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SOBRE LAS DEFINICIONES Y TEOREMAS
FUNDAMENTALES DE LA TEORIA DE LA MEDIDA
Y DE LA INTEGRACION™

por PEDRO Pl CALLEJA

INDTICE

CONTENIDO
Cap. I. — Teorema fundamental de los conjuntos medibles respecto a una
medida exterior de CaraTHEODORY. — 1. Introduccién. — 2. Nomen-
clatura. — 8. Medidas exteriores de CaraTemopory. Conjuntos medi-
bles. — 4. Teorema fundamental de los conjuntos medibles. — 5. Los

conjuntos borelianos y la medida exterior métrica.

Cap. II. — Las definiciones cldasicas de conjuntos medibles (L) como caso
particular de la teoria general de la medida. — 1. Introduccién. — 2.
Medida exterior regular. Medida interior de CaraTEEODORY. — 3. Ca-
racterizacion de conjuntos medibles por continentes y contenidos
medibles.

Cap. ITI. — Integral de LEBESGUE en conjuntos de medida infinita. — 1. In-
troduccion. — 2. Detinicién y lema. fundamental. — 8. Identificacién con
la integral de LEBESGUE - VaLLEE PoussiN. — 4. Convergencia a cero de
la integral con | X,. | — 5. Aditividad numerable de la integral como fun-
cién de conjunto. — 6. Teorema de convergencia acotada de LEBESGUE.
7. Teorema de Fartou.

(1). EI contenido de este articulo figura en varios capitulos de la memoria inédita que fue presentada
como becario de la «Fundacién Juan Marchy, y en parte aparece también en el volumen III de la obra
de J. Rey Pastor, P. Pr Cariesa y C. A. Trejo: Andlisis matemdtico, Cap. XXIV: Teoria de la
medida (Kapelusz, Buenos Aires, XI-1959).
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CONTENIDO

En el capitulo I de este articulo se da una simpliticacién del teorema
fundamental de los conjuntos medibles respecto a una medida exterior de
CARATHEODORY, y en el capitulo II se relaciona la teoria general de la me-
dida con las definiciones cl4sicas de los conjuntos medibles (L), segin ex-
posicién original que aclara y completa muchos puntos de los textos cono-
cidos. Mas importante es el capitulo III donde se extiende la definicién y
los teoremas de la teorfa de LeBescuE al caso de conjuntos de medida infi-
nita, dando asi vastisimo alcance al método de Ry PastoR, que tanto sim-
plifica el desarrollo de dicha teoria.

CariTuro I

TEOREMA FUNDAMENTAL DE LOS CONJUNTOS MEDIBLES
RESPECTO A UNA MEDIDA EXTERIOR DE CARATHEODORY

&I —1. Introduccién. — Es bien sabido que C.CARATEXEODORY en sus
“Vorlesungen iiber reelle Funktionen” (2.* ed., Leipzig, Teubner, 1927) de-
sarrollo en forma axiomatica, de tipo esencialmente geométrico, la teoria
General de la medida, que a partir de la idea tundamental de aditividad
numerable de E. Borer (1898), dio paso al proceso de integracion de H. Le-
BESGUE (1902), tan importante por hacer permutables la integral y el paso
al limite en condiciones amplias. Esta propiedad y el teorema de F. Riesz
(1911) demostrando que las integrales de LEBESGUE - STIELTJES eran las fun-
cionales lineales continuas mdas generales sobre el espacio de tunciones nu-
iéricas continuas con la topologia de la convergencia uniforme, sugirieron
a J. Ravon (1913) la idea de delinir la integral de LeBescue por métodos
funcionales que daban lugar a una “medida de Rapon” sobre el espacio
euclideo R,, que abarcaba con gran generalidad las teorias de la integracion
y de la medida de LeBEScuE y de Stiertjes. Pero en ella se utilizaba atn
esencialmente la topologia de R,,. Su generalizacion a espacios abstractos
cualesquiera fue lograda por O. Nixopym (1930) y perfeccionada por J. von
NEuMANN (1940).

Sin embargo, la idea de prescindir de la teoria de la medida para
generalizar por método puramente funcional €l concepto de integral se debe
a W. H. Younc (1911), y dicho método fue desarrollado en forma abstracta
y general por P. J. Danierr (1918). En el método geométrico de CARATEIEO-
nory la medida juega un papel tfundamental, y asi, segiin dice el policef4-
lico autor N. Boursaxi (“Eléments de Mathématique”, Liv. VI: “Intégra-
tion”, Cap. V: “Intégration des mesures”, Paris, Hermann, Act. Sci. et
Ind. n.° 1.244, 1956), “depuis lors, les auteurs qui ont traité d’intégration se
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sont partagés enire ces deux points de vue, non sans enirer dans des débats
qui ont fait couler beaucoup d’encre sinon beaucoup de sang” (retiriéendose
a la critica que del primer volumen de su “Intégration”, Act. Sci. et Ind.
n.° 1.175, 1952, hizo P. Haimos en el Bull. Amer. Math. Soc., 59, 1953, p. 249).

Se achaca al método de CaraTerfopory la forma penosa como se llega a
demostrar que los conjuntos medibles respecto a una medida exterior tor-
man una familia numerablemente aditiva. Asi, pues, es importante dar de-
mostracion simplificada de este teorema fundamental, lo que se intenta en su
torma mas general, combinando diversas ideas sugeridas en los principales
textos que tratan la cuestion, mientras que en éstos se encuentran demos-
traciones mucho mas complicadas que la expuesta mas adelante.

En espacios abstractos, se han ocupado sobre medidas exteriores en ge-
neral, los libros:

S. Saks: Theory of the integral (2.* ed., Monog. Matem. VII, Varsovia, 1937;

Stechert, Nueva York);

H. Harn y A. Rosentrzar: Set Functions (Albuquerque, Univ. New Mexico

Press, 1948);

P. R. Hammos: Measure Theory (van Nostrand, Nueva York, 1950);
J. von Neumann: Functional Operators. Measures and Integrals (Princeton

Univ. Press, 1950);

M. E. Mungok: Introduction to Measure and Integration (Addison-Wesley,

Cambridge, Mass., 1955); ;

A. ZAaaNEN: An introduction to the theory of integration (North- Holland,

Amsterdam, 1958).

&I-2. Nomenclatura. — Un espacio topologico E (E, G) es un conjunto
total E de puntos x y una clase G de subconjuntos G de E, llamados los
conjuntos abiertos del espacio, tales que la clase G contenga el conjunto
vacio @y el total E, siendo G cerrada respecto a intersecciones () en
nimero tinito y respecto a wniones (U) . arbitrarias: (no necesariamente- en
nimero finito o numerable). Entorno U, de un punto x (6 U, de un sub-
conjunto X de E) es un conjunto que contenga un abierto al que perie-
nezca x (o en el que esté contenido X). Entorno reducido de x es un en-
torno del que se ha suprimido el punto x, designado por

U; =0, —1x]. (I-1)

Una base de entornos es una tamilia V de entornos tal que para todo U,
exista un entorno V, € 'V con V, € U, donde “€ 7 signitica “pertenecien-
te a”, y “< ”significa “contenido en”, reservando “c ” para “parte propia de”.

El espacio topolégico es un espacio de Hausporrr.si cada dos puntos
distintos tienen entornos disjuntos (sin punto comun).

Un conjunto F es cerrado si su complemento E—F es abierto.

Se llama clausura del conjunto X a la interseccion X de todos los
cerrados que contienen el conjunto X. Una familia A de conjuntos es un
cubrimiento de X si cada punto de X pertenece a un conjunto de la fa-
milia A. Si ésta consta sélo de un nimero finito de conjuntos, el cubri-
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miento se llama finito. Reterida a A, toda tamilia parcial de A que sea tam-
bién cubrimiento de X se llama subcubrimiento de X. El cubrimiento se
llama abierto si son abiertos los conjuntos que forman la familia A. El con-
junto X se llama compacto si todo cubrimiento abierto de X contiene un
subcubrimiento tinito de X.

Un espacio métrico E (E, o) es un conjunto total E de puntos x € E,
donde se ha definido una tunciéon real ¢ (llamada distancia) sobre el pro-
ducto cartesiano E X E, tal que o(x, y) =0 <==>x2=y, 0y, 2) <
< o(x, y) + o (x, 2), donde “<==>>” signitica “equivalente a”. De esto
se deduce ficilmente que ademds es o (x, y)=0;0 (x, y) = e (y, x). Es-
pacio métrico es caso muy particular de espacio de HAUSDORFF.

En un espacio métrico, un entorno esférico de a de radio ¢ es la esfera
abierta de centro a y radio ¢ dada por el conjunto:

U (a, &)= tx tal que p(a,x) < &}. (I-2)

Los entornos esféricos de un espacio métrico forman una base de entor-
nos de dicho espacio. Un entorno esférico reducido es el conjunto:

U’ (g,e) = ix tal que 0 < o(a x) < &}. (I-8)
La distancia entre dos conjuntos X, Y de un espacio métrico se de-
tine por :
0(X,Y) —=int oy . (I-4)
2 (EOXC R

cdonde el segundo miembro representa el extremo inferior (“inf”) de las
distancias de cada punto x € X a cada punto y € Y. En particular, si X
consta de un solo punto x, es

Se llama didmetro d(X) de un conjunto X al extremo superior (“sup”)
de las distancias de cada par de puntos x;, x> de X:

d(X) = sup Q0 Xi,%a . (I-6)
xl: X2 E X

La diferencia entre dos conjuntos X —Y es el conjunto de los elemen-
tos de X que no pertenecen a Y, es decir:

X—Y=X—XnNY). (I-7)
En el espacio euclideo R,,, con distancia euclidza dada por:
0l y) =+ Vz(xﬂ,i , ©8)
n=ll
un intervalo abierto I de puntos x — (x;, %, ..., x,,) €s €l ortoedro {x tal que
4 <5< b, ,i=12, ..., m} con medida elemental (L) dada por:
w () =I(0b;—a) >0. (I-9)

=1
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. << b,, se obtiene el intervalo cerrado I que es
clausura del anterior, en caso de ser g, < b, para todo 4. Si algin ¢, = b;,
el intervalo se llama degenerado.

En un espacio topoldgico general se dird que una familia H de con-
juntos es numerablemente (finitamente) aditiva si cumple: 1.°) El conjunto
vacio @ pertenece a H; 2.°) Si X pertenece a H, también su complemento
E — X pertenece a H; 8.°) La unién intinita-numerable (tinita) de conjuntos
pertenecientes a H, también pertenece a H.

Es importante observar que este concepto varia ligeramente segtin dis-
lintos autores, los que también emplean nomenclaturas variadas. Aqui se
adopta la mas adecuada y sencilla al caso tratado.

Si la familia aditiva (finita o numerable) H' contiene todos los con-
juntos cerrados F, contiene también todos los abiertos G (y reciprocamente).
Entonces la familia minima numerablemente aditiva que cumpla estas condi-
ciones (interseccion de todas las familias numerablemente aditivas que con-
tienen los abiertos y cerrados de E) forma la familia numerablemente aditi-
va B de conjuntos borelianos o de conjuntos (B) del espacio E. Este con-
cepto es importante en los espacios meétricos y en los espacios completos
(es decir, donde se cumple el criterio. general de convergencia de Caucrry).

Una funcién numérica uniforme de conjunto o (X) que toma sus valo-

Si se considera g, < x;

)

res en la recta acabada Ry (nomenclatura de Boursaxi, designando asi la
racta euclidea R; a la que se han agregado los puntos — oo, + co con las
convenciones de H. Harmn en “Reelle Funktionen”, Leipzig, 1932, pp. 177
y 180) se dird que es numerablemente aditiva si cumple las condiciones:
1%) Esta definida en una familia numerablemente aditiva H de conjuntos;
2.2) Si {X,} es una sucesion numerable de conjuntos disjuntos de H, se
cumple:

o0 (20} —
o (U Xn) = 2 o (Xn) E Rl 5 (1-10)
=4 o=
S.a) ES G(@) == 0.
Si en la condicion 1.2, la tamilia H es solo finitamente aditiva, la condi-
cion 2. se sustituye por:

o(X1 U X5) =0 (Xy) +0(Xs) € R, (I-11)

para todo par de conjuntos disjuntos X; y X, de H, y subsiste la condi-
cion 8.2, entonces se dira que o (X) es una tuncion finitamente aditiva de con-
junto (o aditiva, pues es facil ver, mediante el conjunto vacio ¢J, que una
funcién numerablemente aditiva también lo es finitamente). La aditividad
numerable también se llama aditividad completa o aditividad infinita.

Si para dos conjuntos cualesquiera X 2 Y (con 27 significando “con-
tiene a”) de la familia H donde esta definida la funciéon de conjunto o, es
o (X)= o (Y), se dirda que ¢ es creciente, mieniras que si es ¢ (X)< o (Y),
se dird que es decreciente, y en uno y otro caso se dird (en sentido amplio)
que es mondtona (propiamente si a > corresponde siempre > 0 a < co-
rresponde siempre > ). Es facil ver que una tuncion aditiva de conjunto es
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no-negativa si y solo si es creciente, mientras que es no-positiva si y solo
si es decreciente. :

Se dird que una funcién de conjunto es una funcién de medida (o mis
sencillamente una medida) si es numerablemente aditiva y es no-negativa (es
decir, creciente).

& 1-3. Medidas exteriores de Caratrieopory. Conjuntos medibles. — Toda
funcion numeérica unitorme de conjunto p (X) que toma sus valores en la rec-
te acabada R;, definida en una familia numerablemente aditiva H de un es-
pacio topologico general E, se dird que es una medida exterior si cumple
los postulados:

M;) Es creciente, es decir,

X: S X (€ H)—p (X)) < p (Xa), (1-12)

donde “—” signitica “/mplica”;
M) Es subaditiva numerable, es decir:

00 (7o} ‘
w(U X)) < 2uX,) (I-13)

ni=1 =l

para cualquier sucesion tinita o intinitamente numerable de conjunto X, € H :
M;) p(@) =0.

Generalmente, la tamilia H consta de todos os subconjuntos del conjun-
to total E. Los postulados M; y M; implican que u(X)=>0. También es
tacil ver que si una medida exterior es finitamente aditiva, entonces lo es
también numerablemente y, por tanto, la medida ‘exterior es entonces una
medida en la misma familia H.

En un espacio métrico se dira que la tunciéon de conjunto p (X) anterior
(cumpliendo los postulados M;, M., Ms) es una medida exterior métrica si
ademas cumple el postulado:

M,) Si para dos conjuntos X;, X, de H es positiva la distancia o (X;, Xs) >
> 0, entonces es | (X; U Xo) = u (X;) 4+ 1 (Xo).

Dado un conjunto cualquiera de un espacio euclideo R, todo cubrimien-
lo de X mediante intervalos abiertos puede reducirse a un subcubrimiento
numerable (teorema de LiNDELOF - HausporrF, propiedad que tomando abier-
tos cualesquiera en lugar de intervalos, puede generalizarse a los espacios
de Lmpercr, es decir, a los espacios perfectamente separables o que cum-
plan el segundo axioma de numerabilidad segiin el cual existe en el espacio
una base numerable de entornos). La suma de medidas elementales (L)
(& I-2) de esta intinidad numerable de intervalos abiertos es la suma de una
serie incondicionalmente convergente o divergente de términos positivos. Al
extremo inferior de las sumas de las medidas elementales (L) correspondien-
tes a todos los cubrimientos numerables de X por intervalos, designado por:

m,(X)=IX|=  int pz” e (-14)

ni=":1
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se le llama medida exterior de LeBEscue o medida exterior (L) del conjun-
to X. Puede emplearse la notacién | I| en lugar de 7, (I) para la medida ele-
mental (L) de I, porque se puede probar que para todo conjunto X que con-
tenga un intervalo I y esté contenido en su clausura I, se cumple m, (X )=
=t (I). Adems4s, se demuestra que la medida exterior (L) dada por (I-14)
es una medida exterior meétrica.

Respecto a una medida exterior u de un espacio topoldgico general de-
{inida en una familia numerablemente aditiva H, se dira que un conjunto
X € H es medible (), o sencillamente medible, escribiendo X € (1), cuan-
do para todo conjunto W € H se cumple:

(W)= (WA X) b p(W—X). (1-15)

Es tacil ver que esta definicion (de CARATEIEODORY) es equivalente a decir
(con H. Kesterman: Modern Theories of Integration, Oxtord Univ. Press,
1937) que X € (w) cuando y s6lo cuando para lodo par de conjuntos A y B
de la tamilia H tales que:

ASX.BSI—X se cumpla p(A U B)= u(A) + p(B), (I-16),

pues en el teorema directo basta tomar W=A U B y en el teorema re-
ciproco, tomar A=W N X, B=W —X.

Es inmediato deducir que E € (), t(X) = 0 — X € (u); X € (W—>E—
—X € (.

En virtud de la condicién M, de subaditividad numerable, se cumple
(I-15) si y solo si es:

pW)=zpWAn X))+ n(W—X), (I-17)

y como ésta es evidente para p (W)= -+ oo, bastard comprobar (I-17) o
(I-15) para todo W € H de medida exterior finita para atirmar que X € (w),
& 1-4. Teorema fundamental de los conjuntos medibles. — La importancia
de los conjuntos medibles radica en Ja aditividad numerable de su medida exte-
rior restringida a ellos y en que forman una familia numerablemente aditiva,
es decir, que la restriccién de una miedida exterior p a la familia de conjuntos
medibles () es una medida. Esto se va a demostrar por sucesivos teoremas,
donde se supondrd que  (X) es una medida exterior definida en una fami-
lia numerablemente aditiva H de un espacio topoldgico general E y que cum-
ple. por tanto, los postulados My, M., M; del & I-8.

Teor. I-1.— Si X es un conjunto medible (1) e Y € H con medida exte-
rior finita w(Y) < -+ oo, para cualquier V. € H, es: ;

X, UYy)=pXy) ) —uX, N Yy, (I-18)
designando X, =X NV, Y, =Y N V.
En efecto, por ser X medible, para cualquier W € H se verifica (I-15), y
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si_en esta igualdad se toma primero W =Y, y luego W=X, U Y,,se
obtiene:

Il

R(Yy) =X N Yy)+p, —X)=
=u(Vy 0 Y)) + p(Y,—Xp)s
Ry U Y )=puXN X, U Yy)+n Xy UYy)—X)=

wXy) + u (Y, —Xy).

I

[

Por ser u (Y,) < + oo, podremos despejar p (Y, —X,) en la primera
y sustituir en la segunda, obteniendo asi (I-18). Para V= E, se obtiene en
lugar de (I-18) la igualdad

BXU V) =p @) +u®)—pXNY). (1-19)

Teor. I-2. — Si X es un conjunto medible (w) y V e Y son conjuntos
cualesquiera de la familia H, tales que X e Y sean disjuntos, designando como
antes X, =X NV, Y, =Y NV, entonces es:

WXy UYy)=upuX,)+u (Yy) . (1-20)

En efecto, si u (Y;) = + o, la (I-20) es evidente, mientras que si %) <
< + oo, €l teor. -2 es un corolario inmediato del teor. I-1. '

Teor. I8. — Si {X,} es una sucesion de conjuntos medibles (), dis-
juntos dos a dos y V es un conjunto cualquiera de la familia H, entonces es:

o0 0 3
n=1 =i
kE—1
En efecto, U X, es disjunto con X, medible, de donde por el teor.
n=1

I-2 es:

k Jei==1
BVN U X)=u(VN U X)+uVaX),

ni—=:l =l

y aplicando induccién completa, para todo k finito se obtiene:

Ik Ic
LVA U X)=SuvnX,).
=

= l
: k
Por ser V.1 U X,2VNUX, de la condicion M; de monotonia de
=l n=1
i (&I-8), se obtiene:
0 ; I i
p(VNUX)Zp(VN UX,) =

e =1 n

M=

w(VNX)
1
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y haciendo k— oo resulta:
(0.4}
w0 0X)=SemnX,,
=l ni==l

que con la desigualdad de sentido contrario obtenida de la condicién Mo
de subaditividad numerable de p (&I-8), prueba (I-21).
En particular, para V=E, la (I-2l) se convierte en:

ey =S e, (122)

ni=11 =l
co 5
lo que atin no demuestra sea U X, € (), es decir, que la familia de con-
n=1

juntos medibles (u) sea infinitamente aditiva y p sea una medida.

Treor. I-4. — La interseccion D de dos conjuntos medibles X; y X» es
medible.

En efecto, sea W un conjunto cualquiera de la familia H de medida ex-
terior tinita. Aplicando (I-15) al conjunto medible X; con W —D en lugar
de W, sera:

w(W—D)=p(W—D) N Xy) + u(W—-D)—X,) =
= (W N X5) —D) + u (W —Xy).

Si ahora se aplica (I-15) al conjunto medible X, con W 0 X; en lugar
de W, sera:

pWAX)=p(WNX)NXs)+p(WnN Xy) —X,) =
— (W 0 D)+ (W 0 X) —D).

‘Eliminando p (W N'X;) — D) entre ambas igualdades anteriores, se ob-
tiene, por ser X; medible:

w(W 0 D)+ (W—D) = u(W N Xs) +p (W—X1) = u (W),

lo que prueba es D medible, en virtud de la observacién final del &I-8.

Teor. I-5. — La union de dos conjuntos medibles es medible.

En efecto, si Xy y X son medibles, también lo son sus complementos
E—X; y E—X, y, por tanto, su interseccion (teor. I-4):

E—X:) N (E—X) =E— (X, UXs) € (),

es decir, X; U X; € (u), como se queria demostrar. Por induccion completa
resulta que los conjuntos medibles forman una familia finitamente aditiva.

Teor. I-6. — La familia de conjuntos medibles es numerablemente aditiva
y la funcién p (X) restringida a ella es una medida.
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Se va a probar que si X, € (W,(n=1,2,38,...), entonces
o0
S )
7=
En efecto, para cualquier W € H, por el teor. I-5 es:
k >
SI:. == U }&n 6 (l“’) y
n—":1
Con Y, =X, — S, = X, —(X 0 S4-) €s S, = S U Yy, con Yy, Sy dis-
juntos, y si Y; = X;, queda S, = U &n, S U Y,conY, (n=1,2..) disjun-

n=1

tos dos a dos. Aplicando (I-15), se obtlene

R"

pW)=pW—S,) +n(W—5,)

en virtud de (I-21) del teor. I-3. .

Como W—S, 2 W—S, si se aplica la condicion M; de monotonia
de p (&5—38) a la anterior, se obtiene:

ZpWNY,)+ p(W—Sy),

=il

K
pW)=2pWnNYy,)-+upW-—5).

n—=1

Si en ésta se hace tender k— oo, y se vuelve a aplicar (I-21) del teor.
I-8, se obtiene:

pW2SuWn ) +uW—0Y)=uwWnUY)+uW—07Y,)=

ne—tl w—1 ni=il =l

=pW NS +pnW—5)

que en virtud de (I-17) prueba que 8 X, € (n), como se queria demostrar..
n=1

Eso y (I-22) hace ver que p (X), resiringida a la familia de co-njuntos> medibles.

es una medida.

Teor. I-7. — La interseccion de una infinidad numerable de conjuntos
medibles es medible.

Pues, si X, € (u), (n= 1,223, ...), también es E— X, € (u), y por tanto
su union (teor. I-6): :

6 E—x)=E-fx cw

n=1 =1l
= o0
de donde N X, € (u), como se queria demostrar.
n:l
&I—5. Los conjuntos borelianos y la medida exterior métrica. — Aun

cuando la familia de conjuntos medibles sea numerablemente aditiva, puede no
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contener los abiertos, y por tanto un conjunto boreliano puede no ser
medible (u).

Ejempro. Sea E (E, G) un espacio topolégico general cualquiera (por
ejemplo, la recta real R;) y sean a, b ntimeros reales fijos tales que 0<ash
b<2a, detiniendo p (&) =0, p(E )_b y u (X)=a para todos los demads
conjuntos. Entonces p es una medida exterior, pues aun en el caso de que E
conste de solo dos puntos distintos, se cumple el postulado M, del &I1—3,
en virtud de ser b < 2a. Aplicando (I-15) se ve que en los casos 0 < a < b <2a
6 bien 0 < @ < b=2a con E distinto a dos puntos, los tnicos conjuntos
medibles son el conjunto vacio @ y el total E, siendo los demas, incluso
los borelianos, no medibles. En otro caso, es decir, cuando 0 =a=05b ¢
cuando 0 < @ < b =2a con el conjunto total reducido a dos puntos dis-
tintos, resulta en cambio que todo conjunto X es medible; obsérvese que
0=a < b no es posible si ha de ser b << 2a. En el espacio métrico que
torma la recta real R;, la medida exterior anterior es meétrica (es decir,
cumple el postulado M, del &I—3) solo si es 0 = a=b.

La importancia de una medida exterior métrica estd en que respecto a
ella los conjuntos abiertos son siempre medibles, segtin un teorema clasico
de CARATEHIEODORY, cuya demostracion, también clasica, es muy ingeniosa,
pero. bastante penosa, desarrollandose en forma aniloga a la dada por Ca-
RATHEODORY para probar que los conjuntos medibles forman una tamilia
numerablemente aditiva.

Pero aun mds, se puede atirmar que en un espacio métrico cualquiera,
la’ condicién mecesaria y Ssuficiente para que respecto a una determinada
medida exterior W, los conjuntos borelianos sean medibles, es que 1 sea una
medida exterior métrica.

Desde luego, la, condicion . es suticiente, pues si entonces los conjuntos
abiertos son medibles (segtin el mencionado teorema de CARATEHIEODORY), la
tamilia numerablemente aditiva de conjuntos medibles contendra los borelia-
nos (&I—2). Reciprocamente, la condicion es necesaria, pues si todo con-
junto boreliano es medible, también serd medible todo abierto y entonces
de esto se deduce que se cumple el postulado M. del &I—38 y que por tanto
la medida exterior u dada es métrica. En etecto, dados dos conjuntos X;
y Xa.de la familia numerablemente aditiva H donde estd definida la medida
exterior p tales que p, = p (Xi,Xs) > 0 existirdA un abierto G que conten-
ga X; y sea disjunto con X,, pues por ejemplo basta considerar la unién
de todos los entornos estéricos de los puntos de X; de radio p,/2. Cemo por
hipétesis G es medible, puede aplicarse (I—15) tomando W =X; U X,
y X =G, dando asi:

WX U X)) = (XU Xo) N G) + p(Xq U Xo) —G) = p(Xq) + 1 (Xo),

que -es lo afirmado en el postulado M, del &I—3, como se queria de-
mostrar.
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Capituro II

LAS DEFINICIONES CLASICAS DE CONJUNTOS MEDIBLES (L)
COMO CASO PARTICULAR DE LA TEORIA GENERAL
DE LA MEDIDA

&II —1 Introduccién. — Parece interesante destacar la torma en que
rapidamente puede llegarse a estudiar las condiciones restrictivas que deben
cumplir espacios topologicos generales y medidas exteriores para que los
1espectivos conjuntos medibles se ajusten a coincidir con los definidos cla-
sicamente en las obras basicas de la teoria que tratan de la medida (L)
lales como las siguientes:

H. LeBescue: “Legons sur lintégration et la recherche des fonctions pri-

mitives” (Paris, Gauthier-Villars, 1.* ed., 1904; 2.2 ed., 1928).

C11. J. pE LA VALLEE PoussiN: “Intégrales de LeBescuE, Fonctions d’ensemble,

Classes de BARe” (Paris, Gauthier-Villars, 2.2 ed., 1934).

Introducida la funcién caracteristica cx(x) del conjunto X contenido en
el intervalo finito I del espacio euclideo R,, como la tuncién definida
en I que vale 1 en los puntos de X y 0 en los de su complemento I — X,
se define la extension del conjunto X, o también su medida de Peano-
JorpAN o medida (R),al valor, en caso de existir, de la integral de
RiemaNN:

>

®) j ex(t) dr—e(X). (IL.1)

En cambio, siempre existen, definidas por las integrales superior e infe-
rior de DagrBoux, las llamadas:

extension exterior = e (X) = [ cx(x) dx,
I

; (11-2)
extension interior — e (X) = j cx(x) dx,

y sdlo si estas dos coinciden, el conjunto X tiene extensién.

La extension de un intervalo I coincide con su medida elemental 7, (1)
(81—2), que tiene la propiedad de aditividad finita (&I—2).

Se ve que la extensién exterior del conjunto X contenido en I es el
extremo inferior de la suma de las medidas elementales de los subintervalos
continentes a los que pertenece algtin punto de X respecto de todas las
particiones de I en numero finito de subintervalos no-nampantes (sin punto
interior comun), mientras que el extremo superior de la suma de las me-
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didas elementales de los subintervalos contenidos, todos cuyos puntos, per-
tenecen a X, da la extension interior.

La extension, en caso de existir, da una medida que tiene la propiedad
de aditividad finita, pero no la de aditividad numerablemente infinita.

Por ejemplo, cada uno de los puntos racionales de I en R, tiene exten-
sicn (nula) y su union (que es numerable) no tiene extension. Andlogamente,
si del intervalo I en R; se extraen sucesivamente cada uno de los puntos
racionales, se obtiene una sucesion de conjuntos de extension 1, cuya in-
terseccion numerable es el conjunto de numeros irracionales sin extension.

También puede haber conjuntos abiertos o conjuntos perfectos sin ex-
leusion. Por ejemplo, sea el obtenido asi en el intervalo cerrado [0, 1] de
la recta real Ry: De [0, 1] se extraen el intervalo abierto central I, de
longitud 1/4, de los dos segmentos restantes los respectivos intervalos abier-
los centrales I, Iy de longitud 1/42, de los 2* segmentos restantes los res-
pectivos intervalos abiertos centrales I, I5, Is, Ir de longitud 1/4° y asi su-
cesivamente; entonces, el conjunto abierto extraido G=I1, U LU I;U ...
no tiene extensién, pues por ser denso en [0, 1] es € (G) =1, y por suma
de sus componentes, es:

1 1 1 1 2
@) — o g2 o= < 1—eG).
i 4 42 43 2

El complemento a [0, 1] es ejemplo de conjunto perfecto sin extension.

Para que todo conjunto- tuviese medida, Cantor propuso considerar
como tal su extension exterior, pero ésta no es ni tinitamente aditiva. Por
ejemplo, el conjunto Q de puntos racionales del intervalo I = [0, 1] en Ry
y el I—Q de los puntos irracionales tienen ambos extension exterior 1, lo
mismo que su unién disjunta I.

A partir de la medida elemental de los intervalos (en los espacios eucli-
dcos R,,) puede editicarse toda la teoria de la medida (segin Ch. J. de la
VaLLie PoussiN) basandose exclusivamente en la aditividad numerable, pero
para que este método de medir no sea contradicicrio, es esencial demos-
trar el siguiente teorema de umicidad:

Teor. II-1. — Si un conjunto X puede considerarse de dos maneras dis-

tintas X = LrjJ I — LUJ3 I, como la union de una infinidad numerable de inter-
p= ) Si=l

valos no-ilampantes (posiblemente degenerados o vacios), la suma de las me-

didas elementales de estos intervalos es la misma en ambos casos.

La demostracion de este lema fundamental de Ch. J. de la Varrie Poussmv
la efectua J. REy Pastor (en sus “Elementos de la Teoria de Funciones”,
3.2 ed., Ibero-Americana, Madrid-Buenos Aires, 1953), en forma ingeniosa,
basandose en la teoria de las series dobles de términos positivos, pero es de-
fectuosa y necesita ser perfeccionada, debiéndose aplicar en ella, como en
la demostracién de Ch. J. pE LA VALLEE Poussiy, el lema de Bogrgr.

