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IN TRODUCCION
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BILBAO (España).

Facultad de Ciencias .

En este sent ido y , para simplificar estos cálculos resulta de

gran interés el disponer de la clasificaci ón completa de todos los

Cuan do se estudia e l problema de la clasificac ión de l o s gru ­

pos fi nito s co n un número dado de clases de conjugac ión, han de ana ­

l i z ar s e frec uentemente, ciertas secciones del grupo que resultan ser '

holomorfos re lativos de algunos grupos abelianos de orden bajo .

(*) Este trabajo ha sido subvencionado por la Universidad del País Vasco .

Rev . Acad. Ci enci as Zar agoza , 43 (1988)

En lo que sigue, G denota rá un grupo finito y r(G) el númer o

de clases de conjugación de G. Si S es un subconjunto no vacío d e

G, rG(S) es el número de clases de conjuga ción de G que tien en in­

tersección no vacía con S . Si {gl "' " gt} es un sistema completo d e

representantea de las clases de conjugación de G que cortan a S ,

ordenado de manera que 1CG(gl ) 1 ~ ••• ~ 1CG(gt) 1, defin imos el vec -
G G

tor llS = (1 CG(gl) 1, • • • , 1CG(gt) 1) . La r-tupla llG = llG se llama vec -

tor conjugación de G. En orden a simp lificar la n o t a c i ó n escribire -
G o i nt G » i nt )

mos llS = (al' · · · , a t ) en lugar de llS = (a l " " . , a l,··· ,a t , · · · ,a t .

a(G) d en o t a el nú mero de distintos subgrupos nor males mini males de

G ~ S(G) es e l zóca lo de G, es d e c i r ! e l subgrupo pro ducto de todos

los s u bgrupos n or mal e s minimale s d e G,Y , a (G) de nota rá e l nú mero

de c lase s d e co njugac ión de G no conten idas e n S(G) .

A. VERA LÓPEZ y J . SA NGRÓNIZ

Universi da d d e l País Vasco . Aparta do 644 .
De p a r t a me n t o de Matemáticas .

CLASIFICACION DE TODOS LOS HOLOMORFOS RELATIVOS DE UN GR UPO
ABELIANO DE TIPO C4 X C4( * )

I n t his p ap e r , we classify the 53 relative holomorphs of an

abelian group of type C4xC4 . For each of these groups we give

t he number of conjugacy classes a nd the conjugacy vector .
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El cálcu lo d e l vec to r conjugació n y d e l n6mer o d e c lase s d e

co n jug ac ió n de cada u n o de l os g rupos o b ten i d o s s e ha c e u tiliz an d o

e l Lema 2 . 1 1 de [2 ] , en e l qu e s e d e t ermin a ó
G

para l os p rod uc tos

se mi direct o s G = Nx K co n N ab eli an o. En es te mism o trab aj o pu ed en
A

e nc o n t r a r se e jem p los d e l a u t iliz a ci ón de e ste Lema.

-1 -1
x Y

x,

co n

b
xy ,

Co nsidere mos l os s i gui e nt e s automorfi s mo s del gr upo <x ,Y>

Cuand o se c on o c e una pres ent a ci ón d e u n grup o finito G, es

p o s ible o b te ne r , t e óri c am ent e, e l vecto r c onjug a c ión d e G u tili zando

mé todo s co mputac io na les . Es t e pr oc edi mi en t o n o e s a dec ua do c ua n do e l

n6 me r o de ge neradores y r elaci on es es e le va do . S i n e mb a r go , c ua n do

G es u n pro ducto s e mi d irecto d e un subgr u po no r ma l a be l i a no N p or un

grupo a r b i tr ar i o H , el pro b lema pued e reducir se a d eter min ar e l vec ­

tor conjugación del subgrupo H. De hecho , l a tab l a I I se ha o bteni do

tamb i é n .me d i a n t e u n or dena d o r utilizando u n programa es crito espec í ­

f icamente para el caso menc ionado .

Para determin ar to do s l o s holomorfos re l ativo s De C4 xC 4
s e

obtiene p r imero un sistema completo de representan te s d e la s clase s

de co njugación de su bgrupo s de Aut(C
4xC 4)

. Pa r a cada u no de estos

subgrupos K , se obtiene e l corre spondiente ho lomorfo re lati vo
2

Ho l(C 4 ,K) . F inalmente, se d e t e r mi n a cuá les de e s to s g rupo s son i so -

morfos .

C4x C~ :

x a l -1
x a 2 - 1 2

x a 3 -1 x a 4 a
x x y x x , x

y a l -1 ya2 -1 ya3 2 -1 ya 4 -1 a
y y x y y y

Se t ie ne qu e Aut(C
4

xC
4) <a l ,a2 ,a3 ,a4>xA< a , b>

la acc ió n A d ada por :

a a a a
a l al ' a 2 a 2a 3 , a 3 a 2 , a 4 a 2a 4

b b b b
a l = al ' a 2 = a 2a 3 , a 3 = a 3 , a 4 = a l a 3a"4

holomo rfo s relativos de estos g rupos , as í como de l os inva ri ant es

me ncionados anteriormente . A. Vera y L . Ortiz de Elguea o btiene n

en [1] todos los holomorfos r e lativos de un grupo abe liano eleme n ­

tal de orden 16 . En este trabajo , determinamos todos los holomorfos

relativos de u n g rupo abelia no de t ipp C4 xC4
. Ad emás, p a r a ca da u no

de el los se obt iene el va lor de los invariante s r (G ), óG ' e( G) y

a( G) •



<(1 >X<(1 (1 a>" C xA
1 3 ' 2 ' 2 4

<(1 (1 (1 (1 b>" [C xC xC xC ]C
l ' 2 ' 3 ' 4 ' 2 2 2 2 2

<(1 >x<(1 (1 (1 >x<(1 (1 a >
1 2 3 4 3' 2 '

9

K44 <(14b , (13 , (12> " [ C4xC2 ]C2

K45 <(12b ,(11(13,(14> " [ C4xC2 ] C2

K46 <(13 ,(12 , a , b>" ¿4

K47 <a , 02(13(14b , (1 2(13(1 4> " [C3]Da

S G - H l ( C C Kl con K ~ Aut ( C xC l . Entonces , G es i somorfo aea - o 4 x 4 ' 4 4

los grupos G
i

=. H01(C
4

xC
4

,K
i)

, 1 ~ i ~ 53, donde Ki e s uno de los

l a siguiente tabla:

<(1 2(1 3(14a> - C6

<a , b > " ¿·3

K19 <(14 , (1 1(13> c2 xC2

K2ri <(14 , (11(1 2> C2xC2

TABLA 1

K
1 <(1 1) C2 K

26 <C\ , (12b> C2 xC4
K

2 <(1 2) C2 K
27 <(1 1 , (1 4b> C

2
xC4

K
3 <(1 2(1 3(1 4> C2 K

2a <(1 1 , (1 3 ' e> " C2 xC2 XC2
K

4 <b> " C2 K
29 <(1 1 , (1 2 , (1 3> C2 xC2 xC2

K
5 <(14) " C2 K

30 <(1 1 , (1 2 , (1 4> C
2xC2

xC
2

K
6 < (1 1~2> " C2 K

31 <(1 1(12, (13 ,(14> " c
2

xC
2

xC
2

K7 = <a> " C3 K
32 <(12b ,(12> " Da

Ka <(1 2b> C4 K
33 <(12(1 4b,0203(14> Qa

K
9 <02(14b> " C4 K

34 <(1 2b , (1 1(1 2> " Da

K
10 <(1 4b> " C4 K

35 <(12(14b,(12(14> " Da

K
ll <(1 1(1 3 , b> " C2xC2 K

36 <(14b ,(14> " Da

K
i 2 <(14 , (1 2(1 3> " C2 xC2 K

37 <(1 1 ' (12(13(14a > C2xC6

K
13 <° 1 , (1 2) C2 xC2 K

3a <(11) x<a,b> e C x¿
2 3

K14 <(11 , (14> C2 xC2 K
39 <(1 1a , (12(13(14b> " DC3

K
15

<(1 (1 > C2xC2 K
40 = <(13 ,(12 ,a> " A43 ' 4

a lguno de

grupos de

TEOREMA :



K51 = <a
1>

x<a
3

, a
2

, a , b> " C
2

x"¿4

K
52 <a 3 , a 2 , a , a 2a 3a 4b> [C

2xC 2]DC 3

K
53 <a

1
, a

2
, a

3
, a

4
, a , b> [C

2
xC

2
xC

2xC2]¿3

Los valores de r (G), óci ' S( G) y a( G) para c ada uno de l os holomor f os Gi

v ienen da dos en l a tab la s iguiente :

TABLA II

i r(G) ó
G

S( G) a (G)

1 14 (32
4,

16
6

, 8
4)

3 10

2 14 (32
4

, 1 6
6,

8
4)

3 10

3 14 (32
4

, 1 6
6,

8
4)

3 10

4 14 ( 32
4

, 16
6,

8
4)

1 12

5 20 (32
8

, 1 6
12

) 3 16

6 20 (328,
1 6

12
) 3 16

5
3

2)
7 8 (48 , 16 , 1 6

8 1 3 (64
2

, 32 , 16
5,

8
5)

1 11

9 13 (64
2

, 32 , 16
5

8
5)

1 11,

10 22 (64
4

, 32
6

16
12

) 1 20,

11 22 (64
4

, 32
6

, 16
1 2)

1 20

12 22 ( 64
4,

32
6

, 16
12

) 3 18

1 3 22 (64
4

, 32
6

, 16
1 2

) "3 18

14 25
4

32
1 2

, 1 6
9

)(64~ , 3 21

15 25 (64
4

, 32
1 2

, 1,69) 3 21

16 25 (64
4

, 32
12,

16
9

) 3 21

17 19 (64
4

, 1 6
1 5

) 3 1 5

10



i r-I G) tic; a(G) a(G)

18 19 (644, 1615 ) 3 15

19 28 (648 , 3212, 168 ) 3 24

20 34 (644 , 32
30) 3 30

21 16 (6 42 , 32 3 , 16
8

, 83) 1 14

22 16 (642 , 32 3 , 16
8, 83)

1 14

23 10 (96, 32 , 24 , 16
2,

8, 64)
1 8

24 10 . ( 96, 32 , 24 , 16
2,

8, 64)
1 8

10 (96 , 32
3

,
4

3 ) 825 16, 8 , 1

26 23 (128
2

, 643 , 32
6

, 16
1 2

) 1 21

27 29 (128
2

, 64
7

32
12

16
8)

1 27, ,

28 29 (128
2

, 64
7,

32
12

16
8)

1 27,

29 38 (128
4

, 64 6 , 32
28)

3 34

30 44 (128
4

, 64
18

, 32
22)

3 40

31 44 (1284 , 64
18

32
22)

3 40,

32 17 (1282 , 64 , 32
3

168 , 83)
1 15,

33 17 (1282 , 64 , 32
3

168 8
3)

1 15, ,

34 20 (1282 , 64 , 32
9

16
5,

83)
1 18,

35 20 (1282 , 64 , 32
9

16
5,

8
3)

1 18,

36 26 (1 28
4,

646 324 , 1612 ) 1 24,

37 17 (1 92 , 64 , 483,
164, 128)

1 15

38 14 (1 92, 64, 48, 322 1 65 82 62)
1 12, , ,

39 11 (192 , 64 , 48, 162 8
4

, 62)
1 9,

40 9 (192 , 64 , 165 3
2)

1 7,

41 76 (2564 , 12818, 64
54)

3 71

42 40 (;562 , 128
7

64
10

, 32
17

, 16 4)
1 38,

43 34 (256
2

, 128
3,

64
8

, 32
1 5

166)
1 32,



i r(G) lI
G

13(G) a(G)

44 34 (256
2,

128
3,

64
8

32
15,

16
6) 1 32,

45 34 (256.
2

, 128
3

64
1 2

32
9;

1 6
8

) 1 32, ,

46 12 (384 , 128, 32
3

16
3

8
3

. 3 ) 1 10, , ,

4 7 1 6 (384, 128, 96 , 48 , 32
2

16
3

, 1 2
4,

8
3)

1 14,

(384 , 128 , 64 2 ., 9
6

4)
1 1648 18 96 , 32 "

49 53 (512
2

, 256
3

, 1 28
14 64 24 . 32

4
, 1 6

6)
1 51, ,

50 36 (768 , 256, 192
3,

128
6,

64
17

, 1 2
8

) 1 34

51 24 (768 , 256 , 192 , 128
2

64
5

32
6

, 1 6
6

6
2)

1 22, , ,

52 24 (768, 256 , 1 92 , 1 28
2

64
5

, 32
6

16
6

6
2)

1 22, , ,

53 33 (1536, 512 , 384 , 256
2

, 192 , 128
7

64
6

1 31, ,

, 32
4,

16
6

, 12
4)
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UN ALGORITMO PARA CALCULAR EL VECTOR CON JUGACIONDE UN GRUPO (*)

A. VERA LÓPEZ y J. SANGRÓ NIZ

Departamento d e Matemáticas . Facultad d e Ci encias .

Universida d d e l País Vasco . Apartado 6 4 4 . BILBAO (Es paña) .

I n t his paper , we give a n algorithm for t he calculation of

the conj ugacy vecto~ o f a finit e group which i s a s emidir e c t

product of an a belia n group and an arbitrary f i n ite group . We

also give sorne exampl es which illustrat e o u r r esults .

1 . INTRODUCCION

El cálculo del número de clases de conjugación y del

vec~or conjugación de un grupo es, en general , un problema de

d if'lcil solución. En [1] y [2] pueden encon~rarse resul~ados

que resuelven ~eóricamen~e es~a cues~ión para cier~os ~ipos de

gr upos , aunque , en al gunos casos, l o s cál culos que se exi gen

son largos y ~ediosos. En es~e ~rabajo , se expone un algori~mo

que permi~e ob~ener el vec~or conjugación de un grupo

.pr esen~ado median~e generadores . y relaciones. La ejecución

ef'ec~iva de es~e algori~mo es~á en f'unción de la complejidad de

las relaciones que def'inen el · grupo y de la capacidad del

ordenador disponible. No obat.ant.e , en algunos de los casos

es~udiados en los ar-Lf c u.l css an~eriormen~e c í t.acíoss , es~e

algori~mo puede modif'icarse de f' o r ma que su i mpl emen~aci ón en

un microordenador permi t. í r- á ob~ener el vec t.or- conjugación de

muchos grupos en los que un cálculo direc~o requer irla un gran

~rabaj o .

(*) Este t r aba j o ha s ido subvencionado por la Universidad del País Vasc o .

13



2. EL CALCULO DEL VECTOR CONJUGACION DE UN GRUPO

i.) Para cualesquiera i y k con l:5i:5n. l:5k:5m se t-iene:

de

siguiente

producto

elen

comoG

Suponi endo que x=zr y

este mét-odo

14

el emento · d ecada

esquematizar

d e

podembs
-1

X =zs.

a,lgor L t.mo :

f'ácilment-e det-erminado aplicando i) .

descomposición

TCi.j) de n f'ilas y m columnas. donde n IGI. m = Ixox"}. de

f'orma que. si XUX-1
= <zl" . • zm)- con zi. = X;. para l:5i:5t- • se

t-iene una enumeración de los element-os de G. gl=l. g2" ·gn

Aplicando reit-eradamente la p r o pi e d ad ii ) se p u e d e obt-ener la

generadores y d e inversos de generadores del grupo . Est-as d os

pr-opd, e d a d e s per mi t-en real izar operaci ones sobr e los el ement-os

del gr upo i nduct-i vament-e . Supongamos. por ej empl o. que dado

x e XUX-
1

se desean obtener los elementos gX para t-odo elemen­

to 9 del grupo. Se tiene que g~=gl' Para i>l. gi.=gjZk' con j<i
-1 x X-1

y Zk e XuX • por tant-o. 9 i.=g j x Zkx, Como j <L, podemos suponer

que el element-o g~ ya es conocido de forma que. g~ queda

verif'icando las dos propiedades f'undament-ales siguient-es:

gi.Zk=gT(i.,k) ·

i.i.) Par a todo i con 2:5i :5n. exist-en j<i y k c o n l:5k:5m t-ales que:

En lo que si gue. G denot-ará un grupo t:i ni t.o , Supongamos

generadores

conj unt-o de

def'inen el

El primer probl ema queda resuel t-o medi ant-e el conoci do

Mét-odo de la Enumeración de las Coclases de Todd y Co x e t e r . Una

exposición de est-e mét-odo . p u e d e encont-rarse. por ejemplo. en

[3l. El Algorit-mo de Todd-Coxet-er permit-e obt-ener una mat-riz

grupo.

El cálculo del vector conjugación del grupo G se reduce.

esencial ment-e. a la resolución de los dos problemas siguient-es:

1) El problema de la enumeración de . l os element-os de G.

es decir. expresar cada element-o del grupo c omo producto de

generadores e inversos de l os generadores.

2) Det-erminar un algorit-mo q u e permit-a obt-ener las clases

de conjugación del grupo realizando el menor número posible de

operaciones .

que G = <X IR> siendo X <xl" . .• xt)- un conjunt-o de

del grupo y. R = <ri.Cxl" . . . • xt)=l. i=1 • .. .• 1)- un

relaciones ent-re los generadores Xl" .. • xt que



ALGORITMO 1

Es1:-udiemos ahora, "e l segund o problema que plan1:-eábamos al

vec1:-or

números .

elemen1:-o

elementos

continuación

un

a

f'i jar

dis1:-in1:-os

y, asi sucesivamen1:-e .

C r CG) -1 ) IG I

por

presen1:-amosque

consis1:-e en

representada

algori1:-mo

mé1:-odo más direc1:-o para calcular el

CONJC i ) .-- CONJC j) "

CONJC i) .-- TC CONJ Ci ) , s )

CONJC i) .-- TC CONJ Ci ) , k )

CONJC i) .-- TC CONJ Ci ) , r )

es1:-ará

El

de un grupo

El

15

ALGORITMO 2

i 1", . . . . , t,

k 1, , s

b "Para ak' = aL :

j = 1, , s

Si CC j ) = máxC CC k ) , CC 1 ) ), CC j) .-- mi nC CC k ) , CC 1 ) )

Aplicamos sobre el vec1:-or C el siguien1:-e algoritmo:

i = 2, . . . , IGI

CONJC 1) = í

u n segundo elemento Y2 e G-C{1}UCl o CY1))

Es1:-e mé1:-odo requiere el cálculo de

conjugación

Supongamos que H = < b 1, ... ,bt > ~ G Y que A = {a1, ··· , a s}

es un subconjun1:-o de G unión de H-clases de conjugación.

Def' inimos el vec1:-or C cuya k-ésima componen1:-e es CCk)=k, l~k~s.

El número n a t u r a l CCk) represen1:-a la H-clase de c onjugación que

con1:-iene al elemen1:-o ak. Inicialmen1:-e , una misma H-clase de

Y1 e G-{l} y de1:-erminar 1:-odos sus c onjugados . Después, se 1:-oma

solamente requiere el cálculo de t, IG I elementos conjugados,

siendo 1:- el número de generadores del grup o .

Finalizado es1:-e algori t.mo , se 1:-iene que g~ = g CONJ<;'> 'ti l~i~n.

conjugados.

conjugación

comienzo.



Demostración

C(1) = CCm).

i l' k = m,

b~l ' . . b~r e H

s o b r e r que

Efe-c t.tradces l os pasos i

N = <n 1>x< n Z>x.. . x< n r> ~ Cl 1XCl zX. . . xCl r
<X 1R> con X = <Xl' .. . , xt.> Y R un

enlre los generadores de X que de~inen

CC n). Por o l r o lado a parlir de los pasos·

n , j = 1 y , i = i s' k = ri , j = n se t.í, ene que

r = 1 , a l = b~a m 1.

i = i l' k m, j

Si

Supongamos que

con 1 1 11 a I . . . 11 r y K

conjunlo de relaciones

que es lo que queriamos probar.

3. EL CALCULO DEL VECTOR CONJUGACION DE UN PRODUCTO SEMI DI RECTO

En '[lJ A. Vera y J. Vera delerminan el veclor c o n j u g a c i ó n

de un grupo de la ~orma G = NxAK c on N abeliano e n lérminos de

la eslruclura de los subgrupos N y K y, de la acción A. El

problema de oblener 6 0 se reduce, esencial menle, a calcular 6
K

.

Se demueslra ~ácilmenle el siguienle resullad o:

En parlicular, si A = H = G, se lendrá que dos element.os

del grupo g~, gj son conjugados si y sólo si CC i) = cc j) . De

esla manera, es ~áci l calcular el veclor conjugación 6 0 ,

Observemos lambién que , ~ijado i el cálcul o de l o s elemenlos
b ·

ak~ para cada ak e G, puede e~ecluarse rápi damenle ulilizando

el algori t.mo 1 .

Si C(1) = CCm) es "o b v i o que los elemenlos al' a m son

el grupo K. Enumeremos los elemenlos de los subgrupos N y K:

16

algorilmo CCm)

CC n ) = CC 1) igualdad que lambién se manliene hasla el f'Lrral .

Concluimos enlonces que , ~inalizado el algorilmo, CCm) = C(1),
, .

j 1 y, = m se liene que CCl) CCm) yesla

igualdad s e manliene hasla el ~inal del a lgorilmo.

Supongamos que el resullado es válido V r'( r y, v e á mo s l o

para r > 1 . b = b' b~r con b' = " b~ l ' . . b~r_l' Supongamos que
b'

a m = an 0 Por hipólesis de inducción se liene que, ~inalizado el

TEOREMA: Sea C el veclor oblenido medianle el algorilmo

anleri or. Dos elemenlos al,am e A son H-conjugados si y sólo si

c onjugados. Recipr ocamenle , supongamos que 3 b

t.a.I que al a~. Demoss t.r ar-emoss p or inducción

CC 1) = CCm).



Podemos esquematizar este método en el siguiente algoritmo:

ALGOR! TMO DE TOD-COXETER
SOBRE EL GRUPO K=<XIR>

----------+1 ÁI(

1

1

1
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ALGOR! TMO 2 SOBRE K I

i = 1 • . · . .r

j = 1 • . · . . IK I
Calcular [ k j . ni.]

j = 1 •. · . IK I .

u = 1 •. · . IN I

Cal cular [ k j • n1.]mu = mv

e = 1, .. 0. , IN I

Si MC j. ~) = máxC MC j • u) • MC J • v ) ) •

MC J • ~) +--- minC MC j • u). MC j • v ) )

MC j • u) = Cj -1) IN I +u. j =1 •.. .• IK 1; u=l •. ..• IN I .
Apl I 'c ando , nuevamente. el al gor i t.mo 2 c on A = G. H = N. deter­

minamos ~.o Como N es abeliano. Chn)m = h.I h c mLn para cualesquie­

ra n. m E N Y h E K. Esto simpli~ica notablemente el cál culo del
N

vector Á o ' Finalmente. determinamos Áo conjugando cada elemento

de G por l os generadores de K.

N = {m 1=l •...• mt } . K = {k 1=l •. . .• k g } c on t, = INI y s = IKI. Los

elementos de G pueden c onsi derarse pares de la ~orma Ch.n) con

h E K. n E N. que se operan según la ~órmula:

Chl' n 1 )( h 2• n2) = Ch 1h2• n~2n2)'

Para calcular n h• n E N. h E K. basta conocer cómo actúan los

generad ores de K sobre l o s generadores de N. Cada una de estas

acciones viene dada por una matriz Ce1.j) de dimensión rxr

de~inida por:

Sea C el vector obteni d o e n el algoritmo 2 a pli cado al

g r upo K. De~ini mos una matriz M d e IKI ~ilas y INI c olumnas

cuyos val ores i niciales son:



4. EJEMPLOS

de utilizar -e L Algoritmo de Todd-Coxeter.

Finalizado el algoritmo, la matriz M verifica q ue , dos

a l g o ritmo

y s6lo si

informaci6n

el

la

siG

todaM contiene

conjugados enson

matriz

sub grupo K también es abeliano,elSi

i = 1. .. . .t

J = 1 •.. . .IKI; u = 1 .. . .. IN I
k~ i. kv'

x ·
Cal cul ar = m ' = mvJ u

e = 1 •. . . ·IKI t . q. C( e) =C( J ); f = 1 • ...• IN I
S i M(e. f) = máx( M( J • u) • M( w , v)) , entonces:

M( e, f) ~ mi n( M( J , u) , M( w, v ) )

i) al( n l) . . .. al( nl ) denotar á el vector conj u gaci 6n del

grupo. f. o= (al'· ~t . •a l, · · ,al' · ~~. ,al).

ii) Si X = {Xl •. . . ,xt.} es un sistema de generadores del

grupo, el elemento ~ se representará por el número i.

1
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A conti nuaci 6n damos al gunos eJ empl os en los que puede

apreciarse la complejidad de los grupos que pueden ser .tratados

por estos programas. Se han adoptado los siguientes convenios:

anterior puede simplificarse notablemente puesto que, e n este

caso, los elementos d e K se enumeran directamente sin necesidad

necesaria para determinar Áo.

elementos k i.mj'

M( i , j) = M( e, f ) .

Basándonos en l o s algoritmos c omentados anteri ormente, se

han escrito varios programasen lenguaje FORTRAN que permiten

obtener, en muchos casos, el vector conj ugaci 6n de un gr upo

· d a d o como producto semidirecto de un grupo abeliano por un

grupo arbitrario. En particular. los vectores conjugaci6n de

t odos los hol omorfo s relativos de los grupos C4XC4 y C::sx C::s h a n

sido c a l c u l a dos de esta manera.



Los números ~+1. ~+2 • ... reprsen~arán a los elemen~os

X~1 . X;;1.. . . respec~l vamen~e. sal vo sl oC ~) =2.

111) Una relaci6n rC xl' . . .• ><t.) = xf~ ... xf~ = 1 : &j=±l. se

represen~ará por la sucesi6n· de números k. 61" ..• 6 k •

donde. k es la longi~ud de la relaci6n y. 6 j deno~a el

número que represen~a al elemen~o xf~ .
J

Sean los grupos:

G2 <X1.~.Xg .x4> xA<a.b> ~ C~XACC6XC2) con A dada por :
a a a a b b b b
X1=X1~' X2=X1• X 3=X4• X 4=X1XgX4• X 1=X1• X2=~' X 3=X1Xg. X4=X1~X4'

~32 2 22d2_
G3 = < Xi' ~. Xg. X4> X

A
< a. b , d Ia =b =d =C ba ) =1. Ca ba ) =a >

_4 a a a a b= C2XAL~ con A dada por: X1=~' x 2=Xg. X 3=X4• X4=X1~XgX4' X1=X1~'
b b . b d d d d

x 2 =x1• x 3=~XgX4' x 4 =x1Xg. Xi =X1• X 2=~. X 3 =~Xg. X 4 =X1~X4'

G4 = <x.y>xACC<a.b>x <c»xT<d» ~ C;x
ACSLC2.3)

X
TC2) con

c c d ll1 d -1 d a 2 a -2 b
<a. b>~. a =b. b =ab. a =a • b =b • c =cb. X =x • y =y • X =y.

b -1 C -2 -1 C -2 d d
Y =x • X =x y • y =x y. X =y . y =x.

A con~inuaci6n damos los da~os de en~rada/salida proporcio­

nados por un microordenador al ejecu~arse los programas mencio­

nados an~eriormen~e para cada uno de es~os grupos.

EJEMPLO I

ESCRIBE EL tuMERO DE GENERADORES DEL GRUPO 2
ESCRIBE EL ~t'ERO ' DE GEtl:RADORES E INVERSOS 4
ESCRIBE LOS INVERSOS DE LOS 6ENERAOORES 3, 4 , 1 • 2 ,
ESCRIBE EL VECTOR DE LAS RELACIONES 5, I , 1 , I , 1, • 5 , 2 , 2 , 2 , 2 , 2 • 4, , 2 , I ,
2,8,3,2,3,2, 3,2,3,2 , 0,

EL tfJlaO DE CLASES DE CONJlJ6ACION DEL ffilJ'O ES: 7
EL VECTOR COOUGACIlJol DEL 6RUPO ES:
360(1) 9 (21 8(1) 5(21 4(1)

19



EJEMPlO 2

EJEMPlO 4

EJEI1Pl.O 3

12 ( B )

1,1, 0, 0,1 ,0 , 0 , 0 ,0 , 0,0,1 , 1 , 0

1 , °, 1 , 1 , °, 1 ,
17

16 ( 4 )

ESCRIBE EL NUMERO DE ~AOORES DE N 2
ESCRIBE El.TlPO DE N 5, 5 ,
ESCRIBE EL NUMERO DE 6El'~IlORES DE K 4
ESCRIBE El NUf'ERO. DE srnoRADORES E INVERSOS DE K 7
ESCRIBE LOS INVERSOS DE LOS SENERADORES DE K 5, 6 , 7 , 4 , 1 , 2 , 3 ,
ESCRIBE LAS MATRICES DE COOU6ACIll4 2 , °,°, 3 , O , 1 , 4 , °,3 , 4 , 3 , 1 , °, 1 , 1 , °,
ESCRIBE El VECTOR DE LAS RElACIONES· DE K 4, 1 , 1 , 1 , 1 , 4 , 6 , 6 , I , 1 , 4 , 1 , 6 , 1 , 2

, 3,3,3,3,4,6,7,1,3,5,6,5 ,7,2, 3,2 ,4,4,4,1 ,4,1,4,4, 2,4
, 2 , 4 , 5, 6 , 7 , 4 ,3, 4 ,0 ,

EL NUI'ERO DE CLASES DE CONJ1J6ACION DEL 6RUPO ES: 16
EL VECTOR CONJ1J6ACION DEL 6RlJ'O ES:
1200 ( 1) 50 ( 1) 4B ( 3) 40 ( 1) 12 ( B) 10 ( 1) B ( 1 )

20

ESCRIBE EL NUI'ERO DE SENERADORES DE N
ESCRIBE EL TIPO DE N 2, 2 , 2 , 2 ,
ESCRIBE EL NUMERO DE SENERAOORES DE K 3
ESCRIBE EL NUI'ERO DE SE~RAOORES E HMRSOS DE 1( 5
ESCRIBE LOS INVERSOS DE LOS SENERADORES DE K 4 , 5 , 3 , 1 , 2 ,
ESCRIBE LAS I'IATRICES DE CIlNJUSACION 0, 1 , °,°,°,°, 1 , °,°,°,°, 1 , 1 , 1 , 1 , 1 ,
1,1, 0 , 0,1, 0, 0, 0, 0 ,1 ,1,1 ,1 , 0 ,1, 0 ,1, 0, 0, 0, 0 ,1 , 0 , 0, 0 ,1,

1 , 0 ., 1 , 1 , °, 1 ,
ESCRIBE EL VECTOR DE LAS RELACIONES DE K 5 , 1 , 1 , 1 , 1 , 1 , 3 , 2 , 2 , 2 , 2 , 3 , 3 , 4 , 2

,1 ,2, 1,9 , 4,4 , 3 , 1 , 1, 2,1 , 1, 3 , 0 ,
EL NUl'ERO DE CLASES DE CONJ1J6ACION DEL 6RUPO ES:

12
El VECTOR COOJUSACIll4 DEL 6RlJPO ES:

1920 ( 1 ) 128 ( 1) 48 ( 1 ) 32 ( 2) 16 ( 2 ) B ( 2 ) 6 ( 2 ) 5 ( 1 )

ESCRIBE EL~ DE GENERADORES DE N 4
ESCRIBE EL TIPO DEL SUBGRUPO N 2, 2 , 2 , 2 ,
ESCR lBE El Nlt1ERO DE 6EN. DEL SUB6RUPO K 2
ESCRIBE El TIPO DEL SUB6RlJ'OK 6, 2 ,
ESCRIBE LOS VALOOES DE LAS MATRICES DE CltlJ.

, 1 ,1,1 ,0 ,0 ,0 ,0 , 1 ,0 , 0 , 1 ,0,
El NlJ1ERO DE ct.AsES DE CONJUSACION 6RlJPO ES:
El VECTOO CONJUGACIll4 DEL 6RUPO ES:
192 ( 1 ) 64 ( 1 ) 4B ( 3 )



EJEMPLO 5

ESCRI BE EL NUMERO DE GENERADORES DE N 2
ESCR IBE EL TIPO DE N .4 , 4 ,
ESCRIBE EL NUMERO DE GENERADORES DE K 6
ESCRIBE EL N\J1ERO DE GENERADORES E INVERSOS DE K 7
ESCRIBE LOS INVERSOS DE LOS GENERADORES DE K 1 , 2 , 3 , 4 , 7 , 6 , 5 ,
ESCRI BE LAS MATRICES DE CONJOOACION 3 , O , °,3 , 3 , 2 , °,3 , 3 , °,2 , 3 , 1 , °,°,3 , °, 1 ,

3 ,3,1,0 ,3,3 ,
ESCRIBE EL VECTOR DE LAS RELACIONES DE K 2, 1 , 1 , 2 , 2 , 2 , 2 , 3 , 3 , 2 , 4 , 4 , 4 , 1 , 2 , 1 , 2 ,

4 ,1 , 3 ,1, 3,4, 1 ,4 ,1 ,4,4,2, 3 ,2 , 3,4, 2,4, 2,4,4, 3 ,4, 3 ,4, 3 ,5,5,
5, 2,6,6,4,5 ,6,5,6 ,4,1,7 ,1,5 ,5, 3,2,7,2,5,4. , 2,7, 3,5,5 , 4 ,2,7
,4,5,4,1,6,1,6,5, 3,2,6 ,2 ,6,4, 3,6,3,6,6,4,3,1,6,4,6 , 0,
EL NUMERO DE CLASES DE CDNJUGACION DEL GRUPO ES:

33
EL VECTOR CONJUSACION DEL GRUPO ES:

15!06 ( 1) 512 ( 1) 384 ( 1) 256 ( 2) 192 ( 1) 128 ( 7) b4 ( 6) 32 ( 4) 16 ( 6) 12 ( 4 )
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normal connection in S-manifolds whos e invariant f-sectional

L. M. FERNÁNDEZ

i nv a r i a nt

has defined[ 1 ]) ,(Blair,

for · an i nv a r i a nt submanifold of

Blair,

in an S-manifold of constant

INTRODUCTION.- D.

f-sectional curvature to be totally geodesic.

codimension 2

obtained a condition

of invariant submanifolds of S-manifols. Specially , they have

Tsuchiya , [4]) , have investigated some topics i n the geometry

[ 5 ] and Kon, [6]). Kobayashi and Tsuchiya, (Kobayashi and

submanifolds of codimension greater that 2 and wi t h f lat

The purpose of the present note is to study invar iant

curvature is constant and to obtain a condition for them to be

manifolds. On the other hand, many authors have studied

invariant submanifolds of Sasakian manifolds, (see, e.g. , Kon ,

o.

S-manifolds wh i c h reduce, in a special case, to Sasakian

I n [1] , S-m ani f o lds , which r e duc e i n a s pecial case to Sasa­

k i an mani f o l d s , we r e de f i n e d . In t his note, a condition for a n

i nvar iant s ubmanifold of codim~nsion greater t ha n 2 i n a n S-mani­

fol d to b e t ota l ly geodesic i s obtaine d .

ON TOTALLY GEODESIC INVAR IANT SUBMA NIFOLDS OF ANS-MANIFOLD

Dpt o.: Algebra , Comp utación, Ge ome t rí a y To pología .

Fa c ultad d e Ma t e má t i c a s . Universida d de Sevilla .

Apd o . d e Co r r e o s 1. 160. 410 80 SEVI LLA (E s paña) .

Rev . Acad; Ci enci as Zaragoza , 43 (1988 )
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The Gauss - Weingarten formulas are given by

~ is the Weingarten

R(X,Y,U,V) = RO(X,y,U,V) - g([~,~]X,y),

X,YET(M), U,VET(M).l,

We denote by ~ the covariant differentiation in Nn and~.

(1. 2)

given by

endomorphism associated with V and it satisfies:

where [~,~]X = ~X - ~X.

g(~X,y) = g«(}'(X,Y) ,V).

We denote by R, R and RO the curvature tensors associated

with ~, 'V and ° respectively. If RO vanishes identically the

normal connection ° is said to be flato The Ricci equation is

( 1.1)

~XV -~X + 0XV, X,YeT(M), VET(M).l,

where D is the connection in the normal bundle, a is the

by 'V the covariant differentiation in Mm determined by the

second fundamental form of Mm,

l. PRELIMINARIES.- Let Nn be a Riemannian manifold of

on

induced metric. Let T(N) (resp. T(M» be the Lie algebra of

vector fields on Nn (resp. on ~) and T (M).l the set of all

vector fields normal to ~.

dimension n and Mm an m-dimensional submanifold of Nn. Let g

be the metric tensor field on Nn as well as the induced metric

section 2, definitions and sorne properties of S~manifolds. In

surnmary of notations and formulas for submanifolds and, in

totally geodesic. To this end, in section 1, we give a brief

section 3 we get the main resulto



zero.

are dual

ong

if

a Riemannian metric

such that,

exists

f-structure with F closed is called a

g(X,Y) = g(fX ,fY) + ~(X,Y), X,YeT(N),

fields

A normal

(2.2)

F(X,Y) = g(X,fY), X,YeT(N).

~a(~~) = °a~i f~a = Di ~aof =Oi
2

f = -I + ¿ ~a 0 ~a' a,~e{l, ... ,s},
a

N2n+ s is said to have an f-structure with complemented frames.

is defined by

K-structure and N2n+ s is called a K-manifold. In such a

25

[f,f] + 2¿ ~ 0 d~ = O,
a a a

where [f, f] is the Nij enhuis torsion of f. Moreover, i t is

Further, the f-structure is said to be normal if

1-forms, then

manifold, the ~ are Killing vector fields, (Blair, [1]).. a

Let ~ denote the distribution determined by _f2 and ~ .the

complementary distribution. ~ is determined by f2 + I and

where ~(X,Y) = ¿ ~D(X)~D(Y) . The fundamental 2-form F on N2n+ s

D

satifying, (Yano, [7]):

spanned by ~l' .. . '~s. If Xe~, then ~a(X) = O, for any a and if

known that there

(2.1)

vector

Finally, the submanifold MID is said to be totally

geodesic in Nn if its second fundamental form is identically

2. S-MANIFOLDS. - Let N2n+ s be a (2n+s) -dimensional manifold

with an f-structure f of rank 2n. If there exist on N2n+ s
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invariant f-sectional curvature k, then its curvature tensor

theN 2n+s
. ,

[ 1] ) . For the

X, YeT (N) .

an S-manifoldonof g

-fX, XeT(N), ae{l, ... ,s},

= L[g(fX,fY)~a + ~a(Y)f2xJ,
a .

connection ~

- 2F(X,Y)F(Z,W)}, X,Y,Z,WeT(N).

R(X,y,Z,W) = ¿ {g(fX,fW)~a(Y)~~(Z) -
a,~

- g(fX,fZ)~a(Y)~~(W) + g(fy,fZ)~a(X)~~(W) -

- g(fy,fW)~a(X)~~(Z)} +

+ «1/4) (k+3s) {g(X,W)g(fY,fZ) - g(X,Z)g(fY,fW) +

+ g(fY,fW)~(X,Z) - g(fY,fZ)~(X,W)} +

+ (1/4) (k-s) {F(X,W)F(Y,Z) - F(X,Z)F(Y,W) -

In the case s = 1, an S-manifold is a Sasakian manifold.

(2.5)

with certain conditions is an S-manifold. In this way, a

space . of a principal toroidal bundle over a Kaehler manifold

(Blair, [2]), (Blair, Ludden and Yano, [3]). Thus, the bundle

For s~2, examples of S-manifolds are given in (Blair, [1] ) ,

has the form, (Kobayashi and Tsuchiya, [4])

an orthonormal pair spanning the section. The sectional

Aplane section rr is called an invariant f-section if it

2n+sis determined by a vector Xe~(p), peN , such that {X,fX} is

curvature K(X, fX), denoted by H(X), is called an invariant

f-sectional curvature. If N2n+ s is an S-manifold of constant

following were also proved:

Riemannian

manifolds have been studied in (Blair,

A K-structure such that F = d~a' a = 1, ... ,s, is called

an S-structure and N2n+ s is called an S-manifold. These

(2.3)

(2.4)

XeM, then fX = O.
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an invariant submanifold of an S-manifold is such that

an

fX = TX + NX,(2.6)

(2.7)

and, so, m = 2p+s. For later use, we prove the following

Lemma 2.1.- Let M2p+s be an invariant submanifold of

Proof: By using the Weingarten formula (1.1), (2.4) and

the fact that Mm+s is an invariant submanifold, it is easy to

show that AfVX = f~X. Now, if YeT(M), we have

g(AfVX,y) = g(X,AfVY) = g(X,f~Y) = -g(~fX,y)

l lfVeT(M) , for any VeT(M) . Moreover, it is an S-manifold too

. 2n+s l
S-man~fold N . Then, for any XeT(M), VeT(M) , ae{l, ... ,s}:

it defines an f-structure in the tangent bundle. On the other

hand, if one of the ~a is normal to Mm, then T =O, because

g(X,fY) = F(X,Y) = d~a(X,y) = O, X,YeT(M),

The submanifold ~ is said to be invariant if all of ~a

(a 1, ... ,s) are always tangent to ~ and N is LderrtLcaLty

zero, i.e., fXeT(M), for any XeT(M). It is easy to show that

tangent bundle. It is easy to show that if T does not vanish,

normal component of fX. Then, T is an endomorphism of the

tangent bundle and N is a normal-bundle valued 1-form on the

where TX is the tangential component of fX and NX is the

introduced as a canonical example of an S-manifold playing the

role of complex projective space in Kaehler geometry and the

odd-dimensional sphere in Sasakian geometry.

Now, let ~ be an m-dimensional submanifold immersed in

an S-manifold N2n+s. For any XeT(M), we write

generalization of the Hopf fibration rr':S2n+1~~~n is
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Ricci equation (1.2) and Lemma 2.1, we have

and (2.7) holds.

anLet M2p+s be

such that the normal

(s-k)g(fX,fY) = 4g(~X,~y).

Now, we prove

Theorem 3.2. - Let M2p+s be an invariant submanifold of an

. 2n+s 2p+s
S-man~fold N (k). If the codimension of M is greater

than 2, then the normal con~ection of M2p+s is flat if and

only if k = s and M2p+s is totally geodesic.

Proof: From the Ricci equation (1.2) and (2.5), i t is

clear that if M2p+s is totally geodesic, then its normal

connection is flato Now, we suppose that M2p+s is not totally

geodesic. We can choose a local field of orthonormal frames

for vector fields in M2p+s in the form

R(X,fy,V,fV) = 2g(~X,~y),

for any vector field X,YeT(M) and any unit vector field

V~T(M)i. Now, from (2.5) we obtain

Then, we get the following

proposition 3.1.- Let M2p+s be an invariant submanifold of an

S-manifold N2n+s(k) with flat normal connection. Then, k~s and

the equality holds if and only if M2p+s is totally geodesic.

(3.1)

invariant submanifold of N2n+s(k)

connection of M2p+s is flat, i. e., RD = O. Then, by using the

f-sectional curvature is a constant k.

3 . INVARIANT SUBMANIFOLDS WITH FLAT NORMAL CONNECTION. - In

this section, let N2n+s (k) be an . S-manifold whose invariant
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is of constant invariant f -sectional curvature.

again, that

~ +~ = O,

and fV. Regarding to (3.3), it follows that g(~X,~y) = O,

for any X,YeT(M). Consequently, the vector fields

~(E1)'" .,~(E2p) ,~(E1)'·· · ,~(E2p)

are linearly independent, which "is a contradiction. Therefore,

M2p+s is totally geodesic and k = s.

invariant submanifold of codimension 2 in an S-manifold

N2n+s(k). Then, 1f"l+s is totally geodesic if and only if 1f"l+s

Finally, for codiroension 2, we have the following

Theorero 3.3. - (Kobayashi and Tsuchiya, [4]) Let 1f"l+s be an

" ~

for any orthonorroal vector fields V,WeT(M) . Thus, froro (1.2)

and (3.2), we get

R(X,y,V,W) = 2g(~X,~y), X,YeT(M).

Using (2.5), we obtain

{E1,···,Ep,Ep+1 = fE1,···,E2p = fE p'€l'···'€S }·

If ~(Ei) = O, for soroe unit vector field VeT(M)~, the~,

froro (3.1), we get that M2p+s is totally geodesic, by virtue

of Proposition 3.1. Thus, ~(Ei) ~ O, for any Ei and V, and

so, ~(E1), ... ,~(E2p) are linearly independent.

on the other hand, it is easy to show, by using (3.1)

(3 .3) (s-k)g(X,fY)g(V,fW) = 4g(~X,~y).

If the codiroension of M2p+s is greater than 2, we can

take a unit vector field W in T(M)~ which is, orthogonal to V

(3.2)
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UNIFORMLY CONTINUOUS PROPER ENDS
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We i ntr o d~ce h e r e t wo kind of e n ds whi ch are re lated wit h

t he me t ric s t ructur e of the space, a n d so we can get a me t r i c

comp let i o n b ased on the definition given h ere. Wi th this comple ­

t ion, each Peano's cont i nuum i s obt ained a s t he s e t of e n d p o int s

of a me t ric spa c e hom e omo rphi c t o S l x [ O, l) . Th e r e l a t i o n b e twe en

b oth e n d s a n d t he ma in p r operti e s o f t hese e n d s a n d t he me t r i c

comp letion a r e s tudi ed.

In this paper, all of the spaces will be metric spaces and the
subspaces will be with the induced metric. J will denote the closed-open

unit interval [0,1) and by up-rnap we will understand a uniformly
continuous and proper map.

1.- Up-ends

We give here two definitions of up-end which are related with
the definition of ends given in [1].

1.-Definition. i) Two up-maps f,f': J~ X are said to be Fup-related if
there exists no e :N such that for all n ~ no there exists a path fn from

f(1-1/n) to f'(1-1/n) and the length of fn tends to zero when n grows to

infinity. Each class under this relation will be called a Fup-end of X. The
set of all the Fup-ends of X will be denoted by FFup(X).

. ii) Two up-rnaps f.f": J ~ X are said to be up-related if there
exists a up-map H: M ~ X, where M = {(x,y)/OS;x<1, OS;y<1-x), such
that H I{y=O) agrees with f and H I{y=l-x) agrees with f ', Each class

under this relation will be called a up-end of X. The set of all the up­

ends of X will be denoted by Fup(X).
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2.- up-completion of a space.

3.-Propos1t10n. There exists a map '1': FFu~(X) ~ Fup(X).

is a subset of the

metric. X will be

will be called end

It is easy to see that X = (X U F(X))/it

completion of X, and so we can give in X the induced

called the up-completion of X and the points of X-X
points .of X.

2) Obviously, if the distance between X and Y is larger than zero,

the up-eompletion of the union of X and Y is the union of the up­
completion of these spaces, but this is not true in general, for instance, if

X is like in 1) and Y is the set of the points of the sequence {1 -l/n} it is

4. -Examples. 1) The up-completion of a space can have up-ends: let X be
all of the points of J except the points of the sequence {l-l/n}.

Obviously, the end points of X are the points of this sequence, because it

is impossible to get the point 1 of [0,1] via continuous map from X, so X
is equal to J which has a up-end.

If F(X) 1S the set of ends of X (either Fup -ends or up-ends), it 1S

not possible, in general, to define a metric on X U F(X), such that X is a
dense subset and preserve the natural covergences, thus at the first
time it is necessary to do a quotient in X U F(X) and so a and [3 ends of
X are said to be related (denoted ait (3) if there exist f,f': J ~ X
representatives of a and [3 respectively such that lim d(f(x),fl(x))=O.

The proof 1S easy from the definition. Later on we will make a
study of this map, "before this it is necessary to introduce the notion of

up-completion:

2.-Examples. Obviously, the definition given in 1 "depends on to the
metric of the space, "for instance, the open interval (0,1) has two Fup­

ends and two up-ends, however the real straightline has not Fup-ends or

up-ends.
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From this definition it is easy to see the followingproposition.

5.-Proposition .. The up-completion of XxY agrees with XxY.

and theWe study here the relation between the proper
Freudenthal ends with the up-ends and the Fup-ends.

IO .-Proposition. Let X be a compact connected space, given
M = (X}, ... ,xnJ subset of X, such that for each x i e M, there exists (V~J

basis of neighbourhoods of xj, with V~- (x¡) path-connected. If Y = X-M,

then Y has n Fup-ends.

\

9.-Proposition. a) Each metric end a of X defines a point of the

completion of X; this point will be denoted by xu.
b) A pro~er end a is accessible if there exists f: J ~ X

representatives of a such that the net (J,f) converges in X.

8.-Definition. A proper end a is said to be accessible if there exists a up­
map representative of a.

3.- Accessible ends .

6.-Proposition. a) All up-map f: X ~ Y extends to f: X~ Y.
b) If two metric spaces are up-homeornorphics, then their up­

completion are homeomorphics.

easy to see that the up-completion of X U Y is equal to [0,1] and X U Y
is equal to J.

7.-Examples. The inverse of Proposition 6 b) is not true in general, for

example, let Xbe the set of the natural numbers and Y the points of the

sequence {l/n}. Obviously, X =X, Y = y and X and Y are homeomorphics

but not up-homeomorphics .



Proof. X is T2 and locally path-connected and thus given xj there exists a

countable base . of decreasing path-connected neighbourhoods {Vn} of xj

such that v; n (X- Y)=0.
Given f, f': J ~ X up-maps with lim f(x) = lim f''(x) = xj ,

without loss of generality, we can suppose that f(J) e VI, t(J) e VI
and f(x), f''(x) e V n if l-l/n:S; X <1. Then for each Vn there exists a path

fn contained in Vn from f(l-l/n) to f'(l-l/n) . Thus we can define a up­

map h from M to X, where M is the following space:

M={(x,y)/x=l-l/n, O:s;y:s;l-x : neN} U {(x,y)/y=O, ' O:s;x<1 }

U {(x,y)/y=l-x, Osx-c l ]

h will be a relation between f and f'.

ll.-Remark. From the last Proposition we know that, when we are in

good conditions, the number of Fup-ends .agrees with the number of

Freudenthal's ends.

It is easy to ¡Jrove the following Proposition.

l2 .-Proposition . Let M be the interior of a closed manifold with

boundary aM, then .M= M U aMo

l3 .-Theorem. Let C be Peano's continuum, then there exists a metric

space X homeomorphic to si-r such that X-X agrees with C.

Proof. If C is a Peano's continuum, we know that there exists a quotient

map f: S l ~ C (Hahn-Mazurkiewicz's Theorem). Let Mr the cylinder of

this map, if Mr is a metric space we claim X as Mr-C (space

homeomorphic to S Ix J) and from Proposition 12 we know that X-X

agrees with C; but it is a metric space from Theorem 20, Chapter 5 and

Theorem iz, Chapter 3 of [2].

l4.-Remark. Obviously, the metric of X in last theorem depends on to the

choice of f. It is easy to give examples of two maps f and g such that Mj

and Mg are not up-homeomorphics (In other words, such that Mj and

M g are not homeomorphics), let C be the unit closed interval [0,1] and

34



continuum.
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4.- Relation between up-ends and Fup-ends.

g: SI ---4 [0,1]

(x,y) ---4 (x+ 1)/2
f: SI ---4 [0,1],

(x,y) ---4 Ixl

b) : If Y is the complement in a compact of a set with a finite
number of points, in the same conditions as Proposition 10, Y could have

a number of up-ends distinct of n.

Let Y be the following set:

y = {(x,y)/x=1-1/n, O:::;y:::;l-x : neN} U {(x,y)/y=O, O:::;x<1}

U {(x,y)/y=l-x, O:::;x<1}

It is easy to check, thanks to Theorem 16, that Y has as ends as power

17.-Remark. a) The last Theorem means that the relation between Fup­

ends and up-ends is the same as in Freudenthal's ends and proper ends

showed in [l].

15.-Definition. Let a be a up-end of X (or Fup-end of X), we call open *­

neighbourhood of a, to any open V of X such that for any f: J ---4 X
representative of a, the set f-1(X-V) is a compact subset of J.

Proof. If a is a up-end of X, we intersect a countable base of Xa with a

suitable *-neighbourhood of a and we get a countable base of *­
neighbourhood of a, and now, the proof follows in the same way as in

[3].

