito infinitesimalmente s iempre que ds = o se tendrá
ds' = o. Pero por ser infinitesim ales de primer orden

donde el coeficiente "a" depende solamente ' del valor 'absoluto de la ve­
locidad relativa de los dos sistemas inerciales.

CINEM A 'TI C A

se le llama intervalo S entre los puntos universo xlJ. y X¡.L" 'Como puede verse
fácilmente --+- 52xX puede ser interpretad o com o el cuadrado de la distancia
entre los sucesos xlJ. y XIJ. en el espacio de MINKOWSKí.

Si los dos puntos universo están infinitésimamente próximos

Por homogeneidad de esp acio-tiempo a no puede depende r ni de las coor­
d enadas ni del tiempo; po r isotropia del espa cio no puede depender del sen ­
tido de la velocidad relativa. Entonces también

Si en lugar de la luz , hubiéramos considerado la propagación de otra
señal con velocidad menor que la de la luz

(XIJ.-XIJ.)2 +°

coordenadas del espacio de MINKOWSKI. La ecuación de propagación de la
luz en esferas concéntricas, en un sist ema inercial, es

X1
2 + X2

2 + X3
2

=C
2 t2

que utilizando la notación de EINSTEIN se escribe así : X~L2 = o. Si la luz hu­
biera salido del punto XIJ. la ecuación de la onda sería :

Consideremos ahora otro sistema de referencia que se' mueve con rela­
ción al anterior con una velocidad constante. Los puntos anteriores estarán

. dete rminados p or las nuevas coorden adas XIJ. y X' f.l. en el nuevo sistema. El
in tervalo entre ellos en este segundo sistem a inercial será
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(1.9)

(1.10)

(1.11)

S'= S

ds' = dsY, por consiguiente, siempre

Tal sistema existe si (xf-L' - Xf-L)2 es positivo. El intervalo se llama entonces
intervalo espacial. Sucesos separados por un intervalo espacial no pueden ser
unid os por seña l alguna; son dináimicam ente independientes.

Podemos medir las propiedades de un suceso sin interferir jamás en los
sucesos separados del primero por intervalos espaciales.

Los conceptos de intervalo espacial y temporal son invariantes respecto
a cualquier sistema inercial, es decir, son invariantes relativistas, de acue rdo
con (1-9).

La evolución dinámica de un sistema físico tiene lugar a lo largo de
intervalos temporales. La medida de las propiedades de un sistema físico
debe verificarse entre puntos separados espacialmente, ya qu e así los dis-

T al sistema inercial existe si (Xf-L - Xf-L)2 es negativo . El intervalo corres­
pondiente se llama intervalo temporal, Tales sucesos pueden ser unidos por
un a señ al, y, por cons iguiente, no son en general dinámicamente indepen­
di entes, ya que la acción de un o puede alcanz ar al segundo. Si nos referimos
a dos posiciones diferentes de un mismo cuerpo material en movimiento, el
intervalo entre los mismos es siempre temporal, ya que su velocidad es me­
nor que la de la luz.

¿Existe un sistema de coordenadas en" el que dos suc esos Xf-L y X f-L ten gan
lugar simultáneamente, x'~ = X'4? Entonces se ha de verificar

El intervalo entre dos puntos universo es un invariante respecto del sis­
tema inercial que se utilice para expresarlos. Es un invariante relativista;
es el invariante fundamental de "la Mecánica Relativística.

Tal invariancia no es más que un a expresión matemática de la invarian­
cia de la ve locida d de la luz para. todo sistema inercial La ley de transfor­
mación qu e nos lleve de un sistema in ercial a otro, no es la de Galileo, sino
la que deja invariante el intervalo.

Respondamos ahora las siguientes preguntas: ¿Existe un sistema de refe­
rencia en el qu e los sucesos Xf-L y XIJ. tengan lugar en" el mismo punto,
Xl =X'l , X2= X' 2, X'3= X'3? La invariancia del intervalo da

o sea , por in tegración

"_ Por continuidad ha de ser siempre + 1 Ó -1. Pu esto que si a(v) fu era
+1 para ciertas velocidades y -1 para "otras, existirían algunas velocidades
para las cuales tendría valores intermedios entre + 1 y -1, lo cual es im­
posible.

Cuando v =0, es decir, cuando ambos sistemas sean idénticos, ds' = ds.
Lu ego a = l .
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tintos procesos de medida son independientes y, por consiguiente , no int er­
fieren entre sí.

A las superficies cu adridimensionales tales que todos sus puntos es tán
separados por un intervalo espacial se llama superficie- espacial; un ejem­
plo es t = constante. T od a medición d el conjunto de propiedades d e un
sist ema debe hacerse sobre superficies esp aciales; la medición simultánea
no es más que un caso particular, no e l más gen eral', y, tal hecho, medir to­
das las propiedades simultáneamente, no es un conc epto invariante re lati­
vista. Ob se rvemos que por un punto universo X ! L pasan muchas supe rfic ies
esp aciales que -llam aremos o(x).

Consideremos un suceso qu e tenga lugar en el origen coordenadas, O, del
esp acio de MlNKOWSKI. Estudiemos la relación entre este suceso y cualquier
otro. Para mejor comprender lo que sigue imaginemos el _espacio de MIN­
xowsxr reducido al pl an o X2 = X3 = o. Los
movimientos rectiITneo s - uniformes de ' un
punto material pasando- p or el origen" se
representan por un a recta pasando por O e
inclinada respecto al eje X4 un ángulo cuya ­
tan gente es proporcional a la velocida d del
punto ma teria l. Pu esto que la máxima velo­
cida d es e, hay un ángulo máximo que esta
rec ta puede hacer con el' ej~ X4 .

Representemos con ab y cd las trayecto­
rias de dos señales lum inosas que, propagán­
dose en di recciones opuestas, pasan por O.
Todas las líneas universo representando el
movimiento de señales deb en esta r en las
regiones aOc y dOb.

Es mu y fácil ve r que p ara todo punto de aOc se ve rifica S2 > o, o sea,
el intervalo entre los puntos de aOc y el orige n es temporal; p ero , como en
aOc el tiempo es t > o, tal región representa suc esos qu e tienen "lugar des­
pu és del suceso O. Ahora bien , suc esos separados por un intervalo temporal
no pueden ocurrir simultáneamente en ningún sistema inercial. Por consi­
guiente, la región aOc representa el futuro absoluto respecto al suceso O. D e
la misma forma se puede ver qu e dOb es el pasado absoluto de O.

El intervalo entre los puntos de las regionescOb y aOd y el origen es es­
pacial. Los sucesos correspondientes tendrán lug ar en puntos distintos del
espacio en cualquier sistema inercial. Estas re giones pued en ser llamadas ab­
solutamente remotas del suceso O; en ellas los conceptos de simultáneo, an­
terior y posterior son relativos.

Dos fenómenos pueden estar relacionados entre sí como caus á y efec to
si el intervalo entre ellos es temporal. Precisamente p ara estos intervalos los
concep tos de pasado y futuro tienen un significado absolu to, condición ne­
cesa ria para poder hablar de causa y efecto. Por consiguiente, la Mecánica
Relativista, a pesar de hacer del tiempo. algo relativo, no destruye la suce- ­
sión temporal entre causa y efe cto. De hecho uno de los criterios que he-

· C I N E M A T I C A
I
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(1.12)

(1.1,'3)

(1.14)

1/ \J¡l<
dí. = dt 1 - - 2-

C

J'2 / 21:2 - L1 ---: d t 11 _ u~
~ c

Para todo el intervalo temporal tendremos

de d onde deducimos que

pues to que

REVISTA DE LA ACADEMIA DE CIENCIAS EX ACTAS, FlSICO·QUTMTCAS y NATURALl!:S

Supongamos que desde un sistema inercial arbitrario de referencia ob­
servamos relojes que se mueven respecto a nosotros de una ' forma arbitra­
ria . Podemos introducir un sistema de coordenadas ligado rígidamente a los
relojes movibles, y considerarlos como sistemas inerciales instantáneos d e
referencia.

Desde nuestro punto de vista, en ' un intervalo infínít éslmo de tiempo, dt ,
los relojes se mu even una distancia . V dx2 + dy2 + dz f = '!dx/. En el sis­
tema instantáneo inercial el mismo fenómen o será indicado por un cambio
en tiempo; di, p ero no en coordenad as.

4. TIEMPO PROPIO

que se llama cono de luz.

mos de utilizar estudiando el microcosmos es el de causalidad; con su ayu­
.d a podemos eliminar caminos falsos.

Si hubiéramos considerado todo el espacio de MINKOWSKI en lugar del
plano X2 = Xs = o estas regiones estarían separadas por el cono

El tiempo r medido en el sistema en mo vimiento con un obj eto se llama
tiempo p ropio del mi smo . Según ve mo s, los relojes en mo vimiento van m ás

. lentam ente que los que están en reposo.
Si el reloj está en roposo su línea universo es claramente una lín ea pa­

ralel a al eje x~; si, e l re loj describe una tra yecto ria ' ce rr ada, su línea uni­
ve rso será una curva cortando la lín ea universo del re lo j en reposo en dos
puntos correspondientes al origen y fin del movimiento. Pero el reloj en re­
poso nos da mayor intervalo de tiempo; luego la integral í.2- í.1 , tomada
entre do s puntos universo, tiene su v alor máxim o a lo largo d e la línea rec­
ta que los une.



(1.16)

(1.22)

(1.19)

(1.21)

.(1.15)

(1.17)

(1.18)

(1.20)
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(1 es la matriz unidad)

CUAN .T I CAC A

a¡.t.v a¡.t.:>'= e.,
lo cual escrito matricialrnente con la matriz A _ (a¡.t. ~) es

para cualquier punto un iverso xv. Luego se ha de verificar

CI NEM AT

y será la expresión matemática de la rotación: las nu evas coordenadas fun­
ciones lineales de las antiguas.

El intervalo cuya invariancia exigimos es x2 ¡.t.. Por consigu iente,

La transformación que traduzca las coordenadas de un suceso resp ecto
a un sistema inercial en coordenadas con relación a otro sistema es la que
deja invariante todos los intervalos, o sea, toda distancia en el espacio de
MlNKOWSKI. Tales transformaciones , llamadas de LORENTz, son traslaciones
y rotaciones en el espacio universo. Las tr aslaciones no suponen más que un
cambio del origen de coordenadas; nada físico implican. La transformación
de LORENTz que estudiamos es en tilla rotación en el espacio de MlNKOWSKI,
que, en general, escribiremos así:

donde a¡.t.v es ün~ tensor cuyos componentes son funciones de la velocidad

- '.213 -

condición necesaria para expresar toda rotación (A es la ·matriz traspuesta
de A). Físicamente hemos de exigir que exista . una transformación recíproca

y a partir (1.20) se deduce A A=1
equivalente a

Por consiguiente,
U¡.t.v-a v¡.t.

Podemos también obtener ciertas condiciones sobre los coeficientes a¡.Lv al
exigir que las coord en adas x' ¡.t. tengan el mismo carácter real o imaginario
que tenían X¡v Y así aH, a24, a34 y aH, a42, a43, son imaginarios puros mientras
que todos los demás son reales.

5. TRANSFORMACION DE LORENTZ

esto nos obliga a admitir la existencia de la matriz recíprocaA"! y así
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(1.28)

(1.29)

(1.25)

(1.23)

(1.24)

(1.26)C=~A

x" = Bx'

A' = BAB-'

Bx' = BAB- 1Bx

x'=Ax

x' =Ax

x" = Cx=BAx

El producto de dos transformaciones de LORENTZ A y B

Entonces la transformación de LoRENTZ se escribe

y 'considerar 'que la matriz -A' = BAB-l es la' forma que adquiere la ma­
triz A cuando se la representa en un nuevo sistema de ejes. "Es decir, A' re­
presenta la misma transformación de LORENTZ A, pero vista desde otro siste­
ma. Las transformaciones de las matrices de la forma

El producto matricial no es .conmutatlvo; sin em bargo, la multiplicación
de matrices es asociativa

La ecuación (1.15) puede. escribirse en forma matricial al representar el
punto universo x¡J.. por una matriz de una columna

C(BA) = (CB)A

se llaman transformaciones de semejanza.
Puesto que el determinante de una matriz no varía al intercambiar filas

y columnas, de (1.18) deducimos det A:.-! A I = ± 1.
Todas las transformaciones del grupo -de LORENTZ pueden clasificarse en

dos grandes .ap artados. Llamaremos transformaciones propias de LoRENTZ

BA =l= AB

pues, como es fácil ' de ver, e satisface (1.20) si B y A la cumplen. Obsérve­
se que en general

Puesto que la transformación identidad x' = x también es una transfor­
mación de LORENTZ, de todo lo anterior deducimos que las transforrnacio-:
nes de LoRENTZ, forman grupo. •

El producto de las transformaciones (1.25) puede ser considerado desde
otro punto de vista. En efecto podemos escribir x' = Ax así:

es otra transformación de LoRENTZ e tal que



(1.31)

(1.30)

(1.32)

(1.32)

RELATIYISTA

o también

CUANTICACINEMATICA

IAI=-l

llamada inversión espacial', P, íntimamente relacionada con la paridad del
mundo físico . Y además debemos considerar la inversión temporal, T,

cuyo' significado físico es el intercambio de futuro y pasado. Si hemos de
evitar este- intercambio es preciso exigir 'que ~4 > o. La condición ~4 < o
implicara inversión temporal.

El producto sucesivo de un número indefinido de transformaciones pro­
pias de LORENTZ esotra transformación propia de LORENTz. Cuando las trans­
formaciones de LORENTZ formen grupo continuo, para estudiar las propieda­
des de un sistema físico bajo esa clase de transformaciones es suficiente
estudiar su conducta bajo las transformaciones infinitesimales de la misma
clase. .

Las transformaciones impropias de LoRENTZ no forman grupo porque el
producto de dos cualesquiera de sus matrices es una matriz de d etermi-
nante + 1. '

Con ayuda de (1.17) se obtiene

2 1 (2 ' 2 ' 2)a 44 = - a 14 T a 24 + a 34

Entre las transformaciones impropias hay que citar particularmente la
inversión de los tres ejes Xi

Tal relación muestra que entre las transformaciones con aH:> o y' .las
que tíenen vaa, < o hay un salto de dos unidades como mínimo que no
puede ser cubierto continuamente. Se sigue que el grupo total de LoRENTZ
puede ser subdividido en cuatro clases de transformaciones, cada una de
ellas continuas, pero que exigen un salto discontinuo para obtener cual-
quiera de las otras tres. , .

Tenernos en primer lugar el grupo restringido de LORENTZ caracterizado por '
IA I=1, G44 > o. La segunda clase ' está formada por las inversiones espa­
ciales IA I = - 1, aH > o, Y no forman grupo; pero unido a la anterior,
es decir, todas las transformaciones para las que a44 > o, forman el grupo
ortocrono de LoRENTZ, pues no incluyen inversión temporal. En tercer lugar
consideramos las transformaciones que, sólo .tienen inversión temporal l A I = ,

. IAI=l
e impropias serán aquéllas en que

- 215-

y puesto que la expresión en el parén!esis e~ negativa

aquellas tales que el determinante l A I de su matriz de transformación Sea
positivo; de hecho
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(i.35)

(1.34)

(1.38)

(1.33)

Un tensor es simétrico si AlJ.v = AvlJ. Y antisimétricos si. AIJ.Y= - AvlJ.'
Este . últímo tiene sus elementos diagonales nulos.
" El tensor unidad 1 = (alJ.v) tiene sus componentes definidas así

~
o ¡.L#v

alJ.v= 1 ¡.L=v

Llamaremos tensor universo de segundo orden al conjunto de 16 can­
tidades AlJ.v que, bajo la transformación de LORENTZ, se comportan así

A' p-v = 311P 3yr. Ap1t (1.36)

y definimos los tensores de orden superior de un a forma semejante .
Traza de un tensor es la' suma de sus eleme ntos diagonales

tr AlJ.v = AH + A22 + Aaa+ A44 (1.37)

e11 cualquier sistema de referencia. En efecto

3' \-, Y= allP avr¡ ~rr¡ = 3p-p 8vp .:- allv

, El tensor unidad de cuarto orden totalmente antisimétrico es ellYAp cuyas
componentes cambian de signo al intercambiar dos índices cualesquiera, de
forma que las componentes .no nulas son ' ± 1.

es un vector universo. Tales vectores tienen propiedades semejantes a los
vectores ordinarios. Así es muy fácil demostrar qué si BIJ. es otro vector
universo el producto escalar AIJ. BIJ. es un escalar universo. Podemos intro­
ducir también el concepto de campo vectorial haciendo' corresponder un '
vector AIJ.(x) a cada punto universo x. La ley de transformación es

I

S(x') = S(x)

donde x' .= Ax.: Un ejemplo de 'camp o' escalar es el intervalo V-·-·­
-x~.

Un conjunto de cuatro cantidades Al, A2 , Aa, A4 , que al cambiar de
sistema de referencia, bajo .una transformación de .Lorentz se transforman
de acuerdo con la ley

6. ESCALARES, VECTORES, TENSORES... UNIVERSO.

'Una cantidad es un escalar universo cuando tiene el mismo valor en
cualquier ·sist ema inercial de referencia. Podemos definir ' también el con­
cepto .de campo de escalares, al hacer corresponder un escalar a cada punto
universo. Su ley de . transformación es

=- 1, .a 44 < o, Y como cuarta ' clase las que, ade más, tienen inversión es­
pacial IA I = 1, a44 < o.
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C'=TPC-.:..C

7. EL PRINCIPIO DE RELATIVIDAD.

R ' E L 'A' T ' IVI ' S T Ae 1 N E M . A TIC A ' e u A N TIC A

R(TPx) = - R(x)

mientras que un vector e' = TPe = - e. El pseudovector suele llamarse
también vector axial para dístínguirlo del vector propiamente dicho al que
llamaremos vector polar. e' . ,

La cantidad ep'v~p es un pseudotensor.
Si Aflv es un tensor antisim étrico, llamamos dual del anterior al pseudo

tensor 1/2 eflvAp Ai.p. D~ 'forma semejanteep.vI,p,Ap es un pseudotensor anti­
simétrico de tercer orden dual del vector Al? El producto 1/2 e'P.',II,p Ap.v A),p
formado con un tensor de segundo orden y su dual 'es un pseudoescalar.

Diremos también que un vector y un tensor se transforman covariante­
mente con las expresiones (1.34 y 1.36) respectivamente, mientras que un
escalar al transformarse covariantemente es un invariante, es decir, no se
transforma .cuando cambiamos el sistema .de referencia.

y un pseudovector efl

De la condición de antisimetría deducimos inmediatamente que son nu-
los todos los componentes de ep.vAp que tengan dos índices iguales. ' "

Podemos también definir otras cantidades llamadas pseudoescaIares, pseu­
dovectores, pseudotensores qu~, bajo las transformaciones propias de Lo­
RENTZ, se comportan corno escalares vectores y tensores, pero cambian el
signo que les correspondería bajo la transformación de la paridad P.