— 177 —



REVISTA DE LA ACADEMIA - DE CIENCIAS EXACTAS, FISICO-~QUIMICAS Y NATURALES

En efecto, sea la interseccién L= I N I;, acaso intervalo degenerado o
vacio. Para r tijo, es:

co o0
1= 15 con el (== i s (1),

51 Sie=1
lo que no es evidente (como se supone en la obra citada), por no poder acep-
tar como fundamento el criterio de aditividad numerable, ya que precisamente
estamos demostrando la no-contradiccién del mismo. Por ejemplo, dicho cri-
terio seria contradictorio en la recta racional, tomando I, no degenerado, tal
que t, (I) > 0, con I, reducidos a puntos det, (I,,) = 0. Precisamente, co-
rolario inmediato de este teorema de unicidad serd la no numerabilidad del
continuo, pues el conjunto de puntos [0, 1] tiene medida 1 > 0, y por tanto
no puede ser numerable; se comprende que esta propiedad sustantiva no
debe depender solamente de una definicion (siempre Iogicamente convencio-
nal) como la de definir como medida boreliana de un conjunto compuesto
de la unién de un nimero finito o infinito numerable de intervalos no-ram-
pantes (posiblemente degenerados) a la suma de las medidas elementales de
sus . intervalos componentes (Ch. J. de la VaALLiE Poussin).

Completando la demostracion empezada, se ve que desde luego, por ser

no-rampantes los I, € I, las sumas parciales seran:

rs —

UL p
S, @) <w (@),
Si—il
y por tanto, también:
(os}
21: (Irs) <TL (Ir)

Por otra parte, para todo e > 0, se podii encerrar cada I, en un in-
tervalo abierto J, tal que su medida elemental sea:

L7 (Js) < Te (Irs) + E:/2.‘ 2

Entonces, cada punto de la clausura 1, de I, pertenecerd a un intervalo
abierto J,, bastando un ntimero finito k de éstos, por el lema de Borei,
para cubrir 1. Por las leyes de monotonia de las sumas finitas de nimeros
reales, sera:

I
e, () = (L),
s =—ul

y por tanto:

0
o)< 2, () S
=1

H VQ

g @) Fe/2) =Ern @) +e.

Como = es arbitrario, haciendo £~ 0, de ésta y la desigualdad de sen-
tido contrario, resulta:

i) =S )

ST—3l
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Entonces frb (I) es la suma por tilas de la serie doble
=i

[Volve)

S ()

w . »
que ha de coincidir con v, (I,), suma por columnas de dicha serie doble
Sisi—l
de términos no negativos, quedando asi probado

i %
D () = (1)
= S—"1

Primitivamente LeBrscUE para un conjunto acotado X < I finito de un

espacio euclideo R,, cre6 una teoria paralela a la de Peano-JorpAN definien-

o la medida exterior m, (X) =|X| por la anteriormente considerada (I-14)
y la medida interior m, (X) mediante
m, (X) =II|—|IT—XI|. (I1-3)

Entonces, la definicién de Lesescue de conjunto medible (L) dice:
Es X e (L) si y solo si se cumple m, (X) =m, (X), es decir:

1T =1X ]+ T—X]. (11-4)

Desde el punto de vista de CaraTertopory (& I-8), la condicion (II-4)
exige aparentemente menos que la (I-15), pues basta tomar en ésta W =1,
probandose asi la necesidad de (II4). Luego se vera (&II-2, teor. II-5)
que (II-4) es lambién suficiente para que se cumpla (I-15) en el caso de
nedida exterior (L) en R,,.

La medida exterior (L) de un conjunto X en el espacio euclideo R,, pue-
de darse como extremo inferior de las medidas exteriores de todos los abier-
tos G que contienen X, es decir:

m, X)=IX|=int| G|, (I1-5)
G=2X

equivalente a poner que para todo & > 0 existe un abierto G. 2 X tal que:
el sl e (I1-6)

donde puede ponerse < en lugar de <, si y solo si |X| es finita.
En efecto, dado e > 0 arbitrario, por (I-14) puede hallarse un cubrimiento

numerable de intervalos I, tal que g_.gi LiI<|IX|H e (< si|X| es finita)
=1
[va)
y basta tomar G, = U I,.

ni="1

Mediante lc que se ha llamado medida boreliana de conjuntos compues-
tos de intervalos, aplicada previamente a los abiertos y cerrados de R,, (pues
todo abierto de R,, es union finita o numerable de intervalos cerrados no
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rampantes con posibles ironteras comunes), se llega a una detinicion equi-
valente a la de Lesescue. Para ello se introduce m, (X)=|X| median-
te (II-5), pero entendiendo |G| en sentido de medida boreliana.
Correlativamente, se define la medida interior m, (X) mediante el extre-
mo superior de las medidas borelianas de todos los cernados F contenidos
en X, es decir:
m, (X) =sup | F ! (I1-7)
Fc X

para el caso de X acotado. Entonces (II-7) resulta de (II-5) y (II-3), pues es:

m (X) =11l —I—X[=|I|—int |G |=sup (1| —1Gs]) =
G2I—X G 2I1—X
=sup|l—G;|=sup|F|
I—G, & X Fec X

donde para I—G; =F € X, es borelianamente |F|=|11—|G;|.

‘La definicién (1I-7) no puede aplicarse a conjuntos de medida infinita
por dar lugar a incongruencias, tal la de que podria sustraerse de un conjunto
medible otro también medible, sin que la diferencia lo fuese.

V4lida para conjuntos no acotados es la definicion de Ch. J. de la VALLEE
Poussin de caracter constructivo (ctr. & II-3, teor. II-12):

Es X e (L) si y solo si para cada € > 0 se pueden construir efectivamente
un conjunto continente abierto Ge y un conjunto contenido cerrado Fe, tales
que cumplan:

Fe £ X €6, con |G.—F. | <e (I1-8)

Evidentemente, para conjuntos acotados y, por tanto, de medida finita,
donde es |G.—’F.|=|G.|—|F.|, teniendo en cuenta (II-5) y (II-7), la
(II-8) equivale a que se cumpla m, (X) =m, (X).

También se verd (& II-G, teor. II-8) que la definiciéon (II-8) equivale a
decir:

Es X e (L) si y solo si para cada ndmero ¢ > 0 existe un conjunto con-
tinente abierto Ge 2 X tal que:

le = x> (I1-9)

definicién empleada por S. Rfos en su “Teoria de la Integral” (Rev. Acade-
mia de Ciencias, vol. 36, 1942, Madrid; resumida en “Conceptos de Inte-
gral”, Monogr. Cnjo. Sup. Invest. Cient.,, Madrid, 1946).

Obsérvese que por (II-6) se sabe que para cualquier conjunto X de me-
dida exterior finita existe un conjunto abierto G. 2 X tal que:

(Gl —lesli=is; (I1-10)

por lo que (II-9) es mads restrictivo que (II-10) al probarse (ejemplo de
HausporrF) que existen (idealmente, mediante el postulado de ZerMELO)
conjuntos no medibles (L).
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& 11-2. — Medida exterior regular. Medida interior de CARATEIFODORY. —
En un espacio topologice general (& I-2) una medida exterior v (que cumipla
los postulados M;, M., M; del & I-8) se llama #egular (CARATEIEODORY)
si w (X) es el extremo inferior de las medidas de todos los conjuntos medibles
(& I-8) que contienen X, es decir:

w(X) = int w(A) (I1-11)

XS A€W
TEeor. 1I-2. — La medida exterior (L) dada por (I-14) es regular, es decir:
G = it AT (II-12)

XS Ae (L)

Pues llamando n(X) al segundo miembro de (II-12), si X< A, serd [X| < |Al
(por la condicion M; del &I-8), de donde resulta | X | < n (X). Por otra par-
te, si 11,} es un cubrimiento por intervalos abiertos de X, y ‘A es su unién,
por la condicién de Ms del &I-8 sera:

FLEAS

n

1

n(X) STAIS

n

Il M8

y aplicando (I-14) (donde vy, (I,) =1, ), resulta n (X) < | X |. Ambas desigual-
dades de sentido contrario demuestran (I1-12).

Obsérvese que (II-12) generaliza (I1-5).

Para una medida exterior regular se define en un espacio topoldogico ge-
neral la medida interior p, (X) (CARATEIZODORY) como el extremo superior de
las medidas de todos los conjuntos medibles conienidos en X, es decir:

w (X) =sup u(B). (I1-13)
RI=iBer (1)

Teor. I{-3. — En el espacio euclideo R, y para conjuntos acotados X S I
jinito, la definicion de medida interior (II-18) aplicada a la medida (L) es
cquivalente a la (II-7) y por tanto (&II-1) a la de Lesescue (II-3), es decir

w (X) =m, (X) =sup| F|. (I1-14)
FeX

Pues siendo los conjuntos B y los abiertos G medibles y [I| finita, por
(II-12) y (IL-5), es (&I-4, teor. I-1):

Slip, T EBI—  supe (P ey — e S e piie
XeS B el e X ci=ep FESEE [ap

=il @ =" s [ T—Cl= sup - | E|[.
X E XoieE F X

Se vera ahora que el siguiente teorema fundamental de las medidas ex-
teriores regulares asegura, para cualquier conjunto donde esté definida la
medida exterior, la existencia de una cdpsula medible isométrica exterior,
y también la de un nicleo medible isométrico interior, lo que permite para
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conjuntos de medida regular finita, dar el criterio de mensurabilidad me-
diante la igualdad de las medidas exterior e interior, como €n la teoria
clasica.

Tror. I1-4.— En un espacio topolégico general, si una medida exterior
u (X) definida en una familia numerablemente aditiva H, es regular, se cumple:

a) wX)<pX). (En R, para p =1L, serd m; (X) < [ X |);

b) Para todo conjunto X ¢ H existe un conjunto medible S conteniendo
X tal que u (S) = u (X); se llamard a un tal S cdpsula isométrica exterior de X;
en particular, en R,, para p= L. puede tomarse como cipsula boreliana iso-
métrica exterior un conjunto seudo-abierto Gy interseccion numerable de
abierios;

¢) Para todo conjunto X ¢ H existe un conjunto medible N contenido
en X tal que p (N) =, (X); se llamard a un tal N nicleo isométrico interior
de X; en particular, en R,, para @=L, y conjuntos acotados X S 1 finito,
puede tomarse como niicleo boreliano isométrico interior un conjunto seudo-
cerrado F,, union numerable de cerrados;

d) Si es finita la medida exterior n (X) y es S su cdpsula isométrica ex-
terior, entonces la medida interior viene dada por:

L) X (I1.15)

Dem.—a) Si BS X E A, por la condicion M; del &I-8 y las definicio-
nes (II-11) y (II-18) se deduce p; (X) < u (X).

b) Sies p(X) =+ =0, se toma S =E total. Si es u (X) finita, por ser re-
gular, para todo nimero natural k existe un conjunto medible A, contenien-
do X tal que p(A,) <u(X)+ 1/k, y basta tomar como capsula la intersec-
cién (&I-4, teor. I-7) de todos los A, (k=1,2,8,..). En el caso de medida
exterior (L) en el espacio euclideo R,,, por (II-5) puede tomarse para cada
A, un conjunto abierto G, y asi su interseccion da como capsula un seudo-
abierto Gj,

¢) Si w (X) =0, puede tomarse como mniicleo el conjunto vacio . Si
w(X) > 0, para todo ntimero natural k, por (II-13) existe un conjunto me-
dible B, contenido en X, tal que p (B,) =, (X) —1/k de tltimo miembro
positivo desde un cierto valor de k, y basta tomar como nicleo la unién
(&14, teor. I-6) de los B, (k=1,2,,3...). En caso de medida (L) en el es-
pacio euclideo R,, y conjunto acotado X < I finito, por (II-14) puede tomarse
para cada B, un conjunto F, cerrado, y asi su union da como ntcleo un seu-
do-cerrado F..

d) Si B es medible contenido en X, también S— B es medible, pues
S—B=(E—B)N S (&I-4, teor. I-4), de donde (condicion M; del &I-8 y
&I-4, teor. I-1) es: 3

BE—X)<u —B)=p(S)—u®),

la que aplicada a la definicién (II-18), por ser n (X) finita, da
: wE)spE)—nES—X).
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Por otra parte, si T es la capsula isométrica exterior de S—X, ‘el con-
junto medible S— T esta contenido en el X y por aplicacion de la defini-
ciéon (II-18), de la condicién -M; del &I-3 y de &I-4, teor. I-1, al ser
pSND<p(T) =u(—X), resulta:

KX ZpE—T=pul)—pENT= n)—n(@

que con la desigualdad de sentido contrario antes obtenida, prueba en defi-
nitiva (II-15).

Escorio. — Los autores H. Hamn y A. RoseNtHAL en su libro Set Func-
tions antes citado (&I-I) usan terminologfa distinta 2 la més aceptada en ge-
neral. Asi, por ejemplo, Harn y Rosenrerar llaman “funcién de medida” o
“medida” a lo que aqui se ha llamado “medida exterior”, llaman “medida
exterior” y “medida interior” a los segundos miembros de (II-11) y (I1-18)
respectivamente, y “miedida ordinaria” a lo que aqui se ha llamado “medi-
da exterior métrica”. Ademais dan un concepto més restrictivo y complica-
do de “cdpsula medible” y “nticleo medible” respecto a lo que aqui se ha
llamado “cdpsula isométrica exterior” y “nticleo isométrico interior” (donde
se suprimen después las palabras “exterior” e “interior” cuando dichos con-
ceptos se aplican a conjuntos medibles para los que valdra el teor. II-5). Se-
glin HarN y RosentHAL, “cépsula medible”, que para evitar confusiones se
puede llamar cdpsula medible ajustada de X para la medida exterior W, es
un conjunto medible S, conteniendo X tal que para todo conjunto M me-
dible (1) (y no sélo para E) sea u (S, N M) = p (X NM).y correlativamente
“nticleo medible”, que se puede llamar micleo medible ajustado, es un con-
junto medible N, contenido en X tal que para todo conjunto M medible ()
(y no sélo para E) sea u(N, N M) = y, (X N M). :

Claro estd que un S, es un S y un N, es un N, siendo facil probar que
para p (X) finita, una capsula isométrica exterior es también capsula medi-
ble ajustada, y un nticleo isométrico interior es también nicleo medible ajus-
tado. Perc, en cambio, si w (X) = -+ oo, puede una cépsula isométrica ex-
terior no ser capsula medible ajustada y un ntcleo isométrico interior no
ser nticleo medible ajustado. Por ejemplo, sean en la recta real R; el con-
junto A = { x tal que x=a}, el conjunto B { x tal que x=b} con a< b,
vy el conjunto C = A U B. Entonces, el conjunto total E es cdpsula isémetrica
exterior de B, pero no es cdpsula medible ajustada de B, porque para M =
=1\ (50

X) ,

IBl=|E|l=IEQ Al=1+3d=4][BAAl=|i2|=0,

mientras que B es nicleo isométrico interior de C, pero no es nicleo medi-
ble ajustado, porque para M — A es:

}Bi:;mi(C):Ini(CﬂA)ZIA!:—'" o4 |IBNAl=1@|=0.

La condicién m; (Q—P)=0 (m, (P—Q)—=0) que es condicién nece-
saria para que el conjunto medible Q 2 P (Q S P) sea cdpsula medible
ajustada (ntcleo medible ajustado) de P, ya no lo es para que sea capsula
isomélrica exterior (nicleo isométrico interior) de P, pues basta tomar en el
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ejemplo anterior Q =E, P=B con m;(E—B) =+ o2#0 (Q=B, P=C
con m,; (C— B) =m; (A) = + o054 0); dicha condicién contintia siendo su-
ficiente para que Q sea capsula medible ajustada (nticleo medible ajustado)
de P, y, por tanto, también capsula isométrica exterior (nicleo isométrico in-
lerior) de P.

Puede probarse que er el espacio euclideo R, y p=L, un conjunto
cualquiera X tiene un nicleo medible ajustado que es un seudo-cerrado F..
En el teor. II-11 se prueba que si X € (L), aunque no esté acotado y sea de
medida infinita, existe siempre un nicleo isométrico seudo-cerrado F.,.

Teor. II-5.— Si una medida exterior es regular, la condicion necesaria

y suficiente para que un conjunto X de medida exterior finita sea medible,
2s que se cumpla:

i (X) = 11 (X) . (11-16)

La condicién es necesaria, pues si X € (w), de (II-15) y &I-4, se obtiene:
) =) —pE—X) = ) — [k —n®I=uX):

La condicién (II-16) es suficiente, pues de (II-15) y teor. II-4, b, se ob-
tiene, entonces:

) =p)—unlE—X)=pX)— ul—X),
es decir, p(S—X) =0, con lo que S—X es medible (&I-3) y también lo
es (&I-4, teor. I.5) E—X = (E—S) U (S—X), es deecir, X.

Consecuencia inmediata de los teoremas II-5 y 1I-8 es la equivalencia de
la definicién de Lesescue m, (X) = m, (X) en el sentido (II-4) con la defini-
cion general de CARATHEODORY para el caso particular de medida (L) aplica-
da a conjuntos acotados X = I del espacio euclideo R,

&II-38. Caracterizacion de conjuntos medibles por continentes y conteni-
dos medibles. — En la teoria general se van a obtener ahora los criterios de
mensurabilidad correlativos a los (II-9) y (II-8), aplicables también en la teo-
ria (L) a conjuntos no acotados.

Teor. 11-6. — Para una medida exterior cualquiera w definida en una fa-
milia numerablemente aditiva H de un espacio topologico general E (&1-3), es
suficiente que para todo nimero real ¢ > 0 exista un conjunto medible
A., continente de X € H, cumpliendo:

pA.—X) e, (I-17)

para que X sea medible (). En particular, si. la medida exterior p es me-
trica, dejinida en un espacio métrico (&I-5), es suficiente exista un continente
abierto G. de X € H cumpliendo (I1-9) para que X sea medible (w).

En efecto, tomando ¢ = 1/k, con k nimero natural, existe por hipotesis
una sucesion de conjuntos medibles { A, | tales que A, 2 X con pu (A, —X) <
< 1/k, (k=1,2,8,...). Si se toma:

0
A: ﬂ AI-: E (.u) 2
J=l

N e
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se cumplira A 2 X con w(A—X)<u(A,—X) < 1/k, que siendo valido
para todo ntmero natural k dard p(A —X) =0, de donde A—X es me-
dible () y siéndolo A, también lo serda X, pues E—X —=(E—A) U (A~
X) € (w), (&I-4, teor. I-5). Si en (II-17) figurase G. en lugar de A, podria
repetirse el razonamiiento para G, en lugar de A;, dando:

cO--
Gf) == n Gk E (H) t)
E=il
(&I-4, teor. I-7), con p (G; —X) =0, y siendo G; —X y G; medibles, tam-
bién lo setd E— X = (E—G, ) U (G;—X), (&I-4, teor. I-5) y, por tanto, X.
Respecto del reciproco, en el espacio euclideo R, si X € (L) se cum-
ple (II-17) (y atn m4s (II-9), teor. II-8 posterior), pero esto ya no subsiste
para una medida exterior cualquiera p en un espacio topoldgico general.
Sélo se puede afimmar més restringidamente:

Teor. 1I-7. — Para una medida exterior regular p definida en una familia
numerablemiente aditiva H de un espacio topolégico tal que el conjunto total .
E sea la unién de una infinidad numerable de conjuntos U, de medida ex-
terior finita, la condicién necesaria y suficiente para que un conjunto X € H
sea medible () es que para que todo nimero real &€ > 0 exista en conjunto
medible () continente A. 2 X cumpliendo (II-17).

Obsérvese que se cumplen las condiciones de hipdtesis para el espacio
cuclideo R,, donde puede tomarse para U, los conjuntos abiertos constitui-
dos por las esferas de radio r y centro el origen, y para la medida (L) que
es regular (&I1-2, teor. II-2).

Con condiciones de hipétesis menos restrictivas, la suficiencia de (II-17)
se ha demostrado en el teor. II-6. Véase ahora la necesidad. Por ser la
medida exterior p regular, por (II-11) existe para todo nimero real & > 0
un conjunto A. ¢ (u) continente del X € H, tal que w(A.) < wX) -+ &, pudién-
dose poner < si w(X) es finita. En este caso, si ademas X € (w), se cumple
(&I-4):

RA-—X)=p@A)—nX) <e,
como se queria probar.

Si w(X) =+ coyes X € (u), entonces existe una infinidad numerable de
conjuntos disjuntos X, € (w) de medida finita, tales que:

w e
XX (IL-18)
==l

pues basta considerar (&I1-2, teor. II-4, b) las capsulas isométricas exterio-
res S, 2 U, tales que S, € () con medida finita u (S,) = p(U,) < -9,y tc-
mar:

=1
=

— 185 —




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS. FISICO -QUIMICAS Y NATURALES

Por lo que se acaba de ver anteriormente, existirin conjuntos medibles
A, 2 X, tales que n(A, —X) < ¢/27"! y entonces es:

o0
X UA,- — AT (“)w

r=1

segin &I-4, teor. I-6. De esto, y ser:

AL c JIA X

r:l

se deduce (&I-3, condiciones M; y Mo):

S

X =Gl K

ni=11 r

w (A

(A,

X)<e/2 <e&.

LD

—

como se queria demostrar.

Norsa. — Si se quiere hacer intervenir en (II-17) abiertos Gg¢ en lugar de medibles Ag, puede ocurrir
que ni tan sélo los abiertos sean medibles (&I 5, ejemplo), pero aun para una medida exterior métrica
definida en un espacio métrico, donde los abiertos son medibles, puede ocurrir no existan abiertos de
medida finita, tal es el caso respecto de la medida unidimensional pu(*) de HAUSDORFF respecto a los abier-
tos del plano euclideo Ru.

Sin embargo, se cumple:

Teor. II-8. — En el espacio euclideo R,,, la condicién necesaria y sufi-
ciente para que un conjunto X sea medible (L) es que para que todo nimero
recl ¢ > 0 exista un conjunto abierto continente

G. 2 X tal que:

1Ge—X I <e. (I1-9)

Pues ya se ha demostrado en el teor. II-6 que (II-9) es suficiente para
ser X € (L). Reciprocamente, si suponemos que X € (L), teniendo en cuenta
(IT-10), si ademas | X | < + oo, por &I-8 sera:

|G. — X [|=|G. | — | X| < ¢,
como se queria demostrar. En el caso de ser | X|=-+occ y X € (L), se con-

sidera como en el teorema anterior la descomposicidn:

X=0U X, con X,= XN (5.—S,_1) € (L)

=]

3

tenmrando para S, = U, las esferas de radio r y centro el origen, y en lugar
de A, conjuntos abiertos G, 2 X tales que |G, —X | < ¢/27*1 siendo en-
tonces:
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abierto (&I-2), y como:
G e =X

=i}

resulta (&I-3, condiciones M; y Ma):

e X< (G Ehx it S erx < Lol
1

r=

| D48

I
1

r

como se queria demostrar.

Tror. 11-9. — En el espacio euclideo R,, la condicion necesaria y suficicti-
te para que un conjunto X sea medible (L) es que exista un seudo-abierto G3
conteniendo X tal que |1Cy —X|= 0. Todo conjunto X medible (L) tiene
una cdpsula boreliana isométrica Gy 2 X tal que |Gyl = [ X .

En efecto, si X ¢ (L), en el teor. I1-8 se ha visto que para todo k natu-
ral, segtin (I1-9) existe G, 2 X tal que |G, --X| < i/k, (k=1,2,3,..). Si
se toma:

(50}
G=NG,2X,
k=1
se obtiene | G3— X | = 0, como se queria demostrar.

Reciprocamente, esta condicién es suficiente, pues entonces (&I-8) es G —
— X medible y, por tanto, lo es también E—X=(E—G3) U (G2 - X),
es decir, X. Si |X| < + o, de | G5 —X .=0, se obtiene |G3 [P —()>
y si | X | = + oo, se toma como capsula boreliana isométrica el conjunto to-

tal E.

Tror. 11-10.— En el espacio euclideo R,, la condicién necesaria y sufi-
ciente para que un conjunto X sea medible (L) es que para todo nimero real
e > 0 exista un conjunto cerrado contenido
Fe € X tal que:

X —F.l<¢. (I1-19)

Pues G. 2 E— X es equivalente a que F. = E— G, € X, siendo:

X—F.=X—(E—G,)= G.—(E—X)=G. N X.

Entonces la condicion (II-19) es suficiente, pues ello implica que exista
G. 2 E—X tal que |G.— (E—X)|=|X~— F.l < ¢, de donde por el teo-
rema II-8 es E — X medible y, por tanto, lo es X. Reciprocamente, si X € (L),
también es medible E — X y por el teor. II-8 existe un abierto G. 2 E—X

tal que |G.—(E—X)|=|X—F.I<econ F. =E—-G. S X, como se que-
ria demostrar.

Tror. II-11.— En el espacio euclideo R,,, la condicion necesaria y sufi-
ciente para que un conjunto X sea medible (L) es que exista un seudo-cerra-
do F, contenido en X tal que | X—F,|=0. Todo conjunto X medible (L)
tiene un nicleo boreliano isométrico F, S X tal que | Fy | =|X|.
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En electo, si X € (L), en el teor. II-10 se ha visto que para todo k natu-
1al, segtin (II-19) existe F, S X tal que | X—F, | <1/k, (k=1,28,..). &
ce toma:

= :
Ho = WE e
=21

se obtiene | X —F,| =0 como se queria demostrar. Reciprocamente, esta
condicion es suficiente, pues entonces (&I-3) es X — F, medible y, por tanto,
lo es también X = (X— F,) U F,. Si |X| < +cc, de | X—F,;|=0 se ob-
tiene | X —F, | =|X|—|F,|=0 y asi F, € X es el nticleo boreliano iso-
métrico de X. En el caso de ser | X | =+ oo y X ¢ (L), se consideran como
antes las esteras U, =S, de radio r y centro de origen, para asi determinart
la descomposicion:

Xe= U7X con %, = i) (SAt St ol

r=1
siendo | X, | < + oo, por lo que existe un seudo-cerrado F,. € X, tal que
| Fo, | =1X,1; asi resulta el nucleo boreliano isométrico:
% : %0 0 ;
Fe = FE e Xniesiesh B = [NUEE = [ F== DI i
=l =1 Ti=")
& L
= NG = 1el e=ilee
=y

De los teoremas II-8 y II-10 se deduce inmediatamente la equivalencia
de la definicion (I11-8) de CH. J. pE LA VALLEE PoussiN en los espacios euclideos
con la de CaraTezropory. Es decir:

Teor. II-12. — Es X € (L) en el espacio euclidec R,,, si y sélo si para
todo numero real ¢ > 0 existe un conjunto continente abierto G. y un con-
junto contenido cerrado F., tales que cumplan:

FcX G woond i@ . 15 e . (IL§)

Pues si se cumple (II-8), con mayor razon se cumplen (II-9) ¢ (II-19) ¥
por los teoremas II-8 6 II-10 sera X ¢ (L).

Reciprocamente, si X ¢ (L), por los teoremas II-8 y II-10 existirdin G. 2 X
v F. € X tales que |G, —X| < ¢e/2y|X—F.| <¢/2 de donde, por la
condicion M, del &I-8, sera:

el CaoSlam At e ios

como se queria demostrar.
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CarpiTuro IIT
INTEGRAL DE LEBESGUE EN CONJUNTOS DE MEDIDA: INFINITA

&III-1. Introduccion. — En los “Elementos de la Teoria de Funcioncs™
de J. Rey Pastor (3.* ed., Ibero-Americana, Madrid, Buenos Aires, 1953) se
da una detinicion de integral de LrBeEscue mediante la nocion de integral de
Caucry-RIEMANN, que se reduce a la clasica utilizando la integral de Stieri-
JEs, definicion que permite una gran simplificacion en las demostraciones
de los teoremas basicos de la teoria. Se intenta hacer ver aqui que dicha dc-
tinicion, aplicable al caso mas geresal de funcion medible no acotada defini-
da en conjunto medible cualquiera de medida finita o infinita, permite aun
en el caso de conjuntos medibles de medida infinita, establecer dichos teo-
remas basicos en torma mucho mas simplificada de como lo hacen los tex-
tos mas acreditados de otras lenguas.

Aun cuando se dan las definicicnes y teoremas para el caso particulaz-
mente interesante de funcion real finita o intinita medible (L) definida ea
un conjunto medible X, de medida de Lesescue | X| finita o infinita, en el
espacio euclideo R,, puede generalizarse facilmente la exposicién a una me-
dida exterior cualquiera de CaraTHEODORY de un espacio topologico general,
con la sola restricciéon (a veces, e indicada oportunamente), de la hipdtesis
ael teor. II-7.

&II1-2. Definicion y lema fundamental. — Recordemos Ia definicién de
Rey Pastor de integral (L). Sea la tuncién real medible f(x), finita o infini-
ta, definida en el conjunto medible X, de medida de LeBescue | X | finita
o infinita, en el espacic euclideo R,

Sea la funcién de medida:
[} x € X tal que f(x)Zk; | si k=0,

sl = —[{x e X tal que f(x) << ki | sii k<0,

y lldmase X* al conjunto contenido en X donde f(x) >0 y X~ al conjunto
complementario donde f(x) < 0, tales que X =X* U X". Para k—0 resul-
tan los valores limites g(0)=I|X" |, g(0") = — X" |.

Es f(x) integrable (L) en X si existe finita la integral de CaucHy-RigmANN
del segundo miembro de:

(L) ] f(x) dr = (CR) f” g(k) dk, (III-1)

y de esta definiciéon se deduce inmediatamente que si X =X;UX,, con X,
y X, medibles disjuntos, la integral de f(x) sobre X es la suma de las inte-

— 189 —




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO -QUIMICAS Y NATURALES

grales sobre los conjuntos medibles X; y X,, pues el integrando del segundo
miembro de (III-1) es la suma g(k) = gi(k) 4- g2(k) de los integrandos co-
rrespondientes a estas integrales en virtud de la aditiva finita de la medida
de conjuntos (& I-4, teor. I-2). En particular es:

(L) f f@)de = LV tdx + (L) [idx:
X I

. &U;Phﬁ + (@) / (— £ 1) da, (I11-2)

v como esto hace ver que una tuncién es integrable (L) si y solo si es inte-
grable (L) absolutamente, bastara estudiar la integracion en X' y en X~ se-
paradamente y aplicar (III-2).

Obsérvese ahora que si X medible es de medida infinita, por ejemplo es
| X* | = + oo, subsiste la definicion (III-1), pero entonces si existe la inte-
gral con wvalor finito, como g(0) =|X*|—= -+ oo, la integral (CB) del se-
gundo miembro de (III-1) sera ademads impropia en k—0 y para € > 0 ar-
bitrario, existirda & > 0 tal que:

>
]

(CR) / g(k)dk < ¢

Jo
con g(d) finito; por tanto se llega asi al tundamental:

Lema. — ElL conjunto X* de medida infinita, donde f(x) = 0 es integra-
ble (L), podrd descomponerse en un conjunto medible X,” de medida fini-
ta, donde f(x) =8 > 0. es decir:

g®) =X, l=1{x € X tal que f(x) =0} |, (IT1-8)

mds un conjunto medible X;° de medida infinita, donde 5> f(x) =0, es
decir:

X = il xie s Xt wtalique 1ot (1) =0 | = —=7os, (I11-4)
tal que en él sea:
(Ufg%”h<ea (IT1-5)
con & > 0 arbitrario y &= d(c), cumpliéndose: ,
L) f (LB =0 f fRde @ f t) de (I1L6)
a 25

conuXs =" HlLXet
Analogamente para X .