It is easy to see that Mj is not a manifold but, on the other hand, Mg is a

manifold.

16.-Theorem. Let 'JI: FFup(X) ---4 Fup(X) be the map of Proposition 3. If a

is a up-end of X then 'JI-1('JI('l)) is in an 1-1 relation with liml {1to(Vn)}

where {Vn"} is a countable base of *-neighbourhood of 'l. Thus it verifies:

a) If the inverse system satisfies Mittag-Leffler's condition then
'JI- 1('JI('l)) is only one end.

b) In other case, 'I'-l('JI('l)) has the continuum power.
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CENTRAL SEQUENCE DF LIE ALGEBRAS

J.R. GÓMEZ

Depart ament o d e Mat emá tica Aplicada. ' Es c u e l a Univers itaria
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We d e f in e t he centra l seq ue nce of a reso luble or n i l po­

tent Lie a lgebra an d we st udy sorne of its pro perties . This

concept gives a toul fur t he classificatiun of such alge ­

bras . We ~tudy its relation wit h t he nilputent sequence uf

n i l pot en t Lie a l geb ras an d we give a c haracterization uf

fi liform Li e a lgebras .

1. INTRODUCTION.

Nowadays, the classifícation oí resoluble and nilpotent Líe Algebrae ia an open prob­

lem, although the elasificatlon oí semisimple Lie Algebras was obtained long time ago.

Dixmier classlñed in 1958 the nllpotem Lie Algebras of dímenaion $ 5 (Cí. 131),

and Morosov [Oí, 18]) obtalned tbe c1assification of nilpotent ones of dlmension $ 6.

Bkjelbred and Sund h8ll gol (Cf. 1101) a c1assificstion procedure for dimension n+ 1, if

it is known theclaeiñcatlon oí nilpotent Lie Algebras oí dimenslon $ n. Tbis procedure

is complex, and has been applied only to dimension 6, obtalnlng, in 1986, the Morosov's

resulta. "?J ~

The difficulties oftbis clasiñcatlon procedure on dimension 7 are not casual; it is well

known tbat the case oí dimension 7 is particularly important and interesting in thie

álgebras: thisis the minimal dimension with a colection oí elements and phenomena. no

present in dímension s 7, such as tbe existence of maximal abelian Ideals oí different

dimensiona, the existence or cominnes series of non isomorphic algebras and problema
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rela~ing witb ~he concept of sba~ified nilpotent álgebra, The importaace of dimension

7 in Pbysic iB great too, because the manifolds of ailpotent group ofminima.l dimension

7 appear in the ~heory of KaluJl3-KIein and in the transition of ClaaBical Mecbanic to

Quantic Mechanic.

Magnin !Rudied in 1986 (Cf. 17]) the clesalñcation of nilpotent Lie Algebras of di­

mension < 7, obtaining a plus fine classification ~han Morosov's one for dlmenslon 6,

determining all the nilpotent LieAlgebras ofdimensi ón ~ 7 with a given Líesnbalgebra

ofdimension 6 and justifying ~hat the c1assification given in 1964 by Safiullina (Cf. 16])
ie not complete. Gose and Ancochea (Cf. 11J and 161) gave a cl888ifica~ion of nilpotent

"Lie Algebras of dimensión 7, and studied, in 1987 (Cf. [4]), the classification of fillform

onesof dimension 8.

Lópes Gars6n (Cf. [6]) bBtll ssudied tbe choose of special bases, with elements that

define ideals of dimension 1 (1987). These elemems may be of NO cl888el1:cen~ral and

normal elements. H Lisa Lie Algebra, a central element is an element of the center of

the algebra, and a normalelement is an element Y E L such tba~

IY,ZJ =aY for all Z EL

where a is an element of the basical field of L. U will be snpposed in these notes that

the fields X or Xí are central ones and Y or Yí are normalones.

2. CENTRAL 8EQUENCE OP LlE ALGEBRA8.

Let L be a Lie Algebra of dimension n, and let Z1 be its center, if exists. Let L(2) be

tbe qnotient álgebra L/Z1 and Z2 its center, if existe. Let L(3) be tbe qnotlent algebra

L('J)/Z'J and Z3 ib center, if exists... H L(1) is the álgebra L and L(í) ÍlI 'he quotlent

algebra L(i-1)/Z¡-1, 'hen Z¡"will design the ceníer of L(í)1 if exists. This sequenee is

not an infinitasequence, because it will happen tbat there ls a L(í) without cemer or

such that its center is L(í)' Let L(q) be the last one appearing on tbe heratlon of tbis

process.
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DEFINITION 1. Let L be a Líe. Algebra, and le.t Z¡, 1 ~ i ~ q, the centers that

mar be obtaíned on the above prOCeB8.

The vector

where

z¡ = dím Z¡ . 1 ~ i ~ q

ís called central sequence oE the Líe algebra L.

Henceíorth, Zq will denote the dimension oí the last center obtained by means oí the

aboye constructlon, unless the center oí L ls O, where the central sequence oí L is O.

The numbers z¡, 1 ~ i ~ q, must satisfy Z¡ ~ n, 1 ~ i ~ n. Furthermore, they satiafy

PROPOSITION 1. Let L be a Líe algebra. It Íg held

PROOF:

If the last equality is held, it exists some basís in Lq such that a11 its elements (except

just one) are central ones. And this is impossible, because the bracket oí this clase and

any other is.null. Hence, thia clase is a central one, what is a contradiction, and it ie

held
q

:z¡=n
1=1

Q.E.D.

The central sequence oí a nilpotent Líe algebra holds too the next result :

PROPOSITION 2. H Lis a nilpotent Lie aIgebra, it is held

q

:z¡=n
1=1

and
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PROOF:

If L is nilpotent, exists r E N such that L; = {O}. This fact stratifles L so that,

there is a basis {Xl, X~, ... ,Xn } of L, such that the bracketsof i~s elements are lineal

combinations of the elements of {Xl,X~"",Xc2}' C~ ~ n (tha~ is a basis of L¡)j the

bracketsof these C~ elements and the elements of the basis of L are linealcombinations

of the elements of {Xl, X:¡, ... ,XCI}' Ca ~ C:¡ (~ha~ is a basisof L~), and so on. On the

rth-step, the elements of {Xl, X:¡, ... ,Xc.}, Cr ~ c, for i = 1,2, ... , r - 1, sa~isfy ~ha~

their brackets for the elements of {Xl, X~, ... , Xn } are nu11.

Hence, the brackets IX" XiI, 1 ~ i, j ~ n, are null or elements of sorne class of any

Zi, 1 ~ i ~ q. Hence, 3011 the elements Xi, 1 ~ i ~ q, are in any class belonging to sorne :

Zi, or, what is the same
q

í:Zi = n
1=1

The dimension of Zq is Zq. If Zq = 1 then it exists only one basic element in Zq. By

a similar way to proposition 1, it is obtained that this element belongs to Zq-l.

Q.E.D.

Rea11y, the second part of proposition 2 says that dim Ll ~ dim L - 2

PROPOSITION 3. It is held:

a) lf
q

EZi = n
1=1

then L is an algebra without normallields.

b) If L has got a normallield, then

e) li L has got m lineady independent normal fields, then

q

Lz,~n-m-l
i=l
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1 s i s m, 1 s j $ n-m[Vi,X¡] = a¡iY¡

[Y,X¡! =a¡Y

q

,",z· < n - 2L.t 1_

¡=l

Q.E.D.

q

Ez¡=n
1=1

IVi, y;.] =O

b) Let Y be a normal field oí L. By the reasoning aboye,

This sum is not n - 1 (by proposition 1). Hence

a) A normal field Y oí L satlsfíes

c) In this case, it can be choosen a basls of L such that

PROOF:

where Y¡, 1 $ i $ m, are normal fíelds. It is held

being Borne.oí the a¡i not equal to O, for each i, because in other case, as

(because they are normal fields), all the Y¡ are central and not normal fields.

where {Xl' X2 , ••• , Xn } constitutes a basis oí L, being sorne oí the a¡ not equal to O.

Hence, the clase oí Y is not a central class and there ls not a central field in L because

Hence, at least one Xi (1 $ j $ m - n) does not belong to Z¡, 1 $ i $ m, where c)

holds,



1 s i s z¡, 1 s j s n

Zl +1 :::; i:::; Z2,Zl +1 :::; j :::; n

[X¡,XiJ:::::: O,

IX¡,XiJ= 2:i;1 a~iXI,

42

q-~

Ca :::; l: Z¡ = n - Zq - Zq-l
1=1 .

q-l

C2:::;¿;Z¡=n-Zq
1=1

k-~ q-k+1

Ck :::; n - í: Zq_¡ = í: Z¡,
1=0 1=1

Similarly, it is held that:

IX¡,XjJ= 2:i~11 a~iXI, Zq-l +1:::; i:::; Zq',Zq-l + 1:::; j:::; n

Hence, a generator system oí L1 is constituted with the ñelds

i.e., it is held that:

constltute a basis oí Z¡ (2 :::; i :::; q). Le., it is held that the brackets are:

is a basis oí Zl and the classes that content the elements oí

PROOF:

Really, a nilpotent Lie álgebra is such that a basls oí its may be spllt in disjoint

subsets {Xl'''' ,XzJ, {Xz1+I,'" ,Xz,}, ... , {XZq_1+1,'" ,XB } , holding that

PROPOSITION 4. If(n,c~,Ca, . .. ,cr) and (Zl,~, ... ,Zq,O) are thenilpotent and

central sequences of a nilpotent Lie algebra L, it is held that r = q and



q-k+1 k-2

C!; s r; zi:::: n -E Zq-i
1=1 1=0

would belong to the previous stratum, i.e., they would generate central classes in L(k-1)'

that is contradictory with the íad that these classes constltute a basis oí Zk~

Q.E.D. :.
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Consequently, a nilpotent Lie algebra may be stratífied 80 that the central elements are

in the first stratum; the elements such that theír brackets with the rest oí the elements

are either null, either non null central elementa, are placed in the second stratum, and,

in general, we place in the ith-stratum the elements such that their brackets with the

rest oí the elements are either null, either elements oí the i - 1 previous strata, holding

that it exista a bracket (as minimum) oí each element of the ith-stratum which islinear

combination of one or more elementsof the (i -l)th-stratum.

only because, ií they were, the elements oí

and it ls impossible they are linear combinatlons oí the elements oí

must be linear combinationa oí the elements oí

and the elements oí

and, generally,

Te> see that r:::: q [and, consequently, that 2 ~ k ~ q in the expression aboye), it is

sufficient to see that the brackets oí the elemenís oí



COROLLARY. Let L be a n-dimensional Lie algebra. Lis fili{orm i{ and only i{

its central sequence Is

(1, ... ,1,2, O)

PROOF:

An n-dimensional filiform Lie álgebra ls a nilpotent Lie algebra with nilpotent se­

quence

(n,n-2¡n-3, ... ,3,2,1)

Let

be its central. sequence, It holds

and hence,

Zq ~ n - C2 = 2

As L is nilpotent, Zq ~ 2; therefore, Zq = 2. On the other hand, it holds

C3 ~ n - Zq - Zq-l

and hence

Zq-l ~ n - Zq - C3 = 1

Therefore, Zq-l = 1. Similarly, it holds

C4 ~ n - Zq - Zq-l - Zq-2

and hence

Zq-2 ~ n - Zq - Zq-l - C4 = 1

Therefore Zq-'J = 1.

In general, let's suppose that

Zq-l = Zq-'J = . . '-= Zk+l = 1
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and, naturally, Zq = 2. It holda that

q-k

Cq-k+:¡ ~ n - 2: Zq-i
1=0

and hence

q-k-l

Zk ~ n - 2: Zq-i - Cq-k+:¡ =
1=0 ;

=n - (2- (1 +...+1)) - (n - (q - k +2)) = 1

and therefore Zk = 1.

Conversely, if the centralsequence oí an n-dimensional LieálgebraL ls (1,.. . , 1,2,O),

it can be chosen a basis {Xl"'" Xn } oí L auch that the center oí L is generated by

Xl, the bracketsoí X:¡ and the other fields are nul1 or multipleof Xl (and any musí be

~ O), the bracketsoí Xa and the other are linear combinations oí Xl and X:¡ (and sorne

oí these rnust be ~ Oand sorne coefficient oí X:¡ must be ~ O); in general, the brackets

oí the fíelds Xi, 2 ~ i ~ n -1, are linearcombinations in {Xl, ... ,Xi-l}, beingsorne of

these ~ Oand sorne coefficient oí Xi - l ~ O. Final1y, the brackets oí Xn and the other

fields are linear combinations oí the fields Xl, ... ,Xn - :¡, beingsorne oí these ~ Oand

sorne coefficient oí Xn- :¡ ~ O.

Thereíore, this álgebrais nilpotent ( because Ln- l = {O} ) and fíliform [because the

nilpotent sequence ls (n,n - 2, n - 3",.,2,1)).

Q.E.D.
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l.INTRODUCCION

Los problemas de la extens ión y clasificación de aplicaciones contin uas han sido

fundamentales en el desarrollo de la Topología Algebraica . La teoría de obstrucción es un

intento de encontrar una solución común para estos problemas. H. Whitney [26] sitúa el punto

de partida de esta teoría en un artículo de Hopf del año 1933 [17] en el que clasifica las
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aplicaciones de un complejo n-dimensional en la n-esfera. En 1937 el propio Whitney [25]

demuestra el teorema de Hopf utilizando técnicas cohomológicas.

En el marco de la teoría Shape, Yu F. Lisitsa [19] desarrolla una teoría de obstrucción

utilizando grupos de homología de Alexandroff-Cech y grupos fundamentales de Borsuk y

obtiene teoremas de clasificación homotópica de sucesiones fundamentales .

T. Porter [22] desarrolla una teoría de obstrucción en pro-categorías utilizando una

teoría de cohomología definida por él con coeficientes en un pro-grupo abeliano.

La categoría de las aplicaciones propias tiene aplicaciones en Topología Geométrica y

Teoría Shape, ver [3], por lo tanto es importante analizar el problema de la extensión y

clasificación de aplicaciones propias. En [12], [13], [14], el segundo autor desarrolla una

teoría de obstrucción para aplicaciones propias utilizando una cohomología con coeficientes en

un morfismo de pro-grupos . Estudia aplicaciones propias de un complejo de celdas localmente

compacto y segundo numerable en un espacio arco-conexo con un solo final de Freudenthal

[10]. Utilizando esta teoría de obstrucción, el cálculo de los conjuntos de clases de homotopía

propia es a veces una tarea dura y complicada, ver [Í3] [14].

Utilizando una cohomología de tipo propio con coeficientes en un morfismo de grupos

abelianos, los autores han desarrollado en [4] ,[6] Y [9] una nueva teoría de obstrucción para­

aplicaciones propias de un CW-complejo propio regular y finito en un espacio arco-conexo con

un único final propio. La ventaja de esta teoría es que permite realizar cómputos de manera

sencilla.

En el presente artículo se comienza a desarrollar una teoría de obstrucción, que

generaliza la anterior, para aplicaciones propias en las que el espacio de llegada puede tener

más de un fmal propio . La categoría elegida para desarrollarla es aquella cuyos objetos son de

la forma (&J,X,A),donde X es un CW-complejo propio regular finito, A un subcomplejo de X

y so una aplicación del conjunto de los finales propios de X, F(X), en el conjunto de los

finales propios F(Y) de un espacio fijo Y. La elección de esta categoría está justificada por lo

siguiente:

J.- Dada una aplicación propia f: A ~ Y, si el, e2 son dos finales propios de A tales

que F(i)(el) = F(i)(e2)' donde F(i): F(A) ~ F(X) es la aplicación -inducida entre los

respectivos conjuntos de finales por la inclusión i: A ~ X, entonces para que exista una

aplicación propia g: X ~ Y que extienda a f (glA=f) es necesario que F(f)(el) = F(f)(e2)

donde F(f): F(A) ~ F(Y) es la aplicación inducida por f.
2.- Si f,g: X -7 Y son dos aplicaciones propias homotópas propiamente, entonces

las aplicaciones inducidas F(f) ,F(g): F(X) ~ F(Y) coinciden .
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Para defmir la nueva teoría de obstrucción se necesitan los grupos de homotopía propia
de Steenrod ~, ~q' los grupos de homotopía de Hurewicz 1tq , y las teorías de

(co)homología propia h(*), E*(*), H*(*), cuya definición se recordará brevemente en el

párrafo 2. En este mismo párrafo se define la cohomología 9 * (gQ,X,A;<p) con coeficientes en

un [:l1tk]-módulo <p, donde 1tk es una categoría cuyo conjunto de objetos es (O,l ,...,k) y

cuyos únicos morfismos son j -7 j para Os j s k YO-7 j, 1 s j s k. Para desarrollar esta

teoría de obstrucción se sigue un método análogo al utilizado en los tratados clásicos sobre este

tema (p.ej. [18], [24]) Yse obtiene un teorema de extensión para aplicaciones propias análogo

al Teorema de Ei1enberg para aplicaciones continuas .

2. PRELIMINARES

Sean X e Y dos espacios topológicos. Una aplicación continua f: X -7 Y se dice

propia si f- 1(K ) es compacto para cada subconjunto compacto-cerrado K de Y. Dos

aplicaciones propias f,g: X -7 Y son homótopas propiamente si"existe una homotopía de f a g

que es una aplicación propia; en tal caso denotamos f.:: p g. Un subespacio A de X se dice que

es propio si la aplicación inclusión de A en X es propia, en este caso diremos"que (X,A) es un

par propio. De modo natural se definen las aplicaciones propias entre pares propios y las

homotopías propias entre pares de este tipo. Un rayo en X es una aplicación propia a: J -7 X,

donde J es el intervalo semiabierto [0,+00) de la recta real IR. Un espacio con rayo base es un

par (X, a) donde a es un rayo en X. Una aplicación propia entre dos espacios con rayo

base f: (X,«) -7 (Y,P) es una aplicación propia f : X -7 Y que verifica t -« = p. Del modo

habitual se definen aplicaciones propias entre pares o triples con rayo base así como las

correspondientes homotopías propias.

Recordamos a continuación algunos invariantes del tipo de homotopía propia que serán

utilizados en el desarrollo de la teoría de obstrucción propia en los párrafos posteriores.
Sea (X,A,a) un par propio con rayo base. En [2] Z. Cerio define ~n(X,a) como

el conjunto de clases de homotopía propia de aplicaciones propias del tipo

f: (sn x J,* x J) -7 (X,a), *e S", f(*,t) =a(t),

bajo la relación de homotopía propia relativa a * x 1. Estos conjuntos admiten estructura de
grupo si n ~ 1 (abeliano si n ~ 2). Notar que ~(X,a) es el conjunto de clases de homotopía

propia de aplicaciones propias de J en X; diremos que es el conjunto de finales propios de X y
lo denotaremos por F(X) . De manera análoga define ~(X,A,a) pero considerando ahora

aplicaciones propias del tipo
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f : (Dn x J,s n-1 x J,* x J -7 (X,A, a)

donde Dn es el n-disco unidad , (son grupos si n ~ 2 Y abelianos si n ~ 3). De modo similar,

el segundo autor en [11] e independientemente Brin y Thikstum en [1] definen los grupos de
homotopía propia ~(X,a), ~(X,A,a) cambiando Sn xJ por sn xJ/sn xO y Dn xJ

por. D'' x J I Dn x O. Pueden encontrarse definiciones alternativas de estos grupos en [15] yen

[23] y un estudio detallado utiliz ando cubos no compactos (Ik x J, donde 1 = [O,ID en [23].

Una relación entre estos grupos y los de homotopía de Hurewicz 1tn viene dada por la sucesión

exacta:

. -7 ~n+I(X,a) -7 1tn+l(X ,a(O)) ~~(X,a) -7 ~(X,a) -7 (1).

Existe una sucesión sirrúlar para el caso relativo.

El homomorfismo q> puede definirse del modo siguiente:

Sea f:(In+l,oIn+l) -7 . (X,a(O)) una "aplicación continua que representa un elemento

~ de 1tn+1 (X ,a(O)). Definimos

G: In x I x OU In x Ox J U oIn x 1x J -7 X

haciendo G(x,t,O) = f (x ,t) si (x,t) e In x 1

G(x,O,s) = « (s) si (x.t) e In x J

G(y,t,s)=a(s) si(x,t)eOIn xI xJ. .

Ahora aplicando la propiedad de extensión de homotopía propia , ver [23.I.l,1l] la aplicación

" propia G se extiende a una homotopía propia F: In x 1 x J -7 X. Definimos q> (() como el

elemento de ~(X,a) representado por FI, donde FI(x,s) = F(x,l,s) . Este homomorfismo

jugará un papel relevante en posteriores párrafos .
Es importante observar que ~l (X,«) actúa en la sucesión exacta (1) (~l (A,«) en el

caso relativo) ver [23.1.6.7]. Se dice que X es ("t)n-simple si la acción de ~1 (X, a) en

~(X,a) es trivial para cada rayo a en X. Si 1t1(X,x) actúa trivialmente en 1tn(X,x) para cada

x e X, se dice que X es (1t)n-simple. Conceptos similares se definen para el caso relativo.

W. Massey desarrolla en [20] la teoría de homología singular H* utilizando cubos

singulares (aplicaciones continu as T: In -7 X). Inspirados en esta teoría pero utilizando cubos

singulares propios (aplicaciones propias T:In -7 X o T:In-Ix J -7 X) los autores definen en [5]

las teorías de homología propia h, E* que se describen brevemente a continuación:

Sea Cn(X) = Qn(X)jDn(X) donde Qn(X) es el grupo abeliano libre generado por todos

los n-cubos singulares propios de X, y Dn(X) el subgrupo generado por los n-cubos

degenerados (un n-cubo singular propio se dice degenerado si existe algún índice i tal que
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T(x¡" "Xi" "Xn) = 'I'(xj ,...x¡', ..,xn) para cada xi, x¡' E I). Se define el operador borde éJ del

siguiente modo:

P't: 1n(X,a) ~ Jn+I(X),
= -
P~: ~(X,a) ~ En+I(X)

que junto con el homomorfismo habitual
P1t: 1tn(X,a(O)) ~Hn(X),

relacionan de un modo conmutativo las sucesiones exactas (1) y (2). También en el caso

relativo.(referimos al lector a [7] y a [23]).

Los autores han elaborado recientemente unas nuevas 'teorías de cohomología que

generalizan las anteriores (ver [8]) y que se utilizarán en este trabajo para desarrollar una teoría

de obstrucción para aplicaciones propias en las que el espacio de llegada tenga varios finales

propios.

Sea F un conjunto finito fijo. Consideramos la categoría p-TOPF cuyos objetos son de

la forma (g,X) donde X es un espacio topológico y g: F(X) ~ F una aplicación del conjunto

de finales propios de X en F; un morfismo h entre dos objetos (g,X) (f,Y) es una aplicación

éJT = .L (-1)¡ «a·O)*T - (a·1)*T)
J.=1 1 1

donde (a¡I)* es el homomorfismo inducido por la i nclusion a¡1 definida por

a¡i(xI,"X¡_¡,X¡+¡",xn) = (xI,.,x¡_¡,l,x¡+I"'xn) donde 1 = 0,1 para i = 1,....n si el dominio

de T es In y si es In-IxJ, 1= 0,1 para i = 1,....n-I y 1= Opara i = n, en tal caso (a¡I)* = O.

El complejo de cadenas que se obtiene se denota por C*(X) y su n-ésimo grupo de homología

.por Jn(X).

Sea S*(X) el complejo de cadenas de los cubos singulares en X (Sn(X) es el grupo

abeliano libre generado por todos los n-cubos singulares de X módulo el subgrupo generado
por los n-cubos degenerados). Se define En(X) = Hn(C*(X)/S*(X». Dado un par propio

(X,A) y un grupo abeliano G se definen de la manera habitual los grupos de homología y

cohomología con coeficientes en G.

La siguiente sucesión exacta relaciona la anteriores teorías de homología:

.. . ~ En+1(X)~ Hn(X)~ Jn(X) ~ En(X) ~ ... (2)

donde Hn(X) denota a Hn(S*(X». Análoga sucesión se obtiene para el caso relativo. Po.r

último, conviene hacer notar que para espacios compactos las homologías H* y h coinciden y

la homología E* es O. Un desarrollo más detallado de estas teorías puede verse en [5] [23]

Para estos invariantes de homotopía propia también existen homomorfismos naturales

de tipo Hurewicz



propia h: X ~ Y tal que f oF(h) = g siendo F(h) la aplicación inducida por h entre F(X) y

F(Y). p-Topp(2) .denot ará la correspondiente categoría de los pares cuyos objetos, denot ados

brevemente por (g,X,A), representan realmente la pareja « g,X), (goF(i),A)) donde F(i) es la

aplicación inducida entre los conjuntos de finales propios por la inclusión i: A ~ X de un par

propio (X,A).
Si F = {eI ,... ,ek}, denotamos por C*(X,g-I(e¡)) al complejo de cadenas de cubos

singulares propios en X asociados a g-I(e¡), es decir,
Cn(X,g-I (e¡)) =<:MX,g-I (e¡))jDn(X,g-I (e¡))

siendo Qn(X,g-I(e¡)) el grupo abeliano libre generado por los n-cubos singulares de la form a

T:In~x ó T:In-IxJ--7X talesque T es propia y F(T) (ooIn-IxJ) E g-I(e¡) (ooIn-IxJ

denota el único final propio de In-Ix J), Dn(X,g-I(e¡)) denota el subgrupo de Qn(X,g-I(e¡))

generado por los cubos degenerados. El operador borde está definido de la manera habitu al.

Al n-ésimo grupo de homología Hn(C*(X,g-I(e¡))) se le denota por Jn(X,g-I(e¡)).
Al n-ésimo grupo de homología del complejo C*(X,g-I(e¡))/S* (X) se le denota

por En(X,g-I(e¡)).

Para cada i =1,...,k, se tiene una sucesión exacta larga

... ~ Hn(X) ~ Jn(X,g-I(e¡)) ~ En(X,g-I (e¡)) ~ Hn_I(X) ~ .. .

Definimos ahora el complejo de cadenas SC*(g,X) en la categoría Ab mc de funtores

covariantesde 1tl( (categoría definida en la introducción ) en la categoría de los grupos

abelianos Ab. SC *(g,X) = {SCn(g,X),an} donde SCn(g,X) denota el siguiente objeto

5-7 ' Cn(X,g-l (eI ))

Sn(X) ;> Cn(X,g-l (e2))

~
Ik Cn(X,g-l (ek))

I¡ denota el homomorfismo inclusión para cada i. El operador an es el inducido por los

operadores borde de los distintos complejos.

Recordemos que Mitchell en [21] demuestra que la categoría Ab 1tK es equiv alente a

una categoría de módulos sobre el anillo de la categoría :l1tl(' Este anillo, denotado [:l1tl(] ,

es el anillo de matrices (k+l)x(k+1) con coeficientes enteros de la forma:

rZOO zOI ·· ·· ·· · ·· ZOk 1
I O ZIl o O I
I O O z22 O I
1................ ........ 1
L O O Zkk J

Puede verse un estudio de esta categoría en [21] y [8].
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Cuando X es un espacio compacto, el único objeto posible asociado a X es (0,X) y

SC*(0,X) resulta ser

Llamaremos n-ésimo grupo se homología propia de (g,X) y lo denotaremos por
9 n(g,X) a Hn(SC*(g,X)). Notar que 9 n(g,X) es el [~n:1C] -módulo representado por:

~~ Jn(X,g- l (e¡»

Hn(X) . > Jn(X,g- l (ez»

.~ :
o,» Jn(X,g- l (ek» '

Si (f,Y) es otro objeto de p-ToPF y h e p-ToPF «g,X),(f,Y», en tonces, como
foF(h) = g se induce de modo funtoria l un homomorfismo de módulos 9 n(h): 9 n(g,X) ~

9n(f,Y ). Así, para cada n, 9 n es un funtor covariante de la categoría p-ToPF en la categoría

Ah n:1(. Además, si h,h': (g,X) ~ (f,Y) son dos aplicaciones propias tales que h ::'p h',

entonces F(h) = F(h') Y 9 n(h) = 9 n(h'). Por lo tanto, 9 * es un invariante de homotopía

propia .

Si A es un subespacio propio de X, definimos los módulos de homología relativa
9 n(g,X,A) como Hn(SC*(g,X,A» donde SCn(g,X,A) es el [~n:1C] -módulo representado

por:

siendo Sn(X,A) =Sn(X)jSn(A) y

Cn(X,A,g-l(e¡» = Cn(X,g-l(e¡» jCn(A,(g o F(i) tl(e¡» .

F(i): F(A)~ F(X) es la aplicación inducida por la inclusión i: A ~ X.

Asociada al objeto (g,X,A) E p-TOPF(2), se tiene la siguiente sucesión exacta larga:

. ~ 9 n (g o F(i),A) ~ 9 n(g,X) ~ 9 n(g,X,A) ~ 9 n-¡(g o F(i),A)~·

Dado un [~n:1C ] -módulo G, representado por:
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~>­
AO - - .-->

<;
Ak,

de la manera habitu al se definen 9 n(g,X;G) y 9 n(g ,X ,A ;G). Propiedades de la s

(co) homología s 9 *(*) pueden verse en [8] . Not ar que si A¡ = O para cada 1 :=:; i :=:; k,

gn(g,X;G) = Hn(X;AO) y que si AO= O, gn(g,X;G) = $ En(X;A¡) 1 :=:; i :=:; k. Igualmente en el
~

caso relativo.

Describimos a continuación la categoría de los CW-complejos propios que generaliza la

categoría de los CW-complejos y la categoría de los complejos cúbicos propios finitos [6].

Estas categorías son adecuadas para el estudio de las anterio res teorías.

Consideramos e~ lRn la norma del máximo ( lIx ll = maxf lx.l I i = 1,...n }, x =

(xl""'xn)) Yusamos las siguientes notac iones:

En =(x elR n l llx ll :=:; l ),

en = [x e lRn I IIxll < 1),

sn-l = (x e lRn I 11 x II = 1),

en+ l = (en x J)-(en x (O}) (n ~ O),

eO = EO = (O).

Definición 2.1 : Un CW-complejo propio es un espacio de Hausdorff X junto con dos

conjuntos de índices An Y Bn para cada entero n ~ Otales que BO= 0 , An n Bn = 0 y

aplicaciones propias

<l>an : En ~ X para cada n ~ OY a E An,

<I>~n : En-Ix J ~ X para cada n > Oy ~ E Bn,

que satisfacen las siguientes propiedades:

PI) X = U <I>_J1(cn) para cada n ~ OY 'Y E An u Bn, donde cn = en si 'Y E An Y cn = enn y r

si 'Y E Bn.
P2) <1>1(cn) n <l>Om(cm) = 0 salvo si n = m y 'Y = O.

P3) <l>llcn es 1 - 1 para todo n ~ O Y 'Y E An u Bn.
P 4) Sea Xn = u <l>yn<cffi) para todo O:=:;m:=:;n y todo 'YE Aro u Bffi'

Entonces,
<l>an(sn-l ) e Xn-l para todo n ~ 1 Y a E An
<I>~n«Efi-l x (O}) U(sn -2x J)) e Xn-l para todo n ~ 2 Y ~ Es,
<ti~ l(EOx (O} ) e Xopara todo ~ E B i -
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P5) Un subconjunto C de X es cerrado si y solo si para cada n ~ OYcada 'Y E An u Bn,

(<I>y")-I(C) es un conjunto cerrado en En si 'Y E An Ó en En-I x J si 'Y E Bn.
P6) Para cada n ~ O, <l>y"(Ln) está contenido en un número finito de subconjuntos de la

forma <l>Bffi(Cffi) para cada 'Y E Affi U Bffi donde Ln = En si 'Y E An Y Ln = En-Ix J si

'Y E Bn·

Las aplicaciones propias <l>y" se llaman aplicaciones características de X, los

. subespacios <l>y"(En) n-celdas compactas de X y los subespacios <l>y"(En-1 x J) n-celdas no

compactas de X. El subespacio Xn se llama n-esqueleto de X, y si Xn = X para algún n se dice

que X es de dimensión finita, el menor n para el que Xn = X se llama dimensión de X. Si

no existe ningún n tal que Xn = X, X es de dimensión infinita. Si X tiene un número finito de

.celdas se dice que es finito. Si cada k-celda admite una aplicación característica inyectiva y su

borde <l>ye(i1Lk) es la unión de (k-l) celdas el CW-complejo propio se dice regular.

Definición 2.2: Dado un CW-corílplejo X, un subespacio L de X se dice que es un

subcomplejo si para cada n ~ O existen subconjuntos An', Bn' de An, Bn, respectivamente,

tales que:
a) L = u <l>y"(cn) para todo n ~ O Y 'Y E An'u Bn'
b) <l>y"(Ln) e L para todo n ~ O Y 'Y E An'U Bn'.

Denotaremos por CWPRF la categoría de los CW-cornplejos propios regulares y

finitos y aplicaciones propias y por CWPRF(2) la categoría cuyos objetos son los pares (X,A)

donde X es un CW-complejo propio regular y finito y A un subcomplejo de X. Notemos que

la aplicación i: A -7 X es propia. Recordemos (ver [9]) que si (X,A) E CWPRF(2) entonces

(X,A) tiene la propiedad absoluta de extensión de homotopía propia (PAEHP), esto es: Dada

una aplicación propia f: X -7 Y tal que existe una aplicación propia F: A x 1 -7 Y con F(a,O) =

f(a) para todo a e A, entonces existe G: X x 1 -7 Y tal que G(x,O) = f(x) para todo x e X y

GIAxI=F.
Sea X un CWPRF. En [9] puede verse un algoritmo de cálculo de las homologías H*,

h YE* de X que describimos brevemente a continuación: El complejo de cubos singulares

propios C*(X) es homotópicamente equivalente al complejo C*(X) = (Cn(X),onl donde

Cn(X) = Jn(Xn,Xn_l) es isomorfo al grupo abeliano libre generado por las orientaciones

elegidas para todas las n-celdas de X, es decir, si o una n-celda (n ~ O) Y a su borde,

notemos que por ser X regular e tiene también estructura de CWPRF. Se define una
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orientación sobre una n-celda a como uno de los dos posibles generadores del grupo cíclico

infinito Jn(a,6) (si a es compacta, Jn(a, 6) = Hn(a, 6)). Supongamos que se ha elegido una

orientación 0d para cada a de X. Entonces se verifica que

Jn(Xn,Xn-l) = E9 ( Jn(a, 6) la es unan-celda de X]

y que el homomorfismo asociado al triple (Xn,Xn_¡,Xn_V

éln : Jn(Xn,Xn-l) ~ Jn-l(Xn-l,Xn-2)

satisface para cada celda a que éln(ocr) =~ Ea1: 01: donde 1: describe todas las (n-1)caras

de a y Ea1: = 1 ? Ea1: = -1. En el caso que Ea1: = 1 diremos que 1: tiene la orientación

inducida por a (01: es la inducida por 0a) y si Ea1: =-1, diremos que t tiene la orientación
. /

opuesta a la inducida por a .
El operador borde él de C*(X) es el homomorfismo descrito anteriormente y está

determinado, para cada n-celda a, por las (n-1)caras de a, las orientaciones elegidas 0a y 01:

para a y sus (n-1)caras 1: así como por las orientaciones que ó induce en sus (n-1)caras 1: .

También en [9] se prueba que el complejo S*(X) de los cubos singulares compactos de

X es homotópicamente equivalente al complejo S*(X) donde S*(X) es el subcomplejo de

C*(X) generado por las orientaciones de las celdas compactas. Finalmente, se prueba que

C*(X)/S*(X) es homotópicamente equivalente al complejo cociente C*(X)/S *(X). Nótese que

es isomorfo al grupo abeliano libre generado por las orientaciones de las celdas no compactas y
que el operador borde es precisamente el que C*(X) induce en el complejo cociente (Dada una

n-celda no compacta, solo se deben considerar sus (n-1)caras no compactas).

Sea L un conjunto finito fijo (L = (el ,.. .,ek)) . Denotamos por CWPRFL la

subcategoría de p-TOPL cuyos objetos son de la forma (g,X) donde X E CWPRF y

g: F(X)~ L. CWPRFL(2) denotará la correspondiente categoría de los pares.

Sea (g,X) un objeto de CWPRFL, podemos considerar el complejo

C*(X,g-1(el))

C*(X,g-1(e2))

C*(X,g-1(ek)),

que denotaremos SC*(g,X) y donde Cn(X,g-1(e¡)) es el grupo abeliano libre generado por las

orientaciones elegidas en n-celdas compactas y aquellas no compactas tales que la aplicación

inducida por su aplicación característica envía el final de En-Ix J en g-1(e¡). El operador borde

se define como en los casos anteriores, al considerar las orientaciones elegidas en las celdas y
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las orientaciones induc idas en el borde . Nótese que si 't es una cara no comp acta de o ,

.entonces o y 't determinan el mismo final propio de X.

Teniendo en cuenta que las equivalencias construidas en [9] "conservan finales" y de
[l6,IV-4] facilmente se sigue (ver [8]) que los complejos SC*(g,X) y SC*(g,X) son también

homotópicamente equivalentes.
En este trabajo la orientación Ospara una celda s, se denota a veces simplemente por s

y a dicho generador se le denomina celda orientada

Para un estudio más profundo de las propiedades de los CW-complejos propios

referimos al lector a [23] [9].

3.- EXTENSION PROPIA DE APLICACIONES PROPIAS

Sea Y un espacio arco-conexo con un número finito de finales propios y (go,X,A) un

objeto de la categoría CWPRFF(y)(2). 5Cn denotará Xn u A e i: A ~ X, in: 5Cn~ X las

aplicaciones inclusión. Sea f : (gooF(i),A) ~ (idF(y),Y) un morfismo de la categoría p-ToPF(Y)

(por comodidad, siempre que no haya lugar a confusión, se denotará f :A~ Y).

Definición 3.1: Sea n un entero positivo, decimos que f es n-extensible propiamente en (go,X)

si existe una aplicación propia g: (~oF(i), 5Cn)~ (idF(Y),Y) tal que glA = f .
Se llama índice de extens ión propia de f al supremo de todos los n e F:i tales que f es

propiamente n-extensible.

El índice de extensión propia es un invariante del tipo de homotopía prop ia y no

depende de la estructura de CW propio regular finito de (X,A) c0!1?0 prueban los siguientes

teoremas:

Propo sición 3.2 : Si f,h : A ~ Y son aplicaciones propias tales que! ::p h. Entonces f y h

tienen el mismo índice de extensión propia.

Demostración: Sea <1>: 5Cn ~ Y una n-ex tensión propia de f y F: A x 1 ~ Y una

homotopía propia entre f y h. Por PAEHP (ver párrafo 2), F se extiende a una

aplicación propia H: 5Cnx 1~ Y tal que HIA x I =F Y HI5C x O=<1>. Entonces la aplicaciónn
'P : 5Cn~ Y definida por 'P (x) =H(x,1) para cada x E 5Cn es una n-extensión propia de h.
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Proposición 3.3: Sea (go,X,A) un objeto de CWPRFp(y)(2) y f: A ~ Y una aplicación

propia. Entonces, el índice de extensión propia de f no depende de la estructura de CW propio

regular finito del par (X,A).

Demostración : Sea (X',A') otra estructura CW propio regular finito para el par topológico

(X,A). Por el Teorema de aproximación celular propia [9] existe una homotopía propia H entre

la identidad de A y una aplicación celular g: A' ~ A (considerando las dos estructuras).

Aplicando PAEHP, H se extiende hasta una aplicación propia H': X' x 1~ X tal que H'O es

id: X'~ X. De nuevo por el Teorema de aproximación celular propia, existe una aplicación

propia y celular h: X' ~ -?C tal que h =p HI YhIA'= g.

Suponiendo ahora que fn: x, ~ y es una n-extensión propia de f: A ~ Y, la

composición Xn'~ Xn ~ Y es una n-extensión propia de fohIA'. Como

f ohlA' =p foidA'~ A, se deduce de la Proposición 3.2 que f: A' ~ Y es n-extensible

propiamente sobre X'.

Proposición 3.4: Dado (gO,X,A) toda aplicación propia f:(gOoF (i),A)~ (idF(Y),Y) es 1­

extensible propiamente, y si TC 1(Y) = Oentonces es 2-extensible propiamente a (gO'X).

Demostración: Para cada x E A, definimos g(x) = f(x) . Sea YO un punto cualquiera dado de Y,

entonces, para cada vértice v de X-A definimos g(v) = YO'
Sea a una l-celda de X que no está en A Ysea ha la aplicación característica de a. Si a

es compacta Ysu borde está formado por las O-celdasVI Yv2, elegimos un camino P en Y que

una g(vI) Yg(v2) Ydefinimos g(x) = bo(ha)-I(x) para cada x E a. Si a es no-compacta Ysu

borde es la O-celda VI, consideramos un representante a de go([haD YP un camino que una

g(vI ) Ya(O); entonces definimos g(x) = lo(ha)-I(x) para cada x E a, donde l:J ----tX es la

aplicación defmida por l(t) = P(t) si O~ t ~ 1 Yl(t) = o(t-I) si t;::: 1. Así g:X¡ ----t Y es una 1­

extensión propia de f.
Supongamos ahora que TCI(Y) = O. Sea a una 2-celda de X que no está en A, con

aplicación característica ha. Si a es compacta goha loE 2 representa un elemento del grupo

trivial TCI (Y) Ypor tanto g se extiende a a. Si a es no-compacta, las aplicaciones

gohalEIx°u °x J Y gohal l x J representan el mismo final propio de Y, lo que unido al hecho

de ser TC 1(Y) = O, permite probar facilmente que g se extiende de manera propia a todo a.

Si a es un final propio de Y, denotamos por ~-I (Y,a) (n ;::: 2) el conjunto de

clases de homotopía propia de aplicaciones propias del tipo h: o(In x J) ----t Y tales que
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;;n-l(Y,ak),

Ylo llamamos <!ln(Y), pues es independiente de la elección de los rayos base.

.
Cn+1(X,A,go-l (ak)),

;;n-l(Y,al )

;;n-l (Y,a2)

;;n-l(Y,al)

~n-l (Y,a2)

__7

1tnM ~

------->

lo denotamos por

Dado (go,X,A) E CWPRFF(y)(2), asociada con una aplicación propia f : x, -7 Y,

n ~ 2, tal que F(f) = go o F(in) vamos a definir una cocadena obstrucción propi a que

denotaremos scn+l(f) E scn+l(gO,X,A;<!ln(Y)) = Hom (SCn+l (go,X,A);<!ln(Y))' donde

SCn+l(go,X,A) es el [~1tK] -módulo representado por:

Cn+l(X,A,gO-l(a1))

Cn+1 (X,A,gO-1(a2))

Sea F(Y) = {a],..,akl , a¡, ..,ak rayos en Y represent antes de al ,..,ak respectivamente

Ytales que al (O) =...= ak(O) = * (la existencia de tales representantes está garantizada por ser

Y arco-conexo) Ysea <!lni: 1tn(Y,*) -7 ;;n-l (Y,ai), i = 1,.,k, el homomorfismo definido en el

párrafo 2. Entonces el objeto de Ab 1tlC
. 1

<!ln 7

1tn(Y'*)~

~k
<!ln

F(h)(ooo(In x J)) = a, y denot amos por 1tn(Y) el conju nto de clases de homotopía' de

aplicaciones del tipo h: o¡n+l~ Y. o

En lo que resta de trabajo Y será, además de arco-conexo, (1t)-n-simple y ~)-(n- 1 )-

simple para un entero n ~ 2. Con estas condiciones, de [18] se sigue que 1tn(Y,yO) == 1tn(Y) Y

de [23] que ~-l (Y,a) == ~-l (Y,a) para cada YOE Y Ycada rayo a representante del final a.

En el cason=2,como Yes<!) -1-simp1ey !l(Y,a)==!l (Y,a)/º-tl (Y,a) siendo º-tl (Y,a )- - - - -
el subgrupo generado por los elementos de la forma S '(u ~)-l donde SE ~~ (Y.u),

u E ~l (Y.u) Y u S denota la acción de u en S, se sigue que, en estas condiciones de

simplicidad, ~l (Y,a) es un grupo abeliano.



siendo Sn+1(X,A) el grupo abel iano libre generado por las (n+l )-celdas compactas orient adas

de X que no están en A, y Cn+1(X,A,go-l(aq)), q = 1,...k, el grupo abeliano libre generado

por las (n+1)-celdas compac tas orientadas de X que no están en A y por las (n+ 1)-celdas no
compactas orientadas de X que no están en A y tale s que su aplicación característica ha

verifica que F(ha)(ooEnx J) E gO- I( aq). scn+1(f) viene dado por los homomorfismos

sn+l(f) : Sn+l (X,A ) ~ 1tn(Y)

cqn+1(f): Cn+l(X,A,go-l(aq))~~_I (Y,aq)' q = l ,..,k,

que están definidos del modo siguiente:

1) Dada una (n+ l)-celda compacta a de X-A se defme

sn+l(f)(a) =1tnCflifa o P1t-1(cr)

donde crdenota el borde de la celda a, P1t: 1tn+l(o, ó,*)~ Hn+1(o.ó) es el isomorfismo

de Hurewicz, aes el operador borde de la (1t)sucesión asociada al par (o.o) y 1tn(f lÓ"; )) es el

homomorfismo inducido por fió"en los grupos de homotopía.

2) Para definir cqn+1(f), distinguimos dos casos:

a) Si a es una (n+ l)-celda compacta de X-A , entonces definimos

cqn+1(f)(cr) =<pC1n(sn+l(f)(a))

b) Si a es una (n+ l)-celda no compacta de X-A tal que F(hcr)(ooEn x J) E go-l (aq),

definimos

cqn+1(f)(a) =~_I(flciJ° aoPfl (cr)

donde P~: ~(a,cr,a.) ---7 Jn+1(o.o) es el isomorfismo de tipo Hurewicz definido en [7]

(a. es un rayo cualquiera en ó), a:~(cr,cr,a.) ---7 1,n-l(cr,a.) es el operador borde de la

{J)sucesión exacta asociada al par (o .ó) y ~-I(flcr): ~_I (cr,a.)---7 ~_I (Y,fo a.) == ~n_l (Y,aq) es

.el homomorfismo inducido por f .

Definition 3.5: A la cocadena scn+1(f) la llamaremos (n+1) cocadena obstrucción propia de f.
Dada una (n+l)-celda a de X-A, si o es compacta, la aplicación f : cr~ y

representa un elemento de 1tn(Y), si a es no compacta y F(ha)(ooEn x J) E go-l(aq), la

aplicaci ón jtó ---7 Y representa un elemento de ~_I(Y,aq)' En ambos casos, si el elemento

representado es cero , f tiene una extensión propia sobre a. Debido a esto y a que )(n+l tiene

solo un número finito de (n+l)-celdas se obtiene:

Teorema 3.6: Si f : )(n ---7 y es una aplicación propia, entonces f tiene una extensión propia

sobre X n+1 si y solo si scn+1(f) = O.
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Teorema 3.7 : La cocadena sco+1(f) es un cociclo.

Demostración: Si a es una (n+2)-celda compacta de X-A, se comprueba que sO+l (f)(aa) =O

de manera análoga a la realizada en [l8,4.VI-3.1] . Por otra parte , para cada q = 1,...k,

cqO+1(f)(aa) =<p~(so+l(f)(acr)) =<Pqo(O) =O.

Si a es una (n+2)-celda no compacta de X-A tal que F(ha )(ooEo+1 x J) E go- l(aq),

considerarnos a como un CWPRF (n+2)-dimensional, a denotará el (n+ l)-esqueleto de a y

'd el (n)-esqueleto. Tenemos entonces el siguiente diagrama conmutativo, donde a. es un rayo

en a

.J.j¡ .J.h ~O

H: Jo+1(a, 'a') ["J. ~(a, e' ,a.)~ ~-1«(y' ,a.) ~n-l (I I (y'; ~-l(Y,aq)

donde al y a2 son los correspondientes operadores borde de las sucesiones de homología y

homotopía propias asoc iadas al par (o.ó) , a el operador borde de la sucesión ex act a de

homotopía propia asociada ~ (a, o ) y jI Yh vienen induc idas por inclus iones

En virtud de que ~(a , o' ) =O para cada i:;:; n-1 y 1to(a) =1to( a ) ="t{¡(a) ='toe (y' )

=O, aplicando el teorema de tipo Hurewicz [7] se tiene un epimorfismo P~ : ~(a, (y' ,a.) -7

JO+1(a, a) y es fácil verificar que H = ~-1(f1 O' )oél o PJ-1: JO+1(o .o) ----7 .;;o-l(Y,aq) está

bien definido y además H(r¡) =CqO+1(f)(r¡) para cada (n+1)-celda r¡ de a. Ahora es inmediato

comprobar que cqo+1(f)(aa) =O.

Proposición 3.8: Si f',f :X o----7 y son dos aplicaciones propi as tales que f ::: pi', entonces

sco+1(f) = sco+1(f').

Iniciamos ahora el estudio del problema de la extensión propia de homotopías propias,

introduciendo el concepto de cocadena diferencia propia y obtenemos un primer resultado

sobre la extensión propia de una aplicación propia.

Dado (go,X,A), como F(I x X) == F(X ), podemos considerar (go,I x X,I x A) y

denotamos (IxX)o = Ox Xo u 1x X O-1 U 1 x Xl'

61



62

Definición 3.9: Con las notaciones anteriores, denotamos
~n(F) = ~n(f,O,f') = scn+I(F) o k

y diremos que ~n(F) es la cocadena diferencia propia asociada con F = (f,0,f'). Si JI5Cn-1 =

f'1)Zn-1 y O es la homotopía "constante" denotaremos también ~n(F) por ~n(f,f').

Como en la teoría de obstrucción "standard" se obtiene:

Dadas dos aplicaciones propias J, J': 5Cn---) y tales que existe una homotopía

propia O entre JI5Cn-1 y f'15Cn-l' definimos F = (f,0,f'): (IxX) n ---) y p o r

FIO x5Cn=J ; Fll x5Cn-1 =0 ; Fll x5Cn <]',

Asociado a F tenemos el cociclo
scn+I(F) E scn+l (gO'! x X,! x A;q>n(Y))'

Por otra parte, podemos definir
kn: SCn(go,X,A) ---) SCn+1(gO,! x X, 1x A) por kn(a) = 1 x a .

Notar que si a es compacta, kn(a) también es compacta, y si a es no compacta tal que

F(ha)(ooEn-1 x J) E go-l(aq) entonces kn(a) es no compacta y F(h 1x a)(ooEn x J) E gO-l(aq).

En general la aplicación k: SC*(go,X,A) ---) SC*(gO,! x X,I x A) no conmuta con los

operadores borde.

o~n(F) = scn+l(f') - scn+l(f).Proposición 3.10:

Proposición 3,11 : Sea H: O x 5Cn u 1 x X n-l ---) y una aplicación propia y sea e CE

scn+l (go,X,A;q>n(Y)).Entonces existe una extensión propia F de H sobre (IxX)n tal que

~n(F) = c.

Demostración: Si a es no compacta tal que F(ha)(ooE"-1 x J) E go-l(aq), consideramos la

aplicación propia HIO x a u 1x aa = H a. Ahora bien, el elemento c(a) E ~-l (Y,aq) estará

representado por una aplicación propia g: a(l x a) ---) Y. Como Ox a u 1x as tiene el

mismo tipo de homotopía propia que J y F(H O")(ooa) = aq (ooa denota el único final propio de

a) deducimos que glO x a u 1x aa es homótopa propiamente a Ha. Aplicando PAEHP se

obtiene que H a tiene una extensión propia F a : a(l x a) ---) Y tal que F a representa al

elemento c(a).

Si a es compacta, con las mismas notaciones H a tiene una extensión F a a a(l x a)

que representa a c(a) E 1tn(Y) como puede verse en [l8.VI.4.3].



Por último, definiendo F por medio de las F 0", como 1x X es un CW-complejo finito,

F es una extensión propia de H tal que ~n(F) =c.

Como consecuencia se obtiene el siguiente teorema, análogo al Teorem a de Eilenberg

para obstrucción "standard":

Teorema 3.12: Seaf:Xn~ y una aplicación propia. Entonces flXn-l tiene una extensión

sobre Xn+1 si y solo si scn+1(f) es cohomólogo a cero.