Un pseudoescalar R(x) se comporta de la siguiente forma bajo la inver­
sión especial P y temporal T

El Principio de Relatividad se expresa diciendo que todas las ecuaciones
de la física han de ser covariantes en relación a las transformaciones de
LORENTz, que no incluyan P.

Hasta 1957 se creía que .las leyes físicas debían ser covariantes respecto
a. toda transformación de .LORENTz. Pero en tal año los doctores T. D. LEE
Y C. N. YANG, demostraron que ciertas interacciones extraordinariamente
débiles, causas de las desintegraciones ~, no eran covariantes respecto a la
paridad P. Inmediatamente se empezó a estudiar detalladamente la con­
ducta de las leyes físicas respecto a la inv ersión temporal T. Pero los experi­
mentos no han 'dado aún una conclusión definitiva.

Lo anterior quiere decir que hay dos mundos físicos ; uno dextrogiro y
otro levogiro. Estos mundos físicos son casi iguales si excep tu am os ciertas
fuerzas, muy débiles, que aparecen de fonna distinta en los mi smos; preci­
samente porque la diferencia entre estos mundos físicos es tan pequeña se
ha tardado tanto tiempo en descubrirlos.. Por razones que aquí no podemos
examinar, si el mundo en que vivimos está formado por materia, el mundo
de distinta paridad está formado por antimateria. Esta tesis ha sido confír,



(1.41)

(1.39)

(1.40)

a14 = - senq¡ ) X'l = XICOSq¡ - x.senrp

a44 = cosrp ( X'4= x.senrp + X4COSq¡

}--------- X 1

X'a = Xa

an = cosq¡

au = sen rp

lo que equivale a

J====!~-- )(1

ya qu e x'1 no puede depender, en es te caso; de x 2, por ejemplo.
. La transformación de LORENTZ queda así reducida a una rotación en el

plano .Xl X4} . Podremos escribir entonces :

X'2

..

eleg idas de forma que se verifiquen todas las propiedades de ortono rmali­
zación.
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y además, por la misma homogeneidad

v

lo que ocurra a lo largo del eje x'1" será válido para cualquier recta paralela
al mismo; es decir, que en tal caso sólo los ejes Xl y X4 pu eden sufrir varia-
ción alguna en la transformación. .

Por consiguiente, se ha de verificar

RE1'1STA " DE LA ACADEMIA DE CIENCIAS EXACTAS, ¡ISICO - QUIMICAS y NATURALES

Limitémonos al caso particular en que el nuevo sistema inercial d e re­

ferencia se mueva con una velocidad V ~ a lo largo del eje Xl respecto al
sistema inicial primitivo, y que ambos tengan sus ejes XI, X2, Xa paralelos.
Por la: homogeneidad del espacio físico hemos de ' admitir que e? este caso

8. EJEMPLO DE TRANSFORMACrON DE LORENTZ.

madaexperim entalmente; y así, el Premio Nobel de 1959 se otorgó a quie­
nes descubrieron experimenta lmente el antiprotón, aunque su existencia fue
postulada · teóricamente mucho antes.



(1.45)

(1.44)

(1.42)

~1.43)

v
, "

e

1

1'=t

V V2
1--' -

c2

RELATIVISTA.

= -i
ict

cosrp = .

tgcp =-

CUANTICA

. V
-1-­

C

V, V2
1---

c2

X\ =XI - Vt

sencp =

+ . V
Xl 1 --X 4

C
X'l =

e , I N E M A TIC A

en la que el tiempo conserva su carácter absoluto.
Consideremos un cierto objeto una de cuyas dimensiones, l, sea parale­

la al eje Xl ' Si las coordenadas .de estos extremos son Xl y Xl, la longitud
de la misma será
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o sea que: en este caso particular, la transformación de LORENTZ es

Esta es la transformación que originariamente encontró LORENTZ, antes
de que la Teoría de la Relatividad, de EINSTEIN ' apareciera, al estudiar la
variación de las ecuaciones de MAXWELL al cambiar el sistema inercial de
referencia. La transformación (1.44) recibe el nombre de transformación es-
pecial de LORENTZ. ,.

Las fórmulas ' recíprocas, que dan X¡lo en función de x'u, se obtienen con
sólo cambiar V por -Ven las anteriores. Cuando V> e las fórmulas - de
transformación nos dan Xl y t' imaginarios, lo cual expresa que no pode­
mos tener un movimiento con velocidad mayor que la de la luz; ni siquie­
ra es posible usar un sistema de referencia que se mueva con la velocidad
'.ce la luz, ya que en tal caso los dominadores serían nulos .

Cuando V es pequeña respecto a la velocidad de la luz la transforma­
ción especial de LORENTZ que hemos estudiado s'e convierte en la conocida
de GALILEO '

Consideremos el movimiento en el nuevo sistema del origen del primi­
tivo Xl = o

Entonces

expresiones cuyo cociente da



(1.46)

(1.47)

(1.48)

V
·i-­

e

1/ 1 - ~2
O

O

X, , . V X'
1 - 1- - 4

C .

l'
i =~~==~=

1

11 1--;-
O O

A = (a¡<.y)~
O 1 O

O O 1
V

-i - - ·
Oe O

V V
2

1- - '-
c2
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" ,

Longitud propia de una distancia es su longitud medida en el sistema en
que tal objeto está en reposo. Si la llamamos lo se verifica

donde Uo es el volumen propio del cu erpo.

Para esta transformación d e LORENTz la matriz A (afJ. v) será:

Calculemos ahora l:a longitud de 1 medida en el nuevo sistema. Los extrem os
tendrán unas coordenadas

V ·
x'1-i - -X'4

C
Xl = Xl =

11 1 - ~2 11 1.: ~2
Y la misma longitud medida en el sistema prima será: l' = X'l - x'1

cuando nos refiramos al mismo instante de tiempo: X'4 = X'4.

donde 1 es su longitud medida en el sistema que 'se mueve con úna ve loci­
dad V. Los objetos tienen su máxima longitud vistos desde el sistema en '
que están en reposo. La di sminución de longitud que aparece cuando se les
observa desde otro sistema se llama contracción de LORENTz.

Puesto que las dimensiones tranversas no cambian en esta transforma­
ción especial de LORENTZ el volumen Q de un cuerpo disminuye de acuer­

do con la fórmula '

! REVlSTA, DE ' LA A'CADEMIA DE CIENCIAS EXACTAS, F/SICO· QUIMICAS y NATURALE::;



(1.51)

(1.50) .

(1.49)

1/ V2
\)3 1 - ~ (1.52)

1- '\JI
V .

c2

R "E i A TI V 1 S T A

'\J/a=

- 22 1 -

1/ V2
'lJ2 1 - - -. c2

U
, dx~

~= ds

CU ÁN T I C A

'\JI ­
2 -'IJ/1 =

u tili zando los coeficientes a¡J."" de la transformaci ón ,esp ecia l de LORENTz, ob­
tenemos, como se ve la ve locidad ordinaria '\Ji de un punto mate ria l des-

de un sistema e n mo vimiento con una veloc idad re la tiva ordinaria... V~ res­
pecto al sistema en que h ab íamos medido '\Ji ' Esto nos da, esencialmente, la
fórmula para sumar velocidades e n la teo ría de l a relatividad restringirla

, 2

ds . cdt 11 1 - . ~~

Pod emos ver que U~ es un ve ctor universo al considerar q ue es el co­
ciente de un vector universo, dx~, por un escalar. La velocidad unive rso,

de esta p artícula vista desde un nuevo sistema inercial será

C 1 N E M Á T ' 1 C A

Observemos que el vector velocidad universo es una cantidad sin d im en ­
sione s que satisface la relación

donde x~ es la posición del punto material y ds es el elemento de interva­
lo cuyo valor es

aquí "\Ji es la velocidad ordinaria del punto material en 'el espacio tridime n­
síonal. Por con siguiente , obtenemos

bit velocidad en el espacio de MlNKOWSKI es un ve ctor universo que de­
finimos así:

9. VECTORES UNIVERSO VELOCIDAD Y ACELERACION

cuyo determinante es positivo. Luego ' es una transformación propia de
LoREÑTZ.



(1.53)

(1.55)

(1.56)

V 3 =0

V'3 = o

V'3 = 1)3 .

sen e

u' 2 = V2

V 2 = usenfl

V'2 = u'sen fí '

l! l-~
V

--- + cos e
e

u I! l_-;- sen e
11 cos e - V

tg e' =
\

tge'=

V'l = u'c osfl'

VI = ucosf

y en el otro sist ema será

'U'l = u- V

Con ayuda de las fórmulas anteriores para transformar el. vector ve loci­
dad ordinaria' se obtiene

.. r'
le iguales ,a

A partir de las fórmulas de transformación se obtien en los siguientes
valores para sen 6' y cos 6'

..

,
Escojamos un sistema de coordenadas cuyos ejes sean tales que ' la 'veloci­
dad de la partícula esté en un cierto instante en el plano XtX!. Entonces la
velocidad de la partícula será

XEVISTA DE LA ACADEMIA DE CIENCIAS EXA CTAS , F/SICO - QUIMICAS y NATURALES
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conocidas en la Mecánica Clásica.
Cuando la velo cidad V es más pequeña que la velocidad de la luz las

V
fórmulas anteriores, desarrolladas en potencias de-- son aproximadamen-

e

de donde claramente se deduce que ni aun sumando velocidades relativas
podemos conseguir una mayor que la de la luz . En el caso ,en que nuestros
cuerpos y sistemas se muevan con velocidades ordinarias muy pequeñas res­
pecto a la ve locida d .de la luz , las fórmulas anteriores se convierten en

fórmula que da el cambio de dirección de la velocidad al cambiar. el sis­
tema de refer encia. Como un caso particular estudiemos la aberración de la

. luz, o sea , su cambio de dirección al observarla desde' otro sistema iner­
cial. En este caso v = u' . e, .y, por consiguiente,
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(1.61)

(1.60)

(1.59)

(1.58)

R E L A T 1 V 1 S T A

. a V
COS ti ---

cos 6' = c
V

1- - - cos e
e

dU¡.¡.

ds

+(v l~'+)

+(Vl~+)

W¡.¡.U¡.¡.=o

sen e

W ¡.¡.=

i

C UANTICA

1

~/ V21---
sen 6' = I c

2

V
l---cosf:J

c

La aceleración y velocidad universo son perpendiculares.

Diferenciando la exp resión U2 ¡.¡. I== - 1 respecto al int ervalo S se tiene:

lo cual da

. ...!....V
sen 6' - sen e= '- - sen ecos e

e

En el caso en que V ( e esta fórmula se convierte en .

Generalizando los conceptos de la Mecánica Clásica atribuiremos a un
punto material cuya mas a m edida en el sistema en que está en reposo es mo

el siguiente momento lineal universo.

CINEMATICA

10. VECTORES UNIVERSO, MOMENTO LINEAL Y FUERZA

. -V .
Aa = -- sen e (1.57)

e

expresion muy conocida para la aberración de la luz. /"
El vector aceleración universo ' de una partícula es definido así:

y llamando .M = 8' - e el ángulo de aberración se tiene



(1.63)

(1.62)

(1.65)

(1.64)

(1.66)

(1.68)

(1.67)

' iE
P4 = - ­

e

m ·m= o

1/]- V I
2

c2

Ahora bien, se obtuvo antes U1'-2 = -1; p or consiguiente,

REVIST A DE I.A ACADEMIA " DE CIENCIAS EXACTAS, FlS/CO -QUIMICAS y NATURALES

como la energía de un punto material de masa en reposo mo y cuyo mo­
mento lineal ordinario (de tres componentes) es PI'

Para velocidades VI pequeñas en relación a la de la luz P, «< moc y en­
tonces

y de aquí se llega a

Si aceptamos la hipótesis segúri la cual la masa de un cuerpo varía con
su velocidad de acuerdo con la fórmula
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se tendrá para estos tres componentes del momento lineal

PI = m,v l

que son totalmente equivalentes a los de la Mecánica Clásica, y, por con­
siguiente, PI son las variables canónicas conjugadas de las XI' Puesto que la'
energía E es la va riable canónica conjugada del tiempo, P4 será, salvo el

coeficiente _i_ , la energía del punto material. D e hecho
e

que es , salvedad hecha del término m oc
2 , la expresion de la Mecánica Clá­

sica para la energía cin ética de un cuerpo de m asa mo y momento lineal PI'

El primer término del desarrollo .

cuyas tres primeras componentes serán

P m o

I - l!c=l-_--~--;;2,-

es la ene rgía de reposo del cuerp o material e implica que, por el mero
hecho de existir y tene r masa, tal cuerpo contiene almacenada en su interior
la energía Eo' Esta fórmula h a sido comprobada experimentalmente con tod a



(1.72)

(1.71)

(1.70)

(1.73)

(1.69)

f.1

REL ATIVI ST A

dP¡
dt

C U ANT ICA

F¡=

Las tres primeras componentes son

dPIl

ds

C INEMATICA
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Introduzcamos fin almente la fuerza universo definiéndola como s~gue :

Supongamos que la velocidad de la partícula cambia únicamente en di-

Observem os qu e se verifica

por lo que se tiene

. . dP
d onde f, =Tes la fuerza ordinaria. La cuarta componente es

y está relacionado con .la potencia ' i». de la fuerza ordinaria ti'
Hay que hacer constar que las ecuaciones de movimiento de la Mecánica.

Clásica t¡ ' ~¡ tienen aquí una interpretación distinta, ya que hay qu e

considerar la variación del momento ordinario p¡ debido al aumento de la
velocidad de la partícula, según la fórmula

exac titud por medio de las reacciones nuc leares; no se puede dudar su
va lidez; es el fundament o de las aplicaciones de la energía nuclear.

Las Ieyes de transformación de momento universo serán las correspon­
d ientes a un vector.
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(1.74}'

(1.75)
~-

dt

d

dt

Por consiguiente, el cociente de la fuerza ordin aria ti a la acel eración-

dUI d b- - es istinto en am os casos.
dt

En la Mecánica Clásica, que es covari ante respecto a la tr ansformación.
de Galileo , era posib le manejar el concep to de cuerpo rígido ya que, al'. .
cambiar de sistema de referen cia según la transformación de Galileo, las .
dimensiones del cuerp o rígido eran inva riantes. Pero, según hemos visto, las­
tr ansformaciones de LORENTz, b ajo las cuales la Mecánica Relativista es co-­
va ria nte, implican la cont rac ción de LORENTz y, por consiguiente, las dimen­
siones de un cuerpo rígido no serán las mismas si las m edimos desde un ­
sistema en movimiento o desde el ' sistema en qu e el cuerpo esté en rep oso.
Por consiguiente, la Mecánica Relativista no es compatible con el concepto­
de cuerpo rígido.

La impos ibilidad de existencia de cuerpos rígidos puede ser demostrad a.
de otra forma. Supongamos qu e a un cuerpo rígido se le aplica una fuerza
externa qu e le mueve : si el cuerpo fuera realmente rígido, todos sus puntos
empezarían a mov erse simultáneamente en el momento en que aplicámos
la fuerza exte rna; si así no ocurriera el cuerpo no sería rígido, sino qu e se ·
h abría deform ad o. Ahora bien, e l hecho de que todos -los puntos del cuerpo­
rígido empiece n a moverse simultáneam ente es inc ompatible con los prin­
cipios de la Mecánica Relativista, ya que una señal -la acción de la fuerza .
externa- se habría propagado con una velocida d mayor que la de la Iuz..
de hecho, con un a velocidad infinita .

Por consiguiente, no existen cuerpos rígidos en la naturaleza, aunque '
tal concepto es una aproximación muy económica en el caso de pequeñas:
velocidades. Todo cuerpo ha de ser deformable, una distribución de materia
en el espacio ; de aquí que en el fondo para estudiar los cuerpos hemos:
de considerarlos como campos.

Podemos aplicar estas ideas a las partículas elementales. Si llamamos:

REVIST A DE LA ACADEMIA DE · CIENCIAS. EXA CTAS , FISICQ " QUIMICAS y NATURALES

ordinari a

Pero si la velocidad cambia sólo en magnitud - es decir, si ti y DI son.
paralelos- . un simple cálculo da

11. PARTICULAS ELEMENTALES.

rección -es decir, que ti sea normal a Di ' o sea qu e i».=0-. Entonces
se tiene
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12. ENERGIA D E ENLACE.

R E L A T 1 V 1 S T AC U A N TI C AC I N E MAT I CA

Si la Mecánica Cuántica que construyamos ha de estar de "acue rdo con
el Principio de la Relatividad antes enunciado, hemos de utilizar exclusiva­
mente en su fundamentación cantidades físicas cuyas leyes de transforma­
ción bajo las transformaciones de LORENTZ sean bien conocidas; es decir,

han de intervenir únicamente escalares, vectores, tensores ... universo.

Si nos limitamos a estudiar los fenómenos dinámicos, las fórmulas ob ­
tenidas para el movimiento del punto m aterial son aplicables a un cuerpo
formado por muchas partículas. En este caso la energía total del cuerpo es
la suma de las energías de sus componentes.

Si M¿ es la m asa en reposo del mismo, su energía total es

M~c2

así a las que no tienen partes, de forma que en cualquier experimento entren
como un todo, puesto que han de ser cuerpos rígidos, llegamos a la con­
clusión de que las partículas elementales han de tener radio nulo. Ahora
bien, de hecho los cuerpos que consideramos partículas elementales ocupan

cierto vo lumen; por consiguiente, han de ser ' una distribución d e materia
en el espacio y, por lo tanto, tienen partes . Así, pues, el concepto de
partícula elemental es relativo respecto de los ' experimentos que con ella
realizamos; y no es sino una hipótesis - apta para estudiar e l microcos­

mos con nuestros medios actuales .
Como consecuencia general de este apartado, diremos que la Mecánica

Cuántica Relativista nos lleva necesariamente a la Teoría d e Campos
Cuánticos.

13. CONSECUENCIAS D EL PR IN CIPIO DE RELATIVIDA D .

donde VI es la velocid ad del mo vimiento del cuerpo como un todo. Por con­
siguiente, llegamos a la conclusión de que en Mecánica Relativista la eriergía
de un' sistema cerrado es positiva siempre, mientras que en Mecánica Clásica
la en ergía total puede ser positiva o negativa.