&III3. Identificacién con la integral de LEBESGUE - VALLEE Poussm. —
Se va a recordar cémo Rey Pastor reduce esta nocién de integral (L) a la
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clasica de LrBescuk, extendida por Ch. J. de la VaLLEe PoussiN a funcion
no acotada. Si en X', donde es f(x) = 0, se considera la funcion truncadd
t.(x) que valga f(x) si 0 <f(x) <K y valga K si f(x) > K, con tuncion de
mechda g, (k) coincidente con g(k) para k<X K y nula para k > K, entonces,
por definicion, es:

L) / f dx = (CR) [ ) e R [ e
R EX e Jo Jo

K —
*K -1
— e (O j il (ITL-7)
K= oo 0

Al integrar por partes la tltima integral, resulta la integral de StiELTJES:
K41 B K 41 K A1
(CR) [ gk (k) dk = lk - 8k (k)] = Sl)/ k. dgg (k) =
0 0

— LR 1 S) f 1\ dgg (k) , (I11-8)
=0

en el caso de |X*| finita, pues entonces g, (0) es finita y g, (K-+ 1) =0.
Las sumas inferiores y superiores de tltimo miembro, como integral de
STIELTIES, son las clasicas sumas de LEBESGUE para t_(x), pues es:

—Age (k)= glk-) —gk)= !{xe X tal que k-, <1(x) < k.}|. (III-9)

Analogamente para el conjunto X°. Por tanto, en el caso de |X| finita,
la definicion de LEBESGUE - VALLEE PoussmN coincide con la definicion (III-1),
pero ésta es mas general, pues incluye el caso donde | X |= -+ co.

&III-4. Convergencia a cero de la integral con | X |. — ILa nocion de
funcién truncada sirve también para demostrar tacilmente que si f(x) es in-
tegrable (L) en X medible (L) y es {X,} una sucesion de conjuntos medibles
(L) contenidos en X tales que | X, |— 0, entonces también es:

lim,. ] f(x) dx =0,
X,

(escribiendo desde ahora las integrales (L) sin este distintivo).

Basta demostrarlo para X' donde f(x) = 0. Si f (x) es la funcion truncada
correspondiente a f(x), por la definicion (III-1), a todo &> 0 corresponde
un K= K(¢) tal que:

f @) dr— f fel) d<e (I11-10)

Para este K tijo, del teorema del valor medio para funcién acotada se
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deduce que exisie un r,= r(¢,K(c)) =r1,(). tal que para todo r > r, sea:
fo() dr SKIX:l<e, (IT1-11)
Xeok
De ser:

: f(x) dx = : e (x) dx
X2 X J X=X

y de (III-10) y (III-11) se deduce:
s o dr g4 / i dee / " fode
X, X, X, JX,

= i dl — fK Clx =
X S O

S fde— [ 1, dx Do (I
er"K (f X+ _/X+ K ) < > ( )

como se queria demostrar.

&III-5.—Aditividad numerable de la integral como funcién de conjunto. —
Se va a demostrar ahora que la integral (L) como funcién de su conjunto dd
definicion es numerablemente aditiva, aun en el caso de ser | X | = - co. Es

- w .7 . . . . - T
decir, si f(x) es integrable en X = U X, (unién finita o infinita numerable
f:]
de X, medibles disjuntos dos a dos), entonces es:

f )i [ o)idx (IT1-13)
X. r

=l

Recordemos que para suma finita, la integral (III-1) tiene el integrando
g(k) = 3, g,(k), dando asi la descomposicién en suma de integrales median-
te la correspondiente a la integral (CR), aun en el caso de | X | infinita.

Si la descomposicién es infinita, con | X | finita, se toma:

tal que | X, | < ¢, siendo:

fdr— = g — fdr— B
f X f X / U X, / X =X Ui

=] g

De_lo dicho en el &III-4 se deduce que el primer miembro se hace tan
pequeno como se quiere con | X, |, es decir, para n— -+ oo, de donde el tl-
timo miembro tenderi a cero, que es lo afirmado en (I1I-18)
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Finalmente, en el caso especialmente estudiado aqui, supéngase que f(x)
¢s integrable en el conjunto X de medida infinita, bastando estudiar el caso
de ser f(x) = 0. Apliquese la descomposicion del lema del &III-2, donde

X=X, U X,y en relacion a la descomposicion de la hipétesis X = U X,, de-

signese X,,,—X_ N X yXH_ X, N X,. Para el caso de suma pérmal en
virtud de lo demuost‘rado al principio y de (I11-5), es:

& fdx: n fdx< fdx<£, 111-15
rz an U Xni fxi ( )

r=

y como al ser | X, | finita, ya se ha demostrado que es:

: 0 !
fide—> Tdx (I11-16)
X, r=1J X

a

cn definitiva, de (III-16) y (IIL-6) resultar4:

f fdz—3 fdr= fdr— idx—}—z fde—
X =l Xr 1 =1 X

78

_% : fdx< [ tdr+ S fde <2,
.Xl Xﬂ

T="10 431
=1 r a

para n suficientemente grande, como se queria demostrar.

Obsérvese que si es infinita | X |= + co, como la medida (L) del espa-
cio R,, cumple la hipétesis del teor. I11-7, entonces podra siempre descom-
ponerse X en sumandos X, disjuntos dos a dos, de medida | X | finita segin
(I1-18), y €l teorema anterior asegura que la suma (convergente o no) de las
integrales sobre los X, serd independiente de la. descomiposicion de X; en-
tonces podra tomarse dicha suma como generalizacion de la integral de Le-
BESGUE - VALLEE PoussIN para €l caso donde también pueda ser [ X |= + oo,
ya incluido en la definiciéon (III-1) y que da asi un concepto coincidente con
€l de esta generalizacion, la cual es el método empleado en muchos textos,
tal el de E. C. Trrcexmarsex: “The theory of funciions” (2.2 ed., Oxtord, 1939).

&III-6. Teorema de convergencia acotada de LeBEscue. — Obsérvese
primeramente que el lema de Ecororr (que retiere la convergencia puntual
de una sucesién de funciones {f (x)} a convergencia uniforme por exclusion
de un conjunto X3 de medida arbitrariamente pequefia) no es vdlido para
el caso de que el conjunto dado X sea de medida | X | infinita.

Sin embargo, el teorema de convergencia acotada de LEBESGUE continta
siendo vdlido para el caso de que el conjunto base X sea de medida | X | in-
finita, y aun este teorema puede seguir demostrandose mediante el lema de
Kcororr. Es decir:

Si en una sucesion de funciones {1, (x)} medibles, acotadas entre dos fun-
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cz"ones integrables h(x) y H(x) sobre un conjunto X de medida finita o infi-
nita, h(x) <{,(x) < H(x), y, por tanto, siendo las 1,(x) integrables en X, se ve-
rifica f,(x) — f(x) en casi todo X, entonces existe y es:

B f il f Xf dx. (IT1-18)

Para el caso de ser | X | finita, basta efectuar la descomposicion del lema
de EGOROFF:

fx(fn——f) dri= ‘/‘X_X(:"*f) dx —}~f Bf,, dx—fxaf dx (I11-19)

y aplicar al primer sumando el lema de Ecororr y a los otros dos el &III-4,
teniendo en -cuenta la acotacién h(x) < f,(x) < H(x).

Si es X de medida | X | infinita, siendo | H(x) | y |h(x) | integrables en X,
dado & > 0 arbitrario, segin el &III-2, podrd descomponerse Xei— X e 8) X
de modo que el conjunto medible X, sea de medida |X, | finita y en X; me-
dible valga:

f (HE) 14 h@) ) dx < e
Xi

Entonces, para todo n serd también:

f,—Dde |<[ (fI+I1f]) dr<2 [ (HI4 k) dx < 2; (111-20)
. Xi P Xi

Xi
aplicAndose para X, el razonamiento expuesto en (I11-19) para completar la
demostracion de (III-18). :

&II1-7. El teorema de Fatou. — Este teorema (enunciado corrientemen-
te como “lema”) subsiste también para el caso de que el conjunto X sea de

medida | X | infinita. Es decir:
Si las funciones no negativas f,(x) = 0 son medibles en X de medida fi-

nita o infinita, donde f(x) es también medible, cumpliendo:

0 < f(x) < lim,inf £ (x) (I11-21)
en casi todo X, entonces, &s: °

f(x) dx < lim,inf [ f,(x)dx, (IT1-22)
X JX

en el sentido de que si el segundo miembro es finito, entonces f(x) es finito
en casi todo X e integrable, mientras que si f(x) no es integrable en X, en-

tonces es:

lim, fxfn(x) d=j-oas (11-23)
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Para | X| finita, basta utilizar las respectivas funciones truncadas f, de
tyt,, de f, (&I11-8) cumpliendo segiin (II11-21), la acotacion:

0 < f(x) <lim,int t,, (x). (111-24)
Entonces, para casi todo x es:

0S yu(x) =intt,, (x) S L) <K,

m>n

por lo que y,(x) serd integrable, cumpliendo:
hm Ll’lf Yn dx < limninf fn’x dx >
n X_ X

como al mismo tigmpo es {y,(x)} no decreciente para casi todo x fijo, exis-
lira el
lim, y,@) = lim,inf £,,,(x) > £,()

y basta aplicar el teorema de convergencia acotada de LeBescue (&I11-6)
con h(x)=0 y H(x) =K, dando:

f dx << (lim, y,) dx = lim, ¥, dx < lim, inf e XOERES
X X JX X

T f i (I11-25)

Entonces, si f(x) es finita en casi todo X, se deduce (II1I-22) de (III-25)
haciendo K— + co. Si es f(x) =+ oo en un conjunto X; de medida posi-
tiva | X; | > 0, entonces

) de =K. [ X1,
X

y se obtiene (ITI-23).

Sea ahora el caso que particularmente interesa de medida | X | infinita.
Si f(x) no es integrable en X se obtiene (III-23), pues si fuese lim,inf
[x f,(x)dx finito, descompuesto X en una unién numerable de conjuntos
medibles disjuntos X, de medida finita (&III-5), por el caso anterior, exis-
lirla y seria: '
fﬂ@m<mwﬂf£mdL (I11.96)

X X

r r

y, por tanto, para cada suma parcial resultaria:

£ dx) < lim,inf (g / £ dx) <
=1 Xr

r

S [ fde<3I (im,inf /
r=1J X ra=l g

r

< lim inf f - f, dx (111-27)
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finito, es decir (&III-5), serfa f(x) integrable en X, contrariamente a lo supuesto.
Si f(x) es integrable en X de medida |X| 1nhn1ta se aplica la descom-
posicién (III-6) y por ser |X,| finita, de lo anteriormente demostrado, se

deduce:
f dx < lim, inf f, dx < lim,int P d; (111-28)
X, X, X

si ademas tenemos en cuenta (III-5), resulta:

fdy— t dx - t dx < limyint b ida o € (TT1229)
X X

gue prueba (I[1-22) por la arbitrariedad de & tan pequefio como se quiera.




CINEMATICA CUANTICA RELATIVISTA

por L. M. GARRIDO

FACULTAD DE C ENCIAS DE LA UNIVERSIDAD DE ZARAGOZA

INTRODUCCION

1. TEORIA DE LA RELATIVIDAD

Lord Rutherford llamaba “coleccionistas de sellos” a los cientificos que
se contentaban con reunir datos, aunque, en verdad, tal apelativo no es muy
generoso ni aun con los filatélicos serios. La Fisica, solia decir, no es una
coleccion de nuimeros; mas bien-consiste en tormular unas leyes que se de-
ducen de esos datos al intentar descubrir una unidad intelectual en el mun-
do material.

Es sorprendente la fe del hombre de ciencia en la inteligibilidad del cos-
mos, cuan arraigada tiene la creencia de que todos los fenémenos materia-
les estan ordenados segiin unas leyes que él es capaz de encontrar. Para
el cientifico, ningtin fenémeno natural es un hecho aislado; responde a una
ley que trata de esclarecer.

En el alma del investigador estd inconscientemente grabado lo que pu-
diéramos llamar principio totalitario de la naturaleza: todo lo que no esta
prohibido es obligatorio. No afirma dnicamente que puede tener lugar —el
mundo material no tiene libre albedrio—, sino que de hecho ocurre.

La Fisica Matematica nace al querer satistacer estos deseos innatos del
hombre, ser inteligente.

La Teoria de la Relatividad de EmNsTEWN es un ejemplo mds de lo que
acabamos de decir. Nuevas ideas, truto de una imaginacion e inteligencia
poderosas, nos ayudan a adentrarnos en la estructura del cosmos. Son un
paso hacia adelante. Una barrera que nos separaba de la verdad. ha caido.
Nuevos horizontes se han abierto; vislumbramos la existencia de regiones
cuya presencia nos era totalmente desconocida.

Del espacio y del tiempo todos tenemos una idea “instintiva”, fruto de
nuestra experiencia cotidiana. Espacio y tiempo son formas de existencia
del mundo real; la materia es su substancia. Espacio, tiempo. y materia estdn
incluidos en la idea de movimiento, que necesita de todos ellos para ser.
Pero indudablemente, una idea mas o menos oscura de los mismos no nos
permitiria dilucidar con claridad cémo entran cada uno de ellos en el mo-
vimiento. DEscARTES cifré el objetivo de las ciencias exactas en describir to-
dos los fenomenos naturales por medio de estos tres conceptos fundamen-
tales, y en reducir todos los procesos a movimiento.
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Pero icuan simple aparece a nuestros ojos el pensamiento de DESCARTES!
Es cierto que desde que la mente humana desperté de su suefio, el espacio
v el tiempo han sido objeto constante de sus estuerzos. Continuamiente nos
hemos visto obligados a ampliar nuestros dogmas. Siempre ha sido miste-
riosa la forma como el tiempo transcurre, siempre sera este devenir uno
de estos dltimos problemas metafisicos contra los cuales batallara la filosofia
en cada época de su historia.

Los griegos hicieron de espacio el objeto de una ciencia de suprema sim-
piicidad y certeza. Con ellos la geometria se convirti6 en una de las mas
poderosas expresiones de la majestad de nuestro intelecto. Llegé a ser como
uno de los mas altos ideales de los humanos el pensar “more geometrico”.
Pero en el tltimo siglo el matem4tico miné secretamente la creencia en la
evidencia de una geometria euclidea.

De acuerdo con la ley de conservacion de la materia, nos imaginaba-
mos a la misma como algo general y necesario, que entraba en toda clase
de cambio, parte de nuestro conocimiento “a priori”. Pero también el
tundamento objetivo del concepto de materia se ha tambaleado; tisicos como
Farapay y MaweLL introdujeron la idea de un “campo electromagnético”
como un ser real de diferente categoria que la materia. EmwsTeEIN tue, final-
mente, quien provoco6 €l mayor cataclismo al barrer los conceptos absolutos
del espacio, tiempo y materia, que habian sido considerados hasta entonces
como los cimientos de la “ciencia nueva”.

No podemos batirnos en retirada y timidamente tratar de buscar de
nuevo una interpretacion intuitiva de los nuevos hechos. Nuestra imagi-
nacion solo dispone de las iméagenes obtenidas por medio de los sentidos
a partir del macrocosmos. dPor qué han de valer las imagenes del macrocos-
mos para representar el microcosmos? Debemos estar preparados, nos dice
NieLs Bomr (1), a encontrar que cuanto més avancemos en el microcosmos
mas hemos dc renunciar a nuestras concepciones habituales de espacio y
tiempo.

La solucion de los diticiles problemas de la union del espacio y del tiem-
po, uno de los mayores éxitos de la inteligencia humana, esta asociada
principalmente a los nombres de Copfrnico y de EWNSTEIN.

En esencia el descubrimiento de CopErNIco consistié en ver que las coor-
denadas de un cuerpo en movimiento como funciones del tiempo satisfacen
una ley muy simple. De hecho Cortrnico estudié el movimiento planetario
y alirmé que existe un sistema de coordenadas en el cual las leyes del
movimiento planetario son mucho mas sencillas que si las reterimos a la
tierra fija en el espacio. El trabajo de Copkrnico produjo una auténtica
revolucion en el pensamiento tilosético, ya que destruyé el dogma de la
importancia absoluta de la tierra.

NEwTON corono las retlexiones cinematicas de Coptrnico y Kreper, dando
la ley fundamental de la din4dmica.

(1) Niers Bour: Atomic Theory and the Description of Nature. Cambridge University
Press. 1934.
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El Principio de Inercia de GaLiLEo, que es la primera ley del movimiento
de NEwroN, constituye los cimientos de la mecdnica. “En ausencia de fuer-
zas externas, todo cuerpo ejecuta el movimiento unitorme de traslacion”.
Todos los sistemas de referencia en que este principio puede expresarse di-
ciendo que las coordenadas de un cuerpo no sometido a fuerzas externas
son tunciones lineales del tiempo se llaman sistemas inerciales.

El Principio de Relatividad de GariLeo establecié que todas las leyes de
la mecanica tienen la misma torma cuando las expresamos con relacién a uno
de estos sistemas inerciales. Por consiguiente, para la mecénica todos los sis-
temas inerciales son equivalentes. Podemos saber si un cuerpo estd acelerado
comparando su movimiento con el de otro no sometido a fuerza externa
alguna. Pero un cuerpo estard en reposo o en movimiento uniforme de tras-
lacion segtin el sistema inercial que utilicemos; tales conceptos, pues, no
tienen un signiticado absoluto; he aqui el Principio de Relatividad. GALILEO
dio unas leyes de transtormacion para expresar este principio.

La hipétesis de que los tenémenos naturales existen simultineamente
con su percepcion tue definitivamente rechazada al saber que la luz, se pro-
paga con una velocidad finita, medida en €l afio 1675 por Romer.

Las ecuaciones de MaxweLL para los tenomenos electromagnéticos eran
aparentemente incompatibles con el Principio de Relatividad, ya que la ve-
locidad de la luz no podia ser la misma en dos sistemas inerciales en movi-
miento relativo. El sistema de reterencia con respecto al cual la velocidad
de la radiacion electromagnética tuera la misma en todas las direcciones,
podia ser usado para detinir el reposo absoluto. Todos los experimentos rea-
lizados para encontrar este sistema absoluto tueron vanos. H. A. Lorentz
propuso una teoria en la que se postulaba la existencia de un sistema iner-
cial privilegiado que nunca podria ser detectado; pero evidentemente esta
manera de pensar no tenia mucho sentido fisico.

La propagacion de la luz en esteras concéntricas que no son invariantes
respecto a la transtormacion que GALILEO dio para pasar de un sistema inercial
& otro, no podia ser considerada como una objecion seria al principio de
relatividad, si suponemos la existencia de un medio material, el éter, en
el que se realiza la propagacion de la luz. Pero tampoco pudimos detectar
este éter.

No solamente el experimento de MIcCHELSON MorLEY, sino también toda
una serie de medidas, mostraron que no existia correlacion alguna entre
el movimiento de la tierra y los fenomenos mecanicos y electromagnéticos.

EmsTEIN acepté el principio segtin €l cual lo que no se podia medir no
existia para la Fisica, y, basandose en los diversos experimentos, nego la
existencia de un sistema inercial privilegado y de un fluido, como el éter,
en el que se veritique la propagacion de la luz. Atirmdé que el Principio
de Relatividad era valido para la mecanica y para los fenémenos electro-
magnéticos. Sus estuerzos se dirigieron hacia un analisis y moditficacion de
las ecuaciones que nos dan la transtormacion de GALILEO que expresaba
para la mecanica el Principio de Relatividad.

EmwsTeEIN llegé a la conclusion de que era imposible definir un tiempo
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¢ longitud absolutos. Con estas premisas, evidentemente, podemos conseguir
que la velocidad de la luz sea la misma en cualquier sistema inercial.

Un gran avance en la comprension y presentacion de la teoria de la
relatividad tue dado por Mmxkowskr Hasta entonces tal teoria consistia en
una serie de reglas, coherentes, si, pero muy complicadas, que nos permitian
traducir los resultados de las medidas hechas por un observador a las que
otros observadores obtendrian; pero era necesario unificarlas, deducirlas de
un principio general, de idéntica forma a como el principio de relatividad
galileano era equivalente a la invariancia de las leyes de la mecanica bajo
el “Grupo™ de transtormaciones lineales del espacio en espacio-tiempo, y que
conservaban el caricter absoluto del tiempo y la forma métrica euclidea
fundamental. Guiado por esta idea, Mmkowski dota al universo de una
estructura métrica, en forma fundamental indefinida, que caracteriza y de-
termina a las transformaciones de Lorentz, como aquellas transformaciones
lineales del espacio-tiempo en si mismo, que le dejan invariante. Una vez
mas, la realidad fisica se geometriza.

EwsTEIN nos dijo que debiamos olvidarnos de nuestra creencia en un
significado objetivo de simultaneidad. Esta fue una de sus ideas geniales.

Los resultados de estos estudios fueron afirmar que el Principio de Re-
latividad, que hace equivalentes a todos los sistemas inerciales, es valido
para todas las leyes fisicas. Sin embargo, las leyes de transformacion de un
sistema a otro deben ser las de Lorentz, expresadas en el espacio de MiN-
xkowskl, las cuales se convierten en las de GaLiLeo, cuando consideramos la
velocidad de la luz como intinitamente grande. Estos hechos constituyeron
lo que hoy se llama Teoria Restringida de la Relatividad.

Ahora bien, también la Teoria de la Relatividad Restringida ha partido
de una premisa cuyo valor positivista es nulo, a saber: la posibilidad de
definir los sistemas inerciales. éCémo es posible aislar un cuerpo de prueba
de la accion del resto del universo, con el fin de asegurarnos sus movi-
mientos uniformes? A todas luces, esto es imposible, y, por lo tanto, adoptar
tal premisa restringe la validez de los resultados a pequenas regiones del
cosmos, en las que,; practicamente, las acciones de éste se compensan. La
ideal genial de EmsTEIN frente a esta situacion, tuvo sus raices en la obser-
vacion de la igualdad de las masas pesantes y de inercia, que hacia impo-
sible el distinguir fisicamente los sistemas no inerciales, de aquellos que,
siende inerciales, se sumergian en un campo gravitatorio. Ayudado por es-
tas consideraciones, y teniendo a mano el poderoso instrumento de las geo-
metrias de Riemann, formula la Teoria General de la Relatividad, dotando
al Universo de una métrica y topologia riemannianas, cuya estructura local
esta determinada por la distribucion de materia. La fisica del fenémeno gra-
vitatorio sigue siendo geometria, no ya euclidea (GariLeo) ni pseudoeuclidea
(LoreNTZ), sino riemanniana. La generalizacion a todos los aspectos fenome-
nolégicos es evidente. Todas las leyes fisicas deben ser invariantes frente a
cualquier cambio de coordenadas curvilineas, que conserven la signatura
de la métrica. ;

Esto que ENsTEIN formula explicitamente, habia ya pasado por las mentes
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de los otros hombres de ciencia. Recordemos que NEwTON, en su correspon-
dencia epistolar con BENTLEY y BoYLE, expresa su repugnancia a admitir la
accion gravitacional a distancia, asi como su idea de sustituir ésta por una
“presién del medio”; idea que no elabora en vista de la imposibilidad de
hacerla manitiesta experimentalmente. También Crirrorp y Riemann medi-
taron sobre estos problemas, y la idea de relacionar la curvatura del es-
pacio-tiempo con la materia les pertenece a ellos.

Introduciendo la métrica de Riemann podemos formular leyes fisicas que
sean invariantes para una transtormacion arbitraria. Pero esta propiedad
de invariacion es un hecho meramente matemadtico, que nada dice de la
esencia tisica de tales leyes. Un nuevo concepto fisico aparece unicamente
cuando suponemos que la estructura métrica del mundo no nos ha sido
dada “a priori”, sino que estd relacionada con el mundo fisico por medio
de leyes generales. Solamente con esta concepcion podemos hablar de la
Teoria General de la Relatividad, y, como nos dice WevL (2), solamente asi
podemos considerar que el campo gravitatorio es un modo de expresion del
campo metrico. i

2. MECANICA CUANTICA.

Con €l nacimiento del siglo tuvo su origen la teoria cuantica. Las ideas
de Prank (3) empezaron a germinar en la Fisica simultdneamente con los
trabajos de EINsTEIN (4) sobre la luz en 1905. Los veinte afios que siguieron
no clarificarcn en absoluto los principios que iban a constituir la Mecanica
Cuantica.

El sistema mental de aquellos estudiosos contenia muchas ideas, abstrac-
ciones de la realidad sensible, que aplicaban descuidadamente al microcos-
mos. Los cientificos aprendieron lentamente diticiles lecciones sobre la na-
turaleza, sobre lo objetivo y lo subjetivo; puriticaron sus conceptos de es-
pacio y tiempo, llegando a eliminar de sus razonamientos el lastre que
creaban en su entendimiento las imdgenes de los fenémenos que tenian lugar
en su experiencia cotidiana en el macroscosmos.

En 1924 Borir, KrRAMERs y SLATER () introdujeron la hipétesis de que las
ondas luminosas —que presentaban la dualidad onda corpisculo— debian
ser interpretadas como ondas de probabilidad; que no representan. una rea-
lidad objetiva, sino mas bien la posibilidad de tal realidad. Medimos atomos
por medio de dtomos, y asi el concepto de realidad objetiva desaparece de
un modo curioso. No se transtorma en la neblina de un nuevo concepto,
oscuro y no bien entendido, de la realidad objetiva, sino en la claridad trans-
parente de las matematicas, que representan nuestro conocimiento del mi-

(2) H. Weyr: Space. Time Matter.

(3) M. Pranck: Verhandl. Deutsch Phys. Ges 2, 237, 1900.

(4) A. Emvsteins: Ann. Physik. (4) 17, 132, 1905.

(5) N. Bomr, H. Kramers, J. C. Szater: Z. Phys. 24 69, 1924
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crocosmos pero no tal microcosmos. La clasiticacion tamiliar del mundo en
objeto y sujeto no puede ser aplicada aqui, puesto que, en verdad, nos
lleva a contradicciones. El objeto de la investigacién cientifica no es la na-
turaleza en si, sino la naturaleza como se presenta al estudio del hombre,
¥, por consiguiente, de nuevo aqui el hombre se encuentra consigo mismo.

El resultado mas importante fue la introduccion del concepto de proba-
bilidad como una nueva clase de realidad objetiva. Esta probabilidad esta
intimamente relacionada con cierta posibilidad, la “potencia” de la filosotia
natural de los filosotos de la antigiiedad clasica tales como ARISTOTELES; es,
en cierto aspecto, la transtormacion de tal “potencia” de un punto de vista
cualitativo a su formulacion cuantativa.

Una vez el concepto de probabilidad hubo side introducido, el de causa-
lidad fue sometido a severa critica. L.a idea de determinismo, o sea, la idea
de que el microcosmos estaba regido por leyes causales, fue considerada
inmediatamente como una extrapolacion del macrocosmos. “No olvidemos
que el principio de causalidad y su necesidad ha nacido exclusivamente
de experiencias o fenomenos macroscomicos y que la transterencia de este
principio a los fenomenos microcosmicos, el supuesto de que todo suceso
estd estrictamente determinado causalmente, no tiene justiticacion alguna
basada en la experiencia” (6). La validez de esta extrapolacion fue puesta
en duda tan pronto como aprendimos que las leyes causales del macrocosmos
podian ser obtenidas aunque causalidad no rigiera en el microcosmos, pues-
to que la ley de los grandes ntimeros convertiria el caracter probabilistico
de los tenémenos elementales en la certeza de las leyes estadisticas. Tal he-
cho, sin embargo, no hace de la Mecanica Cuantica un saber fortuito o ar-
bitrario; sigue siendo Ciencia, ya que probabilidad es el conocimiento cierto
ce algo incierto.

Decimos que una ley es causal cuando con ella podemos predecir el
tuturo con cierta probabilidad y podemos empujar esta probabilidad tan
cerca de la unidad como queremos, si nuestros métodos de analizar el teno-
meno son sucifientemente exactos. Cuando formulamos causalidad en este
sentido, vemos su significado, no como principio admitido “a priori”, sino
como principio que puede ser compiobado experimentalmente. Con esta
interpretacion de causalidad y, como consecuencia del principio de indeter-
minacion de HEeISENBERG, determinismo causal aparece como incompatible
con la Mecanica Cuantica.

No se crea que todos los cientificos aceptaron este punto de vista. Eins-
TEIN (7), ScEERODINGER (8), von Lave (9) lo han criticado dura y constante-
mente. Existen otros, como son los rusos, cuyas criticas a esta interpretacion
son mas bien un acto de fe comunista. Todos los oponentes de esta inter-

(6) Exner: Vorlesungen uber die physikalischen grundlagen der Naturwissenschaften.
Vienna 1919, pg. 691.

(7) A. Einstemn: Albert Einstein, Philosopher. Scientist The Library of Living: Philoso-
phus. Vol. 7, pg. 665. Evanston 1949.

(8) E. ScuHrODINGER. Brit. J. Phil. Sei. 3, 109, 233 (52).

(9) M. von: Laug: Naturwissenshaften 38, 60 (51).
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pretacién, llamada de Copenhague, comtinmente aceptada como la ortodoxa,
desean volver al concepto de realidad de la  Fisica Clasica, o sea, a la
ontologia del materialismo; propugnan un mundo real objetivo, cuyo micro-
cosmos también nos sea conocido objetivamente. Lo tinico que no nos dicen
es como podemos alcanzar tal panacea. La interpretacién, que nacié en Co-
penhague en 1927, tiene muchas ventajas sobre las criticas de sus adver-
sarios. Tal filosofia de los tenémenos elementales nos indicé claramente como
reproducir los datos experimentales por medio del formulismo matematico,
y, ésto, de hecho, es enorme ventaja, ya que ha venido confirmada con el
éxito.

En la primavera de 1926 SCHRODINGER dedujo su ecuacion de ondas, y en
el otofio tue a Copenhague. Largas charlas tuvieron lugar entre BowR,
SCHRODINGER y HEISENBERG, en las que si bien el primero mantenia la con-
cepcion cudntica, a saltos, del microcosmos, el segundo sostenia la ondu-
latoria.

Al final de una de estas charlas SceTRGDINGER, llevado por la tension de
la discusion, dijo: “Si hemos de seguir manteniendo estos saltos cuanticos,
lo siento, pero yo no quiero seguir trabajando en esta materia®. A lo cual
Boar contesté: “Le estamos muy agradecidos por lo que ya hizo”.

Los meses que siguieron fueron de intenso trabajo en Copenhague. De
ellos surgio la “Interpretacion de Copenhague de la Mecanica Cuéntica”.
HeisenBerG recuerda con placer tan largas discusiones que muchas veces se
prolongaron hasta bien entrada la noche y en las cuales se estudiaron casi
todos los posibles caminos de interpretacion de los tenomenos del micro-
€OSmos.

Por aquel entonces HEISENBERG estudio la torma matricial de la Mecdanica

- Cuantica y dedujo toda la teoria de matrices de transtormacion.