BIBLIOGRAFIA

[1] Brin M. and Thickstun T.L. "On the proper Steenrod homotopy groups and

. proper embeddings of planes into 3-manifolds'.' Trans. A.M.S., 289 (1985) 737­

755.

[2] Cerin Z. "On various relative proper homotopy groups" Tsukuba J. Math. Vol 4

nQ 2 177-202 (1980) .

[3] Edwards D. and Hasting H. "Cech and Steenrod homotopy theories with

applications to Geometric Topology " L. N. M. 547, Springer (1976)

[4] Extremiana,J.I.: "Una teoría de obstrucción para la extensión y clasificación de

aplicaciones propias". Pub. Sem.Mat. Garcfa de Galdeano . Sección 2, nQ 18.

(Tesis)

[5] Extremiana J.I., Hernandez L.J. and Rivas M. T. "Una Cohomología

propia" Actas X Jornada Hispano-Lusas de Matemáticas, seccion Geometría y

Topología 43 - 55. Murcia.l985.

[6] Extremiana,J.I., Hernández.Li.l., Rivas,M.T.: "About the classification of

proper maps in the category of the finite cubic complexes". Pub. Sem. Mat. García

de Galdeano. Sección 1 nQ 137. (1987).

[7] Extremiana,J.I., Hernández.Li.l.; Rivas,M.T.: "An isomorphism theorem

of the Hurewicz type in the proper homotopy category".Pub . Sem. Mat. García de

Galdeano.Serie TI, Sección 1 nQ 115. (1987). Aparecerá en Fundamenta

Mathematicae 1988.

[8] Extremiana.Ll., Hernández,L.J., Rivas,M.T.: "Una (co)homología propia

para espacios con varios finales" , Pub. Sem.Mat. García de Galdeano.Serie Il,

Sección 1 n24. (1988). Actas del III Seminario de Topología. Jaca 1987

63



[9] E xtremiana,J.I., Hernández.Li.l., Rivas,M.T.: "Proper CW-Complex: a

cate gory for the study of proper homotopy". Pub.Sern.Mat. García de

Galdeano.Serie II, Sección 1 n2 5. (1988).

[10] Freudenthal H. "Uber die Enden topologischer Raume und Grupp en" Math. Z.

,33. 692-713 (1931)

[11] Hernández L.J. "A note on proper invariants" Pub!. Sem. Mat. García de

Galdeano. Serie II, sección 1 n2 12 (1984)

[12] Hernández L.J. "About the extension problem for proper maps " Top. and its

applications 25 51-64 (1987)

[13] Hernández L.J. "Proper cohomologies and the proper c1assification problem"

L.N.M. 1298, 171-192, (1987).

[14] Hernández L.J. "Clases de homotopía propia de una superficie no compacta en el

plano euclideo" Actas II Seminario de Topología, U. Zaragoza 1986,78-92

[15] Hernández L.J. and Porter T. "Proper pointed maps from lRn+1 to a 0'­

compact space". Math. Proc. Cambo Philos. Soc. , 1988, 103,457-462.

[16] Hilton.Pi.l., Stammbach,U.:"A course in homological Algebra" , G.T.M. 4.

Springer-Verlag 1971.

[17] Hopf, H., "Die K1assen der Abbildungen der n-dimensionalen Polyeder auf dien­

dimen sionalen Sphare" Comentarii Mathematice Helveciti , vol 5, 39-54 (1933)

[18] Hu S.T. "Homotopy theory " Academic Press. (1959)

[19] Lisitsa Yu T. "A Hopf c1assification theorem in shape theory" Siberian Math,

J.18, 107-119 (1977)

[20] Massey W. "Singular Homology theory" G.T.M. 70. Springer - Verlag 1980.

[21] Mitchell,B.: "Rings with several objects". Advances in Mathematics 8.1-161.

1972.

[22] Porter, T.: "Coherent prohomotopy theory ". Cahier Top. Geom. Diff. 19,3-46,

(1978).

[23] Rivas,M.T.: "Sobre invariantes de homotopía propia y sus relaciones" . Pub .

Sem. Mal. García de Galdeano. Sección 2 n217. (1987). (Tesis).

[24] Whitehead, G. W. "Elements of homotopy theory" G. T. M. 61 Springer

(1978).

[25] Whitney, Hi'The maps of an n-complex into an n-sphere", Duke Math . J. 3, 51­

55 (1937).

[26] Whitney, H. "An extension theorem for mapppings into simply connected

spaces". Ann. of Math. 2,285-296 (1949).

64



Re' . ~_ , )ad . Ciencias Zaragoza , 43 {]988}

OBSTRUCCIONES PROPIAS DE TIPO COMPACTO-NO COMPACTO 11

J,I. EXTREMIANA, L,J. HERNÁNDEZ y M,T. RIVAS

Depar tamento d e Mat emá t i c a s. Fa cult ad d e Ciencias Ma t emá t i c a s.

Ci u da d Universita r i a. 5 00 09 ZARAGOZA (Espafia) .

In this paper we ob~ain s orne c lass ificat ion t heo rems for

proper homot opy c l asses ex pre s sed i n terms of prope r cohomology

groups for p r ope r maps f: X" Y where X is a fi ni te p r ope r regular

CW - c ompl ex a n d Y is a topologica l s pace wi th a fi nite numb er of

prope r e n ds .

ClasificaciÓn A. M. S. 0.985): 55N35, 55Q70, 55S35, 55S37

Palabras y frases clave: Aplicación propia, homotopía propia, cohomología propia,

grupos de homotopía propia de Steenrod, extensión propia, cociclo obstrucción propio,

cocadena diferencia propia.

Agradecimientos: Los autores agradecen la ayuda económica prestada por la Universidad de

Zaragoza, que junto con la Acción Integrada Hispano-Británica 51/18 (1988-89) ha hecho

posible la realización de este artículo.

INTRODUCCION

En este trabajo continuamos el iniciado en "Obstrucciones propias de tipo compacto-no

compacto 1" (ver [4]) y nos dedicamos fundamentalmente a estudiar el problema de la

clasificación de clases de homotopía propia de aplicaciones propias. Obtenemos teoremas para

tal clasificación en términos de grupos de cohomología propia . Seguimos la misma notación ,

teminología y numeración que en el trabajo ya reseñado.
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4.- EXTENSION PROPIA DE HOMOTOPIAS PROPIAS y TEOREMAS

DE CLASIFICACION

Sea (gQ,X,A) E CWPRFF(y)(2), donde Y es un espacio arco-conexo con un número

finito de finales prop ios (n;)n-simple y ('t)(n-l)-simple. Dadas dos aplicaciones propias

f,h :(gQ,X) ----7 (idF(y),Y) tales que flA =hlA, el problema que nos planteamos es decidir si

f y h son o no homótopas propiamente rel. A.

Definición 4.1: Diremos que f es m-homótopa a h (reI.A) si flXm:: p hlXm (reI.A).

Notar que, como Y es arco-conexo, f y h siempre son O-homótopas propiamente.

Además si n;l(Y) = O es fácil ver que son l-homótopas propiamente. El supremo de los

m E N tales que f y h son m-homótopas propiamente se llamará índice de homotopía propia

del par (f,h). Si f :: p f' y h :: p h', es fácil ver que los pares (f,h) y (f',h') tienen el mismo

índice de homotopía propia.

Supongamos que f y h son (n-l)homótopas propiamente (n ~ 2) (rel.A) a través de

una homotopía G. Asociada a las aplicaciones f, G Yh tenemos F =(f,G,h): (IxX)n~ y Yla

cocadena diferencia propia ~n(F) definidas en el párrafo anterior. Como ahora f y h están

definidas en X, sus cociclos scn+1(f) y scn+1(h) son Oy por lo tanto, de la Proposición 3.10,

se sigue que ~n(F) es un cociclo que representa una clase de cohomología de

gn(gQ,X,A;<Pn(Y)' De la Definición 3.9 y de los Teoremas 3.6 y 3.12 se deduce:

Teorema 4.2: ~n(F) = O si y solo si existe una homotopía propia entre fl Xn y hlXn que es

una extensión de G.

Teorema 4.3:.~n(F) es cohomólogo a Osi y solo si existe una homotop ía propia G' entre fl Xn

y hIXn que coincide con G en Xn-2

Introducimos a continuación alguna terminología con el propósito de abordar el

problema de la clasificación de aplicaciones propias:

Sea f: (gQ,X) ~ (idF(y),Y) una aplicación propia. Sea Qn(X,A;f) el conjunto de

aplicaciones propias H: 1 x Xn+1 ~ y tales que H(O,x) = H(l,x) = f(x) si x E Xn-1 y

H(t,a) = f(a) si t E 1, a E A.Consideramos en Qn(X,A;f) la relación de homotopía propia
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Como en la homotopía standard, definimos a continuación los conjuntos obstrucción.

Lema 4.5: Sean F',F": (IxX)n----t y dos homotopías propias relativas a A tales que F'(1.x)

=F"(O,x) para cada x E Xn-Entonces, la aplicación propia F: (IxX)n ----t y dada por:

si O~t~1/2. [ F.'(2t,x)
F(x,t) =

F"(2t-1,x) si 1/2 ~ t ~ 1

verifica que ' t:.n(F)= t:.n(F') + t:.n(F").

Demostración: Es análoga a la del Lema 5.5 de [3], sustituyendo para una n-celda no compacta
a tal que F(ha)(ooEn-1 x J) e so-1(aq) el grupo ~-l (Y) por ~-l (Y,aq) .

Con una demostración análoga a la de homotopía standard, del Lema 4.5, se deduce

que el subgrupo Sn(f)(Rn(X,A;f)) únicamente depende de la (n- l)clase de homotopía propia

de f relativa a A.

Proposición 4.7: Dos aplicaciones propias f,h :(go,X) ----t (idF(y),Y) que coinciden en A

son (n-l)-homótopas propiamente rel.A si y solo si en(f,h) es una coclase de

Definición 4.6: Dadas dos aplicaciones propias f,h:(go,X) ----t (idF(y),Y) que coinciden en

A,denotamos por en(f,h) el conjunto cuyos elementos son las clases de cohomología propia

representadas por t:.n(f,G,h) donde G es una (n-l)-homotopía propia (rel.A) entre f y h. Si f
y h no son (n-l)-homótopas propiamente, en(f,h) = 0.

Del modo habitual, dada f: A ----t Y propia, se define en+l(f) como el conjunto de

clases de cohomología propia representadas por scn+1(fn) donde f n es una n-extensión propia

de f a (gO,x). Si f no es n-extensible propiamente, en+l(f) =0.

Proposición 4.4: Sn(f) es un homomorfismo .

Demostración: Se deduce del siguiente Lema:

relativa a al x Xn-l U 1 x A y denotamos el conjunto cociente por Rn(X,A;f) . La

composición standard de homotopías dota a Rn(X,A;f) de una estructura de grupo.

Defmimos ahora la aplicación

Sn(f): Rn(X,A;f)----t gn(go,X,A;q>n(Y))

del modo siguiente: el elemento de Rn(X,A;f) representado por la aplicación propia H es

transformado por Sn(f) en la clase de cohomología representada por t:.n(f,H,f).



~n(f)(Rn(X,A;f)) en g n(gQ,X,A;q>n(Y))' Además, f y h son n-homótopas propiamente re!.A

si y solo si en(f,h) = Sn(f) (Rn(X,A;f)).

De la Proposición anterior se deduce que dos aplicaciones propias

f,h: (gQ 'X~ (idp(y) ,Y) (n- l)-homótopas propiamente re!.A determinan un único

elemento en Coker Sn(f) al que denotamos Xn(f,h) y llamamos elemento característico del par

(f,h) . Es claro que f y h son n-homótopas propiamente re!.A si y solo si Xn(f,h) =O. Como

consecuencia, se obtienen los siguientes resultados:

Teorema 4.8: Sea f : (gQ,X)~ (idp(y) ,Y) una aplicación propia. Sea Y (1t)r-simple y

CJ)(r-l)-simple y Coker Sr(f) =opara cada entero r tal que n < r::; m.Si una aplicación propia

h:(gQ,X)~ (idp(y),Y) es n-homótopa propiamente a f re!. A, entonces f y h son m­

homótopas propiamente re!. A.

Corolario 4.9: Si 1tl(Y) =O, Y es CJ)(r-l)-simple, y g r(gQ,X,A;q>r(Y)) =O para cada entero

r tal que 1 < r::; dim (X-A), entonces dos aplicaciones propias f ,h:(gQ,X)~ (idp(y),Y) que

coinciden en A son homótopas propiamente relativas a A.

Demostración : Como 1t1 (Y) = O, f ,h son l -homótopas propiamente; que son homótopas

propiamente es una consecuencia del Teorema 4.8

Dada f :(gQ,X)~ (idp(y),Y), sea e = {h:(gQ,X)~ (idp(y ),Y)1h Y f son

(n-l)-homótopas re!.A) (e es una (n-l ) clase de homotop ía propia re!.A). Notar que cada

h E e t iene asociado un elemento Xn(f,h) de Coker Sn(f).

Definición 4.10 : Un elemento a E Coker Sn(f) se dice f~admisible si existe h E e tal que

Xn(f,h) = a. Denotamo s por An(f) el conjunto de los elementos f -admisibles .

Proposición 4.11: Si f y h son dos aplicaciones propias que pertenecen a la misma clase de

(n-l)-homotopía propia rel.A, El entonces An(f) =.Xn(f,h) + An(h).

Teorema 4.12: El conjunto de n-clases de homotopía propia rel.A contenidas en una (n-l)

~lase de hornotop ía propia e está en correspondencia biyectiva con el conjunto An(f), donde f
es una aplicación propia representante de e.

La demostración de estos teoremas se omite pues es análoga a la de sus

correspondientes en obstrucción standard [5].

68



5. OBSTRUCCIONES PROPIAS PRIMARIAS

En este párrafo, supondremos que el espacio Y, además de las usuales condiciones de
simplicidad del párrafo anterior, satisface que es (1t)(n-l)-conexo y que ~(Y,aq) =Opara cada

final propio aq de Y, O< i ~ n-2, n ~ 2.

Sean uI ,...,u k: J~ Y aplicaciones propias tales que uI (O) = ...= u k(O) Y que

representan a los finales de Y al, .. .,ak respectivamente. Dado un objeto (ga ,X) en

CWPRFF(Y), puede definirse una aplicación propia TI : X~. y tal q~e si a es una celda

compacta, TI la aplica en el punto uI (O) =...=uk(O) Ysi a es una celda no compacta tal

que su aplicación característica ha: Em-l x J~ X satisface F(ha)(ooEm-1x J) E ga-1(aq)
entonces F(TI)oF(ha)(ooEm-1 x J) = aq. Para definir TI utilizaremos que X es a-compacto y

por tanto puede construirse una sucesión creciente de subespacios compactos (K¡) iE F:i: tal

que

Ka e int K1 e K1 e int K2 c .....
verificando que Ka contiene todas las celdas compactas de X y que para cada i ~ O el

número de arco-componentes de X-Ki es F(X). Teniendo en cuenta la partición F(X) =
ga-l(al) u .....u ga-l(ak) y que para la anterior sucesión F(X) == lim 1ta(X-K¡), cada arco­

componente e de K1- int Ka determina un único final aq, entonces se define

TI 1:K1~ Y del modo siguiente:

1) Si x e Ka ~1(X) = Ul(O) =...=u k(O)

2) Si x e K¡- int Ka: Sea e la arco-componente de x en K¡- int Ka. e n Ka y

en Fr(K¡) son dos cerrados disjuntos del T2 compacto e, y por tanto, al ser C normal,

existe una aplicación continua fe: e~ [0,1] tal que fe(e n Ka) =Oy Jc(Fr(K¡)) = 1.

Entonces , si aq es el final de Y determiando por e, definimos

TI ¡(x) = uq(fc(x)) .

A continuación, de nuevo cada componente e de K2- int K¡ determina un final aq(C) de

Y. De nuevo, por el Lema de Uryshon, existe fe : e~[1 ,2] tal que fc(C n K¡) = 1 Y

fe(Fr(K2» =2. Por tanto ahora se define

Tl2: K2~ Y del modo siguiente:

1) Tl2(x) =TI 1(x) si x E K1

2) Tl2(x) = uq(C)(fc(x)) si x E e

Procediendo por inducción se obtiene la aplicación TI .

Dada una aplicación propia f: A~ Y tal que F(f) = gaoF(i), debido a las

condiciones sobre Y, deducimos que existe una (n-Ij-homotopía propia H: =1x An-l~ Y
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entre TIlA Y f. Al elemento de gn(gQF(i),A;epn(Y)) representado por ~n(TlIA,H,f) lo

denotamos ~or xn(f) y lo llamamos elemento característico de f . Veremos a continu ación que

xn(f) no depende de la elección de H:

Lema 5.1: Sea f: A--7 Y una aplicación propia y h,h': Xn--7 y extensiones propias

de f . Entonces scn+l(h) es cohomologo a scn+l(h').

Demostración: Como 1tl(Y) = O, h Y h' son 1-homótopas propiamente. Ahora, por ser

epr(Y) = O para 1 < r ~ n-I , del Teorema 4.8, se deduce que existe una homotopía propia

H: I x Xn_l --7 Y de h a h'. Entonces o~n(h,H,h') = scn+l(h') - scn+l(h) .

Proposic ión 5.2: Sean TI 'IA, f : A --7 Y aplicaciones propias homótopas propiamente

a TIlA y f respectivamente y sean H, H': I x An-l --7 y homotopías propias

H: TlIAn-l ::p f lAn-l Y H': TI'IAn-l ::p flAn-l' Entonces ~n(TI'IA,H',f') - ~n(TlIA,H,f) .

Demostración : Consideramos el par (1x A, Ox A u 1 x A) y las aplicaciones propias

0= (TlIA,H,f), 0'= (TI'IA,H',f'): (lxA)n--7 Y,

donde (IxA)n = Ox A u I x An-l u 1 x A.

Notar que 010 x A u 1 x A :: p 0'10 x A u 1 x A· Como Y es (1t)(n-1)-conexo

y ~(Y ,aq) = O (O< i ~ n-2) para cada final propio aq de Y, se sigue que 01(lxA1_l:: p

:: pO'I(lxA)n_l' Aplic ando PAEHP OI(lxA)n::'P L l siendo Ll : (lxA )n--7 Y una

aplicación propia tal que Lll (lxA)n_l = O'I(lxA)n_l' Como consecuencia del Lema 3.8

scn+l(G) = scn+l(Ll) · Por otra parte, O' y L¡ son extensiones propias de 0 '10 x A u 1 x A·

Por lo tanto, del Lema 5.1, scn+l(O') - scn+l(Ll )' Como ~n(o) = scn+1(0)o k y ~n(O') =

scn+l(O')o k donde

k: SCn(gQoF(i),A) --7 SCn+l (gQoF(i), I x A, al x A)

es un isomorfismo, se sigue que ón (O) - ón(O').

Volvemos al elemento característico de f . Como 1tl (Y) = O, f es 2-extensible

propiamente. Además, como epr(Y) = Opara 1 < r ~ n-I, gr+l(gQ,X,A;epr(Y)) = OY por tanto

scr+1(f) = O, luego por el Teorema 3.6, f es n-extensible propiamente sobre (gQ,X). Así el

primer conjunto obstrucc ión no trivial es e n+1(f). Por otra parte si H: fIAn -l::p TlIAn-l'

aplicando PAEHP exi ste t: A --7 Y tal que f::p f y flAn-l = TlIAn-l ; así, por la

Proposición 3.2, en+l(f) = en+1(J '). Como consecuencia podemos considerar que fIA~-l =

TlIAn-l Yque la homotopía H utilizada para definir el elemento característico de f es constante.
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Proposición 5.3: e n+1 (f) consta de un único elemento ro"+l(f) = 8*Xn(f) E

9n+1(go,X,A;CPn(Y» que se llamará obstrucción propia primaria a extender f .
(8*: gn(go o F(i),A ;CPn(Y» ~ gn+l(gO,X,A ;CPn(Y» es el homomorfismo coborde de la

sucesión exacta de cohomología asociada a (go,X,A» .

Demostración: Como fIAn-! =TI IAe.i- f tiene una extensión propia fn : Xn~ y tal que t«

coincide con TI en Xn-A. Además fIXn-!::'p TlIXn-l a través de una homotopía constante.

Notar que ~n(Tllxn,fn) E scn(go,X;CPn(Y» es la extensión trivial de ~n(TlIA,f) - Por tanto

ro"+l(f) está representado por 8~n(Tllxn,fn) = scn+1(fn) - scn+1(TlIXn) pero scn+1(TlIXn) = O

pues TI está definida en todo X, y por consiguiente ro"+l(f) E en+1(f).

Supongamos ahora que [scn+1(g)] E en+1(f) donde g: Xn~ y es una extensión

propia de f. Del Lema 5.1 se sigue inmediatamente que [scn+1(g)] =ro"+l(f).

Consideremos ahora dos aplicaciones propias f,h: (go,X)~ (idp(y),Y) tales que

flA =hlA· Debido a las hipótesis sobre Y, f y h son (n-l)homótopas propiamente rel.A .

Entonces se tiene:

Proposición 5.4: El conjunto obstrucción propia en(f,g) consta de un único elemento ro"(f;g)

que se llamará obstrucción propia primaria a extender la homotopía propia rel.A. Además se

verifica que j*ro"(f,g) = xn(f) - Xn(g). U*: gn(go,X,A;CPn(Y))~ gn(go,X;CPn(Y» es el

homomorfismo, inducido por la inclusión, de la sucesión exacta de cohomología asociada a

(go,X,A».

Corolario 5.5: 1) ~n(f)(Rn(X,A;f» =O

2) Coker ~n(f) == gn(go,X,A;CPn(Y» '

Como en la teoría standard, un elemento x de 9 n(goF(i),X,A;CPn(Y» se dice

extensible sobre (go,X) si x E Im gn(i) donde gn(i): gn(go,X;CPn(Y» ~ gn(goF(i),A;CPn(Y»

es el homomorfismo inducido por la inclusión de A en X. Además se obtienen los siguientes

resultados :

Proposición 5.6: Dado (gO'X'A)",auna aplicación propia f: A~ Y son equivalentes:

(1) fes (n+1j-extensible pro iamente sobre (go,X)

(2) ron+1(f) =O

(3) xn(f) es extensible sobre (go,X).
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Proposición 5.7 : Dos aplicaciones propias f,h : (gQ,X) ---7 (idF(y),Y) tales que flA = hlA

son n-homótopas propiamente rel.A si y solo si ro"(f,h) =O.

Corolario 5.8: Para dos aplicaciones propias f,h:(&¡,X) --7 (idF(y),Y) son equivalentes:

(1) f y h son n-homótopas propiamente

(2) ro"(f,h) =O.

(3) xn(f) =Xn(h).

6. TEOREMAS DE CLASIFICACION j,>ARA HOMOTOPIA PROPIA

Finalmente, con las mismas hipótesis iniciales que en el párrafo 5, vamos a dar algunos

teoremas de clasificación para aplicaciones propias.

Sea t. (gQ,X) ---7 (idF(y),Y) una aplicación propia. Se considera el conjunto

{h:(gQ,X) ---7 (idF(y),Y)lh es propia y flA =hIA}. Debido a las condiciones sobre Y,

sabemos que hay únicamente una clase de (n-1)homotopía propia reLA. El siguiente Teorema,

dará una clasificación de tipo cohomológico del conjunto de las clases de n-homotopía propia

reLA

Teorema 6.1: Si Y es (n:)r-simple y ~) (r-1)-simple, y gr+1(gQ,X,A;CPr(Y)) = O para cada

entero r tal que n < r < dim(X - A), entonces las n-clases de homotopía propia rel.A están en

correspondencia (1-1) con los elementos del grupo gn(gQ,X,A;CPn(Y))' La correspondencia

aplica la n-clase en representada por h en el elemento ro"(f,h) E gn(gQ,X,A;CPn(Y)) '

Demostración: Por el Corolario 5.5 (2), sabemos que Coker ~n(f) == gn(gQ,X,A;CPn(Y))'

Ahora bien, para cada elemento e de gn(gQ,X,A;CPn(Y))' existe una aplicación propia

h:(gQ,X~(idF(Y)'Y)tal que flA = hlA Yro"(f,h) = c. En efecto, de la Proposición 3.11

deducimos que existe una aplicación propia g: Xn---7 y tal que flX n_ 1 = glX n-1 y

~n(f,h) = z; donde z es un cociclo que representa a c. Entonces, como scn+1(f) =O Y

O=o~n(f,h) = scn+1(g) - scn+1(f), se deduce del Teorema 3.6 que g se extiende propiamente

a )(n+1 ' Ahora aplicando reiteradamente el Teorema 3.11 se obtiene una extensión propia de

g, h:(gQ,X) ---7 (idF(y),Y) tal que flA = hlA' Es inmediato que ro"(f,h) = c. Así cada

elemento de Coker ~n(f) es admisible, luego An(f) =gn(gQ,X,A;jn(Y))' A continuación basta

aplicar el Teorema 4.12.
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Teorema 6.2: Si -: es (1t)r-simple y {J)(r-l)-simple, y 9 r+¡ (go,X ,A; CPr(Y) = O =
gr(go,X,A;CPr(Y» para cada r tal que n < r:5;dim(X-A),entonces el conjunto de clases de

homotopía propia rel.A de aplicaciones propias del tipo (go,X) --) (idF(y),Y), que

denotamos [go,X,Y]pA está en correspondencia (1-1) (definida como en el Teorema 6.1) con

los elementos de gn(go,X,A;CPn(Y»'

Notar que si además ~_¡ (Y,aq) =O para cualquier final propio aq de Y, entonces para

cada aplicación gO: F(X) --) F(Y), [go,x,Y]pA está en corresp.ondencia (1-1) con

Hn(X,A;1t n(Y», pues en este caso gn(go,X,A;CPn(Y» es Hn(X,A;1tn(Y». Por lo tanto hay

tantas clases de homotopía propia de aplicaciones propias de X en Y rel. A como aplicaciones

del conjunto de finales propios de X en el conjunto de finales propios de Y multiplicado por el

cardinal de Hn(X,A;1tn(Y» . .

Ejemplo: Vamos a clasificar las clases de homotopía propia de aplicaciones propias del interior

M de una p.l. variedad N compacta orientable con borde, en el espacio producto sm x R.

Calculamos en primer lugar los grupos de homotopía 1tci y homotopía propia ~q y ~q

del espacio Y =sm x R:

1) Es obvio que 1tq(Y) == 1tq(sm),
~ 11 11

2) En [1] Cerin demuestra que ~q(X,a.) == 1tq(T(X,oo),pa.)' donde X denota la
11

compactificación de Alexandroff de X por el punto oo. T(X,oo) = (h:I --) XI h(t) = 00 si y
11

solo si t = 1} (espacio tangente en 00, definido por Hu en [6]) y pó.:(I,l) --) (X,») es el

camino definido por Pa.(t) =a.(t/1-t) si 0:5;t < 1 y Pa.(1) =oo. Como 00 es un punto cónico .

en Y, tiene un entorno cónico, podemos aplicar el Teorema 14.5 de [6] y obtenemos que

~(Y,a.) == 1tq(sm,*) para cada q ~ 1. Además es fácil ver Y tiene dos finales propios.

3) Para calcular ~q(Y,a.) consideramos la sucesión exacta que relaciona los grupos 1tq,

~YJq

. 0--) ~q+¡(Y,a.)--) 1tq+¡(Y,a.(O»--) Jq(Y,a.) --) ~(Y,a.)--)·· .

Por la forma en que están definidos, los homomorfismos ~q(Y,a.) --) 1tq(Y,a.(O»
son isomorfismos para q ~ 1, luego Jq(Y,a) =Opara q ~ 1. Calculemos J<j(Y,a.), para ello

estudiamos la enterior sucesión exacta en las dimensiones bajas:
..--) ~¡ (Y,a.) --) 1t¡(Y,a.(O» --) J<j(Y,a.) --) ~o(Y,a.)--) 1to(Y,a.(O»

si m > 1 1t¡(Y,a.(O» =1to(Y,a.(O» =O, luego ~o(y,a.) == ~o(Y,a.),

si m = 1 ~¡(Y,a.) == 1t¡(Y,a.(O» == Z, y 1tO(Y'a.(O» = O luego J<j(Y,a.) == ~o(Y,a.). Con

esto conocemos todas las CPq(Y)
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._____-r o
o ) o si q < m,

.~7
O

z - ----7 O si q = m,

~7
O

z ) O si q = m+1,

~"7
O

1t:q(s m) ) O si q > m+l.

Supongamos que dim M < m. Una vez hecha la elección de aplicación g entre los

finales de M y los finales de Y, [g,M,Y]p = O, es decir, hay tantas clases de homotopía propia

de aplicaciones propias entre M e Y como aplicaciones del conjunto de finales propios de M

(número de componen tes borde de la p.l. variedad N) en el conjunto {0,1).

dim M = m, para cada elección de g, g m(g,M;q>m(Y)) es Hm(M;~) . Para calcular

Hm(M;~) utilizamos el Teorema de los Coeficientes Universales:

Hm(M;~) == Ext(Hm _l(M);~) EB Hom(Hm(M);~) .

Como dim M = m, Hm(M) =OY Hm(M;~) == Ext(Hm _l(M); ~).

Calculemos Hm_1(M): De la Proposición 9.1 de [2] y teniendo en cuenta que H¡(M) ==

H¡(N) se obtiene:

Hm_1(M) == Hl(N,dN).

Utilizando otra vez el Teorema de los Coeficientes Universales

Hl(N,dN) == Ext(HO(N,dN);~) EB Hom(Hl(N,dN);~) .

Como HO(N,dN) y Hom(Hl(N,dN);~ ) son grupos abelianos libres, Hm_1(M) también lo es,

yen consecuencia Hm(M;~) = O. Notar que obtenemos el mismo resultado que en el caso

anterior.

dim M = m+1, ahora solo podemos calcular las m-clases de homotopía propia. Estas,

una vez hecha una elección de aplicación g, están en correspondencia 1-1 con los elementos del

grupo g m(g,M;q>m(Y)) que, como antes, es Hm(M;~).

Hm(M;~) == Ext(Hm_ l (M);~ ) EB Hom(Hm(M); ~).

Hm(M) == Hl(N,dN) (Prop. 9.1 de [2] y H¡(M) == H¡(N)), en consec uencia Hom(Hm(M);~)

es un grupo libre.

Por las mismas razones , Hm_1(M) == H2(N,dN).
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HOMOTOPIA EN CATEGORIAS ADITIVAS*

S. RODRIGUEZ

De pa r t ament o d e Mat emática Fundamen tal . Fa cul t ad d e Ma t emá ti c a s .

Universi da d d e La Laguna . S/ C. d e Te nerife (Españ?) .

I n [14 J conditions to the exist e n c e o f homotop y t h eor y o n a

c a teg o r y A a re giv e n . Th es e conditions we r e e xt~ acte d o f Hub e r' s

standar constructions [ l OJ a n d compl eted wit h othe r s , so that h o­

mot opy groups e x a c t s e quences could b e defined a nd th e princ ipal

properties of usual h omot o p y were ver i f i ed . I n this work i t is

analys e d t h e particula r case that A is an additive c a tego ry . The

o r igi n a l conditions a re r educed e n o ught , a rr i ved in spi t e of i t ,

t o analogous r esul ts. Th e import anc e of t hi s h omo t opy axiomat ic

on a d d i t ive c at e g ori es was in t he f act t hat, i n spi t e o f i ts s i m­

plicity, i t c ont ains t he more i mport h omot opy t heo ry d e fin ed o n

addit ive cat e g ori es .

0.- INTRO DUCCION

Este trabajo da una axioma t ixación de las teorías de h omo­

topía def ini das sob re c ategor ías aditivas . La ax iomatización de

l a h omot op í a se busca desde hace ' tiempo . Ya en 19 5 5 Eckm ann y

Hil ton [4J o btienen algu nos r esul t a d o s. Poster io rmente , ha n sur ­

~ i do axio m' t icas co mo l a s h-c -ca t e g orí a s d e He ll er [7J, los co m­

pl e j o s c ú bico s de Kan [1 2], l as ca tegorías mo d e l o s de Quillen

[1 3] , l as cons tr ucione s standar pa ra categorías se mi - simplicia - '

l es d e Hu be r [ 10 ] y otras m's act uales como l as de Brow n [2 ] y

las de Baues [1 ]. Dura nte este proceso, o las axiom'ticas n o

aba rcaba n t o d o s los casos o surg ía una nueva homotopía que no

respetaba la axiom'tic a . Por ahora, l a que .m' s c a s o s en glob a es

la obtenida sobre las categor ías de c of ibra c i ones de Baues [ 1] .

La axiom'ti ca desarro ll ada en este trabajo abarca todas l a s

( * ) Este trabajo ha sido r ealizado con la ayuda de l a Consejeda de Educación de Cana ria s , pro­
yecto nº 11 , conv . 2- 6- 1987 .
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teorías de homotopía existentes sobre catego ría s a ditivas, y

sus axiomas son más manejables , por su simplicidad, que los de

otras axiomáticas . A través de l a s construccione s cono o arcos ,

similares a l a s cons trucciones standar de Huber [ 1 0 ], sig uiendo

ideas análogas a las de Dieck, Kamps y Puppe [3 ] s e desarrolla

una teo ría de homotopía que posee las propiedad e s más usuales

de cua lquier h o mo t o p í a, rela tivas a g~upos de homotopía, fib ra ­

ciones y cofibraciones, sucesio nes exactas de grúpos de h o mo ­

top ías , etc ...

El t r a ba j o consta de cua t ro pa r t e s, la p r i me r a d e d i c a d a a

la obte nción de lo s g r upo s d e h o mot o pí a, la segunda a na liza y

est u d ia l a s cofi b racio nes y su s s ucesio nes, l a t e r c e r a du al iza

la s dos par t e s ante r io re s y c rea l a s sucesio nes exac tas d e l o s

gru pos d e h omo t o p í a y en l a úl t i ma se a na liza n ejemplos re lati ­

vos a es ta teoría .

A lo largo de todo el trabajo A rep resenta rá una categoría

adi tiva con conúcleos , sa lvo e n la última pa rte , do nde se h a r á n

algunas distinciones . Las proyecciones e inclusiones se notarán

por p e i con un subíndice de objetos si es suma directa y de

morfismos si es (co)núcleo .

1 .- GRUPOS DE HOMOTOPIA

Toda teoría de homotopía lleva asociada u n a relación de

eq uivalencia entre s us morfismos . En esta axiomá tica , l a re la ­

ción se obtiene definiendo n u lhomo topía por facto rización a

través de u n cono y exte n die ndo ésta, por me dio .d e l a s u ma , a

hom¿ to p ía .

Sig uiendo este pr o c es o, se d e f i n e, p r im er ament e , l a n o c i ón

de cono , obte niendo co mo co nsecue ncia, la de mo r fis mo n ulh omó­

topo y , usando la suma , no olvidar q ue la catego r ía e s aditiva,

la de morfismos homótopo s . Se c rea así l a ca t ego r ía h omo t ó p i c a

Ah y el funtor IT o ' O-gr upo de ho motopía , que me d ia n te u na sus ­

pensión, dará origen a los funtores IT , n -gr upo s de ho motop ía .
n

Se finalizará analizando la homotopía de pares y la homotopía

relativa .
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Cl : C transforma el objet9 cero y los c uadrados co­

cartesianos en el o b j eto cero y cuad rados cocartesia ­

n o s respectivame nte .

1 .1 De f i ni c i ón: ¡¡'la construcción co no (C,k,p,q) sobre A consta

de un f untor covariante C: A + A y de transformaciones natura ­

les k : 1 + C , p : CC + C y q : CC + CC, verificando los siguien­

tes axioma s :

kC .

1

Ck y q(Ck)

C2: ·p ( k C)

C3 : q ( k C)

La ca t ego r ía cocien te A/~ se deno mi na catego ría h omo t ó p i c a

de A y se r epr es ent a por Ah. Una h-eq ui vale ncia es u n morfis mo

de A c uya c lase es u n iso morfi smo e n Ah .

Lo s obje to s c o n t r á c t i l e s son aquellos cuya ide ntidad es

nulho mótopa y , por el axioma C2, se tiene que el cono de un ob ­

jeto es contráctil . Utilizando la proposición 1 .3 surgen como

cons~cuencias inmediatas :

1. 3 Pro po sició n : La relació n de homotopía " ~,, es compatible con

l a compo sic ió n de mo r f i sm o s.

Demostr a c i ó n:

Ba sta o b serva r q ue s i f ~ O por u~ a n ulh omo t op i a F en ­

t on c es f g ~ O po r l a n u l ho moto p ía FCg y gf~O por la nu l ho motopía

g F , d onde Cg es e l co no de g.

1. 2 De fini ci ón: Un morf ismo f : A + B se dice nu l h o mót o p o (f~O)

c ua n do se fac toriza a trav és d e k A,. es to es , c ua ndo exis te u n

mor fism o F: CA + B tal qu e f = Fk A.
El conjunt o de mo r fis mo s nulh omó t op o s desde A a B se r e ­

pr e s enta p or Nul (A ,B) y l o s mo r fism os c uyo do mi nio s e a un cono

s e deno minan n ul homo top ías . La di f er en c i a de dos mor f ismo s nul ­

h omó t o p os es, por la diferencia d e las nulho motopías re specti ­

vas , nul ho mótopo y, por tan to, Nul(A ,B) es un s ubgrupo de

Hom(A ,B) pa ra todo par de objetos A y B de la categoría A . Al

grupo cociente Hom(A,B)/Nu l(A ,B) se denomina O-grupo de homoto­

pía de B r e s p e c t o de A y se representa por ITo(A ,B) .

La h omo t o p í a surge ahora como consecuencia obvia:

f,g : A + B , f~g si y sólo si f -g~O .
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Evidente usando la propiedad di stributiva de la com ­

pos ición respecto de l a suma y la proposición 1 .3 .

La categoría de pares de A, representada por A (2) tiene

como objetos los morf ismos de A y como morfismos de f en g, los

pa res de morfismos (ho , h i ) de A xA que conmutan con los anterio-

0, para todo objeto Y de A

0, para todo obje to Y de A .

El caracter funtorial de IT o viene expresado en e l sig uie n-

X contráctil

ITo(X,Y)

ITo(Y,X)

Para l a homotop ía re lativa, se co nsidera l a ca tegor ía bajo

un obje to A, rep resentada por AA, c uyos objetos son l o s mo r f i s­

mos de A con dominio A i cuyos morfismos de u n o bjeto (f,X) en

ot ro (g,Y) son los morfismos h : X + Y que hacen el triá ngulo

conmutativo: ..hf .= g . El cono (C ,k ,p,q) de A ind uce un cono

(O ,kP,p, q) en esta categoría , donde P es la proyección sobre el

(1)

(2)

(3)

res , h i f = gho. El cono (C,k,p,q) de A induce e n A(2) el cono

(C,(k,k),(p,p),(q,q» y , por ser A(2) ad itiva, se o b tienen re ­

su ltados análogos a los a nteriores .

Nótese que ho y hl puede n ser nulho mótopos por me d i o de

nul ho motopía s fu y fu y que en cambio, por ser g~ f ~ Cf, el

mo r f i s mo (ho , hl) n o s e r 1 o . Por o t rol a do , 1 f = (1 A , l B)

(f: A + B) y si A y B so n co ntrácti les por nul h omo t o p í a s F y G

respectivamente , entonces fF = 1 Bf F = GkBfF = GCfkAF = GCf 1
A

~ GCf y , por tanto, l o s objetos contráctiles de A(2) si son

aq ue llos que tie ne n su dominio y su codominio contrácti les.

1 .4 Corolario: f~O si y sólo si se factoriza a través de u n ob­

jeto contráctil.

1.S Corolario: Son equivalentes:

te teorema :

1 .6 Teorema: Para cualquier objeto A de A,

(1) ITo(A, -),ITo( -,A) : A + Ab

(2) ITo(A, -),ITo(-,A) : Ah + Ab

son funtores aditivos, do nde Ab e s la categor ía de l o s gr upos

abe lianos.

Demostración:



conúcleo del objet o y el codominio de O eS el co no del co n úc leo

del objeto : codom O Ccoker. Esta cate gorí a no e s a di tiva pe­

ro, usando la aditi vidad de A, se o b t ie n e n r esult ad os a nálogos

a los de A.

Obsérvese que el c odominio de un mor f ism o nulhomót op o es

el morfismo O y que, por tant o, los objet os co nt r á cti l e s s on

los morfismos ceros con codominio contráctil . Por otr o lado, si

el obje~o distinguido es el O, la homot opía relativa c o i nc i de

con la homotopía normal.

Otras caracterizaciones de la homot opía relati va vienen

dadas por el siguiente teorema:

1 .7 Teorema : Sea f: (g,X)"" (O,X'), son equivalentes:

(1) r-o (rel. A)

(2) j:'o:O, donde f: coker g"" X' es la induc ida por f

(3) Existe F: CX .... X' tal que f = Fk
X

y FCg = O.

Demostración:

(1) => (2) La nulhomotopí a relativa a A de f es un a

nulhomotopía de f, por la unicidad d e la induc ción.

(2) => ( 3 ) Sea F la comp osición de la nulh omot opía d e

f con la proyección en el conúcleo de Cg. Las i g u a l d a d e s resul­

tan por la unic idad de la i n d u c c i ó n y po r transf ormar el funt o r

C conúcleos en c onúcleos.

(3) => (1) Una nulho motopía rela ti va a A de f es l a

inducida por F en el conúcleo de Cg.

Se puede así definir, usando el funtor suspensión

S '= coker k, los grupos de homotopía de un objeto y los de pares

de objetos como los funtores siguientis:

(1) n-grupo de homotopía de B referido a A: n\B) = no (SnA,B)
n

(2) n -grupo de homotopía del par g: X .... Y referido a
A

A: nn(Y'X) = nO(K~-lA,g).

2 .- COFIBRACIONES

Se verá que, en e s t a a xiomátic a, l as c o f i b r a c i o n e s de Ec k­

mann - Hilton, morfismos que poseen la pr o piedad de e xtensi ón

de' homotopía, y las d e Serre, morfismos qu e poseen la pr o p ie d a d
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de ex ten sión d e nul ho motop ía , coi nciden .

To d o morfismo es co mpos ición de un a cofi brac ió n co n u na

h - equivalencia y , por medio de las cofibracio ne s inducidas me­

dian t e cuadrados cocarte s ianos , se l e asocia fun to rialmente

tre s sucesiones de cofib racio nes equivalente s : la d e cofi bras

homo tópicas ca nónicas , la d e cofibras homotóp i c a s y l a de Pup -

pe .

Para las eq uivalencias a nte riore s se usa rá n rel a c i on e s en ­

t r e r etr a ct o s y ret racto s p o r d e f o r ma c i ón , vi én do se qu e , e n a m­

b os ca sos , coinciden l os dife r e nt e s t i p o s .

A meno s que se ~iga lo contra rio , e n t od o e l párr a f o , i

rep r es e nta rá u n mo r fismo c o n d omin i o A y codo mi n i o B.

2 . 1 De fin i c i ó n : i es cof i b ra ció n s i para t od o mo rf ism o

f : A + X, f~O existe una ex t e nsió n f ' : B + X t a l q ue f ' i f.

2 .2 Pr o p o s i c i ó n : So n equiva len te s :

( 1) i cofibración

(2) Pa ra todo X contráctil , Hom( - ,X) transforma i e n u n h omo ­

morfismo suprayectivo

(3) f : A + X, f e O en tonces existe f ' : B + X, f'~O y f 'i f

(4 ) Ci tiene una retracc ión

(5) f~gi entonces existe g '~g y f g 'i .

Demost ración :

( 1) => (2) Al s e r X contráctil , t o d o mo r f i s mo es n u l ­

homótopo y, por tanto , por ( 1) tie ne una exte n s ió n .

(2) => (3) Po r se r f~O , se fa c toriza a tr a vé s d e un

o bjeto contráctil. Po r (2) exi ste un a exte nsi ó n d e B a dic ho

o bjeto qu e comp ues ta con l a n u lh omo t o pí a de f d a u na exte nsi ó n

de f . Ev i de nte mente , es ta e x t e n s i ón es nulhom ót o p a por facto r i ­

za r s e a t ravés d e u n o b je to co n t ráct i l.

(3) => ( 4) kA ' por ( 3 ) tie n e un a ex t en s i ó n . La co mpo­

sición del cono de dic ha ex te nsió n co n PA e s l a r et r a c c i ón b u s ­

cada .

(4) => (5) Sea F l a nu l h omot opí a tal q ue f - g
i

= Fk A.
Sea g " = Frk

B,
donde r es l a re tracció n existep te por (4) .

a ' = g+g " verifica (5) . Nótese q,ue g "~O .

(5) => (1) Basta coger g = O .
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De mostr a ci ón:

( a ) <.=> ( b ) Si r i ~ 1 ~ ' po r" s e r i c o f i b r a ció n , e x i s t e

(1) Evidente

(2) Pyi y = ly ' lYl!lCX-iyP y = iCXpCX~O .

(3) Si g : X ..... Z, g~O po r n ulhomotopía G , e n tonces

{O ,G} ; YlllCX ..... Z es u na exte nsión

X ..... YIDCX :Sea "f : X ..... Y un mo r f ism o y considérese <f" , ki

2 .3 Te orema:

Fácilmente se compr ueba que la composición de cofibracio ­

nes es cofib ración y que si la composición de dos morfismos es

cofibració n, también 10 es el p rimero . Si el c ua d r a d o a ,i =
1

= iaa es cocartesiano e i es cofibración, dado un morfismo g~O

co mponi ble con a, se tiene q ue ga~O y por 2 .1 existe u n a exten­

sión g ' t a l qu e g 'i = ga y po r cocartesianidad, existe h tal

q u e ha , = g .' Y h i = g , Por tan t o , 1 el in d u cid a d e u n a e o f i b r a-
1 a

ción p or c o c a rt e s i a n i d ad e s un a cofibració n . Nótese qu e una ca -

tego r ía a dit i v a co n con úc leo s p ose e c uad rados cocar t e sia nos y,

co mo co n s ec ue ncia , cofi b racio ne s indu c i d a s. Po r o t ro lado , si

e l do mi n io d e un a co fib ra c ió n e s co ntrác til , uti l i z and o que s u

id en t id ad es nulh omót op a y que e l fun t or C con se rva cof ibr a c i o­

n es y c o n úcleos , se t ien e q u e l a pr o y e c ci ón so b re e l co n úcleo

d e l a cof i b rac ió n es u na h- equ ival enc i a.

S i se consi de ra n l a s defi n icio nes u su a l e s en h o mot op í a de

lo s d iferentes tip os de retr a ct os:

(a ) retr acto d ébil , r i~ l A

(b) retracto, r i = lA

( c) r etract o po r d ef o rm a ci ón débil, r i~l A ' i r~ lB

(d) retracto por d e f orm a c i ó n, r i = l A ' i r ~ lB

(e) r etract o por d e f o r ma ci ón f u e r te , ri = l A' ir = l B (rel. A) .

Se t ie n e :

2 . 4 T e or ema: S i i es cof i b ració n , (a) < => (b) < = (c ) < => (d) < = >

<.= > ( e ) .

(l) f = Py<f ,k
X>

(2) P y es h- e qu i v a l en c i a

(3) <f ,k
X>

es cofibración

Demo s t ración :
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De este teo re ma su rgen re lacio nes entre la s difere ntes

h -equivalencias :

2 .5 Te o r e ma :

(a) Si gi = jf, j: X + Y, i,j cofibraciones y f,g h-equivalen ­

cias en A entonces (f,g) es h -equivalencia en A(2)

(b) Si fi = i', i ' cofibración y f h-equivalencia, entonces

f : coker i + coker i', la indu cida por f, es también h-equiva ­

lencia .

Demost ración:

(a) Sea n f ' y g ' las respec tivas inver sas homotópicas

de f y g. Entonces s ' j ~if', y por ser j cofibración, existe

g " tal que g' 'j = if i . Sea h = g ' 'g -jFrk B, donde F es la homo­

topía entre f 'f y lA Y r es la retracción de Ci. h es una h ­

equivalencia y hi = i, por el teorema anterior, h es h -~quiva­

lencia (rel . A). Sea g'" = h'g", donde h' es la inversa homo­

tópica (rel . X) de h. (f ',g"') es una inversa homotópica a iz­

quierda de (f ,g). Repitiendo el proceso con (f ' ,g" ') y usa ndo

la asociatividad de la composición se co ncluye el r e s u l t a d o .

r' tal que r'i = lA '

(c) => (b) Y (c) <=> (d) Como el anterior, observando

q ue se puede conseguir r '~r.

(d) < = > (e) Obsérvese que en los retractos por defor­

mación , i es h -equivalencia.

Si hi = i, h~lB' por una homotopía F, entonces h '

h+h -hh = 2h-h2~lB (rel. A) por la homotopía FCh-F .

Si hi' = i Y h tiene inv ersa homotópica a izquierda h ',

entonces i'~h'hi' h'i . y, por ser i cofibración, existe

h ' '~h' Y h' 'i = i ' . Luego h' 'hi ' = i' Y h' 'h ~lB' por l o ante­

rior , h ' ' h +h ' 'h -h ' ' h h' ' h = (2h ' ' -h' 'hh ' ' ) h ~ l B (re l . A). Luego

h t ie ne inversa h o mo t ó p i c a (rel . A) a izquierda .

Si hi' = i Y h es h-equivalencia, por lo a nterior , existe

h ' tal que h 'h~ lB (rel. A). Si h ' es la inversa homotópica de

h, se tiene h' '~h'hh ' '~h ' y, por tanto , h' es h-equivalencia

con h'i = i'. Repitiendo el proceso, existe h' " tal que

h'hlt '~lB (rel. A) y hlt'~h. Lueg o h es h-equivalencia (rel. A).

il
A

= i e i h-equivalencia, por lo anterior, existe r tal

lA e ir~lB (rel . A).que ri
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(b) Por e l te orem a a n t e rio r f e s h- e qu i val en c i a ( rel . A) y como

la induc ci6n en l os co n 6c leo s e s un f uator aditivo , por 2 de

1 .7, se conclu y e el r es ult a d o.

tor covariante sobr e c ualquiera de l as met a c at e g orías d el codo -

minio . r
. A

(2) - * : Ah + cof Ah (rel . A) es un f unt or c ov ar i ant e .

Demo straci6n:

AA h (rel. A), cofAAh (rel.A) es un f u n -
A

c of A,

A A'
Todo morf i sm o a : A + A' induc e u n f u nto r a* : A + A de -

finido , de form a natural, por cocart e s i an i d a d . Si s e defi ne n

las matacategorías AA , c on o b j e t o s l as c lase s de mor fi s mo s des-
A

de un objeto de A; cof A, con obj et os l a s cla se s d e cofi b racio -

nes desde u n o b j e to d e A; y como morfism os e n a mba s , las c lases

de equivalencias naturales de los funtores, se t iene :

2.6 Teo rema:

(1) -* : A + AA ,

(1) Tod o, s al v o la hom otopía, s o n s imp le s com pr ob a­

c io n e s , a lg u n a s d e las c ua l e s y a han si do in dica da s . Si f~g

(rel . A) media nte l a h omot opía F, se t i en e aiFCi = a iO = O =

OCa y , por co ns er var el fu n t o r C l a coc a r te s ia ni da d , exi ste

G 6nica t a l ·q u e GCi = O y GCa. = a. F . G e s l a ho mo top ía bus c a-a 1 1

da que hace a* ( f)~a*(g) ( r e l . A') .

(2) Su p6n g ase a l ~a2 medi a n te u na h omot opía

F: CA + A ' . Sean qk : A ' tIl CA + A ' (k = 1, 2 ) de f in idas por q l =

= PA ' Y q2 = PA, +F PCA ' i A , se puede interpretar c omo un fun tor

A 'IDCA A'
i

A
, : cof Ah (rel. A 'IDCA) + cof A h (r el. A') y consider ar

(qk)j: i A , + (qk) *' la inducida por coc artesianidad medi ant e

u na cofibraci6n j : A'tIlCA + B, como una trans formaci6n natural .