La energía interna de un cuerpo, M oc 2 contiene,.. 'además de la energía
en reposo de cada una d e sus partes m oA c2, la e ne rgía de enlace entre las
distintas partes. En otras palabras, Mo no es .~ m oA' por consiguiente, en la

Mecánica Relativista, la Ley de conservación A de la masa no es válida; la
masa de un cuerpo compuesto no es igual a la suma d e las masas de sus
constituyentes. Sin embargo, la ley de conservación de la energía total, en

• la : que se incluye la energía en reposo, es verdadera. "
La cantidad 11. Moc 2 = (M o - ~ m OA) ¿. , e s la ene rgía de enlace del cu erpo.
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(1.78)

(1.79)

(1.77)

(A¡L<l ¡L +m) 1lJ (x) = o

(<l2¡L + ro) rp (x) = o

En general las ecuaciones del movimiento serán ecuaciones en derivadas
parciales, <l¡.<, aplicadas a la cantidad cuyo movimiento estudiamos. Veamos

como tal operador se transforma

R EVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS , F/SICO· QUIMICAS y NA TURA LES

(1.76)

Luego <l¡L se transforma como un vector, y, consiguien temente, las cuatro
derivadas <l¡L han de aparecer de forma simétrica en las ecuaciones del mo ­
vimiento. Si A,.l es un vector universo, dos ecu aciones aceptables serán

donde 1lJ y rp son las cantidades cuyo movimiento estudiamos.. Se suele
utilizar la notación siguiente: .

En las anteriores ecu aciones, m ha de ser un escalar. De hecho, la se­
gunda se llama ecuación de KLEIN-GORJX)N• .

En particular. hemos de tener en cuenta que las operaciones de medida
de las propiedades físicas de un sistema han de hacerse en puntos universo
todos ellos situados e n una superficie espacial (J. Por consiguiente, exigir
la medición simultánea de todas las propiedades de un sistema no será ac ep­
table sino' que más bien h emos de construir e l Alg ebra de la Medida consi­
derando superficies espaciales en las que realizamos todos los experime ntos.

MU9hOS ' resultados, tales como la probabilidad de que una partícula que
estaba en X¡L llegue a X¡L' han de ser independientes de la superficie espa­
cial (J = (J (x) que , conteniendo al punto X¡L, hayamos utilizado para realizar
las medidas de las cualidades de la partícula. Es , pues, necesario demostrar en

estos casos que tal resultado (la probabilidad) .es independiente de la super­
ficie (J = (J (x) elegida. Una vez hecho esto, podemos utilizar en particular
la superficie esp acial X4 = constante , que es la que generalmente se emplea
en la Física. ' .

Semejanternente en la Dinámica Cuántica no toda ecuación del movi­
mi ento será físicamente aceptable, ·sino exclusivamente aquellas que sean
covariantes. Es interesante ver cómo han de ser estas ecuaciones.

<l
Introducimos el op erador-\,-- , derivada parcial respecto a x¡L, y p ara

uX¡L
simplificar . la notación escribirnos
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n _
rre-

(1.80)

R E L A T 1 V 1 S T A

F [a'] - F [a]

¡: d4x

CU A N T I C A.

ClF[a]

Cl a (x)

CIN E MA TIC A

(16) T OMONAGA, S. : Prog. T heor. Phys 1, 27 (1946 ).

(A'.... Cl/¡.L + m) '\jI' (x') = o

(/) /2¡.L + m) <p' (X') = o

donde x es un punto sobre a, la superficie espacial a' es una superfi cie que

difiere muy poco de a alr ededor del punto x 'jJ'a' d4x es el volume n del
. a

dominio tetradimensional entre a' y a. .
Puesto que en la definición de esta derivada funcional (16) todos los ele­

mentos que entran son invariantes, tal concepto será apropiado p ara estable­
cer las ecuaciones del movimiento.

En el espacio tetradimensional de M1NKOWSKI podemos considerar las si­
gui entes clases de integrales:

a) Integrales a lo largo de una .curva universo r . El elemento de int e­
gración es dx¿ que se comporta como un vector

¡ f(x)dx¡.L
r .

donde entende mos que f (x) = f(xl, X2, Xa, X4)

donde, por ejemplo,

En otro sistema inercial, las ecuaciones (1.78) según el Princip io de
latividad dado deberán ser

Las ecuaciones hamiltonianas del movimiento no son covariantes relatí­
vistas, pues dan a la derivada respecto al tiempo, Cl4, cierta preponderancia
sobre las otras tres, /)1' Sin embargo, estas ecuaciones hamiltonianas serán

. aceptables cuando los efectos meramente relativistas no sean importantes.
En general, una cantidad física será expresada como una funcional F [a]

sobre una superficie espacial. Definamos otra clas e de derivadas muy inte­
resante para est ablecer las ecuaciones del movimiento:



(1.82)

(1.81)dS "u v = _l_ E¡tv),p dS)"p
2

que cumple la rela ción
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•

que geom étrlcamente define el vector-unive rso normal a la superficie O' de
longitud igual al ár ea del elemento de superficie. Si O' es una superficie es­
pacial, d O':,L es un vecto r temporal.

La integral que resulta

que se obtiene cua ndo tomamos como superlicie O' la X.¡ = constante pro­
pi a de la Mecánica Clásica. V es el volumen ord ina rio.

d) . Integrales sobre un volumen tetraelimensional, L . El elemento de in­
tegración es

no es sino la gen eralización covariante rel ati vista de la int egral sobre el
volumen ordina rio

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO - QUIMICAS y NA TURt1LES

que geométricamente describe un elem ento de superficie , igual y normal
al elemento dS u-v, de forma que todas las líneas en dS" u.v son perpendicula-
res a toda línea én as., .

Esta clase de integrales casi no se usa.
e) In tegrales sobre una superlicie tridi mensional , 0', hipersuperficie. El­

elemento ele integración es el· vector universo

Es conve niente introducir aquí un a generaliz ación del teorema de G AUS S

qu e conviert~ integrales sobre una superficie tridimensional (hipersuperfi­
cíe) en integral es sobre un volumen tet radimcnsional encerrado por la ITÚS­

ma. Para ello necesit am os hacer la sustitución

b) Integ ral es sobre una superficie bidimensional, S. El elemento infini­
tésimo de superficie está determinado por un tensor antisimé trico de segun­
do rango, dS (..l v, cuyo s compo nentes son igu ales a las. proyecciones del áre a
del elemento de superficie sobre los planos de coorde na das. Podernos cons­
trui r el tensor dual dS '"u.v
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(1.84)

(1.89)

(1.85)

(1.87)

(1.88)

RELATIVI STACU AN T I C A

5 a(x)

F[ cr] Ja do"¡J. F¡J.(x')

si F¡J.(x) es diferenciable en a, se obtiene

GI NEM ATI CA

y así, por ejemplo, para la integral del ve ctor .t\.1-l se tiene

~ dcr¡J. A¡J.=J~4X 5fJ.A¡J.

Intentamos dar ahora unos teoremas importantes sobre las derivadas fun­
cionales presentadas en (1.80) cuando la funcional F [cr] pueda ser escrita
como una integral sobre la superficie a

,

f¡ F4 (x) = ~ _5_ F4 (x)
e bt

_ 5_ F¡J.[a] = Jim r{ -J JdaIF(Xi) /Ja
l

d4x=5¡J.F(x) (1.86)
5a(x) a' .....,) o • a' a a

De forma semejante, en el caso de la funcional

.j.

de la función F(x) diferenciable en los puntos de (J. Por medio del teo rem a
de CREEN deducimos la siguiente relación

de donde deducimos que la funcional F[al es independiente de la superfi­
cie a cuando F¡J.(x) satisface la ecuación de continuidad

Este teorema es la expresión covariante relativista del caso bien conoci­
do en que en lugar de una superficie espacial a cualquiera tomamos la su
períicie espacial X.¡ = constante; entonces

. F[X4] = fVd3X F4(x)

integral extendida a todo el volum en tridimensional V ocupado por el sis­
tema en el instante x.¡ = constante. Así, F [x.¡} es independiente del tiempo
si se verifica

que es la ecuación de continuidad.



(1.90)

(1.95)

(UJ4)

(1.92)

(1.91)
()

()(J(x)
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llegamos a la conclusión de que la cantidad

es también un invariante relativista.

donde ds» es el elemento de ángulo . sólido alrededor de Ia dirección del
vector ordinario Pi. Pero puesto que

pdp,1::=+ EdE
c

Entonces

es una cantidad invariante, puesto que es el cociente de los cuartos com­
ponentes de dos vectores, dn:¡J. y P ¡J., constantemente paralelos.

Si introducimos coordenadas esféricas en este espacio de momentos se
tiene

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FIS/CO -QUIMICAS y NATURALES

que es una esfera. (Véase 1.82).
El elemento de superficie, d1t¡J.' es un vector universo, construído de for­

ma semejante a d(J¡J. en (1.82) y normal a tal superficie; pero en nuestro caso
la dirección de la normal .coincide con la dirección del vector Pw Por con­

siguiente, el cociente

P 2 1::= _ mi 2 c2¡J. o .

Si F [x, (JJ depende explícitamen te de (J podemos generalizar los concep­
tos anteriores

donde () significa derivación respecto a los argumentos que depen-
() (J(x)

()
den explícitamente de (J y quiere decir derivada tot al obtenida al

() (J(x)
calcular la variación total resultante de deformar la superficie (J.

En algunos cálculos hemos de trabajar con integrales sobre e l "espacio
de momentos". Es interesante conocer la conducta de dp¡ dp, dp, bajo la
transformación de LORENTZ. Si introducimos un espacio tetradimensional,
cuyos ejes de coordenadas corresponden a las cuatro componentes del mo­
mento de un punto material, dp¡ dp, dps, puede ·ser considerado como el
cuarto componente de un elemento de superficie tridimensional determina­
da por la ecuación
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(17) H ANS FREISTADT: Revista M exicana de Física. V , 43 (1956 ).

(1.96)

(1.97)

RELATIVISTACUANTICAe ·1 N E M A TIC A

Preciso es advertir que la exp osición covariante -del Principio de Rel ati­
vidad que hemos hecho no es la única posible (17). Cab e una interpretación
invariante en la , que p or ejemplo los coeficientes YIJ. de la ecuación

fueran considerados como invariantes' numéricos a Iris tr ansformaciones de
LORENTz. Tal es de hecho el punto de vist a adoptado ini cialm ente por EINS­
TEIN. La ecuación anterior en otro sistema sería

Es,ta es la ecuacion de DIRAc, quien utilizó el rnismo punto de. vista de
EINSTEIN para estudiar el electrón.

La disputa ' entre los puntos de vista covariante e invariante, no puede
ser decidida en el momento actual. Cuatro tipos diferentes d e ecuaciones
han sido profundamente estudiados hasta la lecha: las de MAXWELL, las de '
KLEIN-GoROON, las del electrón de DIRAC y las de la gravitación de EINSTEIN.
Las dos primeras presentan la misma formulación bajo ambas interpreta­
ciones -covariante e invariante- del Principio de Relatividad; La ecua­
ción de DlRAC ha sido estudiada según la interpretaci ón invariante, pero la
de la gravitación requiere la interpretación , covariante. De hecho esta inter­
pretación covariante es la utilizada por la relatividad general, que es una
teoría intrínsecamente geométrica y, como consecuencia, han pasado de
moda las ideas originales de EINSTEIN a favor de la interpretación covarian­
te de MINKOWSKI. Quizá ambas interpretaciones sean solamente proyeccio­
nes parciales de un principio básico aún desconocido. En el estado actual de
l~ investigación científica parece que el punto de vista de la covariancia es

el más fructífero.
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CAPITULO II

PRINCIPIO DE CUANTIFICACION DE PLANCK

1. SISTEMAS EN LA MECANICA CUANTICA

La Mecánica Cuántica estudia los sistemas físicos del microcosmos, es
dec ir, aquellos cuyos tamaños son del orden de magnitud atómico o nu­
e! -a r (18;.

Según las ideas de la Física Clásica, debernos explicar las propiedades
de un cuerpo material atribuyendo a las distintas partes que ,forman su es­
tructura ciertas cualidades. Así, por ejemplo, explicamos el conc epto de tem­
peratura de un gas por medio de la teoría cinética suponiendo que sus ino­
l éculas se mueven com o esferas elásticas cuya interacción mutua es despre­
ciable; un segundo p aso consiste ' en comprender por qué ' esas . moléculas,
al considerar su estru ctu ra atómica, se comportan como esferas dotadas de
esas cualidades.

De esta forma vamos construyendo "modelos" con cuya ayuda podemos
continuar el estudio de las propied ades físicas de los cuerpos. No se crea
que obtener estos "modelos" es tarea fácil ; mucho se escribió durante el
pasado siglo acerca de la relación entre temperatura y calor, p ero todo era
parcialmente falso hasta que se ' des cubrió el modelo apropiado : la . teoría
cinética.

Mientras los conceptos de grande y pequeño sean relativos, esta cadena
no puede romperse. La Ciencia tenía que estudiar un nivel material por
medio de otro más pequeño . Sin em bargo, los sist emas de la Mecánica ,Cuán­
tica introducen un camb io en esta cadena', aunque no la rompen; su tama­

ño es pequeño respecto al observador, y, como no podemos hablar de Cien­
cia sin observación, su tam año es pequeño absolutamente. La Mecánica
Clásica no es válida p ara estos sistemas, ya qu e las ideas que la cons­
truyeron, las cuales imaginan despreciable la perturbación producida por el
proceso de observación en el cuerpo físico, no son ciertas en estos casos .
Quizá hayamos de seguir explicando un nivel materi al por medio de un mo­
de lo construído con cuerpos más pequeños ; pero el significado de experi,
mento habrá variado, ya que el observador ha de entrar en nuestra teoría.

La palabra sistema utilizada en este trabajo significará sistem a de . la
Mecánica Cuántica, o sea, aquel que por su pequeñ o tamaño sufra una per-

(18) La teoría de la superconductividad es un a excepción, Conceptos mecanicocuánticos
han de ser aplicados a un superconductor globalment e, aunque pOI sus dimen siones pertenece
al dominio de la Mecánica Clásica. ' .. .... . ,"
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2. ESTADOS DEL SISTEMA

turbación no despreciable al -ser observado . Sin em ba rgo, de hecho, en los
experimentos llevados a cabo en laboratorios, no podemos manejar siste- '
mas individuales sino que utilizam os un "conjunto" de sistemas id énticos,
al que llamamos m acrosistem a. Y así pretendemos estudiar las p ropied a­

des del fotón individual - sistema-, aunque para hacerlo, en realidad siem­
pre estudiamos las propiedades de un h az de fotones, -macr ()sistema.

Se desprende de aquí qu e la Mecánica Cuántica ha de tener cierto ca­
rácte r estadístico que presentaremos a ' lo largo de estas lecciones.

R E L_ A _1' .. 1_ V 1 S T AC UAN1' ICAC I NEMAT ICA

Los conceptos de la Físicaevolucionan continuamente para incluir cada vez
más sintéticamente el elenco de conocimien tos que van su rgiendo de ' los
nuevos experimentos que cada día nos present an aspe ctos desconocidos y
no imaginados de la cond ucta del mund o material.

Las poderosas máquinas de acelerar p artícul as han mostrad o que m e­
diante exp erimentos somos cap aces de crear y de aniquilar sistemas. La in­
teracción del hombre con la N aturalez a puede ser tan fuerte que, no sólo
la modifica al e studiarla, sino que incluso llega a hacerla de saparece r o es
capaz de sacarla de donde no estaba: No hemos podido aún crear todos los '

o s istemas físicos mediante experimentos, p ero sí hemos "creado todos los sis­
temas, partículas, que la potencia de nu estros ap aratos eran capaces de crea r.
y tan pronto como hemos construído vm ejores máquinas aceleradoras han
aparecido nuevas partículas creadas artificialmente .

Suponemos , pues, que, en principio, somos capaces de crear o aniquilar
cualquier sistema. '

Esta fauna de no existi r de un sistema, el es tado físico que solamente
tiene la cap acida d de que de él, mediante experimentos, podemos crear un
sistema, se llama estado vacío del sistema. No pued e definirse más que por
In. neg ación de lo. que observam os en el sistema ya creado . El esta do vacío
es e l estado 'en que el sistema 'existe en p otenci a; es el esta do al que nuestro'
sistema va cuando ' 10 aniquilamos. '

No' podernos decir que un sistema tenga va rios, estados de vacío, puesto
que si así fuere, habríamos de , conside ra rlos 'el mismo, estado ,y a1que' nada
podríamos medir que los distinguiera. ' ' " . .

H emos de concluir que el estado vacío de un sistemaFísico ,es indep en­
diente del tiempo, pues .no es posible medir el tie,mp"l) ,'i;lo)iCle nada hay; por
la misma razón el estado de .vacío es independiente de cualquier otra coor-
denada. . ' ,

-; 'Con el sis tema ya creado podemos ~~aIizar muchos experirrientos que ,
midan sus . p ropied ades. ,Así, los estados físicos de un sistema ..son el estado .
vacío y los estados obs ervablesvque expres an las divers as formas de ser de,
un sistema cuando 'al medir sus atributos 'no modificamos su exist ir. '

Para construir la Mecánica Cuántica hemos de estudiar primero los es­
tados obs ervables de los cuales, por neg ación, podemos definir el" estado'

, , .... ,, 1 , ' I
vacro,
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CAPITULO II

PRINCIPIO DE CUANTIFICACION DE PLANCK

1. SISTEMAS EN LA MECANICA CUANTICA

La Mecánica Cuántica estudia los sistemas físicos del microcosmos, es
decir, aquellos cuyo s tamañ os son del orden de magnitud atómico o nu ­
~: . -a r (lB;.

Según las ideas de la Física Clásica, debernos explica r las propiedades
de un cuerpo material atribuyendo a las distintas partes que forman su es­
tructu ra Ciertas cualidades. Así, por ejemplo, explicamos el concepto de tem­
peratura de un gas por medio de la teoría cinética suponiendo que sus uro­
l éculas se mueven como esferas e lásticas cuya interacción mutua es desp re­
ciable; un segundo p aso consiste ' en comprender por qué ' esas . moléculas,
al considerar su estructura atómica, se comportan como esferas dotadas de
esas cualidades.

De esta forma vamos construyendo "modelos" con cuya ayuda podemos
con tinuar el estudio de las propiedades físicas de los cuerpos. No se crea
que obtener estos "modelos" es tarea fácil; mucho se escrib ió durante el
pasado siglo acerca de la relación entre tempera tu ra y calor, p ero todo era
parcialmente falso hasta que se de scubrió el modelo apropiado : la . teoría
cinética. .