La Mecdnica Cudntica no relativista establece una correspondencia en
el sentido de que una cierta aplicacion tormal de las reglas de cuantifica-
icién al formulismo correspondiente de la Mecanica Clasica es casi in-
ambiguo (10) y nos da los resultados apetecidos. Este principio de com-
plementaridad tue desarollado por HEisenBere en el invierno de 1927 du-
rante unas vacaciones en Noruega. Mientras Borr se hallaba esquiando
en esta tltima nacion, HEISENBERG estudio el problema de ecémo represen-
tar matemiticamente una situacion experimental utilizando utnicamente el
espacio de Hiserr. La consecuencia inmediata tue su principio de incer-
tidumbre (11).

Sélo quedaba un paso que dar, y era la unificacion de los puntos de
vista cudntico-corposcular y del ondulatoric. Jorpan, Kiemw y WicNer (12)

(10) Existe una ambigiiedad en la eleccién de las coordenadas del hamiltoniano y, ademds,
para el caso de particulas idénticas, en las soluciones simétricas o antisimétricas.
(11) W. HeisenserG: Z. Phys 43, 172, 1927.
(12) P. Jorpan y C. Kremv. Z. Phys 45, 751, 1927.
P. Jorpan y E. Wiener. Z. Phys 47, 631, 1928.
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mostraron que comenzando de la teoria de ScCEHRODINGER podiamos obtener
el espacio de HiuBerr al realizar la cuantificacion.

En el otofio de 1927 tuvo lugar la conterencia de SorLvay, en Bruselas,
donde todos estos trabajos tueron hechos publicos. Enemigo decidido de
las ideas de la Escuela de Copenhague tue EmstEm. Sabemos cuan inge-
niosamente EINSTEIN detendia su punto de vista segin el cual la Mecanica
Cuantica que se le presentaba no podia esencialmente describir de una
forma completa los fenomenos naturales. Sin embargo, Boxr volvia la ma-
yoria de los argumentos de EINSTEIN en su contra. EINSTEIN confesaba sus
derrotas, pero no cambi6 de opinion a la que permanecié aterrado hasta
el tin de sus dias; creyé que la Teoria General de la Relatividad debia
formar parte importante de los estudios del microcosmos. A partir de esta
conferencia de Solvay, la “Interpretacion de Solvay” de los tenomenos cuan-
ticos, fue la aceptada corrientemente y ha sido la base para todas las apli-
caciones practicas de la teoria. Llego a ser la teoria “ortodoxa”.

Siguieron veinte afos, interrumpidos por la dltima contlagracion mun-
dial, en que se recogio los frutos de lo sembrado.

Historicamente ha quedado bien probado la necesidad de tundir en
uno sola sintesis Relatividad y Mecédnica Cudntica. Tal union ha sido siem-
pre seguida de grandes adelantos; citemos la teoria del electron de Di-
Rrac (1927) y las del etecto LamB (1947), entre otros, conseguido mediante
las ideas de SCEHWINGER. :

Si, pues, la mecanica del microcosmos debe ser simultineamente rela-
tivista y cuantica hemos de introducir tales estudios mediante un Algebra
de la Medida que sea compatible con tal armonia preestablecida y hemos
de presentar un principio dindmico lo suficientemente general para ser va-
lido en cualquier sistema de Lorentz. La Mecanica Cuantica no relativistica
aparece, de una forma natural, del mismo tormalismo al establecer una
disimetria entre espacio y tiempo, es decir, al fijar el sistema de Lorentz.
Este es el punto de vista seguido en nuestro programa.

Una de las criticas serias que se puede hacer a la formulacion de Borr
del principio de complementariedad, es el haber ignorado sistematicamente
la Teoria de la Relatividad restringida y la Teoria Cuantica de Campos
que naci6 en aquella época. Y asi, aunque fenomenologicamente tal for-
mulaciéon es exacta, epistemolégicamente es muy discutible por- las difi-
cultades que puede presentar al fisico en su trabajo y por las peligrosas
interpretaciones que ha suscitado entre los filosofos.

Sin embargo, tal unién no tue conseguida hasta hace una docena de afios.
La motivacion principal para esta sintesis tue, evidentemente, la presion
de los datos experimentales, ademis de una cierta necesidad de presentar
todo el formulismo de la Mecédnica Cuantica de una forma coherente y rigu-
rosa que no era satistecha por la presentacion imperfecta, llena de oscuri-
dad y contradicciones que se nos otrecia hasta entonces.

Tomonaca (18) y Scexwmvcer (14) fueron eminentemente guiados por un

(13) S. ToMONAGA: Prc;gr. Theor. Phys 1, 27 (46).
(14) J. Scawincer: Phys Rev. 74, 1439 (48).
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deseo de coherencia interna. Su pensamiento, aislado durante la tltima
guerra mundial, se hizo mds profundo. Sus resultados han sido sorprenden-
tes; entre ellos estd la imagen de interaccién de la Mecanica Cuantica, que
es totalmente covariante relativista.

De nuevo han surgido serias discusiones sobre la interpretacion objetiva
o subjetiva del concepto de probabilidad (15). Entre los que se oponen
a la interpretacion de Copenhague hay que citar a Davip Borm, quien co-
menzé su interpretacion de la Mecénica Cudntica a partir de las ideas origi-
nales de L. pE BROGLIE.

En las piginas que siguen trataremos de exponer la Cinematica Cuantica
de una forma compatible con la Teoria Restringida de la Relatividad. Muy
recientemente han aparecido algunos trabajos que tratan de conseguir una
nueva sintesis para presentar la Mecdnica Cudntica de acuerdo ton el
Principio de Relatividad General, pero, por ser extraordinariamente pocos,
no constituyen aun un cuerpo de doctrina.

(15) O. Costa DE BEAUREGARD: Therie Synthétique de la Relativité. Restreinte et Des
Quanta. — 1957.
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CAPITULO I

PRINCIPIO DE RELATIVIDAD DE EINSTEIN

1. NECESIDAD DE UNA NUEVA ALGEBRA DE LA MEDIDA

Las caracteristicas peculiares de los resultados experimentales en siste-
mas fisicos del microcosmos son:

—

) Atomicidad (de particulas, carga, accion, energia, etc.).
2) Naturaleza estadistica de los tenomenos.
8) Dualidad particula-onda.

La teoria cldsica de la medida se basa en el siguiente supuesto: la in-
terferencia del aparato de medida con el sistema tfisico a estudiar puede
ser hecha despreciablemente pequena, y de este modo no moditica la evolu-
cion futura del sistema. Y asi, el sistema queda en el mismo estado en que
se encontraria si no se hubiese realizado la medicién, o si la medida inter-
tiere, la interferencia es tal que podemos calcular sus efectos.

Los sistemas tisicos son, desde el punto de vista clasico, completamente

deterministas, en el sentido de que el estado del sistema en cualquier instante

determina completamente el curso pasado y tuturo de la historia del siste-
ma. La teoria de medida de los sistemas del macrocosmos era enteramente
trivial. :

Las caracteristicas del microcosmos enunciadas antes, que, en cierto
grado, son propiedades de todos los sistemas tisicos, son incompatibles con
los supuestos hechos en la Fisica Clasica, y requieren una nueva formulacion
de la teoria de la medida. En efecto, es tfacil comprender que:

1. El supuesto de la teoria clasica que admite la posibilidad de hacer
despreciablemiente pequena la interaccién del aparato de medida con el sis-
tema medido es imposible, puesto que la energia y la accion... aparecen en

el microcosmos a “saltos” tinitos e indivisibles.
2. La interaccién entre el sistema fisico a estudiar y €l aparato de medida

nc puede ser prevista y, por consiguiente, no podemos hacer las correcciones
oportunas.

La interaccion entre sistemas es de caracter estadistico, y, por lo tanto,
nada se puede predecir en los casos individuales. Los sistemas fisicos del
microcosmos no son deterministas en el sentido clasico.

8. La tercera propiedad nos dice que los conceptos de particula y de
onda son dos casos limites del comportamiento de los “objetos” fisicos, y
que la situacion verdadera se halla en medio de estos dos casos extremos.

Asi, pues, procederemos a construir una nueva teoria de la medida com-
patible con los tres hechos experimentales sefialados.
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Antes de empezar a estudiar los resultados de nuestros experimentos en
€l microcosmos y criticarlos de manera que, al conocer sus caracteristicas y
torma peculiar de comporiarse, podamos construir una teoria consistente,
hemos de presentar los sistemas de referencia en los que los experimentos
pueden realizarse, y los principios por los cuales podamos establecer que
los resuitados obtenidos en los mismos no sean peculiares del sistema par-
ticular de reterencia elegido, sino que representen relaciones intrinsecas entre
los- tenomenos fisicos.

2. SISTEMAS DE REFERENCIA

Llamamos sistema de referencia al sistema de coordenadas que sirve
para tijar tisicamente —en espacio y en tiempo— el fenémeno a estudiar.

Empezamos a edificar nuestra teoria a partir de los sistemas de reteren-
cia llamados inerciales, aquellos en que un cuerpo no sometido a fuer-
zas externas se mueve con velocidad constante. Todo otro sistema de re-
ferencia que se mueva con una velocidad constante relativa a un sistema
inercial es, a su vez, un sistema inercial. Tenemos, pues, un método general
para obtener sistemas inerciales a partir de uno dado.

Experimentalmente se demuestra que la naturaleza satistace el llamado
“Principio de Relatividad”, segun el cual las leyes fisicas tienen la misma for-
ma cualquiera que sea el sistema inercial que usamos como sistema de re-
ferencia para describir los fenémenos tisicos. Mas adelante estudiaremos cui-
dadosamente el alcance de este principio.

Los experimentos muestran también que la interaccion entre dos pun-
tos materiales no se realiza instantdneamente. Llamamos “senales” a las in-
teracciones propagiandose desde un punto material a otro. Una senal es emi-
tida por un punto material y es recibida por otro. La velocidad de propa-
gacién de la interaccién es la velocidad de la senial correspondiente.

La interpretacién del Principio de Relatividad dado por EmstEWN se di-
ferencia de la de GarLiLEo en que el primero amplio el principio y lo aplico
a la velocidad de propagacion de las senales, llegando a la conclusion de
que existe una velocidad méxima; igual en todos los sistemas inerciales. El
valor de tal invariante universal coincide con la velocidad de la luz en el
vacio, o sea, €s

¢ = 2,99776 X 10%° cm/seg

La invariancia de la velocidad de la luz respecto a los diferentes siste-
mas inerciales fue comprobada por los experimentos de MicezELsoN en 1881.

Como consecuencia de esto, ENsTEIN dio una ley de transformacion de
les valores de los datos experimentales expresados en un sistema inercial
2 los correspondientes en otro sistema inercial, distinta de la presentada por
GALILEO para expresar el Principio de Relatividad.

Todas las mecdnicas son, pues, relativistas, ya que verifican el Princi-
pio de Relatividad. Pero aquélla construida segtin la interpretacion de Ems-
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TEIN se llama Mecénica Relativista, y la que utiliza las ideas de Galileo,
Mecanica Clasica. ;

Garmeo consideré que las senales podian propagarse con una velocidad
infinita, y asi, nuestra percepciéon de un fenémeno era simultdnea con su ve-
rificacion. Para él, €l tiempo era absoluto; si dos fenomenos eran simulti-
neos en un sistema inercial, lo serian en todo otro sistema inercial.

Pero, segtin veremos, la interpretacion de EmsTeEN nos obliga a admitir
que el tiempo no es absoluto, no es una cantidad invariante respecto a las
transtormaciones que nos lleven de un sistema inercial a otro. El tiempo
transcurre de diterente forma en los distintos sistemas inerciales. Por con-
siguiente, atirmar que un tenémeno dura un cierto intervalo de tiempo solo:
tendra sentido cuando demos el sistema inercial en que hemos medido esa
duracion. En particular, dos fenémenos que son simultdneos en un sistema
inercial pueden no serlo en otro.

El principio de relatividad de EmsteEmN introduce cambios fundamenta-
les en nuestros conceptos intuitivos de espacio y tiempo. Tales nociones las-
hemos obtenido de nuestra experiencia cotidiana, y han de ser vélidas, al
menos aproximadamente, dentro del grado de precision con que nuestros
sentidos pueden percibir los fenémenos tisicos. Hemos de exigir que de la
Mecanica Relativista podamos obtener la Mecanica Clasica cuando ciertas con-
diciones, relacionadas con nuestra incapacidad natural de precisién, sean im-
puestas. Este principio de correspondencia entre ambas ramas de la Meca-
nica nos serviria como guia para construir la Mecanica Relativista.

3. INVARIANTE FUNDAMENTAL

Llamaremos suceso al fenémeno que es descrito conociendo dénde y
cuando tiene lugar. Es conveniente utilizar un espacio ficticio tetradimen-
sional, llamado espacio de MiNkowski, cuyos cuatro ejes, normales entre
si dos a dos, son: '

XX Xo =1y X3= Z X4/ —1CE (1.1)

donde x, y z, nos dan la posicién del suceso, y t el instante en que se veri-
fica. Las cuatro coordenadas serdn representadas por x,, entendiendo que
los subindices griegos van de uno a cuatro mientras que llamaremos x; a las
tres primeras coordenadas suponiendo que los subindices latinos van de
uno a tres. En este espacio de Mmkowski los sucesos son puntos del mismo
llamados puntos universo. La linea ficticia tetradimensional que correspon-
de a la trayectoria fisica de un suceso se llama linea universo.

Utilizamos también la convencién de Emstem, segtin la cual dos sub-

indices iguales implican sumacién respecto al dominio de definicién de los
mismos. Asi, pues,

4 n=3
AB,— NAB.  AB=SAB,

n=1 n=1

Supongamos la existencia de un foco puntual luminoso en el origen de
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coordenadas del espacio de Mmkowskr. La ecuacién de propagacién de la
tuz en esferas concéntricas, en un sistema inercial, es

%2 + x02 + x52 =c2t2

que utilizando la notacién de EINSTEIN se escribe asi: x,>=o. Si la luz hu-
biera salido del punto X,, la ecuacién de la onda seria:

(x,—X)?=0 (1.2)

Si en lugar de la luz, hubiéramos considerado la propagacién de otra
sefial con velocidad menor que la de la luz

(X[‘L e Xu.)g + 0
A la cantidad
Sni—V e (e )G (1.3)

se le llama intervalo S entre los puntos universo x, y X,.. Como puede verse
ficilmente — S2. puede ser interpretado como el cuadrado de la distancia
entre los sucesos x, y X, en el espacio de MINKOWSKI.

Si los dos puntos universo estdn infinitésimamente proximos

(ds)? — —(dx,,)? ‘ (1.4)

Consideremos ahora otro sistema de referencia que se mueve con rela-
cién al anterior con una velocidad constante. Los puntos anteriores estaran
determinados por las nuevas coordenadas x, y X, en el nuevo sistema. El
intervalo entre ellos en este segundo sistema inercial sera

S/ZXX = (X,u. =Et X’u.)ﬁ (15)

De acuerdc con el principio de invariancia de la velocidad de la luz, si
la sefial que unfa x y X era la luz, teniamos 5 y=—o0 y, por consiguiente,
S’ x =0, o sea, escrito infinitesimalmente siempre que ds=—o se tendra

ds’ — o. Pero por ser infinitesimales de primer orden
ds—ads’ (1.6)

donde el coeticiente “a” depende solamente del walor absoluto de la ve-
locidad relativa de los dos sistemas inerciales.

a=a ()= af); v= Il @.7)

Por homogeneidad de espacio-tiempo a no puede depender ni de las coor-
denadas ni del tiempo; por isotropia del espacio no puede depender del sen-
tido de la velocidad relativa. Entonces también

ds’ —ads " (1.8)
lo cual dice que
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Por continuidad ha de ser siempre +1 6 — 1. Puesto que si a(v) fuera
-1 para ciertas velocidades y —1 para-otras, existirian algunas velocidades
para las cuales tendria valores intermedios entre +1 y —1, lo cual es im-
posible. -

Cuando v =0, es decir, cuando ambos sistemas sean idénticos, ds’ = ds.
Luego a= 1.

Y, por consiguiente, siempre ds’ = ds
0 sea, por integracion SE=1S (1.9)

El intervalo entre dos puntos universo es un invariante respecto del sis-
tema inercial que se utilice para expresarlos. Es un invariante relativista;
es el invariante tundamental de la Mecanica Relativistica.

Tal invariancia no es mas que una expresion matematica de la invarian-
cia de la velocidad de la luz para todo sistema inercial. La ley de transfor-
macién que nos lleve de un sistema inercial a otro, no es la de Galileo, sino
la que deja invariante el intervalo.

Respondamos ahora las siguientes preguntas: dExiste un sistema de refe-

rencia en el que los sucesos x, y X, tengan lugar en €l mismo punto,
X=X, X — X xis —X%PUEainvariancia: del intervalo®da

PP = =R 2 @ (1.10)

Tal sistema inercial existe si (v, — X,)* es negativo. El intervalo corres-
pondiente se llama intervalo temporal. Tales sucesos pueden ser unidos por
una sefial. y, por consiguiente, no son en general dinimicamente indepen-
dientes, ya que la accién de uno puede alcanzar al segundo. Si nos referimos
a dos posiciones diferentes de un mismo cuerpo material en movimiento, el
intervalo entre los mismos es siempre temporal, ya que su velocidad es me-
nor que la de la luz.

¢Existe un sistema de coordenadas en el que dos sucesos x, y X, tengan
lugar simultaneamente, x’, — X’,? Entonces se ha de verificar

(o — K, X~ (1.11)

Tal sistema existe si (x— X,)? es positivo. El intervalo se llama entonces
intervalo espacial. Sucesos separados por un intervalo espacial no pueden ser
unidos por senal alguna; son dindmicamente independientes.

Podemos medir las propiedades de un suceso sin interferir jamas en los
sucesos separados del primero por intervalos espaciales.

Los conceptos de intervalo espacial y temporal son invariantes respecto
a cualquier sistema inercial, es decir, son invariantes relativistas, de acuerdo
con (1-9).

La evolucion dinimica de un sistema fisico tiene lugar a lo largo de
intervalos temporales. La medida de las propiedades de un sistema fisico
clebe verificarse entre puntos separados espacialmente, ya que asi los dis-
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tintos procesos de medida son mdependlentes y, por consiguiente, no inter-
fieren entre si.

A las superticies cuadridimensionales tales que todos sus puntos estan
separados por un intervalo espacial se llama superticie espacial; un ejem-
plo es t=— constante. Toda medicién del conjunto de propiedades de un
sistema debe hacerse sobre superficies espaciales; la medicién simultanea
no €s mas que un caso particular, no €l mis general, y, tal hecho, medir to-
das las propiedades simultdneamente, no es un concepto invariante relati-
vista. Observemos que por un punto universo x, pasan muchas superhmes
espaciales que llamaremos o(x).

Consideremos un suceso que tenga lugar en el origen coordenadas, 0, del
espacio de Mmnkowskl. Estudiemos la relacion entre este suceso y cualquier
olro. Para mejor comprender lo que sigue imaginemos el espacio de MIN-
xkowskil reducido al plano xs— x3 = 0. Los

rie . T d Xy (@
movimientos rectilineos uniformes de un
punto material pasando por el origen, se
representan por una recta pasando por 0 e
inclinada respecto al eje x; un angulo cuya -
tangente es proporcional a la velocidad del
punto material. Puesto que la maxima velo-
cidad es ¢, hay un dngulo maximo que esta
recta puede hacer con el eje x. ®) X4

Representemos con ab y cd las trayecto-
rias de dos senales luminosas que, propagan-
dose en direcciones opuestas, pasan por 0.
Todas las lineas universo representando el
movimiento de sefiales deben estar en las d ‘\ b
regiones alc y d0b.

Es muy facil ver que para todo punto de alc se verifica S*> > o, 0 sea,
el intervalo entre los puntos de «0c y el origen es temporal; pero, como en
alc el tiempo es t > o, tal region representa sucesos que tienen lugar des-
pués del suceso 0. Ahora bien, sucesos separados por un intervalo temporal
no pueden ocurrir simultaneamente en ningtin sistema inercial. Por consi-
guiente, la region alc representa el tuturo absoluto respecto al suceso 0. De
la misma forma se puede ver que d0b es el pasado absoluto de 0.

El intervalo entre los puntos de las regiones c0b y a0d y el origen es es-
pacial. Los sucesos correspondientes tendrin lugar en puntos distintos del
espacio en cualquier sistema inercial. Estas regiones pueden ser llamadas ab-
solutamente remotas del suceso 0; en ellas los conceptos de simultineo, an-
terior y posterior son relativos.

Dos tenémenos pueden estar relacionados entre si como causa y efecto
si el intervalo entre ellos es temporal. Precisamente para estos intervalos los
conceptos de pasado y futuro tienen un signiticado absoluto, condicién ne-
cesaria para poder hablar de causa y efecto. Por consiguiente, la Mecanica
Relativista, a pesar de hacer del tiempo. algo relativo, no destruye la suce-
sion temporal entre causa y etecto. De hecho uno de los criterios que he-
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mos de utilizar estudiando el microcosmos es el de causalidad; con su ayu-
cda podemos eliminar caminos falsos.

Si hubieramos considerado todo el espacio de Mmkowski en lugar del
plano x, = x; = o estas regiones estarian separadas por el cono

x2, =0 (1.12)
que se llama cono de luz.

4. TIEMPO PROPIO

Supongamos que desde un sistema inercial arbitrario de referencia ob-
servamos relojes que se mueven respecto a nosotros de una forma arbitra-
ria. Podemos introducir un sistema de coordenadas ligado rigidamente a los
relojes movibles, y considerarlos como sistemas inerciales instantdneos de
referencia.

Desde nuestro punto de vista, en un intervalo infinitésimo de tiempo, dt,

los relojes se mueven una distancia Vdx? - dy? - dz? — Vdzx?. En el sis-

tema instantdneo inercial el mismo tenémeno serd indicado por un cambio
en tiempo, dr, pero no en coordenadas.

— (dx,)2 — -+ c?dv®— (ds)?

de donde deducimos que

dr = dt ]’/ — (1.13)
puesto que

a2

: jt'\i =y Va2

Para todo el intervalo temporal tendremos

= TEp
TQHII:/ d 1/1—%— (1.14)
tl

El tiempo © medido en el sistema en movimiento con un objeto se llama
tiempo propio del mismo. Segtin vemos, los relojes en movimiento van més
lentamente que los que estdn en reposo.

Si el reloj esta en roposo su linea universo es claramente una linea pa-
ralela al eje x;; si, el reloj describe una trayectoria cerrada, su linea uni-
Verso sera una curva cortando la linea universo del reloj en reposo en dos
puntos correspondientes al origen y fin del movimiento. Pero el reloj en re-
poso nos da mayor intervalo de tiempo; luego la integral 1, — 1;, tomada
entre dos puntos universo, tiene su valor maximo a lo largo de la linea rec-
ta que los une.
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5., TRANSFORMACION DE LORENTZ

La transformacion que traduzca las coordenadas de un suceso 1especto
a un sistema inercial en coordenadas con relacién a otro sistema es la que
deja invariante todos los intervalos, o sea, toda distancia en el espacio de
Mmkowsk1. Tales transtormaciones, llamadas de Lorentz, son traslaciones
y rotaciones en el espacio universo. Las traslaciones no suponen mis que un
cambio del origen de coordenadas; nada tisico implican. La transformacién
de Lorentz que estudiamos es en una rotacién en el espacio de MINKOWSKI,
que, en general, escribiremos asi:

X Aoy (1.15)
donde a,, es un tensor cuyos componentes son funciones de la velocidad
Ay = a,,(v) (1.16)

y sera la expresion matemadtica de la rotacién: las nuevas coordenadas fun-
ciones lineales de las antiguas.

El intervalo cuya invariancia exigimos és x*,. Por consiguiente,
X2, A, Xy A% A, A X X x2
para cualquier punto universo x,. Luego se ha de verificar
a5yt e—0y, (1.17)
lo cual escrito matricialmente con la matriz A = (a,.,) es
AA =1 (I es la matriz unidad) (1.18)

condicién necesaria para expresar toda rotacién (A es la matriz traspuesta
de A). Fisicamente hemos de exigir que exista una transformacién reciproca

e (1.19)

esto nos obliga a admitir la existencia de la matriz reciproca A1 y asi

A—Al (1.20)
Por comnsiguiente,
oivi—ay ; (1.21)
y a partir (1.20) se deduce A A —I
equivalente a
avp. a?.u. S 6\;7\ (122)

Podemos también obtener ciertas condiciones sobre ios coeficientes a,, al
exigir que las coordenadas x, tengan el mismo cardcter real o imaginario
que tenian x,. Y asi ajs, ass, A34 ¥ A4, Ao, 243, SON imaginarios puros mientras
que todos los demés son reales.
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La ecuacion (1.15) puede escribirse en forma matricial al representar el
punto universo x, por una matriz de una columna

X1
=| 2 (1.23)
X4
Entonces la transtormacion de Lorentz se escribe
XE—A (1.24)
El producto de dos transtormaciones de Lorentz A y B
N=PAX x{(E—AB x4 (1.25)
es otra transtormacion de Lorentz C tal que
X1 (@x—IBAx C=BA (1.26)

pues, como es tacil de ver, C satistace (1.20) si B y A la cumplen. Obsérve-
se que en general

BA - AB

El producto matricial no es conmutativo; sin embargo, la multiplicacion
de matrices es asociativa

C(BA) = (CB)A

Puesto que la transtormacion identidad x’—x también es una transfor-
macion de Lorentz, de todo lo anterior deducimos que las transformacio-
nes de Lorentz, forman grupo.

El producto de las transtormaciones (1.25) puede ser considerado desde
otro punto de vista. En efecto podemos escribir & — Ax asi:

Bx’ — BAB'Bx (1.28)

y considerar que la matriz A’—BAB? es la torma que adquiere la ma-
triz A cuando se la representa en un nuevo sistema de ejes. Es decir, A’ re-
presenta la misma transformacion de Lorentz A, pero vista desde otro siste-
ma. Las transtormaciones de las matrices de la forma

A’ = BAB~ (1.29)

se llaman transtormaciones de semejanza.

Puesto que el determinante de una matriz no varia al intercambiar filas
y columnas, de (1.18) deducimos det A="'A|=+|.

Todas las transformaciones del grupo-de Lorentz pueden clasificarse en
dos grandes apartados. Llamaremos transtormaciones propias de LorenTz
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aquellas tales que el determinante | A | de su matriz de transformacion sea
positivo; de hecho

|Al=1 (1.30)

e impropias seran aquéllas en que
JPA =M (1.31)

Entre las transtormaciones impropias hay que citar particularmente la
inversion de los tres ejes x;

Xy =—3 Xd— X4 (1.32)

llamada inversion espacial, P, intimamente relacionada con la paridad del
mundo tisico. Y ademds debemos considerar la inversion temporal, T,

XG—1x X4 = —Xa (1.82)

cuyo signiticado tisico es el intercambio de tuturo y pasado. Si hemos de
evitar este intercambio es preciso exigir que as > 0. La condicion asu < o
implicara inversion temfporal.

El producto sucesivo de un numero indetinido de transtormaciones pro-
pias de LorenTZ es otra transtormacion propia de Lorentz. Cuando las trans-
formaciones de Lorentz formen grupo continuo, para estudiar las propieda-
des de un sistema fisico bajo esa clase de transtormaciones es suficiente
estudiar su conducta bajo las transformaciones infinitesimales de la misma
clase.

Las transiormaciones impropias de LorenNtz no forman grupo porque el
producto de dos cualesquiera de sus matrices es una matriz de determi-
nante - |.

Con ayuda de (1.17) se obtiene

a4y = 1 — (a%14 - 2%y + a%34)
y puesto que la expresion en el paréntesis es negativa
aZ, =1 o también |aw | =1

Tal relacién muestra que entre las transtormaciones con as > o y . las
que tienen as < o hay un salto de dos unidades como minimo que no
puede ser cubierto continuamente. Se sigue que el grupo total de Lorentz
puede ser subdividido en cuatro clases de transtormaciones, cada una de
ellas continuas, pero que exigen un salto discontinuo para obtener cual-
quiera de las otras tres.

Tenemos en primer lugar el grupo restrmgldo de LorenTZ caracterizado por
|Al=1, aus > 0. La segunda clase esta formada por las inversiones espa-
ciales |A|=—1, aus > 0, y no forman grupo; pero unido a la anterior,
es decir, todas las transtormaciones para las que @i > o, forman el grupo
ortocrono de LoreNTz, pues no incluyen inversiéon temporal. En tercer lugar
consideramos las transtormaciones que solo tienen inversion temporal |A | =
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=1, au < 0, y como cuarta clase las que, ademads, tienen inversién es-
pacial |A|=1, aus < 0. v

6. ESCALARES, VECTORES, TENSORES... UNIVERSO.

Una cantidad es un escalar universo cuando tiene el mismo valor en
cualquier sistema inercial de referencia. Podemos definir también el con-
cepto de campo de escalares, al hacer corresponder un escalar a cada punto
universo. Su ley de.transtormacion es

S(xf) = Sx) (1.38)
donde ' = Ax. Un ejemplo de campo escalar es el intervalo |/ ¢

Un conjunto de cuatro cantidades A;, As, As, Ay, que al cambiar de
sistema de referencia, bajo una transtormacion de Lorentz se transtorman
de acuerdo con la ley

A=A (1.34)

es un vector universo. Tales vectores tienen propiedades semejantes a los
vectores ordinarios. Asi es muy facil demostrar que si B, es otro vector
universo el producto escalar A, B, es un escalar universo. Podemos intro-
ducir también el concepto de campo vectorial haciendo corresponder un
vector A,(x) a cada punto universo x. La ley de transformacién es

A?,() = a,,A,(X) (1.35)

Llamaremos tensor universo de segundo orden al conjunto de 16 can-
tidades A,, que, bajo la transformacién de LorenTz, se comportan asi

A.‘pv = dpp dyr A()‘r_ (186)

y definimos los tensores de orden superiotr de una forma semejante.
Traza de un tensor es la suma de sus elementos diagonales

tr A,y = A1 + Ags + Agz + Ay (1.87)

Un tensor es simétrico si A,,=A,, y antisimétricos si Ay, =—A,,.
Este tltimo tiene sus elementos diagonales nulos. ]

El tensor unidad I = (3,,) tiene sus componentes definidas asi
S 0o wFEv

HV:(I M:V

5 (1.38)

en cualquier sistema de referencia. En efecto
8" yv=ayp avy Yoy = app avp = Bpy

El tensor unidad de cuarto orden totalmente antisimétrico es e, cuyas
componentes cambian de signo al intercambiar dos indices cualesquiera, de
forma que las componentes no nulas son = 1.
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De la condicién de antisimetria deducimos inmediatamente que son nu-
los todos los componentes de ey, que tengan dos indices iguales.

Podemos también detinir otras cantidades llamadas pseudoescalares, pseu-
dovectores, pseudotensores que, bajo las transfonmaciones propias de Lo-
RENTZ, se comportan comlo escalares vectores y tensores, pero cambian el
signo que les corresponderia bajo la transformacién de la paridad P.

Un pseudoescalar R(x) se comporta de la siguiente torma bajo la inver-
sion especial P y temporal T '

R(TPx) = — R(x) (1.39)
Y un pseudovector Cp
C=TEC =C
mientras que un vector C’ = TPC — — C. El pseudovector suele llamarse

también vector axial para distinguirlo del vector propiamente dicho al que
llamaremos vector polar. -

La cantidad ey, es un pseudotensor.