Sea n G
k

: CA 'IDCCA + A 'IDCA definidas p or Gl = OIDPA Y

G2 = {O,<-F, l
CA

>PA }' Gk ~O y , por ser j c of ibraci6n, e xist e

Hk : CB + B tal que HkCj = jGk . Como (l -H kk B) j= i A, q k ' exis te

jk 6 n i c a tal que j k(qk)j = 1 -Hkk B Y jkj a = ji A , · Por otro l ado,

(qk)jHkCj = O = OCqk y por c ocartesianid a d ex i s t e Fk 6nic a t al

qu e FkC(qk)j = (qk )jHk y Fk Cja = O. Fk h a c en 1" (q k ) j jk (rel.

A'). Luego (q k ) a s on h - equ i valencias re l a t i v a s a A . .

Sea g : A + A 'tIlCA, g = a 1+ k A . Den 6tese po r t l a eq u i v a l e n­

cia na t u ra l que h a ce q ue * c onse r v e l a co mposici6 n . Ent on c es
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Nótese que v . ( al ) .~ (a2) . pa ra to da cofib ración j . Co mo
J J J

consecuen cias de es te teorema , observando la forma que adopta n

los cuadrados cocartes ia nos en c a t e g o r í a s aditi vas con con ú ­

c l e o s , se tiene :

2 . 7 Corolario : Si a : A + A', a ~ O , e i c o fi b r a c i ó fr ent on ces

( 1) i : A l + A( . ) esh-equi valente relati vo a A' a
a l, a

i
A

, : A' + A'@ coker i

(2) Si f ' : coke r j + coker i , la ind uci da por f, es h - e qu i v a ­

le ncia , ento nces fa' la i nd ucida po r cocartesia n idad med i a n t e

~ . es h -equivalencia r e l a t i v a a A ' .

Y us and ó las transformaciones. natural es que hac en de - * un

f u n t o r e n t r e las cate go rías ya señaladas :

2 .8 Cor olari o: Si i es c o f i b r ac ió n , entonces

entonces

( q2g )* e s un a equiva -

Si a : A + A ' es h-e qui valen c ia, t ambi én io es a.
1

Si A es un retracto por d e f o r ma c i ó n fuerte d e A',

a
i

' es h - equ i v alenc~ a r elativ a a A.

(1 )

(2 )

2 . 9 De f i n i c i ó n: Un mor f i sm o c se dice cofibra de ot~o f , si

c f = O Y par a cualquier o tro morf~smo g tal que gf = O exis te

uno h t al que hc = g .

Si s e c a mbia "=" por "~,, se tiene el co nc e p t o de c o f i b r a

ho mot óp ica , que es, en particular, un a c of i bración .

De f orm a natural, d a d a una categorí a A, se definen l as me­

t a c ate g orí as : SA t, su cesiones c r e c i e n t es de morfismos en A y

SeA t, su c es iones c rec ie n t e s de c ofibras e n A . Si l a c ategoría A

es abelia na , S EA t r epresenta l a me t a c a t e g o r í a d e las s ucesiones

exactas crecie ntes de morfismos en A . De esta for ma , las suce­

siones crecientes i so mor f a s en Ah, esto es, los objetos isomor ­

fo s e n SAht , se d i r á n h -equi valen tes Nóte s e que cualquier su­

c e sió n c recie n t e h- e q ui valente a un a de c ofibras h omotópicas es

t a mbi én de c o f ib ra s h omotóp icas . De f orm a a n á lo g a se definen

la s s u ces i on es d ec r ecie n t e s , + .

Si F: A + 8 es un funtor c o v a riante .(contravariante), se

i n d uce d e forma o bv ia e l funtor , que por simp lificación s e de ­

n o t a de igu al form a , F: SAt + S8 t (S8 +) . y , como consecue ncia ,

v = t(q_l g*)(qlg*)t : a l*
2

lencia natural .
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2 . 12 Pro po s ición : G: A (2) + SAht definido por

gl Pg 1 sgl
sp

~ ~g
gl

S2 A+ . . .G(g) = A A ' + C + SA SA ' + SC +
g g

de

Sco ke r g
sp

SA ' -.:gsg
+SA

h
+

C
g

coke r g

A'g
+

Dado un morfismo g : A + A', siempre se le puede asociar

cofib ra homotópica canó nica gl = (kA)g . Nótese que R 1 =
es u na nul homotopia para gl g . Si se de nota por C e l codo­

g

H( g) = A ·~ A '

es un f u n t o r co va ria nte con d omin i o l a me t a c a t e g o r i a de cofi­

b racio ne s d e A.

De most r a c i ó n :

Simple comprobación, observando q ue el f u ntor S es

aditivo y q ue si f~O me di a n t e una nulhomotopía F, entonces l a

inducida e n el conúcleo por Cf -kBF, (B = codom f) co mpuesto con

P
k

es Sf y, por tanto, Sf~O . y , en_ consecuencia , S conserva la
B

una

Nótese que C
g

= coker <g , -k
A

> y, usando el teorema 2 .3 y el

apartado (b) del 2 .5 , se tiene que la h-equivalencia proyección

PA' induce , si g es cofibración , una h -equivalencia

e : C + coker g . Si se llama h la composición de la proyección
g

P con un a inve rsa homotópica de l a h -equivalencia i nd ucida ,
g l

se obti e ne l a s ucesión de cofib ra s ho motópicas asociadas a una

cofib ració n g :

2 . 13 Pr opo s ic i ó n : H: cof A + SAht defi nido por

F(g) = A

gk
A

minio de gl ' reiterando el p roce so se obtiene la sucesión

cofibras h o mot ó p i c a s canónica s a sociada al morfismo g :

2 . 11 Pro posició n : F : A(2) + SCA ht d e f i n i d o po r

es u n f u n to r cova riante .

Obsé rvese q ue SA ~ coke r gl ' s u rgiendo a s í la s u c e s i ó n de

Puppe asociada al morfi smo g :

usando la propos ic ión 1 .6, se tiene l a siguiente caracteriza­

ción de los objetos de SCAht ·:

2.10 Proposición : 11 0(-, Z)(SCAh t) · está contenido en SEA b+ y

11 0 ( _,Z)-1 (SEAb+) = SCA h t .
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de esto

por fac -

+ CC
g n -z.

u n ici -

, y

SC . Por naturali dad d e k ,
g n -3
y , po r cocartesianida d , existe

S( F) . Aplica ndo e l f u ntor S s ucesivamen -

a la sucesión

entonces C e s u n r e tr a c t o por
g

a través de G3(i,i ) . De lo c ual se concluye
g .

n uevou s an d o d e

P + Sg e = P k
gn+l n +z n C

gn -z
t or i z ar s e a través de u n cono . De donde Sg e - P

n +z n gn+l

último,

equi v a le n c i a e n: C
g n

+

Cgn _ 1k C
g n -3

+ CC ta l que
g n -z

t al qu e NR = lCCn+ 1

gn - z
dad de l a cocartesianidad,

e l' - e 2 , e
3

, - e 4 , ... )

g g l P g
A A' C 1

+ + g +

ción de CB y po r el teorema 2 .6,

defo rmación de C
gi

t e a e sta h-e ~u i v al en ci a se co ncl uye el resul ta do.

(2) S i g es c o fi b ració n , (lA' lA " e , I SA ' ISA " Se ,

lSzA' .. . . ) h a c e h-e q uiva le n te s a G(g) y H( g ).

= ( -e n+ l)gn +z ··

Luego la sucesión de cofibras h o mo t ó p i c a s canónicas aso ­

c iada al morfismo g es h - equivalente mediante ( l~ , lA " lC '
g

Como co ns e c ue nci a de e s te teo re ma , lo s fu n to r es G y H se

pueden t am b ié n co n sid era r co n codo minio SCAht. Si e n e l cuad ra­

do cocartesiano g.i = i g , i cofibrac ió n y g e pi mor fismo, en -
1 g

ton c e s el cuadrado R().Ci = G3(i ,i )R 1 es coca r tesia no ; además ,
1 1 g

Ci ti e n e una retra cción que hace de CA un retracto por defo rma -

2. 14 Te or e ma:

(1) F ( g ) es h -equivalente a G(g)

(2) Si g es cofibración, H(g) es h - equivalente a G(g).

Demostración :

(1) Por el mi s mo razo namiento q ue s e u s o para la

cr e ac i ón de la s ucesió n d e cofi b ras homo tóp ica s , exi ste u na h-



que G (i,i) Y H ( i,i) son h -equiva l en c i as.
s n g an g .

3.- DUALIDAD

Todo lo di cho hasta aquí, tiene una teorí a du al: S i A es

una categoría aditiva con núcleos y una co nstr u cc i ó n a rco s

(C ',k' ,p',q '), esto es, un funtor covarante c ' : A + A y t ra ns ­

formacio nes natural es k ' : C ' + 1, p ' : C ' + C 'C' y

q' : c 'c ' + C 'C ' verificando C ' l : · C ' tr ansform a el objet o cero y

los cuadrados ca rtesianos en e l o bjet o cero y cuadrados cart e­

sianos, res pectivamente, C '2: (k 'C ')p ' = 1 Y C '3 : (k'C')q ' =

= C 'k' y (C 'k ')q ' = k 'C ' , util i zando el funtor lazos n = ker k' ,

se define n de forma d ual los gr upos de homotopía de un obj eto y

de un par referidos a un objeto. Así mismo, d ef i n i e n d o fibra c i o­

nes como los morfismos que verifican l a propiedad de eleva c i ón

de homotopía , a través de las fibracio nes i n d u c i da s por cu ad r a­

dos cartesianos, se l l e g a a la creació n de l as tres s ucesi ones

de fibras homotópic as du ales equivalent es : l a c an ónic a, la de

Eckmann - Hilton y la as oci ad a a una f i b rac ió n .

En una categorí a A a di t i v a c o n núcle os , c onúc leos, una

c o n s t r u c c í ón c ono y o t r a arcos, existen dos h omot opías, en

principio , diferentes. En este párraf o s e estud ia cuándo estas

homotopía s son coincidentes, utilizando par a ell o el concept o

d e adjunción, y obteniend o, las sucesiones e xa ctas de grup os de

homotopía .

La a dj u nción q ue se utilizará es la de .Kan, esto es , C es

adj unto .a izquierda de C ' o , eq uivalentem ente, C ' es adjunt o a

derecha de C, si y sólo si existe una equivale ncia nat ural

t: Hom ( C- ,-) + Hom(- , C ' - ).

3 . 1 Defi nición : Dos cons trucc io nes cono -arcos (C ,k,p,q) y

(C ' ,k' ,p ' ,q ') se di rán adj~ntas, cuando C es a d j u n t o a i zquier ­

*da de C' mediante un a equi~alencia natural que hace k ~k~,

* *P ';lip~ y q ';liq~ .

*Nótese que al ser k ';lik ~, el funt o r suspens i ón S es adjunt o

a izquierda del funtor la zos n y que, por t anto, los grupo s de

homotopía definidos por c onstrucciones ad juntas s on isomor f os ,

89



e s to e s, TIo(SnA ,B) ~ TI o ( Sn- 1 A, QB) ~

'\, TIo(A,Q n B) .

Da d a u na const rucció n cono (C , k ,p ,q) , e s su f i ci ent e te ne r

u n f un tor adj u n to a de rec ha C ' de C para obten e r co nst ruccione

co no -a rcos adju n tas . Pa ra e l lo basta def i nir k ' = kt - l( lc ,~) ,
-1 I - - 1 -1

p ' = tt p t ( l c , _) y q = t t q t t ( l C 'C ' _) ' do nde s e ha su pu e s

t o k : Hom (C - , -) + Ho m( -, - ), p : Hom ( CC-,- ) + Hom ( C-,- ) y

q : Hom ( CC-,- ) + Ho m( CC-, - ) defi nidas de fo r ma o bv ia . De f o rm a

dual su c e d e co n u na co ns t r u c c ió n a rCo s y un f u n to r a d j u n to a

i z qui erd a .

Por otro l ad o, c o n st r uccio ne s adju n ta s en A in du c en co ns ­

trucci ones a d j u nt a s e n A(2) y la h omot opí a r elati va y s u d ual,

l a c o r re la ti va , pu ed en ser d e fin id a s us an d o a rco s y co no s , r es­

p e c t iva me nte .

A pa rtir de aq u í A se sup o n dr á co n co n st ru cciones a dj u ntas .

Si se co nside ra el d o mini o de la fi bra h omo tópi c a ca n ónica

com o u n fu nto r F : A( 2) + A , F(g) = F , se ti ene
g

3 .2 Pro posición : Exi st e u na equiva lencia n~tu ral ent r e lo s fun -
A A

to r es TI 1 y TIoF .

De mo s t r a c i ó n :

Sean g : X + y y (u,v) : kA + g , e n to nces ky t(v) -

= vk
A

= g u y, por ca rt e sianidad, e xiste u n a única w: A + F
g

t al

que r 1w = t I v ) y g l w = u . Sg( u ,v) = w; S : Hom (k A, - .) + Hom ( A, F_ )

es un a equivalencia nat ur al. Nóte se q u e S-I(w) = (gl w, t- 1( r1 w» .
g

S conse rva la h o mot opía, pue s s i ( u ,v)~ O, s e t i en e qu e
g

w = h W, don d e W = S C 'g( U, V) , (U , V) es un a nulhomot opí a pa r a a r -

c os d e ( u ,v) y h = F;(u,v ) ( F ' l a du al d e 2.11) . Ent on c es w s e

f a ctori z a a tr a vés d e FC' g qu e es co n t r ác ti l c o mo co n s ec ue nc i a

del te or e ma d ua l a l 2 . 14 y , por t an t o, w~ O .

S - l t a mbié n co n ser va l a h omot o pí a , pu es si w~O , (U,V ) =
g

(C'gIW ,t - 1(qBC ' r1W» es un a nulh omo t o pí a para a rco s de (u,v);

donde W es una nulh omo t opía para a rcos de v. S es en to n ce s l a

equ ivale ncia na tu ral des e ada .

3.3 Teorema :

(1) P : A (2) + SEAb+ definida por P(g)

90



4 . - EJ EMPLOS Y RELACIONES

9 1

= h;ft , ( h ' es d ual de h

covariante .

f....
1

TIoA(X) e A.... TI 1 ( Y , X)

al 2 . 14, F es un d ilat ado p or d e f o rm a c i ón de F a tr av é s
gp g

= ~ ' ( p ,p ) y , p or t ant o, h . es un isomorfis mo n a t u r a l y ,, g "

(Pg ' p )* = 8; 1h*8
g r e s ult a q u e TI~( E ,Fg) '" TI~(B ,y) .

p

p fibrac ión y g mon omor f ismo , c omo co nsecue ncia del t e or ema

(2) Q : f A ->- SEAb+ definida por Q(g)

A ·1 A ·2 A ·3 A ·4 A ·5 A
= TIo(Y) 1 TIo(X) 1 TIo(ker g) 1 TI 1 ( y) 1 TI 1(X) 1 TI 1(ker g) ....

du al

d d . 3n - 2 .3 n -1 (.) .3n
on e J = g.¡'" J = 1

9
* Y J

e n la p ropo sic 10 n 2 . 13), es un funt o r

Nó t e s e qu e f3 n-
1(

[ u ,v ]) = [u] y

A
= TI o (Y)

To d a s las teorías de homotop ía definidas sob re catego rías

aditivas, so n ejemplo s de este desar rollo. Así pa ra l a teoría

p royec tiva e inyectiva de Eckmann - Hil ton [ 9 ], ba sta conside ­

ra r la envol t ura proyec tiva e i nyectiva , respectivame nte , ae

l o s obje tos . También e n l a h o mot o pí a de los co mplejo s de cade ­

n a s [ 6], [11] s ucede lo mi smo co n s ide rando C(X) n = XnelX n _ 1 . To ­

da h omot opí a o b t e n ida a tr a v é s de cil ind r o s o ca mi no s , puede

s er también obt en id a a tr a vé s de co no s o arcos, a n u l a n do l a s

r esp e ct i vas se gund a s i nc l u s io n e s o pr o y e c c·i on e s. Homot opías re ­

c i e n te s han sid o c r e ad as y des arr oll ad a s s ig uie n do e s te mét o d o,

como la de g r u po s a be l ia nos de L.J. Hern ánd e z [ 8] y l a d e R ca ­

s i -módul os d e M. Sa nz [15] y , de form a a náloga a és t as, se pu e­

den definir o t ra s s ob r e R módulo s, grupos topo lógicos , e s pacios

vec to ria l e s to po lógicos, etc . ..

co n

de h

como

donde f
3n

-
2 = g* , f

3n
-

1 = g1*.8
g

Y f3n = 8;1(i g 1) *t -
1

es un fun­

tor covariante .

[O ,i
k

v] .
Sn - 1

A
.Po r o t ro l ad o e l cua drado ca r t es i a no s ob r e g : Y ->- B y p : E ->- B,
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[10].

I,K. ARGYROS

(1)P(x) = O

p(x) = B(x, x) + L(x) + y ,

In this paper we prove a global theorern for the solution of the

polynornial equation of order two (or quadratic equation)

with

Introc1uction. wi th the exception of Rall' S work on the solutions of

polynomial operator equations .on a normed space X all published existence

theorems depend in sorne way on contraction rnapping theorems [1], [9], and

Rev . Acad. Cienc ias Zar agoza, 43 (1988)

and y is fixed in X.

A new g lobal t heorem for the solutions of pol yn omi a l e qua ­

tions i s provided. The res ult is obtai ned by s plitting t he poly­

nomi a l e quation i n a system of two l i ne a r e qua t i ons . i ]

AGLOBAL THEOREM FOR THE SOLUTIONS OF POLYNOMIAL EQUATIONS

where B is a bilinear operator on X [9], L is a linear operator on X

Dep a r tm ent of Mathemat i cal Sciences . New Mexico Stat e Universi t y .

La s Cr uces, NM 88 003 .

OUr work was rnotivated frorn a question raised in [11, p. 395] concerning

global theorerns for the solutions of polynornial equations.



we reduce the problem of solving equation (1) to a system of two linear

n is

Let

(2)

I E A.Obviously A ~ 0 since the identity operatorproof.

'The notation xk denotes (x, x, < : : » x) and Mk, k 1, 2,
-k times-

o

Finally an example is also provided.

A = [L E L(X)jB(L(y)) = B(y)L, with B, y as i n (l)} .

94

B(y)(x) = B(y, x) for .all x E X

equations that is easier to solve.

OUr resu1ts can then immediately be extended to include polynomial

As in the case of the real quadratic equation, under certain assumptions

= C2B(y)Ll + C2B(y)L2 = B(y) (ClLl + C2L2)

so, Cl Ll + C2L2 E A and the proof is canplete.

equations of order n

proposition. Let A denote the set defined by

Then

Main results.

with

Let L(X) denote the vector, space of all linear operators on X. Denote

by B(y), Y E X the linear operator defined on X by

a k-linear on X [4] ~ [10], [11].

Then A is a vector subspace of L(X).

c
2

be arbitrary numbers in the field of X and assume that L1 and L2 E A.



(x, L1 ) satisfies (3) and (4 ) . If x i s gi ven by (5) then (4) is satisfied.

Theo rem 1. Assume:

(a ) the square root of the linear ope rat or L2 - B(y) denot ed by S

Definition. Let NI and NZ denote two linear operators on X. Then the

linear opera t or NI i s a squa re root of N2 if N~ a NI' In this ease we

denote N2 by N2 = ~.

(5)

L+Sgiven by L1 =~ is irivertible on x¡

. -1
x = -2(L + S) (y )

By the previous remark it is enough to show that the pair

the ope ra t or L
1

E L(X)

-1
L

1
E A¡

Proof.
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B(x) + L = L1 .

L
1

= L;S ~

Li - LL1 + B(y) = O (by (a ) , (d) ) ~

- 1-B(y)L
1

+ L = L1 (by (b) ) ~

-1B(-L1 (y)) + L ~ L1 (by (e)) =>

Note that the problem of finding a solution x of (1) ean be redueed to

finding a pair (x, L1), x E X, L1 E L(X) satis fyi ng the system

B(x) + L = L1
(3)

L1 ( X) + y = O • (4)

vre ean now prove the main resulto

Also,

(b)

(e)

exists¡

and

(d) the linear operators L and S eornmute , that is LS = SL.

Then (1) has a solution x given by



(6) .

Let P' (xO), p " (xO) denote the first and second Fréchetthe theorern.

P(xo + h) = P(xO) + P'(xO)(h) + B(h, h) .

P(xo + h)

Equation (6) can now be written as

where,

Remark 1. If the 'operator L1 is not invertib1e, we can sti11 make use of

That is, (x, L
1)

satisfies (3) and (4). Therefore x is a s01ution of (1).

222(2B(XO) + L) - 4B(P(XO)) = 4B(XO) + L

+ 2B(~O)L + 2LB(XO) - 4B(y) - 4B(L(XO)) - 4B(B(XOXO))

= L2 _ 4B(y) .

derivative of P at Xo [8]. As in [9], there is no 10ss of genera1ity to

assume that B is symmetric in (1). We then obtain using Taylor's theorern
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The linear operator P' (xO) may now be invertib1e. We can then set

y = P(xO) and L = P'(xO)' If the rest of the hypotheses of the theorern are

now satisfied we obtain a s01ution x in the forrn

where h is given by (S};

Remark 2. Rall [9] has shown sorne e1egant existence resu1ts if P'(xO) is

invertib1e for second kind quadratic equations. However, the s01ution x if

Remark 3. If the linear operator S does not exist the transformation in

it exists lies in what he calls "factor set" which is not a vector space .

Remark 1 may produce an operator which is the square root of the new

"discrirninant" operator. However,if B(XO), L E A and live in a corranutative

a1gebra the transformation cloes not work, since



and y = [ ~~ ]

• [~~] =

(j12/ f3111 2

(322 /321
1 2

( ) t( X2)t rTlB x, y = xl'

(7)

(ordinary matrix-vector multiplication).
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(a new form of vector-array multiplication)

Remark 4. The real quadratic equation may serve as an example for the

theorem. However, a more interesting example when X = rn 2 is now provided.

Applications

Example. Let X = R2 with the ordinary bases {(1, O), (O, l)l. It is well

array of real numbers

known [10) that a bilinear operator B on X is uniquely associated with an

with respect to the chosen ordered bases. In fact, we define B by the

[ xX2l ]following calculation scheme if x =

Then B is plain1y bi1inear and the array T is its representation with

respect to the chosen bas í s , And, conversely, the value B(x, y) of any



(9)

(8)

O

1

= S
1 2
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and y =

-1 / 2
3 ' -1

. Also, L + S = [ :
O

-1

[
O -2]
3 '1
"2 "2

[-:

L =

B(x, x) + L(x) + y = O

B(x)

B(y)

using(7) and (8), (9 ) can be written as

We now have that

,
We also observe that for any x € X the linear operator B(x) on X

Consider now the quadratic equation X given by

where

bilinear, operator on X can be. calculated using the above scheme.

has the ordinary 2 x 2 matrix representation.

whe re



Moreover, the condition

m m

~ 1: I 1: I3tfk l
(1) j=l k=l

sup
IIxll"l

For a bilinear operator B = (fJtl, i, j, k

1
Also, lIyll = 4.

1 - 411BII • lIyll ~ O

IIBII

[ :: l . -2[: : l [ _: ]x

for m = 2.

n one can define as in [10]
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-1 [ 1
L1 = 2 O

m m

IIBII s max 1: 1: IfJtl
(i) i=l k=l

A simple calculation shows that the norm of B given in the previous

Note that this is a solution that we can find and not the only solution

Therefore,

Remark 5.

and finally we obtain the solution

1, 2,

of (9).

from which it follows at once that

[2] or [9].

example is 6

in [9] is violated. Therefore, the solution obtained in the previous example

cannot be obtained using the contraction mapping principIe iteration given in

Remark 6. ' The problem of finding a solution x of (2) can be reduced to
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(b) the operator L satisfies the equation
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Here we study how the above results can be ext ended in a Banach space.

in a real Banach space X , where y € X is fixed and B is a bounded

has at most two solutions xl ' x2 which satisfy t he Vietta relations

(1)

such that the linear operatorz € X

x = y + B(x,x )

Introduction. Consider the quadratic equation

Assume if there exists a

103

B(z)( x) = B(z, x) = B(x, z) for all x € X

b( x1 + x2 ) = 1

b(x 1x2) = y

2x = y + bx

It is wel l known that the real quadratic equ3tion

symmetric bi1i nea r operator on X [1], [2] , [3].

VIETTA-LIKE RELATIDNS IN BANACH SPACE

Department o f Ma th ema ti c s. Ne w Mexico State Universi ty .

Las Cruces, NM 88 0 0 3 .

We d erive a numb er of r esults o n t h e numbe r of solutio n s of

quadr a tic e quations i n Bana ch s pac e .

¡,K . ARGYROS

B(z) : X ~ X given by

Rev . Acad . Ci enc i as Zarago za , 43 (1988)



satisfies the condition

B(z) K 1 , where 1 is the identity operator on X

and

Xl + Xz = z

Then if xl and Xz are solutions of (1), the following are true:

B(XI + xZ) .. 1

B(X1 , xZ) .. y •

We also derive sorne results on the number of solutions of (1).

Finally, an example is also provided.

Main results.

We can now prove the validity of relations (Z).

(Z)

Theorern 1. Let z € X be such that, B(z) = 1 and X
1,XZ € X be solutions

of (1) with

Then

B(X1 + xl) = 1

B(X1,xZ) = y .

Proof. We have

Also,

Xl + Xz = Zy + B(X1,x1) + B(XZ'XZ)

= Zy + B(X1 + xz' xl + xZ) - ZB(x1,x2)

.. Zy + xl + Xz - ZB(X1,XZ)

104



-z = z

l. Then

= x3 + x4 + x2 - 2B(x2,x3 + X4) ­

= x3 + x4 - x2

-z = z

105

-x = z - x

-
= x ,

= z - x

=y-y+z-x

- y + z - 2x + B(x,x)

y + B(z - x, z - x) = y + B(z,z) - 2B(x,z) + B(x,x)

Proof. We have

Proof. We have

(By expanding and rearranging the right hand side of the first equation.)

which completes the proof of the theorem.

Theorem 2. Let z € X be such that B(z) Q I and let x be a solution of

is a solution of (1) also.

proposition 1. Let xl' x2' x3' x4 be solutions of (1) with

(1) then

-which shows that x is a solution of (1).

where B(z) = B(Z)



(3)

(4)
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B(x,x) - x + y = B(x,x) "- B(X,XI + x2) + B(xI,x2)

= B(x - xl' x - x2)

= B(r,s) = O ,

Proof. By (3) and (4) we have,

That completes the proof of the proposition.

proposition 2. Assume:

(a) there exist r, s € X such that

B(r,s)=O

and xl' x
2

€ X solutions of (l) satisfying (2), .

(b) the following estimate istrue:

Then the element x € X defined by

is a solution of (1).

or

if x = r + xl or x = s + x2.

Example. Let X = R2 and define a bilinear operator on B on X by

Applications.
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1 Argyros, IoK. On a contraction thearan and applications, Proc. Symp. Pure
Math. Vol 45, A.M.S., (1985),51-54

(5)

W/ = -.5200308

w2
4 = -.6318812

• Note that
-.5

-.5

b112wlv2 + b122w2v2 ]

b212wlv2 + b222w2v2

2w1 = -.5200308

4
"i = -.25

w = y + B(w,w)

] r b111 e -3,

REFERENCFS

W
1 + w2 = w3 + W

4 = z

B(w1,w2) = B(w3,w4) = y

B(w1 + w2) = B(w3 + w
4) = 1

1
48
1

- 48

W2
1

= .0200308

w2
3

= . 1318813

1 2 2
w1 = 48 - 3w1 + 2w1w2 - w2

122
w2 = - 48 + w1 - 2w1w2 - w2

[

blllwl + b121w2

b21lw1 + b221w2

1 2 3 4
w , w , w , W of (5) are nCM given by

= [ blllwlvl + b121w2vl

b211wlvl + b221w2vl

[~~] [

(B(w)) (:v)

anclo

It can easily be seen that B (z) = 1 if z =

W1
1 = .0200308

3
"i = -.25

'!'he solutions

3 ---o Nonlinear functional analysis and applications, Acad. Press, New
York, 1971. .

2 Ral1, L.B. Quadratic equations in Banach space, Rend. Circo Mat. Palenro,
10 (1961). 314- 332. .

Consider the quadratic equation on x given by

b211 = 1, b212 = -1, b221 = -1 and b222 = -1 or

where, y =
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ON THE DERIVATIVES OF HANSEN'S COEFFICIENTS IN DELAUNAY VARIABLES

R. CID Y $, FERRER

Depar t ament o d e Físi c a Te óri c a ( Ast r on omí a) . Fac ulta d d e Ciencias .

Ciudad Univers i t ar i a. 5000 9 ZARAGOZA (Es pa ña ) .

Gi acagli a h a s gi ve n a r ecurren c e re l ation f or t he d e ri v a t i ­

v e s of the Hansen coeff icient s x~ ,m wi th re s pect to t he eccentri­

city e . Using t his r e sul t , we c al cula t e t he seco n d d e r i v a t iv e
2 n mi 2d X

k
' d e and we d educ e t he f irst a n d seco n d partia l d e r i v a t i v e s

of X~,m with res pect to t he De l auna y variables L a n d G. Fi nally,

we an a lyse t he existence of small divi s o r s i n t hose d e r i v ~t i v e s

for s mal l eccent ricities a n d we ca lculate t he zero o r der te r ms .

1 Introduction

Giacaglia has given several recurr ence relations for th e derivatives of the Hansen
coefficients X;·m with respect to the eccentricity e, that we can resume into the
formula (41) of his pap el' (Giacaglia, 1976, pp. 522). In this papel', using thi s
recurrence formula, we calculate th e second derivative ,pX;,m /de2 and we deduce
the first and second partial derivatives of X;,m with respect to the Delaunay variables
L and G. The interest of these calculations is determined by the presence of the
derivatives frH/EJLn, frH/aGn in the developments of the Lie series, when the
canonical Delaunay variables (L,G,H,.e,g,h) are used in the theory of artifici al
satel1ite theory motion.

Moreover, we analyse the possible exist ence of small divisors in thos e derivatives
for small eccentricities and we calculate the correspondent e- l and eO ord er terms.
This question is motivated by the study of motions around the Lagrangian point L 4

within the restricted problem ( see Cid et al.[l]) .

109



(6)

(3)

(5)

(4)

(2)

2(3
e = 1 + (32·

_ . =h (n + 1 + m) vi,
Qh - ~ h - 8 8! '

e 1-~
(3 = 1 +~ = e ~ e,

r, =f (- 1)' (n+h '.- m) v~ ,
. = 0 8 s.

where

8ince the calculation of th ese coefficients is quite tedious, sorne authors (cfr . Hug­
hes[5]) have given other expressions mor e suitable for computing tables.

In relation to the possibility of existence ofsmall divisors in the partial derivatives
of t he Hansen coefficients for small eccentricities, we will use the expressions of
Newcomb (1895) in the form

where A, B , e are numerical coefficients dep end ing on the integers k, n and m .

110

The values of the coefficients Ph, Qh, for a given ind ex h, are obtain ed by t he rela tions

X n.m (_(3)m-k [Q Q P (32 Q P (34 + ]
k = (1 + (32 )n+l m-k + m-k+l 1 + m-k+2 2 •••

for m > k, being

2 Hansen's Coefficients

beings k , n int egers an d m a non negative integer.
According to Tiss erand[7 ] the X;:·mcoefficients are obtained by the expressions

for k > m, and by

The Hansen expansions are used for the development of fun ctions of the true anomal y
j , by means of th e mean anomaly l of an ellipt ic motion. In these expansions, the
Hansen coefficients x;:·mare defined by



In what follows when there is no confusion, we will write X instead of X ;·m. From
any of th e formul as Eq. (1) or Eq. (6) , and the relations . .

(9)

(8)

(7)

(11)

e
(1+2e2)(1 - e2)

e3

111

Similarly, if we consider the formula Eq. (6), we have

dX;·m = e1m-kl [Alm _ kl + B e2(1m - k I +2) + .. .]
de ' -

L 8e
8L

L2 8
2
e

8L2

we get the derivatives

8X 1 - e2dX C8X _ 1 - e2dX
L 8L = - e- --;¡¡ ' 8C - --e- --;¡¡ '

L282X =_31- e2dX +(1_ e
2)2

[d
2
X _ ~ dX ] ,

8L2 e de e2 de2 e de

G282X = _ 1 - e
2

dX +(1_ e
2)2

[d
2
X _ ~ dX] .,

8C2 e de e2 de2 e de

which, as w~. see, depends on the derivati ves dX/de and d2xu».
From the formul a of Giacaglia

~ [(2m - n)(2m - n +3)X;-2.m+2

_ 2(4m2 - n2 - n)X;-2.m + (2m + n) (2m + n _ 3)X;-2.m-2]

m(l + e
2)

[X n,m+2 _ X n.m-2]
4(1 _ e2)2 k k

+ 8(1 ~ e2 ) [-{2m(2m - n + 3) - n}X;-1. m+3

+ {2m(2m +n + 1) _ n}X;-l,m+l

+ {2m(2m - n - 1) - n}X;-l,m-l

-{2m(2m +n - 3) - n }x;-1,m-3]
2

+ me [( + 2)Xn .m+4 _ 2 Xn,m + ( _ 2)xn.m- 4]
16(1 _ e2)2 m k m k m k

dX;·m = 2m - n X n-1.m+I _ 2m +n X n-1.m-1_ me [xn .m+2 _ x n.m-2] (10)
de 2 k 2 k 4(1 _ e2 ) k k .

we obtain direc tly

3 Derivatives of the Hansen's Coefficients
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8X 8X . [ ]L 8L = -G 8G = (1 - e2)e lm- kl- 2 A 1 m - k 1 +Be2 (1m - k 1 +2) + . .. , (13)

which shows that the derivatives 8X/8L and 8X/8G do not contain smalldivisors
for 1m- k 1= Oor 1m- k I~ 2, meanwhile th eymay appear when 1m- k 1= 1.

(12)

elm- kl-2 [A 1m - k I (1 m - k I -1)

+ B e2(1m - k 1+2)(1 m - k 1+1) + ...]

d?xn,m
__k_

de2

5 Terms of the orders e-1 and eO in the first deri­
vatives

Po 1,

PI n,+ 1 - m - k,

P2 Hn + 1 - m) (n - m) - (n + 1 - m) k + ~e,

In what follows we will refer to the derivatives L(8X/8L) , G(8X/8G) given by th e
formulas Eq . (7) in which we have replace the derivative dX/de by Eq . (10) and
considering e ~ O. In order to do that we will have in mind the expressions of the
coefficients Pi, Qi given by Eq . (4) where we have eliminated the divisors (1 + f32)i ,
which do dot affect th e calculations. We will put

1 [d? X 1dX]· [ ]e2 de2 - ~--;¡; =1m- k 1elm-kl-4 A(I m- k I- 2) + B e2 (1m- k 1+ 2) + ... .

(14)
From this we get that for 1m - k 1= O, 1m- k 1= 2 and 1m- k 1> 3 th ere are no
small divisors. Wh en I m - k 1= 1 and 1 m - k I = 3 there are small divisors,

b) Small divisors in the second derivatives

From the formul as Eq. (8), Eq. (9) and Eq. (12) we see it i ~ sufficient to exa mine
the terms of the expression

a) Small divisors in the first derivatives

From the formulas Eq. (7) and Eq . (11) we get easily

4 Small divisors in the derivatives of Hansen's
coefficients
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In short , we get the results from the formulas

m [x n,m+2 x n,m-2]- 4 k - k

+1 ; ee
2

[(2m _ n)X;-l.m+I _ (2m +n)X;-l.m-l] .

1,

n + 1+ m+ k,

Hn + 1 + m)(n + m) + (n + 1 + m)k + tk2,

L
aX

= _ GaX
ei. se

a) Terms oi the arder eO

ai) k = m

In th is case we have

aX aX l ( 2 2 2
L aL = - G aG = 2 - 4m + n + n) + 0 ({3 ).

a2) k = m+ 2
Now, we have

aX aX
L- = - G- = !(4m2 - 4mn + n2 + 5m - 3n) + 0({32)aL aG 4 . '

a3 ) k = m- 2

Similarly if result s

ex ex 1(2 2 ) 2)L aL = -GaG = ;¡ - 4m + 4m n + n -5m - 3n + 0({3 .

b) Terms oi the arder e- l

b 1 ) k = m + 1

The small divisors are of the order

ex ex 1
L aL = - GaG = 2e (2m - n) + 0 ({3) .

It will not be small divisors in the case 2m = n.

b 2 ) k = m ~ 1

In this case we will have

ex ex 1
L aL = -G aG = - 2e (2m +n) + 0 ({3 ).

It will not be small divisors in the case 2m = - no



a ) Term s of order eO
al ) k = m

4 14 122 13 32
m + - n - -m n - -n - -m n

16 2 S 4
15 2 7 2 1 5 2

--m + -n - -mn + -n + O(f3 ). S 16 2 S .

4 14 122 13 32
m + - n - - m n - - n - -m n

16 2 S · 4
17 2 9 2 1 3 2

+-m - - n - - mn - - n + O(f3 )
S 16 2 S '

m [X n,m+2 x n,m- 2]-4 k - k

+~ [(m + 2)X;,m+4 - 2mX;,m + (m - 2)X;,m-4]

_ (~ __1 ) [ ( 2~ _ n)(2m _ n +3)X;-2,m+2 .
2 4e2

_ 2(4m 2 _ n2 _ n)X~-2,m + (2m + n) (2m + n - 3)x~-2 ,m-2]

+~ [- {2m (2m - n + 3) - n }X~-1,m.+ 3
Se

+ {2m( 2m +n +1) - n }X;-l,m+l

+ {2m(2m - n -1) - n}X;- l,m- l

-{2m (2m + n - 3) - n }X;- 1.m-3]

+ (__1 =f~) [(2m _ n)Xn- 1.m+l - (2m +n)Xn-1,m- l]
2e3 2e k k

where the signs =f correspond to the derivatives L2(82X/8L2) an d G2(82X/8G2)

respe ct ively.

In a similar manner to the previous Section, we calculate the te rm s of the orders e-
3

,

e- 1 and ea, in the derivatives L2(EPX/8L2), G2(82X/8G2) when e rv O. In order to

do that, we need to have in mind the fol1owing terms

6 Terms oí the order eO in the second derivatives
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MANIPULADORES ALGEBRAICOS EN MECANICA CELESTE
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Th e app e aranc e o f n ew tech n i ques i nvo l vi ng t h e use of e le c ­

tronic comp uters has b e en pr op i t i ous for a fast d evelopment i n

t he d if f erent s ubject s of t h e Science . I n t his pape r , t he i mpor ­

tance of t he algeb raic manipul a t o r s in Celestial Mec hani cs is

made evident a n o t he b a s i c points which one s h oul d b e a r in mind

to b u i ld t he b est calculation tool for solving i ts p r ob l ems :

Poisson series pr o c es s o r s , are p r e s ent ed.

l.-INTRODUCCION

Durante tres siglos la Mecánica Celeste constituyó un enorme campo de trabajo para
matemáticos y astrónomos alcanzando su momento cumbre con el descubrimiento del planeta
Neptuno por Adams y Le Verrier mediante un método analítico no observacional.

Delaunay pasó veinticinco años de su vida intentandohallar la solución completa al main

problem en la teoría lunar. La resolución del mismoproblemallevó a Brown quince años, a los

que añadió diez años más dedicados al estudio de los efectos debidos a los planetas y siete

ordenando sus fórmulas paraque losempleados de las oficinas de almanaques pudiesen calcularuna
posición de la Lunacadacuatrohoras.

Hacia mediados del siglo veintese había paralizado casi por completo cualquieractividad en

este campoen la mayoríade las comunidades científicas, frutode las divergencias surgidasentre
observación y cálculo, y de la magnitud de loscálculos involucrados.

Solo en unos pocos lugares sobrevivió, entre ellos en la Universidad de Louvainen Bélgica

dondeMonseigneur G. Lemaitre, al mismo tiempo queconseguía importantes logrosen Astronomía

.hizo grandesesfuerzospara aplicar los progresosde la tecnología de computación a sus trabajos.

Lemaitre trasladó sus cálculos de las tablas de logaritmos a máquinas calculadoras manuales,
después a máquinas eléctricasy más tardea máquinas calculadoras automatizadas mecánicamente.

Además, supotransmitira susdiscípulos la ideade que el futuro de la Mecánica Celestepertenece a
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una nueva raza de astrónomos matemáticos: hom~res con una formación sólida en análisis puro,

artistas en programación de ordenadores, expertos en análisis numérico y siempre dispuestos a

descubrir como el progreso en la tecnología hardware puede ayudar a resolver el siguiente reto.

Aparte del papel tradicional de los ordenadores como veloces máquinas de cálculo, su uso ha

permitido automatizar paso a paso diversos procesos algebraicos involucrados en muchas Ciencias.

Así, uno de los seguidores de Lernaítre, A. Deprit afrontó la tarea de hallar la solución analítica del

main problem en la teoría lunar. Los resultados obtenidos dieron una precisión de 50 'cm, frente a

los 300 km de error en los resultados de Delaun ay y los 3 km en los de Brown (Deprit et al, 1971).

En 18 meses se completaron los resultados que a Delaunay llevaron 25 años y únicamente se

encontró un error. Además de producir los movimientos medios y las expresiones analíticas

completas para la longitud, latitud y paralaje de la Luna , se añadieron las derivadas parciales con

respecto a las constantes de la teoría

Más tarde y junto a A. Rom y J.M.A. Danby, A. Deprit desarrolló un paquete de subrutinas

FORTRAN para manipular automáticamente 'series de Fourier múltiples cuyos coeficientes son

series de Laurent multivariadas, a las que llamó Series de Poisson, y que en la actualidad

constituyen una de las principales herramientas de la Mecánica Celeste (Deprit et al, 1965). A partir

del paquete original MAO (Mechanized Algebraic Operations), muchos han hecho modificaciones de

acuerdo con sus necesidades particulares (Broucke , 1969; Rom, 1970; Dasenbrock, 1982).

Cada avance realizado en el desarrollo del MAO marca un progreso en la automatización de los

desarrollos asintóticos en Mecánica Celeste y en dinámica no lineal.

La automatización de los procesos ha servido a lo largo de la historia para rebatir o corroborar

teorías construidas en el pasado y en este último caso tratar de mejorarlas. Esto es lo que ocurrió con

un procedimiento que Poincaré desarrolló con el fin de construir transformaciones canónicas que

normalizaran sistemas Harniltonianos a partir de un algoritmo inventado por Lindstedt para generar

soluciones periódicas de ecuaciones diferenciales no lineales. La automatización de este proceso

condujo a A. Deprit a una reformulación del método para obtener la transformación canónica

inmediatamente en su forma explícita utilizando bis transformaciones de Lie. El rasgo más

característico de un algoritmo de perturbaciones basado en la transformación de Lie (Deprit, 1969)

es que las operaciones se pueden realizar naturalmente de una forma recursiva, lo que convierte el

problema en una Simple traducción a un programa de ordenador. A partir de entonces reconstruyó

sus trabajos basandose en las transformaciones de Lie.

Además de los avances que en tecnología de ordenador se estaban produciendo, otro de los

motivos que ayudaron al resurgir de la Mecánica Celeste fué el problema de los satélites artificiales.

Su lanzamiento y puesta en órbita planteaba numerosas cuestiones a resolver que precisaban de la

aplicación de nuevas técnicas analíticas y computacionales para lograr mayor precisión y rapidez en

los cálculos . Así pues, considerando la solución de Aksnes para el main problem en la teoría del

satélite artificial, la técnica de la eliminación de la paralaje (Deprit, 1981b), ejecutada por ordenador,

abrevia los desarrollos convencionales de Brouwer y Kozai en un 87% (Coffey y Deprit, 1980).



Con todo esto, hacia los años setenta la MecánicaCelestese encontrabamuchomás viva que

antesy así continuaen la actualidad, debido, por una parte,al crecimiento masivo de cuestiones que

la era espacial plantea y por otra a las nuevastécnicasde programación (manipulación algebraica,

sistemas interactivos,...) y los nuevos ordenadores (ordenadores LISP, array processors,etc.) que

posibilitan la realización de cálculosmás complejos, a mayorvelocidad y la construcción de teorías

más precisas (Brumberg, 1988, Deprit, 1981 Richardson, 1988).

2.- MANIPULADORES ALGEBRAICOS EN MECANICA CELESTE

Los programasde manipulación algebraicaconstituyen la base del modernodesarrollo de la

Mecánica Celeste.

Dos vias han incididoen esta progresión. Por un lado, programas de manipulación algebraica

de tipo generalcomo puedenser MACSYMA o REDUCE para grandesordenadores y MUMATH

para microordenadores. Por otro lado, programas específicos construidos para resolver problemas

concretos.Este segundo camino,aunquequeda limitadopor el tipo de problemaa resolver, posee

ventajascon respectoal anterior, puesestos programas son muchomásrápidos,con lo cual pueden

llegar, en el mismotiempode cálculo, a órdenes muchomás elevados de la teoría. Por otra parte,

aprovechan de formamás eficiente la capaéídaddealmacenamiento de la máquina, lo que permite su

utilización en pequeños ordenadores.

Para hacernos idea de como debe ser un procesador específico aplicado a problemas de

Mecánica Celeste, repasemos rápidamente algunos de losproblemas queésta trata.

Problema de doscuerpos:

Este problema,básicoen la Mecánica Celeste, vienedefinidopor las conocidas ecuaciones del

movimiento

d2't 't
(ft2=- mrr

La integración de estas ecuacionesdetermina un movimiento plano que permite expresar la

ecuación de la trayectoriaen coordenadas polares r=r(f), donde f es la anomalía verdadera. Sin

embargo,no es posibleexpresarla ecuaciónde latrayectoriaexplícitamente en funcióndel tiempo

sin efectuardesarrollos en serie. Paraesto,hay que teneren cuentaque

't = r cosfp+ r senfq
dondep y q son vectores que dependende los elementos orbitales. Por otro lado, r cosf y r senf

se obtendrán a partirde las fórmulas de Hansen

(pn{~~~ }(rnf) = Ix;rte) {~~~} (pM)
) p~1

siendoM=n(t-T)
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Perturbaciones alproblema de doscuerpos:
En los casos en los que existen perturbaciones, las ecuacionesdel movimientoque es necesario

integrarson de la forma

donde 1J es la funci6nde perturbaci6nque dependeráde cada problemaconcreto.

En cualquiercaso, equivale a resolver un sistemadinámicode HamiltonianoH expresadoen las

coordenadascan6nicas (p,q) y que viene dado por las ecuaciones

%f-=-~
Q9.. aH
m=+d¡)

donde H=T+V, T es la energía cinética y V es el potencialque dependede la perturbaci6n.

En el caso del satéliteartificial,el potencialV es de la forma

m ",(a:¡n m m mV= - r [ 1 + L.,¿ rj (JnPn(senf)+ L J n Pn (senf) cos(m(A-An)))

n<:l

donde Pn y P';: son los polinomios de Legendre y Jn YJ';: los ann6nicos zonales y tesserales

respectivamente, .

Tanto en la teoría del satélite artificial, como en la mayoría de los problemas clásicos de la

Mecánica Celeste (perturbaciones producidas por un tercer cuerpo, movimiento del s6lido, etc.), el

potencial perturbado presenta una expresi6n formal similar a la del satélite, esto es, puede

expresarsecomo un desarrollo en serie de Poisson

~ e ~1~2 h, il ik {sen}
L.,¡ JIJ2 Jn xl···· x k cos GIYl + ....jnYn)

Esto hace de este tipo de series la herramienta fundamental en la resoluci6n analítica de estos

problemas.

Afortunadamente, el tratamiento automático de las series de Poisson es posible gracias a sus

propiedades, que aseguran que la suma, diferencia, y producto de dos series de Poisson, así como

su derivadaparcial e integral con respecto a una variableson también series de Poisson.
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3.·PROCESADORES DE SERIES DE POISSON

Si abordamos el problema de la construcción de un paquete específico de programas que

permitanuna automatización, lo más ampliaposible,de la MecánicaCeleste, debemosdividir el
trabajo en tres partes.

En primer lugar, como se ha visto en el apartado anterior, la herramienta básicaque utiliza la
Mecánica Celeste son las series de Poisson. Esto nos lleva a pensar en la construcción de un'

Procesador de seriesde Poisson(PSP) que nospermitamanipular dichasseriesy efectuarcon ellas
todo tipo de operaciones algebraicas posibles. Esteprocesador constituirá la base fundamental del

paquete de programas.
Un segundopaso lo constituirá la resolución algebraica del problemafundamental, es decir,el

problema de dos cuerpos. El conjunto de rutinas que lo resuelven,que llamaremos Procesador

Kepleriana, seráconstruido utilizando el PSPy permitirá la obtención automática de los desarrollos

literales más usuales en Mecánica Celeste, como son entre otros E=E(M), f=f(M), fórmulas de

Hansen, r=r(M), etc. (Broucke,1970).

Por último, deben desarrollarse los algoritmos adecuados para la resolución de otros
problemas, en particular, debenconstruirse, a partirde los PSP, programas que apliquen la Teorta

de Penurbaciones a problemas concretos, lo cualpermitirá la resolución analítica de los mismos.
Centrándonos en la construcción de un PSPdebemos considerar cuatroaspectos del mismo.

J.-Tipos de operaciones a realizar conlasseries:

Inicialmente debenser implementados algoritmos que permitan obtenerla suma(o combinación

lineal) y el producto de series.así como las derivadase integralesde las series con respecto a

algunade sus variables, tantopolinómicas comoangulares.
Al desarrollarestos algoritmos es preciso teneren cuentalas peculiaridades de cadauna de las

.operaciones. Por ejemplo, en lo que respecta al producto hay que considerar que es una de las

operaciones que más tiempode ordenador consume, por ello, es precisola búsqueda de algoritmos

cadavez más rápidos(Faternan, 1974).
A estas operaciones básicas será preciso añadir otras, que aunque menos usadas sean de

utilidaden determinados problemas.
Por ejemplo,si pensamosen el desarrollo de una función tal como seneS + E) en potencias de

E, tendremos

seneS + E) = cos E sen S +sen E cos S
. E2 E4 E3 ES

= ( 1-!f+ 41"+ ...) sen S +( E -:rr+ 3T+ ...) COS S

Estetipo de desarrollo puedeser resuelto implementando unafunción que efectúeun desarrollo

deTaylor
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Este mismo desarrollo de Taylor puedeser también de utilidaden otro problema como es la

resolución iterativa de la ecuación de Kepler

E =M+esenM

Eo=M
El = E +e sen Eo =M+e senM
E2= E+e sen El = M +e sen (M + e sen M)

dondeaplicando el desarrollo de Tayloranteriorcone = e senM , se tiene

·e2
E2=M+esenM+ y sen 2M+.....

2.-Limitación en el ordende los resultados:

Los programasde manipulación de series de Poisson suelen ser en general lentos debido al
gran número de operaciones que deben realizar. Por ello es preciso minimizar al máximo este

número para conseguir algoritmos eficientes.
Un elemento fundamental en esta optimización de los algoritmos es el truncado de las seriesen

un ordendeterminado, lo que permiteprescindir, en el momento de realizar alguna operación, de

determinados términos de la serie que cumplan alguna condición específica. Esto se hace
particularmente importante a la horadeejecutar el producto de dosseries.

Varioscriterios de truncado puedenconsiderarse en un PSP.

Ninguno.- Esto resulta muy sencillode implementar pero produceprogramasexcesivamente
lentos, con muchosmás cálculosde los necesarios y un espacio de almacenamiento en memoria
muygrande.

Automático.- Truncando siempre en un orden prefijado. Este procedimiento resulta poco
flexible, aunque fácil de implementar.

A eIección.- Trunca variando algúnparámetro del programaen cualquierpunto de éste y con
los siguientes criterios posibles:

* En unavariable polinómica.

* En el conjunto de todaslas variables (Comparando los órdenes de cadauna)
* En un múltiplo de la variable angular.
* Paradeterminados valores de loscoeficientes.