Mientras los conceptos de grande y pequeño sean rela tivos, esta cadena
no puede romperse. La Ciencia tenía que estudiar un nivel material por
medio de otro más pequeño . Sin em bargo, los sist emas de la Mecánica _Cuán­
tica introducen un carnblo en es ta cadena; aunque no la rompen; su tama­

ño es pequeño respecto al obs ervador, y, como no podemos hablar d e Cien­
cia sin observación , su tam año es pequeño absolutamen te . La Mecánica
Clásica no es válida para es tos sistemas, ya qu e las ideas que la cons­
truyeron, las cuales imaginan despreciable la p erturbación producida por el
proceso de observación en el cuerpo físico, no son ciertas en estos casos .
Quizá hayamos de seguir explicando un nivel material por medio de un mo­
delo construído con cuerpos más pequeños; pero el significado de experi,
men to hab rá variado, ya que el observador ha de entrar en nuestra teoría.

La palabra sistema utilizada en este trabajo significará sistema de la
Mecánica Cuántica, o sea, aquel que por su pequeño . tamaño sufra una per-

(18) La teoría de la super conductividad es una excepción. Conceptos mecanicocuánticos
han de ser aplicados a un superconductor globalmente, a}unqu~ 'p'0r sus dimensiones pertenece
al dominio de la Mecánic a Clásica. .
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2 , ESTADOS DEL SISTEMA

turbación no despreciable al ser observado. Sin em bargo, de hecho, en los
experimentos llevados a cabo en laboratorios , no podemos m an ejar síste- .
mas individuales sino que utilizamos un "conjunto" de sistemas id énticos ,
al que llamamos macrosist ema. Y así p re te ndemos es tud iar las propí eda-'

d es del fotón individual - sistema-, aunque para h ace rlo, en realidad siem­
p re estud iamos las propiedades de un h az d e fotones. -macrosistema.

Se desp re nde de aquí que la Mec ánica Cuántica h a de ten er cierto ca­
rácte r estad ístico que presentaremos a ' lo largo de esta s lecciones.

R E L A _T 1- V 1 S T ACUANl' lCA

v acío.

.c INE MAT ICA

Los conceptos de la F ísicaevolucionan continuamente para incluir cada vez
más ·sintéticamente el elenco d e con ocimientos que van surgiendo de ' los
nuevos experimentos que cada día nos presenta n aspectos d esconocidos y
no imaginados de la conduc ta del' mundo mate rial.

.Las poderosas máquinas de acele rar partíc ulas han m ostrado que m e­
di ante experimentos som os capaces de crear y de an iquilar sistemas. La in­
teracción del h ombre con la Naturaleza p uede ser tan fuerte que, no sólo
la modifica al es tudiarla, sino que in cluso llega a hace rla de saparecer o es
capaz de sacarla de donde no estaba: No h emos po dido aúri cr ear todos los '

o s iste mas físicos mediante experimentos, p ero sí hemos 'creado todos los sis­
temas, partículas, que la p otencia de nuestros aparatos eran' capaces de cr ear.
y tan pronto como hemos construído m ejores máquinas aceleradoras han ,
ap arecid o nuevas partículas creadas artificialmente. 1

Suponemos, pues, qu e , "en p rin cipio, som os capaces de crear o an iquilar "
cualquier sistem a. .

Esta forma de no existir de un sistema, el e s tado físico que solamente
tiene la capacid ad de que de él, mediante experimentos, podemos crear un
sistema, se ll am a es tado vacío del sistema. No puede definirse m ás que por
la neg aci ón de lo. que observamos en el sistema ya Creado . El estado vacío
es el estado en que el sistema existe en p otencia ; es el esta do al que nuestro'
siste ma va cua ndo ' 10 aniquilamos. . .

No podemos decir que un sistema tenga varios estados de vacío, puesto
que si , así fu ere , habríamos de . considerarlos 'el mismo estado ya ,que' nada
podríamos m edir que los distinguiera, . . "" . : "~o .

H emos d e concluir que el estado vacío de un siste.!Jia,.fí.sJcó:'.es i~cJepen- '
diente del tiempo, pues .no es posible medir el tiempo dond e nada hay; por
la misma razón el estad o de vacío. es independiente de cualquier otra coor-
denada. . : , . .

. 'Con .el siste ma .ya creado pod emos realizar muchos experimentos que .
midan sus propi edad es . .Así, los estados físicos de un siste ma .son el estad o
vacío y los estados obs ervables, 'q ue exp res an las dive rsas formas de ser de '
un sistema cuando 'al medir sus atribu tos 'no modificamos su existir. '

Para construir la Mecánica Cuántica h emos de estudiar primero los es­
tados observables de los cuales, por negación , p od emos definir e l' estado'

. ,.. .. ., I ." ¡
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(2.1)

La transición que un sist ema realiza cuando pasa de su estado vacío a
un estado observable, es decir, cuando es creado, requiere una gran canti­
dad de energía'. En la Mecánica Cuántica Relativista, .tal como la presenta­
mos aquí, es abs olutamente necesario introducir el concepto d e estado vacío;
pero si quisiéramos construir una Mecánica Cuántica no Relativista, la cual
no incluyera fenómenos de muy · alta energía, sólo tendríamos que conside­
rar los estados .observa bles.

(19) J. V ON NEUMAN: Fundamentos mate máticos de la M ecánictl Cuántica.

Este conjunto de valores se llama espectro de valores propios de la pro-
piedad Al, Y la propiedad Al recibe el nombre genéri co de ob servable. Lo
ante rior es la expresión del Principio de 'Cuantificación de PLANCK: al me­
dir el valor de una propiedad en un sistema (no en un conjunto de sistemas)
ob tenemos un valor del espectro discreto correspondiente.

Para justificar .nuestra afirmación no es preci so que , de hecho, hayamos
obtenido todo el conjunto de valores propios de Al mediante experimentos '
sucesivos. Es evidente que si el espectro contiene infinitos elemen tos no po­
demos haber realizado un número infinito de ex-perimentos, pero sabemos
que, al menos, ten emos capacidad suficiente para ir continuamente repitien­
do experimentos y así obtener cualquier valor del espectro.

Sin embargo, . nunca debemos incluir en nu estra teoría hipótesis alguna
que no podamos comprobar experimentalmente.

Cuando realizamos una obs ervación en un sistema dado, e l sistema es
modificado por el observador que recibe ' la información. No afirmamos que
la propiedad Al se dé en la Naturaleza únicamente con los valores de su
espectro; no nos referimos a una realidad objetiva independiente del obser­
vador. Aceptamos como un hecho algo que viene de nuestros experimentos:
al. medir Al en cualquier sistema físico siempre obtenemos uno de los valo­
res contenidos en el conjunto de valores que llamamos su espectro.

3. ESPECTRO DE VALORES PROPIOS ··

Según NEUMANN por "magnitud hay que ' en tende r propiamente el cómo
debe ser medida y cómo hay que leer su valor en las posiciones de los ín­
dices de los aparatos de medición o calcularlo a partir de ellos" (19).

Supongamos qu e medimos un a cierta ma gnitud, Al, del sistema objeto
de nu estro estudio. Esta propiedad Al puede ser, por e jemplo, la posición
-del sistema o su spin. Observamos que siempre el resultado de medir Al en
cualquier sistema de un conjunto de sistemas idénticos nos da un valor con­
tenido en un conjunto de .valores.
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Si hubiéramos medido otro observable A2 también tendríamos uno de los

REL ATI VI ST AC U A NTI CACI NEM ATICA

De este hecho recibe esta Mecánica el apelativo de Cuántica. Al medir los
atributos de los sistemas físicos obtenemos ciertos valores que expresan que
la energía, la acción... tieneri un espectro discreto, se dan en Naturaleza "a
saltos", o sea, en "cu antos" de energía o de acción que no podemos dividir.

Estudiemos ahora el espectro de un obs ervable tal como la abscisa de
la posición de una partícula que, según hemos visto en la Mecánica Clási­
ca, parece tener un espectro continuo. Para llegar a esta conclusión supo­
níamos que tenía sentido hablar en Física del" punto matemático situado
sobre una recta. .

Una' forma de definir el punto matemático sobre una recta es considerar
en la misma una sucesión infinita de intervalos decrecientes, todos e llos con­
tenidos en los anteriores, y cuya longitud, a partir de uno dado, es tan p e­

queña como se quiera. Esta sucesión define un punto que es común a tod os
esos intervalos. .

Evidentemente p od emos suponer la existencia de máquinas, cada vez más
perfectas, que sean capaces de medir la longitud de cualquiera de esos in­
tervalos.

En verdad este supuesto no será válido para una máquina real, pues
todo aparato tendrá un límite de precisión y no será capaz de medir distan­
cias menores que él. Pero aunque esto es cierto creem os que, en principio,
podemos construir .aparatos capaces de medir distancias tan pequeñas como
se quiera, y así parece qu e somos capaces de medir la longitud de los infi­
nitos intervalos que constituyen la sucesión matemática.

Aunque admitamos 10 anterior no podemos llegar a la conclusión de que
el concepto de punto matemático tenga sentido en Física. Pues siempre
esas máquinas medirán intervalos, distancias finitas , aunque tan pequeñas co­
mo se quiera. Las rríáqulnas no son capaces de dar el salto al límite, opera­
ción con la cual definimos el punto matemático; este salto es una abstrac- .
ción que realiza nuestra mente y que está muy por encima del poder d e
la máquina. .

No tendremos, sin embargo, inconveniente alguno manejando el 'conc epto
de punto matemático en Física siempre que de hecho al introducirlo no lle­
guemos a contradicción alguna en nuestros cálculos. Y, de esta form a, po­

.demos utilizar herramientas, tales co.mo el concepto de derivada, ya muy
estudiados por los matemáticos.

• En otros casos hemos de ir con. más cuidado. Si aceptamos que todos los
puntos matemáticos de una recta pueden ser considerados como posibles
posiciones de una partícula en la misma, el espectro de valores propios del
observable abscisa X es continuo y; por consiguiente, no numerable, lo cual
le hace esencialmente distinto del espectro (2.1), que es numerable, ya ' que
a cada valor al ( ~ de (2.1) le podernos hacer corresponder un número al del

conjunto de números naturales. '
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4. OPERADOR SELECTOR

(2.3)

(2.2)

REVIST A DE LA ACADEMIA DE CIENCIAS EXACTAS, F/S/CO · QUIM.lCA.'i y NATURALES

qu e corresponde al proceso i'ísico que selecciona entre todos los sistemas del
conjunto aquéll os que tienen el valor al (a. del obs ervable Al ' Le llamaremos
operad or selector.

Para que e l álg ebra que va mos a construir tenga sentido físico es preciso
que los operadores selectores correspondan biunívocamente a experimentos
ele selecci ón que 'pued en ser llevados a cabo en un laboratorio. Tal experi­
mento, no tiene que damos el número ele sistemas , que tienen el valor al ( (7,

d e la cualidad Al ; únicamente ha dé ser capaz de sep ara rlos del resto. .Com o
resultado de esta clas e de e xperimentos ningún número resulta; solamente
varía el número ele sistem as que constituyen nuestro rnacroslstema, el haz
luminoso que atraviesa. el .selector.

Ad emás, hemos de especificar en qué .instan te .de tiempo tiene lugar el
experiment o, o, hablando relativísticamente, 'en .qué superficie espacial (J lo
realizamos. Sin embargo" para no .comp licar la notación, puesto que con
esta Algebra de la Medida, no hablamos más: que de cómo .describ lradecua-¡
damente los sistemas, sin pensar en su movimiento, escribimos ,

Consideremos un rayo de luz no polarizada. Tal haz luminoso estará
constituído por un conjunto de fotones. Supongamos que es te rayo incide
en un aparato que sólo deja p asa r luz polarizada en un cierto plano; la in­
tensidad de la luz que atraviesa nuestro aparato será menor que la que
incide en él. .

Ouerernos interpretar este fenóm eno estudiando la conducta de los fo­
tones que form an el haz luminoso, que e n nuestro caso es el m acrosistema.
Podemos pensar que la cualidad "p olarización" es algo p ropio de cada
uno de los fotones: luz no polarizada estará formada por fotones polarí­
. zados en todas las direcciones. Nuestro aparato selecciona ' los fotones que
están polarizados en un cierto plano: deja pasar éstos y rechaza todos los
demás.

y así introducimos el símbolo ,

Parece ser que el observable que debemos considerar es Xa que mida
exactamente si la partícula está o no dentro de un cierto intervalo de longi­
tud () tan pequeño como se quiera. Entonces medir la posición de una par­
tícula consistirá en dividir los ej es de coordenadas en un conjunto -enume­
rable- de intervalos de longitud () y decir en cuál de ellos se encuentra.
Advirtamos que el obs ervable X i} no lleva implícito en su definición el con­
cepto de error en la medida; () no e s el error que hacemos al conocer la
posición de una . partícula.

Más tarde veremos cómo podemos manejar op eradores de espectro con­
tinuo sin perder el sentido físico de los cálculos que con ellos hagamos.



•
(2.6)

(2.5)

(2.4)
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para un número n entero p ositivo cualquiera. '
La suma de dos selectores
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(20) En la realidad física es d íífcíl -comprobar (2.4), ya que las mediciones han de real í-,
zarse en superficies espaciales mu y próximas para qu e el estado no varíe; pero siempre tardamos,
un-corto int erval o de tiempo en realizar una medición. '

pues todos los sistemas que pasan el primer selector han de ' pasar el se­
gundo (20). Este hecho es fundamental; implica que si p or un primer ex­
perimento sabemos que ciertos sistemas tienen todos el va lor al (a de la cua­
lidad Al, y seleccionamos aqué llos entre éstos que tienen tal va lor al (a

de A l ha de resultar que todos lo tienen . En cierto se ntido implica , causa­
lidad: si los sist em as no son ' perturbados con acciones exte riores nada cam­
bia en ellos; si as í no fuera no podríam os habl ar de Cien cia.

En general se ha de ve rificar, si definimos la po tencia ele un selector
como el producto sucesivo del mismo por sí mismo, que

corresponde al experimento formado por dos experime ntos realizados con­
secutivamente: prime ro realizamos lo que significa el operador de la extrema
derecha y luego, sobre los sistemas que pasan esta primera selección, la
qu e corresponde al segundo selector. Por consiguiente ,

.ser á. el selector que corresponde al experimento que selecciona el conjunto
de sistemas formado por los sistemas seleccionad os por cada uno ele los
sumandos. Y así podemos generalizar este proceso para un número inele­
thminado 'de selectores. Esta definición 'de suma evide nteme nte la hace

. ' .

conmuta tiva.
Para completar nuestra álgebra hemos de definir un selector nulo, que

designaremos O Al que no' acepta sistema alguno. Corresponde, en el caso
-del haz luminoso, ' al experimento consistente en coloc ar una placa total­
mente opaca en la trayectoria del haz. Evidentemente se tiene

S(al (tX). 0 Al = O Al OAl S(al (O:) = O Al

oAl + S(al (a) , S(al (a)

entend iendo que todas las operaciones cin em áticas tienen lugar en un a su-
perficie espacial a. .

Con ayuda de nuestra intuición física que rem os definir operaciones al­
gebraicas con estos símbolos. Y así con venimos que el producto de dos

.d e ellos



(2.8)

(2.9),

(2.7)'

(2.10),

si a = ~

si a =F ~

Tratemos de interpretar ahora el siguiente producto

La relación (2.9) exp resa la ortogonalidad de los experimentos de selección.
Siempre que medimos el valor del observable Al en un sistema obtene­

mos un valor de su expectro (2.1). Este hecho se expresa algebraicamente
mediante la relación
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Diremos que dos atributos Al y A s son compatibles cuando la medida'.
del valor de Al en un sistema no modifica el valor de As en el mismo. Para
comprobar esto hemos de medir el observable Al, primero, y luego el As, y
obtener el mismo resultado que si invirtiésemos el orden con que realiza-o
mas estas mediciones. Se deduce inmediatamente .que si dos observables

REVIST A DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO · QUIlifiCA .') y NA TURAÚ ;::;

donde la suma se extiende a todo valor del espectro de Al' La relación (2.10)'
tiene un claro sentido físico, pues evidentemente el operador de la izquier­
da selecciona todos los sistemas, cualquiera que sea el' valor observable Al:
de los mismos, y, por consiguiente, es, por definición, 'el operador unidad..

5. OBSERVABLES COMPATIBLES

Combinando (2.4) con (2.8) se tiene

S(al ( él.) S(al W) = S(al (JJ) () :,l~

donde () :,lp es la delt a de KRONECKER cuya definición

El primer operador corresponde a un experimento que selecciona .10~

sistemas que tienen el valor al (¡.J de la propiedad Al y luego, seleccionamos
de éstos los que tengan el valor al ( él. de la misma propiedad. Por consi­
guiente, el experimento producto no acepta ningún sistema y se tiene

De forma análoga introduciremos el selector unidad, que designamos 1Al

que selecciona todos los sistemas que a él llegan cualquiera que sea el
valor de Al' Corresponde a la placa totalmente transparente. Y así, por con-
sideraciones físicas se ha de verificar .



(2.14)

(2.12)

(2.11)

(2.13)
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cuy o significado mat emático desconocemos por ahora .

No afirma mos que un sistema tenga necesariamente que esta r en uno de
los estados (2.13). D ecimos que siempre. que determinemos el estado del sis­
tema por medio de experimentos que miden los va lore s de los observabl es
A tendremos uno de los esta dos IaO:, cr ) , donde o indica la superficie es­
pacial en que esos experimentos tienen lug ar. Por consiguiente , en relación
a estos experimentos los estados (2.13) son los ún icos que existen. Y así, de
nuevo encontramos la premis a fundamental de la Mecánica Cuántica: no
podemos despreciar la interferencia entre el obs ervador y . lo obs ervado.

El índice a indica únicam ente que de cada uno de los observables A hemos
elegido uno cualquiera entre sus valores propios. Los diferentes a nos dan
los estados observables del sistema. Queremos inclu ir entre los é otro,
que llamaremos o", que corresponde a la negación de todas las cualidades A;

se rán, por decirlo así, los valores propios del conjunto de observables del
e stado vacío del sistema. Tal es tado vacío lo describirem os por el símbo lo
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Cuando, a partir de ahora, utilicemos la expreSlOn "para todo a" nos re­
ferimos a todos los estados físicos , o sea, a los estados observab les y al va­
cí o del sistema.

hemos agotado toda la información que pod emos tener acerca del sist ema.
El conjunto de va lores proplo s ic " dete rmin an un estado físico al cua l

haremos corresponder ' e l símbolo sigui ente

ao: ={.al (O:, a (O:2 , .. . ;,

Al Y A2 son compatibles los operadores selectores corresp ondientes con­
mutan

para cualquier par de superíndices a y ~.