Si Apv es un tensor antisimétrico, llamamos dual del anterior al pseudo
tensor 1/2 eunp Alp. De forma semejante epydp A, es un pseudotensor anti-
simétrico de tercer orden dual del vector Ag. El producto 1/2 eunp Apy Aip
tormado con un tensor de segundo orden y su dual es un pseudoescalar.

Diremos también que un vector y un tensor se transforman covariante-
mente con las expresiones (1.34 y 1.86) respectivamente, mientras que un
escalar al transtormarse covariantemente es un invariante, es decir, no se
transtorma cuando cambiamos el sistema de referencia.

7. EL PRINCIPIO DE RELATIVIDAD.

El Principio de Relatividad se expresa diciendo que todas las ecuaciones
de la fisica han de ser covariantes en relacién a las transtormaciones de
LoreNTZ, que no incluyan P.

Hasta 1957 se creia que las leyes fisicas debian ser covariantes respecto
2 toda transformacion de LorenTz. Pero en tal afio los doctores T. D. Ler
y C. N. Yanc, demostraron que ciertas interacciones extraordinariamente
débiles, causas de las desintegraciones f§, no eran covariantes respecto a la
paridad P. Inmediatamente se empez6 a estudiar detalladamente la con-
ducta de las leyes fisicas respecto a la inversion temporal T. Pero los experi-
mentos no han dado aun una conclusion definitiva.

Lo anterior quiere decir que hay dos mundos fisicos, uno dextrogiro y
otro levogiro. Estos mundos fisicos son casi iguales si exceptuamos ciertas
tuerzas, muy débiles, que aparecen de forma distinta en los mismos; preci-
samente porque la diterencia entre estos mundos fisicos es tan pequefia se
ha tardado tanto tiempo en descubrirlos. Por razones que aqui no podemos
examinar, si €l mundo en que vivimos esta formado por materia, €l mundo
de distinta paridad estd formado por antimateria. Esta tesis ha sido confir-
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mada experimentalmente; y asi, el Premio Nobel de 1959 se otorgo a quie-
nes descubrieron experimentalmente el antiprotén, aunque su existencia fue
postulada - tedricamente mucho antes.

8. EJEMPLO DE TRANSFORMACION DE LORENTZ.

Limitémonos al caso particular en que el nuevo sistema inercial de re-

~
ferencia se mueva con una velocidad V x; a lo largo del eje x; respecto al
sistema inicial primitivo, y que ambos tengan sus ejes xi, x», xs paralelos.
Por la homogeneidad del espacio tisico hemos de admitir que en este caso

Xa X3

X3

lo que ocurra a lo largo del eje 4, serd valido para cualquier recta paralela
al mismo; es decir, que en tal caso sélo los ejes x; y x; pueden sufrir varia-
cion alguna en la transtormacion.

Por consiguiente, se ha de veriticar
Xloi—"Xo X3 = X3
lo que equivale a
A, =10z,  as, =03, (1.39)
y ademads, por la misma homogeneidad
413 =212 =0 a4 — 43— 0O (1.40)

ya que x’; no puede depender, en este caso, de x,, por ejemplo.
La transformacion de Lorentz queda asi reducida a una rotacion en el
plano x x4} . Podremos escribir entonces:

aj; = COSQ a4 = —sen@ ( x'1 = X;C05¢Q — x4s€ne
1.41
a4 — seng a4 —cosp ( X4 =x;5enQ -+ x4cosQ QD)

elegidas de forma que se veritiquen todas las propiedades de ortonormali-
zacion.
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Consideremos el movimiento en el nuevo sistema del origen del primi-
tivo x; =0

x'; = —x4s€enQ X'y = X4COSQ (1.42)

expresiones cuyo cociente da

1 =g te=— 2 =y Y
X4 ict c
Entonces
oV
e 1
senp — cosp — (1.43)

A% i V2
= =

O sea que. en este caso particular, la transtormacion de Lorentz es

Vv =V
T X4 D=l X3

(¢
e e g e e S T

(SRS E R R TR V2
]/1_ c2 l/l_ c?

Esta es la transformacion que originariamente encontré Lorenrz, antes
de que la Teoria de la Relatividad de EmsTEIN apareciera, al estudiar la
variacion de las ecuaciones de MaxwerL al cambiar el sistema inercial de
referencia. La transtormacion (1.44) recibe el nombre de transformacion es-
pecial de Lorentz. :

Las férmulas reciprocas, que dan x, en funcion de x/, se obtienen con
s6lo cambiar V por —V en las anteriores. Cuando V > ¢ las formulas: de
transformacioén nos dan «/; y # imaginarios, lo cual expresa que no pode-
mos tener un movimiento con velocidad mayor que la de la luz; ni siquie-
ra es posible usar un sistema de referencia que se mueva con la velocidad
de la luz, ya que en tal caso los dominadores serian nulos.

Cuando V es pequeha respecto a la velocidad de la luz la transforma-
cion especial de Lorentz que hemos estudiado se convierte en la conocida
de GALILFO

X1+i

X,l =aXqr— Vit X’Q = Xso X,3 = X3 tie—it8 (145)

en la que el tiempo conserva su cardcter absoluto.

Consideremos un cierto objeto una de cuyas dimensiones, [, sea parale-
la al eje x;. Si las coordenadas de estos extremos son x; y X, la longitud
de la misma sera

l:XI-—Xl
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Calculemos ahora la longitud de / medida en el nuevo sistema. Los extremos
tendran unas coordenadas

7
X’l —1 X/‘i X,]_ —1 X’4
C (@
e ———— %S =

& V2
V T 2 ] o 2
c c
y la misma longitud medida en el sistema prima serd: I — X’ —x/;
cuando nos refiramos al mismo instante de tiempo: x4 = X/,.

l/

_;F.
c
Longitud propia de una distancia es su longitud medida en el sistema en
que tal objeto estd en reposo. Si la llamamos [, se veritica

= V2
1=1, ]/ Lo — (1.46)

donde / es su longitud medida en el sistema que se mueve con una veloci-
dad V. Los objetos tienen su maxima longitud vistos desde el sistema en
que estan en reposo. La disminucién de longitud que aparece cuando se les
observa desde otro sistema se llama contraccién de LorenTZ.

Puesto que las dimensiones tranversas no cambian en esta transforma-
cién especial de Lorentz el volumen Q de un cuerpo disminuye de acuer-
do con la formula

»
==

2
o0 il Y (1.47)

donde Q, es el volumen propio del cuerpo.
Para esta transformacién de Lorentz la matriz A = (a,,) sera:

VA
1 9 5 c
i s
1
A — (a,,) = L & & (1.48)
@) O 1 @)
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cuyo determinante es positivo. Luego es una transtormacion propia de
LorenTzZ.

9. VECTORES UNIVERSO VELOCIDAD Y ACELERACION

Ea velocidad en el espacio de MINKOwSKI es un vector universo que de-
finimos asi:
d
Uhaelea i (1.49)
ds

donde x, es la posicion del punto material y ds es el elemento de interva-
lo cuyo valor es

2
Y

ds — cdt ]/’ 1— =

c2

aqui v; es la velocidad ordinaria del punto material en el espacio tridimen-
sional. Por consiguiente, obtenemos

c ]/ g i ]/ TR, iz

c? c?

Observemos que el vector velocidad universo es una cantidad sin dimen-
siones que satistace la relacion

0Bl (1.51)

Podemos ver que U, es un vector universo al considerar que es el co-
ciente de un vector universo, dx,, por un escalar. La velocidad universo:
de esta particula vista desde un nuevo sistema inercial sera

¢/
U T — a‘_,_va
utilizando los coeticientes a,, de la transformacion especial de Lorentz, ob-

tenemos, como se ve la velocidad ordinaria v; de un punto material des-

. . . . . . . >
de un sistema en movimiento con una velocidad relativa ordinaria Vi, res-
pecto al sistema en que habiamos medido v;. Esto nos da, esencialmente, la
férmula para sumar velocidades en la teoria de la relatividad restringida

U2] = U31/1_ V
ERE59)

e i
3 TR g ;
vV vV vV
1 v
e <ol T el
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de donde claramente se deduce que ni aun sumando velocidades relativas
podemos conseguir una mayor que la de la luz. En el caso en que nuestros
cuerpos y sistemas se muevan con velocidades ordinarias muy pequeiias res-
pecto a la velocidad de la luz, las formulas anteriores se convierten en

7

s == 0n =\ Vs = Vs Vs = vy (1.58)

conocidas en la Mecanica Clasica.
Cuando la velocidad V es mas pequena que la velocidad de la luz las

7

e : : V :
térmulas anteriores, desarrolladas en potencias de—— son aproximadamen-
c

le iguales a

: 4 A% Vv
'U’]_ = (jj— ( —_— U12 ) 'U’Q — Up + V1V T 'U’g = VU3 —|— V1V2 (1.54)

c c c?

Escojamos un sistema de coordenadas cuyos ejes sean tales que la veloci-
dad de la particula esté en un cierto instante en el plano X,X,. Entonces la
velocidad de la particula sera

v; = vcos v = vsenf V3 =0

y en el otro sistema sera

V1 = v'cost’ v's = v'senb’ Vs =0

Con ayuda de las térmulas anteriores para transtormar el vector veloci-
dad ordinaria se obtiene

VZ
/ = c?

vecos 0 —V

v sen 0

1.55
0 (1.59)

tormula que da el cambio de direccion de la velocidad al cambiar el sis-
tema de reterencia. Como un caso particular estudiemos la aberracién de la
luz, o sea, su cambio de direccion al observarla desde otro sistema iner-
cial. En este caso v—= v = ¢, y, por consiguiente,

[

tg 0/ = Vi sen 0 (1.56)
=~ -+ cos 0

A partir de las férmulas de transformacion se obtienen los siguientes
valores para sen ©’ y cos 0’
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~ Vv
/1_ Vj cos @ — ——
sen B,Z—V—c sen 0 cos 9’:#—_(:
JE———=GH510 I—Lcose
c c

En el caso en que V « ¢ esta tormula se convierte en

« T

sen 0’ —sen 6 = sen 0 cos 0

c
y llamando A6 — 6’— 0 el angulo de aberracién se tiene

AB =

sen 0
c
expresién muy conocida para la aberracion de la luz.
El vector aceleracién universo- de una particula es definido asi:
dU
(U — L=
ds
lo cual da
1 d (8
= ———————— ————
i / : Ui2 dt / : Ui2
02]/ D l o2
i d 1
W= ———————— ———————
2 dt v2
c|/ 1—— e
c2 ¢
Diferenciando la expresién U2, — —1 respecto al intervalo S se tiene:
o, U,=—o0

La aceleracién y velocidad universo son perpendiculares.

10. VECTORES UNIVERSO, MOMENTO LINEAL Y FUERZA

(1.57)

(1.58)

(1.59)

(1.60)

Generalizando los conceptos de la Mecanica Clasica atribuiremos a un
punto material cuya masa medida en el sistema en que estd en reposo es m,

el siguiente momento lineal universo.

PF,_:mOCUU_
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cuyas tres primeras componentes seran

m
e ()
e Y,

]// T

c2

Si aceptamos la hipétesis segtin la cual la masa de un cuerpo varia con
su velocidad de acuerdo con la férmula

R Dol 011 (1.62)

G
|

se tendra para estos tres componentes del momento lineal

P, = mu, (1.63)

que son totalmente equivalentes a los de la Mecanica Clésica, y, por con-
siguiente, P; son las variables candnicas conjugadas de las x,. Puesto que la
energia E es la variable canénica conjugada del tiempo, Py serd, salvo el

ol 1 s c
coehc1ente—c—, la energia del punto material. De hecho

B, LD (1.64)
c
Ahora bien, se obtuvo antes U,2——1; por consiguiente,
P.2——m 2c? (1.65)
y de aqui se llega a
E =c Vm2c + P2 (1.66)

como la energia de un punto material de masa en reposo m, y cuyo mo-
mento lineal ordinario (de tres componentes) es P,

Para velocidades v, pequefias en relacién a la de la luz P, x m, y en-
tonces

TS O 2
E — m,c? ] / e ;?i‘ ~ mc? +:4 . (1.67)

om,

que es, salvedad hecha del término m,c?, la expresién de la Mecanica Cl4-

sica para la energia cinética de un cuerpo de masa m, y momento lineal B
El primer término del desarrollo

el 2
s =21 (1.68)
es la energia de reposo del cuerpo material e implica que, por el mero
hecho de existir y tener masa, tal cuerpo contiene almacenada en su interior

la energia E,. Esta férmula ha sido comprobada experimentalmente con toda
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exactitud por medio de las reacciones nucleares; no se puede dudar su
validez; es el tundamento de las aplicaciones de la energia nuclear.

Las leyes de transformacién de momento universo seran las correspon-
dientes a un vector.

P"p_ —duy P.,
Observemos que se veritica
U,
P,=E —
02

Introduzcamos tinalmente la fuerza universo definiéndola como sigue:

FL,LZ———dPpt — m, m¢ JdUM =m, Mcw,, (1.69)
ds ds
por lo que se tiene
U —lo (1.70)
Las tres primeras componentes son
dP;
dt f.
19re= — = =l (1.71)
§ ]/ 1— ]/1 b o
© / ¢
f dP; : ey
donde t; = 3¢ ¢S la fuerza ordinaria. La cuarta componente es
e
Fi= ———————— ty, 3
# " /] T (1.72)
! 02

v esta relacionado con la potencia f; de la tuerza ordinaria f,.
Hay que hacer constar que las ecuaciones de movimiento de la Mecanica

2 Cdlhr ; 2 S i
Clasica fi= dti tienen aqui una interpretacién distinta, ya que hay que

considerar la variacién del momento ordinario p; debido al aumento de la
velocidad de la particula, segun la férmula

d m,_;
fi= 0
; dt ] | v (1.73)

2
i
C2
Supongamos que la velocidad de la particula cambia tinicamente en di-

B o5 =
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reccion —es decir, que f; sea normal a v, o sea que fy; = o—. Entonces
se tiene

1, _dvy
] - .Uz dt (1.74)

l

Pero si la velocidad cambia sélo en magnitud —es decir, si f; y v; son
paralelos— un simple calculo da

d m v m dv,

0

dt ]//1_—1,32 = ( % %:_)3/2 dt (1.75)

c2

Por consiguiente, €l cociente de la fuerza ordinaria f; a la aceleracion

ordinaria es distinto en ambos casos.

dt

11. PARTICULAS ELEMENTALES.

En la Mecdnica Clisica, que es covariante respecto a la transformacion
de Galileo, era posible manejar el concepto de cuerpo rigido ya que, al
cambiar de sistema de referencia segin la transtormacion de Galileo, las

dimensiones del cuerpo rigido eran invariantes. Pero, segiin hemos visto, las.
transformaciones de Loren1z, bajo las cuales la Mecanica Relativista es co--

variante, implican la contraccion de Lorentz y, por consiguiente, las dimen-
siones de un cuerpo rigido no serdn las mismas si las medimos desde un
sistema en movimiento o desde el sistema en que el cuerpo esté en reposo.

Por consiguiente, la Mecdnica Relativista no es compatible con el concepto-

de cuerpo rigido.

La imposibilidad de existencia de cuerpos rigidos puede ser demostrada.

de otra forma. Supongamos que a un cuerpo rigido se le aplica una fuerza
externa que le mueve: si el cuerpo tuera realmente rigido, todos sus puntos
empezarian a moverse simultineamente en el momento en que aplicamos

la fuerza externa; si asi no ocurriera el cuerpo no seria rigido, sino que se:
habria deformado. Ahora bien, €l hecho de que todos los puntos del cuerpo-

rigido empiecen a moverse simultineamente es incompatible con los prin-
cipios de la Mecanica Relativista, ya que una sefial —la accién de la tuerza.
externa— se habria propagado con una velocidad mayor que la de la luz,
de hecho, con una velocidad infinita.

Por consiguiente, no existen cuerpos rigidos en la naturaleza, aunque:
tal concepto es una aproximacion muy economica en el caso de pequenas:
velocidades. Todo cuerpo ha de ser detormable, una distribucion de materia.
en el espacio; de aqui que en el fondo para estudiar los cuerpos hemos:
de considerarlos como campos.

Podemos aplicar estas ideas a las particulas elementales. Si llamamos
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asi a las que no tienen partes, de forma que en cualquier experimento entren
como un todo, puesto que han de ser cuerpos rigidos, llegamos a la con-
clusion de que las particulas elementales han de tener radio nulo. Ahora
bien, de hecho los cuerpos que consideramos particulas elementales ocupan
cierto volumen; por consiguiente, han de ser una distribucion de materia
en el espacio y, por lo tanto, tienen partes. Asi, pues, el concepto de
particula elemental es relativo respecto de los experimentos que con ella
realizamos; y no es sino una hipdtesis apta para estudiar el microcos-
mos con nuestros medios actuales.

Como consecuencia general de este apartado, diremos que la Mecanica
Cuintica Relativista nos lleva necesariamente a la Teoria de Campos
Cuanticos.

12. ENERGIA DE ENLACE.

Si nos limitamos a estudiar los fenémenos dinamicos, las formulas ob-
tenidas para el movimiento del punto material son aplicables a un cuerpo
formado por muchas particulas. En este caso la energia total del cuerpo es
la suma de las energias de sus componentes.

Si M, es la masa en reposo del mismo, su energia total es

M c?

V2
=

donde v; es la velocidad del movimiento del cuerpo como un todoe. Por con-
siguiente, llegamos a la conclusion de que en Mecanica Relativista la energia
de un sistema cerrado es positiva siempre, mientras que en Mecanica Cldsica
la energia total puede ser positiva o negativa.

La energia interna de un cuerpo, M c?> contiene, ademas de la energia
en reposo de cada una de sus partes m,,c? la energia de enlace entre las
distintas partes. En otras palabras, M, no es = m,,. Por consiguiente, en ia

Mecanica Relativista, la Ley de conservacion de la masa no es valida; la
masa de un cuerpo compuesto no es igual a la suma de las masas de sus
constituyentes. Sin embargo, la ley de conservacién de la energia total, en
la:que se incluye la energia en reposo, es verdadera.
La cantidad AM ¢*> = (M,—ZX m,,) ¢ es la energia de enlace del cuerpo.
A

18. CONSECUENCIAS DEL PRINCIPIO DE RELATIVIDAD.

Si la Mecanica Cuantica que construyamos ha de estar de acuerdo con
el Principio de la Relatividad antes enunciado, hemos de utilizar exclusiva-
mente en su fundamentacion cantidades fisicas cuyas leyes de transforma-
cion bajo las transformaciones de - LorenTz sean bien conocidas; es decir,
han de intervenir tnicamente escalares, vectores, tensores... universo.
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En particular hemos de tener en cuenta que las operaciones de medida
de las propiedades tisicas de un sistema han de hacerse en puntos universo
todos ellos situados en una superficie espacial o. Por consiguiente, exigir
la medicion simultinea de todas las propiedades de un sistema no serd acep-
table sino que mas bien hemos de construir el Algebra de la Medida consi-
derando superficies espaciales en las que realizamos todos los experimentos.
Muchos resultados, tales como la probabilidad de que una particula que
estaba en x, llegue a X, han de ser independientes de la superficie espa-
cial 6= o (x) que, conteniendo al punto x,, hayamos utilizado para realizar
las medidas de las cualidades de la particula. Es, pues, necesario demostrar en
estos casos que tal resultado (la probabilidad) es independiente de la super-
ticle ¢ = o (x) elegida. Una vez hecho esto, podemos utilizar en particular
la superficie espacial x4 — constante, que es la que generalmente se emplea
en la Fisica.

Semejantemente en la Dinamica Cudntica no toda ecuacién del movi-
miento serd tisicamente aceptable, sino exclusivamente aquellas que sean
covariantes. Es interesante ver como han de ser estas ecuaciones.

d
Introducimos el operador S derivada parcial respecto a x,, y para
simplificar la notacién eseribimos
SRl (1.76)
Ox,.

En general las ecuaciones del movimiento serdn ecuaciones en derivadas
parciales, 9, aplicadas a la cantidad cuyo movimiento estudiamos. Veamos
como tal operador se transtorma

e .
X',,,r:am,)xy Ay X =Xy

R O SR e @77

6/
R 3¢, Ox,

Luego 9, se transforma como un vector, y, consiguientemente, las cuatro
derivadas 9§, han de aparecer de forma simétrica en las ecuaciones del mo-
vimiento. Si A, es un vector universo, dos ecuaciones aceptables seran

(A.LL61J- —+— Il'l) Wy (X) — O
(0%, +-m) @ (x) = o (1.78)

donde y y @ son las cantidades cuyo movimiento estudiamos. Se suele
utilizar la notacién siguiente:

B = e 02 = L2 (1.79)

{l

En las anteriores ecuaciones, m ha de ser un escalar. De hecho, la se-
gunda se llama ecuacion de Krem-Gorpon. -
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En otro sistema inercial, las ecuaciones (1.78) segin el Principio de Re-
latividad dado deberan ser

(A%, tmy x)=o
(0%, +m) ¢’ (x) =0
donde, por ejemplo,
Ayo—a,, A,

Las ecuaciones hamiltonianas del movimiento no son covariantes relati-
vistas, pues dan a la derivada respecto al tiempo, d4, cierta preponderancia
sobre las otras tres, 9;. Sin embargo, estas ecuaciones hamiltonianas seran
aceptables cuando los efectos meramente relativistas no sean importantes.

En general, una cantidad fisica serd expresada comio una funcional F[o]
sobre una superficie espacial. Detinamos otra clase de derivadas muy inte-
resante para establecer las ecuaciones del movimiento:

0 F[o] s F[o'] — F[o]
d o (%) _O/Im /‘a’ dix (1.80)
i g 1o
ail
X
o

donde x es un punto sobre o, la superticie espacial ¢’ es una superficie que

sl

difiere muy poco de o alrededor del punto x y/ % dix es el volumen del
o

dominio tetradimensional entre o’ y o.

Puesto que en la definicion de esta derivada funcional (16) todos los ele-
mentos que entran son invariantes, tal concepto sera apropiado para estable-
cer las ecuaciones del movimiento.

En el espacio tetradimensional de Mmkowskr podemos considerar las si-
guientes clases de integrales:

a) Integrales a lo largo de una curva universo I'. El elemento de inte-
gracion es dx, que se comporta como un vector

f f(x)dx.,
T

donde entendemos que 1(x) =1(x;, X, X3, X4)

(16) Tomonaca, S.: Prog. Theor. Phys 1, 27 (1946).

22—




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO -QUIMICAS Y NATURALES

b) Integrales sobre una superficie bidimensional, S. El elemento infini-
tésimo de superticie esta determinado por un tensor antisimétrico de segun-
do rango, dS,,, cuyos componentes son iguales a las. proyecciones del area
del elemento de superficie sobre los planos de coordenadas. Podemos cons-
truir el tensor dual dS*,,

1

<

ASES

Epvhp dS)\{j (181)

que geométricamente describe un elemento de superticie, igual y normal
al elemento dS,,, de forma que todas las lineas en dS*,, son perpendicula-
res a toda linea én dS,,.

Esta clase de integrales casi no se usa.

¢) Integrales sobre una superficie tridimensional, o, hipersuperticie. El
elemento de integracion es el vector universo

do, — (dx» dxadxs, dx;dxsdxy, dx;dxedxs, dxidxedxs) (1.82)

que geométricamente define el vector-universo normal a la superficie ¢ de
longitud igual al 4rea del elemento de superticie. Si ¢ es una supertficie es-
pacia]. da,,L es un vector temporal.
La integral que resulta
[ do, A,
Jo

no es sino la generalizacién covariante relativista de la integral sobre el
volumen ordinario

d?x A, déx— doy
J v

que se obtiene cuando tomamos como superticie ¢ la x, — constante pro-
pia de la Mecanica Clasica. V es el volumen ordinario.

d) Integrales sobre un volumen tetradimensional, t. El elemento de in-
tegracion es -
dr = dx; dxs dx; dxy = d¥x (1.83)

que cumple la relacion

dg =t 0o dx

Es conveniente introducir aqui una generalizacion del teorema de Gauss
que convierte integrales sobre una superficie tridimensional (hipersuperti-
cie) en integrales sobre un volumen tetradimensional encerrado por la mis-
ma. Para ello necesitamos hacer la sustitucién

do, — d*xd,,

— 230 —

W E st sl

o pthen i

il

e ey

I N Iy B N T T

s

b B i T




o o
TR M';nu:—tﬁsnd
iy
W

AT SR T A et ok s

s P

BRSSO

Aol

R

G Ny F I M A TR ECE A C U AR NG TSRV G A RECHOSDA v ASs s iV PeiSr TN A

y asi, por ejemplo, para la integral del vector Au se tiene

do, A — [ d*xd, A, (1.84)
1

Intentamos dar ahora unos teoremas importantes sobre las derivadas fun-
cionales presentadas en (1.80) cuando la funcional F[c] pueda ser escrita
como una integral sobre la superficie o

Fulo]

[l

f do’, F(x') (1.85)
(¢]

de la tuncién F(x) diferenciable en los puntos de 6. Por medio del teorema
de GreeN deducimos la siguiente relacién

U A e oo rteso (o 98 < pionss
do(x) [ _»[/ f Jd F<-'>/j6 dix =3, F(x) (1.86)

De forma semejante, en el caso de la funcional

Q

mﬂgfdnhm (1.87)
c
si F.(x) es diterenciable en o, se obtiene
o
Hohbe Ios i oo vt 1.88
5 000 [0] =0, F.. () (1.88)

] . 2 . . . e
de donde deducimos que la funcional F[o] es independiente de la superfi-
cie ¢ cuando F,(x) satisface la ecuacién de continuidad

3, Fu(x) — o (1.89)

Este teorema es la expresion covariante relativista del caso bien conoci-
do en que en lugar de una superficie espacial ¢ cualquiera tomamos la su
perticie espacial x, = constante; entonces

Flx4] :f d®x Fy(x)

integral extendida a todo el volumen tridimensional V ocupado por el sis-
tema en el instante x, = constante. Asi, F[x,] es independiente del tiempo

si se verifica
= 1 h)
v Be) R

que es la ecuacion de continuidad.
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Si F[x, o] depende explicitamente de ¢ podemos generalizar los concep-
tos anteriores

Il

Ro= [ d0uFDX.o] (1.90

Entonces
d

do(x)

2

F.[6] =3,.F [x0] + do’u—ﬁ-?)— F[x, o] (1.91)

donde 6—62)signiﬁca derivacién respecto a los argumentos que depen-
o(x
den explicitamente de o y—%)—quiere decir derivada total obtenida al
o(x
calcular la variacién total resultante de deformar la superficie o.

En algunos célculos hemos de trabajar con integrales sobre el “espacio
de momentos”. Es interesante conocer la conducta de dpl dp. dp; bajo la
transformacién de Lorentz. Si introducimos un espacio tetradimensional,
cuyos ejes de coordenadas corresponden a las cuatro componentes del mo-
mento de un punto material, dp; dps dps, puede ser considerado como el
cuarto componente de un elemento de superficie tridimensional determina-
da por la ecuacion

p.2=—m2 c?

que es una estera. (Véase 1.82).
El elemento de superficie, dw,, es un vector universo, construido de for-
ma semejante a do, en (1.82) y normal a tal superficie; pero en nuestro caso
Ia direccién de la normal coincide con la direccion del vector p,. Por con-
siguiente, el cociente
dp; dps dps

= (1.92)

es una cantidad invariante, puesto que es el cociente de los cuartos com-
ponentes de dos vectores, thLL y Pu, constantemente paralelos.

Si introducimos coordenadas esféricas en este espacio de momentos se
tiene

dﬂ:u. = dpl dp2 dp3 = p2 d}? d(.l) P= \/ piz

donde do es el elemento de 4ngulo solido alrededor de la direccion del
vector ordinario p;. Pero puesto que

pdpi=— —19 EdE (1.94)
&

llegamous a la conclusion de que la cantidad

pdE do (1.95)

es tambien un invariante relativista.
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Preciso es advertir que la exposicion covariante del Principio de Relati-
vidad que hemos hecho no es la dnica posible (17). Cabe una interpretacion
invariante en la que por ejemplo los coeficientes vy, de la ecuacién

(Vi 8 +m) Y () =0 (1.96)

fueran considerades como invariantes numéricos a las transtormaciones de
Lorentz. Tal es de hecho el punto de vista adoptado inicialmente por Ems-
TEIN. L.a ecuacion anterior en otro sistema seria

(V' + m) YY) =0 (1.97)

Esta es la ecuacion de Dirac, quien utiliz6 el mismo punto de vista de
EmsTEIN para estudiar el electron.

La disputa entre los puntos de vista covariante e invariante, no puede
ser decidida en el momento actual. Cuatro tipos diterentes de ecuaciones
han sido protundamente estudiados hasta la techa: las de MaxweLL, las de
KLEIN-GorpoN, las del electron de Dimrac y las de la gravitacion de EINSTEIN.
Las dos primeras presentan la misma formulacién bajo ambas interpreta-
ciones —covariante € invariante— del Principio de Relatividad. La ecua-
cion de Dmac ha sido estudiada segin la interpretacion invariante, pero la
de la gravitacion requiere la interpretacion covariante. De hecho esta inter-
pretacion covariante es la utilizada por la relatividad general, que es una
teoria intrinsecamente geométrica y, como consecuencia, han pasado de
moda las ideas originales de EINsTEIN a tavor de la interpretacion covarian-
te de Mmrowski. Quizd ambas interpretaciones sean solamente proyeccio-
nes parciales de un principio basico atn desconocido. En el estado actual de
la investigacién cientitica parece que el punto de vista de la covariancia es
el mas tructitero.

(17) Hans Frerstapr: Revista Mexicana de Fisica. V, 43 (1956).
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CAPITULO II

PRINCIPIO DE CUANTIFICACION DE PLANCK

1. SISTEMAS EN LA MECANICA CUANTICA

La Mecanica Cuantica estudia los sistemas fisicos del microcosmos, es
decir, aquellos cuyos tamafios son del orden de magnitud atémico o nu-
ciear (18:.

Segun las ideas de la Fisica Clasica, debemos explicar las propiedades
de un cuerpo material atribuyendo a las distintas partes ¢ize forman su es-
tructura ciertas cualidades. Asi, por ejemplo, explicamos el concepto de tem-
peratura de un gas por medio de la teorfa cinética suponiendo que sus si0-
leculas se mueven como esteras elasticas cuya interaccién mutua es despre-
ciable; un segundo paso consiste' en comprender por qué esas moléculas,
al considerar su estructura atémica, se comportan como esteras dotadas de
esas cualidades.

De esta forma vamos construyendo “modelos” con cuya ayuda podemos
continuar el estudio de las propiedades fisicas de los cuerpos. No se crea
que obtener estos “modelos” es tarea tacil; mucho se escribié durante el
pasado siglo acerca de la relacion entre temperatura y calor, pero todo era
parcialmente falso hasta que se descubrié el modelo apropiado: la teoria
cinética.

Mientras los conceptos de grande y pequeno sean relativos, esta cadena
nvo puede romperse. La Ciencia tenia que estudiar un nivel material por
medio de otro més pequefio. Sin embargo, los sistemas de la Mecdnica Cudn-
tica introducen un cambio en esta cadena, aunque no la rompen; su tama-
fio es pequefio respecto al observador, y, como no podemos hablar de Cien-
cia sin observacién, su tamafo es pequeno absolutamente. L.a Mecanica
Clasica no es valida para estos sistemas, ya que las ideas que la cons-
truyeron, las cuales imaginan despreciable la perturbacion producida por el
proceso de observacion en el cuerpo fisico, no son ciertas en estos casos.
Quizd hayamos de seguir explicando un nivel material por medio de un mo-
delo construido con cuerpos mas pequeios; pero el significado de experi-
mento habri variado, ya que el observador ha de entrar en nuestra teoria.