Aunque éste resulta el procedimiento más difícil de implementar, es el óptimo en cuanto a
tiempo de ejecución y capacidad de almacenamiento.
3.-Entrada y salida:

La primeraoperación a realizares la definici ónde una serie introduciendo sus coeficientes y
exponentes de maneraque éstosseanposteriormente empaquetados de acuerdo con los criteriosde
almacenamiento. Asimismo debemospoder leer y escribir las series en ficheros que permitansu
utilización en otrosprogramas.
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Puede ser importante el formato con que se presenten los resultados de los cálculos. Este

formato puede ser meramente descriptivo de la serie. o bien. compatible con algún lenguaje de

programación. como FORTRAN. lo que permite su utilización en otros programas de cálculo

basados en los resultados analíticos del PSP.

4.-Almacenamiento de las seriesen el ordenador:

El almacenatniento de las series es el problema fundamental de la construcción de un PSP. pues

de éste dependen la velocidad del mismo. la cantidad de memoria central necesaria y la complejidad

de los algoritmos de tratatniento de las series.

Existen diversas soluciones entre las que destacaremos las dadas por Broucke (1969) y por

Dasenbrock (1982).

Recordemos que una serie se puede expresar como

~ C ~1~2 ....ik xiI .... xik {sen} (j ).L..,¡ J¡J2 . i, Jo 1 k cos IYI + ....joYo

por lo cual. cada término vendrá defmido por

a) Un coeficiente C.i~h ..: ik que deberá ser un número entero . racional o real (punto
J¡J2 ···Jo .

flotante) con la precisión deseada

b) Los exponentes polinómicos il.i2•...ik'Y los coeficientes de las variables angulares jj.jj• ...

•jo que suelen tomarse siempre como enteros.

e) U~ indicador cuyo valor sea -1. o 1 según se trate de un seno o un coseno.

Los coeficientes suelen defmirse como un número racional. por 10 que son suficientes dos

variables enteras para su almacenatniento.

Los índices il.i2•...ik j},h•. ..•jo suelen venir empaquetados utilizando la aritmética binaria,

pues en una palabra de 32 bits se pueden almacenar hasta cuatro valores enteros comprendidos entre

-64 S; i S; 63. De esta forma, una variable entera puede contener cuatro de los índices anteriores.

construyendo las correspondientes rutinas de empaquetado y desempaquetado. La acotación de los

índices dentro del intervalo [-64.63] es suficiente en la mayor parte de los casos.

Normalmente en el desarrollo de un problema aparecen gran número de series y con ellas un

número mucho mayor de términos a almacenar y manejar. En función de ésto. será necesario fijar

unos límites al número de variables polinómicas y angulares a manejar de manera que quede

perfectamente prefijada la cantidad de memoria necesaria para almacenar cada término de una serie.

Los procesadores construidos por Broucke y Dasenbrock están ambos escritos en FORTRAN

por ser éste el lenguaje más usado por la comunidad científica. sin embargo. este lenguaje no se

adapta bien a este tipo de procesos. por lo que aparecen unáserie de limitaciones que serán

consideradas mas adelante.

En ambos casos. cada término de una serie está constituido por un conjunto de variables enteras

que representan el coeficiente. los exponentes polinómicos y argumentos angulares empaquetados y

el indicador de seno-coseno. Nosotros por abreviar. supondremos que este término está almacenado

en una única variable dimensionada que llamaremos TERMSERlE. La dimensión máxima de esta



En este sistema se van ocupando en orden todos los elementos de la variable dimensionada

TERMSERIE y el espacio no ocupado se agrupa en las últimas posiciones de TERMSERIE. Es

preciso, por tanto, definir otra variable entera que represente el índice del primer elemento de

TERMSERIE no ocupadopor ningunaserie. En el casode la figuraserá el 3501.

Esta forma de almacenamiento es muy fácil de implementarpero tiene graves problemassi se

considerael tiempode ejecución, pues cada vez que se borrauna serie o se añadealgún términohay

quereordenartoda la zonade almacenamiento.

Dasenbrock(1982), construyesu PSP incorporando a las series el conceptode lista en lugar de

almacenarlo en pilas.

Como se sabe, una lista puede incorporarse al ordenador a partir de dos elementos, uno que

defineel correspondiente elementode la lista y que ocupauna determinadaposiciónen la memoria

del ordenador, y otro elementollamadopunteroque señala la posicióndel siguienteelementode la
lista

variabledeberá coincidircon el númeromáximo MAXTde términos de serie que se tenga previsto

en función del tipo de problemas a resolvery la capacidad del ordenador.

Es preciso también definir una zona de almacenamiento común mediante un COMMON que

contengalas variables TERMSERIE para que todas las seriessean accesibles desdecualquierrutina

El procesador de Broucke, que tiene como precedente los de Deprit et al (1965) Y

Rom(l970),utiliza un almacenamiento de las series en pilas, de manera que si una serie comienza

con un términoalmacenado en TERMSERIE(200l),el siguienteestaráen TERMSERIE(2002) y así

sucesivamente . Los términos son almacenados en forma secuencial . Para este tipo de

almacenamiento será precisodimensionaruna variableenteraSERIE(2,MAXS), donde MAXSserá

un númeroque representeel númeromáximode series que podrá manejarel ordenador, de manera

que SERIE(I,lO) representeel índicede la variableTERMSERIE donde está almacenadoel primer

término de la serie lO y SERIE(2,1O) el número de términos de la serie. Las series son definidas

mediante un númeroenterocomprendido entre 1 y MAXS.

TERMSERIE(i)

1
2

IE(i,j) i=l i=2

j=1

j=10 2001 15

j=MAXS

SER
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4.- FUTURO DE LOS ·PSP

3415

TERMSERIE(i) SIGUIENTE (i)

2001 __ 5

RIE(i,j) i=1 i=2

j=1

j=lO 2001 3415

j=MAXS

SE
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Aunque este proceso es más costoso de implementar da unos resultados mucho mejores, pues

no es preciso reordenar todo el espacio de almacenamiento cada vez que se modifique una serie,

basta con cambiar el valor de la variable SIGUIENTE.

FORTRAN no tiene previsto el manejo de variables puntero que indican las direcciones de

memoria de cada variable, como ocurre en PASCAL o C, así pues, es preciso la definición de los

punteros de forma artificial. Para ello, se defme una nueva variable entera SIGUIENTE(i)

dimensionada de 1 a MAXT.

De esta forma, si defmimos la serie 10, el primer término de ésta ocupará la posición

SERlE(l,lO) de la variable TERMSERIE. SERIE(2,1O) ya no representa el número de términos de

la serie, sino la posición del último término dentro de TERMSERIE. Si, por ejemplo

SERIE(1,10)=2001, entonces el primer término de la serie estará almacenado en

TERMSERIE(2001), el siguiente término no estará en TERMSERIE(2002) como ocurriría en el

procesador de Broucke, sino en la pos ición definida por SIGUIENTE(2001). Si

SIGUIENTE(2001)=S, entonces, el segundo término de la serie estará en TERMSERlE(S). El

siguiente término estará en SIGUIENTE(S), etc. La serie acaba en el término defmido por

SERIE(2,10).

La mayor parte de los PSP construidos hasta ahora, lo han sido en FORTRAN, sin embargo ,

aparecen muchas limitaciones al utilizar este lenguaje, pues es muy poco flexible para este tipo de

problemas.

En primer lugar, la estructura de listas, que es la más adecuada para la defmición de las series

de Poisson, puede ser tratada mucho mejor utilizando lenguajes que manejen punteros, como

PASCAL o C, o bien lenguajes especificamente diseñados para este tipo de estructuras como LISP.



Actualmente hay construido (Miller, 1988) un programa de este tipo en LISP, sin embargo, la

necesidad de grandes ordenadores para la utilización de LlSP y su gran dificultad y especialización,

hacen aconsejable una solución intermedia que permita al utilización de los PSP en ordenadores más,

pequeños, incluyendo microordenadores. En este sentido, miembros del Grupo de Mecánica

Espacial de la Universidad de Zaragoza, venimos trabajando desde hace algún tiempo en la

construcción de un nuevo PSP escrito en lenguaje C que permitirá, aparte de un mejor tratamiento

de la estructura de las series mediante listas , resolver algunos de los problemas que actualmente

aparecen en estos procesadores como son entre otros:

* Tratamiento de los coeficientes, cuando el numerador o denominador del número

racional correspondiente exceda de la capacidad de almacenamiento de un entero.

* Posibilidad de tratamiento de exponentes polinómicos y coeficientes angulares como

números racionales o reales (punto flotante).

Por otro lado, se está intentando implementar, junto con estos PSP, algoritmos que resuelvan

problemas analíticos de la Mecánica Celeste y que no lleven necesariamente asociadas Series de

Poisson, o bien, que exijan un tratamiento diferente como por ejemplo: el manejo de funciones

elípticas que aparecen en gran número de modernos problemas de Mecánica Celeste, y por otro lado

el tratamiento de pequeños divisores.

Asociado a los PSP y como una extens ión más de éstos , surge la construcción de paquetes de

Generación Automática de Programas de Efemérides. en la línea del METAPROORAM de Coffey y

Alfriend(1984) para la teoría del satélite artificial. Esto permite la elección de una determinada teoría

en forma interactiva y, mediante un PSP, en este caso el de Dasenbrock, genera una teoría analítica.

La salida de este programa es otro programa FORTRAN que calcula las efemérides del satélite

artificial . Con esta herramienta resultará mucho más sencilla una comparación de distintas teorías

analíticas.
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1. INTRODUCCION

J .M. FRANCO Y M. PALACIOS

(1.1)y"(t) = f(t, yú), y'(t))

of l ine a r mul t i s t ep me thods for the special s e c ond

= f(t,y), conecting t he p r o pe r t y of symmetry wit h a

pe r i odi c i t y was studie d by La mbert and Watson [6 ].

Las ecuaciones diferenciales en las que no aparece la primera derivada de la

solución.es decir y'~ = f(t, y), pueden ser integradas mediante los clásicos métodos de

Stórmer-Cowell (Henric i[4]) . ,Tales métodos, en la terminología de Stiefel and

Bettis[9] , sufren una deficiencia numérica conocida con el nombre de inestabilidad

orbital,esdecir, cuando se computan órbitas circulares ocurre que la solución numérica

que se obtiene espirala hacia el interior de la circurnferencia a lo largo del tiempo. Para

evitar esta deficiencia, Stiefel and Bettis[9] proponen métodos de tipo Stormer-Cowell

modificados que prec isan un conocimiento a priori de la frecuencia principal del

problema. Alternativamente, Lambert and Watson[6] estudian métodos multipaso para

.el problema especial de segundo orden tales que tengan ciertas propiedades de

periodicidad. C~ando se computan orbita s circu lares, la solución numérica

proporcionada por los métodos de Lambert and Watson[6] describe una órbita circular

Las ecuaciones del movimiento de los problemas de la Mecánica Orbital pueden

escribirse, en formulación de Cowell, como un sistema de ecuaciones diferenciales

ordinarias de segundo orden de la forma

ESTABILIDAD ORBITAL DE METODOS LINEALES MULTIPASO DE TIPO COWELL

Rev . Acad. Ciencias Zaragoz a, 43 (1988)

Depa r t ament o d e Matemática Aplicada (E .T .S.r .r .) .

Univers i da d d e Zaragoza . 500 15 ZARAGOZA (España) .

A c lass

order r vp y"

p r operty o f

Frecuent ly the p r oblems of orbita l me cha n i c s i ncorporat e t h e

fi r st d e rivat i v e e x plicit ly ; i n order to integrat p- such proble ms ,

Franco - Pala cios [1] h a v e p r oposed me thods of Cowell -type . Using

t he i dea s a boye ment i on ed we d e t e rm i n e a s et o~ linear mul tis t ep

me thods o f Cowe l l- t yp e for s e c ond order rvp which possess t he

property of p e r i 6di c i t y and we generaliz e the r esults obt a i ne d b y

Lambert a n d Watson. This set of orbitally stabl e methods i s

illustrated by i nt e g r a t i n g two problems whos e solutions a re of

periodic cha racter .



(2.1a )

(2. 1b)

aproximada con un error en la fase de la órbita .

Un problema interesante como es el del movimiento de un satélite artifi cial

terrestre en el que se tenga en cuenta el efecto del rozamiento atmosférico nos lleva

inmediatamente a un sistema de ecuaciones caracterizado por (1.1). Moore[7] estudia la

integración numérica del problema (L 1) reduciéndolo a un sistema doble de primer

orden y generaliza los resultados de Lambert and Wat son[6] para métodos multipaso

que integren problemas de valor inicial de primer orden.

En este trabajo , los autores proponen la integración del problema (1.1) mediante

métodos numéricos de integración directa de tipo Cowell que posean ciertas propiedades

de periodicidad de forma que generalicen los métodos propuestos por Lambert and

Watson[6].

2. METODOS TIPO COWELL: INTERVALO DE PERIODICIDAD

Consideraremos la familia d~ métodos lineales multipaso de tipo Cowell

k k
'" (2) _ h2", A(2) f( , ),¡... <Xj Yn+j - ~ f'j tn+j, yn+j' y n- ]
)=0 )=0

k (1) k (1) ,¡ <Xj Yn+j = h ¡. ~j f(tn+j , yn+j' y n+j)
J=O J=O

para la integrac ión numérica del problema de valor inicial de segundo orden y" =f(t, y, .

y'), y(to) =Yo' y'(to) =y'o' definida sobre una red regular de puntos (tn =nh, n =O, 1, .

2, ...), y caracterizada por los polinomios

p(i>Ct.:) =t <x~i) t.: j y cr(i) (t.:) =t p~ i ) t.: j , i =1,2, t.: E C
~ J ~ J .

Denotamos tal famil ia mediante {(p (i), cr(i»), i = 1, 2}. Además, supondremos que se

verifican las siguientes hipótesis:

HI) I é )I+I A(i) I > O <x(i) > O i = 1 2o f'o ' k ' ,

H2) p(i>Ct.:) y cr(i)(t.:) no tienen factores comunes, i =1,2

H3) El método {(p(i), é \ i = 1, 2} es consistente, es decir,p(2)C1) = p(2)'(1) = O,

p(2)"(1) =2 cr(2\1) y p(1\1) =O, p(1)'(l) = cr(I)(1)

H4) El método {(p(i), cr(\ i =1, 2} verifica que las raices de p (i>c~) están en el

círculo unidad y las raices de módulo unidad tienen como mucho multiplicidad i.
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(Hacemos notar que H3 + H4 => convergencia de {(p (i) , a (i»), i = 1,2})

Consideremos el problema test escalar y" + A2 y = O, A E R, cuya solución

general y(t) = A cos At+'B sen At es periódica con periodo 2rr/A., para cualesquiera

condiciones iniciales sobre y e y' no triviales. Aplicando un método {(p (i), a (i» ), i =

1, 2} a esta ecuación test, sin más que particularizar en la expresión del polinomio de

estabilidad dada por Franco y Palacios[2], obtenemos para el problema test considerado

el siguiente polinomio de estabilidad

Il(s, z2) = p(l)(S) [p(2)(S) + z2 a (2)(s)] , z = Ah E R (2.2)

cuyas raices {Sj' j = 1,2, ... 2k} determinan la naturaleza de la solución numérica

2k

y =L A, e ' (2.3)
n j=l J J

de la correspondiente ecuación en diferencias.

Siguiendo las ideas de Lambert and Watson[6], introducimos el concepto

fundamental de estabilidad orbital para métodos de tipo Cowell.

z.t-Deñníct ón: El método {(p (i), a (i) ), i = 1, 2} se dice que tiene un intervalo de

periodicidad (O, z02') si para todo z2 E (O, z02) , las raices Sj del polinomio de

estabilidad (2.2) verifican

SI = ei8(z) , S2= e- i8(z) ,1S j i = 1 , j = 3, 4, ..., 2k (2.4)

donde S(z) E R Y ~l' S2 se reducen a la raiz principal doble S = 1 'del polinomio

p(2)(S) ,cuando z tiende a cero. '

La relevancia de la noción de intervalo de period icidad viene expresada en el

siguiente resultado , cuya demostración es similar a la dada por Lambert & Watson [6].

2.2·Teorema: Sea el P,Y.!. (problema test) y" + A2 y = O: y(O) = Yo ' y'(O) = y'o'

cuya solución analítica es y(t) = C¡ ei).. t + C2 e -i).. t. Apliquemosle el método

{(p(i),a(i),),i=1,2} de orden p con un paso h nonulo 'y talque z2=(Ah)2

pertenece al intervalo de periodicidad del método que suponemos no vacío. Supogamos,

además, que los valores de iniciación del método son también de orden p, es decir:

y(i)n = y(i)(~) + 0(hP+2-i ) , n = O, 1, ..., k-l. Entonces:

i) Las raíces SI' S2 vienen dadas por (2.4), donde

S(z) = z + O(z p+l) (2.5)

ii) Los coeficientes A , de la solución numérica (2.3) satisfacen las relaciones
J

Al = C¡ + O(zp+l ), A2 = C2 + O(z p+l), Aj = O(z p+l), j =3,4,..., 2k (2.6)
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de donde obtenemos

y entonces

8(z) =z + O(zp+l), Z =Ah

Z= hA

C inz C - i nz O(hP-;l) >0le + 2 e + , n z
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. . . 2k
i nz - I nz ~ n

Al e + A2 e + s: A. ~ .
j =3 J J

de donde se deduce fácilmente que .

Entonces,

~ n i nz - i nz p+1
yn = ~ A. S· = C1e + C2 e + O(h ), para todo n ~ O

je I J J

Como z2 E (O, z02) y teniendo en cuenta que 8(z) =z + 0(zp+1), Z =Ah,

Sl = ei
z + 0(hP+1), S2 = e - i z + 0(hP+1)

Además, como los valores de iniciación del método son de orden p, tendremos

que la solución numérica será

2k
i z 2 . 2 II p+311(e , z ) = 2 ( 1 Z + O(z )) ( cos z - cos 8(z) ) (1 - Y. + O(z» =O(z )

j =4 J

donde ~3 = 1 corresponde a la raiz unidad de p(l) (por la hipótesis H3) . Las rest~ntes

raices ~j serán de la forma Sj = 'Yj + O(z), j = 4, 5, oo., 2k, siendo 'Yj 'Í' 1 por las

hipótesis H3 y H4. En estas condiciones,

cos z - cos 8(z) = 0(zp+2)

..(5. (1) i (jz) (~ ( (2) 2 A(2» i (jz) = O( p+3)
~ ex . e ~ ex. + Z!J. e z,
j=O J j =O J J

o, equivalentemente

11(ei z
, l) =0(l+3), Z =Ah

Sin embargo, el polinomio de estabilidad (2.2) se puede expresar como

2k
11(S, l) = ex~l ) (c\2) + l ~~2» II (S - O

je l J

Si z2 E (O Z 2) entonces r = ei8(z) r = e- i8(z) y por lo tanto, o ' \:ll ' ":t2 ' ,

(ei
z _ Sl) (ei

z _ S2) (e' z - 1) =2 (cos Z - cos 8(z» (i Z + o(l»,

DemostraciÓn: Tomando la función test g(t) = e iAl, llevándola a la expresión (2.2) y

dividiendo por e iAx , obtenemos teniendo en cuent a que el método es de orden p > O,

que



p+l p+l
Al =Cl + O(h ), AZ =Cz + O(h )

A
j
= O(hP+

l
) , j = 3, 4, ..., 2k

2.3-0bservación: La solución del problema test y"+A.z y = Odescribe una trayectoria

elíptica en el plano complejo. Sin embargo, cuando integramos numéricamente dicho

problema mediante un método multipaso del tipo (2.1a-b), si las raíces del polinomio de

estabilidad verifican ISjI< 1 , j = 1, 2, ..., 2k, la solución numérica espirala hacia

dentro cuando n aumenta y decimos entonces (Stiefel & Bettis[9]) que el método tiene

inestabilidad orbital. Por otro lado, cuando aplicamos métodos multipaso del tipo

(2.la-b) con intervalo de periodicidad no vacío y paso h suficientemente pequeño para

que zZ = (A. h) z < zoz, el teorema (2.2) permite deducir que la solución numérica

estará dominada por las componentes periódicas correspondientes a SI ' SZ' En

consecuencia, para h suficientemente pequeño, la solución numérica describe una

elipse perturbada con un error creciente en la fase y, por lo tanto, el método es

orbitalmente estable . Surge en este momento una pregunta: ¿qué condiciones ha de

verificar un método 'de tipo Cowell para ser orbitalmente estable? Esta cuestión la

resolvemos positivamente en la siguiente sección.

3. METODOS TIPO COWELL" Antisimétricos: Simétricos (AS: S)"

Siguiendo las ideas de Lambert &Watson [6], estudiamos condiciones necesarias

y suficientes para que un método de tipo Cowell tenga intervalo de periodicidad no

vacío.

3.1-Definición: Se dice que el polinomio q(S) = ao+ al S + oo ' + an Sn es simétrico

si se verifica: a, = a " J' = O, 1, oo., n, :1- *' O.J n-J \J

Análogamente se dice antisimétrico si: aj =- an_j, j =O, 1, oo., n, ao*' O.

3.2-Definición: Se dice que el polinomio «o = ao + al S + oo. + an S n es

conservativo si todas sus raíces están sobre la circunferencia unidad.

3.3-Lema: Si q(S) = ao+ al S + oo. + an S n es un polinomio simétrico (antisimétrico),

entonces, si S* es una raíz de q(S), también l/S* es una raiz de q(S)·

3.4-Lema: El producto de dos polinomios simétricos es un polinomio simétrico y el

producto de un polinomio simétrico con un polinomio antisimétrico es un p~linomio
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antisimétrico.

p(2) simétrico y p(l) antisimétrico si y solo si P (i) conservativo, i = 1, 2.
..

(3.1)

es antisimétrico:3.6-Definición: Diremos que un método {(p (i), cr(i)) , i = 1, 2}

simétrico y lo denotaremos por (AS: S), si se verifica que

(1) (1)
U j =- Uk-j

(2) _ (2) [.1.(2) _ [.1.(2) , j = 0, 1, ..., k
u j - Uk -j 'I-'j - I-'k_j

DemostraciÓn: Sea (O, z02), z02 >°el intervalo de periodicidad del método, entonces

para todo z2 E (O, Ze?) tenemos que

Hacemos notar que uO(i) = (- l)i ~(i)::j; 0, i = 1,2, Ypor lo tanto p(i)(S) será un

polinomio antisimétrico ó simétrico según que i = 1 ó 2. Sin embargo, puede ocurrir

que ~O(2) = ~k(2) = °y cr<2)(S) no será un polinomio simétrico en sentido estricto.

En los dos siguientes teoremas damos condiciones necesarias y condiciones

suficientes para que un método de tipo Cowell posea un intervalo de periodicidad no

vacío.
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3.7-Teorema: Si un método de tipo Cowell {(p(i), cr(i)), i = 1, 2} tiene intervalo de

periodicidad no vacío, entonces, es antisimétrico: simétrico (AS:S) en el sentido de la

Definición 3.6

<=) Sean p (i\ i = 1,2, conservativos. Por la hipótesis H3) dichos polinomios tienen

el factor (S ~ l)i Ypor la hipótesis H4) los restantes factores solo pueden ser de la

forma (S - ei8) (S - e- i8),°< e< 27' y (S + 1)5, s = 0(1) i, i = 1, 2. Así pues, para

el caso i = 1 hay un factor antisimétrico y los restantes son simétricos; y para el caso

i = 2 todos los factores son simétricos. Entonces, aplicando el Lema(3.4) queda

concluida la demostración.

Demostración:
=» Sean p(2) simétrico y p(1) antisimétrico, entonces por la hipótesis H4) y el

Lema(3.3) se ha de verificar que los polinomios p (i), i= 1,2 son conservativos .

3.S-Lema: . Si un método {(p (i), cr(i)), i = 1, 2} satisface las hipótesis H1) - H4),

entonces:



D ( i8(z) 2. (1)( i 8(Z» [ (2)( i 8(z» 2 (2)( i 8(z» ] Oe ,Z )=p e p e + z cr e =

y como pCl)(ei 8Cz» "# O para todo z"# O, se deduce que

(2)( i 8(z» (2)( - i 8(z» 2 I (2)( i 8(z» 12 lP e cr e = - z cr e = rea

Entonces,

o, equivalentemente

k k

LB. senj 8(z) = L (B. - B .) senj 8(z) = O
je-k J j=o J - J

de donde, Bj = B_J' j = 0,1, 2,..., k y, por el Lema 5 dado en [6], se tiene que

a (2). = a (2) . R(2). = R(2) . J' = O 1 k
J k-J ' 1-' J 1-' k-j > " .. . , .

Además, para todo z2 E (O, z02), las raices del polinomio D(S, z2) se encuentran

sobre la circunferenc ia unidad, por lo tanto, el polinomio p(l)(s )· es conservativo y, por

el Lema 3.5 es ant isimétrico ( a Cl)j = - a Cl)k_j ' j = O, 1, ..., k, aCl)o "# O).

3.S-Teorema: Sea {(p Ci), crCi» , i = 1, 2} un método de tipo Cowell an tisimé trico :

simé trico en el sentido de la Definición 3.6 y tal que p(2)CS) no tiene raices dobl es

sobre la circunferenci a unidad salvo la raiz principal S = 1. Entonces, dicho método

posee intervalo de periodi cidad no vacío.

Demostración: Consideremos la transformación de Routh-Hurw itz S = (1 + r¡)/(1 - n ),

que proyecta el interior del c írculo unidad IS I< 1 en el semiplano complejo negativo

Re r¡ < O y la circunferencia unidad I S I = 1 sobre el eje imaginario Re r¡ = O.

Cuando el método {(p Ci), crCi», i = 1, 2} es AS: S, se obtiene fácilmente que el número

de pasos k es par, ya que en caso contrario p(2)(S) y cr2)(s ) tendrían 'en común el factor

(S + 1), en contradicción con la hipótesis H4) (Lambert & Watson[6]) . Además

tenemos que

r(l)(r¡) = (1 - r¡ l p(l)( 1 + r¡) == r¡ R(1)(r¡\ es deci r,r(l)(r¡) impar
1 -r¡

r(2\r¡ ) = (1 - r¡)k p(2)( 1 + r¡) == R(2)(r¡l , es decir, P)(r¡) par
1 -r¡
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S(2)(r¡) = (1 _r¡)k a(2)( 1 + r¡) == S(2)(r¡\ es decir, s(2)(r¡) par
1-r¡

Los grados de los polinomios r(l>(r¡), r(2)(r¡), s(l)(r¡), dependen de la paridad de k,

luego podremos escribir

(3.4)
(k-I)/2 _

P(2)(~) =~2) (~ _ 1)2rr (~ _~~2») (~ _ ~~2»)
- je l J J

Ycomo p(i)(~), i =1,2 son polinomios antisimétrico y simétrico, respectivamenete, se

trata de polinomios conservativos y las raices de ambos estarán sobre la circunferencia

_unidad . Los polinomios r(i)(r¡), i = 1, 2, tendrán una raiz de multiplicidad m en

r¡o =(So- l)/(So + 1), si p(i)(~), i = 1,2 tiene una raiz de multiplicidad m en S=~o' a

menos que So = - 1, en cuyo caso los polinomios r(i)(r¡), i = 1, 2, se reducirán a

polinomios de grado k-m. Entonces, de (3.4) tendremos que r(l)(r¡) es de grado k-1 y

como p(2)(S) tiene una raiz doble en S = + 1 y k-2 raices complejas conjugadas

distintas sobre el círculo unidad, entonces R(2)(r¡2) tiene todas sus raices sobre el eje

imaginario o, equivalentemente, R(2)('t), 't =r¡2, tiene k/2 raices reales distintas

satisfaciendo

o='tI > 't2 > 't3 > ... > 'tk/2 > - oo.

Sin embargo, las raices de un polinomio son funciones continuas de sus coeficientes, de

donde se deduce, que para un z2> O suficientemente pequeño, las raices del polinomio
P('t, z2) =R(2)('t) + z2 S(2)('t)

tambi én son reales y distintas. Más concretamente , podemos encontrar un zl2 > Otal

que para todo z2 E (O, zI2), el polinomio P('t, z2) tiene k/2 raices reales Tj , j = O(1) k/2

distintas verificando

O> T2 > T3 > ... > Tk/2 > - oo,

Pero no podemos asegurar que la raiz TI correspondiente a 'tI cuando z ~ O, sea

menor o igual que cero.

Efectuando operaciones, encontramos que el coeficiente de 'tk/2 en R(2)('t) es

p(2)(-1) :1= O, luego existirá un ~2 > O tal que para todo z2 E (O, ~2), .

signo [R(2)('t); 't ~ 00] = signo [p(2)('t, z2); 't ~ 00]

Además, si tenemos en cuenta que

dR(2) k/2

-1 =p(2)(_1) rr (-'t.) ,
dt 't = O j =2 J

entonces
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(2) dR(2)
signo [R (1:); 1: ~ 00] = signo [ --1 ]

dt 1: = O

Si ahora suponemos que la raiz T1 > Oy consideramos

. 2 (2) rrk/2 2
P(O, z ) =- T

l
P (-1) (- T) + O(z )

j=2 J

tenemos que para todo z2 E (O, zl)

(2)

signo [P(O, zl ] = - signo [P(1:, l): 1:~ 00 ] = - signo [~ ] (3.5)
dt 't= O

Un sencillo cálculo nos proporciona que

dR(2) 4
--1 = 2 p(2)"(I) = 4 a(2)(1) = s(2\0) = _ P(O, z2)

dt 1: = O l
Entonces, la igualdad (3.5) se contradice y laraiz Tl s O:

Así pues, podemos concluir que para todo z2E (O, z02) con z02= min{zl2, z22),

.el polinomio P(1:, z2¿ tiene kl2 raices reales negativas distintas, de donde se deduce que

las raices de p(2)(~) + z2 a(2)(~) están sobre la circunferencia unidad y junto con el

hecho de que p(l)(~) es conservativo, concluimos que el método {(p (i), cr<i) ), i = 1, 2]

tiene un intervalo de periodicidad (O, za2), z02 > O

En estos dos últimos resultados hemos obtenido condiciones necesarias y

condiciones suficientes para que un método de tipo Cowell tenga intervalo de

periodicidad distinto de vacio. Todos los resultados expuestos hasta ahora son

similares a los obtenidos por Lambert & Watson [6] para métodos multipaso que

integran el PVI especial y" = f(t, y). Nosotros hemos generalizado los resultados de

Lambert & Watson [6] para métodos de tipo Cowell que utilizamos para la integración

numérica directa de problemas de segundo orden y" = f(t,y,y') de tipo orbital (por

ejemplo, el problema del satélite artificial terrestre con rozamiento atmosférico,

movimientos oscilatorios amortiguados, etc.).

Hacemos notar que la demostración del Teorema(3.9) es constructiva, de manera

que siempre que el polinomio p(l)(~) sea antisimétrico podemos encontrar el intervalo

de periodicidad del método de tipo Cowell examinando las condiciones bajo las cuales

cierto polinomio P(~, z2) , relacionado con los polinomios característicos del método,

tiene todas sus raices reales, distintas y negativas.

Una forma de construir métodos de tipo Cowell con intervalo de periodicidad no

vacio consiste en considerar los métodos optimales (Henrici [4]) tales que el número de

137



138

A(l) = A(l) .= O R(l) = A(l)=~ A(l) = _ 4 + 4 a
1-'4 1-'0 ' l"'3 1-'1 3' 1-'2 3

(1) = _ (1) = 1 (1) = O A(l) = A(l) = O A(l) = 2
a 2 a o ' al ' 1-'2 1-'0 ' 1-'1

Interv. de periodo = (0,4), C(2) = 1/12 , C(1) = 1/6

a (2) = _ 2 A(2) = A(2) = O A(2) = 1
1 ' 1-'2 1-'0 ' 1-'1

. 12+6a C(2) = 18+a C(2)= 28 + a
Interv. de penod. = ( O, 4 + a ), 240 ' 60 _ 30a

Imp lícito de orden 6 ( - 2 < a < 2 ) .

a (2) = a (2) = 1 a (2) = a (2) = _ 2 - a a (2) = 2' + 2 a
4 o ' 3 1 ' 2

A(2)=A(2) =0 rP)=A(2)= 14-a A(2)= _ 2+5a
1-'4 1-'0 ' l"'3 1-'1 12' 1-'2 6

(1) _ (1) _ 1 (1 ) _ (1) _ (1 ) - O
a 4 . - - a o - , a 3 - .- al - - a, a 2 -

Casok- 4:

Explícito de orden 4 ( - 2 <: a < 2 )

(2) _ (2) _ 1 (2) _ (2) - 2 a (2) = 2 + 2 a
a 4 - a o - , a 3 - al - - - a, 2

Implícito de orden 4

(2) _ (2) _ 1 a (2) = _ 2 A(2) = A(2) = _1 A(2) = ~
a 2 - a o - , 1 ' 1-'2 1-'0 12 ' 1-'1 6

(1)= _ (1) = 1 (1) = O A(l) = A(l) = 2. A(l) = ~
a 2 a o ' al ' 1-'2 1-'0 3 ' 1-' 1 3

Interv. de periodo= (O, 6) , C(2) = - 1/240 , C(1) = - 1/1 80

Caso k= 2:

Explícito de orden 2

(2)..:. (2) _ 1a 2 - ao - ,

pasos k sea par y que p(2)(t;;) no tenga otra raiz doble de módulo unidad que la raiz

principal. Con este cri terio nosotros hemos construido métodos de tipo Cowell co n

intervalo de periodicidad no vacío hasta de orden ocho .

A continuación presentamos los coeficientes , el intervalo de period icidad y las

constantes de error de métodos de tipo Cowell implícitos y expl ícitos de k-p asos (k = 2,

4, 6), obtenidos con esta técnica y que llamaremos métodos de 'tipo Lambert- Watso n en

honor a estos autores:
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U(2)=U(2) =_2 ",(2) =",(2) =2 ",(2) - _2
SI'""4 ""2 ' ''''3 -

p(l) =p(l) = 286 p(l ) =p(l) = 294 p(l) =p(l) = 750 p(l) = 40
6 O 675' S 1 675 ' 4 2 675 ' 3 675

Interv . de period o=( O, 1.019), d2
) = _~ dI)=_ 31933

17280' 3628800

p(2) =p(2) = 275 A(2) = p(2) = 1021 p(2) =A(2) =_~ A(2) = 5347
6 O 4032 ' I-'s 1 1120 ' 4 1-'2 2240 ' 1-'3 5040

p(l),: p(l) =O p(l) =p(l) = 134 p (l) = p(l) =_236 A(l) = 384
6 O ' S 1 45 ¡ 4 2 45 ' 1-'3 45

1 de ' d ( O O802) C(2) = 275 c'"= 286nterv . e peno. = , . , 4032 ' 2700

p(2) =p(2) = 18 + a p(2) =p(2) = 26 - 3a p(2) = 14 - 97a
4 . o 240 ' 3 1 30' 2 120

(1) _ (1)_1 (1) _ (1) _ (1) _ 0
U4 - - Uo - ' U3 - - U1 - - a, U2 -

p(l) =p(l) = 28 + a p(l) =p(l) = 6t -17a p(l) = 8 - 19a
4 o ~ ' 3 1 45 ' 2 15

1 d
. d - ( O 120 + 60a) C (2) _ 190 + 3 1a C (I) 32 + 5a

nterv. e peno . - , - - = - ....,...".,,,...--,-.,....,,-
22 + 9a ' 60480 ' . 420 -21Oa

Implícito de orden 8

"' (62) = "'0(2) '= 1, (2) _ (2) _ 2 (2) _ (2) _ 2 (2) - 2
"" "" Us - u1 - - , u4 - u2 - , u3 - - .

Hemos de hacer notar que el intervalo de periodicidad es mayor en los métodos

de tipo Cowell implícitos que en los exp lícitos y que el intervalo de periodicid ad

disminuye a medida que aumenta el orden tanto en implícitos como en explícitos, como

cabía esperar.

Camk-6:

Explícito de orden 6

U~2) ~ U¿2) =1,



4. P-ESTABILIDAD DE METODOS TIPO COWELL

El concepto de P-estabilidad está relacionado con el hecho de que el intervalo de

periodicidad del método sea de longitud infinita . En esta sección presentamos algunos

resultados de P-estabilidad para métodos de tipo Cowell .

4.1-Definición: Diremos que un método {(p(i), cr(i)), i = 1, 2} es P-estable si su

intervalo de periodicidad es (0,00).

4.2-Teorema: Sea {(p(i), O<i)), i = 1,2} un método P-estable, entonces:

i) El método es antisimétrico : simétrico con cr(2)(~) conservativo

ii) El método es implícito.

Demostración:

i) Es inmediato, sin más que tener en cuenta el Teorema 3.7 y observar que las raices

del polinomio n(~, z) se aproximan a las raices de p(l)(~) cr(2)(~) cuando z -7 00,

siendo p(l)(~) conservativo.

ii) Si suponemos que 1\(2) = 0, entonces

k
S(2)(1) =L b.(2) =l ~~2) =0,

j=O J

y como todas las raices de s(2)(rl) están en el semiplano complejo Re 11 ::;; °(están sobre

el eje imaginario por el apartado i)), todos sus coeficientes serán de signo constante, de

donde se deduce que bF) =0, j =0, 1, ..., k, y, en particular, cr(2)(1) =bO(2)=0, en

contradicción con la hipótesis ID)

Para estudiar el orden de los métodos de tipo Cowell P-estables consideramos de

nuevo el polinomio de estabilidad del método expresado en la forma

I1(~, ro) =Q(l)(S) Q(2) (~, ro), ro=i z (4.1)

donde

Q(l)(~) = p(l)(~) Y Q(2) (~, ro) = qk(ro) ~ k + qk-l(ro) ~ k-l+...+ <lo(ro)

siendo qj ( ro) ,j =0, 1,2,..., k, polinomios de grado uno en ro2. Notemos que, de

acuerdo con el Teorema 3.7, podemos tomar como p(l)(~) un polinomio 'conservativo

cualquiera; en particular, podemos considerar un método {(p(l), 0<1) )} multipaso

optirnal (Henrici[4]) para problemas de primer orden y, en consecuencia, restringiremos

nuestro estudio a las raices de la ecuación polinómica
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(4.2)

43-Definición: Se dice que la solución de D(s, (0) =O es de orden p .(p~ O), si una

de las raices principales de Q(2) (S, (0) , (p. e. Sl (00)) satisface

e ro- Sl(00) =C oov+l + 0«(J)P+2) cuando 00 ~ O

donde C 'f. O, es la constante del error de Sl(00) .

El significado de esta definición esta relacionado con el orden definido por la

ecuación en diferencias del método y será de utilidad para estudiar el orden maximal de

un método P-estable.

4.4-Corolario: El máximo orden alcanzable por un método de tipo Cowell P-estable es

dos.

DemostraciÓn: Fijado Q(l)(S) conservativo, si todas las raices de Q(2) (S, (0) =Oestán

acotadas por uno, el orden p de la solución de D(s, (0) = Osatisface p ~ 2 grado qlt),

't = 002 (ver Hairer[3]). En nuestro caso deseamos que las raices de D(s, (0) = O

verifiquen IS i = 1 para todo z2 E (0, 00); Ycomo grado qk('t) = 1, entonces p ~ 2.

5. APLICACIONES NUMERICAS

Para ilustrar el comportamiento de los métodos que hemos desarrollado a lo largo

de este trabajo, realizamos una aplicación de ellos a dos problemas test cuya solución es

de caracter periódico .

Consideraremos los métodos de tipo Lambert-Watson de la sección 3(con a = O)

Y el clásico método de Cowell, todos ellos de órdenes 6 y 8 para resolver

numéricamente los siguientes problemas lineales y no lineales. La iniciación de los

métodos se realizó, en cada caso, con la solución exacta del problema correspondiente.

Ejemplo 1 : El sistema lineal de segundo orden

y" = y + 4 z
z" = - 2 y - 5 z

que tiene la solución exacta y =2 cos ú), z =- cosít). Calculamos la solución numérioa

en t =40n:, para los pasos de integración h = n:/36, n:/24, n:/16, «nz,n:/8, n:/6. Los

errores absolutos (sol. exacta - sol. numérica) en norma 11 . 112, se muestran en las tablas

que vienen acontinuación.
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Ejemplo'2 : El problema no lineal

z" + (l + 'Y + 'Yo e -2it ) z = 'Y e -it z2

z(O) = 1 + o, z'(O) = i (l - o)
con 'Y?. O, O:s; O:s; 1. , donde Oes un parámetro de distorsión y 'Y un parámetro de no

linealidad. La .soluci ón exacta del problema es z(t) = e it+ Oe'-it y representa una

elipse en el plano complejo. El problema ha sido resuelto como un sistema acoplado de

ecuaciones diferenciales reales, en el punto t = l On, para h = re/ 12, 'Y = 0.1 x 10 -s y

diferentes valores del parámetro o. A continuación presentamos los errores absolutos

(sol. exacta - sol. numérica) , en norma 11 . 112 solamente para el caso de orden 8.

Paso de integración

h = re/36

h = re/24

h = re/16

h =re/12

h = re/8

h = re/6

Paso de integración

h = re/36

h = re/24

h = re/16

h = re/12

h = re/8

h = re/6

Valor del parámetro O

0=0

0=0.1

0=0.2

0=0.3

0=0.4

0=0.5

üRDEN8

Met. Cowell

0.314 x 10- 9

0.158 x 10 - 7

0.449 x 10 - 6

0.579 x io>
0.229 x 'lO - 3

0.239 x 10 - 2

üRDEN6

Met. Cowell

0.331 x 10- 7

0.889 x 10- 6

0.958 x io ->
0.713 x 10 - 4

0.172 x 10 - 2

0.871 x 10- 2

Met. Cowell

0.938 x 10 - 6

0.975 x 10,-6

0.102 x lO-s

0.107 x io>
0.113 x io>
0.119 x 10 - s
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Met. tipo Lambert-Watson

0.327 x 10 - 10

0.984 x 10 - 11

0.502 x 10 - 7

0.691 x 10 - 6

0.100 x io->
0.465 x 10- 3

Met. tipo Lambert-Watson ,

0.853 x 10 - 8

0.901 x 10- 9

0.252 x io>
0.192 x io>
0.953 x 10 - 4

0.268 x 10- 2

Met. tipo Lambert-Watson

0.239 x 10 - 6

0.264 x 10 - 6

0:235 x 10 ,6

0.205 x 10 - 6

0.176 x 10- 6 ,

0.147 x 10- 6



Los resultados numéricos presentados en las tablas fuero n obten idos en el

ordenador VAX 780 del Centro de Cálculo de la Universidad de Zaragoza con métodos

numéricos del mismo orden en cada caso, es decir, métodos comparab les en términos

de aproximación local. De estos resultados se desprenden las siguientes conclusiones:

- Los métodos que tienen propiedades de periodicidad o estabilidad orbital (métodos de

tipo Lambert-Watson) dan mejores resultados que los que no tienen estas propiedades

(método clásico de Cowell).

- En el caso del ejemplo 2 se observa que la solución proporcionada por el clásico

método de Cowell degenera cuando el parámetro de distorsión 8 aumenta, mientras que

los métodos de tipo Lambert-Watson que tienen propiedades de estabilidad orbital

mejoran su aproximación.
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(1.1)

Los sistemas de ecuaciones diferenciales de segundo orden del tipo

y"(t) =f(t, y(t), y'(t))

1. INTRODUCCION

An impor t ant c ha racte r i z a t ion o f a numerical me thod for

fi rst o r de r OD E' s i s t he a b s o l ute st a bi lity . In t his pape r t he

a bso l ute s tabil i t y of Cowell-t ype l ine a r mul tist ep me thods fo r o

di r e ct i ntegration of secon d orde r ODE ar e studi e d . Th e co nc e pts

of a b so l ute s t ab il i t y , stabi l i ty r e g i on a r e d e f ined a n d t he sta ­

b ilit y polynomi al for me thods of Cowell - type is obtain e d . Stabi ­

litY r e g i ons are obtaine d f o r t he classical Cowel l me thod usi ng

a secon d o r der sca lar test e quat ion. Finally , a fa mi ly of A-sta ­

ble met ho d s of t wo s tep a n d s e c ond order o f accuracy u s ing a sca ­

la r test e quation with rea l coeff ici e nts is obta i ne d .

ESTABILIDAD ABSOLUTA DE METODOS LINEALES MULTIPASO DE TIPO COWELL

aparecen de forma natural en la simulación de muchos problemas físicos; por ejemplo,

las ecuaciones del movimiento de los problemas de mecánica celeste en formulación de

Cowell responden a este tipo, así como la mayoría de los problemas de la mecánica

orbital. Una forma de atacar numéricamente el problema (1.1) consiste en reducirlo a

un sistema doble de primer orden y resolverlo mediante un método numérico estandar

de tipo Adams , Runge -Kutta , etc.; otra posibilidad consiste en utilizar un método de

integración directa, como los métodos de tipo Cowell. Es claro que hay ciertas ventajas

de rapidez y almacenamiento en el tratamiento directo de ecuaciones de orden elevado,

pero Gear[2] sugiere que hay ciertos peligros desde el punto de vista de la estabilidad, a

menos que se disponga de un mecanismo de control del error local del método.

Si en las ecuaciones (1.1) la primera derivada no aparece explícitamente, es

Depa r t ament o d e Matemática Aplicada (E .T .S .I .I .) .

Univers i da d d e Zar a g o z a. 50 0 15 ZARAGOZA (Es pafia) ".
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que nos proporcionará una primera indicación a cerca del comportamiento de los

métodos de tipo Cowell. En el epígrafe 2 generalizamos los conceptos clásicos de

A-estabilidad y polinomio de estabilidad para los métodos de tipo Cowell; en el 3,

estudiamos la obtención de la región de estabilidad de los métodos y, mediante procesos

gráficos, obtenemos algunas regiones de estabilidad para el clásico método de Cowell

estudiado en [1]; en el 4, estudiamos la A-estabilidad de métodos tipo Cowell de dos

pasos y, en un caso particular, obtenemos métodos A~estables de orden dos.

(1.3)

(1.2a)

y" =ey' + v y, e, v E C

k (1) k (1) ,¡,u j Yn+j =h ¡ ~j f(tn+j, Yn+j' y n+) (1.2b)
J=O J=O

y que denotamos por {(p (iJ, a (i), i = 1, 2}. Pero el concepto de estabilidad estudiado

en [1] resulta apropiado para problemas del tipo (1.1), tales que el producto de la

constante de Lipschitz de la' función f(.) por la longitud del intervalo de integración no

sea demasiado grande, ya que las constantes de estabilidad en las acotaciones del error

dependen de este producto.

Por otra parte, es frecuente que los modelos físicos a integrar representen

problemas físicamente estables y, por lo tanto, para un buen funcionamiento del método

numérico, hay que exigir que la solución numérica tenga propiedades análogas a la

solución analítica del problema.

En este trabajo, la cuestión específica consiste en el estudio de la estabilidad

absoluta lineal de los métodos (1.2), es decir, bajo qué condiciones la solución

numéric a decae cuando n ~ 00 , para un paso fijo h. En particular, estudiamos el

comport amiento de estabilidad de los métodos (1.2) frente a la ecuación escalar de

prueba

decir, y" = f(t, y), el problema suele integrarse mediante los clásicos métodos de

Stormer-Cowell (Henrici[4]) y la estabilidad de estos métodos tomando como test la

ecuación del oscilador armónico ha sido estudiada por diversos autores como Vélez et

al.[7], Lambert[5], Lambert and Watson[6] etc.

Los autores[l] han propuesto una clase de métodos multipaso de tipo Cowell de

integración directa, conocidos como PFML (Pares de Formulas Multipaso Lineales),

que para problemas orbitales del tipo (1.1) resultan más eficientes que los métodos

estandar que integran ecuaciones de primer orden. En [1] se estudian propiedades de

consistencia, estabilidad y convergencia de los métodos de tipo Cowell que vienen

definidos por las ecuaciones en diferencias

k k
" u (2) = h2

" r.¡(2) f'(t ' )
~ j Yn+j . L. Pj n+j' Yn+j, y n+j
J=O J=O



2. REGION Y POLINOMIO DE ESTABILIDAD

2.1·Definición: Llamaremos dominio de estabilidad absoluta, D, del método lineal

{(p(i), di»), i = 1, 2}, al conjunto de puntos zl =h2y , ~ =he del plano complejo para

los cuales las ecuaciones en diferencias

En este epígrafe, establecemos las definiciones de dominio de estabilidad, región

de estabilidad y obtenemos la expresión del polinomio de estabilidad para ecuaciones

diferenciales escalares de prueb a de la forma

(2. 1)

(2.2)

(2.3)

n~O

y" = e y' + y y, e, y E C

Sería deseable que la solución numérica de (2.2) presentara un comportamien to

asint ótico similar al de la solución analítica de la ecuación diferendal (2.1), es decir, que

para los y¡ valores propios asociados a (2.1) tales que Re y¡ ::; O,la solució n numérica

dada por (2.2) esté uniformemente acotada. En general, esto no es cierto; para precisar

los valores zl = h2y , ~ = he , para los que se verifica esta propiedad introducimos la

siguiente

donde e y y son constantes complejas. Como es bien conocido (ver [3D, si todo Y¡

valor propio o raiz del polinomio característico de la ecuación (2.1) es tal que Re Y¡ ::; O,

la solución de (2.1) es estable y está uniformemente acot ada para todo t ~ O. En

particular, si Re y¡ < O para todo Y¡ valor propio asoc iado a la ecu ación (2.1),

entonces, la solución es asintóticamente estable y I y(t) I~ O(t ~ 00), cualesquiera que

sean las condiciones iniciales.

Si aplicamos el método de k-pasos dado en (1.2) ·a la ecuación de prueba (2.1)

con paso fijo h, obtenemos las ecuaciones en diferencias
k .

"" [(a ~2) _ h2 y A(2») . _ h e A ~2) (h ' .)] = O
~ J I-'J Yn+J I-'J y n+J
J=O
k

"" [(a~l ) _ h e A~l ») (hy' .) _ h2
y A~l ) .] = O

~ J I-'J Yn-sj I-'J yn+J
J=O

~ [ (2) (2) (2) , ]
,¿... (a . - zl~ ' ) Y . - z2~ ' (hy +.) =O
j=O J J n+J J n J

:¿k [ (1) (1), (1) ] _
(a . - Z2~' ) (hy .) - zl~ ' Y +' - O,. J J n+J J n J

J=O

tienen solución única verificando
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Yn =TJ n, y'n =TJ'n' n =0,1, ..., k-1



(2.4)

_a(l) + z ~(1)
O 2 O

Z ~(1)
1 o

o

O

OO

O

O O

o

O

A(l ) (1) A(1 ) O
- zl I-'k <Xk - z2 I-'k

T

11 = [11k-1, h11'k_1' 11k-2, h11'k_2' ... ,11 0, h11'o]

A=

B=

T
Y =[ h' h ' , ]n+k Yn+k' y n+k' Yn+k-1' y n-sk-L' ... , Yn+1, y n+1

y" =R y' + S y ,
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sup I /i)I ~ K. SUp {I 11 1, I11' 1}, i = O, 1
n 1 n n

n z O lr.;;n~k-1

Introduciendo la siguiente notación matricial

las ecuaciones (2.3) y (2.4) pueden escribirse matricialmente en la forma

donde R Y S son matrices diagonalizables simultaneamente, es inmediato que la

solución numérica será acotada en el sentido de (2.4) si y solo si h2y
j , h8 j pertenecen

al dominio de estabilidad absoluta, para yj ,8j valores propios de R y S respectivamente.