Diremos que A es un conjunto completo de 'observables compatibles

cuando estos obs ervables son compatibles entre sí dos a dos y ningún otro
observable, que no sea función de los anteriores, existe que sea compatible

con todos los del conjunto. El conocimiento de los valores propios de cada
uno de los observables A j del conjunto completo A nos da la máxima infor­
mación de datos no contradictorios que podemos tener acerca de un síste­
ma físico . Este conjunto de valores propios determinan completamente el
es tado observable del sistema. Es d écir, conociendo el conjunto de va lores
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(2.15)

(2.18),

(2.16)

(2.19)

(2.17)

K K

S (ao:) S (all ) = 11 S (ap·;) S (aj(lj ;) = rr 8aj'[3j S (ajeal) =
j =1 j =1

K K
= TI 8aj,[3j n S (aj(a') = 80:. [3 S (ao:)

j = 1 j = l

K

8CI;' [3 = rr 8o:i,[3j
j =1

cuyo va lor es uno cuando a j = ~j para todo ;, y cero en ' todo otro caso .

El signo E inclica que aj pertenece a a . Como antes , tampoco indicare­
mos exp resame nte la superficie (J del selector completo y así escrib ir~mos

O:j E o:

I a(\ (J ) I aa )

aunque solamente el estado vacío es independiente de (J.

6. SELECTORES COMPLETOS. - OPERADORES COMPUESTOS

K

So (aa) = So (al la,.) . So (a21«'2) ... So (ajeo:;) . . . So (ak(O:') = rr So (a/ O:j )
j-I

donde el. conjunto de índices I a l , a2, . .. . a j, . .. , ak I lo h emos designad o
genéricamente por una letra griega a que los contiene

Hagamos corresponder al experimento de selección de los sistemas que
están en un cierto estado I aO:, (J ) un operador selector completo llamare­
mos S.,.(aO:).

Evidentemente se debe verificar

donde hemos introducido una nueva delta de Kronecker de la siguiente
forma:

pero en tendiendo que en nuestros cálculos habrá que indicar explícitamente
en qué superficie espacial estamos realizando los experimentos.

Definiremos las operaciones producto y suma de selectores completos de
idéntica forma como lo hicimos para selectores simples. Y así, por ejemplo,
se tiene

Observemos que el estado vacío es independiente de la superficie espa­
cial (J la cual no tiene sentido en el vacío.

Los estados físicos I aO:, (J ) par a todo a son llamados estados unidad del
conjunto de obs ervables A.

Simplificaremos la notación escribiendo



(2.20)

(2.21)

(2.24)

(2.23)

(2.22)

R EL ATI VI S T A

S (a!', aO)

CUAN T ICA

S (aIJ , aa.) =1= S (aa., a'') SI a =1= ~
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cuando a se extienda a todo est ado físico.
Preciso es hacer aquí una observación respecto al rigor matemático de

estos productos y sumas' que pueden contener infinitos térmicos cuando un
observable tenga infinitos valores propios. La relación (2.20) es consecuen­
cia de l sentido físico de la teoría que es tamos construyendo; podría demos­
trarse algebraicamente a partir de las (2.10) como hemos hecho para intro­

ducir la ortogonalidad (2.18) de los selectores completos, aunque también
es ta última es una consecuencia del sentido físico de la teoría. Y hab ríamos
manejado productos infi~itos o series como si fueran productos fini tos o su­
mas , lo cual matemáticamente no es riguroso . El algoritmo matemático en
el que vamos a fijar nuestra Algebra de la Medida tiene que ser tal que nos
permita hacer rigurósamente estas operaciones para estos casos, ya que de
lo contrario tal algoritmo no sería apropiado par a representar los proces os
físico s y habríamos de rechazarlo.
_ Los físicos , en su laboratorio, no están limitados a realizar únicamente

experimentos 'de selección que elijan los sistemas en un cierto estado fí­
sico Ia(X ) . Ya hemos h ablado de alguna otra clase de experimentos, tal como
la creación artificial de sistemas mediante aceleradores.

Nos conviene introducir nuevos operadores representados por los sím­
bolos

El operador (2.21) no es un selector cuando a =I=~; y, en general, no ve­
rifica las propiedades (2.4) de los selectores.

Así, por ejemp lo, se tien e:

cuando creamos un sistema en el estado observable Ia15 ) •

Con esta notación, selector completo será aquel que selecciona sistemas .
en el estado físico Iaa. ) , y no los modifica. Por consiguiente, se verifica

que representen el experimento qu e seleccione sistemas en el estado físico
I aék

') , modifique el estado de esos sistemas. m ediante fuerzas exte rnas, y nos
los presente lu ego en el estado físico Ial! ) . Y así, .por e jemplo, el experime n­
to de creación de un sistema, puede ser interpretado como el expe rime nto
que seleccione el estado vacío del sistema y lo convierta en un estado ob­
servable; Vendrá representado por ' el operador

También estos operadores selectores completos ti enen la propiedad de
se r completos en e l sentido de seleccionar todos los estados físicos qu e pue­
den ser descritos con el conjunto completo de obs ervables A . Se verifica
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(2.25)

(2.26)

Al efectua r la medida de los valores .del conjunto completo de observa­
bles compatibl es, A, los sistemas físicos aparecen - en un estadó I acx. ) para

7: REPRESENTACIONES

Y, por cons iguiente, en general los operadores compuestos no conmutan.
El Algebra de la Medida es no conmutativa.

Pero observamos que el producto de varios operadores compuestos es '
otro operador compuesto, lo cual nos dice que el Algebra de la Medida
es lineal, de acuerdo con el sentido físico de la teoría, pues siempre una su­

cesión de experimentos puede ser interpretada como un único experimento
más complicado. Obsérvese que según esta manera de pensar, dos experi­
mentos son equival entes cuando en idénticos sistemas producen idénticas
modificaciones; nada decimos de cómo estas transformaciones tienen lugar.

Hasta ahora sólo hemos definido los algoritmos de suma ' y multiplica­
ción de operadores. ¿Cuál será el 'sentido físico de multiplicar un operador
por ' un número? Para adivinarlo hemos de pensar en el posible significado
de multiplicar un experimento por un número complejo 'A; no pued e ser la
repetición sucesiva de un experimento un número de veces igual a 'A, ya
que 'hemos' convenido que al proceso de repetición de experimentos le co­
rresponda la multiplicación ordenada de operadores .

En el símbolo 'A S(a iJ , aCh
) , el número completo 'A sólo puede ser inter­

pretado como relacionado de una forma aun desconocida con la probabili­
dad qu e ha de figurar en esta t éoría; su interpretación la veremos más
adelante.

Según esta interpretación del producto de 'un número complejo por un
operador se ha de verificar que un 'núm ero complejo cualquiera conmuta
con todos los operadores. .

De las tres características esenciales que atribuímos a los sistemas del '
microcosmos hemos podido incluir en el Algebra de la Medida él aspecto
cuántico al definir el espectro de valores propios de un observable, y, ade­
más , el estadístico, al considerar el producto de un número complejo 'A por
un selector. La dualidad partícula-onda aparece cuando tratamos el mo­
vimiento.

Todos los selectores que hemos manejado hasta ahora conmutaban en­
Lre sí. Con los nuevos operadores, a los que llamaremos compuestos, no ocu­
rreasí. En efecto, el producto S (ao, al) S (aJ5 , aCh) representa el experimento
que selecciona sistemas en el estado I aCh ) los deja luego en el estado I aJ5 ) ,
de estos últimos seleccionamos los que 'est én en el estado I al ) y recibimos
finalmente sistemas en estado I aO ) . Por consiguiente, se tiene

S (ao, al) S (al' , aCl.)= b"" S (ao, a-)

Sin embargo, discurriendo idénticamente, se tiene



(2.27)

(2.29)

(2.28)
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j , ... . .. , j , .. .. .. , j J \

CUANT iCA
\

C ' iNEMAT iCA

y al determinar el valor de los obs ervables B en un sistema cu alquiera ten­
d remos uno de los estados Ib/i ) p ara cierto B. Los estado s I aJo ) Y Ib/i )
serán diferentes; pero no pueden ser, tot almente independientes , ya que
ambos exp resan la m áxima información que podemo s ' ten er de un mis mo
sistema físico. D ecimos que los experimentos que miden el valor de los
ob servables .de l conjunto A y los exp erimentos que miden el va lor elel
conjun to B son dos formas equivalen tes, dos "representaciones" , del mismo
hecho: obtener la máxima información posible acerca .de un sistema físico.
De forma semej ante p odernos considera r otros- conjuntos completos e, D ,...
de obse rvables compatibles.

D efinamos aho ra un tipo más general de experimen to que representa­
m os por el símbolo

pues representa el experimento que acepta sistemas en el .estado Ia(J, > y los
presenta en el estado I b/i >; de éstos seleccionamos luego. los que es tán en

el estado I b i ) , lo cual nos da cero si y + Bo nos da unidad si y = B; y al
tinal los deja en el esta do Ido >. .

e l cual selecciona los sistemas en el estado Ia(J, ) , los modifica, y nos los
presenta en el estado I blJ ) con los cuales podemos definir las operaciones
suma y multiplicación con el mlsmo tsentid o físico que les dimos antes.

Evidentemente según ésto se tendrá que

de observables todos compatibles entre sí dos a dos, p ero tales que, desde
luego, algunos sean incompatibles con los del conjunto comple to A . Ne­
cesariamente .el experimento que .m ida los observables del · conjunto A per­
turba el valor que ten dríamos de la m edición de los obse rvab les B, excep­
tuado el caso tri vial en que todos los observables de B sean fun ciones de '
los observables A, caso que exc1u ímo s:

(2 1) Véase más adelante el senti do físico de fun ción de un observable.

cierto a. Ahora bien, es to no quiere decir que no podamos utilizar otro
conjunto completo

pues de lo contrario todos los obs ervables B conmutarían con todos los A (21).
Cada uno de los observables B tendrá -un conjunto de valores propios. Así,
sean los de Bj
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B +f (A)



(2.32)

(2.33,

(2.SS}

(2.31).

(2.30>

Esta definición nos permite hallar relaciones e ntre los operadores com­
puestos (2.28) con ayuda de la ecuación (2.10). Por ejemplo, consideremos

S (cI do) = ~ S (aCt .aa.), S (cI do) ~ S (bf3 bJj) = .
(l P

= ~ S (aCt aCt) S (cI do) S (b fJ b'' ) = ~ <a(J. I CI ) ( do I bJj ) S (aCt b'' ) (2.34)
~p ~p
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que" nos da una expresi ón de S (el , do) como una combinación lineal de
S (d1., b13 ) y de los números <aO-' \ el ) <do Ib1j ) cuyo significado fís ico ve re­
mos más adelant~.

con lo cual exp resam os que un sistema no puede existir y no existi r al.
mismo tiempo.

Queremos d ar a los operadores cero y unid ad un significad o muy am­
plio. El primero rechaza y el segundo acep ta cu alquier sistema indepen­
dientemente del conjunto completo de ob servables que utilicemos para re­
presentarlos. Por consiguiente,

Estudiemos además el caso en qlJe e l esta d o unidad en una represen­
tación sea e l" vacío del sistem a IaO). No s conviene imponer que un estado:
observable Ibf3 ), ~ =F o sea, en cualquie r representación, totalmente inde­
pendiente del esta do de vacío. Y así escribimos

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS , FlSICO - QUIMICAS y NATURALES

. Los números <do Ib 13 ) son complejos en gen eral y, por su naturaleza,
conmutan con todos. los' operadores. No podemos calcular aún el valor de
estos números, pero en un caso particular ya lo conocemos: para dos es­
tados de la misma representación, deducimos a partir dé (2.24) que

dependerá de la relación entre los estados \ b fJ ) Y I do ) , que como h emos
visto antes no son completamente independientes; es decir, este producto
contendrá el experimento S (el, a(J.) y un cierto número <do Ib(3 ) que lla­
maremos función de transformación, relacionado con la probabilidad de
que los estados Ib 13 ) contengan los estado s l'do ). y así escribim os

'Para el caso general en que utilizamos cuat ro representaciones el pro­
ducto
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Intentemos obtener información sobre las funciones de transformación
( b/j I é ) que aparecen al cambiar de representación. Para ello considera-
mos la exp resión . .

(2.37)

(2.38)

(2.35)

(2.36)

R E L A T 1 V 1 S T ACUANTICA

( da I cl' ) = tr S (cl', da)

( da I cl' ) = .~ ( da 1bP ) ( b/j I aa ) ( aa I cl)
(J. j .')

dic iendo que ( da I cl ) es la traza de S (cl' da).
El concepto de traza p ermite simplificar nuestra Álgebra de la . Me­

dida, ya que -toda ecuación del tipo (2.35) ó (2.36) puede ser obtenida a par­
tir de la correspondiente entre operadores (2.34) con sólo tomar la traza.

Si X e Y son dos op eradores compuestos cualesquiera, y Al Y A2 son dos
números complejos puesto que la operación traza es lineal se verifica

Calculemos la traza de un producto de dos operadores de selección
compuestos '

tr [S (aa, b/j)'S (cl , da)] = tr ( b/j I cT)S (a'\ da) --:- ( b/j I cl' ) ( da I aa ) =
= tr [S (cl', da) S (aO:, blJ)J . . (2:39)

Comparemos ahora la re lación (2.34) entre los operadores compuestos y
la (2.36) entre las funciones de transformación . Vemos que a cada relación
lineal entre los operadores compuestos le corresponde otra de la misma
forma, también -Iineal, entre los coeficientes. .

Por consiguiente, existe una cierta dependencia entre los operadores com­
puestos y las funciones de transformación. Este dependencia la expresamos
por medio de una operación; llamada traza, qu e, por definición, ha de ser ·
lineal, y se escribe así :

Evidentemente esta ecuación será válida cua lquie ra que sea el conjunto
completo B de observables sobre ' cuyo s estados unidad se extiende la su­
mación.

De forma semejante llegaríamos a probar que

8. TRAZA

~ S (aa aa) S (b lJ blJ) S(cl cl') = S.(act aO:) [7S (b(3blJ) ] S (cl' cl') '

válida puesto que nuestra Álgebra es asociativa. Utilizando las relaciones
(2.10) y (2.31) la igualdad anterior se convierte en

.~ ( aa Ib/j ) (b/j I cl' )" S (aa cl') = ( a(l. 1cl' ) S (aa cl)
~ .

de donde se deduce que

.( aa I cl' ) = ~ (aa I b/j ) ( blJ I CI )

~

' C 1 N E M A TIC A
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(2.43)

(2.44)

(2.42)

(2.41)

(2.40)trXY= trYX

NA=Nn=· ···=N
tr1= N

tr XYZ = tr [XYl Z = trZXY

Combinando (2,37) con (2.32) se tiene

de donde deducimos que el número de estados unidad de ' cualquier conjun­
to completo de observables es siempre el mismo. El número N es infinito en
general. '

P e ro puesto que el primer miemb ro de (2.43) es independiente de la re­
presentación elegida, el segundo ha de serlo t ambién

Atribuírnos al símbolo S (aG., bJ:S) el significado de corresponder al proceso,
que acepta sistemas en el estado I b1J ) Y los dej a en el estado IaCl. ). Diremos
que el operador S (bJ:S ,aCl.) , que representa 'el proceso inverso de aceptar sis­
.temas en el est ado I aCl. ) y dejarlos e n el estado I bJ:S s. es el henmítico conju­
gado del proceso representado por S (aCl., b ll ) .

9. OPERADOR HERM1TICO CONJUGADO

Si calculam os la traza de am bos miembros de la relación (2.10) se t ien e

¿ tr S (a<1.) = tr 1
a:

La traza del producto de dos operadores compuestos X e Y es índepen-:
diente del orden en qu e los operadores entran en el producto

,REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICU· QUIMICAS y NATURALES

donde hemos utilizado la defin ición general (2.33) del operador identidad 1.
Ahora bien , tr S (a<1.) = 1 y, po r consiguient e, el primer miembro de la rela­
.ci ón anterior es e l número de sumandos, o sea, el número de estados uni­
«lad NA de la representación A

Observemos que la relación (2.40) es válida para la traza del producto ,
de dos operadores de selección de nuestra Algebra; pero no podemos con­
mutar los operadores de cualquier manera cuando hemos de hallar la traza
del producto de más de dos operadores. Puesto que el producto de varios
operadores compuestos es según (2.31) otro operador compuesto siempre
podemos hacer uso de (2.40) considerando el producto de varios, operadores

I como otro operador. Así, por ejemplo,
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] O. PROBABILIDAD

(2.45j

RELATIVlSTACUANTlCACINEMATICA

Hemos supuesto en los apartados anteriores que un conjunto de sistemas
idénticos llegaban al aparato selector; 'p ara establecer las propiedades de
los distintos operadores introducidos hasta ahora manejamos un macrosis­
tema. Sin embargo, la Mecánica Cuántica estudia los sistemas que compo­
ven el macrosistema; da información sobre un sistem a p articular. Hay,
pues, que relacionar al macrosistema con el sistema, de forma que, aunque
nuestros experimentos tengan lugar con macrosistemas, podamos deducir de
ellos propiedades del sistema.

'Para conseguir este propósito utilizarnos el concepto de probabilidad
que es un juicio cierto sobre cosas inciertas, y, por consiguiente, la Mecá­
nica Cuántica no deja de ser Ciencia a pesar de su carácter probabilístico.

Evidentemente el operador hermítico conjugado del hermítico conjugado de
un operador es el operador inicial.

Un operador es autohermítico cuando es igual a su henmítíco conjugado.
Por ejemplo, el operador selector simple es autohermítico

[S (aa, b Jj) S (cl , do)]+= S (do, cl ) S (bll, aa) = [S (cl don +[5 (aa bJj)] + (2.47)

de donde deducimos que el hermítíco conjugado de un producto de opera­
dores es el producto, en orden inverso, de .los hermíticos conjugados de los:
operadores.

Queremos extender esta propiedad al producto de un número A por UD!

operador X de nuestra Algebra

[AXr = x+"+ = A"! X+ (2.48),
. " ,1

ya que un operador y un número conmutan. Para que (2.48) sea válida .en:
e! caso en que consideremos el producto de dos' operadores compuestos corno ,
el producto de la función de transformación por otro operador compuesto
necesitarnos que

( b Jj I c
'

>+ = ( c: I ~Ij ) (2.49)

que constituye un nuevo requisito que ha de satisfacer lá función de trans­
formación .

Calculemos ahora, de acuerdo con la definición de operador hermítico­
conjugado dada, elhermítico conjugado del producto de dos operadores:

compuestos. El símbolo S (aa b1J) S (cl do) acepta los sistemas en el estado
Ido ) , los deja en el estado I c

'
) ; de estos selecciona los que están en el

I bJj ) Y luego nos los da en el estado I aa ). El hemíítico conjugado ha de re­
presentar la operación inversa. Por consiguiente,

La operación de hallar el herrnítico conjugado de un experimento se, de­
signa por una daga de la forma siguiente:
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(2.50)

~__..l..-.. -::-- P1
o

Nos interesa ante todo h allar la probabilidad P(aC
\ b l:l) de que el estado

i bl:l >, esté contenido en ' el l aGt>, concepto que hemos usado al hablar de la
función de transformación. '

A fin de entende r m ejor e l contenido físico de lo que sigue considere­
mos, com o ejemp lo, un haz de luz formado por fotones. Supongamos que la
única propiedad de esos foto nes que interesa conocer . es su polariza­
ción Al de forma que conocida ésta, ya tenem os tot alm ente determinado el
es tado físico de los mismos.