La palabra sistema utilizada en este trabajo significara sistema de la
Mecénica Cudntica, o sea, aquel que por su pequefio tamafo sufra una per-

(18) La teoria de la superconductividad es una excepcién. Conceptos mecanicocuédnticos
han de ser aplicados a un superconductor globalmente, aunque por sus dimensiones pertenece
al dominio de la Mecénica Clésica.

=ogats

|
REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, [FISICO -QUIMICAS Y 1\’41[/1“11;5 \
l

b i S s b iz st

L

st s S e b

et A

e Lol St o s AL ol L bl bew)




e el

v L M

s

A PR A W

SReURE—

L bl 8 o S

ok B e AN b

i 2 T

piliies

Gl eN—F M AT = CA CU= AN T s RFal A T IV S TS S Tas A

turbaciéon no despreciable al ser observado. Sin embargo, de hecho, en los
experimentos llevados a cabo en laboratorios, no podemos manejar siste-
mas individuales sino que utilizamos un “conjunto” de sistemas idénticos,
al que llamiamos macrosistema. Y asi pretendemos estudiar las propieda-
des del fotén individual —sistema—, aunque para hacerlo, en realidad siem-
pre estudiamos las propiedades de un haz de totones —macrosistema.

Se desprende de aqui que la Mecdnica Cuantica ha de tener cierto ca-
racter estadistico que presentaremos a lo largo de estas lecciones.

2, ESTADOS DEL SISTEMA

Los conceptos de la Fisica evolucionan continuamente para incluir cada vez
mas sintéticamente el elenco de conocimientos que van surgiendo de los
nuevos experimentos que cada dia nos presentan aspectos desconocidos y
no imaginados de la conducta del mundo material.

Las poderosas maquinas de acelerar particulas han mostrado que me-
diante experimentos somos capaces de crear y de aniquilar sistemas. La in-
teraccion del hombre con la Naturaleza puede ser tan fuerte que, no solo
la moditica al estudiarla, sino que incluso llega a hacerla desaparecer o es
capaz de sacarla de donde no estaba. No hemos podido atn crear todos los
sistemas fisicos mediante experimentos, pero si hemos creado todos los sis-
temas, particulas, que la potencia de nuestros aparatos eran capaces de crear.
Y tan pronto como hemos construido mejores mdaquinas aceleradoras han
aparecido nuevas particulas creadas artificialmente.

Suponemos, pues, que, en principic, somos capaces de crear o aniquilar
cualquier sistema.

Esta forma de no existir de un sistema, el estado fisico que solamente
liene la capacidad de que de él, mediante experimentos, podemos crear un
sistema, se llama estado vacio del sistema. No puede detinirse mas que por
la negacion de lo que obseivamos en el sistema ya creado. El estado vacio
es el estado en que el sistema existe en potencia; es €l estado al que nuestro
sistema va cuando lo aniquilamos.

No podemos decir que un sistema tenga varios estados de vacio, puesto
que si asi tuere, habriamos de considerarlos el mismo estado ya que nada
podriamos medir que los distinguiera.

Hemos de concluir que el estado vacio de un sistema fisico es indepen-
diente del tiempo, pues no es posible medir el tiempo donde nada hay; por
la misma razon el estado de vacio es independiente de cualquier otra coor-
denada.

" Con el sistema ya creado podemos realizar muchos experimentos que
midan sus propiedades. Asi, los estados tisicos de un sistema son el estado
vacio y los estados observables, que expresan las diversas formas de ser de
un sistema cuando al medir sus atributos no moditicamos su existir.

Para construir la Mecanica Cudntica hemos de estudiar primero los es-
tados observables de los cuales, por negacion, podemos detinir el estado
vacio.
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CAPITULO II

PRINCIPIO DE CUANTIFICACION DE PLANCK

1. SISTEMAS EN LA MECANICA CUANTICA

La Mecanica Cuantica estudia los sistemas fisicos del microcosmos, es
decir, aquellos cuyos tamafios son del orden de magnitud atémico o nu-
ciar (18;.

Segun las ideas de la Fisica Clasica, debemos explicar las propiedades
de un cuerpo material atribuyendo a las distintas partes gize forman su es-
tructura ciertas cualidades. Asi, por ejemplo, explicamos el concepto de tem-
peratura de un gas por medio de la teorfa cinética suponiendo que sus wio-
leculas se mueven como esteras eldsticas cuya interaccién mutua es despre-
ciable; un segundo paso consiste en comprender por qué esas moléculas,
al considerar su estructura atémica, se comportan como esteras dotadas de
esas cualidades.

De esta forma vamos construyendo “modelos” con cuya ayuda podemos
continuar el estudio de las propiedades ftisicas de los cuerpos. No se crea
que obtener estos “modelos” es tarea facil; mucho se escribié durante el
pasado siglo acerca de la relacion entre temperatura y calor, pero todo era
parcialmente falso hasta que se descubrié el modelo apropiado: la teoria
cinética.

Mientras los conceptos de grande y pequeno sean relativos, esta cadena
no puede romperse. La Ciencia tenia que estudiar un nivel material por
medio de otro mas pequeno. Sin embargo, los sistemas de la Mecanica Cudn-
tica introducen un cambio en esta cadena, aunque no la rompen; su tama-
flo es pequenio respecto al observador, y, como no podemos hablar de Cien-
cia sin observacién, su tamano es pequeno absolutamente. L.a Mecanica
Clasica no es valida para estos sistemas, ya que las ideas que la cons-
truyeron, las cuales imaginan despreciable la perturbacién producida por el
proceso de observacion en el cuerpo tisico, no son ciertas en estos casos.
Quiz4 hayamos de seguir explicando un nivel material por medio de un mo-
delo construido con cuerpos mas pequefos; pero el signiticado de experi-
mento habri variado, ya que el observador ha de entrar en nuestra teoria.

La palabra sistema utilizada en este trabajo signiticarda sistema de la
Mecanica Cudntica, o sea, aquel que por su pequefio tamafio sufra una per-

(18) La teoria de la superconductividad es una excepcién. Conceptos mecanicocudnticos

han de ser aplicados a un superconductor globalmente, aunque por sus dimensiones pertenece
al dominio de la Mecénica Clésica.
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turbacién no despreciable al ser observado. Sin embargo, de hecho, en los

experimentos llevados a cabo en laboratorios, no podemos manejar siste-
mas individuales sino que utilizamos un “conjunto" de sistemas identicos,
al que llamjamos macrosistema. Y asi pretendemos estudiar las propleda-
des del fotén individual —sistema—, aunque para hacerlo, en realidad siem-
pre estudiamos las propiedades de un haz de totones —macrosistema.

Se desprende de aqui que la Mecédnica Cuantica ha de tener cierto ca-
racter estadistico que presentaremos a lo largo de estas lecciones.

2, ESTADOS DEL SISTEMA

Los conceptos de la Fisica evolucionan continuamente para incluir cada vez
m4s sintéticamente el elenco de comocimientos que van surgiendo de los
nuevos experimentos que cada dia nos presentan aspectos desconocidos y
no imaginados de la conducta del mundo material.

Las poderosas maquinas de acelerar particulas han mostrado que me-
diante experimentos somos capaces de crear y de aniquilar sistemas. La in-
teraccion del hombre con la Naturaleza puede ser tan fuerte que, no sélo
la moditica al estudiarla, sino que incluso llega a hacerla desaparecer o es
capaz de sacarla de donde no estaba. No hemos podido atn crear todos los
sistemas fisicos mediante experimentos, pero si hemos creado todos los sis-
temas, particulas, que la potencia de nuestros aparatos eran capaces de crear.
Y tan pronto como hemos construido mejores maquinas aceleradoras han
aparecido nuevas particulas creadas artificialmente.

Suponemos, pues, que, en principic, somos capaces de crear o aniquilar
cualquier sistema.

Esta torma de no existir de un sistema, el estado fisico que solamente
tiene la capacidad de que de él, mediante experimentos, podemos crear un
sistema, se llama estado vacio del sistema. No puede definirse mas que por
la negacion de lo que obseirvamos en el sistema ya creado. El estado vacio
es el estado en que el sistema existe en potencia; es el estado al que nuestro
sistema va cuando lo aniquilamos.

No podemos decir que un sistema tenga varios estados de vacio, puesto
que si asi tuere, habriamos de considerarlos el ITlloIIlO estado ya que nada
podriamos medlr que los distinguiera,

Hemos de concluir que el estado vacio de un sistema fisico es indepen-
diente del tiempo, pues no es posible medir el tiempo donde nada hay; por
la misma razén el estado de vacio es independiente de cualquier otra coor-
denada.

Con el sistema ya creado podemos realizar muchos experimentos que
midan sus propiedades. Asi, los estados fisicos de un sistema son el estado
vacio y los estados observables, que expresan las diversas formas de ser de
un sistema cuando al medir sus atributos no moditicamos su existir.

Para construir la Mecanica Cudntica hemos de estudiar primero los es-
tados observables de los cuales, por “1ega01on podemos detinir el estado
vacio.
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La transicion que un sistema realiza cuando pasa de su estado vacio a
un estado observable, es decir, cuando es creado, requiere una gran canti-
dad de energia. En la Mecanica Cudntica Relativista, tal como la presenta-
mos aqui, es absolutamente necesario introducir el concepto de estado vacio;
pero si quisiéramos construir una Mecanica Cuantica no Relativista, la cual
no incluyera fenomenos de muy alta energia, sélo tendriamos que conside-
rar los estados observables.

3. ESPECTRO DE VALORES PROPIOS

Segiin NEUuMANN por “magnitud hay que entender propiamente el como
debe ser medida y como hay que leer su valor en las posiciones de los in-
dices de los aparatos de medicion o calcularlo a partir de ellos” (19).

Supongamos que medimos una cierta magnitud, A;, del sistema objeto
de nuestro estudio. Esta propiedad A; puede ser, por ejemplo, la posicion
del sistema o su spin. Observamos que siempre €l resultado de medir A; en
cualquier sistema de un conjunto de sistemas idénticos nos da un valor con-
tenido en un conjunto de valores.

sl g (& e 2y (B ey (G (2.1)

Este conjunto de valores se llama espectro de valores propios de la pro-
piedad A;. Y la propiedad A; recibe el nombre genérico de observable. Lo
anterior es la expresion del Principio de '‘Cuantificacion de Pranck: al me-
dir el valor de una propiedad en un sistema (no en un conjunto de sistemas)
obtenemos un valor del espectro discreto correspondiente.

Para justificar nuestra atirmacion no es preciso que, de hecho, hayamos
obtenido todo el conjunto de valores propios de A; mediante experimentos
sucesivos. Es evidente que si el espectro contiene intinitos elementos no po-
demos haber realizado un numero infinito de experimentos, pero sabemos
que, al menos, tenemos capacidad suficiente para ir continuamente repitien-
do experimentos y asi obtener cualquier valor del espectro.

Sin embargo, nunca debemos incluir en nuestra teoria hipdtesis alguna
que no podamos comprobar experimentalmente.

Cuando realizamos una observacion en un sistema dado, el sistema es
moditicado por el observador que recibe la informacion. No atirmamos que
la propiedad A; se dé en la Naturaleza unicamente con los valores de su
espectro; no nos referimos a una realidad objetiva independiente del obser-
vador. Aceptamos como un hecho algo que viene de nuestros experimentos:
al medir A; en cualquier sistema tisico siempre obtenemos uno de los valo-
res contenidos en el conjunto de valores que llamamos su espectro.

(19) J. Vo~ Neuman: Fundamentos matematicos de la Mecanica Cudantica.
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Si hubiéramos medido otro observable A, también tendriamos uno de los
ag(l, 32(2, ............ a2<“, 32(”, ... d2 (%2

De este hecho recibe esta Mecanica el apelativo de Cuantica. Al medir los
atributos de los sistemas fisicos obtenemos ciertos valores que expresan que
la energia, la accion... tienen un espectro discreto, se dan en Naturaleza “a
saltos”, o sea, en “cuantos” de energia o de accion que no podemos dividir.

Estudiemos ahora €l espectro de un observable tal como la abscisa de
la posicién de una particula que, segin hemos visto en la Mecédnica Cl4si-
ca, parece tener un espectro continuo. Para llegar a esta conclusion supo-
niamos que tenia sentido hablar en Fisica del punto matematico situado
sobre una recta.

Una forma de detinir el punto matematico sobre una recta es considerar
en la misma una sucesién infinita de intervalos decrecientes, todos ellos con-
tenidos en los anteriores, y cuya longitud, a partir de uno dado, es tan pe-
queha como se quiera. Esta sucesion define un punto que es comin a todos
esos intervalos.

Evidentemente podemos suponer la existencia de maquinas, cada vez m4s
perfectas, que sean capaces de medir la longitud de cualquiera de esos in-
tervalos.

En verdad este supuesto no sera valido para una mdquina real, pues
todo aparato tendrd un limite de precisién y no serd capaz de medir distan-
cias menores que él. Pero aunque esto es cierto creemos que, en principio,
podemos construir -aparatos capaces de medir distancias tan pequenas como
se quiera, y asi parece que somos capaces de medir la longitud de los infi-
nitos intervalos que constituyen la sucesion matematica.

Aunque admitamos lo anterior no podemos llegar a la conclusion de que
el concepto de punto matematico tenga sentido en Fisica. Pues siempre
esas maquinas mediran intervalos, distancias finitas, aunque tan pequenas co-
mo se quiera. Las mdquinas no son capaces de dar el salto al limite, opera-
cién con la cual detinimos el punto matematico; este salto es una abstrac-
cion que realiza nuestra mente y que esta muy por encima del poder de
la maquina.

No tendremos, sin embargo, inconveniente alguno manejando el concepto
de punto matematico en Fisica siempre que de hecho al introducirio no lle-
guemos a contradiccidn alguna en nuestros cédlculos. Y, de esta forma, po-

demos utilizar herramientas, tales como el concepto de derivada, ya muy

estudiados por los matematicos.

En otros casos hemos de ir con m4s cuidado. Si aceptamos que todos los
puntos mateméticos de una recta pueden ser considerados como posibles
posiciones de una particula en la misma, el espectro de valores propios del
observable abscisa X es continuo y, por consiguiente, no numerable, lo cual
le hace esencialmente distinto del espectro (2.1), que es numerable, ya que
2 cada valor a;(% de (2.1) le podemos hacer corresponder un nimero o; del
conjunto de nimeros naturales.
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Parece ser que el observable que debemos considerar es X3 que mida
exactamente si la particula estd o no dentro de un cierto intervalo de longi-
tud d tan pequefio como se quiera. Entonces medir la posicion de una par-
ticula consistira en dividir los ejes de coordenadas en un conjunto —nume-
rable— de intervalos de longitud & y decir en cual de ellos se encuentra.
Advirtamos que el observable X3 no lleva implicito en su definicion el con-
cepto de error en la medida; 8 no es el error que hacemos al conocer ld
posicion de una partlcula

Mas tarde veremos como podemos manejar operadores de espectro con-
tinuo sin perder el sentido fisico de los cdlculos que con ellos hagamos.

4. OPERADOR SELECTOR

Consideremos un rayo de luz no polarizada. Tal haz luminoso estara
constituido por un conjunto de tfotones. Supongamos que este rayo incide
en un aparato que solo deja pasar luz polarizada en un cierto plano; la in-
tensidad de la luz que atraviesa nuestro aparato sera menor que la que
incide en él.

Queremos interpretar este fenomeno estudiande la conducta de los fo-
tones que forman el haz luminoso, que en nuestro caso es el macrosistema.
Podemos pensar que la cualidad “polarizacion” es algo propio de cada
uno de los tfotones: luz no polarizada estara formada por fotones polari-
zados en todas las direcciones. Nuestro aparato. selecciona los fotones que
estan polarizados en un cierto plano: deja pasar éstos y rechaza todos los
demas.

Y asi introducimos el simbolo

S, (ai %) : 2.2)

que corresponde al proceso fisico que selecciona entre todos los sistemas del
conjunto aquéllos que tienen el valor a;(* del observable A;. Le llamaremos
cperador selector.

Para que el dlgebra que vamos a construir tenga sentido fisico es preciso
que los operadores selectores correspondan biunivocamente a experimentos
de seleccion que pueden ser llevados a cabo en un laboratorio. Tal experi-
mento.- no tiene que darnos el numero de sistemas que tienen el valor a;‘%
de la cualidad A;; Uinicamente ha de ser capaz de separarlos del resto. Como
resultado de esta clase de experimentos ningiin numero resulta; solamente
varia el nimero de sistemas que constituyen nuestro miacrosistema, el haz
inminosoe que atraviesa. el selector.

Ademas, hemos de especiticar en qué instante .de tiempo tiene lugar el
experimento, o, hablando relativisticamente, en qué superticie espacial ¢ lo
realizamos. Sin embargo, para no complicar la notacion, puesto que con
esta Algebra de la Medida, no hablamos mas; que de como describir adecua-
damente los sistemas, sin pensar en su movimiento, escribimos

So(a; ) =S(a,®) i 2.3)
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entendiendo que todas las operaciones cinematicas tienen lugar en una su-
perticie espacial o.

Con ayuda de nuestra intuicion tisica queremos definir operaciones al-
gebraicas con estos simbolos. Y asi convenimos que el producto de dos
de ellos

S(as %) S(ay¥

corresponde al experimento tormado por dos experimentos realizados con-
secutivamente: primero realizamos lo que significa el operador de la extrema
derecha y luego, sobre los sistemas que pasan esta primera seleccién, la
que corresponde al segundo selector. Por consiguiente,

S(a:1(%)  S(a;(®) = S(a; ™) (2.4)

pues todos los sistemas que pasan el primer selector han de pasar el se-
gundo (20). Este hecho es fundamental; implica que si por un primer ex-
perimento sabemos que ciertos sistemas tienen todos el valor a;* de la cua-
lidad A;, y seleccionamos aquéllos entre éstos que tienen tal valor a;(*
de A; ha de resultar que todos lo tienen. En cierto sentido implica. causa-
lidad: si los sistemas no son perturbados con acciones exteriores nada cam-
bia en ellos; si asi no tuera no podriamos hablar de Ciencia.

En general se ha de verificar, si detinimos la potencia de un selector
como el producto sucesivo del mismo por si mismo, que

[S(a1*)] " = S(a'*)

para un namero n entero positivo cualquiera.
La suma de dos selectores

S(ar¥) - S(a1%) =  S(a1®) -+ S(a, ') . 2.5)

sera- el selector que corresponde al experimento que selecciona el conjunto
de sistemas tormado por los sistemas seleccionados por cada uno de los
sumandos. Y asi podemos generalizar este proceso para un numero inde-
terminado ‘de selectores. Esta definicion de suma evidentemente la hace
conmutativa.

Para completar nuestra algebra hemos de detinir un selector nulo, que
designaremos O,, que no acepta sistema alguno. Corresponde, en el caso
del haz luminoso, al experimento consistente en colocar una placa total-
mente opaca en la trayectoria del haz. Evidentemente se tiene

5(31(1)- OA1:: OAI OA1 S(ax(y') = OAI
Oar + 5(a1®) = S(a.") (2.6)
(20) En la realidad fisica es dificil comprobar (2.4), ya que las mediciones han de reali-

zarse en superficies espaciales muy proximas para que el estado no varie; pero siempre tardamos
un “corto intervalo de tiempo en realizar una medici6n.
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De forma analoga introduciremos el selector unidad, que designamos 1,,
que selecciona todos los sistemas que a €l llegan cualquiera que sea el
valor de A;. Corresponde a la placa totalmente transparente. Y asi, por con-
sideraciones tisicas se ha de verificar

I, S(@® = S@® S(as®) I, —S(a:®) @.7)
Tratemos de interpretar ahora el siguiente producto
S(a1(%) S(a; (k) B# o

El primer operador corresponde a un experimento que selecciona los
sistemas que tienen el valor a;'# de la propiedad A; y luego, seleccionamos
de estos los que tengan el valor a;* de la misma propiedad. Por consi-
guiente, el experimento producto no acepta ningtn sistema y se tiene

S(a1®) S(a1'k) = Oy, (2.8)
Combinando (2.4) con (2.8) se tiene
S(a:(%) S(arh) = S(ai(¥)d ' (2.9).
donde 6:/‘5 es la delta de Kronecker cuya detinicion

aAl i :I"\l Si a:[.))
= =0, si a7~ f

La relacion (2.9) expresa la ortogonalidad de los experimentos de seleccion.

Siempre que medimos el valor del observable A; en un sistema obtene-
mos un valor de su expectro (2.1). Este hecho se expresa algebraicamente
mediante la relacion

TS (a,0) =1, (2.10)
o 3

1
donde la suma se extiende a todo valor del espectro de A;. La relacién (2.10)
tiene un claro sentido tisico, pues evidentemente el operador de la izquier-
da selecciona todos los sistemas, cualquiera que sea el valor observable A,
de los mismos, y, por consiguiente, es, por definicién, el operador unidad..

5. OBSERVABLES COMPATIBLES

Diremos que dos atributos A; y A; son compatibles cuando la medida:
del valor de A; en un sistema no modifica el valor de A, en el mismo, Para
comprobar esto hemos de medir el observable A,, primero, y luego el A,, y
obtener el mismo resultado que si invirtiésemos el orden con que realiza-
mos estas mediciones. Se deduce inmediatamente que si dos observables

e
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A; y A, son compatibles los operadores selectores correspondientes con-
mutan

S (1) S (a2) = S (as®) S (a2 @2.11)

para cualquier par de superindices a y B.
Diremos que A es un conjunto completo de observables compatibles

Ao A2 Gl 2.12)

e
cuando estos observables son compatibles entre si dos a dos y ningin otro
observable, que no sea funcion de los anteriores, existe que sea compatible
con todos los del conjunto. El conocimiento de los valores propios de cada
uno de los observables A; del conjunto completo A nos da la maxima infor-
macion de datos no contradictorios que podemos tener acerca de un siste-
ma fisico. Este conjunto de valores propios determinan completamente el
estado observable del sistema. Es decir, conociendo el conjunto de valores

a% = { al(l, ag(“, 5 G aj(:x’ CACROW ak(g. }

hemos agotado toda la informacion que podemos tener acerca del sistema.

El conjunto de valores propios a * determinan un estado fisico al cual
haremos corresponder el simbolo siguiente

|a% o) ©.13)

cuyo significado matematico desconocemos por ahora.

No afirmamos que un sistema tenga necesariamente que estar en uno de
los estados (2.18). Decimos que siempre que determinemos €l estado del sis-
lema por medio de experimentos que miden los valores de los observables
A tendremos uno de los estados [a% o), donde o indica la superficie es-
pacial en que esos experimentos tienen lugar. Por consiguiente, en relacion
a estos experimentos los estados (2.13) son los tnicos que existen. Y asi, de
nuevo encontramos la premisa fundamental de la Mecanica Cudntica: no
podemos despreciar la interterencia entre el observador y lo observado.

El indice o indica tnicamente que de cada uno de los observables A hemos
elegido uno cualquiera entre sus valores propios. Los diferentes a nos dan
los estados observables del sistema. Queremos incluir entre los a* otro,
que llamaremos a°, que corresponde a la negacion de todas las cualidades A;
seran, por decirlo asi, los valores propios del conjunto de observables del
estado vacio del sistema. Tal estado vacio lo describiremos por el simbolo

la®) 2.14)

Cuando, a partir de ahora, utilicemos la expresion “para todo o” nos re-
terimos a todos los estados fisicos, o sea, a los estados observables y al va-
cio del sistema.

Zo oA ==
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Observemos que el estado vacio es independiente de la superficie espa-
cial ¢ la cual no tiene sentido en el vacio.

Los estados fisicos |a% ¢ ) para todo o son llamados estados unidad del
conjunto de observables A.

Simpliticaremos la notacién escribiendo

|a% ¢ ) =|a%) (2.15)

aunque solamente el estado vacio es independiente de o.

6. SELECTORES COMPLETOS. — OPERADORES COMPUESTOS

Hagamos corresponder al experimento de seleccion de los sistemas que
estan en un cierto estado |a* o) un operador selector completo llamare-
mos S.(a%).

Evidentemente se debe verificar

K
See(a%); =157 (a5 a(a: ) S (6 G ReSei(a (CaE—T1 S
j=1

s (a;%) (2.16)
donde el conjunto de indices 2 603 0o} e Bl RO o, ;' lo hemos designado
genéricamente por una letra griega o que los contiene

CZan

El signo e indica que a; pertenece a o. Como antes, tampoco indicare-
mos expresamente la superticie ¢ del selector completo y asi escribiremos

Sy (a%) =S (a%) @.17)

pero entendiendo que en nuestros calculos habrd que indicar explicitamente
en qué supertficie espacial estamos realizando los experimentos.

Detiniremos las operaciones producto y suma de selectores completos de
idéntica forma como lo hicimos para selectores simples. Y asi, por ejemplo,
se tiene

S (a,%) =

>33

K K
S(@) S(@)= M S(@®) Sa@®)= II b
j jjia= 0t

=

K
=II ®

=

K
I S(aC) = 8,58 (@9 (2.18)
=1

i

donde hemos introducido una nueva delta de Kronecker de la siguiente
forma: :

K
e ) (2.19)
et
cuyo valor es uno cuando a;=—@f; para todo j, y cero en todo otro caso.
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También estos operadores selectores completos tienen la propiedad de
ser completos en el sentido de seleccionar todos los estados fisicos que pue-
den ser descritos con el conjunto completo de observables A. Se verifica

S8 =1, I i zaaiale I, (220

cuando a se extienda a todo estado fisico.

Preciso es hacer aqui una observacion respecto al rigor matematico de
estos productos y sumas que pueden contener infinitos térmicos cuando un
observable tenga intinitos valores propios. La relacion (2.20) es consecuen-
cia del sentido fisico de la teoria que estamos construyendo; podria demos-
trarse algebraicamente a partir de las (2.10) como hemos hecho para intro-
ducir la ortogonalidad (2.18) de los selectores completos, aunque también
esta ultima es una consecuencia del sentido tisico de la teoria. Y habriamos
manejado productos infinitos o series como si fueran productos finitos o su-
mas, lo cual matematicamente no es riguroso. El algoritmo matematico en
el que vamos a tijar nuestra Algebra de la Medida tiene que ser tal que nos
permita hacer rigurosamente estas operaciones para estos casos, ya que de
lo contrario tal algoritmo no seria apropiado para representar los procesos
tisicos y habriamos de rechazarlo.

Los fisicos, en su laboratorio, no estan limitados a realizar tnicamente
experimentos de seleccion que elijan los sistemas en un cierto estado fi-
sico | a%). Ya hemos hablado de alguna otra clase de experimeentos, tal como
la creacién artificial de sistemas mediante aceleradores.

Nos conviene introducir nuevos operadores representados por los sim-

bolos
S (aP, a%) (2.21)

que representen el experimento que seleccione sistemas en el estado fisico
| a*), moditique el estado de esos sistemas mediante tuerzas externas, y nos
los presente luego en el estado tisico |aP ). Y asi, por ejemplo, el experimen-
to de creacion de un sistema puede ser interpretado como el experimento
que seleccione el estado vacio del sistema y lo convierta en un estado ob-
servable. Vendra representado por el operador

S (ab; a°) (2.22)

cuando creamos un sistema en el estado observable |aP ).

Con esta notacion, selector completo serd aquel que selecciona sistemas
en el estado fisico [a*), y no los modifica. Por consiguiente, se verifica

S (a%) = S (a%, a% (2.23)

El operador (2.21) no es un selector cuando a = f; y, en general, no ve-
rifica las propiedades (2.4) de los selectores.
Asi, por ejemplo, se tiene:

S (aﬁ, ax) £ S (ay', al)) Si o= ﬁ (224)

o
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Todos los selectores que hemos manejado hasta ahora conmutaban en-
tre si. Con los nuevos operadores, a los que llamaremos compuestos, no ocu-
tre asi. En efecto, el producto S (ad, aY) S (af, a%) representa el experimento
que selecciona sistemas en el estado | a*) los deja luego en el estado |aP),
de estos tltimos seleccionamos los que ‘estén en el estado |aT) y recibimos
tfinalmente sistemas en estado | ad). Por consiguiente, se tiene

S(ad, aY) S(aP, a% =2d,,3 S (a’, a% (2.25)
Sin embargo, discurriendo idénticamente, se tiene
S (ab, a%) S (ad,aT) = dy5 S (a, ar) (2.26)

Y, por consiguiente, en general los operadores compuestos no conmutan.
El Algebra de la Medida es no conmutativa.

Pero observamos que el producto de varios operadores compuestos es
otro operador compuesto, lo cual nos dice que el Algebra de la Medida
es lineal, de acuerdo con el sentido fisico de la teoria, pues siempre una su-
cesion de experimentos puede ser interpretada como un dnico experimento
mas complicado. Obsérvese que segiin esta manera de pensar, dos experi-
mentos son equivalentes cuando en idénticos sistemas producen idénticas
moditicaciones; nada decimos de como estas transformaciones tienen lugar.

Hasta ahora s6lo hemos detinido los algoritmes de suma y multiplica-
cién de operadores. ¢Cudl serd el sentido fisico de multiplicar un operador
por un nimero? Para adivinarlo hemos de pensar en €l posible signiticado
de multiplicar un experimento por un nimero complejo A; no puede ser la
repeticion sucesiva de un experimento un numero de veces igual a A, ya
que hemos convenido que al proceso de repeticion de experimentos le co-
rresponda la multiplicacion ordenada de operadores.

En el simbolo A S(aP, a*), el ntimero completo A sélo puede ser inter-
pretado como relacionado de una forma aun desconocida con la probabili-
dad que ha de figurar en esta teorfa; su interpretacion la veremos mas
adelante. '

Segun esta interpretacion del producto de un nimero complejo por un
operador se ha de verificar que un ntimero complejo cualquiera conmuta
con todos los operadores.

De las tres caracteristicas esenciales que atribuimos a los sistemas del
microcosmos hemos podido incluir en el Algebra de la Medida el aspecto
cuantico al detinir el espectro de valores propios de un observable, y, ade-
mas, el estadistico, al considerar el producto de un ntimero complejo A por
un selector. La dualidad particula-onda aparece cuando tratamos el mo-
vimiento.

7. REPRESENTACIONES

Al efectuar la medida de los valores del conjunto completo de observa-
bles compatibles, A, los sistemas fisicos aparecen en un estado |a*) para

=0 =
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cierto a. Ahora bien, esto no quiere decir que no podamos utilizar otro
conjunto completo

B={ BB, ....B,B, ! (2.27)

de observables todos compatibles entre si dos a dos, pero tales que, desde
luego, algunos sean incompatibles con los del conjunto completo A. Ne-
cesariamente el experimento que mida los observables del conjunto A per-
turba el valor que tendriamos de la medicion de los observables B, excep-
tuado el caso trivial en que todos los observables de B sean funciones de
los observables A, caso que excluimos:

B+ f (A)

pues de lo contrario todos los observables B conmutarian con todos los A (21).
Cada uno de los observables B tendra un conjunto de valores propios. Asi,
sean los de B;

= 2 . i3 {
b= lib0bi@ il Sh @8 Fed (5 , by

v al determinar el valor de los observables B en un sistema cualquiera ten-
dremos uno de los estados |bF ), para cierto . Los estados |a*) y|[bP)
seran diterentes; pero no pueden ser, totalmente independientes, ya que
ambos expresan la maxima informacion que podemos tener de un mismo
sistema fisico. Decimos que los experimentos que miden el valor de los
observables del conjunto A y los experimentos que miden el valor del
conjunto B son dos formas equivalentes, dos “representaciones”, del mismo
becho: obtener la maxima intormacion posible acerca de un sistema fisico.
De forma semejante podemos considerar otros conjuntos completos C, D,...
de observables compatibles.