2.2.0bservación: Si en lugar de considerar ecuaciones escalares de la forma (2.1),

consideramos sistemas lineales

donde Ka y K1 son constantes independientes de las condiciones iniciales, pero que

pueden depender de zl y ~.



siendo

(2.5)

(2.6)

(2.7)'

(2.8)

(2.9)

(2.11)

. j = 1,2, ..., k-l

[~-wA]X=O

sup 11 Yn 11
00

::; K 11 TI 11
00

nzk-l
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q2(W) = - p(2)(w)(P\w)

qlw) = ~2)(w) p(l)(w)

Resolviendo las 2k-2 últimas ecuaciones del sistema (2.7) , obtenemos que la solución

verifica las relaciones siguientes

k-j
x2j = w x2k

k-j
x2j_1 = W x2k_

1

Las raices del polinomio característico asociado a la ecuación en diferencias matricial

(2.5) vienen dadas por la solución del problema de valores propios generalizado

Aplicando las relaciones (2.8) a las restantes ecuaciones del sistema (2.7), éste qued a

reducido ala forma

De acuerdo con esto, estableceremos la siguiente

p(i)(W) = :t a~i) w j, cr(i)(w) = t p~i) w j , i = 1,2
j=o J j=o J

los polinomios característicos del método. En consecuencia, podemos escribir el

polinomio característico o polinomio de estabilidad asociado a la ecuación en diferencias

(2.5), como

II(w, zl ' z2) = ql(w) zl + q2(w) z2+ qlw) (2. 10)

donde ql' q2 Y q3 son polinomios de grado menor o igual que 2k definidos por

ql(w) = - cr(2)(w) p(l)(w)
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(3.4)

(3.3)

(3.1)y" =' (y + y. ) y' - y y. Y
1 2 1 2

Consideraremos la ecuación escalar de prueba (2.1) expresada en la forma

La transformación dada en (3.3) queda completamente caracterizada por sus

puntos fijos ~¡ y ~ en el siguiente sentido: dicha transformaci~n consiste en una

inversión respecto de la circunferencia I" de diámetro ~-~1' seguida de una simetría

respecto de la linea recta que une los puntos ~1 y ~ , como se puede ver en la figura 1.

3. DETERMINACION DE LA REGION DE ESTABILIDAD (S)

Esta relación tiene dos puntos fijos ~1' ~ para cada 8 ( Al= ~ = u), que son las

soluciones de la ecuación

2A-Observación: Para zl = z2 = O, se tiene que D(w, O, O) = p(2)(w) p(1)(w), y por

lo tanto, si p(2)(w) y p(l)(w) verifican la condición de las raices dada en [1], entonces,

el origen pertenece a la frontera de la región de estabilidad.

Como la región de estabilidad S está determinada en el (Al' A2)-espacio por la

condición de que las raices del polinomio de estabilidad (3.2) se encuentren en el

interior del círculo unidad, es claro que el contorno de dicha región estará contenido en

el lugar geométrico de los puntos tales que las raices del polinomio .(3.2)estén sobre la

circunferencia unidad (w = e' 8). Este razonamiento junto con la anulación de (3.2),

nos permite obtener una relación bilineal simétrica (en el sentido de Gear[2]) entre los

parámetros complejos Al y 1.2 dada por

A = q/8) - 1.2qi8)

1 A~ q¡(8) - q2(8)

donde Y1 YY2 son los valores propios asociados a dicha ecuación. Escribiendo

Al = h Y1 ' ~ =,h Y2 ' el polinomio de estabilidad (2.10) adoptará la forma

I1(w, 1.1,1.2) = - Al 1.2 q1(w) + (Al + 1.2) qi w) + q3(w) (3.2)

2.3-Definición: Llamaremos región de estabilidad absoluta, S, del método lineal

{(p(i), (j(i»), i = 1, 2}, al conjunto de puntos del plano complejo tales que las raices del

polinomio I1(w, zl' ~) son de módulo menor que la unidad, para todo zl' z~ e S.

S={(zl,z2)eC
2IsiI1(w,z¡,z2)=0

=> Iwl<l}



11 1

Figura 2

transformada de

Al es una simetría de A en L

A es una inversión de 1.2 en r

puntos transformados
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Figura ,1

La transformada de una linea recta es una círcunferencia pasando por el centro de I', En

particular, la transformada de cualquier recta pasando por de uno de los puntos fijos Ili '

i = 1,2, es una circunferencia tangente a dicha recta en el punto fijo (ver la figura 2).

De acuerdo con esto, el semiplano abierto que se encuentra en el lado ,opuesto al otro

punto fijo y de la linea recta 1, se transforma en el interior de la círcunferencia

transformada de la linea 1, siendo dicho semiplano y su transformado dos conjuntos

disjuntos. Entonces, si dos puntos Al y ~ están en dicho semiplano, no pueden ser

cotransfonnados, es decir, dar lugar a una raiz w = ei 9 del polinomio de estabilidad

(3.2).

Además, para cada 1.2, la ecuación (3.3) especifica un Al' de manera que una

raiz del polinomio de estabilidad (3.2) sea de la forma w = e' 9. Entonces, para cada

1.2, la ecuación (3.3) especifica un lugar geométrico que contiene al contorno de una

región en el A-planoen la que el método es estable, suponiendo que dicha región exista.

Nosotros estamos interesados en encontrar una región S tal que si 1.1,1.2 E S,

entonces el método es estable. Claramente, habrá que excluir de la región S los puntos

fijos 111 y ~, soluciones de la ecuación (3.4).

Consideraremos ahora la figura 3 y supogamos que exista al menos un par de

valores Al' 1.2 en el interior de la región acotada S para los cuales el método es estable.



A- plano

11 1 (0)

Figura 3

En esta situación, sería adecuado preguntarnos si el método es estable para todos los

valores A\, A*2 contenidos en S. En general, la respuesta es negativa, ya que

Gear[2] ha encontrado métodos que tienen región de estabilidad en el sentido de la

figura 3 y, en cambio, no son estables para todo par de valores A*l' A*2 contenidos en

S. Una condición suficiente para que la región S sea de estabilidad absoluta para el

operador numérico (2.5) es que S sea un conjunto conexo. Este resultado viene

precisado en el siguiente teorema (Gear[2])

3.1-Teorema: Sea S una región conexa verificando que:

i) No contiene parte de ninguna linea segmento ll2- 111

ii) Existen un par de puntos Al ' ~ E S en los que el método es estable

Entonces, el método es absolutamente estable en todos los puntos de S.

Demostración: Sean Al ' ~ E S para los cuales el método es estable, y supongamos

que existen A* 1 ' A*2E S en los que el método' no es estable. Entonces podemos

encontrar un par de caminos Al (s) , ~(s) continuos y contenidos en S, tales que unen

los puntos Al a A\ y ~ a A*2 respectivamente. Como A\ y A*2 son puntos de

inestabilidad del método, existen dos puntos Al (so) y ~(so) sobre dichos caminos para

los cuales el polinomio de estabilidad del método tiene una raiz sobre la circunferencia

unidad. Además, existirá una linea recta pasando por uno de los puntos fijos de forma

que Al (so) y ~(so) se encuentren en el semiplano determinado por dicha linea y en el

lado opuesto al otro punto fijo. Entonces, pqr la forma especial de la transformación
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En esta sección, obtenemos métodos de integración directa de tipo Cowell

A-estables de dos pasos y segundo orden de aproximación, considerando la ecuación

test escalar de coeficientes reales

4. A-ESTABILIDAD DE METODOS DE DOS PASOS

Figura 4

1..- plano

Al final, presentarnos algunas regiones de estabilidad absoluta correspondientes a

los métodos de tipo Cowell obtenidos en [1], para los casos de dos, tres, y cuatro pasos

con órdenes tres, cuatro y cinco respectivamente. Se observa inmediatamente que la

superficie encerrada en estas regiones de estabilidad es similar a las obtenid as por

Shampine and Gordon [8] para métodos multipaso de tipo Adams.

(3.3), dichos puntos no pueden dar lugar a una raiz unidad del polinomio de estabilidad

del método, luego el método debe ser estable en 1..*1 , 1..*2 '

3.2-0bservación: Las condiciones del teorema anterior a cerca de la estabilidad

absoluta son suficientes, pero no necesarias, como se puede apreciar en la figura 4,

obtenida por Gear[2] para un método de integración directa de tipo multipaso. La

región S es de estabilidad absoluta, excepto quizás en las proximidades del contorno

de la izquierda, puesto que cualquier par de puntos de S, están en el interior de un

círculo de diametro 112 - 111 Yentonces no pueden ser cotransformados el uno del otro,

o bién uno de ellos está muy próximo a dicho círculo, pero bastante alejado del diámetro

112 - 111' Ytampoco pueden ser cotransformados.



(4.1)2
y" + a y + (O y =O

En estas condiciones, el polin~mio de estabilidad asociado al método de dos pasos será

n«, zl' z2) = ao+ al ~ + ~ ~ 2+ a3 ~ 3 + a4 ~ 4 (4.2)

donde

1 3
al =- (1 + 3 a) + (- a + ~ + 3 a ~) ZI + (- 2 + 2 a + 4 y) z2

1 7
a2 = 3 (1 + a ) + (1 + a - 3 ~ - 3 a~) zl + (2 -2 a - 5 y) z2
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Primer orden.

(i) a(2) + a(2) + a(2) = O (ii) a(2) + 2a(2) = O (iii) a (l) + a(l) + a (l) = O
012' 12' 012

Expresando la solución de este sistema en función de tres parámetros, los polinomios

característicos asociados al método vienen dados por

p(2) (~) = ~2 _2 ~ + 1, cP)(~) = ~ ~2 + (l - 2~) ~ + ~

p(l )(~) = ~2 _(1 + a ) ~ + a, cr(I\~) =(2. + ~ + y) ~2 + (..!.. -~ a - 2y) ~ + y
2 2 2 2

(iv)..!.. (a (2) + 4 a(2») _(~(2) + ~(2) +~(f») = O (v) a (l) +2a(l ) _~(1 ) _~ (l ) _~ (I ) = O
21 .2 012 ' 12 0 12

Segundo orden.

(vi) ..!.. (a(2) + 8 a(2») _ (~(2) + 2 ~(2» ) =O
6 l 2 l 2

Suponiendo, sin pérdida de la generalidad, que a 2(2) = a 2(1) = 1 e imponiendo las

condiciones de orden dadas en Franco-Palacios [1], tenemos

con la condición a ~ O, lo que equivale a exig ir que la solución de la ecuac ión (4.1) es

estable.

Consideremos métodos de tipo Cowell de dos pasos en la forma

(2) (2) (2) 2 (2) (2) (2)
a2 Yn+2 + al Yn+1 + ao Yn = h (~2 fn+2 + ~I fn+1 + ~o fn)



1 5
a3 = - (3 + ex) + (- 1+ 3 ~ + ex ~) zl + (2 + 2 ex + 4 y)

1 . ex
a4 =:: 1 - ~ zl - (2 + 2 + y) z2

A continuación estudiaremos dos casos particulares

Caso a]=ao=O
El polinomio de estabilidad será bicuadrático, pero al imponer que al = O, se

llega a una contradicción. Por lo tanto, no exixte ningún método de dos pasos y

segundo orden cuyo polinomio de estabilidad sea bicuadrático.

Caso ao=O

El polinomio de estabilidad es reducible a un polinomio de tercer grado y resulta

que ex = y = O, con
2 3

I1(~,zl,z2)=~(al+a2~+a3~ +a4~ )=~P3(~)

1 1
al = - 1 + ~ zl - 2 z2' a2 = 3 + (1 - 3 ~) zl + 2 Z2

Entonces, el problema se reduce a estudiar las raices del polinomio P3(~)' Efectuando

la transformación de Routh-Hurwitz ~ = (1 + 11)/ (1 - 11) Yteniendo en cuenta que ahora

zl = - ro2 h2,~ = - a h, el polinomio P3(~) se transforma en

2 3
P3(11) = bo+ bl 11 + b211 + b3 11

con

2 2
bl = 3 a4 + ~ - a2 - 3 al = 2 ro h

b2 = 3 a4 - a3 - a2 + 3 al = 4 a h

2 2
b3 = a4 - a3 + a2 - al = 8 + 2 (4 ~ - 1) ro h

En estas condiciones, exigir que las raices de P3(~) sean de módulo menor o

igual que la unidad es equivalente a exigir que las raices de Pi11) estén en el semiplano

Re 11 :::; O. Aplicando el criterio de Routh-Hurwitz, esto solamente es cierto si se

verifican las siguientes condiciones
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4.1-0bservación: Si se imponen condiciones de orden tres, se tiene que p = 1/12,

ex = - (1 + 12 y)/5. Considerando el caso particular a = 0, se tiene que

n«, 0)2 h2, O) = p(l) [p(2\S) + 0)2 h2 a(2\s)]

y en el segundo factor de este polinomio se verifica la condición de A-estabilidad

(condición de las raices de Dahlquist) si y solo si 0)2h2 E (O, 6). En consecuencia, no

existe ningún método de tipo Cowell de dos pasos y orden tres que sea A-estable.

es A-estable.

Y, - y' = ~ ( f + f )n+2 n- I 2 n+2 n+l

En consecuencia , podemos concluir que la familia de métodos de tipo Cowell de

dos pasos y segundo orden dada por

2
y 2- 2 y l+ y =h (pf 2+(1-2p)f l+Pf), P~1/4, n+ n+ n n+ n+ n

b3 > 0, b2, b1, bo~°
b2 b

1
~ b

3
bo

En nuestro caso, los coeficientes b¡ (i = O, 1,2,3) verifican las condiciones (4.3)

para todo ah, 0)2h2, si y solo si P~ 1/4. Además, 'como bo = O, el polinomio P3(s) no

puede tener raices múltiples de módulo unidad, salvo que a = O) = O; Yen este caso, de

acuerdo con la observación (2.4), estos puntos están sobre la frontera de la región de

estabilidad.
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Introducción

CALCULO EFICIENTE DE LAS SOLUCIONES DE LAS '
ECUACIONES DE LA ELASTODINAMICA LINEAL CON
PROCESADORES ESCALARES Y VEC TORIALES

F. J. Serón . , F . .J. Sanz • , M. Kindel án • • , .J. 1. Badal .t.
Dept. Matemática Aplicada. E.T .S .U. , Universidad de Z aragoza, CI María Zambrano 50, 50015

Zaragoza. Spain
• • IBM ECSEC, via Giorgione 159, 00/47 Rome, Ita/y

.++ Dept. Flsica Teórica (Geoflsica), Universidad de Zaragoza, Pza. San Francisco,50009 Zaragoza, Spain

La solución numérica de la ecuación de ondas elástica es una herramienta mu y potente para los
geofísicos enca rgados de mo delar el interior de zonas dc la Tie rra.

En este trabajo se cons idera la simulación del fenómeno de la propagación de ondas. Con este fín,
se formula el problema a partir de las ecuac iones de la e1astod inámica lineal, se apl ica el método de los
Elementos Fin itos para discretizar la parte espacial de dichas ecua ciones y se analiza n las carac teristieas
informáticas necesarias para pod er hacer códigos eficientes que aprovechen las particularidades de la
arqu itectura escalar o vecto rial del ordenad or qu e se utili ce.

Los depósitos de hidrocarburos se encuentran en zo nas sedimentarias con formaciones porosas. I..a
tarea de la exploración geofísica es localizar dichas zo nas y para ello el métod o mas común es interpretar
los datos obtenidos en campañas de prospección sísmica. Los registro s sísmicos contienen una gran can tidad
de información y su interpreta ción es bastante subjetiva. Por esta razón , la industria geofísica está muy
interesada en el desarrollo y uso de la simulación sisrnica mediante ordenador, ya que la simulación del
fenómeno facilita la comprensión del comportamiento de la propagación de las ondas sísmicas. Los
resultados obtenidos a partir de este tipo de simulaciones numéricas se pued en utilizar para :

Gen erar datos sintéticos a partir de model os propuesto s, con el fín de poderlos comparar con datos
reales. De esta forma los geofísicos pueden demostrar la con sistencia de la interpretación realizada .

/Iacer mas objetiva la labor de interpretación de los fenómenos de propagación ocurridos en las arcas
de exploración, cara tcrizad as normalmente por tener entornos geológicos extremadamente complejos.

Crear bancos de da'tos sintéticos que son siempre útiles para la puesta a punto de nu evas técnicas de
adquisición de datos en campo o de proce sado de datos en gabinete.

Aumentar la eficacia de la enseña nza especializada en los fenómenos ondulatori os, ya qu e los model os
matem át icos asociado s a este tipo de fenomenolo gia so n complejos y la ext rapolació n del comportamient o
de las ond as a partir de las ecuaciones es norm almente cas i imposible. A través de la simulación num érica
los fenó menos de propa gación se pueden ver realmente en imágenes .
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1\
u¡ :n x [O,T] --IR; i= 1,2,3

t:« : r x (0,7)

con

PU¡,I/ = aUJ + Ji inQT ecuación de movimiento (1)

U¡ = gl in LRT condición de Dirichlet (2)

a Un} =h¡ in LhT condición de Neumann (3)

!JI (r , O) = uol(r) v r e n condición inicial (4)

r~ . 1 (r, O) lio¡(r) 'r/ r e n . condición inicial (5)

lI(r, 1) = [uJ(r. 1), U2(r,I), u3(r, 1)]

1\
n = n U r

tal que lI(r , 1) sat isfaga las ecuaciones de la e1astodinámi ca [1]

Formulación

Consideremos un medio continuo, elástico, lineal, isótropo , y no homo~eneo con dominio n y
contorno r . Supongamos qu e n es una región abierta , aco tada y con exa de IR , que r es de tipo el a
trozos , y que r se pud e descomponer en do s part es I"R' ¡ 'h cada un a con medid a superficial estrictamente
pos itiva, de manera que

En este trabajo se considera el método de los Elementos Pinitos debido a la versatilidad que tiene
para ajustarse a las características geométricas de cada problema, en particular permite el uso de mallas
no un iformes que teng an elementos con diferente tamaño , geometría y orden de "apro ximación. De esta
manera es pos ible obtener la exactitud deseada en las diferentes regiones del modelo.

Con este fin, se formula el problema de la propagación de ondas a partir de las ecuaciones de la
e1astodinárnica lineal, se aplica el rriétodo de los Elementos Pinitos para diseretizar la parte espacial de
dichas ecuaciones y se analizan las características informáticas necesarias para poder hacer códigos eficientes
que aprovechen las particularidades de la arquitectura escalar o vecto rial del ordenador que se utilice .

se puede formular la simulación del fenómeno sísmico como el problema de encontrar una función
desplazamiento

Si se deno ta al vector posición como r, con dominio en ~2 , a la variable tiempo como 1, con dominio
en el intervalo (0, 7) con T> Oe IR , y se introducen los siguientes conjuntos

Existen varios métod os para simular la propagación de ondas sísmi cas en estructuras complejas; "Ray
tracing", es probablemente la técnica mas utilizada , pero no puede reproducir fenómenos debidos a
difracciones causadas por fallas o cambios rápidos de curvatura cn el frente de la onda ocasionados por

" los contornos de los obstáculos. Otros métodos mucho mas útile s aunq ue mas sofisticados y costosos
desde el punto de vista del cálculo que hay que realizar son "Diferencias Pini tas ", "Elementos Pinitos" y
"Técnicas Pseudoespectrales".



(6)

(7)

(8)

(9)

(10)

(11)

son los parámetros elásticos de Ia mc

es la densidad

son las tensiones en el con to rno rh

son los desplazamientos en el contorno I"g

son las fuerza s internas

Jf(r) g(r) dO.(f, glo.n
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. . 1/2
Ilfllo.n = (f,flO.n

I _ { . 2 • af 2 " _ }H(O) - feL(n), aXl e L (O ), 1-1,2,3

(

3 af ag )
(f,g )I.n = J f(r.) g(r) + ~ - - anf1ax¡ Bx¡

p(r) :n-IR;

I(r,I) : QT- IR3 ;

..l(r)and ¡.t(r) :n-IR;

dond c

(1 es el tensor de tensione s de Cauchy

es el tensor de deformaciones, con componente s

verificándose que las componentes del tensor de tensiones están relacionadas con las componentes del
tensor de deformaciones mediante la ley de Ilookc

Las ecuac iones «(·7) son el model o matemático de la evolución en el tiempo del campo de
desplazamientos de un medio elástico , lineal, no hom ogcnco e isótro po, cuando está sometido a una
densidad volúmica de fuerzas f y a condici ones de con torn o de tipo Dirichlet y de tipo Neumann.

. Suponiendo que la solu ción u es suficientemente regular , se r uede establecer una formulac ión variacional
de las ecuaciones (1-7). Con este fin se introducen los siguientes espacios funcionales:

¡} (O) espacio de Sobolev de las funciones de cuadrado integrab le, según la medida de Lebesgue, es decir,

H1(O) espacio de Sobolev de orden 1, es decir ,

con el correspondiente producto escalar y norma

con el correspondiente producto escalar y norma



(19)

(17)

(16)

(18)

(14)

(\3)

( 15)

(12)

(Forma bilineal , simétrica continua)

(forma lineal continua)

(Forma lineal continua )

3L. f I1lj (U) EIj (w) dn (Forma bilincal , simétrica continua)
/ - 1
J- I

a(w, u)

u(O) = "0

3

(w, no.n = L.f .liw¡dn
/- I

3

(w, pukJ.n = L. f PU; w( dn
/ - 1

d2 "

2 (w, pukJ.n + a (w, 11) = (w, hkJ,r + (w, non
dI

3

(w, hkJ,r L. f h(w, arh
/ - 1

[
dI¡ ]IIfllcm(oT.V\ = rnax sup 11¡(I)IIx

,0"1 OSISm osrs r dr

s = {u(r, 1)IU¡ (r, 1) e Cm (O,T; BI(n)), !J¡ (r , r) = g¡(r, l) 'I r e rx}

La solución de (\3·15) existe si se verifican las siguientes condiciones [2]

Dados f, g, h, 1I0,ÜO, encontrar una función 11 E S tal qu e para todo W E V se verifique que
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donde L""(n ) es el espacio de las funciones esencialmente aco tadas, y

Esta solución existe ya que se puede demost rar que aL,,) es V-cliptl ca (desigua ldad de Kom [ 3] ) Y qu e
arribas formulacione s son equivalentes (Te orema de represen ta ci ón de Ritz [4]).

Con estas definiciones se puede establecer una formulación variacional del problema, utilizando
métodos clásicos tal y como se describe en el Apéndice 1. Con lo cual el problema queda reducido a:

ü(0) Üo

donde d
2

2 se debe entender en el sentido de las distribuciones sobre (O,T)
dI

V espacio de las funciones peso

S espacio de funciones donde se ;neuentra la solu ci ón del problema

Cm(O, T ; X), 0 < T < + DO espacio de las funcion es co ntinuas m-veces difercnciablc s en [O, '1]. Si X es un
espacio de f1 anach .con norma 11 .llx, entonces Cm(O,T ; ,\1es tambié n un espac io dc Banach para la norma
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- al<¡ = contorno de KI.continuo y Lipschitz.

Método de los Elementos Finitos

(20)

JI = Nú mero tot al de nodos.

i = 1,2. 3

Número tot al de elementos.n

,
2:>J(r)/1¡j(i)
j - I

ÜK¡
1-1

1\
n

1\
NI : n -+ IR i = 1,2.....JI

que se caraterizan por tener un sopo rte local. es decir . el soporte de la función NI (r) está form ado po r los
elementos a los que pertenece el nudo i. Adem ás. la función N¡( r) verifica NI( rj ) = ~I}'

Si u (r , 1) E S repre senta la solución del problema. el método de los Elementos Fin itos propor ciona
una solución aproximada uh (r, 1) E Sh dada por

o o
KI n Kj = p.

o
- KI cerrado y con interior no vacio (K¡).

Desde el punto de vista mat emático , el método ap ro xima la parte espac ial del espacio funcional de
dimens ión infinita S , mediante un subespacio Sh qu e tien e dimensión finita, JI . igual al número de no dos .
La base del espacio Sh está form ada por funciones

Para que la discretizaci ón mediante elementos finitos sea corre cta se deben verificar las siguientes
cond iciones : ~

El método de los Elemen tos Finitos sirve pa ra obtener soluciones aproximadas de problemas formulados
variacionalmente [5]. Geométricamente este método discrctiza el domi nio n subdiv idiéndolo en un
conjunto de subdorniniosO¿ En prin cipio el número de puntos de contacto entre dos subdominios vecinos
es infinito. Pos teriormente se discre tiza cada sub dominio suponiendo que la conexió n entre ellos viene
dada po r un numero discreto de puntos denom inados "nodos de con torn o". A los subdo minios discrctizados
n i se les denomina "elementos finito s" y se denotarán co mo K¡.

es decir, la función uf (r , 1) es un a com binación lineal "adecuada' de los desplazamiento s de los no dos
( O¡j) en el instante l .

Se puede decir por lo tanto q~e el método de los Elementos Fin itos permite pasar de un dominio
continuo Áinfinitos puntos) y un espacio S de dimensión infinita . a un dom inio discreto (JI no dos) y un
espac io S de dimensión finita . El parametro h ha~ referencia a una longitud earae terist ica q ue está
asociada al tamaño de la di scrctizaci ón del dominio n. La dimen sión de Sh es una función de h y si el
método es convergente se pued e alcan zar la dimensión del espacio S med iante sucesivos refinam ientos de
la malla . Iim JI (h) = oo.

h-O

Esta técnica de discretiza ci ón espacial . gcncrcalrnentc llamada form ulación sernidiscreta de Galc rkin ,
reduce el problema de laclastodin ámica ( 13· 15) al siguiente prob lema [6]:



(27)

(25)

(26)

(29)

(28)

(24)

(23)

(22)

(21)

d es el vector de los desplazamientos

K es la matriz de rigidez

o, /\
M d + K d = r V I E (O, 7)

d(O) = do

wF (r ) ¿ 0 (r ) ct}
j EIf - IJ.1

d(O)

d2
h h h h h h2 (w ,p v ) + a (·w , y ) = (w , f) + (w , h )r -

dI

gF( r , l ) ¿N¡(r)gtj(t)
~"JI

M es la matriz de masa

/\
r es el vector de las cargas

vF(r,l) ¿ NJ(r)dtj(l)
jE"-,,.,

El Apéndice 11 muestra como se obtienen en la práctica estas matrices.

Dados .f,I: , h, Uo iJo, encontrar la función yh (r, 1)
vw" E vh se saÚsfagan las ecuaciones siguientes
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. Puede demostrarse ~2] que el problema scrnidiscrcto (21-23) admite una solución única ~, y por lo
tanto una única uh = y + gh. . .

donde

La matriz M está determinada por la distribución de densidad en el dominio, la matriz K está
determinada por las propiedades elásticas del medio y el vector r depende de la fuente utilizada para
excitar las ondas y de las condiciones de contorno. Tanto la matriz M como la matriz K son sparse,
simétricas y definidas positivas.

y l1g1 es el número de nodoscon condiciones de Dirichlel.

donde

A partir de las ecuaciones (16-19) se puede obtener el siguiente sistema de ecuaciones diferenciales
ordinarias, lineales, de segundo orden con coeficientes constantes



(32)

(30)

(31)

(33)

11 e 11 m :s;; c ha. 11 U 11,

El error e= uh( 1) - u ( l ) , satisface

(e) es una constante independiente de u y de h.

IX ~ mine k+ l-rn • r-rn ).
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Estimaciones del error de la aproximación

En el momento cn que k + 1 y r son mayores que m, se obtiene )convcrgencia óptima en la norma
Hm . Suponiendo que u es es suave, en el sent ido de que u E [ Hk + 1 ] , oeOnto nces el error satisface

(k) es el grado del polinomio completo q ue aparece cn las funcionc s base seleccionadas para discrctizar ,

Las estim aciones del error cometido en el cálculo de la aproxi mación a la solució n del pro blema, se
suelen expresar en términos de norm as de Sobolev. I .os principales resultados son los siguientes [ 7]: o

Por ejemplo, sea k = m = 1. Entonces

(m) está relacionado con el orden de la derivada espacial mas alta que aparece en a (u, u).

donde

donde p = min ( k + l-s , 2(k + l -rn) ). En este caso la aproximación por Elementos Finitos es óptima en
la norma-H", para todo s tal que O :s;; s :s;; m. o

si para cada instante de tiempo 1, u E [ H' i y uh
E Sh,

Estimaciones Ijara el error en normas-H' inferiore s, O :s;; s :s;; m, suelen ser muy interesantes. Suponiendo
que u E [ Hk + 1 ] , el resultado principal es

La primera relación da la velocidad de convergencia para los "desplazamientos" y la segunda para los
"gradientes de los desplazamientos" (i.e., deformaciones o tensiones) en un instante de tiempo (1).

Un análisis similar [2] mu estra que si u E c2 ( 0, T ; Hk + 1 ) entonces

expresión que se conoce con el nom bre de "estimación standar del error".



Siendo

- Pe = diámetro de la esfera inscrita en Ke·

(34)

h
p.

max (P e) .
l ~e Sn

max (he).
I .:s: e ~n

- P

h =

- a

Necesidades de almacenamiento

ecuación que muestra que el error cometido en el cálculo de los desplazamientos y de las velocidades es
función de la aproximación matemát ica ( hk ) Y de la apro ximación de las condiciones iniciales.
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he = diámetro de Ke•

La esencia del criterio de convergencia es que cuanto mas se refina la malla, mas se aproxima uh a u.
Para poder establecer el criterio de convergencia es necesario [7] que en cada una de las mallas que se
obtiene al ir variando h, se verifique la cond ición geométrica a ~ a o 'r/Sh cuando h -+ O.

El sistema de ecuaciones diferenciales ordinarias, lineales, de segundo orden, con coeficientes constantes
obtenido en (27-29) se debe de integrar a lo largo del intervalo (0,7) discrctizando la variable tiempo como
In = n!:J.1 O~ n ~ N dond e Al = TI N. La solución d ( In ) vendrá representada por dn.

Existen muchos esquemas de integración en el tiempo, entre los que destacan el método de Houbolt
[8] el método de Wilson [9] y los métodos de la familia Newmark [lO] . cuyo análisis está fuera del
objetivo de este trabajo , pero la mayoria de estos esquemas de integración conducen a la resolución en
cada paso de tiempo (n) de un sistema de ecuaciones algebraicas cuya matriz de coeficientes es sparse,
simétrica, bien condicionada y definida positiva.

La estructura de la dispersión de los elementos distintos de cero en la matriz A, depende de como se
malla el dominio físico que se desea estudiar . Un dominio regular se puede mallar de manera sencilla, en
cuyo caso las incógnitas se pueden ordenar de manera que los elementos distintos de cero de la matriz
formen una estructura regular (ver Figuras 1 y 2). Cuando el dominio es irregular es necesario usar
estructuras de mallas mas complicadas, en cuyo caso los elementos distintos de cero de la matriz se
dispersan (ver Figuras 3 y 4). En el Apéndice JII se muestran las formas mas comunes de almacenar los
elementos de una matriz sparse, en la Figura 5 se muestran los esquemas de representación matricial
"cornprcssed diagonal" y "cornpresscd matrix' para las mallas mostradas en las Figuras I y 3 respectivamente.
y en la Tabla 1 se muestran las necesidades de almacenamiento para la matriz A, correspondiente a una
malla regular con condiciones de contorno y dos grados de libertad por nudo, para tres tamaños de malla.
Se puede observar que "row-wise" es el esquema mas eficiente seguido por "cornpresscd diagonal", "corn­
presscd matri x' y en último lugar "skyline" con mucha diferencia con respecto a los demás esquemas . Sin
embargo tal y como se puede obse rvar en la Figura 5, en el C:l SO de mallas irregulares la representación
"cornprcsscd diagonal" se deteriora mientras que la representación "cornpresscd matrix ' mantiene su eficiencia.

Los sistemas que se ob tienen cuando se resuelven problem as de propagación de ondas en estructuras
'reales son de un orden comprendido entre 105 y 106 ecuaciones, y su matriz de coeficientes suele tener
entre 10 Y 30 elementos distintos de cero por fila.



Table 1. Necesidades de almacenamiento en K-palabras

Method 63x63 127xl27 257x257

Real 79382 322582 1320982

Skyline 934.2 7922 66781

Row-wisc 70.4 296.2 1234

Cornpressed-Matrix 143.7 598.5 2481

Cornprcsscd- Diagonal 83.2 346.5 1436

El tipo de sistemas mostrado en (34) se puede resolver utilizando métodos directos o métodos iterativos.
Los métodos directos se basan en la eliminación Gaussiana y han sido muy utilizados para resolver sistemas
dinámicos pequeños proporcionando siempre resultados satisfactorios. Pero el motivo por el que se
descartan estos métodos en este trabajo, es que cuando los sistemas son grandes su efectividad decrece
debido principalmente a la .gran cantidad de elementos nulos que se transforman en no nulos durante la
descomposición de la matriz, efecto conocido con el nombre de "fill-in", este fenómeno provoca la necesidad
de tener que disponer de una cantidad de almacenamiento inalcanzable. Los métodos iterativos no generan
el fenómeno de "fill-in" y por lo tanto necesitan mucha menos cantidad de almacenamiento. Además si
el número de iteraciones necesarias para resolver el sistema no es grande , los métodos iterativos tienen un
coste computacional menor ya que solo operan con los elementos que son diferentes de cero.

Producto matriz-vector

Desde el punto de vista de los cálculos que hay que realizar para resolver un sistema lineal de
ecuaciones mediante métodos iterativos, la operación producto de una matriz por un vector es la mas
importante, ya que suele emplear normalmente mas del 50% del tiempo necesario para realizar cada
iteración. Ahora bien el coste de este producto viene afectado significativamente por el esquema de
almacenamiento utilizado y por el tipo de Unidad Central de Proceso empleado.

En la tabla n se muestra el trozo de programa encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento "row-wise" (ver la notación en el Apéndice Ill) .

Tabla n.

DO 20 1=1, M

ACC = O.DO

DO 10 J = IA(I), IA(I + 1)-1

ACC = ACC + D( .lA(.I) ) • AR(.I)

\O CONTINlJE

Y(I) = ACC

20 CONTINUE
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Obsérvese que los elementos de los vectores AR y .lA son seleccionados de manera secuencial, en
cambio los elementos de O se seleccionan de manera aleator ia según la dirección dada por .lA. Si se utiliza
un procesador escalar, este esquema de almacenam iento es mu y eficiente.

En la tabla 111 se mue stra el trozo de program a encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento "compresscd matri x" (ver la no tación en el Ap&endice 111).

Tabla III.

DO 20 1= 1, M

ACC = 0.00

DO 10 J= t, K

ACC = ACC + O( KA(I,J) ) • AC(I ,J)

10 CONTINUE

Y(I) = ACC

20 CONTINUE

Obsérvese que los elementos de los vectores AC y KA se van seleccionando de manera secuencial, en
cambio los elementos de D se seleccionan aleatori amente según la dirección dada por KA.

En un procesador escalar este algoritmo no es óp timo ya que si algunas filas tienen meno s de (k)
elementos, se realizan mu chas multiplicaciones por cero . Un procesador vectorial pu ede vectorializar el
interior del buele 20 utilizando instrucciones de tipo "gather-scattcr" [11 J, para recoger los elementos del
vector D que son necesarios para realiza r el producto.

En la tabla IV se muestra el trozo de programa encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento "cornpresscd diagonal " (ver la notación en el Apéndice 111).

Tabla IV.

DO 101= 1, M

Y(I)=O.DO

10 CONTINUE

DO 30 L= 1, NI)

K = LA(L)

NI = MAX(I,I-K)

N2 = MIN(N ,N-K)

DO 20 I=NI,N2

Y(I) = Y(I) + O(K + 1) • AD(I,L)

20 CONT INUE

30 CONT INUE
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Obsérvese que con este algo ritmo todos los elemento s de los vectores involucrados en las operacion es
se seleccionan de form a secuencial, mientras qu e en el caso de "cornprcsscd rnatrix" era necesario realizar
operaciones de tipo "gather-scatter" co n el vector D.

Este esquema de almacenamiento es mas eficiente qu e la represent ación anterior cuando se ut ilizan
procesadores vectori ales, debido a qu e no necesit a realizar ningún tipo de accesos aleatorios. Ahora bién,
este esquema solo es utilizabl e si la matri z tiene un a clara estru ctura en diagonale s que solo se puede
obtener con mallas regulares . En cualquier otro caso se realizan una gran cantidad de multiplicaciones por
cero y su eficiencia disminuye.

Conclusiones

En este trabajo se ha aplicado el método de los Elementos Finitos para discret izar la parte espacial
de las ecuaciones de la elastodin árnica lineal con obj eto de simular la propag ación de ondas sísmicas,
dando los principales result ados sobre el comportamiento del error cometido en dicha aproximación.

De cara a resolver el sistema de ecua cione s algebraicas que se obtiene en cada instante cuando se
integra en el tiempo, se recomiendan los métodos iterativos por moti vos de almac enamiento.

Se ha realizado el estudi o de los esquemas de almacc na micnto de matrices spa rse con objeto de
seleccionar el mas-adecu ado en función del tipo de procesador (escalar o vectorial) ut ilizado . El esquema
de almac enamiento de matrices "row-wise" es el más económico y el más adecu ado ' para trabajar con
proce sadores escalare s, pero no vectoriza de forma eficiente. La representación "compressed diagonal" es
la mas eficiente par a trabajar . con procesadores vectoriales, pero solo pued e ser utilizad a con mallas
regulares . El esquema de almacenamiento "cornprcssed rnatrix " es ligeramente menos eficiente pero puede
utilizarse con malla s irregulares que es el caso mas usual cuando se trabaja con elementos finitos .
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(37)

(39)

(40)

(38)

(41)

(35)

(36)

J

IJ lTljE¡JdQ
1-1
j-I

J

IJ lTlj1l¡w¡dr
/-1
j-I

J J J

- IJ lTljJw¡dQ = IJ lTljw¡JdQ - IJ lTljnjw1dr
1-1 i-I loo t
j -I j-I j -I

W¡J + ~J
w(IJ) = --2- - -

JIJ p ~¡.lIwldQ +
; ,, 1

- 3. Como v» es un tensor simétrico y w¡J es un tensor no simétrico, entonces.

Por lo tanto

Apéndice 1
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La formulación variacional del problema de la elastodinámica se obtiene de la forma siguiente .

- 2. Se aplica la fórmula de Oreen al segundo término situado a la izquierda de la igualdad

_ 1. Se multiplica la ecuación de movimiento (1) por una función w¡ E V, se integra en el dominio
espacial y se suma para las tres componentes espaciales

donde W(IJ) es la parte simetrica de la descomposición euclidea de un tensor de rango dos .

- 4. A partir de las condiciones de contorno dadas en (3) y como W¡ = Oen r g (debido a la definición
del espacio funcional V ). el segundo término del lado derecho de la igualdad (36) se puede escribir como

Apéndice Il

entonces

La formulación de Galerkin descrita en (21-23) está basada en una aproximación "global" ya que las
funciones base y el resto de las magnitudes que aparecen, se considera que están definidas en todo el
dominio del problema. Esta descripción es útil a la hora de analizar las propiedades matemáticas del
método de los Elementos Finitos. Ahora bien. desde el punto de vista de la implementación práctica del
método, es mejor aprovecharse de la ventaja que ofrece el "sopo rte local" de las funciones base. Para ello
se descompone cada una de las funciones base N, en otras funciones Ne, cuyo soporte es un elemento simple .



(42)

(44)

(43)

(45)

'vector' tensión
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A
Vr ene.

operador diferencial de deformación

'vector' deformación

¿ N¡(r)dlj(t) Vren
ft'l-".,

ox O O
O oy O
O O oz
oy ox O

O oz oy
oz O ox

Con la aproximación global, las ecuaciones (24-26) tienen la forma

l = número de nodos en el elemento:

Hay que resaltar que:

Con la aproximación local, en vez de utilizar la expresión (41) se utiliza

La aproximación local puede hacerse del modo siguiente.

que junto con (16-19) se pueden utilizar paW calcular directamente las matrices de masa M y de rigidez
K, de dimensión n x n y el vector de cargas f de dimensión n. .

Definiendo

A
que junto a las ecuaciones análogas a (16-19) pero extendidas solo al elemento ne, sirven para obtener
las matrices elementales de masa me y de rigidez ke, de dimensión Ixl y el vector de cargas fe de dimensión
1, que se utilizan p~ calcular de forma mas eficiente las matrices globales de masa M y de rigidez K, y
el vector de cargas f.

. Con la aproximación local, las matrices. globales se construycn ensamhlando adecuadamente las
matrices elementales.



(47)

(49)

(48)

(52)

(50)

(51)

(53)

(54)

(55)

(56)

(57)

(5R)
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. - 1

n = Número total de elementos.

•• 1\
M d + K d = f 'ti I E (O, 7)

.- 1

d (O) = do

d(O) = do

M

K

1\
f

A + 2/1 A ). O () ()

A ), + 2/1 A () O ()

A A A + 2¡l O O O
'tensor' dc tens iones (46)D.

O O O f.l O O

O O O O f.l O
O O O O O f.l

Y utilizando notación matricial, las ecua ciones (24,6 ,7) se pucdcn expresar como

Utilizando esta aproximación local, la scmidiscrctizaci ón dc la formulación variacional del problema
de la e!astodinámica conduce a

donde



Las cuatro formas mas comunes de almacenar esta información son

Por linea de cielo "(Skyline)",

- Por diagonales "(Cornpressed Diagonal)".

12)9,6,

4 O 7 O O O
O4 O 2 O O
7 O4 O4 O
O2 O4 O 1
O O4 O4 O
O OO 104

A

lA = [1,2,3,

177

La matriz sparse, A( n x n ) , almacenada mediante esta repre sentadon emplea dos vectores, un vector
real AR Y un vector entero lA.

Comprimida "(Compressed rnatrix) ".

AR [4,4,4, O, 7, 4, O, 2, 4, O, 4, 4, O, 1]

LINEA DE CIELO (SYLINE).

REPRESENTACION DE MATRICES SPARSE

Una matriz sparse es una matriz qu e tiene "pocos" elementos diferent es de cero . Consideremos la
siguiente matriz simétrica A como ejemplo de matri z spar se.

Por mas "(Row-wise)",

Apéndice ttt

- El vector real AR contiene los elementos de A, almacenado s por co lumnas desde la diagonal hasta
la linea de cielo . .

Si la matriz A es sim étrica y sparse, con esta repre sentación se almacenan todos los elementos situados
desde el primer elemento distinto de cero de cada columna hasta la diagonal principal .

Ejemplo.

PILAS (RüW-WISE).

- Lo s elementos del vector lA, son punteros que indican la po sición de los elementos de la diagonal
de A en AR.

La matriz sparse, A(nx n) , almacenada mediante esta representación utiliza un vector real AR y dos
vectore s enteros .JA, lA . .

Si la matriz A es simétrica y sparsc, con esta representación solo se almacenan los elementos distintos
de cero de la parte triangular superior y de la diagonal principal de la matriz A.



de A.

Ejemplo.
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13·

2 4 •
3 15
426

5 3 •
6 4 •

KA

470
4 2 O
474
421
440
410

AC

- El vector real AR contiene los elementos distintos de ccro de A, almacenados por filas en
localizaciones contiguas de memoria.

- Los elementos del vector entero .fA, son punteros que indican cual es la columna de los
correspondientes elementos de AR .

AR = [4,7,4,2,4,4,4,1,4,4]

JA = [1,3,2,4,3,5,4,6,5,6]

lA = [1, 3, 5, 7, 8,9]

- Los elementos del vector entero lA , de longitud (n + 1), son punteros que indican en que lugar
comienza cada una de las filas de A en los vectores AR y.fA.

- 'Cada fila de la ma triz real AC contiene los elementos distintos de cero de la corresponiente fila

COMPRIMIDA (COMPRESSED MATRIX).

La matriz A ( n x n) almacen ada mediante esta representación utiliza dos matrices rectangulares, AC
y KA de (n) filas y (k) columnas, siendo (k) el máximo número de elementos distintos de cero por fila
de A.

. Si una fila de A tiene un número de elementos menor que (k) , la correspondiente fila de AC se
debe compl etar con ceros hasta alcanzar la longitud (k).

- Si el elemento corre spondiente de AC es cero , se pued e usar cualquier indice comprendido en el
rango I,....n.

Ejemplo.

. Los elementos del vector entero KA, son punteros que indican cual es la columna de los
correspondientes elementos de AC.

Las matri ces sparse simétricas emplean la mism a técnica de almacenamiento que las matrices sparse
no simétrica s. Es decir, todos los elementos distintos de cero de la matriz simétrica se deben almacenar
en la matriz AC, no solo los elementos de la parte triangular superior y diagonal principal.



DIAGONALES (COMPRESSED DIAGONAL) .

- AD con (n) filas y (nd) columnas, contiene las diagonales de A.

- Las diagonales se completan con (k) ceros, siendo (k) el número de la diagonal.

179

[0,2]LA

4 7
42
4 4
4· I
4 O
4 O

AD

Si la matriz A es sparse y simétrica , con esta representación, se almacenan todas las diagonales de la
parte triangular superior y de la diagonal principal de A, que tengan al menos un elemento distinto de cero.

Ejemplo .

- Los elementos del vector LA de longitud nd, contienen los números de las diagonales de la matriz
A que se han almacenado en la matriz AD.

La matriz sparse, A ( Ti x n) con nd diagonales con elementos distintos de cero, cuando se almacena
mediante esta representación emplea una matriz real rectangular AD y un vector entero LA.

- El número de una diagonal se obtiene restando el indice de fila del índice de columna de cualquier
elemento perteneciente a dicha diagonal.
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Figure 1: M olla regular.

Figure 3: Mollo irregular.

Figure 2: Estructura de la motril. correspondiente a la malla regular.



882 x19

1082 X23

Figure s: Esquemas dc almacenamicnto para las malla. rcgular e irrcRular.

882 X 11

Figure 4: E.tructura de la matriz corr e.p ondiente a la mAlla irregular.
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The regu la r' so Jution t heo ry wa s u s ed to p r edi c t t he so l ubi-

Reu , Aead, Ci ,'" .;' t.. ' Zarago za , 43 (1988 )

Ji ·l

Th e r -e s u J ts o bta i ned b y t h i sli t Y of gases i n t h ese so l vents .

t a lones .

En este t r a b a j o aportamo s el e s t u d i o de l a s s olubilidades de diez gases n o

polares (H
2

, 02 ' N
2

, 0 2 ' CH
4

, C
2H4

, C
2H6

, CF 4, SF
6

y CO2) en clo roben ceno y bro ­

mobenceno, a l a presi6n parc ial 'de 101 ,32 k Pa , e ntre 263 , 15 y 303 , 15 K. Ambo s l,!

qui do s p oseen importancia industrial, y al esta r f ormado s por u n anill e benc én i ­

co c on un único sus tituyent e ,cloro o bro~o, -n o s permiten apre c iar la i nfluencia

d e la presencia del hal6geno y d e la naturaleza de éste en las solubilidades.

th e o r y agr ee , ge rlera J ly, qu i t e satisfactori Jy wit h the expftr imen -

From th e ex peri me nta l r -e su I t s , par t i al mol a r Gibbs e ne rgy,

p a rt i a! molar' e n t h a l p y , a n d p a r-t í a I mol ar" e n t r-o p í e s of so lu ti o n

were eva l uate d .

Depa rtament o d e Quími c a Fí sica . Fa cultad" d e Cie nc i a s .

Ci u da d Unive r si t ar ia. 50 0 09 ZARAGOZA ( Espan a) .

. Th e so l u b i li¿y a p pa rat us was d e s i g n e d in o u p labo rato c'Y, and

it 15 simi la r' to t ha t u s ed b y Ben Naim ilr ld Ba er . For most of the

r epor t ed Xz so l u b i lity measurem e rlt s t he un c er· t a i n t y was est i mated

to b e l e ss t ha n 1 . 0 per ,c e n t .

SOLUBILIDADES DE GA SES NO POLARES EN CLOROBENCENO y BROMOBENCENO
DESDE 263,15 A303,15 KYALA PRESION PARCIAL DEL GAS DE
101, 32 KPA .
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M.C. LÓPEZ, M.A. GALLARDO, J.S. UR IETA y C. GUT ~ÉRREZ LOSA

So l u b i l ity of 10 n o n pol a r gases (H Z' DZ ' NZ' 0Z ' CH4, CZH
4,

Cz H6 , Cf 4 ' S f 6 and COZ) in e h ] o r-o b e n z e n e a n d b r-omobe nz e n e h a s

b e e n d e t e r-mi n e d i n t.he t e mpe r-a t u r-o r-a ng e o f Z6 3. 15 to 303. 1 5 K,

at 101. 3 Z kPa partia] pressure o f g as .

El es tud io de l a s s o lub ilida des de gases en l iqu idos es de gran in terés ta n

to de sde el pun to de vi sta de su ap licaci6 n práctica como para e l est ud io de las

fuerzas inte rmo leculares , ya qu e l a s so l ubi l idades d e los gases en l íquidos están

ín ti ma me n t e r e lacionadas con l a est ruct u r a de l o s l íquidos. Se h a n 'p r o p u e s t o di~

tinta s t e o r ía s pa ra e l tratamie n to de l a s so lubi lidades de gases no p o la res en

l í q ui d o s. Cr o n o 16g ic ame nte, la p rime ra c on l a q ue se obtuvo r e s ul t a d o s aceptables

f u é l a t e o r í a de l a di s ol uci 6n r e gular , d edu c i da por Hi l deb ra nd 1 p a ra me z cl a s

lí q u i da s, y po s te rio rme nte adap ta da p or Prau s n i t z 2 a l a s so lub i l idad es de gase s

no p ol ar e s en lí q u i d o s n o po la res y en lí q ui d o s poco po lares 3. Lo s r e s ul t a d o s

obten idos son c o mp a r a bl e s , a pesa r de l a s 9ra ndes aproximaciones que e n e l la se

i n c l uy e n , a l o s obtenidos con tratamientos má s mode rnos (T eor ía de la Ca v i d a d )

qu e aplicaremo s e n un t r a b a j o poster ior.

I NTRODUCe ION



EXPER IMENTA L

Las medida s de solubi lidad s e han realizado por u n méto do f í s i c o d e satura

ción s iguiendo una técnica expe rime n ta l puesta a punto en e s te Depart~m e n to1 cu­

ya descripción se detal la en un trabajo anterior 4 . Los l iqui d o s ut ilizados

fueron: clorobenceno Merck , p u reza mayor 99 ,5\, y b r o mo b e n c en o F luka , puriss,

r ique za mayo r 99 ,5\; éstas han sido contrastada s p o r' c r 'o raat. o q r a f La G-L y mediante

l a s medidas del índice de refracción ; los valores o b t e n ido s par a és te a 293,15 K

fueron : 1 ,5241 para el c lorohe nce no y 1 ,5597 . pa ra e l br o mo be nceno, si e n d o l o s va

lores d e la literaturaS 1,5237 y 1,5594 re s p ect i v a mente. Los g ases u ti li za d o s

fuero~ productos de al t a p u r e z a , s umin is trados por la f irma S . E.O . a e x c e pc i ó n

de l CF
4

que p roced ía de l a fi rma J .T . Ba k er . Su g r ado d e pu rez a e s : H
2

(99 ,999% )

D
2

(99,4%) , N
2

(99,998%) ,°
2

(99 ,98%) CH
4

(99%), C
2H4

(99 ,9%) , C
2

H
6

(99, 0 %), CF
4

(99%), SF
6

(99 ,5%) y CO
2

(99 ,998%) .

En l a t a bl a 1 se consig nan las s ol ubilidad e s e xpe r i me n t a l e s o b te n i d as a

la s di st in t a s tempe ra t u ras de t r a b a jo así cOw O lo s parám etro s qu e se obt ie ne n

de a j us tar estas so l ub i l idades o bte n idas a l a ecua c ión

l n x
2

= a + biT + C l nT . (1)

pa ra el c l~robenceno, y e n l a tab l a 2 , se prese n tan e st a s mismas mag ni tud e s ' pa ­

r a e l bromobe nceno . La s imprecisiones para l a s medidas de so lubi lidades se es­

timan menores de l 1\ para casi todos los casos. X
2

representa la frac ción mo lar

de l sol ute en la disolución y T l a t e mp er a t u r a absoluta.

4
Tabla 1 : Solubilidades de l o s gase s expresadas co~o xi .10 , e n clerobence no a

distintas tempe ratu r as , Y parámetros a , b y c o b ten idos a l ajusta r

estos valores con la e cu ación 1.