Sea a/ l un va lor p ropio de la polarización que corresponde a fotones po­
larizados en un pl ano perpendicular al papel y que contenga la dirección OP l •

Según hemos visto, cualquier otro valor propio de la polarización, a/2 , re-

presenta fot ones ninguno de los cuajes es aceptado, o sea , atraviesa el po­
la rizador S(a/1 ) que selecciona los fotones cuya p olarización es a/ l • Fí­
sicamente sabemos qu e esto es así si a/ 2 representa fotones polarizados en

un 'plano normal. al papel y que contenga la di rección OP2 p erperdicul ar .----.. .

a OPl '
Cons ideremos ah ora ot ro obs ervable, B, al que llamaremos polarización

girada, el cua l también determina completamente los estados físicos de los
fotones. Si b/ l es un va lor propio de la p olarización girada que representa

fotones polarizados en un plano que ahora contenga l~ dirección OGl , la

cual forma un ángulo 8 =l= rt/2 con OPl , algunos de los fotones aceptados por
S (bs'") pasarán también el selector S (ail). La probabilidad que busca­
mos p (a.", b/ l

) es la que ti ene un f otón en el es tado Ib/l > de atravesar
el selector S (ail) . Igu almente también tendrá un cie rto valor la probabi­
lidad p (a,", b-") de que los fotones en esta do I bil > atraviesen el selec­
tor S (ap), mientras que habrá de ser nula la p rob abilidad de que los fo­
tones en estado I a/ l > atrav iesan e l selector S (a/2

) e igual a uno de la pro­
babilida d de que los fotones en estado I ail > atraviesen el selector S (a,").

Veamos ahora, según esto, cuáles son las .p ropiedades que hemos de im­
poner a la expresión que tomemos como probabilidad en nu estra Algebra.
En p rim er lugar .

REI' ¡STA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO - QUIMICAS y NATURA LES
I



(2.53)

(2.54)

(2.56)

(2.52)

(2.51)
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que au tomáticamente satisface las condiciones (2.50) y (2.51). Para que la
última relación (2.52) sea verificada hemos de exigir que " ( aa Ib1J ) sea el
complejo conjugado de ( bJ1 I aa )'. Si la operación de hallar el complejo con-
jugado' la designamos por un asterisco '" exigimos que -

S (a'\ a'X) S (bll, blJ) S (a'X, a~) (2.55)

co mo el experimento S (if\ eP) multiplicado por la . probabilidad P (b IJ, eP)

mientras que no podemos' dar un significado físico claro a

La . relación (2.56) no puede ser interpretada porque la medida, de blJ causa
una perturbación cuyos efectos no podemos predecir "en el estado Iaa ). Esta
arbitrariedad en la medida corresponde al va lor de la fase de l número com­
p lejo ( aa t bJ1 ) , fase qu e no modifica en absoluto el valor de la probabili­
dad (2.53), ya que queda anulada con la de ( bJ1 I a'X ) de acu erdo con la re­
lación (2.54). Si fuera posible conocer. esta fase no tendríamos que intro-

ducir un formalismo probabilístico. La perturbación impredictible que acom­
paña' todo, experime nto de medida implica su indivisibilidad. Cualquier in­
tento de estudia r la historia del sist ema durante el proceso de medida cam­
bia la naturaleza de la medición que se lleva a cabo .
. y así vemos que hemos construído un Álgebra e interpretado su carác­

t er estadístico de acuerdo con las propiedades menci onadas al principio de
e ste capítulo y sin que , en momento alguno, perdiéramos la interpretación
física de lo que representábamos con símbolos matemáticos. Sin embargo,

que comparada con (2.49) nos dice que en nuestra Algebra el hermítico con­
jugado de un número ha de ser igual a su complejo conjugado. De (2.33)
deducimos que la probabilidad de que un estado observable esté vacío es
nula CQ¡IllO era de esperar. "

Podemos interpretar ahora los siguientes experime ntos :

)', finalmente, la probabilidad ha de ser un número no negativo

, .
Puesto que todos los conjuntos completos de observables A, B, C... son

igualmente equivalentes para representar las propiedades de los sistemas fí­
s icos hemos de imponer la siguiente simetría:

De acuerdo con lo anterior definimos la probabilidad de la siguiente
:forma



(2.61)

(2.62)

(2.59)

(2.58)

(2.57)

S (b/j) =S (b/j) = ¿ S (b/j) S (a!7.)
a

~ S ~aa) ] S (b/j) = S (b ll)

~ ¿ alta S (aa)
a
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. ( Al) ¿p = 2: al(a P (a!7., b l')
o

S (bIJ) = 2: P (a'\ b1j)
a

= S (bIJ) [

y puesto que la traza es una operación lineal

( Al) uP = tr { 2: alta S (a!7.) S (b1l) } = tr Aj S (b1j)

tr S (aa) S (b/j) = ( aa Ib f3 ) tr S (a", b/j) = P (a!7., blJ) (2.60)

Evidentemente, el .valor esperado (2.58) es igu al a la suma de los valores
ap · que Ai tiene en los sist emas cuyo estado. es IaCt. ) por la probabilidad
P (aa,bIJ) • .

Si conocemos el espectro de valores propios de A. y los valores de las pro­
babilidades P (aa, blJ) para todo a el valor esperado (2.59) nos permite es­
tablecer la relación entre Mecánica Cuántica y los datos experimentales.

Pero evidentemente se verifica ' que: ' .

?

Y<
donde hemos definido el operador obs~rvable A i , que hasta ahora carecía
de símbolo matemáti co: mediante la expresión

•

que nos dice que el valor de la probabilidad está entre O y 1 como era de
esperar.

Sea Ai un cierto observable de un conjunto completo A. Supongamos
que un selector, S (b"), ha preparado sistemas en -el estado Ib (3 ) Y qu e in­
tentamos hallar el va lor del observable Ai en los sistemas que sabemos

están en el estado I b lJ ) . Tal valor lo llamar emos valor esperado de Ai en .
el estado I b/j ) Y lo escribiremos así : -

11. OPERADORES OBSERVABLES. - V ALOR ESPERADO

y, por consiguiente,

su validez será únicamente comprobada cuando es ta teoría dé resultados
de acuerdo con los datos experimentales.

Finalmente, mostremos que l a probabilidad (2.53) está correctamente.
nórmalizad a, pues se tiene

REI'TSTA DE LA ACADEMIA DE CIENCIAS EXACTAS, F/SICO· QUIMICAS y NA TURA LJ<::>
.,....----------------------'-------- - - - - -1



a
(2.64)

(2.67)

(2.63)

(2.65)

(2.66)
1

C UA NTICA

f (Al) = L f (al(O:) S (a-)
'1

A¡- l A¡ = Al A¡-l = L'at 7.~ S (aa.) = L'S (aa.) = 1
a al a

A/ = [ ¿ al(a. S (aa.) Ji= L a¡(a.+ S (a7.)' = 2: a¡(a. S (aa.) = A¡ •
o: a a

RELAT I VI STA
~--~-~-'------'---------------'-----------I

CI NEMAT IC A

donde f (ai(a.) es la función cuyo argumento es el valor propio alea del ope­
rador A,. Para que se verifique una relación como (2.61) definimos el ope­
rador función de otro operador observable de la siguiente forma:

Evi de ntemente, ta l operador existe cuando ninguno de los va lores. pro­

pios de Ai es nu lo, ya que de lo contrario los números _ 1_ no est arían to­
a/ a.

dos definidos.
El operador recíproco Ai - 1 satisface las siguientes relaciones :

Consideremos concretamente el caso del operador recíproco de A" qu e
será :

- 253-

Definiremos una función f(AI ) de un obs ervable exigiendo que su valor es­
perado sea

y, por consiguiente, si existe , su producto por la d~recha o por la izquie rd a
con A; es el operador unidad. .

Si X e Y son dos operadores observables cualesquiera se ha de verifi-

pues to que aj(a.+ = a,(a.<>= al(a.. Por cons iguiente, un operador obs ervable
es siempre au tohermítico . Introducimos las d ist intas operaciones algebrai­
cas en los operad ores observables utilizando su definición (2.62), con la cua l
clamas sentido a expresiones como

combinación lineal de selectores. La relación (2.62) implica que la cualidad
A, está totalmente determ inada por los experimentos que miden sus valores
propios y por su espectro.

Ahora bien, si A, es un observable, su espectro a,Y" h a de estar formado
por números reales, pues éstos son los únicos números que pueden resultar
de medir e l va lor de un atributo en un sistema

Si calculamos el hermítico con jugado de un observable A, se tiene



12. CONMUTADORES

(2.70)

(2.68)

(2.69)
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[X,Y] -- XY - YX

1.x , y } - XY+ YX

Ahora bien, los operado res de selección de un conjunto completo de ob­
servables comp at ibles conmu tan, es dec ir , su conmutador es nulo, y; por
consiguiente, también conmutarán . los operado res observables definidos
por (2:61).

Tales operadores son cinemáticamente dependientes. La compatibilidad de
dos operado res observables se expres a algebra icamente por medio de su con­
mutador. Si éste es nulo, los obs ervables son comp atib les; de lo contrario,
no lo son. Definirem os el anticonmutador de X e Y por XY + YX, y lo de­
signaremos por med io d e un paréntesis curvo :

Se llama conmuta do r de dos operadores X e Y cualesquiera a la diferen­
cia XY-YX. Utilizamos un paréntesis cuad rado para designarlo :

car, para que se cumpla (2.67), que el recíproco del producto de los mis­
mos (X'i;- I es el producto de los recíprocos en orden inverso

p~ra todo i y j del conjunto de observables compatib les. Diremos entonces
que los operadores Ai y Aj son cinemáticamente indep endientes, puesto que
al medir sus valores en un sistema sobre una misma superficie esp acial o ta­
les observables son compatibles.

Sin embargo, si ·los ope radores son de distinto conjunto completo de ob­
servables sus conmutadores no son nulos en general, aunque todos estén
particularizados en upa misma superficie espacial o.

REVISTA DE LA ACADEMIA DE CIENCIAS ' EXACTAS, FlSICO ..QUIMICAS y NATURALES
--------~-----------------------I

. Tratemos, siguiendo a NEUMANN, de dar sent ido ffsico a la función de un
observable. Si Ai es un atribu to, y f (A) una fu nci ón cualquiera, la magni­
tud f (A i ) se obtiene midiendo el valor de AL' y si a.;(rJ. es ta l valor, f (A i )

tien e el valor f (ai«(J.)· Estas dos cantidades Ai y f (Ai) son medibles simultá­
neamente porque existe un aparato qu e los mide a la vez , pero sus respec­
tivos valores hay qu e calcularlos de la lectura en el aparato de forma dís-

. tinta. De manera semejante podemos construir a partir de una función de .
dos parámetros f (A, u) una función de dos observablescompatibles f (Ai , 'Aj )

o, en gen eral, una función f (A) de todos los obs ervables del con junto com-
.pleto A. Sin embargo, parece no tener sentido físico querer formar funcio­
nes de obs ervables no compatibles, es decir, no está nada claro su signi­
ficado físico.
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(2.73)

(2.74)

(2-71)

(2.75)

(2.72)
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( al [B¡ I a2 ) ' • •• • •• •• • • • • • , •• • • ' •• • • • • • •• • • • •

( a2
[ B¡ I a2

) : .

C UA NTI CA

( a~I Bj l a'Y) ¿' ( ai3'1 bCl. ) b¡(CI. ( ba l al)
a

( al IB¡l a l ) ,

~ a2 I B¡ I al )

( a3 I B¡ Ial )

e 1 N E- lIf A T l C A

el operador observable B¿ adquiere la siguien te forma:

B¡= ¿' ( a~ I B¡ Ia'Y ) S (ai3, al)
¡J,T

Ahora bien,' el selector S (bCl., bCl.) . pue de ser escrito como una combinación li­
neal de los S (a li,a)') de la siguiente forma:

S (bCl., bCl.) = ~' (ai3 I bCl. ) ( bCl.¡ al ) S (a/i, al)
, . ~, T

Si llamamos elemento de matriz del operador, El entre los estados I a i3 )
y Ial ) de la representación Aal número complejo ( a~ I Bj Ial ) definido así:

, El operador Bi . qu e respecto a los selectores S (ha.) está caracterizado
por el conjunto de sus valores propios, en relación a los selectores S (ai3, aCl.)
viene determinado por un conjunto "cuadrado " de números ( a~ IB, I al ) los
cuales, debidamente ,ordenados, forman ' la matriz que lo representan.

la cua l tiene, en general, infinitas filas y columnas. .
En primer lugar observemos qu e en la representación B la matriz qu e

representa el observable B, es diagonal ya qu e

El Algebra de la Medida presentada en los párrafos anteriores es formal­
mente equivalente a un álgebra de matrices infinitas. En efecto, según va­
mos a ver, podemos hacer corresponder a cada operador una matriz; a las
operaciones algebraicas ~suma, multiplicación- entre operadores las mis­
mas operaciones entre matrices. Y así decimos que estas matrices son repre­
sen taciones de los operadores, de forma qu e en todos nuestros cálculos po ­
demos m anejar matrices en lugar de operadores abstractos.

De acuerdo con la definición de operador observable se tiene:

13: REPRESENTACION MATRICIAL DE OPERADORES
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(2.79)

(2.80)

(2.78)

(2.77)

(2.76>

( alJ IX+ I al ) = ( al IX IalJ ) .,

x = ¿ ( aJj IX! al) S (aIJ, al)
~ :í

y = 2:' ( alf IY I al ) S (aIJ, al)
~,T

( alJ I XY I al ) = 2; ( alJ IXI a~ ) <a~ I y I al )
a

<aJj IX + y I al ) = ( aJj IXI al ) + (al! IY Ial )

I

X + y = ¿ \ ( aJj IXI al ) + (alJ I y Ial ) } S (aIJ, al) =
~T .= ¿ ( aJj IX + y Ia'( ) S (a1J, al)

~,"(

trX = ¿ ( aJj IX l al) trS(alJ, al )= ¿ ( al!I X l alJ)
~~ ~

La traza d e un operador es la suma de sus e lementos ' diagonales. Puesto
que trX fu e definida independientemente de la representación elegida, la

De id éntica forma veríamos que la matriz correspondiente al producto
de dos operadores es el producto de las matrices que los representan

cuando utilizamos la representación matricial de los operadores.
Finalmente, investiguemos el contenido de la traza en esta representación '

El operador hermítico de X está representado por una matriz compleja
conjugada y transpuesta de la que representa el operador X. Si designamos
con ,..., la operación de transposición, se tíene i .

Estudiemos el significado de operador herrnítico X+ de uno dado X ,en
esta representación matricial.

X+= ¿ ( aJj I'X Ial ) + S (alJ, al) = ¿ ( a) IX IalJ ) 0 , S (aJj, al)
~T ~~

y, por consiguiente,

-,

y, por consiguiente, dada la ortogonalidad de los selectores,

se tiene

y sus elementos diagonales son los valores propios de Bi . Es evidente que si
hubiéramos aceptado observables con espectro continuo éstos no tendrían
representación matricial, ya que no podríamos numerar sus valores propios.
p ara formar la matriz diagonal que los represente.

Es muy fácil ver que el' operador X + y suma de dos operadores X e Y
le corresponde ia matriz suma de las matrices que representan a esos ope-
radores, puesto que si '



(2.81)

(2.82)

(2.83)

(2.85)

(2.84)

,o
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tr X+= (tr X)Q

( a' I b' ) )

í

CUA NTICA

( al! I Bi 1alJ ) = ( Bi ) al!

( aa I UBA I a ll ) = ( ao; I bll )

(al I b1 )

<a2 I b1
)

( a ll I ?C I al ) = 2: ( a ll I b:7. ) <b:7. 1X I bo ) ( ba I al )

. .... . . . . . . . . .. .. . . .. .. . . .. . . .. . . . . . .. .. . . .. . . . .. . . . . . . . . . ....... . . ... .. . . . . .. .

RELATIVI ST A
------'--------------------~-------1

Hemos visto cómo un operador observable es representado por una m a­
triz cuando fijamos la representación, es decir, cuando' fijamos los estados
unidad Ia o; ) de la representación. Estudiemos ahora cómo se transforma ta l
matriz cuando cambiamos de representación,

x = 2: ( af.J I XI al ) S (af.J , al ) = :¿ <bll I X I bl ) S (b/l, 01)
fl.r : í

Si exp resamos el operador S (b!', bl ) en función de los S (aIJ; a-() se ve­
rifica

Las funciones de transformación ( all I b:7. ) son los coeficientes que nos
ll evan de una representación a otra. ' '

Ha quedado esta blecida una rel ación en t re observa bles y matrices: a
cad a observable le podemos hacer corresponder una matriz que tiene, baj o
todas las operaciones alg ebraicas, las mismas propied ad es que los oper ado­
res . Establecemos tambi én la relación recíproc a y ampliamos el Algebra d e

la Medida para decir que a cada matriz d e esta clase le corresponde un ope-
rador. Con las funciones de transformación <al! I b1. ) podemos formar una
matriz

Al operador nulo le corresponde una m atriz cuyos eleme ntos son tod os'
nulos; el operador unidad está representado por una matriz diagonal cuyos
dementas no nulos son iguales a uno.