Detinamos ahora un tipo mas general de experimento que representa-
mos por el simbolo

S (bb, a%) (2.28)

el cual selecciona los sistemas en el estado |a@*), los moditica, y nos los

presenta en el estado [bP) con los cuales podemos definir las operaciones

suma y multiplicacion con el mismo sentido fisico que les dimos antes.
Evidentemente segiin ésto se tendra que

S (5, bY) S (b¥, a%) = dpy S (d3, a%) (2.29)

pues representa el experimento que acepta sistemas en el estado |a%*) y los
presenta en el estado | bP); de éstos seleccionamos luego los que estan en
el estado | b7 ), lo cual nos da cero si y == o nos da unidad si y =§; y al
tinal los deja en el estado [d®).

(21) Véase mas adelante el sentido fisico de funcién de un observable.

— 245 —




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

Para el caso general en que utilizamos cuatro representaciones el pro-
ducto |

S (v, dd) S (b¥, a%) (2.30)

dependera de la relacion entre los estados |bF) y [d®), que como hemos
visto antes no son completamente independientes; es decir, este producto
contendra el experimento S (¢¥,a% y un cierto nimero (dd|bP) que lla-
maremos tuncién de transtormacion, relacionado con la probabilidad de
que los estados | bP) contengan los estados- [d®). Y asi escribimos

S(cvds) S(bFa®) = ( ddIbB) S (cTa% 2.31)

Los numeros (d®|bP) son complejos en general y, por su naturaleza,
conmutan con todos los operadores. No podemos calcular atn el valor de
estos niimeros, pero en un caso particular ya lo conocemos: para dos es-
tados de la misma representacion, deducimos a partir de (2.24) que

(a%lab)y =3B, (2.32)

Estudiemos ademas el caso en que €l estado unidad en una represen-
tacién sea el vacio del sistema |a°). Nos conviene imponer que un estado
observable |bP),B=40 sea, en cualquier representacién, totalmente inde-
pendiente del estado de vacio. Y asi escribimos

(bBla®)=o B+~ o0 (2.33)

con lo cual expresamos que un sistema no puede existir y no existir al
mismo tiempo.

Queremos dar a los operadores cero y unidad un signiticado muy am-
plio. El primero rechaza y el segundo acepta cualquier sistema indepen-
dientemente del conjunto completo de observables que utilicemos para re-
presentarlos. Por consiguiente,

0, =0 =1 (2.33)

Esta detinicion nos permite hallar relaciones entre los operadores com-
puestos (2.28) con ayuda de la ecuacion (2.10). Por ejemplo, consideremos

S(cTds) = XS (a*a% S(cvdd) XS (bBbH) —
G b
— S (a%a% S(cvdd)S(bEbF) = = (a*|cv) (dd|b¥)S (a*bh) (2.34)

2, f a, B
que nos da una expresion de S (c¥,d®) como una combinacién lineal de

S (@*, bP) y de los ntimeros (a*|cv) (dd|bP) cuyo significado tisico vere-
mos més adelante.

e
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8. TRAZA

Intentemos obtener informacién sobre las tunciones de transformacién
(bF|a*) que aparecen al cambiar de representacién. Para ello considera-
mos la expresion ;

? S (a*a%) S (bb b¥) S (c¥ c¥) = S (a* a%) [2 S (b¥ bi")] S (c¥ cv)
B

valida puesto que nuestra Algebra es asociativa. Utilizando las relaciones
(2.10) y (2.81) la igualdad anterior se convierte en

2 (a*|bF) (bPlecr) S (a%cY) = (a%|c) S (a%cY)

B

de donde se deduce que

(a%|cr) =2 (a*|bl) (bPlcY) (2.85)
B

Evidentemente esta ecuacién sera valida cualquiera que sea el conjunto
completo B de observables sobre cuyos estados unidad se extiende la su-
macion.

De forma semejante llegariamos a probar que

(dd|cr)=23(dd1bP) (b¥|a*) (a%|cY) (2.36)
a3

Comparemos ahora la relacién (2.84) entre los operadores compuestos y
la (2.36) entre las tunciones de transtormacién. Vemos que a cada relacion
lineal entre los operadores compuestos le corresponde otra de la misma
forma, también lineal, entre los coetficientes.

Por consiguiente, existe una cierta dependencia entre los operadores com-
puestos y las tunciones de transtformacion. Este dependencia la expresamos
por medio de una operacion, llamada traza, que, por definicion, ha de ser
lineal, y se escribe asi:

(ddlct) = trS (e, dd) 2.37)

diciendo que (d®|cY) es la traza de S (c¥ dd).

El concepto de traza permite simpliticar nuestra Algebra de la Me-
dida, ya que toda ecuacion del tipo (2.35) 6 (2.36) puede ser obtenida a par-
tir de la correspondiente entre operadores (2.34) con sélo tomar la traza.

S1 X e Y son dos operadores compuestos cualesquiera, y &; y s son dos
ntimeros complejos puesto que la operacion traza es lineal se verifica

rAX+LY) =LhtrX+ltry (2.38)

Calculemos la traza de un producto de dos operadores de seleccion
compuestos

tr [S (a% b¥) S (7, d8)] = tr (b¥ |7 )S (a% dd) = (b# | ¥ ) (dd|as) =
—tr [S (c7, d?) 'S (2 b¥)] - (2:39)
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La traza del producto de dos operadores compuestos X € Y es indepen-
diente del orden en que los operadores entran en el producto

tr XY = tr YX (2.40)

Observemos que la relacion (2.40) es valida para la traza del producto.
de dos operadores de seleccion de nuestra Algebra; pero no podemos con-
mutar los operadores de cualquier manera cuando hemos de hallar la traza
del producto de mas de dos operadores. Puesto que el producto de varios
operadores compuestos es segun (2.31) otro operador compuesto siempre
podemos hacer uso de (2.40) considerando el producto de varios operadores
como otro operador. Asi, por ejemplo,

tr XYZ = tr [XY]| Z = t'ZXY (2.41)
Combinando (2.87) con (2.32) se tiene

tr S (a% af) =9, (2.42)

Si calculamos la traza de ambos miembros de la relacién (2.10) se tiene

Dt Si(a%)=—tr
@

donde hemos utilizado la definicion general (2.83) del operador identidad I.
Ahora bien, trS (a%) =1 y, por consiguiente, el primer miembro de la rela-
cién anterior es el nimero de sumandos, o sea, el nimero de estados uni-
dad N, de la representacion A

r1=N, (2.43)

Pero puesto que el primer miembro de (2.43) es independiente de la re-
presentacion elegida, el segundo ha de serlo también
N =N =N (2.44)

B -

trI=N

de donde deducimos que el numero de estados unidad de cualquier conjun-
to completo de observables es siempre €l mismo. El niimero N es infinito en
general.

9. OPERADOR HERMITICO CONJUGADO

Atribuimos al simbolo S (a% bF) el signiticado de corresponder al proceso
que acepta sistemas en el estado | b" ) y los deja en el estado | a*). Diremos
que el operador S (bP,a%, que representa el proceso inverso de aceptar sis-
itemas en el estado | a%*) y/dejarlos en el estado | bP ), es el hermitico conju-
gado del proceso representado por S (a% bP).

e
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La operacién de hallar el hermitico conjugado de un experimento se de-
signa por una daga de la forma siguiente:

[S (b¥, a%]* = S (a%, b¥) (2.45)

Evidentemente el operador hermitico conjugado del hermitico conjugado de
un operador es €l operador inicial.

Un operador es autohermitico cuando es igual a su hermitico conjugado.
For ejemplo, el operador selector simple es autohermitico

[S (a%)]"= [S (a*a%)] "= S (a%) (2.46)

Calculemos ahora, de acuerdo con la definicion de operador hermitico
conjugado dada, el hermitico conjugado del producto de dos operadores
compuestos. El simbolo S (a* bF) S (¢¥ d®) acepta los sistemas en el estado
|d® ), los deja en el estado |c¥); de estos selecciona los que estdn en el
[ bP) y luego nos los da en el estado | a*). El hermitico conjugado ha de re-
presentar la operacion inversa. Por consiguiente,

[S (a% b¥) S (c7, d8)]* = S (dB, c7) S (b¥, a%) =[S (c¥ dd)[* [S (a% b¥)]* (2.47)

de donde deducimos que el hermitico conjugado de un producto de opera-
dores es el producto, en orden inverso, de los hermiticos conjugados de los:
cperadores.
Queremos extender esta propiedad al producto de un nimero A por um
operador X de nuestra Algebra
[ =0 = (2.48)

ya que un operador y un numero conmutan. Para que (2.48) sea vélida en
el caso en que consideremos el producto de dos operadores compuestos como:
€l producto de la funcién de transtormacion por otro operador compuesto
necesitamos que

(btilie=—Edcrihb) (2.49)

que constituye un nuevo requisito que ha de satisfacer la tuncion de trans-
formacion.

10. PROBABILIDAD

Hemos supuesto en los apartados anteriores que un conjunto de sistemas
idénticos llegaban al aparato selector; para establecer las propiedades de
los distintos operadores introducidos hasta ahora manejamos un macrosis-
tema. Sin embargo, la Mecanica Cuantica estudia los sistemas que compo-
nen el macrosistema; da informacion sobre un sistema particular. Hay,
pues, que relacionar al macrosistema con el sistema, de forma que, aunque
nuestros experimentos tengan lugar con macrosistemas, podamos deducir de
ellos propiedades del sistema.

Para conseguir este proposito utilizamos el concepto de probabilidad
que es un juicio cierto sobre cosas inciertas, y, por consiguiente, la Mec4-
nica Cuantica no deja de ser Ciencia a pesar de su caracter probabilistico.

oy
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Nos interesa ante todo hallar la probabilidad P(a% bP) de que el estado
i bP ) esté contenido en el|a*), concepto que hemos usado al hablar de la
funciéon de transtormacion.

A fin de entender mejor el contenido fisico de lo que sigue considere-
mos, como ejemplo, un haz de luz formado por fotones. Supongamos que la
tnica propiedad de esos fotones que interesa conocer .es su polariza-
cion A, de forma que conocida ésta, ya tenemos totalmente determinado el
estado fisico de los mismos.

Sea a,(* un valor propio de la polarizacion que corresponde a fotones po-
larizados en un plano perpendicular al papel y que contenga la direccion OP;.
Segiin hemos visto, cualquier otro valor propio de la polarizacion, a;(%, re-

P, A
G

>P,

O

presenta fotones ninguno de los cuales es aceptado, o sea, atraviesa el po-
larizador S(a;(?) que selecciona los fotones cuya polarizacion es a;(!. Fi-
sicamente sabemos que esto es asi si a;(? representa fotones polarizados en
un plano normal.al papel y que contenga la direccion OP, perperdicular
—
a OP;.
Consideremos ahora otro observable, B, al que llamaremos polarizacién
girada, el cual también determina completamente los estados fisicos de los
totones. Si b,(* es un valor proplo de la polarizacion girada que representa

totones polarizados en un plano que ahora contenga la direccion OGI, la

cual forma un angulo 0 = @/2 con OPI, algunos de los fotones aceptados por
S (by(%) pasaran también el selector S (a,(2). La probabilidad que busca-
mos p (a2, b,(?) es la que tiene un fotén en el estado |b;(1) de atravesar
el selector S (a;(%). Igualmente también tendrd un cierto valor la probabi-
lidad p (a;(%, b;(?) de que los fotones en estado |b;(1) atraviesen el selec-
tor S (a;(*?), mientras que habra de ser nula la probabilidad de que los fo-
tones en estado | a,(?) atraviesan el selector S (a;(?) e igual a uno de la pro-
babilidad de que los fotones en estado | a;(?) atraviesen el selector S (a,(?).

Veamos ahora, segtin esto, cuales son las propiedades que hemos de im-
poner a la expresion que tomemos como probabilidad en nuestra Algebra.
En primer lugar

P (a¥, a% = 8,5 (2.50)
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Puesto que todos los conjuntos completos de observables A, B, C... son
igualmente equivalentes para representar las propiedades de los sistemas fi-

sicos hemos de imponer la siguiente simetria:

P (a*, bP) = P (b¥, a%) (2.51)
y, tinalmente, la probabilidad ha de ser un ntimero no negativo
P (a% bF) = O (2.52)

De acuerdo con lo anterior definimos la probabilidad de la siguiente
tforma

P (a% bP)= (b#|az) (a%|bb) (2.53)

que automaticamente satistace las condiciones (2.50) y (2.51). Para que la
tltima relacién (2.52) sea veriticada hemos de exigir que (a%*|bP) sea el
complejo conjugado de (bP|a*). Si la operacién de hallar el complejo con-
jugado la designamos por un asterisco * exigimos que

GazlbEds= (@bbi|iag# (2.54)

que comparada con (2.49) nos dice que en nuestra Algebra el hermitico con-
jugado de un numero ha de ser igual a su complejo conjugado. De (2.33)
deducimos que la probabilidad de que un estado observable esté vacio es
nula como era de esperar.

Podemos interpretar ahora los siguientes experimentos:
S (a% a%) S (bP, bB) S (a% a% (2.55)
como el experimento S (@* ¢*) multiplicado por la probabilidad P (b¥, a*)
mientras que no podemos dar un significado fisico claro a
St(bESLEIESHaxeac) = EhEfacRESH(hl S ac) (2.56)

La relacién (2.56) no puede ser interpretada porque la medida de b¥ causa
una perturbacion cuyos efectos no podemos predecir en el estado | a*). Esta
arbitrariedad en la medida corresponde al valor de la fase del niimero com-
plejo (a*|bP), fase que no modifica en absoluto el valor de la probabili-
dad (2.53), ya que queda anulada con la de (bF|a*) de acuerdo con la re-
lacion (2.54). Si fuera posible conocer. esta fase no tendriamos que intro-
ducir un formalismo probabilistico. La perturbacién impredictible que acom-
pafia todo experimento de medida implica su indivisibilidad. Cualquier in-
tento de estudiar la historia del sistema durante el proceso de medida cam-
bia la naturaleza de la medicién que se lleva a cabo.

Y asi vemos que hemos construido un Algebra e interpretado su carde-
ter estadistico de acuerdo con las propiedades mencionadas al principio de
este capitulo y sin que, en momento alguno, perdiéramos la interpretacion
fisica de lo que representabamos con simbolos matematicos. Sin embargo,
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su validez sera tnicamente comprobada cuando esta teoria dé resultados
de acuerdo con los datos experimentales.

Finalmente, mostremos que la probabilidad (2.53) esta correctamente
normalizada, pues se tiene

o e e s B O
a = (bg)[ 3 S (a%) ] S (b¥) = S (bY)
Y por consiguiente, .

S P (a% b¥) =1 - (@25])

(74

que nos dice que el valor de la probabilidad estd entre 0 y 1 como era de
esperar.

11. OPERADORES OBSERVABLES. —VALOR ESPERADO

Sea A; un cierto observable de un conjunto completo A. Supongamos
que un selector, S (b?), ha preparado sistemas en el estado |bP) y que in-
tentamos hallar el valor del observable A, en los sistemas que sabemos
estan en el estado |bP). Tal valor lo llamaremos valor esperado de A; en
el estado | bF) y lo escribiremos asi:

(A ) (2.58)

Evidentemente, el valor esperado (2.58) es igual a la suma de los valores
a,* que A, tiene en los sistemas cuyo estado es |a%) por la probabilidad
P (a%, bP).

i = a% Pi(a> bb) (2.59)

a
Si conocemos €l espectro de valores propios de A; y los valores de las pro-
babilidades P (a*, bF) para todo o el valor esperado (2.59) nos permite es-
tablecer la relacion entre Mecédnica Cuéntica y los datos experimentales.
Pero evidentemente se veritica que:

tr S (a%) S (b¥) = (a*|bB ) tr S (a% bk) =P (a% bP) (2.60)
y puesto que la traza es una operacion lineal

(A =tr | Sa@®S@) Soh) | =trh, SO (2.61)

9

donde hemos detinido €l operador observable A, que hasta ahora carecia
de simbolo matematico, mediante la expresion

A= a,* S (a% : (2.62)
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combinacion lineal de selectores. La relacion (2.62) implica que la cualidad
A, esta totalmente determinada por los experimentos que miden sus valores
propios y por su espectro. ;

Ahora bien, si A; es un observable, su espectro ¢,(* ha de estar formado
por numeros reales, pues éstos son los tinicos nimeros que pueden resultar
de medir €l valor de un atributo en un sistema

Si calculamos el hermitico conjugado de un observable A; se tiene

AP=[ ZatsE) [ =Sa@ SE=2ac se) =4 @69
g. 74 a
puesto que 2,(%" = a;(**= a,(* = Por consiguiente, un operador observable
es siempre autohermitico. Introducimos las distintas operaciones algebrai-
cas en los operadores observables utilizando su definicién (2.62), con la cual
damos sentido a expresiones como
IALEE AT A AR
Definiremos una tfuncion f(A,) de un observable exigiendo que su valor es-
perado sea
(£(A) ) = St (a) P (a% bh) (2.64)
(74
donde f (@,'*) es la tuncion cuyo argumento es el valor propio ¢,(* del ope-
; _cuyo arg : propio g I
rador A, Para que se veritique una relacion como (2.61) definimos el ope-
rador funcion de otro operador observable de la siguiente forma:

FA) =31 (@ S @) (2.69)

Z
Consideremos concretamente el caso del operador reciproco de A, que
sera:
1

o
a,(

Ilil

A S (a%) (2.66)

S
Py
a

Evidentemente, tal operador existe cuandeo ninguno de los valores pro-

pios de A, es nulo, ya que de lo contrario los ntimeros no estarian to-

a,(%
1
dos definidos.
El operador reciproco A, ? satistace las siguientes relaciones:

sy e o)

a ai(a o

IAEEEAT— A AL =N (%

v, por consiguiente, si existe, su producto por la derecha o por la izquierda
con A; es el operador unidad.
Si X e Y son dos operadores observables cualesquiera se ha de verifi-
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car, para que se cumpla (2.67), que el reciproco del producto de los mis-
mos (XY) ? es el producto de los reciprocos en orden inverso

KN YhX (2.68)

Tratemos, siguiendo a Neumann, de dar sentido tisico a la funcion de un
observable. Si A; es un atributo, y f(X) una luncion cualquiera, la magni-
tud f (A;) se obtiene midiendo ol valor de A, y si @'* es ta: valor, f(4;)
tiene el valor f (@,'*). Estas dos cantidades A, y f (A;) son medibles simulté-
neamente porque existe un aparato que los mide a la VeZ, Pero sus respec-
tivos valores hay que calcularlos de la lectura en el aparato de forma dis-
tinta. De manera semejante podemos construir a partir de una funcion de.
dos parametros f (A, u) una funcién de dos observables compatibles f (A;, A))
0, en general, una tuncion f (A) de todos los observables del conjunto com-
pleto A. Sin embargo, parece no tener sentido fisico querer formar funcio-
nes de observables no compatibles, es decir, no estd nada claro su signi-
ticado {isico.

12. CONMUTADORES

Se llama conmutador de dos operadores X e Y cualesquiera a la diferen-
cia XY-YX. Utilizamos un paréntesis cuadrado para designarlo:

[X¥] =XY— YX (2.69)

Ahora bien, los operadores de seleccion de un conjunto completo de ob-
servables compatibles conmutan, es decir, su conmutador es nulo, y, por
consiguiente, también conmutaran los operadores observables definidos
por (2.61).

[As Al =0

para todo 7 y j del conjunto de observables compatibles. Diremos entonces
que los operadores A; y A; son cinematicamente independientes, puesto que
al medir sus valores en un SLStema sobre una misma superficie espacial ¢ ta-
les observables son compatibles.

Sin embargo, si-los operadores son de distinto conjunto completo de ob-
servables sus conmutadores no son mulos en general, aunque todos estén
particularizados en una misma supertficie espacial o.

[A, By] +o

Tales operadores son cinematicamente dependientes. L.a compatibilidad de
dos operadores observables se expresa algebraicamente por medio de su con-
mutador. Si éste es nulo, los observables son compatibles; de lo contrario,
no lo son. Definiremos el anticonmutador de X e Y por XY + YX, y lo de-
signaremos por medio de un paréntesis curvo:

X Y} =XY+¥X (2.70)

S e
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18. REPRESENTACION MATRICIAL DE OPERADORES

El Algebra de la Medida presentada en los parratos anteriores es formal-
mente equivalente a un algebra de matrices intinitas. En efecto, segin va-
mos a ver, podemos hacer corresponder a cada operador una matriz; a las
operaciones algebraicas —suma, multiplicacion— entre operadores las mis-
mas operaciones entre matrices. Y asi decimos que estas matrices son repre-
sentaciones de los operadores, de torma que en todos nuestros célculos po-
demos manejar matrices en lugar de operadores abstractos.

De acuerdo con la detinicion de operador observable se tiene:

B,= 3 b, S (b b @-71)

a

Ahora bien, el selector S (b% b*) puede ser escrito como una combinacion li-
neal de los S (aP,aY) de la siguiente forma:

S (b% b%) = X (aP|b*) (b*|ar) S (aF, aT)

5 T
Si llamamos elemento de matriz del operador. B, entre los estados |aP)
y lav) de la representaciéon A al niimero complejo (a¥ | B, |a7) definido asi:

@bl BEliat =l (Cabilihe b (S @b fats) (2.72)
a
el operador observable B, adquiere la siguiente forma:
B,= > (aP[B;lar) S (ab,a) (2.78)
51

El operador B, que respecto a los selectores S (b*) estd caracterizado
por el conjunto de sus valores propiocs, en relacion a los selectores S (aP, a%)
viene determinado por un conjunto “cuadrado” de nitimeros (aP|[B,[aY) los
cuales, debidamente ordenados, forman la matriz que lo representan.

CatliBE Al et BB a2 e wehie s b el
a2lBiaT G B e
S RBI L e e L e,

|

la cual tiene, en general, infinitas filas y columnas.
En primer lugar observemos que en la representaciéon B la matriz que
representa el observable B, es diagonal ya que

(bB|B;Ib1) =b® b, 2.75)

e
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y sus elementos diagonales son los valores propios de B;. Es evidente que si
hubiéramos aceptado observables con espectro continuo éstos no tendriari
representacion matricial, ya que no podriamos numerar sus valores propios
para formar la matriz diagonal que los represente.

Es muy facil ver que el operador X + Y suma de dos operadores X e Y
le corresponde la matriz suma de las matrices que representan a esos ope-
radores, puesto que si :

X =3 (ab|Xlar) S (ab,ar)
By

Y—> (aP|Y|aY) S (ab,aY) ;
Bt

se tiene
X--Y=3{ (af|X[av) £ (al|Ylar) -\ S(ab al)—

it :
= D (lab [P LYa S eES  (aPat)
Q
[-‘vY

y. por consiguiente, dada la ortogonalidad de los selectores,
Cali Xl YAl ale) =t (DX fah) i IS SR ea e BYaai) (2.76)

De idéntica forma veriamos que la matriz correspondiente al producto
de dos operadores es €l producto de las matrices que los representan

(aP| XY [aT) = >} (ab | X |a*) (a*|Y]|aY) @.77)

Estudiemos el significado de operador hermitico X* de uno dado X en
esta representacion matricial.

X5 (ab IElav e S (ab av)=STCavliXeliab) # SSilab aT)
B By
y, por consiguiente,
(aP|X*|aY) = (a7 |X|ab)* : (2.78)

El operador hermitico de X esta representado por una matriz compleja
conjugada y transpuesta de la que representa el operador X. Si designamos
con ~ la operacién de transposicion, se tiene:

X = (2.79)

cuando utilizamos la representacion matricial de los operadores.
Finalmente, investiguemos el contenido de la traza en esta representacién

trX =3 (ab|X|ar) trS(ab,at)=3 (a¥|X|ab) (2.80)
Bt 3

La traza de un operador es la suma de sus elementos diagonales. Puesto
que trX tue definida independientemente de la representacién elegida, la
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suma de los elementos diagonales de la matriz que representa un operador
es la misma en cualquier representacién; su valor es la suma de los valores
propios del operador. Se tiene, ademads,

tr X* = (tr X)* (2.81)

Al operador nulo le corresponde una matriz cuyos elementos son todos
nulos; el operador unidad estd representado por una matriz diagonal cuyos
elementos no nulos son iguales a uno.

Los elementos diagonales de la representacion matricial de un observa-
ble tienen un claro significado fisico, pues, como se desprende (2.72), son
iguales al valor esperado del observable

(ab |B,iab) = (B,) a0 (2.82)

Hemos visto como un operador observable es representado por una ma-
triz cuando fijamos la representacién, es decir, cuando fijamos los estados
unidad | a%*) de la representaciéon. Estudiemos ahora cémo se transtorma tal
matriz cuando cambiamos de representacion,

X= X (ab|X[ar) S(ak a")= 3 (bF|[X|b7) S (bk bY)
By o
Si expresamos el operador S (bP, bY) en tuncién de los S (aP,a”) se ve-
ritica
(ab [ X |aY) = M (aP|b*) (b*|X|b®) (bd|ar) (2.83)

2%
%0

Las tunciones de transtormacion (abP|b*) son los coeficientes que nos
llevan de una representacion a otra. ‘

Ha quedado establecida una relacion entre observables y matrices: a
cada observable le podemos hacer corresponder una matriz que tiene, bajo
todas las operaciones algebraicas, las mismas propiedades que los operado-
res. Establecemos también la relacion reciproca y ampliamos el Algebra de
la Medida para decir que a cada matriz de esta clase le corresponde un ope-
rador. Con las tunciones de transtormacion (aP|b*) podemos formar una
matriz

(al|bt) Callb2 Lt o e \
ol L e L T e e

que diremos representa un operador Uy, de transtormacion cuyos elementos
de matriz son (a%|bP)

(a%| Uy lab) = (a®|bb) (2.85)
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El operador representado por la matriz tormada con las funciones de
transtormacién (b%|aP) es el operador reciproco Uzl

(a%| Uzl lab) = (b%|aP) (2.86)

como puede verse tacilmente con ayuda de (2.83) y (2.85).

Si llamamos X®? la matriz de X en la representacion B, la ecuacion (2.83)
se convierte en

— Upa XB U .87y

de donde deducimos que la transtormacion que nos lleva de una represen-
tacion XB a otra XA de un mismo operador es una transtormacién de se-
mejanza.

Unicamente nos queda generalizar esta representacién matricial y hacer-
la valida para otros operadores que no son observables. Siempre que po-
damos escribir el operador de la forma (2.73) diremos que los coeficientes
de los selectores son los elementos de matriz de la que representa al ope-
rador. Asi, para un selector se tiene:

Si(a%ad) = [\ d,.p 03 S (ab, aT)
J
y, POr consiguiente,

(aP | S (a%ad) [a¥) =90,.4 05 (2.88)

o

14. GEOMETRIA DE LOS ESTADOS

El operador compuesto S (a¥, a’), seglin ya vimos en (2.22), podia ser in-
terpretado como el operador que creaba el sistema en el estado observable
|ab) cuando haciamos actuar en el estado vacio del sistema. Y asi esta-
blecemos la relacién fundamental que da la geometria de los estados | aP).
stmbolos que hasta ahora no tenfan cardcter matemitico alguno.

[lale)=—"5i(abia2)Flfath (2.89)

Al operador compuesto S (a”,a° lo llamaremos operador de creacién, y
a partir de ahora lo designaremos por

%" (aP) =S (ab, 2°) (2.90)
Si recordamos la definicion de hermitico conjugado, el operador com-

puesto S (a°, a¥) debe ser el operador que aniquila el sistema en el estado
| aP) para darnos el vacio. El operador de amqmlacmn

1 (a%) =S (2°, ab) (2.91)
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define los mismos estados de una torma dual a la (2.89) mediante la relacion
(ab|= (a°l y(ab) (2.92)

Evidentemente, la realidad fisica que tratamos de representar con nues-
tra Algebra de la Medida no nos obliga a detinir la relacion entre los esta-
dos de esta torma, ni a dar un significado matematico al simbolo |aFf ), ni a
definir los simbolos duales (2.92). Pero si lo hacemos, toda el Algebra de la
Medida obtenida hasta ahora puede ser reproducida mediante reglas muy
sencillas; para conseguirlo es preciso introducir tnicamente dos clases de
productos entre estos estados.

Definiremos el producto escalar de un estado |aP) por otro ( b*| hacién-
dolo igual a la funcién de transtormacién (b%|aF ).

(b |.|aby = (b*|ab) (2.93)

Detiniremos €l producto operacional de un estado |aP) por otro (b*|
de torma que sea igual al operador compuesto S (a¥, b*) y lo escribimos asi:

lab) (b*|=S (ab b% - (2.94)

Toda el Algebra de la Medida es ahora una consecuencia inmediata de
estas detiniciones. Por ejemplo, la relacion fundamental (2.81) se obtiene uti-
lizando (2.98)

(le) (dol) (lbB) (a®l)= lcv) (d®| b¥) (a%|=
— BdeiibEaEE e (fa X (2.95)

Investiguemos el signiticado del operador observable A; actuando sobre
|a*). Con la expresién (2.62) se obtiene

Ala) = (Ja*la%) (a%l)laf) = Do la%) o= a,¥ab)
(73 a

es decir, el espectro de un observable esta formado por los valores propios
de la ecuacion

AlaBy = a|ab) (2.96)

para cualquier observable A; del conjunto completo de observables compa-
tibles A. Por consiguiente, los estados unidad de la representacion A son los
estados propios de todos los observables del conjunto completo A. Decimos
que el valor propio a;'P pertenece al estado |aF).

Se verifica igualmente la relacién hermitica conjugada de la anterior

(aPl Ay = (aP [P (2.97)

Comparando (2.62) con (2.20) y teniendo en cuenta (2.33) vemos que el
operador unidad I es el operador cuyo espectro estd tormado por unos. Y
asi siempre se tiene:

Tlcv) =) 2.98)
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para cualquier representacion, puesto que

=2 b= S iler e el =R s (2.99)
B T
Ecuaciones como (2.35) son ahora muy ldciles de obtener
azliicimi=rEaZlic|tcvir—t@a |t eni)i—
== (a“l‘ EIb"')(bf"i) [fers) = > ias bR ChE et
p b

Tratemos de expresar los estados unidad de una representacion | a*) por
medio de los estados unidad de otra |bF)

L e s e S bl 0l
B

Al cambiar de representacion los estados unidad |[a*) se transforman
como vectores contravariantes en un espacio en que los estados unidad | bf)
son vectores unidad. Las tunciones de transtormacion (bF |a%*) son las com-
ponentes del vector |a%*) sobre los vectores |bF).