Gases Tempe ratura/ K
.
Parámetr o s

263 ,15 273 ,15 283 .15 293 ,15 303 . 15 a b c

H2
1 .84 2,01 2 ,19 2 ,37

2 ,55 - 9 , 13 8 7 -525 , 6 594 0 ,4550

D
2

1 , 97 2 ,11 2 ,30 2 ,47
2,6 5 - 16 ,9173 - 14 3, 84 59 1, 602 2

N
2

3,77 3 ,89 4 ,03 4, 17
4 ,32 -15 , 94 99 15 5 , 96 91 1 ,368 2

I

° 2 7 ,70 7 ,72 5,75 7 , 78
7, 80 - 7 ,76 9 2 2 , 17 76 0 , 1061

CB
4 23,2 22, 1 2 1 ,0 20,1

19, 2 -2 ,872 3 18 3 , 09 7 9 - 0 , 6980

C 8
4

202 17 1 146 126 , 5 1 10 , 5 - 10 , 18 36 1274, 1152 0 ,258 1

C
2

H
6 256 213 -180 15 4

135 - 2 1 , 540 1 1830 ,9258 1 ,9586

CF
4 4 ,48 4 ,54 4, 61 4, 6 8

4,7 7 -14 ,7011 191 ,5581 1,1 235

SF
6

29,5 27 ,1 25 ,3 23 ,7
22 ,6 - 26 , 6 34 3 1332,1788 2 , 8250

CO
2 177 148 124,7 106, 0

91 ,0 - 0 , 246 7 950,732 1 -1 , 3279
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S olub ilida d e s de l o s exp r e sadas
4

Tabl a 2 : gases com o X 2 · 10 en b r o mo b e n c e n o a

disti nta s temperat u ras , y pa rám e tro s a , b Y e o btenidos al ajustar

e st o s va lore s c o n l a ecuación 1.

Gases Tempera t ura / K Parámetros

263,15 273 , 15 283 , 15 293 , 15 303 ,15 a b e

H2 1 , 56 1,72 1, 87 2 ,05 2 ,24 - 17 , 5806 - 226, 9756 1, 7363

D2
1, 68 1, 84 1, 99 2 , 14 2,30 -4 ,2375 -7 12, 8634 - 0, 3131

N2
2 ,70 2 ,84 2 ,99 3,1 3 3,26 - 6 ,764 5 - 379 ,8 671 - 0, 0020

° 2
5,83 5, 91 6, 01 6, 09 6, 18 - 9, 5241 - 9 ,5 358 0,3792

CH4
18 , 7 18 ,0 17 ,4 16, 8 16 , 2 - 5, 2601 193, 0744 - 0, 3244

C
2H4

174 147 126,2 109,4 96 , 5 -1 7 , 9492 1581 ,0939 1, 41 58

C
2H6

21 3 178 152 131, 2 114,6 - 14, 2913 1476, 331 2 0, 8665

CF4
2 , 66 2 , 78 2 ,90 300 3,11 -7 ,27 18 - 300, 7902 - 0 , 0331

SF
6

16, 7 15 , 8 15, 0 14 ,3 2 13 ,75 - 0, 0010 59 ,8394 -1,1 88 1

CO2
145 120, 3 101, 2 85,6 73 , 3 - 3,1 678 1093, 8344 - 0, 9371

Pa r a e l c álcu lo d e las ma g n i t u d es · te r mo d i n á mi c a s 6Go , 6Ro~ 65 0 n os refer~

mos a u n proces o d e d i so luc ión q u e podemos e scr i b ir e n l a fo rma gene ra 16:

M ( g a s , 1 01 kP a ---+ M (so luc ión , hipo téti ca x
2

=l)

Si s u p o n emo s c ompo r t am iento idea l p ara e l ga s y l a v a lidez d e l as l ey e s de la s

d i soluciones diluida s, obtenemos l a s sigui e ntes r el a ci o n e s pa ra l a energ í a de

Gibb s, entalpía y e n tr op í a p a ra e l p ro c e so d e diso luc ión .

- o
( s a t ) ( 2 )I1G = - RT l n x

2

- o
( O1n ( s a t) / d ln T) (3 )I1H = RT x

2

úio = R { ( d l n x
2

(sa t) / d ln T ) + l n x
2

(sa t) } ( 4 )

La entropía de disoluci ó n d e Hildebra nd r e p re s enta e l camb io d e entr o pí a

pa r a el proceso:

M (gas, 101 kP a) -+- M (s oluci ón, x 2 ' P 2 = 10 1 kPa) ,

e l estado de referencia e s aquí una disolución d e f rac c ió n mola r d i fe r e n te p~

ra cada gas y cada temperatur a

( 5)

En la tabla 3 se c onsignan . l o s v a lo re s d e l a s mag n i t udes termod i n á mi c a s

obt enida s mediante la s ecuaci o nes 2, 3 , 4 Y 5 a p a r t ir de l a s medida s d e l o s

v alore s ajustad o s pa ra l a s so l ubi l idac1e s , y d e l o s par ámetr o s a,b y c 'de la eco (1) .
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(7 )

(6 )

BROMOBENCENOCLOROBENCENO

- i ) 1 o
6G 2 = RT in ( f

2
/ f

2
( 1 0 1 kPa)}

H2 20 ,60 5,50 - 0 , 051 0 ,018 20 ,94 6 , 19 - 0 , 049 0 ,021

D
2 20,50 5,17 - 0 , 051 0,017 20,85 5 ,15 -0 ,053 0 ,017

N2 19,25 2,43 - 0 , 056 0,008 19 ,95 3,15 - 0, 056 0,011

O
2 17 ,74 0 ,24 - 0, 059 0 ,001 18 ,33 1, 02 - O,058 0 ,003

CH
4 15 ,46 - 3 , 25 - 0, 06 3 -0 ,011 15 , 88 - 2, 41 - 0 , 06 1 - 0 , 008

C
2H4 11, 0 1 - 9 , 95 - 0, 070 -0,033 11 , 35 -9 ,64 - 0, 070 - 0, 0 32

C
2H6 10,51 -10 , 37 - 0 , 070 - 0 , 0 35 10 ,91 - 10 , 13 -0,070 - 0, 0 33

CF4 18 ,98 1,19 - 0 ,060 0,004 20,06 2 ,58 - 0 ,059 0,009

SF
6 15 ,05 4,07 - 0, 064 - 0 , 0 14 16, 29 - 3, 44 - 0 , 066 - 0 , 01 2

CO
2 11,46 - 11 , 20 -0 ,076 0 ,038 11,99 -11.42 - 0, 078 - 0, 0 38

Gases

siendo V2 el vo lumen mo lar de l so l u t o en e l estado hipotético , é l y Ó
2

son los

p a r á me t r o s de s ol u b i l ida d de l diso lvente y del g a s y $ 1 es la fracción mo lar

en vo l umen de l diso lve n t e .

Como e l gas está en equilibrio en tre l a fase gaseosa y la diso lución:

Tab l a 3: Energ ia de Gibbs, e nta lp ía , e ntrop ía y en t ro p ía de Hil d e b r a n d de

diso l uci6n de l o s gases en c loroben ceno y bromobenceno a 298 ,15
. - 1

K Y 101 ,32 kPa "d e presi6n parcial del gas , en kJ mo l .

186

i i ) Diso luci6n de l l íquido hipotético en e l diso lve n te h a s ta a lcanzar l a sa tu ­

ración . La variación de l a energía de Gibbs será ahora :

f~ , es la fugacidad del gas c~mo líquido hipotét ico y f~ l a fu g a c i d ad de ese

mismo gas a 10 1 .32 k P a .

Prausnitz y Shair 3 considera ron que el proceso de disolución de un gas en

un l iquido se puede desg losa r en dos etapa s:

i ) Co n d e n sa c i 6 n iso térmica de l g a s a l a p resión pa rc ia l de 1 0 1 . "3 2 kPa hasta

u n e s t ado líqu ido h i po tétic o "e n e l q~e s u v ol ume n mo lar es igual a l vol umen mo ­

l a r parc ial del gas en l a disoluci6n . La va riaci6n de la ene rg ía de Gibbs para

este p r o c e s o es :

DISCUS I ON



Los 9a rám etros de so l ub i lidad de los gases son l o s calcu lados por Prausnitz

(9)

( 8)

( 10 )

omo l iqu ido h ipoté -

va oori zac i6n y V su vo lume n mo lar . Lo s v al or e s ob teni-
:. , ! m 3-1

cm ) y V = 102 , 2 5 c m mo l pa ra e l cl o r o b e nc e n o y
m 3 - 1

V
m

= 105 ,5 1 cm mo l p ara el bromobenceno .

{(ll H - RT) / V } !
v ap. ro

x =2 .- ln

0 1 =

Ga se s O2 / ca1 cm
-3 1 - 3 -1 - 3 -1f 2/ a tm v

2
/cm mol V2/cm mol

C
6H5C1

C
6H5Br

H2
5.1 6 .439 54. 3 ·· 56 . 8

N
2

2.59 5 .3 71 32 .4* 3 2 . 4 *

°2
4.00 5 .609 3 3 .0* 33.0*

CH
4

5.68 5 .100 5 2 . 0 * 5 2.0'

C
2H 4

6.60 3.807 6 3 .2 64.8

C
2H6

6.6 0 3 .40 1 6 8.2 6 9.8

CF
4

4 . 60 4 . 489 66 . 2 8 0 .8

SF 6
4.8 5 2. 8 90 84 .9 97 ; 0

CO
2

6.0 3.8 07 5 3.9 5 6 .3

3 , 7
y l a s fu g a c i d a d e s de los gases como lí q u i d o s h ipoté ticos se h an calcu lado

a partir de l a s gráficas de f ugacidad r e du c i d a f r e n t e a temperatura r e d u c i d a 3 ,7

E l parám e t ro de so lubi lidad d el lí qu i d o 6
1

, se puede co nocer a t r a v é s d e

la e x pr e sión de H il d eb ran ~7, 8
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tico , parámet ro d e solub ilidad y vo lumen mo lar parcial. To d o s estos parámetro s

debe n esta r ref e ri d o s a u na temperat u ra , n o s o t r o s hemos conside rado 298.15 K.

excepto en l os ga se s fluorados p ara lo s q ue h e mos tomado un o s va l o re s d edu c i d 6­

de me didas e~periment a l e s d e so l ubi l i da de s
8

, 9 . L O~ parámetros d e so l ubi lidad de

los gases y la s f uga cidades de l o s ga s e s c orno liq u i d o s hip ot é tic o s s e c o n sign an

en la tab la 4

Esta es la ecuación que expresa la so lubi l idad de u n gas en un liquido según

l a t e oría de l a d iso lución r e g ul a r . Es ta solubilidad aparece siempre c o mo ca ­

racteríst ica del diso lvente a t ravés de su parámetro de so lubi lidad y fracci ón

mola r en vo lumen, y de l sa luto a t ravés de s u f u g a c i d a d

y sustituy e ndo la s e n e r g í a s de Gibbs por su s expresi o nes se obtie ne que:

6 Hv a p es s u e n ta l p ía de

dos son: 0 1 = 9 ,56 (ca l

O = 9 ,77 (cal c m- 3 ) ! y
1

Ta b l a 4 : Pa rámet ros de solubi lidad de l o s g ases , f u g a c i d a d de éstos c o mo l íq u~

dos hipotético s y vo lumen mo l ar parc i al de l o s gases disue l tos e n cl e

r o b en c en o y bromoben ce no , c alculado s según l a e c uación ( 11) o t o ma d a s.
de l a bibl i o gr a fí a



(11)

o bt i en e "ase

9

(ap /aT)
v

de c o mpresib ilid a d i s ot é r -

K- I pa ra e l

7
. - In xi

- 4

~

c: O

'"<,
N

X
. c:

. '" .- 2

sob re todo s i se tien e en c ue n t a las apr oxima c i on e s

- 4

~

c: O

'"....
N

X
c:

teó ricas n o son g ra n des ,
i n troducidas a l efectua r l o s c á lcul o s d el vo lumen de l g a s como líqui d o hipo t é ­

tico y l a fugacidad de l g as , t amb ién como líqu i d o h ip ot é ti~ o . La ma y or d iscr e ­

pancia se obse rva para e l h e x a fluorur o de az u f re e n bromobe n ceno (4 3 %) .

El c omp ortami ento de los gases es análogo e n a mbos disolventes, s ie n d o la s

so l ub i l idades e n b ro moc i clohexano liger ame nte inferiores que en el disolvent e

clorado . Pa r a e l hexa~luor u ro d e az ufre des taca el b a j o v a l or experime ntal que

partir del coefi~iente de dilata c ión i s o b á r i c o y del
5 - 1mico y s u va lor es 12,89 .a t m K p a r a clor o b e n c en o y 13, 3 5 a tm
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La s dif e rencias e x i stentes entr e 'l a s so rub i l i dad~ s e x pe r i me n t a les Y l a s

Fi g ur a 1: Rep rese n t ac i ó n g ráfica d e al n x 2 / al n T frente a

-ln x
2

pa ra cl or ob en cen o ° Y br o mob enceno O

b romobenceno . Lo s v olúm en es mo la r e s parc i~les ' obt eni d os para ' l os ga s e s e n l o s
)

r e s p ec t i v o s disolve n tes se da n en la t ab la 4 . En la t a bl a 5 s e c onsignan la s s~

l ubili d a d e s de los gases en c lo ro b en ceno y bromobence n o, a 298 ,1 5 K', o b t e n i das

median te l a ec uaci6n (1 ) y l os p a rám et ros a , b y c d e la s tab las 1 ( cl orob en c e ­

n o ) y 2 (b romoben ce no) , y l a s so l u b i l idades ca lc ula d as al aplica.r la teorí~ de

la di so!uc i6n regu lar .

tse» la pendiente de la recta que resul ta del ajuste l ineal po r el método d e mínimos cua ­

drados de ( ínn x /. / a l n T ) f rente a - I n x 2 , y que se hace sepa radamente para l o s

gases f l u o r a d o s . Se excluye el CO
2;

ya que se aparta b a s t a nte de esta correla ­

ci 6n En la figura 1 se representan estas re laci ones . Lo s v alo res de !::J obteni­

dos son: 1 , 2 3 para los ga ses f luo rados y 1 , 4 9 para l o s n o f luo r ado s , e n c lo ro ­

benceno y 1 ,52 Y 1,55 en e l c lorobenceno. El va lor de

El volumen mo l a r parcial de los gases , excep to para N2 , 02 Y CH4 que se

han t o ma d o de la literatura 3 ) s e eva luan medi~nte l a ecuac ión :
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br o mo b enc en oc 1o robenceno

4
x

2
. 10 ( exp . )

H
2

2 . 46 2 . 5 8 2 .14 1. 9 7

O
2

2 .56 2.22

N
2

4 . 24 3 . 26 3 . 1 9 2 .77

°2 7.7 9 6 .55 6. 14 5.74

CH
4

19.6 16 . 3 16 .5 14. 0

C
2H 4 118 8 7. 2 103 74 .0

C
2H 6

1 4 4 1 22 12 2 1 02

CF
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4. 72 6 .43 3 .06 4. 8 2
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6

23 .1 23 .1 14. 0 2 0.5
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98. 1 7 0.1 7 9.1 57 . 6
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Otro tipo de tratamiento, que no intenta justificar teórica men te las 50 ­

lubilidades de los gases sino que tiene como objetivo la predicción de éstas y

de las entalpías de disolución , e s un mé todo propuesto por d e Ligny6 que se

Likewise, a me thod for t he co r relat io n a rl d p r ed i c ti on of 50­

lubili t i e s a nd e nt ro p ies cE so J utio n of gases in l iqu ids b y me ao s

o f a facto r a n a lys is ha s b e en cons i dere d; agrf~ement i s s a tis f a c-

to ry, except fo c' t he flu o rin a t ed gases a rld t he ca c'bon di o xide . .,

S o ] ubil it y measur em e nt s o f r-a r-e ga s e s i n e h ] o r-o b e n z e n e and

b r-omo b e.n z e n e b etwe e n 263 . 15 and 303 . 15 K a n d 101 . 3 2 kPa p ar-t í a l

pressure o E g a s , are e va l uate d . Using th e sc a led par'ti cJ .e th e ory ,

Lennard-J one s 6, 12 p a i r potential p a ram e t e r s f o r- c h l o r- ób e n z e n e

a n d bromob en zen e were det ermined . Fo r t his puc'p ose, we h a ve a] 5 0

u s ed th e so l ubi li t ies oE ot he r' 10 n on pol a r gases who s e measure ­

ment s a p pea r al so i rl t his Revi s t a.

M.C. LÓPEZ, M.A. GALLARDO , J.S. URIETA y C. GUT IÉRREZ LOSA
1

SOLUBILIDADES DE LOS GASES NOBLES EN CL OR OBENCENOy BROMOBENCENO
ENTRE 263,15 KY303 ,15 KYALAYRESION PARC IAL DEL GAS DE
101.32 KPA .

Reiss y co l . 1 ,2 desa r ro l la ron un tr a t am iento estad ístico de un mode l o de

esfe ras rígid a s, me di a n t e e l c ual calc u l aron e l trabajo necesario para intro ­

d uc ir u n a pa r t íc u la esfé r ica e n un flu i d o . qu e se co nside rase const ituido p o r

partíc u las rí gi d a s y esféricas . Es te cá l c u lo consti t uye uno de l o s principa ­

les f undamen tos de la teoría de l a cavi dad ( S c a l e d Parti cle Th e o r y, 8PT ) q ue

ha sido ap licada a l tratamie nto de solubi l idades de gases e n l í quid o s por

Pierotti
3

,4 ,5 , y q ue permite deducir, a partir de l a s medidas exper ime n ta les

de solubilidades los parámetros de l a f unción de potencial in te rmoleculá r de

Lenna rd -Jones 6 ,12 entre l o s par~s de las moléculas de disolven te. Es ta teo ­

ría es actua lmente la que puede, en forma más genera l , interpretar y justifi -

El estudio termodinámico de las d iso luciones es una de las l i n e a s de in ­

v e s t i g a c i ó n mas importantes e n Quím ica F í si c a. Dentro de este área , el estudio

de las disoluciones de gases en líq u i d o s r e pr e s e n t a un amplio campo de tr a b a j o,

ya que las disoluciones es tán í n tima me n t e rela cionadas con la est ructu ra de

l o s .l í q u i d o s y c on l a s in t e r a c cion e s entre las part ícu las que consti tuye n la

disolución.



EXPERI MENTAL

( 5)

(4 )

(3 )

( 2 )

( 1 )

R{( dl n x
2

(sat) /dl n T ) + In x
2

(sat )}

RT (a l n x
2

(sat ) ;a ln T)

- RT In x
2

(sat)

a + b/T + C In T
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Ent r o pi a:

En ta lpia:

En ergia de Gibbs : ÓG
o

Entr o p i a d e Hil d e brand: Ó S
H

En la t a b l a 1 se consig nan l as solub ilidades de l os ga s e s a l a s t empera ­

t u r a s de experimenta ci6n : 263 ,15 ,273 , 15 ,283,15,29 3,15 Y 303 ,1 5 K a la presi6n .

parcia l de 101 ,32 kPa , expresadas como f racción molar , y l os par á me tro s a ,b

y e que se obtienen al ajusta r la s so lubi lidades ~ la e c uación :

ma que l a imprecisión con que se obt ienen estas medidas es , g e ner a l me nte, me nor

de l 1%, aunque para He y Ne , en al gún c a s o, podria se r algo inferio r.

La s medidas de solubilidad s e han rea lizado por un método f I sic o de sa ­

turación, siguiendo una técnica puesta a punto en este De p ar t a men t 0 8. Se esti-

Lo s gases son productos d e a lta pureza de l a ·f i r ma S.E .a .( a ex c e pción

de l neon que fue J . T . Baker), He (99.995%) , Ne (99 .9%) , Ar (99.9990%) , Kr

(99.95%) y Xe (99.995%).

Lo s ll qu i d o s u t il i z a d o s son : clorob en c en o, Me r c k y bromoben c en o Flu k a,

s us purez a s son supe rio res en ambo s c as o s a 99 ,5% y han sid o c ontra s t ad a s p o r

croma t ografi a G_ L
7

y po r me di da s de l i n dic e d e refrac ci6 n
7

.

basa en u n t ratamiento por aná lis is facto rial d e vario s da to s d e so lubilidades

para extraer de ellos unos pa rámet ros q ue ca ractericen a cada g a s y a cada di ­

solvente independienteme nte u n o d e l otro .

En la tabla 2, indicamos l a s magni tude~ te rmod i námic as para e l pro c es o de di

solu c ión , c a l c u l a d a s a 298. 15 K s egún l a s expres iones
9

Hemos medido las solubil idad es de los gases n o b l e s en c l or ob enc e n o y bro ­

mobenceno a varias tempe raturas , y hemos aplicado la teo r ia de l a cavidad y

el método del análisis fa ctoria l de de Lig ny a estas medidas y a l a s efectua ­

das con 10 gases no po lares (H 2 , D2, N
2,

°
2

, CH
4,

C2 H4, C
2H6

, CF
4,

SF
6

, y CO
2)

.e n estos disolventes y q ue han sido publicados e n es t a mism a Revista , en un

t r a b a j o anterior?Asi podemos contrastar la bondad d e l a t e orl a de l a cavid~d

y l a ut i lidad de l método de l anál i s is f a ct o r i a l .



Tabla 1: Solubilidades d e los ga s e s expresadas c o mo X2· 104, en c l o r obenceno y b romobenceno
a distintas temperaturas , Y parámetros que resultan de a just ar esta s s olubilida d e s
como funci6n d e la temperatura según la ecuac i 6n (1) .

oTe mp e r a t u r a / K Pará me t r o s

Gases 263 .15 273 .15 283 .15 29 3 ,1'5 303 , 15 a b e

Disolvente: C L O R O B E N C E N O

He 0 ,446 0,514 0 . 59 4 0 .679 0,. 76 7 -12 .41 99 - 8 10 . 6 574 0 .9834

Ne 0 , 669 0 , 752 0 ,840 0,947 1,043 -17, 0 369 -432, 67 13 1 , 6 26 9

Ar 8 ,52 8 ,5 3 8, 55 8,57 8 ,57 -7 ,05 21 -11 ,87 35 - 0 , 0052

Kr 33 , 1 31, 2 29,5 28 ,0 26,6 24 , 87 84 -892,4782 -4, 876 9

Xe 199 171 148 131 115.4 - 9 ,5541 1143, 16 17 0 , 231 5

Di s olvent e : B R O M O B E N C E N O

He 0 ,353 0,416 0 , 488 0 , 569 0 ,660 -21,1 678 -584 , 8 33 0 2 , 357 1

Ne 0 ,494 0 , 563 0 ,6 57 0 ,753 0 , 8 53 - 21 , 4674 - 436 , 29 18 2, 3691

Ar 6 ,59 6 ,64 6, 7 3 6 ,80 6,87 - 9,400 2 15 ,7659 0 ,36 14

Kr 27 , 5 25,9 24 , 4 23 ,2 22, 3 - 16 ,8258 818 ,286 5 1 , 4032

Xe 175 151 131 116 ,2 10 3 ,7 -13,4995 1273,41 91 0,8275

Tabla 2 : Energía de Gibbs, entalpía, entropía y entropía de Hildebrand para la disolución

de l os gases n ob l e s en clorobenceno y bromobenceno a 298 .15 K Y 101.32 kPa de pre-
s ión parcial del gas, en kJ mol- l .

CLOROBENC ENO BROMOBENCENO

Ga s e s - o -o -o II <;0 - o - o
ll G II H li s llSH ll H li S II SH

k J
- 1 - 1

mo l K

He 23 ,64 9 ,18 - 0, 0 4 9 0 ,031 2 4 ,0 4 1 0 , 7 1 - 0 , 0 4 5 0 ,036

Ne 22 ,85 7,63 - 0 , 0 51 0,025 2 3 ,3 8 9, 50 - 0 , 0 4 7 0 , 032

Ar 17 ,51 0, 11 - 0 , 0 5 8 0, 000 18, 0 7 0 , 76 - 0 , 0 5 8 0, 0 0 3

Kr 1 4, 6 3 -4,67 - 0 , 0 6 5 -0 , 016 15 , 09 - 3, 3 3 - 0 , 0 6 2 - 0, 011

Xe 10,91 - 8 ,93 - 0 , 0 6 6 - 0 , 0 3 0 11,1 9 -8, 54 - 0, 066 - 0, 0 28
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(7 )

(6)

El mode lo de la cavidad, propue s t o

po r Pi er o tt i y de s arrollado por Vilhelm

y Bat t in o
10,11

c on sid era qu e el p r o­

c e s o de di s oluc i ón de un ga s en un líqu i do

se p u e d e desg losar en dos etapas :

La p rimera , es l a creac ión de l a

cavidad en el disolvente c o n e l tamaño

adecuado para alo ja r l a molécula de l gas

OI SCU S IO N

des que, media nt e in te rpo l ación, r e ­

s ultan a dicha temperatura para los

gases noble s y , además , l a s de los gases:

H2, 02' N2 , 02 ' CH
4

, C
2

H4, C2H6 , CF 4 ,

S F
6

y CO
2

, cuyas ,me d i d a s exper imentales
7

apo rtamos en u n t r abaj o anterior .

k
o

G
e

Tabla 3 : Solub il i da de s de los ga s e s
no polares en clorobenceno
y bromobenceno a 298.15 K.

clorobenceno bromobenceno

4 4
Gases x

2
. 10 x 2·10

He 0 ,722 0 ,613

Ne 0,989 0 ,802

Ar 8,57 6,83

Kr 27 ,3 22 ,7

Xe 123 1 1 0

H2 2 ,46 2,1 4

° 2 2 ,56 2,2 2

N
2 4 ,24 3 , 19

°2 7 ,79 6 ,14

CH
4 19 ,6 16 ,5

C
2

H
4 1 18 10 3

C
2H6 144 122

CF
4

4 ,72 3 ,06

SF
6 23 ,1 14, O

C.D 2" 98,1 79 , 1

en l a qu e a
12

es el radio de l a esfera que excluye los centros de las mo léculas de d iso l -

La ev a luac ió n de G
c

ha sido ll e v a d a a cabo por Re iss y c ol.!, 2, obten iendo

una ec u a c i ón asintó t i ca de l a fo rma:

Como, no rm a lmente , l o s cá lculos

t e ór i c o s s e refie re n a l a t e mp e r a t u­

ra de 298 . 15 K, e n l a tab la 3 consig­

namos los valores de l a s s ol u b il i d a-

La segunda consiste en l a introduc ­

ción en el interior de la cavidad

d ond e Ka e s l a constante de l a l e y de He nr y , G
c

e s la e n erg í a d e Gi bbs molar par­

cia l nec e s ar i ~ pa ra la creación d e l a ca v idad , G
i

es la energí a d e Gi bb s mo lar

parc i al co r respondie nte a l a i n te r acc ión d e l a _mo l é c u l a de gas en la cav idad,

R e s la c on stan t e d e l o s g ases , T la t emp eratu r a abso l u t a y v~ el v olumen mo l a r

de l liqu i do.

de la molécula del gas que interacciona con e l disolvente . Cu an d o el gas se ha ­

lla en equilibrio con e l líquido , s e tie ne que c u mp l i r
S

que e l po te ncial qu !mi ­

ca -d e l gas e n cada una de las fas e s sea el mismo .

Conside rando la situación de e q u il i b r i o y que se cump le la L e y de Hen ry,

-y expre s ando l a s magnitudes pa ra u n mol de sustancia se o btiene q u e l a ene rgía

de Gibbs pa ra el proceso de disoluc ión es :



(10)

( 9)

( 8 )

~J

. ( 1 1 )

(12 )

y C
i n d

- 6
r

p

Pierotti supone que la energía de Gibbs molar parcial

-6 6 -12¿ (rp - °1 2 r p ) - C i n d L
p

\:0 i'

_ \ y r i a
l 2 \G = RT 6 ---- 12 ---- 1

c 1 -y L -. a 1 i

- In (l-Y)}

3
Y = 1Ta 1 / p

La exp resión

Para evaluar

pueden calcularse mediante las expresiones dadas por pierotti 3

Para la constante de la energía de dispersión r e s u l t a :
o o, }6 06

Cd i s = 4 (El· E 2 ) { ( °1 + 02) / 2 = 4 E I 2 °
1 2

donde ~I es e l momento dipola r de l l i q u i d o y Q2 la pola rizabi li dad d e l gas.

_ 3 ,4
de G

i
es :

donde E~ Y E~ son los parámetros de energía y 0 1 y . 0 2 los de distancia, para

el liquido (1) y para el gas (2).

La constante de inducción se obt iene mediante la expresión:

(13)

La energía de interacción de un gas no polar con un l í q u i d o po lar , puede expre­

sarse mediante:

Como l o s gases nobles son los únicos que cumplen la doble condición de

ser esféricos y monoat6micos, a l correlacionar el logaritmo de la constante

de la ley de Henry con la po larizabilidad del gas y ext rapolar a po larizabili­

dad cero (esfera rígida) se obtiene un valor límite ,KH,o ,qUe es el valor de la

(14 )
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para el té rm ino de interacción es aproximadame nte i g u al a l a energía de inter­

acción mola r parcia l

al' es el diámetro de la esfera rígida para el disolvente y O es el n~mero d e

densidad pa ra las moléculas : P = NA /v ~ . Teniendo en cuenta las expresiones para

las k . 3,4 , se obtiene la siguiente ecuación
~

vente en torno a l a del so luto y las constantes k
i

dependen de la densidad, t e~

peratura, presión y d í.ame t r c de la esfera rígida. Esta expresión se puede desa­

rrollar en función .l l a ma d o facto~ de compacidad, 1 1 0

,r
p

son las distancias de los centros de las moléculas de gas y líquido, C
d i s

y

Ci n d son las constantes de las energías de dispersión y de inducción y 0 1 2 es

la distancia entre una molécula de so luto y una de d i s o l v e n t e a la cual la s
energías de dispersión y de ' repulsión son iguales en magnitud. C

dis



( 15)

RT ln KH - G
c

- RT ln (RT/V~)

2 3
- 1, 3 3 3 TI P NA~ I "' 2 / 0 1 2

-3 .555TIPR O I32(E~ /k)'( E~ /k)'

( 1 7 )

d e mod o que c o n o c i e n d o KH,O' el

v olum en mo lar del líquido, toma~

d o a 2 = O2 = 0 .255 n m y s u s t i t u ­

y en d o G
c

p or su c orrespondi en t e

exp re s ión ( 9), se obti en e el d i !

me t ro de esfera rígida, al' que

asimilamos al parámetro d e d i s­

tan c i a d el potencial de Lennar d­

- J o n e s, a l ' para dos mo lé c u la s

i gu al e s de disolvente . Lo s v al o ­

r es o btenidos son : 0 ,5 6 1 n m p a r a

e l c l o rob e n ce no y 0 , 5 72 n m pa ra

e l b rom o ben c e no , que c oncuerdan

bie n c on l os resulta d o s hall a d o s

e n la b i b l io g r a f f a l 3

Por otra parte, t ransfo r­

ma n do la ecuación ( 6 ), o bten em o s

l a expr esión:

RT ln KH , O = Gc + RT ln RT /V~

( 16 )

Para dichas esf eras rígid a s

"l a e cu a ci 6 n ( 6) se trans f orma en

43
4

8

6

10

Figura 1: Valores e xper imenta les de In KH frente a
a2 para l o s ga s es nobles en clorobenceno
O, bromobencen o • y benceno --- a 298. 15
K Y 101.32 kPa .
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El p rim e r té rm i n o se obtien e a partir d e la s medida s experimental e s de

Eo lub i li d a de s , d e Gc' ~ i i o d' Gi dis . Gc s e p ue d e calcular una vez e s t imad o

a l ' e l mome n t o d ipol ar es t á t o mad o de la b ib li o gra f fa l 2 y s e admit e n como v á -

nes ( l a lí n e a p unteada c o r r e s p on de al b en cen o )

lim l n K
H

"'2 ~ O
a

2
~ 0, 2 5 5

Lo s va lores de KH,O que he mo s h a l l ado s o n: 9 ,98 pa r a el c l o r o b e n c e n o y

1 0 , 1 5 par a e l b r o mo b ence n o. En la figura 1 se p uede n ve r estas repr e s e nt a c i o-

c on stant~ de l a Le y de He n ry p ara un a es fera r í g ida en un determ~ n a a o a ~ S O L v e n

te. Por o t r a parte, p ar a d eterminar el diá metr o de e s f e r a rígida de un g a s c uy a

polar izab il ida d s e a c ero, se d e be repr e sentar ~ l d iáme ~ r o a 2 fren t e a l a p o l a r~

z a bil idad "'2 y ex t rapo lar a "' 2 = O . El r esul t a d o a sf o btenido es 0 , 225 n tn , De lo

anter ior resul t a que :



~ idas pa ra les parámet ros mixtos, l a s r e g l a s d e c omb in aci ón se n c i l las :
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( 1 B)

( 19) ,

G G . i nd ~ i disp
G G.

lil d -. d is pc ~ c ~

CLOROBENCENO BROMOBENCENO

11 , 61 - 0 , 0 1 - 2, 3 3 1 2 , 1 3 - 0, 0 1 - 2 , 4 0

12 ,55 - 0, 0 2 - 6 , 0 2 13,11 - 0 , 0 2 - 6 , 1 7

16, 5 B - 0 , 0 6 - 1 3 , 9 4 17 ,34 - 0 , 0 6 - 14 , 2 6

1B , 4 5 -0 ,09 - 17 , 6 6 19 ,30 - O, OB - IB ,0 4

20 ,66 -0 , 13 - 2 1, 9 4 2 1 ,63 - o ,1 2 - 2 2,4 0

13 ,04 - 0 , 0 4 - 5 , 6 0 13 ,62 -0,03 - 5 ,74

13 ,04 - 0, 0 4 - 5, 7 B . 13 , 6 2 - 0 , 0 3 - 5, 9 2

1 B , 67 - 0, 0 6 - 13 ,37 19 ,54 -0 ,06 -1 3, 6 6

16 , 9 3 - 0, 0 6 -1 3 , 7 B 1 7 , 71 - 0, 0 6 - 14, 0 9

1B , 6 7 - 0, 1 0 -1 7,I B 1 9, 5 4 - 0, 0 9 - 17, 5 6

2 1,54 - 0,1 0 - 2 3, 3 B 22 ,55 - 0 , 0 9 - 17 , 56

24 ,11 -0 , 12 - 2 6 , 0 3 25,24 - 0, 1 1 - 2 6, 5 3

26 ,56 - O, OB - 2 1 ,31 27 ,B1 - 0 , 0 7 - 21 , 7 0

34 ,75 - 0, 0 9 - 3 3, 2 3 36 ,42 -0,09 - 3 3 , 6 5

20 ,5 1 - O,O B - 20 , B4 2 1 , 4 6 -O , OB -2 ¡", lO

o 1 2

o
e 12

Xe

Ar

Ne

Kr

Ga s e s

He

Tab la 4: Cont r ibuciones a l a s e nerg!as de Gibb s de disolución : t é rmino s de cre ac i ón de
l a cavidad , de inducción y de d ispersión en kJ mol - 1 para c l o r obe nc e no y bro­
mobenceno .

H
2

O
2

N2

°2

CH
4

C
2H4

C
2H6

CF
4

SF
6

CO
2

En la t a b l a 4 , se dan l o s va lores d e l a s e nerg!as de Gibbs co r respo ndien ­

t e s : a l a fo rmac ión de l a cavidad Gc ' de dispersió n G
i

d i s y de in d u c c i ón G
i

in c

pa ra el c lo robenceno y e l br o mob enc en o .

De l segundo miembro de l a e c u a c i ó n se desconoce ~nicamente E~ /k, por l o

tan to , represen ta ndo gráf i came nt e el primer miembro de l a ec u ac i ó n ( 17) fren -

o , 3
t e a ( E2 /k) 0 12 par~ t o d o s los gases o bt en d r e mo s un a r e c t a c u y a pe ndiente e s:

- 3, 5 5 5 n pR ( c ~ /k ) ~. Del v alo r d educido pa ra es ta pen di e nt e po d em o s o bten e r a s í e l

va lo r del p ar~ me t ro de · e n e r g í a C~/k



r e s p ec t i v a men t e )

Xe •

Kr
CH

SF
6

'o 30
'o 30
E

E ?:~
Ci!6:::: ...~

...~ ~
~ N

N CH lS
lS 2 4 ~
~ t 20t 20
s ~

~
~ 0-_
0_ >

~
....
l-

~a: .=e
;: 1C ~ 1
a; ",:U",:U

D ,r,r e
e ¡::
¡:: e¡e¡

15 20 25
1028a?21E2/k)1I2¡ K1I2m3
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3 ~Figura 2 : Representación gráfi c a del primer miembro de l a e cua c i ón (17) frente a 0 12(E2 /k)
. 1028 pa ra l o s gases, en clorobenceno O. y br omob e nc en o • , a 298 .15 K

SF6

Tabla 5 : Valores de las solubil idade s de los ga s es c alculada s mediante l a teoría de la
cav idad , expresadas e n f rac c ión mol ar (X2 ·104) a 298.15 K para clorob en c e no y
b romobenceno.

En l a fig u ra 2 se mues t ra n e s tas r e pr e s e ntaci on e s grá fi cas pa ra c l o r o b e n ­

ce no y bromobe~ ceno a 298.1 5 K . Los val o r e s de l os pa ráme t ro s d e e ne rgia

ob ten idos son: 618 K - l p a r a e l cl orob enc en o y 63 7 K-
1

p a r a b romo b e nce no , va ­

lores que concuerdan bien con l o s h a l l ados e n l a bibliog ra f í a
1 3

(6 10 y 616

Ga s e s CLOROBENCENO BROMOBENCENO Gase s CLOROBENCENO BROMOBENCENO

He 0,996 0 ,85 4 O
2 1 2 , ° 10, 2

Ne 3 ,02 2 ,64 CH
4

23, 8
20 , 1

Ar 14 , 8 12 ,75 C
2

H
4

91 , 4 7 5 ,8

Kr 31 ,4 26 , 7 5 C2H6
95, 5

75 ,9

Xe 73 ,8 61 ,69 CF4
5 , 19

3 ,76

H
2

2 ,11 1 , 8 2 SF
6

22 ,6 14,6

D
2

2 ,27 1 ,96 CO2
4 6, 2 38 ,4

N
2

5 ,04 4 , 11



p es la pr es ió n en mm d e Hg y x l a solub i lidad exp resada como f racción mo lar.

( 23)

(22)

( 21 )

( 20)

2
r

g, l , n
z;
g,l

n
I G,L ii ~

y ­
g , l

(y _ ~ G, L , ) 2
g ,l ~ ~

1:.
g ,l

r
g, l,n

el igiendo el número ~ de térmi no s ad e cua d o .

sea n mInimos .

De L igny6,14 elige u n conj un to de so lubilidades de gases e n l Iqui ­

das de los que desconoce e l 50% de la s c o mb i n a c i o n e s, ha b iendo da tos descono ­

cidos los p a rámetros G y L , ~o pued en c a lcularse po r el método de l a ná lisis

factoria l , ya que para ello es necesario c o n o c e r el c o nj u n t o comp leto de los

datos, po r e l lo idea una variante de es te método , que denomi na t a mb i é n método

del análisi s factorial , y po r medio de un p ro ceso i terativo calcula los pará­

metros G y L que c u mp l a n l a condición :

Ha cien d o un c álcul o de d e s vi a ci on e s, ha r e sultado 6 que p ar a r ep r o du c ir l a s

so l ub i l idades , e l v alor i d ón e o d e n es 2 , p o r l o tanto:

El asp ec to más import~n te de este cá lculo es s u capacidad para p redecir

solubil idades y e n trop fas de d iso l ución , c u a n d o conocemos datos de solub i lidades de;

esos gases con c i e rt o s diso lven t es y la de esos diso lve n tes co n o t ros gases .

En l a t ab l a 6 se c on si gn an l a s s olu b il i da d e s, a 298 . 15 K , q ue resu ltan de

ap lica r e st e método . Lo s v a lo res d e G
1

y G
2

se h an tomado d ir e c t a me nt e del tra-
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Ot ro método , menc ionado inicialmen te, p ar a estimar las so lubi lidades

de los gase s en l fquidos es el método de l a ná lisis factorial de de Li g ny.

Expresa l a s so lub i lidades y l a s ent rop fa s de disolución media nte ecuacio nes

de l tipo :

Yg , l repres e n t a l a so l ubi l ida d o en t ro p l a d e di s ol u c i ón y G Y L s on p ar á me tro s

a j us tab le s , G d ep en d e ún ic amen te de la natural ez a de l gas y L d e la d el d i s ol­

vente . Hay qu e el e gir e l núm e r o de té r mi n os n e c e s a r i o s p ar a qu e l o s r e st o s

Una vez c a l c u l a d o s los pa rámet ros de dis tancia y energ fa de l c l or o b e n c e n o

y del bromobenceno , se pueden obtene r l o s valores de l a enjrg fa de Gi b b s de

disolución mediante la ecuación (6 ) . Pa r a ello se reinvier ten l o s c álcul o s pa­

ra G
c

y G
i

, ecuacwnes (9) y ( 14), i ntrodu c iendo en éstas l o s pa r áme t ros d e l o s

diso lventes jun to con los de l o s ga se s . Una v e z obtenidas l a s e ne r g fas de Gibbs

pa ra l a di so lución , podemos ded u ci r ·d e ell a s l o s va lores de l a s s ol u b i l i d a d e s

de l o s gases , va lo res q ue se consignan e n l a tabla 5



b aj o d e de Lign y 6 as ! c o mo l o s d e L 1 Y L 2 · Ambas serie s de parámetros a p a r e c e n

en dic ha t abla.

Tabla 6 : Va l ores de l o s par~metros G1 y G2 para e l c~lculos d e las sol ubi l i dades
6

y s olub i l i da de s expresadas como fracció n molar (X2 ' 104) a 298 . 15 K para
clorobence no y b r omobenceno.

Cl orob encen o Bromoberic en o

L
1=5

, 66 5 L
2

=O,1 9 3 L
I=5,

718 L
2=

O, 372

Gas es G
1

G
2 x

2
' 10 4

x
2

'1 0 4

Be 2 ,769 0 ,26 7 0 , 759 0,601

Ne 2 ; 697 0 ,384 1, 075 0,897

Ar 2 ,362 0 , 009 9,21 6 ,96

Kr 2 , 177 - 0 ,1 67 29,6 21 ,5

Xe 1,944 - 0, 26 4 12 0 86,3

B
2

2, 587 0 , 0 11 2 ,65 1,95

° 2
2 ,616 - 0, 100 2 ,27 1 ,60

N
2

2 , 468 0 ,087 4 ,78 3,67

2
2,376 0,041 8 , 34 .6 ,37

CB
4

2, 238 - 0 ,381 23 , 6 15,7

C
2B 4

1 , 949 - 0. 025 102 79, 7

C
2H 6

1,924 - 0 , 34" 14 1 98 , 6

CF
4

2 ,369 0 ,334 7 ,33 6 ,2 5

SF
6 2, 1 10 0,335

32,6 28 ,7

CO
2 2,044 - 0, 00 5

58 , 1 4 5 , 4

S i tenemo s e n cue nta l os resultados obte n idos a l ap l i c a r la t eoria d e la

cavidad, el mé todo d el a ná l i si s factorial y l a s o b t en idos al aplicar la t e o­

ría de la d isoluc i ó n reg u l ar
7

, pod e mo s d ecir qu e lo s tres s on comparabl e s,

siendo l os gases nobl e s mas ligeros He y Ne l o s qu e ma s se des vían e n la

teoría de la ca v ida d, hecho qu e n o se da c on l o s otro s dos t r a t a mi e n t o s .
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! . INTRODUCCION .-

e n contacto c on t a mi z mo lecu la r.

temas a 298 . 1 5 y 308 .15 K.

>98 mo l es

Facultad d e Cie nc ias .

me a su r e d. Excess mol ar parti a l v o l u ­

a n d o of a l ka no l ( V ~ ) i n t he d i. f f e re n t;

The coeffic ient of temperat u re fo r t he

5 0 0 09 ZARAGOZA (Es pa ña) .

>9 9 . 8 moles por c iento); n -hexanol y n -d e c~

> 9 9 mo l e s po r ciento) . Durante su ú s o se mantuvi eron

sional ly a t 308 . 15 K) , were

me s of ! - bro mob uta n e (V7)

mi x ture s we r e ca lcu lated .

Ci u d a d Uni versita ri a .

De p a r t ame n t o d e Químic a Fís ica .

e xcess p r opert i e s were e x p la i ne d b y ta ki ng i nto a c c oun t t he

Br a l i p hat ic i nte ract i o n .

Excess mo l a r e nt ha l p ies a n d excess mol ar vo l umes of l - b r omo ­

but a n e + et h a nol , + n - h e x an o l , a nd + n- d e c a n o l a t 2 9 8 .15 K ( o c c a-
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HE YVE DE MEZCLAS BINARIAS l -BROMOBUTANO + n-ALCOHOL
m . m

P. PÉREZ . M. GRACIA. C. GUTIÉRREZ LOSA

nol, ambo s Fluka

po r c i e n t o ) ; etanol, F luka

Procedimie n to :

Los res ulta dos experimentales de entalpia d e e x c e so fueron obten id o s

utilizando una · t écnica c alori métrica puesta a p u n t o en e ste Depa rt amento( 2 )

y descrita en otro l ug a r. (3 )

Los resultados e xperi mentales obtenidos , se compara n c o n l os d e l o s

si st e ma s l-cl or o bu ta no + n -alc ohol(!) para estud iar la influenc ia q u e

ti ene el c ambi o en el átomo de hal ógeno e n las p r o pi edad e s d e e xc e s o .

2 . EXPERIMENTAL. -

Li qu ído s :

Los product o s ut il iza do s fueron l - bromobutano . Fluka

Rev. Acad. Ciencias Zaragoza , 43 (1988)

Se p r e s e n t a n en e ste trabajo las me didas calor i métr ica s d e l o s sis ­

t ema s l-bromobuta no + etanol , + n-hexanol, y + n-decanol a 29 8 .1 5 K

( o c a s io n a l me n t e a 308.1 5 K) Y las me d i d a s v olumétr icas d e los mismos si s -



3 . RESU L¡ADOS. -

s» -4 3 -1
!'> h = 2.865 x 1 0 c m .m m

El e r ro r r e l a ti v o que afe c ta a l o s ' r esul t a d o s exp e r imen t al es es, en

genera l , i n f e r i o r al 1%.

( 1 )c ,
J

z
1=0

donde QE es HE o VE y x
2

l a f racci6n mo lar de a l coho l . Esta f unci6n , que

ha sido uti lizada por otros a utores(S ,6) e n e l estudi o d e sist e ma s a l coh6

licos, representa mejor el c omp orta mi e n t o e x p e r i me ntal en la regi6n muy

diluida en alcohol -donde la propiedad de exceso va ria abrup t a me n t e- que

la ya c lásica de Redlich-Kiste r, y , en c o n s e c u e nci a , se n e c e s i t a n menos

términos para o b t e n e r desviaciones estandar comparables .
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Los res u ltados exper i me nt a le s han s i do ap r oxi ma do s a una fun c i 6n p~

l i n 6mi c a de ' e x p o n e n t e fracci on ar i o d e l tip o:

La temperatura del b a ñ o t ermo s t á t i c o es tá con t rol ada por, un termore

guIador Haake-E52 que l a mantiene estab le en ±2 mK. E l con t rol de l a s os­

cilaciones térmicas se l lev a a c a b o con u n termómetro Bec k ma n n.

d o n d e !'>V es la v a r ia ci 6n de v o l ume n qu e corresp ond e a una l o ngi t u d !'>h

de l ca p il ar.

Para la observaci6n d el meni sco de merc u r i o en el tub o c api la r se

uti liza un cate tómetro "Wi ld 'l q u e pe rmite realizar lec turas con un a i m p r~

cis i6n de ± 0 .0 1 mm .

El proceso de mezcla se l l e v a a c a b o ha ciendo os ci la r e l d i la t6metro

un ángulo , aprox imadamente , de 602 en sentidos opuesto s . Un a s pi nzas de

acero inoxidable dispuestas en la pared del baño t e r mo stá t i c o si rven de

soporte al dilat6me tro a través de un j uego de conos de bronce , mecanism o

éste que pe rmite real izar la me zcla sin necesidad de sa c ar e l dilat6metro

del baño y sin modificar su posición ; de es ta ma n e ra s o l o son necesarias

dos lecturas catetométricas , una antes y otra despues de la mezcla compl~

tao

El dilat6me t ro se l lena a vac io con me rcur io f uy a fina l i d a d es man­

tener los l i q u i d o s separados a n t e s de la mez cla . Lo s liqu i d o s p rev iamente

desgasificados se introducen enel dilat6met ro media n t e un a jerin ga hipo­

dérmica provista de u n "es t ir6n" de vid rio . La s cant idades d e ambo s l i qu!

dos se determinan po r pesada con una balanza Mettler-B 5 e 1 0 0 0 qu e perm!

te r e a l i za r pesadas de hasta 1000 g con una impre c i si 6n d e ~ 0. 1 mg . Por

últ imo, e l dila t6metro s e c i e rr a con u n c a p ilar pre viament e cal i b r a d o con

mer c u rio bidesti lado cu y a r el a ci 6 n de eq u iv a lencia e s :

Para la determina ci6n e x per i men t al de vo lúm en e s de e xc eso hemos

segu ido el métod o dila t omé tri co d e a c u e r d o c o n l a t écnica de scr ita por

Duncan e t al. (4)



N - m

,.

TABLA 2

·1

1 /2

FJCl1lA 1 . !.nulpl.. dt ncno _ Ztl.15I : (1-a) 1_C.", lr •

• CC".2c:.1OH ; O. e: , V. c,; D. e,o .

l-Broll'lobutano(l) • hexanol(2) a 298, 1S t:

HE/ J . mo¡ - l

X2 Experimental Calculado é HE

0,0706 614 613 1
0,104 3 750 756 -6
0,1351 857 B48 9
0 ,1983 965 966 - 1
0 ,30 75 1033 1040 _7

0 ,3484 1036 1041 -5
0,4536 1005 99 6 9
0,.96 6 964 959 5
0,6674 715 721 - 6
0,7313 599 598 1
0,8100 no 429 1
O,3213b 1196

O,3S8Z b 1203

b: datos experimentales. 308.' SK
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y 2 se representan los d a to s e xperimental e s y l a s

TABLA !

TABLA 1"

En las figuras

. 1- Bromobuta no ( l) . 'decanol(Z) a 298.'5K

curvas obtenidas de la ecuación (1) con coeficientes de la tabla 10.

d onde N representa el número de datos experimentales y m el núm e r o d e c a e

ficientes utilizados en la ecuación (1).

En las tablas 1-9 se recogen los resultad os e xperimentale s, l o s c a l

cu lad as c on la función anterior, y su dif er e n c ia.

En la tabla 10 se mu e s t r a n los c oeficientes c
j

ob t e ni dos d e un aná - .

lisis p or mini mos cuadrados, j u n t o con la d e svia ción e st a n d a r s ( QE ) defi­

nida p or:

X2 Experimental Calculado O HE

0,0306 388 388 O
0,0926 756 754 2
0,1718 972 975 -3
0,2391 1071 1070 1
0,2636 . 1090 1091 -1
0,3299 1110 1117 -7
0,.'93 1101 1096 5
0,5143 1030 1016 14
0,6468 828 832 _4

0,7219 688 699 -11
0,8269 484 480 4
O,2668b

1120
O,2971 b

1249

b : datos experimentales .308,15X

b: datos exper Ieente j e s a 308 ,1SI::

l-Bromobutano (1) + etanol (2) a 29B,15K

HE/ J . mo¡ - 1

X2
Experimental Calculado O H

E

0,0370 H9 H8 1

0,0956 660 668 -8

0,1129 709 706 3

0.1434 761 758 3

0,154 8 776 773 3

0,2047 822 B22 O

0,2922 870 863 7

0. 3616 861 861 O

0,4 263 830 833 -3

0,4473 810 819 _9

0 ,59 67 650 660 _10

OJ 7209 489 475 14

0,9158 152 153 - 1

O,3066b 1055

O,3963b 1025



o,,o,,o,,o,,

Experimental Ca l c u l ado OVE

0,0705 0,0705 0,0000
0, 1246 0 ,1263 -0,00 17
O, U18 0,1400 0,00 18
0,1578 0 ,1555 0,0023
0 , 16 19 0,1627 -0,000 8
O, i 669 0 ,1681 -O ,0012
0 ,1687 0 , 170 1 -0,0014
0 , 1642 0 , 1646 -0,0004
0 , 15 28 0 , 15 16 0,0012
0 ,0681 0 , 06 78 0,0003
0, 038 5 0 , 038 7 -O ,000 2

o L.__..L_ _ ......L L--__..L__-'!I

o

1 2 Experimental Calculado OVE

0 ,0870 0,1296 Q, 1295 0,0001
0 , 17 3 7 0 , 16 96 0 ,1703 - 0 , 0007
0,2645 0,1890 0 ,1874 0,0016
0 ,3597 0,1878 0,1890 -0,00 12
0 ,5059 0 ,1621 0 , 16 18 0,0003
0,800 2 0,0321 0 , 03 21 0,000 0

l-BrolllobutOano(l) • hexanol(2 ) a 298 ,15 K

,1Q7I.A 2 . yo . .... . d. ucno • 2t1 .1I : (J.:r.) I . C~H ,l.T •

• CC"lc.,DH:O . Cl.U. C, iO . CID' A SOI. 15 1 : (t.:r.) 1::­

C.H,'T •• CC"lc:.,OH:. , Cl "" . C, : . ,C, o.