Los elementos diagonales de la represen tación matricial de un observa­
b le tienen un claro significado físico , pues, como se desprende (2.72), son

iguales al valor esp erado del observable

"que diremos representa un operador UnA de transformación cuyos eleme ntos
de matriz son <a O; Ib ll )

suma de 'los elementos diagonales de-Ia matriz que representa un operador
e s la misma en cualquier representación; su valor es la suma 'de los valores
propios del operador. Se tiene, además, '



(2.91)

(2.90)

(2.89)

(2.88)¡

(2.87)1

(2.86)

, X (a' ') == S (a", al!)
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14. GEOMETRIA DE 'LOS ESTADOS '

y, por consiguiente,

Al operador compuesto S (a", a") lo llamaremos operador de creación, y
a p artir de ahora lo' designaremos ,por

El operador compuesto S (a", a"), según ya vimos e n (2.22), podía ser in,
terpretado com o el operador que ' cr eaba el sistema en el estado obs ervable
.1a~ ) cu ando ha cíamos ac tuar en , el es ta do vacío del sistema'. Y así esta­
blecemos la re laci ón fundamental que d a la geom etría de los est ados ' 1a¡.l ) "
símbolos que h asta ah ora no tenían carácter m atemático alguno. ,

Si recordamos la ' definición de hermítico conjugado, el operador com­
puesto S (a", a~) debe ser e l operador , que aniquila el sistema en el estado,
I a¡.l ) para darnos el va cío. El operador de anlquilaéión . . . ' .

como puede verse fácilmente con ayuda de (2.83) y (2.85).
Si llamarnos X'' la matriz de X en la repres entación B, la ecuación (2.83»)

se convierte e n

S (aa., aS) = ~' ()w p 1) ~T S (a'', a1 ).
Jj 1,

El operador representado por la matriz formada con las funciones de
transformación ( ba. I a~ ') . es el operador recíproco lJHAl
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de .dond e deducimos que la transformación que ' nos , ll eva de una represen­
tación XB a otra X A de un mismo op erador es una transformación de se­
mejanza.

Unicamen te nos queda ge neraliza r esta representación matricial y hacer­
la válida p ara otros opera dores que no son obse rvables . Siempre que po­
damos escribir el operador d e la forma (2.73) diremos que los coeficientes

.de los selectores son los e lementos de m at riz de la que representa al ope-
rador. Así , para un selector se ,tiene:



(2.92)

(2.94)

(2.96)

(2.97)

(2.98)

REL ATIVI STA
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I I cl ) = I cl )

C U AN T I C ACINEMATICA

Comparando (2.62) ' con (2.20) y teniendo en cuenta (2.33) vemos que el
operador unidad I es el operador cuyo espectro está formado por unos. Y
así siempre se tiene :

para cualquier observable Al del conjunto completo de observables compa­
tibles A. Por consiguiente, los estados unidad de la representación A son los
estados propios de todos los observables del conjunto completo A. Decimos
que el valor propio al (l J pertenece al estado !aI.J ) .

Se verifica igualmente la relación hermíticaconjugada de la anterior

es decir, el espectro de un observable está formado por los valores propios
de la ecuación

Investiguemos el significado del operador observable A¡ actuando sobre
Iaa ). Con la exp resión (2.62) se obtiene

A¡ lalJ ) = (2: ·al(a. l aa. ) < ~a. I ) l alJ ) = La¡(Q;laa. ) ()a>P= a¡(lJ iaI.J )
a a

Toda el Algebra de la Medida es ahora una consecuencia inmediata de
estas definiciones. Por ejemplo, la relaci ón fundamental (2.31) se obtiene uti-
lizando (2.93) .

( I CI > ( do I) ( I blJ ) <aa. I ) = I cl ) ( do I blJ ) ( aa. I=
( do I blJ ) I cl ) ( aa. I (2.95)

define los mismos estados de una forma dual a la (2.89) mediante la , rel ación

Evidentemente, la realidad física que tratamos de representar con nues­
tra Algebra de la Medida no nos obliga a definir la relación entre los esta­
dos de esta forma, ni a dar un significado matemático al símbolo I alJ ) , ni a
definir los símbolos duales (2.92). Pero si lo hacemos, toda el Algebra de la
Medida obtenida hasta ahora puede ser reproducida mediante reglas muy
sencillas, para conseguirloves preciso introducir únicamente dos clas es de
productos entre estos estados.

Definiremos el producto escalar de un estado I alJ ) por otro ( bi1. I hacién­
dolo igual a la función de transformación ( ba.1alJ ) .

( \beG I . I alJ ) ( ba. IalJ ) (2.93)

Definiremos el producto operacional de un estado ' I alJ ) por otro ( ba. I
de forma que sea igual al operador compuesto S (a!', ba.) y lo escribimos así:

I



I

(2.99)

(2.102)

(2.101)

(2.100)

10 )

1 = ¿,' I b ¡J ) <b¡J I = L IlcT ) ( Cl I = .
~ i

Ecuaciones como (2.35) son ahora muy fáciles de ob tener

15. PRINCIPIO DE SUPERP OSICIO N

(aa Iao; ) = 1

De acuerdo con (2.32) decimos que los vectores unidad de una misma
representación son ortogonales entre sí dos a dos .

Los es tados unidad I aa. ) , correspondientes a los estados físicos en que
puede aparecer nu estro sistema cua ndo medimos el conjunto completo de
observables compatibles A, son vectores de un cierto espacio y cumplen
la relación

lo cual, evidentemente, corresponde a lo qu e nuestra intuición predecía, ya
que en el vacío los . obs ervables no tienen nada que distinguir. No tendre­
mos ya que expresar la representación cuando nos referimos al vacío y, por
consiguiente , tal estado será designado por el símbolo
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<aa I cl ) = <aa. I . I cl ) = <aa. I . 1 Icl ) =
( aa. I ( 2: I bp ) <blJ 1) I cl ) = ¿, ( aa I bp ) ( bp Ier )

P fl . ·

Tratemos d e expresar los estados unidad de una representación Iao; ) por,
medio de los estados unidad de otra I b!' )

Al cambiar de representación los estados unidad I ao; ) se transforman
como ve ctores contravariantes en un espacio en que los estados unidad Ib lJ )
son ve cto res unidad . Las funciones de transformación ( b¡J I aa ) son las com­
ponentes del vector Ii;¡a. ) sobre los vectores I b¡J ,).

Los . estados duales ( aa. I se transforman al cambiar de representación
como vectores covariantes, mientras que el produc to escalar de dos vecto­
res se ' tr ansforma como un escalar y el producto operacional de dos vecto­
res se transforma como una matriz, lo cual era de esperar, ya que los op e­
radores admiten, en general, una representación matricial.

Al tratar de cambiar de representación para el estado vacío, de acuer- .
do con (2.33) llegamos a que el estado vacío es el mismo en cualquier re..

presentación ,

para cualquier representaci ón, puesto que
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(2.103)

(2.105)
qJ(ao.)

IqJ ) = 2;' qJ (aa.) I aa. )
(l.

CUANTICACINEMATICA

Diremos, pues, que los estados físicos están representados por vectores
de longitud unidad o también por vectores normalizados a la unidad.

Si en lugar de medir los observables A hubiéramos intentado medir el
valor de los observables B, los estados en que nuestro sistema aparecería son
los I ba.) para cualquier a, y también estarán normalizados a la unidad de
acuerdo .con <ba. I ba. ) = 1. .

¿En qué estado está nuestro sistema si aún no hemos hecho 'ninguna me­
dición? No lo sabemos; llamémosle I qJ ) . El principio de superposición nos
dice que I rp ) es un vector ·combinación lineal de los vectores unidad 1aa. )
de cualquier representación

Los estados I rp ) deben ser también considerados como vectores unidad
de una representación que desconocemos; y, por consiguiente, han de' tener
las mismas ' propiedades que los I a!1· ). Concretamente, han de tener longitud
unidad. Este principio de superposición que aparece en la Mecánica Cuán­
tica es 'de una naturaleza totalmente distinta del que se encuentra en la
Mecánica Clásica donde también podemos hablar, por ejemplo, de superpo­
sición de ondas. Las analogías pueden ocasionar gra ves errores.

El número rp (ao.) 'se llama función de ond a del est ado Iqi ) en la re­
presentación A y evidentemente 'se verifica

rp (aa.) = <ao. IqJ ) (2.104)

como puede verse multiplicando Iqi ) por 1 (2.99). Esto indica que

I <aa. I qJ ) I2 = qJ '" (aa.) rp (ao.)

es la .p roba bilid ad de que nuestro sistema aparezca en el estado Ia!J. ) cuan­
do medimos los observables A. Experimentalmente podemos obtener el va­
lar de esta probabilidad, pero nunca rp (ao.) cuya tase quedará totalmente
desconocida. .

Las funciones de onda determinan completamente el estado físico del
sistema. Pero mientras podemos hablar de estado vector sin fijar las coor­
denadas, el concepto de función de onda lleva implícito haber fijado la re­

presentación. L'a manera de proceder con independencia de las coordena­
das, es decir, con carácter invariante, fuertemente orientacla hacia lo geo-

.métrico, trae consigo importantes ventajas formales. .
Las' funciones de onda qJ(a<X.) son las componentes del vector estado I rp )

en los vectores unidad I a<X. ) de la representación A, y, por consiguiente, re­
presentan el estado físico del sistema. Podemos representar el vector I rp )
por medio de una matriz de una columna.

<p(a1)

qJ(a2)
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(2.108)

(2.109)

(2.107)

(2.106),

qJI (aa) = fl qJ2(aa)
Si I qJI ) está normalizado a uno, se tiene :

, 1 = ( qJI I qJI >. = flll'" ( qJ2 I qJ2 )

D e esta forma e l vecto r 'dual ( qJ I es tá representado por la -m atriz hermí-
tica conjugada de la anterior -,

El vector I qJ2 ) es normalizable si I ¡i 12 es finito; pero sólo presenta e l estado
físico cuando h a sido norm alizado a ' la lmídad. Un vector cuyo producto es­
calar por sí mismo es infinito, no es susceptible de ser normalizado a la
unidad y, por consiguiente. no corresponde a ninguna situación física.

¿Cómo podernos saber si un macr ósistema está formado por un conjunto

Estudiemos el significado físico de' la superposición de estados. Decimos ,
que un fotón está en cierto estado ' de polarización cuando se le ha hecho
pasar por ciertos polarizadores apropiados; hemos tornado la forma de pre­

parar el estado del sistema como la definición de l estado considerado. Pero
al introducir el carácter estadístico en esta Álge bra, consideramos que el
fotón en estado Ib(l ) (véase apartado 10) tenía cierta ' probabilidad de pasar
el se lec tor que preparaba fotones en es tado 1 a(1 ) : Existe u na cierta rela-,
ción, que es el principio de superposición (2.103) y (2.104), por la que un
sistema que se encuentra en un ' estado determinado puede también ser con­
siderado como teniendo una cie rta probabilidad de estar en muchos estados..
Inversamente un número cualquiera de estados pueden ser superpuestos ,para'
dar un nuevo estado provisto que se verifique la relación de norm alización;
el nuevo es ta do está totalmente determinado cu ando se conoce en su función
de onda; las propiedades de un ' es tado Formado mediante superposición
son, en cierto sentido, intermedias de las que tenían los es tados campo"
~n~s. ' ,

Los mismos estados unidad pueden se r considerados como un caso límite
de superposición. Advírtarnos que siguiendo la notación introducida en
(2.103) los estados unidad I a15 ) debieran ser representados por , I Cl p ) , puesto
que su función de ondas es Cl Pa'

D os vectores es tado I qJ¡ ) y (qJ2' ) serán paralelos cuando, en cualquier
representación, sus componentes, es decir, las funciones de onda, sean pro­
porcionales. Se verifica entonces

, Estos vectores pueden ser manejados como matrices, con lo cual h all amos :
fácilmente representaciones de los productos escalar y operacional de los
estados.

En particu lar la función de ondas delestado Ié ) ~n la re pre sentaci ón A
es ClP'a' Las funciones de transformación también son funciones de onda que
representan los vectores unidad de una representación en otra representación. '
, La normalización a la unidad del vector estado I rp >. implica que su fun­

ción de onda en cualquier representación satisface la siguiente relación
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por lo que el val~r esperado de una cantidad en un estado, es el elemento de
matriz del operador correspondiente en tal estado. ' La conexión entre la
teoría y el experimento se establece al considerar que tal valor esperado es
el valor medio de sucesivas mediciones del observable en' el conjunto de
sistemas idénticos preparados mediante los mismos experimentos.

Consideremos ahora el problema recíproco. En un laboratorio produci­
mos un conjunto de sistemas idénticos: ¿en qué estado se hallan? Medire­
mos en ese conjunto el valor medio -igual al esperado- de un' conjunto '
completo de observables A cuyos espectros conocemos. Mediante (2.110) cal­
culamos la función de onda <p(a7o

) , .> partir de esos datos (su fas e no estará deter­
mñnada), y de ella con (2.103) deducimos el estado de los sistemas producidos

'en el laboratorio. ' .
.Así, pues, en la Cinemática Cuántica encontramos dos clases de canti­

dades: los observables A y los estados I <p ). En los capítulos siguientes estu­
diaremos algunas propiedades generales de los mismos.

.
de sistemas todos en el mismo estado? La respuesta está contenida en la
interpretación de la ecuación (2.89), o, también, en el significado de los
operadores compuestos (2.21). Para obtener conjuntos de sistemas todos en el
mismo estado es suficiente producirlos por medio de idénticos experimentos.

Cuando se efectúa una medición de un observable Al en un sistema, éste
es perturbado, y su estado después de la medición difiere del estado inicial.
No hay más que un caso en que la observación no modifica el estado de uri
sistema, y es cuando el estado del rnJismo es un estado propio del observable;

entonces existe una probabilidad unidad, .es decir, estamos totalmente se­
guros de obtener como resultado de la medición un cierto valor propio del
observable.

por consiguiente, una medición modifica ' el estado del sistema, Para
realizar otra medición en las mismas circunstancias hemos de volver a pre­
parar el sistema en el mismo estado inicial, o sea, debemos hacerle pasar
3 través de las mismas m áquinas que la prepararon inicialmente, ya que,
por definición, 'esto es preparar un sistema en el mismo estado. De hecho, en
un laboratorio producimos, por ejemplo, un haz de electrones -todos ellos
en el mismo estado I <p ) , pues han salido de una misma máquina-s- en los
cuales se llevan a cabo las mediciones sucesivas. Puesto que por el principio
de superposición I <p ) puede ser considerado como combinación de estados
propios de Ai , al hacer sucesivas mediciones de A i en los sistemas del haz
no obtendremos siempre el mismo valor propio de Al' pero existirá una
cierta probabilidad de obtener cada uno de los valores del espectro de Al"
. Y así, repitiendo indefinidamente el proceso de medir Al en sistemas en ,
estado I <p ) , se obtendrá el valor esperado, <Ai ) '1', como resultado de tales
medíciones. o'

Recordando el significado de función de onda y su relación con pro-
babilidad dedúcimos .

(2.110)

R E L A T 1 r 1 S ' T A.CUANTICA

( Al) <!) = ~ai(exl <p(aCG
) 12 = ( <p IAl I <p )

. ex

CINEMATICA



PREPARACION y PROPIEDADES
DEL TETRATIONATO TALIOSO

por LUIS LOSTAO CAMON

I. - INTENTO DE PREPARACION DE TETRATIONATO TALICO

En un trabajo previo (1), al describir nuestros intentos para la preparación
del tetrationato férrico, decíamos que siempre que se encontraban en presencia
iones hierro trivalentes, y iones tetrationato, se produce una reducción del hierro
férrico a ferroso con la consiguiente oxidación del tetratíonato a sulfato. El hecho
de que el potencial normal de oxidación de la reacci6n : TI ++ + + 2e = TI + sea
superior al de la reacción Fe+++ + le = Fe++, nos indica que el talio trivalente
es más oxidante que el hierro trivalente y que, por lo tanto, la prep aración del
tetrationato fálico no será posible, puesto que en este caso también se producirá
la oxidación de los iones tetratíonato a sulfato.

Sin embargo, para comprobarlo experimentalmente, plantearnos una . experien­
cia de preparación de tetrationato tálico.

Corno producto de partida, disponemos de óxido tálico ThOg, y con él pre­
pararnos primeramente una sal t álica que posteriorm ente trataremos con tetratío­
nato de bario.

Las sales tálicas son todas muy inestables. El sulfato se descompone en solu­
ción acuosa (2). Los haluros , debido a la gran tendencia del talio trivalent e, a
pasar al estado talioso son relativamente inestables.- El cloruro es estable en solu­
ción acuosa, perdiendo cloro a 40°C (3), Y por ello lo emplearemos corno pro­
ducto de partida.

Para su preparación empleamos la reacción:

(1)

que ~ealizamos con las siguientes cantidades de partida: 0,45 gramos de Th03
y 0,219 gramos de CIH. Lbs 0,219 gramos de CIH corresponden a 0,51 mIs. de
clorhídrico concentrado de 36 % en peso de, CIH y densidad 1,18. ' Con estas
cantidades ' de partida se obtendrán 0,62 gramos de cloruro tálico.

Sobre los 0,45 gramos de óxido tálico, colocados en un tubo de ensayo, agre­
garnos los 0,51 mIs. de ácido clorhídrico. La disolución es rápida y, cuando se ha
logrado, agregarnos agua destilada para aumentar el volumen. Queda, entonces,
una solución transparente de ligero color amarillo y que da, corno es lógico,
reacción de iones TI +++ .

Con objeto .de no disminuir el rendimiento, a la vez que se evitan operacio­
nes, no procedernos a la cristalizaci6n del cloruro tálico, sino que empleamos su
disolución así obtenida, para intentar la preparación del tetrationato t álico,
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El hecho de que la solución dé positiva la reacción de TI + al tratar con IK,
se debe a que el yoduro. talioso es todavía más insoluble que el cloruro .

La reacción Redox de este proceso habrá sido:

= 7TI+

=4S04= + 20 H +. + 14 e

= 7 Tl t + 4S04= + 20 H +

- 266-

Tl + + + + 21= = ITI + 1/2.1 2

7 T I+++ + 14e

5406= + lOH20

(IV)

(V) 7 TH-+ + + S406= + lOH 20

o bien:

Como suponemos, por otra parte , que el tetrationato reducirá el talio triva­
lente a monovalente, y éste precipitaría al estado . de cloruro talioso insoluble, .
en torpeciendo la marcha de la experiencia, hacemos la reacción a la inversa, es
decir, tratando la solución de cloruro tálico con ácido tetrati ónícovIo que equivale
a tratar primeramente el tetrationato de bario con sulfúrico para eliminar el .bario
y obtener así la disolución acuosa de ácido tetr atiónico.

La solución del cloruro tálico que tenemos es de 0,62 gramos: para reacción
con la misma se necesitan 1,19 gramos de , tetrationato de bario y, por lo tanto ,
los 0,411 gramos de bario que h ay en él, se precipitarán con 0,294 gramos de
sulfúrico, que equivalen a 0,16 mIs. . de sulfúrico 36 N .

Preparamos solución saturada e n agua de los 1,19 gramos de tetrationato de
bario y sobre ella agregamos los 0,16 mls, de sulfúrico 'concen trado; centrifu­
gamos para separar el precipitado de sulfato de bario formado y el líquido que
sobrenada lo filtr amos sobre la disolución de los 0'62 gramos de cloruro tálico.
En seguid a se forma un precipitado blanco, que se deposita en el fondo del tub o
de ensayo en que se realiza la operación, ); ,sobre él qu eda un líquido incoloro
y transparent e.