Los estados duales (a*| se transtorman al cambiar de representacion
como vectores covariantes, mientras que el producto escalar de dos vecto-
res se transtorma como un escalar y el producto operacional de dos vecto-
res se transtorma como una matriz, lo cual era de esperar, ya que los ope-
radores admiten, en general, una representacion matricial.

Al tratar de cambiar de representacion para el estado vacio, de acuer-
do con (2.83) llegamos a que el estado vacio es el mismo en cualquier res
presentacion ]

I (1) (2.101)

lo cual, evidentemente, corresponde a lo que nuestra intuicion predecia, ya
que en el vacio los observables no tienen nada que distinguir. No tendre-
mos ya que expresar la representacion cuando nos reterimos al vacio y, por
consiguiente, tal estado sera designado por el simbolo

10 ) (2.102)

De acuerdo con (2.32) decimos que los vectores unidad de una misma
iepresentacion son ortogonales entre si dos a dos.

15. PRINCIPIO DE SUPERPOSICION

Los estados unidad |a%*), correspondientes a los estados fisicos en que
puede aparecer nuestro sistema cuando medimos el conjunto completo de
observables compatibles A, son vectores de un cierto espacio y cumplen
la relacion

(la%fazy=—"-11
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Diremos, pues, que los estados fisicos estan representados por vectores
de longitud unidad o también por vectores normalizados a la unidad.

Si en lugar de medir los observables A hubiéramos intentado medir el
valor de los observables B, los estados en que nuestro sistema apareceria son
los |b*) para cualquier o, y también estaran normalizados a la unidad de
acuerdo con (b*|b%*)=1.

dEn qué estado estd nuestro sistema si atin no hemos hecho ninguna me-
dicion? No lo sabemos; llamémosle | @ ). El principio de superposicion nos
dice que | @) es un vector combinacion lineal de los vectores unidad |a%)
de cualquier representacion

lp)= X o (a%la*) (2.109)
a.

Los estados | @) deben ser también considerados como vectores unidad
de una representacion que desconocemos; y, por consiguiente, han de tener
las mismas: propiedades que los |a*). Concretamente, han de tener longitud
unidad. Este principio de superposicion que aparece en la Mecanica Cuan-
tica es de una naturaleza totalmente distinta del que se encuentra en la
Mecanica Clasica donde también podemos hablar, por ejemplo, de superpo-
sicién de ondas. Las analogias pueden ocasionar graves errores.

El nimero ¢ (a*) se llama funcion de ornds del estado [@) en la re-
presentacion A y evidentemente se veritica

¢ @)= (a*lg) (2.104)

como puede verse multiplicando | @) por I (2.99). Esto indica que
| (a%l @)% = @ * (a%) @ (a%)

es la probabilidad de que nuestro sistema aparezca en el estado |a*) cuan-
do medimos los observables A. Experimentalmente podemos obtener el va-
lor de esta probabilidad, pero nunca ¢ (a%) cuya tase quedara totalmente
desconocida.

Las tfunciones de onda determinan completamente el estado tisico del
sistema. Pero mientras podemos hablar de estado vector sin fijar las coor-
denadas, el concepto de funcién de onda lleva implicito haber fijado la re-
presentacion. La manera de proceder con independencia de las coordena-
das, es decir, con caricter invariante, tuertemente orientada hacia lo geo-
métrico, trae consigo importantes ventajas formales.

Las funciones de onda @(¢*) son las componentes del vector estado | @)
en los vectores unidad | a*) de la representacion A, y, por consiguiente, re-
presentan el estado fisico del sistema. Podemos representar el vector | @)
por medio de una matriz de una columna.

p(a’)
p(a®)
: (2.103)
P(a%)
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De esta torma el vector dual (| esta representado por la matriz hermi-
tica conjugada de la anterior

(@°(@a) 9°(a2) ...... 9%(a%) ......) (2.106)

Estos vectores pueden ser manejados como matrices, con lo cual hallamos
tacilmente representaciones de los productos escalar y operacional de los
estados.

En particular la funcién de ondas del estado |a? ) en la representacion A
es dg,,. Las funciones de transformacion también son funciones de onda que
representan los vectores unidad de una representacion en otra representacion.

La normalizacion a la unidad del vector estado | @) implica que su fun-
cion de onda en cualquier representacion satistace la siguiente relacion

1= (l¢) =3 g@a)¢*(@ (2.107)

Estudiemos el signiticado fisico de la superposicion de estados. Decimos
que un toton estd en cierto estado' de polarizacion cuando se le ha hecho
pasar por ciertos polarizadores apropiados; hemos tomado la forma de pre-
parar el estado del sistema como la detinicion del estado considerado. Pero
al introducir €l caracter estadistico en esta Algebra, consideramos que el
fotén en estado [H(*) (véase apartado 10) tenia cierta probabilidad de pasar
el selector que preparaba fotones en estado |al). Existe una cierta rela-
cién, que es el principio de superposicion (2.103) y (2.104), por la que un
sistema que se encuentra en un estado detemnnado puede también ser con-
siderado como teniendo una cierta probabilidad de estar en muchos estados.
Inversamente un nimero cualquiera de estados pueden ser superpuestos para
dar un nuevo estado provisto que se veritique la relacion de normalizacion;
el nuevo estado esta totalmente determinado cuando se conoce en su funcién
de onda; las propiedades de un estado formado mediante superposicion
son, en cierto sentido, intermedias de las que tenian los estados compo:
nentes. :

Los mismos estados unidad pueden ser considerados como un caso limite
ae superposicion. Advirtamos que siguiendo la notacion introducida en
(2.103) los estados unidad |a") debieran ser representados por [d3), puesto
que su funcion de ondas es dg,.

Dos vectores estado | @) y [@s) seran paralelos cuando, en cualquier
representacion, sus componentes, es decir, las tunciones de onda, sean pro-
porcionales. Se verifica entonces

¢1(a%) ==p po(a%) (2.108)
Si | ;) estd normalizado a uno, se tiene:
1= (o lo:) =’ (palps) (2.109)

El vector | @2 ) es normalizable si | w|? es tinito; pero sélo presenta el estado
tisico cuando ha sido normalizado a la unidad. Un vector cuyo producto es-
calar por si mismo es intinito, no es susceptible de ser normalizado a la
unidad y, por consiguiente, no corresponde a ninguna situacién fisica.
dComo podemos saber si un macrosistema esta formado por un conjunto
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de sistemas todos en el mismo estado? La respuesta estd contenida en la
interpretacion de la ecuacion (2.89), o, también, en el significado de los
operadores compuestos (2.21). Para obtener conjuntos de sistemas todos en el
mismo estado es suficiente producirlos por medio de idénticos experimentos.

Cuando se efectia una medicion de un observable A, en un sistema, éste
es perturbado, y su estado después de la medicion ditiere del estado inicial.
No hay mis que un caso en que la observacion no moditica €l estado de un
sistema, y es cuando el estado del mismo es un estado propio del observable;
entonces existe una probabilidad unidad, es decir, estamos totalmente se-
guros de obtener como resultado de la medicién un cierto valor propio del
observable. ]

Por consiguiente, una medicion moditica el estado del sistema. Para
realizar otra medicion en las mismas circunstancias hemos de volver a pre-
parar €l sistema en el mismo estado inicial, o sea, debemos hacerle pasar
a través de las mismas maquinas que la prepararon inicialmente, ya que,
por detinicion, esto es preparar un sistema en el mismo estado. De hecho, en
un laboratorio producimos, por ejemplo, un haz de electrones —todos ellos
en el mismo estado | @), pues han salido de una misma maquina— en los
cuales se llevan a cabo las mediciones sucesivas. Puesto que por el principio
ce superposicion | @) puede ser considerado como combinacion de estados
propios de A,, al hacer sucesivas mediciones de A, en los sistemas del haz
no obtendremos siempre el mismo valor propio de A, pero existird una
cierta probabilidad de obtener cada uno de los valores del espectro de A,
Y asi, repitiendo indefinidamente el proceso de medir' A; en sistemas en
estado | @), se obtendra el valor esperado, (A;),, como resultado de tales
mediciones.

Recordando el significado de funcion de onda y su relacion con pro-
habilidad deducimos

(Ay)e =22, p(a”)

3

= (oA o) (2.110)

por lo que el valor esperado de una cantidad en un estado es el elemento de
matriz del operador correspondiente en tal estado. La conexion entre la
teoria y el experimento se establece al comsiderar que tal valor esperado es
el valor medio de sucesivas mediciones del observable en el conjunto de
sistemas idénticos preparados mediante los mismos experimentos.

Consideremos ahora el problema reciproco. En un laboratorio produci-
mos un conjunto de sistemas idénticos: den qué estado se hallan? Medire-
mos en ese conjunto el valor medio —igual al esperado— de un conjunto
completo de observables A cuyos espectros conocemos. Mediante (2.110) cal-
culampos la funcion de onda (%) ) partir de esos datos (su fase no estard deter-
minada), y de ella con (2.103) deducimos el estado de los sistemas producidos
en el laboratorio. '

Asi, pues, en la Cinemptica Cudntica encontramos dos clases de canti-
dades: los observables A y los estados | @ ). En los capitulos siguientes estu-
diaremos algunas propiedades generales de los mismos.
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I. — INTENTO DE PREPARACIONA DE TETRATIONATO TALICO

En un trabajo previo (1), al describir nuestros intentos para la preparacion
del tetrationato férrico, decfamos que siempre que se encontraban en presencia
iones hierro trivalentes, y iones tetrationato, se produce una reduccién del hierro
férrico a ferroso con la consiguiente oxidacién del tetrationato a sulfato. El hecho
de que el potencial normal de oxidacién de la reaccién: TI+++ - 2e = TI + sea
superior al de la reaccién Fet++ -+ le = Fet+, nos indica que el talio trivalente
es més oxidante que el hierro trivalente y que, por lo tanto, la preparacién del
tetrationato télico no seréd posible, puesto que en este caso también se producira
la oxidacién de los iones tetrationato a sulfato.

Sin embargo, para comprobarlo experimentalmente, planteamos una experien-
cia de preparacién de tetrationato télico.

Como producto de partida, disponemos de éxido talico T1,Os, y con él pre-
paramos primeramente una sal talica que posteriormente ftrataremos con tetratio-
nato de bario.

Las sales talicas son todas muy inestables. El sulfato se descompone en solu-
cién acuosa (2). Los haluros, debido a la gran tendencia del talio trivalente, a
pasar al estado talioso son relativamente inestables. El cloruro es estable en solu-
cién acuosa, perdiendo cloro a 40°C (3), y por ello lo emplearemos como pro-
ducto de partida.

Para su preparacion empleamos la reaccion:

(I) T1,05 + 6CIH = 2CI;T1 + 3H,0

que realizamos con las siguientes cantidades de partida: 0,45 gramos de TI,Oy4
y 0,219 gramos de CIH. Los 0,219 gramos de CIH corresponden a 0,51 mls. de
clorhidrico concentrado de 36 % en peso de CIH y densidad 1,18. Con estas
cantidades de partida se obtendrdn 0,62 gramos de cloruro talico.

Sobre los 0,45 gramos de 6xido talico, colocados en un tubo de ensayo, agre-
gamos los 0,51 mls. de 4cido clorhidrico. La disolucién es rapida y, cuando se ha
logrado, agregamos agua destilada para aumentar el volumen. Queda, entonces,
una solucién transparente de ligero color amarillo y que da, como es légico,
reaccion de iones T1-+++.

Con objeto de no disminuir el rendimiento, a la vez que se evitan operacio-
nes, no procedemos a la cristalizacién del cloruro talico, sino que empleamos su
disolucién asi obtenida, para intentar la preparacién del tetrationato talico.
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La preparacién de éste la haremos analogamente a la del tetrationato de alu-
minio (4), segiin la reaccién:

(II) 3S4OGB3 "ll_ C13T1 == (S.;O(;);;Tlg _{— 3C12B3

con tratamiento posterior de sulfurico para eliminar el bario, quedando entonces

CIH en libertad:
(111) Cl,Ba -+ SO,H, = SO,Ba + 2C1H

Como suponemos, por otra parte, que el tetrationato reducira el talio triva-
lente a monovalente, y éste precipitaria al estado de cloruro talioso insoluble,
entorpeciendo la marcha de la experiencia, hacemos la reaccién a la inversa, es
decir, tratando la solucién de cloruro tilico con 4cido tetratiénico, lo que equivale
a tratar primeramente el tetrationato de bario con sulfdrico para eliminar el bario
y obtener asi la disolucién acuosa de 4acido tetratiénico. ‘

La solucién del cloruro tilico que tenemos es de 0,62 gramos: para reaccién
con la misma se necesitan 1,19 gramos de tetrationato de bario y, por lo tanto,
los 0,411 gramos de bario que hay en él, se precipitarin con 0,294 gramos de
sulfdrico, que equivalen a 0,16 mls. de sulfdrico 36 N.

Preparamos solucién saturada en agua de los 1,19 gramos de tetrationato de
bario y sobre ella agregamos los 0,16 mls. de sulftrico concentrado; centrifu-
gamos para separar el precipitado de sulfato de bario formado y el liquido que
sobrenada lo filtramos sobre la disolucién de los 0’62 gramos de cloruro télico.
En seguida se forma un precipitado blanco, que se deposita en el fondo del tubo
de ensayo en que se realiza la operacién, y sobre él queda un liquido incoloro
y transparente.

Este liquido da reaccién positiva de iones S,0¢= y TI*, y no da reaccién
de T1+++. La reduccién ha sido, pues, completa y muy rapida, ya que si que-
dase algo de ion T1+++, al afadir yoduro potasico quedaria iodo en libertad y,
sin embargo, éste no se reconoce con engrudo de almidén. La identificacién cua-
litativa de los iones T1+++ y T1+, se realiza tratando la solucién, que se estudia
con yoduro potasiso. En ambos casos se produce un precipitado amarillo de yoduro
talioso, pero si hay talio trivalente se produce ademés yodo libre que se puede
reconocer por el color azul que toma con el engrudo de almidén:

(IV) S sl I= — T RHESE 1L

El hecho de que la solucién dé positiva la reaccién de TI+ al tratar con IK,
se debe a que el yoduro talioso es todavia mas insoluble que el cloruro.
La reaccién Redox de este proceso habré sido:

7Tl+++ +14e — 7 10l :

S:0¢= -+ 10H-,O —4S0,=+20H -+ -+ 14e
(V) 7T1+++ -+ S;06= -+ 10H,O =7 TI1+ 4 4S0,= + 20 H-+
o bien:

V) 7 (840¢) 5 Tlo+- - 20 HoO =7 S4O0¢Tl, + 8 SO4H,'-1-112, S,O6H,
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segin la cual, y analogamente a lo que ocurre con el hierro férrico, de 21 mo-
les de S4Os= solamente dos son oxidados por 14 atomos gramos de talio triva-
lente, quedando también 4cido tetratibnico en libertad.

De esta experiencia deducimos la imposibilidad de preparacién del tetratio-
nato talico. '

II. — EXPERIENCIA PARA LA PREPARACION DEL TATRATIONATO
TALIOSO

Puesto que en producto de partida, T1,O3, tenemos el talio en ‘estado triva-
lente y hemos de preparar el tetrationato talioso, emplearemos el mismo ion tetra-
tionato para reducir el talio de partida.

PRIMERA EXPERIENCIA

Tratamos de disolver directamente el T1,O3 en 4cido tetratibnico. La reac-
cién serd:

(VI) Tlf_gO:«; —I— 3 S4OGH2 == (840(,)qu2 —,L 3 H_>O

y como hemos visto, se producird seguidamente la reduccién del talio trivalente a

monovalente, con la correspondiente oxidacién de los iones de tetrationato a sul-
fato:

(VII) 7 (5406)sTl; + 20 HoO — 7 S,06T1, - 8 SO,H., -+ 12 S,06H,

Sumando (VI) y (VII), teniendo en cuenta que como todo el tetrationato talico

producido en (VI) se descompone (VII), tendremos que multiplicar la primera
(VI) por 7 y tendremos el proceso total.

7 T1,03 4 21S,06H5 + 7 (S404)5T1, = 20H.0 —
= 7 (840¢)5 T, 4+ 21 H,O 75404 Tl5--18SO,Hy - 12S,06H;

que simplificando quedar4:
(VIII) 7T1,03 + 9S.06H, = H0 + 7S,04T1, - 8 SO.H,

Segin esta reaccién (VIII), al disolver éxido talico en 4cido tetratiénico nos
quedard una solucién acuosa de tetrationato talioso acidulada con sulftrico. Este
sulftrico lo podriamos eliminar con iones B, +*, pero con objeto de no introducir
otros iones en la solucién, y teniendo en cuenta que el tetrationato de bario es el
punto de partida para la preparacién del 4cido tetratiénico, lo que haremos ser4
tratar el éxido tdlico en una mezcla de 4cido tetratiénico y tetrationato de bario en
la cantidad necesaria para que todo el sulfirico producido se precipite en forma
de sulfato de bario.

La reaccién sera:
(IX) 7T1505 + 85,04B, -+ SiOsH, = 7S,04T1, - 850,Ba L H,O
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y de esta manera, partiendo en vez de con nueve moles de 4cido tetratidnico, con
ocho moles de tetrationato de bario y un mol de 4cido tetratidnico, conseguiremos
eliminar todo el sulfdrico producido en forma de sulfato de bario.

Esta reaccién la realizamos, pues, tratando el éxido tdlico con la cantidad ne-
cesaria de tetrationato de bario del cual se ha eliminado la 1/9 parte del bario
con 4cido sulfurico y filtrando el sulfato de bario formado.

Operamos como sigue:

Sobre 0,35 gramos de tetrationato de bario disuelto en agua, agregamos 0,11 mls.
de 4cido sulfurico 1,75 N. y filtramos para separar el sulfato de bario formado.
El filtrado mezcla de tetrationato de bario y 4cido tetratiénico en la proporcién
de 8:1, se agrega sobre 0,31 gramos de éxido talico en suspensién acuosa. Se agi-
ta fuertemente, y se observa al dejar en reposo cémo el liquido que sobrenada se
va poniendo turbio, lo que indica que se precipita sulfato de bario y que la reac-
ci6n marcha. Poco a poco se va decolorando la mancha parda formada por el sul-
fato de bario y el Tl,Os sin atacar y, finalmente, al cabo de unas cinco horas, te-
nemos en el fondo del tubo de ensayo en que se realiza la reaccién una masa par-
da de éxido télico sin atacar y, sobre ella, un Precipitado blanco de sulfato bérico.
La solucién acuosa que queda deberd ser, por tanto, tinicamente de tetrationato
talioso.

La determinacién cualitativa de los iones, presentes en la solucién, nos indican
la ausencia de iones TI+++, lo que nos confirma la reduccién total del talio, y la
presencia de iones T+ y S;04=; ademés de pequena cantidad de iones SO;s=. La
determinacién de sulfatos la realizamos agregando hidréxido de bario, pues la adi-
cién de ClyB, podria dar lugar a la formacién de cloruro talioso insoluble que pre-
cipitaria con el sulfato de bario.

El hecho de no haber iones bario en solucién nos indica que la reaccién ha
terminado y, por tanto, de todo el tetrationato de bario ha reaccionado. La velo-
cidad de disolucién del 6xido talico fue en principio pequena, puesto que la mez-
cla de sulfato' de bario y 6xido télico sin disolver permanecié bastante tiempo de
color pardo. Miés adelante, y como era de esperar, ya que al precipitarse el SO4=
originado en la oxidacién del tetrationato, el equilibrio debe de desplazarse hacia
la formacién de sulfato, aumento de la velocidad de reaccién y répidamente el
precipitado qued6 de color blanco, excepto la pequena cantidad de cristales de
éxido talico puestos en exceso.

Separamos por filtracién el liquido del precipitado y estudiamos por separado
ambas partes.

Precrerrano

En un principio pensamos que el precipitado de color blanco era unicamente
sulfato barico. El hecho de que al agitarlo con agua tomase un aspecto analogo al
de las sales de plata insolubles, nos llevé a pensar que, junto con el sulfato de ba-
rio formado, tuvimos también tetrationato talioso, segtin esto, poco soluble en agua.

Por ello, lavamos con agua el precipitado colocado en una placa filtrante hasta
que las aguas del lavado, que recogemos sobre alcohol, no den reaccién de iones
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PREPARACION Y PROPIEDADES DEL TETRATIONATO TALIOSO

talio monovalente. Al caer sobre el alcohol se origina un precipitado que supusi-
mos era tetrationato talioso.

FirrrADO

Al filtrado le agregamos alcohol, forméndose también un precipitado que, como
el anterior, supusimos era de tetrationato talioso.

De esta experiencia deducimos que el tetrationato talioso era poco soluble en
agua e insoluble en alcohol. Esto nos llevé a realizar una experiencia segin reac-
cién (VIII), es decir, haciendo reaccionar 4cido tetratiénico con Tl;Os, pues de
esta manera obtendriamos un tnico precipitado de tetrationato talioso, del que se
podria eliminar el sulfdrico entrapado por lavados con alcohol.

SEGUNDA EXPERIENCIA

La realizamos disolviendo 1 gramo de éxido talico, colocando en un tubo de
ensayo, en 4cido tetratiénico, obtenido a partir de 1,12 gramos de tetrationato de
bario y 3,23 mls. de sulftrico 1,75 N. La disolucién es muy lenta al principio,
siendo total al cabo de unas cinco horas. Entonces, ademas de una disolucién que
da reaccién positiva de S4O0¢=; SOs=" y TI+ nos queda el precipitado de color.
blanco y aspecto analogo al de las sales de plata insoluble y que suponfamos tetra-
tionato talioso.

La disolucién filtrada se agrega sobre alcohol y se origina un precipitado, que
identificamos como sulfato talioso, en vez de tetrationato, y que nos llevé a estu-
diar los precipitados formados por adicién de alcohol en la experiencia primera y
que igualmente son sulfato talioso; mientras que los liquidos acuo-alcohdlicos de
las dos experiencias daban reaccién positiva de tetrationatos. De aqui deducimos
que el precipitado formado ahora no serd tampoco tetrationato talioso. Intentamos
investigarlo, pero debido a que la cantidad formada era muy pequena no pudo ha-
cerse. Unicamente vimos que daba reaccién positiva de T1+, por lo que pensamos

que podria tratarse, por analogia con las sales de plata, de sulfuro talioso, origina-
do en la descomposicién parcial de tetrationato.

Con objeto de ver si hay alguna concordia mayor entre los tetrationatos de pla-
ta y talioso, hacemos algunas experiencias.

En primer lugar, si sobre disoluciones de acido tetratiénico o de tetrationatos
solubles agregamos sulfato talioso en solucién. acuosa, no se produce ninglin pre-
cipitado, de donde deducimos la solubilidad en agua del tetrationato talioso. Esto
no ocurre cuando se agrega nitrato de plata, pues entonces se forma un precipita-
do blanco que se descompone, dando lugar a la formacion, finalmente, de sulfu-
ro de plata.

Pensamos que podria ocurrir, en el caso de la plata de manera anéloga o cuan-
do trabajamos con TI+, solamente la descomposicién parcial del tetrationato para
dar sulfuro, quedando, por tanto, parte' del tetrationato de plata sin descomponer
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en solucién. Para comprobarlo, agregamos nitrato de plata sobre solucién de tetra-
tionato de bario e inversamente agregamos disoluciéon de tetrationato. de bario so-
bre nitrato de plata. En el primer caso, en el que tenemos exceso de tetrationatos,
se confirma nuestra hipétesis con la presencia de iones plata en la solucién, mien-
tras que en segundo hecho en exceso, de plata, la presencia de tetrationatos nos
servirfa de confirmacién. Sin embargo, no sucede esto, y en el primer caso toda
la plata ha precipitado, quedando sélo exceso de tetrationatos, mientras que en el
segundo caso todo el tetrationato ha precipitado, quedando tnicamente exceso de
iones de plata.

De todas estas experiencias llegamos a la conclusién del distinto comportamien-
to de los tetrationatos de plata y de talio monovalente. El primero insoluble en agua
y soluble el segundo. El tetrationato de talio monovalente es también soluble en
alcohol, puesto que la adicién de éste sobre su solucién acuosa, no ejerce sobre él
accién precipitante (vimos que al agregar alcohol era sulfato talioso lo que en prin-
cipio crefamos seria tetrationato talioso) y, ademas, se descompone parcialmente al
formarse para dar lo que creemos se trata de sulfuro talioso.

TERGERA EXPERIENCIA

Los resultados de la experiencia anterior nos llevaron a realizar ésta como la
primera, es decir, a partir de la reaccién (IX). Operamos exactamente igual que en
ésta con la tnica variacién de agregar la mezcla de 4cido tetratiénico y tetrationato
de bario sobre T1,0; sin ponerlo en suspension acuosa.

Una vez que la reaccién ha terminado tenemos:- Un liquido que da reaccién
positiva de iones S,0¢= y T1+ y'no de Ba*+ ni SO,=. Al no dar reaccién de bario
se deduce que la reaccién ha terminado y ‘que, por tanto, todo el tetrationato de
bario ha reaccionado.

Un sélido constituido por T1:0; colocado en exceso y que ya no se podré disol-
ver, por no hacer en el medio tetrationato de bario para reducirlo y disolverlo, y un
precipitado de color blanco mezcla de sulfato de bario y de los que creemos es sul-
furo talioso.

Centrifugamos para separar- el sélido del liquido y filtramos para separar las
Gltimas trazas de solido. El filtrado constituido tnicamente por disolucién de tetra-
tionato talioso se coloca a cristalizar en desecador a vacio sobre hidréxido sédico.

Una vez formados los cristales, éstos se presentan de color amarillo débil y son
facilmente solubles en agua. No son higroscépicos y parece que son muy estables,
puesto que no presentan olor a SO,. El hecho de que en su disolucién acuosa no dé
reaccién de sulfatos nos indica que en su cristalizacién no hay, como en los otros
tetrationatos preparados, ningdn proceso de descomposicion.

El rendimiento de la preparacién es del orden del 52 %.
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III. — ANALISIS DE LOS CRISTALES

La determinacién cuantitativa del talio se realiza precipitando el talio en forma
de T1,O3 siguiendo las indicaciones de Browning y Palmer (5), y la del azufre en
forma de sulfato de bario.

Los resultados vienen expresados en la Tabla I y coinciden con los % de talio
y azufre calculados para un tetrationato

Tasra I
9/, Talio 0l Azufre Promedio Talio Promedio S
62,45 19,60 62,63 % 19,70 %

82,82 19,81

talioso cristalizado con una molécula de agua: 19,68 % de azufre y 62,81 % de ta-
lio. De aqui deducimos, para el tetrationato preparado por nosotros, la siguiente

féormula: S,O6T1.1H0.

CONCLUSIONES

1. Hemos prepefrado por primera vez tetrationato de talio monovalente en forma
de un producto blanco, soluble en agua y alceohol e insoluble en éter, al que
corresponde la siguiente férmula: S;O¢T15.HgO.

2. No es posible la preparacion de tetrationato de talio trivalente, puesto que los

iones talicos oxidan a los iones tetrationato a sulfato.
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NECROLOGIA

El Exemo. Sr. D. Manuel Aullé y Castilla, Inspector general jubilado, dei
Cuerpo Nacional de Ingenieros de Montes y miembro correspondiente de
esta Academia de Ciencias Exactas, Fisico - Quimicas y Naturales de Zara-
goza, fallecié en Madrid, contortado con los mas altos consuelos de la religion
catolica, el dia 19 de enero de 1959.

Su obito constituyé una sensible pérdida para la Entomologia espaiiola,
para otros sectores, también interesantisimos de la investigacion y para el
Cuerpo Nacional de Ingenieros de Montes al que pertenecia desde el afio 1906.

La aticion y competencia en Entomologia, asi como su enorme capacidad
de trabajo, dieron lugar a que se distinguiera bien pronto en el cultivo de
tan importante rama de las Ciencias Naturales y a que se le confiara la
mision de establecer el primer Insectarium Forestal de Espafia, en terrenos
del Real Patrimonio, especialmente cedidos, para tal finalidad, por S. M. el
Rey Don Alfonso XIII.

Los estudios en él realizados alcanzaron bien pronto gran resonancia:
ademas de repercutir en los trabajos del mismo tipo que se venian realizande
en el extranjero, dieron base para combatir con éxito, empleando los medios
mas modernos,- entre los que tiguraba la lucha biologica con especies exo-
ticas, importantes plagas que azotaban la riqueza forestal de extensas zonas
espafiolas, y para pautar las camparias de extincion de otras varias, también
muy importantes, que venian mermando los rendimientos economicos de
varios miontes espariioles. -

Estos trabajos y otros varios relacionados con la Fauna Forestal espafiola
dieron lugar a que el sefior Aullo y Castilla fuera designado para desem-
penar, entre otros varios, también muy destacados, los importantes cargos
cientificos siguientes:

Presidente de la Real Sociedad Espafiola de Historia Natural; Precidente
de la Sociedad de Entomwlogia Espafiola; Presidente de la Sociedad Espafiola
de Ornitologia, de la que era socio tundador.

Consejero de la Asociacion de Agricultores de Espafia; Miembro de honor
de la Américan Association of Economic Entomologists de los Estados Unidos
de América; Miembro del Comité de la Unién Internacional de Ciencias
Biologicas de Bruselas; Miembro del Consejo Permanente Internacionai para
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la explotacion del mar, de Copenhague; Miembro de la Comisiéon Franco
Espafiola para el estudio de la biologia del Salmén; Miembro de la Real
Academia Espaifiola de Antropologia y Prehistoria; Académico correspondien-
te de la Real de Ciencias y Artes de Barcelona, etc.

Se destaco, también, llevado de su competencia y aficiones como culti-
vador de la investigacién en otras ramas del saber humano. Realiz6é excava-
ciones arqueolégicas en las provincias de Segovia y Cérdoba. Formulé un
Catalogo completisimo de las Plaquetas y bronces religiosos de los siglos xv1 y
xvi.. Estudié, a tfondo, el “Tesoro de monedas de La Algara” (Coruna).
Redact6 un interesante trabajo sobre los “Cornados de Sancho IV” y otro
scbre los “Cornados y Novenes de Alfonso XI”, y, no alargando mads, se
ocup6 con exito, de temas heraldicos.

Actuando como miembro del Cuerpo Nacional de Ingenieros de Montes.
en el que prest6 servicio activo desde octubre de 1906, hasta su jubilacién
en abril de 1958, realizé importantes repoblaciones forestales de la regién
levantina; dirigié la lucha contra las plagas que invadian la Dehesa de la
Albufera, las masas arbdreas de Albacete, de los encinares del Valle de los
Pedroches, etc.

Fue profesor de diversas asignaturas de la Escuela Especial de Ingenieros
de Montes, y, ademas de realizar los trabajos entomoldgicos derivados de la
creacion del primer Insectorio espafiol de Entomologia Forestal, fundé y diri-
gi6 las revistas de Fitopatologia y de Biologia Forestal y Limnologia.

* Por ultimo, desempefi6 con acierto el importante puesto de Presidente
del Consejo Superior de Montes desde el 14 de mayo de 1952 hasta abril de
1958 en que fue jubilado.

Sus indiscutibles méritos dieron lugar a que se le otorgara la Encomienda
de la Orden Civil del Mérito Agricola.

Descanse en paz el sabio naturalista y competente ingeniero y reciba su
respetable familia un sentido pésame por tan sensible pérdida, que lamenta
profundamente esta Academia de Ciencias de Zaragoza al elevar a Dios una
fervorosa plegaria por el alma de tan distinguido miembro de la misma.
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