Este líquido da reacción positiva de iones S406= y TI + , y no da reacción
de TI +++ . La reducción ha sido, pues, completa y muy rápida, ya que si que­
dase algo de ion TI +++, al añadir yoduro potásico quedaría iodo en libertad y,
sin embargo, éste no se reconoce con engrudo de almidón. La identificación cua­
litati va de los iones TI +++ y TI+ , se realiza tratando la solución, que se estudia
con yodur o potásiso. En ambos c-asos se produce un precipitado amarillo de yoduro
talioso, pero si hay talio trivalen te se produce además yodo libre que se puede
reconocer por el color azul que toma con el engrudo de almidón :

con tratamiento posterior de sulfúrico para eliminar el bario, quedando entonces
CIH en libertad:

(1II) Cl2Ba + S04H2 = S04Ba + 2C IH

La preparaci ón de éste la haremos an álogamente a la del ' tetrationato de alu­
mini o (4),' según la reacción:

(II) 3S406Ba + C IaTl = (S406hT 12 + 3 C1 2Ba



- 267 -

, ,

(VI)

Tratamos de disolver direct amente el Tl20s en ácido tetratiónico. La reac­
ción será :

según la cual , y análogamente a lo que ocurre Con el hierro férrico, de 21 mo­
les de S400= solamente dos son oxidados por 14 átomos gramos de talio triva-'
lente, quedando tambi én ácido tetrati ónico en libertad.

De esta experiencia deducimos la imposibilidad. de preparación del tctr atio­
nato tálico.

Puesto que en producto de partida, TI 20s, tenemos el talio en estado triva­
lente y hemos de preparar el tetrationato talioso, emplearemos el mismo IOn tetra ­
tionato para reducir- el talio de partida.

PRIMERA EXPERIENCIA

y como hem os visto, se produci rá segu idamente la reducci ón del talio trivalente a
monovalente.: con la correspondien te oxidación de los iones de tetrationato a sul-
fato: .

P RE' P AR A e I O N Y PRO P [ E D A.D E S D EL 1'. E T lJ. 1 T I P jV A T o TAL l O S o

II .~ EXPERIENCIA PARA 'LA PREPARACION DEL TATRATIONATO
TALIOSO

(VII) 7 (S400hT 12 + 20 H20 1:=::' 7 S400Tl2 + 8 S04H2+ 12 S40 0H2

Sumand o (VI). y (VII), teniendo en cuenta que como todo el tetr ation ato tálico
producido en (VI) se descompone (VII) , tendremos que multiplicar la primera
(VI) por 7 y tendremos el proceso total. .

7 T hOs + 21S40oH2 + 7 (S400hT I2:...L 20 H 20 =
= 7 (S40 ohT 12 +' 21 H 20+ 7S4 0 oT I2 1+ !8S0 4H2, + 12S40oH2

que simplificando quedará:

(VIII)

. Según esta reacción (VIII), al disolver .óxido tálic~ en ácido tetrati ónico nos '
quedará una solución acuosa de tetratíonato talioso acidul ada con sulfúrico. Este
sulfúrico lo podríamos eliminar con iones Ba + + , pero con objeto de no .introducir
otros iones en la solución, y teniendo en cuent a que el tetrationato de bario es el
punto de partida para la preparación del ácido tetratiónico, lo que haremos será
trat ar el óxido tálico en un a mezcla de ácido' tetratiónico y tetrationato de bario en
la cantidad necesaria para que todo el sulfúr ico producido se precipite en forma
de 'sulfato de bario. .

La reacción será :
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y de esta manera, partiendo eh vez de con nueve moles de ácido tetr atiónico, con
ocho-moles de tetr ationato de bario y un mol de ácido tetrati ónico, conseguiremos
eliminar todo el sulfúrico producido en forma de sulfato de bario.

Esta reacción la realizamos, pues, tratando .el óxido t álico : con la cantidad ne­
cesaria de tetrationato de bario del cual se ha eliminado la 1/9 ' part~ .del bario
.con ácido sulfúrico y filtrando el sulfato de bario formado.

Operamos como sigue :
Sobre 0,35 gramos de tetrationato de bario disuelto en agu a, agregamos 0,11 mls.

d e ácido sulfúrico 1,75 N. Y filtramos p ara separar el sulfato de bario formado.
El filtr ado mezcla de tetrationato de bario y ácido tetr atiónico en la proporción
de 8: 1, se agrega sobre 0,31 gramos de óxido t álico en suspensión acuosa . Se agi­
ta fu ertemente, y se observa al dejar en reposo cómo el liquido que sobrenada se
va poniendo turbio, lo qU,e indica que se precipita . sulfato de bario y que la reac­
ción march a. Poco a poco se va decolorando la mancha parda formada por el sul­
fato de bario y el T hOa sin atacar y, fin almente, al cabo de unas cinco horas, te­
nemos en el fondo del tubo de ensayo en que se realiza la reacción una masa par­
da de óxido tálico ,sin atacar y, sobre ella, un precipitado blanco de sulfato bárico.
L a solución acuosa qu e qu eda deberá ser, por tanto , únicamente de tetrationato
talioso. " -. . , '

La determinación c~alitativa de los iones, pr esentes en la solución, nos indican
la ausencia de iones Tl+ + +, lo ' qu e nos confirm a la reducción total del talio, y la
presencia de iones Tl t y S406=; además de pequ eña cantidad dé iones S04=' La
determinacíón de sulfatos la reali zamos agregando hidróxido de bario, pues la adi­
ción de ChBn podría dar lugar a la form ación de cloruro talioso insoluble que pre­
cipitaría con el sulf ato de bario.

El hecho de no haber iones bario en solución nos indica qu e la reacción ha
terminado y, por tanto, de todo el tetrationato de bario ha reaccionado. La .velo­
cidad de disolución del ?xido tálicofue en principio pequeñ a, pu esto que la mez­
.da de sulfato de bario y óxido tálico sin disolver permaneció bastante tiemp o de
color pardo. Má s adelante, y como era de espera r, ya qu e al precipitarse el S04=
originado en la oxidación del tetrationato, el equilibrio deb e de desplazarse hacia
la formación de sulfato, aum ento de la velocidad de reacción y rápidamente el
precipitado quedó de color blanco, excepto la pequeña cantidad de cristal es de
óxido tálico pu estos en exceso. .

Separamos por filtración el líquido del precipitado y estudiamos por separado
ambas partes.

PRECIPITADO

'En' 'ún principio pensamos qu e el precipitado de color blanco era únicamente
sulfato bárico. El hecho de.que al agitarlo con agua tomase un aspecto análogo al
de las sales de plata insolubles, nos llevó a pensar que, junto con el sulfato de .ba­
rio formado , tuvimos también tetrati onato talioso, según esto, poco soluble en agua.

'Por ello, lavamos con agu a el precipitado colocado en una placa filtr ante hasta
qu e las aguas del lavado , que recogemos sobre alcohol, no den reacción de iones
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talio monovalente. Al caer sobre el alcohol se origina un precipitado que supusi­
mos era retrationato talioso.

, FILTRADO

Al filtrado le agregamos alcohol, formándose también un precipitado que, como
el anterior, supusimos era de tetrationato talioso.

De esta experiencia deducimos que el tetrarion~to talioso era poco soluble . en
agua e insoluble en alcohol. Esto nos llevó a realizar una experiencia según reac­
ción (VIII), es decir, haciendo reaccionar ácido tetratiónico con TI 20a, pues de
esta man era obtendríamos un único precipitado de tetrationato talioso, del que se
podría eliminar el sulf úrico entrapado por lavados con alcohol.

SEGUNDA EXPERIENCIA

La realizamos disolviendo 1 gramo de óxido tálico, colocando en un tubo de
ensayo, en ácido tetratiónico, obtenido a partir de 1,12 gramos de tetrationato de
bario y 3,23 mIs. de sulfúrico 1,75 N . La disolución es muy len ta al principio,
siendo, total al cabo de un as cinco horas. J;.n tonces, además de una disolución que
da reacción positiva de S406=; S04=z y Tl+ nos queda el precipitado de color .
blanco y aspecto an álogo' al de 'las sales de plata insolubl e y que suponíamos tetra­
tíonato talioso.

La, disolución 'filtrada se agrega sobre alcohol y se ongIna un precipitado, que
identificamos como sulfato talioso, en vez de ' tetrationato, y que nos llevó a estu­
diar los precipitados formados por adición de alcohol en la experiencia primera y
que igualmente son sulfato talioso; mient ras que los líqu idos acuo-alcohólicos de
las dos experiencias daban reacción positiva de tetrationatos. De aquí deducimos
que el precipitado formado ahora no será tampoco' tetrationato talioso. Intentamos

. investigarlo, pero debido a 'que la cantidad formada era muy pequ eña no pudo ha­
cerse. Unicamente vimos que daba reacción positiva de T I+ , por lo que pensamos
que podría tratarse, por analogía con las sales de plata, de sulfuro talioso, origina­
do en la .descomposíci ón parcial de tetrationa to. , .

Co~ objeto de ver si h ay alguna concordia mayor entre los tetration atos de pla­
ta .y tali oso, hacemos algunas experiencias.

.' En primer lugar, si sobre disolucion es de ácido tetratiónico o de tetrationatos
solubles agregamos sulfato talioso en solución acuosa, no se produce ningún pre­
cipitado, de donde deducimos la solubilidad en agua del tetrationato talioso. Esto
no ocurre cuando se agrega nitrato de plata, pues entonces se forma un preCIpIta­
do blanco que se descompone, dando lugar a la formación, finalmente, de sulfu­
ro de plata.

Pensamos que podría ocurrir, en el caso de la plata de manera análoga o cuan­
do trabajamos con TI + , solamente la descomposición parcial del. tetrationato para
dar sulfuro, ·quedando, por tanto, parte' del tetrationato de plata sin descomponer
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en so~ución. Para comprobarlo , agregamo~ nitrato de plata sobre solución de tetra­
tiona~o de bario e inversamente agregamos disolución de tetrationato , de bario .so-:
bre nitrato de plata. En el primer caso, en el que tenemos exceso de tetrationatos,
se confirma nuestra hip ótesis con la presencia de iones plata en la solución, mien­
tras que en segundo hecho en exceso, de plata , la presenci a de tetrationatos nos
serviría de confirmación. Sin embargo, no sucede esto, y en el primer caso .toda
la plata ha precipitado, quedando s610 exceso de tetrationatos, .mientras que en el
segundo caso todo el tetrationato ha precipitado, quedando únicamente exceso de
iones de plata.

D e todas estas ,experiencias llegamos a l~ conclusión del distinto comportamien­
to 'de los ,tetr ationatos de plata y de talio monovalente. El primero insoluble en agua
y soluble el segundo. El tetratíonato de talio monovalente es tambi én soluble en
alcohol, puesto qu e la adici6n de éste sobre ' su- solución acuosa , no ejerce sobre él,
acción precipitante (vimos que al agregar alcohol era sulfato talioso lo que en prin­
cipio creíamos sería tetrationato talioso) y, además, se descompone parcialmente al
formarse para dar lo que creemos se trata de sulfuro talioso. .

TERCERA EXPERIENCIA

Los resultados de la experiencia anterior nos llevaron a realizar ésta como la
primera, es decir,-a partir de la reacción (IX). Operamos exactamente igual que en
ésta con la única variación de agregar la mezcla de ácido tetratiónico y tetrationato
de bario sobre TI20a sin ponerlo en suspensión acuosa.

U na vez que la reacci ón ha terminado te~emos : ' Un líquido ' que da reacci6n
positiva de iones S406= y TI + t no de Ba+ + ni S04=' Al no dar reacción de bario
se deduce que la reacción ha terminado y qu e, por tanto, todo el tetrationato -de
.bario ha reaccionad o. ..
, Un sólido constitu ídcpor ThOa colocado e n exceso y qu e ya no se podrá' disol­
ver, por no hacer en el medio tetratianato de bario para reducirlo y disolverl o, y un
precipitado de color blanco mezcla de sulfato de ·bario y de los que creemos es sul-

Furo talioso, "
, C entrifugamos para separar , el s6lido del líquido y filtramos para separar las

últimas trazas de solido. El filtrado constituido únicamente por disoluci6n de tetra-'
tionato talioso-se coloéa a cristalizar en desecador a vacío sobre hidr óxido 's6dico.

Una vez formados los cristales, éstos' se presentan de color amarillo débil y son'
fácilment e solubles en agua. N o son higroscópicos y parece que son mu y estables,
puesto que no presentan 010l; a S02' El hecho de quc:: en su disoluci6n acuosa 'n o dé
reacción de sulfa tos nos indica qu e en su cristalización no hay, como ' en los otros '
tetr ationatos preparados,"ningún proces ó de descomp osici ón,

El rendimiento de la' preparación es del orden del 52 %.

"
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Promedio S

19,70 %

Promedio T alio

62,63 %

TABLA I

19,60
19,81

010 ji z uf re

62,45
82,82

010 Talio

LABORATORIO DE QUÍMICA INORGÁNICA

FACULTAD DE CIENCIAS

1. Hemos 'preparado por primera vez tetrationato de talio monovalente en forma
de un producto blanco, soluble en agua y alcoh ol e insoluble en éter, al que
corresponde la siguiente fórmula: S406Th~O. .

2 . No es posible la prepar ación de tetrationato de talio trivalente, puesto que los
iones tálicos oxidan a los iones tetrationato a sulfato.

(1) L. LOSTAO C AMÓN: Preparación de tetrationato ferroso. Sin publi car.

(2) HODGMAN : Handh ook of Chem, pág. 591.

(3) SIDWICK: L os elementos químicos y sus componentes. Ed. esp. Tomo 1; pág. 470.
(4) LUIS LOSTAO C AMÓN : Preparación de tetrationato de aluminio. Sin publicar.

(5) TREADWEL-HALL: Ed. esp. Tomo II , pág. .61.

CONCLUSIONES

III. - ANALISIS DE LOS CRISTALES

La determinación cuan tita tiva del talio se realiza precipit ando el talio en forma
de Th03 siguiendo las indicaciones de Brown ing y Palmer (5), y la del azufre en
forma de sulfato de bario.

Los resultados vienen expresados en la T abla 1 y coinciden con los % de talio
y azufre calcul ados para un tetratíonato

talioso cristalizado con un a molécula de agua: 19,68 % de azufre y 62,81 % de ta­
lio. De aquí deducimos, para el tetrationato preparado por nosotros, la siguiente
fórmula : S406Th.1H20.



N E .C .R O LO G 1 A

El Excmo.' Sr. D. Manuel Aulló y Castilla, Inspector gen eral jubilado, del
Cuerpo Nacional d e Ingenieros de Montes y miembro correspondiente de
esta Academia de Ciencias Exactas, Físico - Químicas y Naturales de Zara­
goza, falleció en Madrid, confortado con los más altos consuelos de la religión
católica, el día 19 de ene ro de 1959.

Su óbito constituyó una sensible pérdida para la Entomología española,
para otros sectores, también interesantísimos de la investigación y para el
Cuerpo Nacional de Ingenieros de Montes al que pertenecía desde el año 1906.

La afición y competencia en Entomología, así como su enorme capacidad
de trabajo, dieron lugar a que se distinguiera bien pronto en el cultivó de
tan importante rama de las Ciencias Naturales y a que se le confiara la
misión de establecer el primer Insectarium Forestal de España, en terrenos
del Real Patrimonio, especialmente cedidos, para tal finalidad, por S. M. el
Rey Don Alfonso XIII.

Los estudios en él realizados alcanzaron bien pronto gran resonancia:
además de repercutir en los trabajos del mismo tipo que se venían realizando
en el extranjero, dieron base para combatir con éxito , empleando los medios
más modernos, ' entre los que figuraba la lucha biológica con especies exó­
ticas , importantes plagas que azotaban la riqueza forestal de extensas zonas
españolas, y para pautar las campañas de extinción de otras varias, también
muy importantes, que venían mermando los rendjmientos económicos de
varios montes españoles. .

Estos trabajos y otros varios relacionados ' con la Fauna Forestal española
dieron lugar a que el señor Aulló y Castilla fuera designado para desem­
peñar, entre otros varios, también muy destacados , los importantes cargos
científicos siguientes : .

Presidente de la 'Real Sociedad Española de Historia Natural; Presidente
de la Sociedad de Entomología Española; Presidente de la Sociedad Española
de Ornitología, de la que era socio fundador.

Consejero de la Asociación de Agricultores de España; Miembro de honor
de la Américan Association of Economic Entomologists de los Estados Unidos
de América; Miembro del Comité de la Unión Internacional de Cien cias
Biológicas de Bru selas; Miembro del Consejo Permanente Internacional para
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la explotación del mar, de Copenhague; Miembro de la Comisión Franco
Española para el estudio de la biología del Salmón; Miembro de la Real
Academia Española de Antropología y Prehistoria; Académico correspondien­
te de la Real de Ciencias y Artes de Barcelona, etc.

Se destacó, también, llevado de su competencia y "aficiones como culti­
vador de la . investigación en otras ramas del saber humano. Realizó excava­
ciones arqueológicas en las provincias de Segovia y Córdoba. Formuló un
Catálogo completísimo de las Plaquetas y bronces religiosos de los siglos XVI y
XVII. Estudió, a fondo, el "Tesoro de monedas de La Algara" (Coruña) .
Redactó un interesante trabajo sobre los "Cornados de Sancho IV" y otro
sobre los "Cornados y Novenes de Alfonso XI", y, no alargando más , se
ocupó con éxito , de ternas heráldicos.

Actuando como miembro del Cuerpo Nacional de Ingenieros de Montes,
en el que prestó servicio activo desde octubre de 1906, hasta su jubilación.
Cl1 abril de 1953, realizó írnportantes repoblaciones forestales de la región
levantina; dirigió la lucha contra las plagas que invadían la Dehesa de la
Albufera, las masas arbóreas de Albacete, de los encinares del Valle ele los
Pedroches, etc. '

, Fue profesor de diversas asignaturas de la Escuela Especial 'de Ingenieros
de Montes, y, además de realizar los trabajos entomológicos derivados de la
creación del primer Insectorio español de Entomología Forestal, fundó y diri­
gió las revistas de Fitopatología y de Biología Forestal y Límnologfa.

. Por últímo. , desempeñó con acierto el importante puesto de Presidente
del Consejo Superior de Montes desde el 14 de mayo de 1952 hasta abril de
1953 en que fue -jubilado.

, Sus indiscutibles méritos dieron lugar aque se le otorgara la Encomienda
de la Orden Civil del Mérito Agrícola.

Descanse en paz el sabio naturalista y competente ingeniero y reciba ' su
respetable familia un sentido pésame por tan sensible pérdida, que lamenta
profundamente esta Academia de Ciencias de Zaragoza al elevar a Dios una
fervorosa plegaria por el alma de tan distinguido miembro dé la misma.
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