TABLA ~

D,n

0 ,0405

0,1377

0 ,1 785

' 0 , 23 83

0 , 277 4

0 ,3219

0, 3843

0 , 4 535

0,52 29

0 ,7775

0 , 86 23

0, 10

VE¡cm3 .=01- 1

1-Bromobutano(l) • hexanol(Z) a :SOS. 15t

. TABLA

0 ,00 00

- O,0 00 1

.0,0003

0,0012

-O ,0009

0 ,0000

- 0, 000 2 .

0,0025

- 0 , 00 21

-o ,00 27

- 0, 0008

0, 0 0 18

0,0042

0 , 0008

-o,0 022

-0 ,0 0 20

0 ,0006

0., 207 1

0 , 2409

0, 2518

0,2386

0,2 190

0,0831

0,1196

0 .1789

0.2005

0,2019

0 , 2074

0,2048

0.1886

0,1840

0,1598

0,0945

0 , 0440

Calculado

Calculado

0 , 207 1

0, 2408

0 , 25 15

0,2398

0,2181

0,0831

TABLA 5

0,1194

O,18 U

0.'984

0 ,1992

0 .2066

0,2066

O,19 2B

0,1848

0 ,1576

0 , 0925

0,0446

TABLA 4

TABLA

Experimental

Exper imental

l-Bromobutano(1) .. decanol( 2) a 308.15t

l_Bromobutano (1 ) • etanol (2) a 30S . 1SK

l - BrolllobutanoÚ > • decano} (Z) a 298,15 K

l_Bromob':ltano(t) • etanol( 2) a 29S,15 K

1 2 Experimental Calculado O VE

0 ,0950 0,1211 0 ,1211 0 ,0000

O,1 75( 0,17 11 Q.,1713 • 0,0002

0,3403 0,2 115 0,2114 0,0001

0,450 8 0 ,2090 0,2079 0 ,0011

0, 4828 0,2024 0 ,2034 -0,0010

0,6690 0,15 20 0,1521 -0 ,0001

0,8978 0 ,04 98 0,,0498 0,0000

204

1 2 Experiment al Calcu lado O VE

0,03 72 0,0680 0 , 06 79 0 ,0001

0 ,0965 O.12S0 0,1253 -0,0003

O, '475 0, 1550 0,1553 -0 ,0003

0,2110 0,1787 0.1800 -o , 00 13

0 ,3030 0,2024 0 , 2004 0, 0020

0 ,4465 0 , 210 2 0 . 20 56 0,0046

0.5458 0,1878 0,1917 - 0,0 039

0,6869 0 , 14 6 1 0, 14 88 - O,002 7

0 . 76 92 0, 1 14 8 0,1 134 0,00 14

0, 8998 0,0487 0 ,0 485 0 , 00 02

0 , 1486

0 ,23 21

0 ,3335

0,4576

0 .5398

0,8602

0,0 778

0 ,1 650

0, 2358

0,2437

0 ,3376

0,3 168

0, 4806

0,501 S

0 ,5 9 29

0 ,7809

0 , 9 026



4. DISCUSlüN.-

TABLA 10

Si stema C a Cl C2 C 3 C, s (Q E)

x, 1.C .."gBr • x2 C¡"SO" 26650 .109744 208933 .187827 63949

• x2 1.C 6"130" 18713 ·48 140 54696 ·23186

• x2 1.C , o"¡ 10" 233 17 .79185 138383 .12 1837 42741

x, 1.C 4HgBr • x2 C2"SO" 2,8325 .5,1944 3,9476 - 1 t 1201 0 ,0026

• x 2 C2"SO" (a) 3,663 1 -7, 5067 6,6873 - 2, 20 9 1 0,0011

• x¡ 1-C 6"130" .. ,2098 .. 18,1035 37,416 1 -35,4399 12,1592 0,0017

• x2 1.C6"130" (a) 4,067 S -12.6~27 17 . 7657 -9 ,4127 0 , 001 S

• x2 '-C' O" 2 , 0" 3 J 1171 .. 8,1342 10,2638 . 4 , 8 020 0, 00 29 •

• x 2 1-C, 0"21 0" (a) 2,4392 ..4 ,5756 .. ,6059 -, ,9941 0,0009

Ca): sistemas estudiados a 3D8, 1St .

Las entalpias de exceso de los n-alcoholes en disolvente inerte

tienen su origen en la contribuci6n positiva por rotura de enlac es de hi­

drógeno, mientras que en mezclas con disolvente halogenado es necesario

tener en cuenta dos contribuciones adicionales, una positiva, por contac­

tos alifático-ha16ge no, que aumentará con la longi tud del alcohol, y otra

negativa, debida a la formaci6n de contactos ha16geno-oxhidrilo que será

un valor promedio de contactos con oxhidrilos libres o con oxhidrilos im ­

plicados en enlace de hidr6geno.

Comparando nuestros resu ltados exper imentales con los de los siste­

mas 1-clorobutano + n-a lcohol (1) se observa que la entalpia de exceso es

poco sensible al cambio de ha16geno .

La inf luencia del ha16geno es más s ignificativa en el comportamien­

to volumétrico . Asi, en 1-C
4H 9Br

el volumen de exceso es mayor que en

1-C4 H9Cl y, ade~ás, e l efe cto es más importante con a lcoholes de cadena

larga , tal como se muestra en l a tabla:

En la figura 3 se

representan los volúme­

nes de exceso parciales

molares , a 298. 15 K, de

l o s .s i s t e ma s estudiados .

Se obtienen por difere~

c i a c i 6 n de la ecuaci6n

(1) qu e ajusta los re­

sultados experimentales

y, en este caso, las fun

cienes que los definen

t ienen la forma,

e=10

0,200

0,043

205

e=6

0 ,030

0 ,157

c=2

0 ,186

0,136el

Br

x

TABLA 1 1

E
Vm(x =0.5) de {1-C

4
H 9 X + n-C

c
H

2 c
+

1
0 H } a 298.15 K

10 6 VE / m3 .mol- 1
m



5 . BlBLlOGRAFlA. -

Natu r

+ 2(C 2 -C 4)x 2 +

3
4 C

6
x

2
+ • . • • . }

respectivamente .

Lo s volúmenes de e x­

c e s o parciales molares (V~ )

del l-bromobutano s on po s~

tivos y mayores que los d el

l -clorobutano(l) y es tá n

controlados por la i n t e ra c

ción halógeno-alifático .

El coefic ien t e d e t e m

peratura del v olumen de ex

E/ ) ..
ceso (~Vm oT p' es pos 1t1 VO

y disminuye con la longitud

del alcohol (ver figur a 2).

del di solvente y alcohol ,

donde x 2 e s la fracción mo
E E

lar d e al cohol, VI y V2 re

presentan l o s vo lúmenes d e

exceso pa rqia les molares

Rev . Acad. Ci e n c . Exactas Fis. -Quim .M. Gracia ,
1.

1 /2
(C

O-C 2)
+ (3 /2) (C

1
-C 3)x 2

2 5/2
+ 3 ( C

4
- C

6
) x 2 + (7 /2 )C

Sx 2 +

x
o

0 , 25

Fiqura 3 Volúmenes de exceso parciales mola­

re s 8 298 , 15K: el-x ) 1- C4H9Br • x Cc H2c +l
OH.

o, 0 0 IL==----------=:::::;;;:::::::~;;",=-_J

0,50

0 ,75

1 /2
(l - x

2
){C

O
+ (3 / 2 )C

1
x

2
+ (2C

2-
C

O)x 2
+

2 5 /2
(3C

4-
2C 2 )x 2 + «7 / 2)C

S-(S/2
) C

3)x 2 +

4C 6 x~ + •• ••• • • •• ,}

2 -1/2
x 2{-(1 /2 )C

lx 2 +

3 / 2
(5 / 2 ) (C

3
- CS ) x 2

vi/cm3 .mOI -l

1 ,0 0
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Lo s a ut o r e s expre san s u agracecimiento a l a Comi si~n Asesora de I nv e s tiga c i 6 n Cíent i ­

f i c a y Té c nic a (11adrid) (Proyecto 1788/ 8 2) po r su ayuda econó mica .

l . P. Pé rez, F . Royo, M. Gr a c i a , C . Gu t i é r r e z Losa , J .. Ch e m. Thermodyna mi c s
1 9 85, .!.2, 71 1.

2. C. Gutiérrez Losa ,
Zaragoza 1971 , ~,

3 . J . l. lribarren , P . Pérez, F . Royo~ M. Gracia, C . Gutiérrez Lo sa,
Rev. Acad. Ci e ncia s Zaragoza (pendiente de publicación).

4. W. A. Duncan, J . P. Sheridan, F . L . Swinton , Trans. Faraday Soco 1966,
g , 10 9 0.

5 . E . A . Ot t es te dt , R. W. Missen, Trans . Fa raday Soco 196 2, ~, 879.

6 . A . J . Tr e s z c zan ow icz, G . C . Benson , J . Chem. Thermodynamics 1977, ~,

1 189 .



l . lNTRODUClON. -

2. EXPERl MENTAL . -

ana liza r l a

( HE y VE)
m m

c= 2 , 6, 1 0 .

(1)

Fa c ul tad de Ci e nc i as .

50 0 09 ZARAGOZA ( Es p a ña).

Depa r t a ment o d e Qu í mi ca Fí s ic a .

Ci u da d Uoiv e r's itar í a .

Pr o ce dimien t o :

H~ YV~ DE MEZCLAS BINARIAS l-YODOBUTA NO + n-~LCOHOL

Po PÉREZ , Mo GRACIA, Co GUT IÉRREZ LOS A

Lo s res ultados e x p e r i me n t a l e s s e recogen en l a s t a bl a s 1- 9 j un to ~ l o s

c a lc ulados u t i l izand o l a f unci ó n po l i n6mi ca , (2)

Excess molar e n t h a l p i e s a n d e x c e ss mo l a r v olume s of l - i odo­

but an e + e t hano l , + n- h e xanol , a n d + n -de c anol a t 29 8 . 15 K ( VE
m

a l so a t 30 8. 15 K) , wer e measur ed . Ex c e s s molar pa r ti al v o l umes

of I - i o d o b ut a n e (V~) and of alkan ol (V~) in t h e d i f f e r -err c mi xtu ­

r es wer e ca lc ul a t e d . Th e r esult s a r e c o mp a r e d wit h t hos e o bser -

y l a difer e nc ia e n tre a mbos v a lo r e s .

207

v ed wh en as first component we u s e l- ch l o r o b u t a n e o r l-b r o mo b u ­

tane .

S e han medi do e nt a lp ía s y v ol ú mene s de exceso de l - y o d ob ut a n o + e t a no l ,

+ n -hex a n9 1 , v + n -d ec anol a 29 8 . 15 K (VE t a mbi é n a 30 8 . 15 K) .
- m

Este t r a baj o f orma pa r te d e u n estu di o más amp l io cu y o fin e s

Líquido s :

Los productos uti lizados fue ron 1-y o d o b u t a n o , Fluka ( > 99 mo les p or cien ­

to ) ; etan o l , Fluka ( > 9 9.8 mo les p o r c i e n to)· ; n -h exan ol y n -decano l , a mbos Flu ­

ka ( >99 moles p o r c i e n t o ) . Para eliminar trazas d e hume da d s e man tuv i er on e n

c o nt a ct o con t am i z mo l e c u l ar (0. 3 n m).

in f luencia del át o mo de h al ó ge n o en e l c o mp orta mi en t o te r modin ámi c o
(1) (2)

d e s is tema s { 1- C4 H9X + n -CcH 2c + IOH} , d ond e X=Cl , .Br , l , y

Rev. Aaad . Cienaias Zapagoza , 43 (1988)



N - ro

;

- 10

11

-,
O

- 11

-!
7

8

-S

0.'

14 S

881

105 2

11 8 7

1 190

120 1

9U
80 9

O"
42S

0.'

Cal c ula do

O.'

148

87 1

106!

118 0

119 6

11 9 0
914

8 10

0 2S

42 0

1349

1352

Experimental

TABLA 3

0.'

I ~ Y od obutano (l) • dec ano l( 2) a 298 ,15K

ncuu. 1 . Enulp( u ,h UUIO • n a. 1St : (1 _1l) 1-C4H,1 •

Il C, Hl ' 41OK: Q . Cl :'\] , c6 :O . C10 •

''0

0,080 7

0 , 120 9

0 ,19 86

0 ,31 16

0 ,3 17 2

0 . 42 9 5

0 .6165
0 . 7040

O,7an

0.862 1

O.3009 b

0.3971 b

b : dat. os e xperime n ta l e s a 508, 151:

HE/ J . • o l- 1 ,-- - -,---r-----,----,r--- - ­
u oo

208 .

2
- ;
-7

10

O

S

-,
2

- lO

-8

O

19
-,
- ;

-14
;

1J

1

1J

12
_7

_21

- 2S

- 2

12

2

14
-,

;;7
sn
000

80'
8 14

U2
892

9 18

920

90 1

8 11

120

S'9

'9S

20'

y .2 se representan l os resul tado s experimental e s y las

C~lculado

;;9
SS9

009

8"
81S

8'S
90.

911

89 9

8 70

809

n8
SSI

S09

20 0

1034

1053

1054

Experimenta l

En las fig uras

1-Yodobutano (l) • he xanol(2 ) a 298 , 15K

b : datos ex pe r i men t a l e s a 308.15 K.

' ~Yo d ob u ta no ( l) • e t an ol( 2) a 298 , 15K

TABLA 2

0 .0 276

0, 071 8

0 ,102 1

0, 1759

0, 18 36

0,1986

0.2656

O, J270

0,3860

0 . 44 11

0.5552

0,6269

0,7493

0 ,7817

0,9271

0.2B;b

0 .3403b

0 . 4 14 6b

b : datos exper i mentales a 30 8, 15K

X2 Exper i men t a l Cal culado

0 , 061 7 01 0 · 6 0 8
0 ,0 789 0 78 08 1
0,1451 8S9 800

";0,2238 1011 100 1
0 . 2 70 8 1000 10 54
0. 285 2 107 1 1066
0 .3 06 2 1077 10 81
0. 39 39 11 0 1 10 99
0 , 4 806 T03 7 1053
0 ,4988 1 0 ~8 10 36 .

0 .6 12 7 88 0 880
0 . 7323 09' 07S
0, 81 54 502 SOO
0, 8466 4 :\4 0 7
O.3 533 b 1250
0.3752b 12 20

QE repr e s enta HE 6 v E y x
2

l a f racción molar de alcoho l .

Lo s coef ic ie ntes d e la ecuac i ón ( 1), p ara cada sistema, se mu e s tr a n en 1 ,:

tab l a 10 junto a l a des via ci ón estandar s ( QE ) definida p or,

dond e ~ re presenta el número de datos experimentales y ~ e l número de c o e f i c i e r

tes u ti l i z ados en la ecuación ( 1) .

c u r v a s o b ten i d a s de la e cua ci6n ( 1) con coeficientes d e l a tab la 1 0 .
TABLA 1



I
TABLA • TABLA •

l_ Yod obu uno (l) • e t anc í ( 2 ) .29 8,1 st , · Yodobu t a n o ( l ) • he xanol (2) .298 I t SK

VE¡c m! . 11I01- 1 VE /cm 5. mo] . 1

' 2
Experimen ta l Calculad o <5 VE ' 2 Expe r hen tal Calcu hdo <5 VE

0, 057 0 0 , 1195 0,1 196 _0 , 0 00 1 0,000 0,0995 0 , 0994 0,00 0 1

0,139 9 0.196 2 0 .1957 O,OOOS 0,0701 O.13S0 O,U 72 0, 0 0 08

0, 2568 0,2549 0.2546 0,000 3 0,1 248 0.1851 0,19 08 - 0, 00 57

0 ,3067 0,26 72 0,2693 -O ,00 21 0,1705 0 ,2279 0.2215 0,0 054

0, 3738 0,2804 0.2810 .0,0006 0, 2513 O,lB4 0 ,2 6 27 0 ,000 7

0, 491 8 0, 28 40 0 .2816 0 ,0024 0, 3453 0 ,2895 0,2912 . 0 , 00 17

0, 576 7 0,2705 0 ,26 8 9 0,0016 0. 3914 0 ,3007 0, 2986 0 ,00 21

0 . 6460 0, 250 2 0. 2514 -0,00 12 0,5 55 8 0, 28 92 0. 2871 0 ,00 21

0. 7693 0.201 9 0,2028 -O , 0009 0,6 224 0 ,2 6 03 0 , 264 7 - O, OOU

0 . 9616 O,O S03 O,OS02 0,0001 0,8638 0,110 8 0,11 02 0 ,0006

TABLA S TABLA 7

1. Yodobutano ( 1 ) + etanol ( 2 ) a 308 ,15K 1. Yo dob u t a n o ( 1) + hexanol( 2) a 30 8 ,1 5).;

VE/cm 3 . mol- 1 VE/cm3 . mo l - 1

' 2
Ex perimental Calculad o <5 VE ' 2 Exp e r i mental Calcula do <5 VE

0,1 9 09 0 . 26 30 0 .2 6 3 0 0. 0000 0, 144 2 0 , 23 88 0 . 23 88 0.0000

0.384 8 0, 31 96 ~.31 9 5 0, 0 001 0 . 27 17 0 , 31 52 0 . 3 150 0 , 000 :=

0.4 21 6 0.3208 0,3 206 0.000 2 0, 3855 0,3536 á.H43 - O, O O ~ ;

0 , 45 30 0,3 19 7 0, 3201 .0.0 00 4 0.5090 0 . 34 59 0. 34 43 O. OOl b

0,76 48 0,24 2"' 0 , 2423 0,0001 0,578 2 0 .3189 0,3 202 _0, 00 13

0 .85 28 0 ,1810 0 .1810 0,0000 0,6491 0 ,2886 0,2882 0,000 ",

TABLA 8

1. Yodob utano (1 ) + d e c a nc I (2) .298 . 15K
Y!.¡c:.' •• ol - 1

VE/ cm3 . Jllol - 1

'2 Experimental Calculado <5 VE

0,0543 0 . 170 2 0 , 16 9 8 0 ,0004

0 , 1193 0 ,2368 0 , 24 0 9 - 0, 0 041

0,1739 0, 29 75 0,2913 0,0062

0,28 09 0.3697 0.370 5 - O,0008

0,363 2 0,3980 0.399 1 _0,00 11

0 ,4990 0 .375 0 0,3 79 9 _0 ,0049

0, 62 56 0 ,3 212 0 .3163 0 . 00 49

0. 8286 0, 1943 0,1950 -O , 0 007

TABLA ,
1- Yodobutano ( 1) + decano l ( 2) .30 S, 15K

VE/ Cf1\3 .mo l - 1

'2 Exp er i ment al Cal c ulado <5 VE '.- ','O. ' ' 0'
0 ,110 2 0,244 8 0. 2(48 0,0000

0.2 594 0.3818 0,38 20 -O ,000 2

0 .4381 0,4256 U. 42 5 2 0,0004 m"'" • • "a l_un 4. n:c:a .a a 2" , U I : (1 - :11) 1.'.",J •
0, 4 78 3 0.4 215 . Q,4214 0 ,0001 z C,"1c:.1OH ;O, 'z ;\l , '6 ;, 0. ',0. A SO', 151 : (1.z ) 1-

0,60"5 0 , 38 06 :, ,381O .0,0004 '."p'1 • z Cc"2u ' OH : . , el : 'f', ',;,., '10·
0,852 7 0.18 26 ;1 , 18 26 0 ,0000



4 . DISCUSION

TABLA 10

Si stema e, C, C, C, C, s<rh
x, I. C~H9 I .. Xz CZUS° tl ZHZ5 . 10 26 29 20 35 3 3 . 19 259 5 70080 "

• x, l . Ch
ll

1.3OI1 29 706 - 129 526 2695 71 - 26 3Z 1t 9 118t 'O
• '2

l - C10112 1OI1 3066 5 _ 12:773 1 254951 - 2.380S2 83807 11

" 1- ( .."9 J Xz (Z"SOH 4 ,9737 . 18 , 6 152 37, 972 3 . 3 8. 1294 1 S , 2 2 79 0, 00 18

Xz (Z " SOH (a l 2, 7 18 1 -1, 4455 .3, 8176 4 , 273 8 0 ,0003

x2 I ~ C 6 H 1 30H 4 ,1887 -11 ,418 6 lS .3489 . , , 34 63 0 , 00 39

x 1 - C6 " 13011 l.) 12 , 91 21 .7 0 , 9466 16 8 . 00 75 _ 17 7 , 0 94 7 6 9 , 00 04 0, 00 22

• x2 l-C¡C UZ 1OH 10 ,9537 - 58 . 74 16 14 5 ,09 59 - 16 0.JZ07 64.9395 0 , 00 59

• '2 1·(10"11 0H l.) 4 , 394 2 - 8.1 153 8 ,28 19 - 3 , 1864 0 . 0 0 0.1

(a) : s I s reaa s e s tu di ados a 308 , ISt:.

TABLA 11 TABLA 12

l - C1o r obu ta no (1) etanol (2) Contacto U/ kJ. mol- 1
T)

x: " E/ x 1x 2 x, HE/x
,x 2

alifático-oxhidri lo 0 ,09726 5 ,77

12701
al ifático-clo ro 0 , 46 709 1, 69

0, 00 17 l U 90 0 ,0235

0, 0 0 17 14550 0, 0236 13004 al ifático -bromo 0 , 44 40 9 2 , 01
o , O O ~ 8 145 70. 0. 03 13 11600 alifático-yodo 0 , 4 36 28 2 , 06
0, 00 79 145 50 0 ,0434 106 20

0 ,0085 14400 0.0446 10560 cloro-oxhidrilo 0 ,06 360 6 , 83 .
0 ,0 105 140 84 0 ,058 7 894 0

bromo-oxh id r i lo
0 ,014 3 1363 5 0 ,0703 8500

0 ,077 10 6 ,3 5

HE, : 0,5 IJ. lIlo1- 1
yodo- oxhidrilo 0 , 10 350 5 , 62 .

2
14, 5

l _Clorobutano ( 1) hexanol( 2) TABLA 1 3

X2
HE/X 1X2

X2
HE/x

1x 2
HE (x_O ,S) /J.1lI01 - 1

0 , 00 15 14450 0, 0 13 8 13100 1- C4"9C1 l -C 6H13O" 1- C6" 13 0H

0 ,0 0 76 14 30 0 0 .0269 124 55 Sua a

0,0 082 14400 0 , 04 33 11 34 0 n -C 6"14 n-C S"1 2 1-C. "9C1

0, 00 99 14 11 o

0 . 5 IJ . mo 1-
1 '96 378· 874 90S

HE, . 1',5 :,
1 - Br omobuta no (1) e ta nol ( 2)

1- C4" 9Br l - C6" ) 30 H
1- C6" 13 0H

HE/ X1X 2 HE/X 1X2

Suma
X, X, n- C6"1 4 n-C S"12 1- C. "gBr

0, 00 19 15 292 0,0 124 14208 528 378 90 6 95 6
0 ,0063 14 85 5 0 , 0183 1330 4
0 ,0096 14830 0 , 0338 11 6 9 7 1. C4"9 1 1.C 6"130H 1- C6" 13 0 H
0 ,0 104 13 992 SUma

HE, 15 , 0 :: 0 ,5 K:J . mo l - ,l n- C6" 14 n- e S"12 1- C4"9 1z
1- Yod obu ta no ( 1) • e t ano l (Z )

5' 0 378 9 18 10 3 5

X, " E/ x 1x 2 X2 HE/x
1x 2 1-C 4" 9CI l -C

8
H17OH 1-C S" 11 0 H

0.000 2 1500 3 O, Ce SI O 14 68 8
Suma

0 , 000 3 1S!S9 O.oi ss 14876
n-C S" 18 n- CSH12 1- C4"90 H

0.0 0 16 l B 98 O, lJZ7.t 13608
55 3 35 1 · 9 ' 0 927

HE, • 15. 0 ".5 ~J .Io1U¡ - ~
2 Valores t ornados de la r e f . 7
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Las entalpías de exceso pa rc iales molares a dilución infinita de a lcohol e n l -c lorobuta

l -brornobutano 6 l -yodobutano son , ap rox imadamente· de 15 kJ .mol - 1 (Tabla 11), va lor este ,-no,



geno .
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mol de mo-

En la tabla 12 se recogen l os val~

res de los parámetros de intercambi o y

de las correspondientes energias que in­

t ervienen en el tratami ento re ticular de

Barker, (6) calculados por un método i t e­

rativo.(5 )

infin itamente diluida en un disolvente

inerte a otra infinitamente diluida en

disolvente halogenado: el cambi o de en ­

talpia en e ste proceso será de -9 kJ .mol

y representa la establilización de la s

moléculas de alcohol debido' a una intera c

talpia de transferencia de

ción especifica entre el halógeno y el

oxhidrilo alcohólico.

n6 meros de alcohol desde una disolución

r inferior en unos 9 kJ .mol - 1 al que se

obtiene cuando la dilución se lleva a ca

bo en un disolvent e inerte. El de spla za­

mi e nt o de la entalpia de e xceso parcia l

limite puede interpretarse c omo una en -

x

0 ,00 F------------=~--:::""'-i

Fi gura 3. Volúmenes de exceso parc iales mola­
res a 298,15K: (l-x) 1-C4HgI + X CcHZc +1
OH.

0.25

0, 75

0.50

Los autore s expre san s u agradec imiento a l a Comis i ón Asesora de Inve s tiga c i ón Cien tifica y

Técnica (Madri d) (Proyec to 1788 / 8 2) po r su ayuda econ ómica.

El efecto del cambio de halógeno en el comportamiento volumétrico se muestr a en l a t ab l a

14, donde se recogen datos de VE a x=O,S .
m

En la figura 3 se representan , a 298.15 K, los volúmenes de e xceso parciales molares ,
E E

obtenidos por diferenciación de la ecuación (1), del I-yodobutano (VI ) Y del n· ·a l cohol (V2) ,

positivos practLcamerrt.e en todo el rango de fracción molar. Comparando con los va lore s. ob te­

nidos para los restantes derivados halogenados; (1,2) se observa que los v~ aument an c o n e l

tamaño de l halógeno .

Por último, señalar que el coeficiente de temperatura, ( aQE/ aT)p' e s pos itivo p~ra ~mQa s

prop ieda de s de exceso.

La. ene rgía de intercambio para l o s

contac tos ha 16ge no-oxhid r i l o es c ompa r a ­

b le a l a del, con tac t o ali f á tico- oxhidrilc

l o cual es c ohe r ente c on los r e s ul t a dos

de la t abla 13 que i nd i ca n que , al reded or

de x =O,S, un átomo de halógeno p r oduce el

mismo efecto calorimétrico qu e un gr upo

metilo : sin embargo, hay qu~ hacer no t a r.

que la equivalencia se debe a una compensación de efectos de los qu e e s r esponsab le e l ha l ó-

TABLA 14

vE(x=0 . 5) de l -C 4H9X + n-CcH2c +1OH
a 298.15 K

m

10
6 VE1m3 . mol-1

m

X c= 2 c=6 c=1 0

Cl 0,136 0 ,030 0 , 043

Br 0,1 86 0 , 157 0, 200

0 , 280 0 , 300 0 ,380

V; /cm3 .rnOl-
1

1,00
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LOS ACUIFEROS CARBONATADOS DEL MACIZO DE GUARA, ANALISIS E
INTERPRETACION DE LAS CURVAS DE RECESION DE CAU DALES DE LOS
RIOS QUE LO DRENAN.

J.A. SÁNCHEZ, F.J. MARTÍ~EZ, J .L. DE MIGUEL Y J. SAN ROMÁN

Cátedr a d e Hid r o g e ologi a . De p a r t ame nt o d e Ciencias d e l a Tie r ra .

Ci uda d Universit ar ia . SOQog ZARAGOZA ( Espafia) .

Desc ompos i ti on of 8 s t ream f low recessio n c u r ves fr om Al c a ­

nad r e a n d Guati zal ema rivers i s e mployed to make h yd r odyn ami c

c haracterization of ca rbonate d a quifers . It I S r e l a t ed t he dy n a s­

mi c vol ume of t he b a s ins wi th rive r s stream-flow, whic h lets u s

make its co rres pon d i ng stream-flow reces ion t heoretica l c urve .

1 . -INTRODUCCION

El Mac i zo de Gua ra (figura 1) constituye una sierra de unos 240
km2 de l os que 2 00 corresponden al río A1canadre y el rest o a l
Guatiz a1 ema. Estos ríos, así como sus a f luentes Ba1ces, Mascún ,
Fó r mi ga y Ca1cón en el Alcanadre, y Lapillera en e l
Guat izalema, atraviesan el Macizo formando profundas gargantas
f l uvi a les "cañones de Guara" que en numerosos tramos superan
l os 800 metros de profundidad.

Geológicamente el Ma c i z o queda enclavado dentro de la cadena
Pirenaica en la unidad denominada "S ierras Exteriores
Prepir~naicas" Puigdefábregas (1975), formada por materiales
meso-ce nozoicos que constituyen el f rente de amo rtiguamiento
d e l "Manto de Gavernie " Seguret (1970) . Litológicamente
pred omi n a n los materiales carbonatados que con potencias
super i o r e s a los 800 m., constituyen l o s únicos acuífe ros
r elevantes del mac i zo.

El estudio h idrogeológico, de este Ma ci z o fue i n i cia d o por el
IGME (1 98 1 ) dentro del P.I.A .S como parte de l a cuenca del Ebro;
p osteri ome nt e , IGME (1983 ) se c~ntinuó su estudio, destacando
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Figura 1. -Mapa hidrogeológico y de situación del Macizo de
Guara (provincia de Huesca): (1) Materiales poco permeables del
terciario. (2) Materiales permeables del Mioceno. (3) Acuifero
carbonatado del Cretácico-Eoceno. (4) Acuifero carbonatado
Triásico. (5) Materiales impermeables del Triásico Superior en
facies Keuper.P irineos

--­c") .. ID.......... .....
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0,5

Se han considerado los datos de caudales medios diarios del río
Alcanadre en Lascellas (E.A. n s 91) que por su situaci6n
inmediatamente al sur de las Sierras, recoge toda la
escorrentía de la parte del Macizo drenada por la Cuenca; el
resto, lo recoge el río Guatizalema cuyos caudales son aforados
en el embalse de Vadiello. El - método seguido para la
descomposici6n de las curvas ha sido el preconizado por
SCHOELLER, H. (1962), para su realizaci6n se ha preparado un
sencillo programa de ordenador que ajusta por mínimos
cuadrados, las rectas de regresi6n a los sucesivos tramos
requeridos.

-1,o +-....-.-T""""'.,..."T""'1r-r-~....,.-.-T""""'-,-"T""'1r"T",-....,.-.-T""""'-,-"T""'1r"T",-...,
O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 SO

tiempo (dlas)

-0,5

el control hidrométrico realizado y su primer modelo matemático
Yagüe et.Al. (1984). Mas recientemente el Macizo de Guara ha
sido estudiado como parte de la Comarca Hidro16gica n s

6:"Sierras de Guara y sus somontanos" distinguiendo mediante
criterios hidrogeo16gicos e hidroquímicos -Martínez, F;J. et
Al. (1986)- un acuífero triásico de porosidad y permeabilidad
elevada (carniolas), de otro Cretácico-Eoceno de alta
permeabilidad, pero baja capacidad de almacenamiento.

4,0

3,5

3,0

~ 2,5
..!!!g 2,0

~ 1,5
..J

2.-DESCOMPOSrCrON DE LAS CURVAS DE RECESrON DE CAUDALES

Figura 2.-Componentes de la curva de recesi6n de caudales del
río Alcanadre

De este modo (figura 2) se han descompuesto 4 curvas en el río
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3.-ANALISIS E INTERPRETACION DE LOS RESULTADOS

Cuadro 1 : Parámetros ob tenidos e n la descomposición de l as c u r v a s de

recesión de caudales de los ríos Alcanadre y Guati zalema

RIO ALCAtlADRE EN LASCELLAS lE A NO 91 1

PR IMER

los rios
meno s 3

valores de a
inicio de la

SEGUNDO COMPONENTE

4. 28-0ct-1979 a 28 -Nov-1979

5 . 15-Abr-1980 a 07-May-1980

3 . 09-Nov- 1980 a 1 6- Ene- 1 9 81

4 . 12-AgO- 19 77 a 2 0 -Sep- 1977

de caudales que
requiere de al

a 00 a 00
0,069 2,54 0 , 67 4 21,63

0,085 1 ,9 2

0,062 1,50 0,382 6,53

0,079 2,95 0,437 11,80

el Guatizalema; los
y QO (caudal en el

CUADRO l.

00

0,790

a

0,033

rn3/ s m3/s

1 16 , 90 1,0 4

2 4, 37 . 0 , 34

3 7,84 0,37

4 1,.97 0,22

5 10,43 0,46

COMPONENTE

RI O GlJ/\TIZ/\I.EM/\ EN YADIEI.LO

l . 3 1- Di c - 1 981 a 1 0- Ene - 1 982

2 . 2 0-Ene-1982 a 08 -Feb-198 2

3 . 22 - 0ct- 19 77 a 17 -N ov-1977

N° Q inic. O f i nal TERCER COMPONENTE

l . 2 7-Sep-1981 a 11 -Dic -1981

2 . 10 -May-198 1 a 15 -Ago- 1981

NO O i n i c . O fina l TERCER COMPONENTE SEGUNDO COMPONENTE PRIMER
COMPONENTE

m3/s m3/ s a 0 0 a 00 a 0 0
1 4 ,62 0, 4 6 0,013 1,07 0,1 6 ~ 2,08

2 21,8 0, 5 4 0,01 8 2,1 0 0, 1 1 9 8,9 6 0 , 6 60 23 , 91
3 33 ,5 0, 90 0 , 014 2,04 0 , 0 94 8 , 86 0,914 52,4 8

5 ,26 0,76 0,010 1,19 0, 203 3,61

Alcanadre, y otras tantas en
(coeficiente de agotamiento)

decrecida) se acompañan en el

3.1.-Componentes de la escorrentia

Para justificar la amplitud
prepirenaicos manifiestan .s e
c omponentes:

El primer componente corresponde a la escorrentia superficial,
tiene un coeficiente de agotamiento de 1 dia-1 lo que hace que
prácticamente a los 7 dias de su máxima aportación (Qo)' el
caudal que suministre a los rios sea irrelevante (menos de 50
l/s) .



El segundo componente tiene un valor de a del orden de una

décima parte del anterior(a= 0.1 a 0.2 días-1;corresponcte a la
escorrentía subterránea no regulada 6 flujo turbulento en el
acuífero carbonatado debid~ a las grandes fisuras y cavidades.
Porcentualmente su mayor incidencia en el cuadal de los ríos
prepireniacos se alcanza a los 4 días de iniciada la decrecida,
pero pasados 35-40 días su aportaci6n pasa a ser irrelevante.

El tercer componente tiene un valor de a que oscila entre 0.01
en el Alcanadre y 0 .03 en el Guatizalema, corresponde a la
aportaci6n subterránea regulada por los acuíferos carbonatados.
Cuando la única aportaci6n que reciben los ríos procede de ésta
componente se considera que circula su "caudal de base" . Este
caudal se a lcanza ' a los 35-40 días y es de 950 l/s en el
Alcanadre y de 250 l /s en el Guatizalema.

3.2.-Volumen dinámico en las cuencas

El volumen de agua que almacenado en una cuenca es susceptibe
de influir en el caudal del río constituye su "volumen
dinámico". Para cada uno de los componentes de la escorrentía,

la divisi6n de Qo por a nos da la parte del "volumen dinámico :'
de la cuenca que se descarga según las características
hidrodinámicas del componente considerado. Los volumenes '
dinámicos de cada componente se acompañan en el Cuadro 2.

Cuadro 2: Volumen dinamico en las cuencas de los rios Alcanadre y

Guatizalema

ALCANADRE GUAT I ZALEMA

Descomposic6n utilizada 3 1+4

VOLUMEN DINAMICO (en hm3) 21,36 7,96

ID. PRIMER COMPONENTE 4,95 2,77

ID. SEGUNDO COMPONENTE 3,93 3,14

ID. TERCER COMPONENTE 12,48 2,05

Como puede observarse el volumen del último componente es en
Alcanadre muy superior al de los otros dos; éste volumen
representa la capacidad del embalse subterráneo que situada por
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3.3. -Cu,ryas teóricas de recesión de caudales

Figura 3.-Relación entre volumen dinámico y caudal de l os ríos
Guatizalema y Alcanadre

10 12 14 16 18 20 22 24
Volumen (hm3)

8642

I I I I I!I 1/
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"~/ "~
V ~

~
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Si consideramos un caudal inicial, que puede ser el de la
máxima crecida conocida (7 5 .9 m3/s en el Alcanadre 52 . 7 m3/ s en
el Guatizalema), podremos saber c ua l e s el vo l umen de a gua que
en ese momento existía en la cuenca (23.6 hm3 Alcanadre , 7.44
hm3 Guatizalema); si a este volumen descontamos el que se
evacua el primer día, tendremos un nuevo volumen que aplicando
las ecuaciones anteriores nos darán el caudal del día
siguiente. Repitiendo este proceso dia a día s e c on s t r u ye una
curva teórica de recesión de caudales para l o s río s Al canadre y

Guatizalema que abarca t oda la amplitud de caudales conocida
(fig 4) .

Relacionando el caudal de un río con el volumen dinámico de la
cue nca 's e obtienen las gráficas de la fig. 3; en ambos se
obtiene un aceptable ajuste con ecuaciones de tipo exponencial:
en el Alcanadre Q=O.0 96*e O. 2 8 6*V , y en el Guatizalema
Q=O. 388*e O' 66*V

encima de la c ot a de drenaje del rio e stá sometido a una
evacuación lenta; es decir, está regulada.
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Figura 4 . -Curvas teóricas de recesión de caudales en los ríos
Alcanadrey Guatizalema

16 014 012 0
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1008 060
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4 0

tiempo c a uda l (l/s) caudal (l/s)

~ Alcanadre Guatizalema
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60 603 115
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105 332 35
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Las curvas realizadas permiten conocer la evolución del volumen
dinámico de las cuencas y el caudal de los ríos para diferentes
periodqs sin precipitación . La forma que presentan las
decrecidas en estos ríos hace que transcurridos más de 30 días

. 's i n precipitación, el caudal que presenta apenas dependa del.
caudal inicial;por ello, la siguient"e relación de caudales
correspondientes a diferentes periodos de tiempo sin
precipitación, tiene una aceptable validez :



4.-DrscusrON DE LOS RESULTADOS

La descomposici6n de curvas de recesi6n de caudales ha
permitido diferenciar tres tipos de escorrentías en el Macizo
de Gua:;a: una superficial, otra subterránea con escasa
regulaci6n relacionada con las granes fisuras y cavidades de
los acuíferos calizos, y otra también subterránea pero de mayor
regulaci6n, ligada a las microfisuras y porosidad de ·l os
materiales carbonatados. Esta escorrentía subterránea de mayor
regulaci6n constituye el caudal de base de los ríos.

La relaci6n entre volumen de agua almacenado en la cuenca y
caudal circulante por el río, pone de manifiesto diferencias en
el comportamiento hidro16gico de las dos cuenca de manera que
el río Guatizalema es capaz de evacuar un caudal similar al del
Alcanadre con un volumen de agua en su cuenca casi 4 veces
menor; esto hace que la regulaci6n natural de los recursos
hídricos sea en el Guatizalema notablemente inferior.

Los elevados caudales producidos en las cuenca pueden
disminuirse -regulaci6n- evitando que el volumen de agua
a~macenado en las cuencas supere determinados valores: 3 hm3 en
el Guatizalema, y 13 hm3 en el Alcanadre; para ello, se
precisaría de sondeos que mediante bombeo vaciaran parcialmente
los acuíferos -en la época de demandas (junio a septiembre)-,
llenandose posteriormente en los periodos mas lluviosos
(octubre a mayo) . .

Las curvas te6ricas de recesi6n de caudales confirman el menor
poder de regulaci6n natural que la cuenca del Guatizalema tiene
respecto a la del Alcanadre.

Estas curvas constituyen un método válido de previsi6n de
caudales en decrecida y pueden ser utilizadas para,
comparandolas con las series de caudales registrados, calcular
el volumen de agua útil o recarga (precipitaci6n menos
evapotranspiraci6n) que recibe el macizo.
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INFLUENCIA DE LAS CONDICIONES DE MEDIDA DE pH EN EL CALCULO rDE
LA DISTRIBUCION DE ESPECIES EN EQUILIBRIO DE UN SISTEMA
ACUOSO NATURAL

L.F. AUQUE, J. FERNÁNDEZ, J.M. TENA, M.J. GIMENO, J. MANDADO

Y P. TOLOSA

Depa r tament o d e Cienc ias d e l a Tie r ra . Facu ltad d e Cienc ias .

Ciuda d Unive r s it ari a. 5 0 0 09 ZARAGOZA (Es pa ña ) .

The us e of s pec iat i o n -so l u bi l ity codes to st u dy n a tu r a l

a queous systems n e ed t he utili z at i on of a na lytica l pa r ame t e r s

accurate to t he n a tu r al conditions of t he so l utio n . In t his pa­

pe r we i n vestigate t he v a r i a tion of t he a q ueous s peciation model

i n f u nct io n of t he pH me a su r ement co nditions . Use of pH me a su r e ­

ment, in fie l d or laboratory co nditions, fo r t he same wa t e r sam­

pIe c hanges t he spe c i a t i on p i c tur e crit ica lly b e c a u s e of its va-

riation du r i n g samp le trans port o

1. INTRODUCCION

Desde que en 1962 GARRELS & THOMPSON plantearon la metodología
para el cálculo de la distribución iónica en equilibrio homogéneo para las aguas
naturales, los modelos de especiación en sistemas acuosos han ido adquiriendo
progresivamente un mayor grado de refinamiento y optimización, Esta evolución ha
sido catalizada, fundamentalmente, por la implementación de estos modelos dentro de
sistemas y programas informáticos más o menos complejos.

En la actualidad existe una ámplia oferta de este tipo de programas, a los que
casi siempre se les ha añadido el cálculo de índices de saturación como complemento
al modelo puro de especiación. Por ello se han agrupado bajo el nombre genérico de
programas o modelos de "especiación-solubilidad" (WOLERY, 1979; NORDSTROM
& MUNOZ, 1986).

La utilización de este tipo de programas es cada vez más frecuente dentro de
las distintas ramas de la Geoquímica pero, como es natural, los resultados que se
obtienen serán función de los datos analíticos que suministremos al programa y, por
tanto, de la metodología empleada en su adquisición.

Por otro lado, dentro del campo de la modelización geoquímica existen otros
muchos tipos de programas más complejos y potentes que los de especiación. Son,
por ejemplo, los modelos de pautas de reacción (ver p.e. WOLERY, 1979;
NORDSTROM & MUNOZ, 1986) o los modelos de trasporte de masa y reacción
química acoplados (ver p.e. RUBIN, 1983) . Sin embargo, -en todos ellos el punto de
partida inicial es un adecuado modelo de especiación lo más ajustado posible a las
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condiciones reales de los sistemas hídricos considerados; por tanto, su adecuada
uti lizaci6n conlleva, si cabe, un mayor control de los parámetros analíticos
suministrados. -

Uno de los datos de entrada requerido en los modelos de especiaci6n es el pH,
parámetro imprescindible a la hora de realizar el estudio fisicoquímico en sistemas
hidroquímicos y sobre cuyas variaciones se centra este estudio.

La infraestructura termodinámica de los programas de especiaci6n requiere un
conocimiento exacto del pH del sistema en orden a valorar el ajuste del resultado
obtenido a las condiciones reales; en general , parece admitido que el pH utilizable es
el determinado en campo con metodologías de medida más o menos complejas (véase.
p.e. NORTON & PANlCHI, 1978; FRITZ, 1981; CRIAUD & FOUILLAC, 1986;
etc. ). Sin embargo, un repaso a la bibliografía sobre geoquímica de aguas permite
constatar la gran variedad de formas de presentación de este dato, cuando no su
ausencia, así como los .muy diferentes planteamientos realizados a la hora de su
aplicaci6n en larealizaci6n del estudio de la distribuci6n de especies de la solución
acuosa considerada. De esta manera, es frecuente observar modelos de especiaci6n
realizados a partir de datos de pH medidos en condiciones de laboratorio, a 25 "C, e
incluso realizados a partir del pH de laboratorio corregido en funci6n de la diferencia
de temperatura entre las condiciones analíticas y las de surgencia.

En este trabajo se pretenden cuantificar las variaciones obtenidas en la
aplicaci6n de un programa de especiación, según la opci6n de pH y temperatura que
se elija, a la hora de aproximar el resultado a las condiciones reales del sistema
estudiado.

2. METODOLOGIA

Para la realizaci6n de este estudio hemos partido de muestras de las que se
poseyeran datos que cumpliesen una serie de condiciones:

(a) que presentasen valores analíticos de pH de campo y laboratorio.
(b) que el pH determinado en el campo lo hubiese sido mediante
electrodosensitivo calibrado en función de la temperatura de surgencia,
como metodología más frecuentemente usada.
(c) que existiera una cierta variaci6n entre la temperatura de surgencia y
la estándar de laboratorio (25 oC) para analizar la influencia de la
temperatura considerada en el modelo. .
(d) que el resto de datos analíticos, en especial los referidos a aniones y
a la alcalinidad, hubieran sido determinados mediante metodologías
que nos permitan referir a las condiciones reales del sistema estudiado.

Se ha seleccionado una serie de muestras acordes con los requisitos que
acabamos de señalar, pertenecientes unas (Ca-l a Ca-LO) a una campaña realizada por
nuestro grupo de trabajo y otras (SA-2, SA-4, SA-6 y Al) recogidas de la
bibliografía Los datos analíticos pueden verse en la tabla 1.

Las muestras Ca-l a 'Ca-7 corresponden a surgencias termales en Arnedillo
(Rioja) (Ca-l a Ca-4) y Fitero (Navarra) (Ca-5 a Ca-7) tratandose de aguas asociadas
a reservorios carbonatado-evaporíticos, con una temperatura máxima de surgencia de
48 oc. Las muestras Ca-8 a Ca-lO corresponden a surgencias de la misma zona de
carácter bicarbonatado cálcico pero no termales (AUQUE et al., 1989). Los datos
analíticos referidos como SA-2, SA-4, SA-6 y Al corresponden a surgencias termales
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TABLA lo Aná lisis quím i cos de l as mues tras co ns i deradas e n este estudio . En mgr /l . (Ver texto ) .

=== ==== == ==== == ====== ====== === = === == ===== ============ ===== === === ====== ===== = ==== == = == ='"== ======== == ========== ===== ===== = = = '"== '"==== =.. = = .. = ======= ===== ==
Ca- l Ca-2 Ca-3 Ca-4 Ca-5 Ca-6 Ca-7 Ca-B Ca- 9 Ca- ID 5a-2 5a-4 5 a-6 Al

HCO; 18 1. 22 18 2 .44 184 . 27 175. 73 178 . 78 180. 00 176 .90 191. 59 190 .98 210. 51 32.95 . 48.81 22 .21 33.56

Cl 2931.61 271 1. 80 2682 . 37 2830.21 1516. 32 1502. 14 159 5 . 0 3 3 .55 0 .71 8. 19 23. 0 4 3. 5 1 5. 67 1. 28

SO: 1488 . 8 9 1368 . 82 13 54 . 41 1480. 21 1296 . 78 1431. 26 1325 . 59 57 . 15 52 . 35 18 . 25 10 . 66 19 . 0 2 10 . 37 1.4 4

NO; 10 . 17 3 .35 4. 71 5 . 15

2 . 3 2 . 20 2.00 2 .3 0 0.95 0.90 0.92 0. 06 0 . 06 0 .05 1. 8 0 4 . 99 2 .39 1. 14

Ca++ 422 .84 41 6 . 0 3 38 1. 56 408 . 10 428 . 45 482.96 4 10 . 27 63.33 62 . 32 6 5 .73 14 . 59 8 . 94 7 . 5 7 8 . 14

N Hg ++ 9 2 .48 8 5 . 70 8 3 . 8 5 86 . 40 111. 20 95 .76 120 . 43 12 .1 5 12 . 03 5.83 4 .01 2 .53 2 .26 2 .09

N Na' 19 54 . 13 172 4. 23 1908 .1 5 2023. 10 877.29 8 50 . 60 94 2 .58 5 . 06 3 . 45 3. 45 10 . 69 19 . 13 7. 49 2 .30
C11

K' 2 1. 8 9 21. 89 21.50 21.89 29.32 29 .32 35 . 18 0 .59 0 . 59 0 .58 3 .95 2 .74 3 . 05 1. 8 4

Li+ 0 .69 0.66 0.69 0.69 0 .69 0 .69 0 . 8 3 0.03 0 .03 0 .03 0.03 0 .09 0 .02 0 .007..
9 , 42 8 .46 8.59 9 .86 10 . 9 1 10 . 91 7.79 0 . 26 0.31 0 .00 0. 0 9 0.00 0 . 00 0 .00Sr

AI· 3 - 0 .007 0 . 008 0 . 01 2 0 . 007

S10
2

2 1. 78 21.57 19 . 74 21.29 19 . 8 3 18. 8 4 21. 23 7. 00 7 .20 3 . 8 1 14 . 0 6 30. 34 15. 50 13 . 10

0 . 13 0 . 12 0 . 12 0 . 11 0. 17 0 .09 0. 13 0 .00 0 .00 0.00

pH
c

' 6 .60 6 .70 6.60 6 .60 6 . 50 6 .40 6 .40 6. 15 6 . 20 6 .00 6 .65 7 . 00 6.78 6 . 46

pHI ' 7 . 11 7 ,4 /1 7 . 55 7 .25 6 . 8 1 7 . 11 7 .08 7 .62 7 .69 7 . 4 4 7.52 7 . 90 7 . 43 7 .66

T ( ' C) " 47. 60 4 3 . 00 43 . 50 48. 00 48 .00 48 . 00 48 . 20 1';>.40 15 . 00 14 .1 0 2 1 . 8 0 30.20 30.60 9 .90

== === ============= ==== ===== ========== ============ ==== ======= ==== === ===== === ============= ==="' ~ ='= == == ==== ==== == '"=='" "' ''' '" ==='" '" '" ="'''' ========= == === == == === =====

pHc = pli de ca mpo , e n condic iones de s u r-ge nc í a : pHl = pH de laboratori o .

• • Tempera tura en l a s c o nd icio ne s de s ur-g onc í a ,
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asoc iadas a materiales graníticos en Plombiéres (Macizo Central Francés) y sin
fenómenos de desgasificación importantes según FRITZ (1981).

Los grupos de muestras seleccionados van a permitir el análisis de los efectos
del pH en los sistemas carbonatos-solución y aluminosilicatos-soluci ón; por otro
lado, el incluir ejemplos del Macizo Central Francés, con aguas asociadas a materiales
graníticos, junto con otros en los que las aguas están asociadas a materiales
carbonatado-evaporíticos, va a facilitar la comparación de los resultados obtenidos en
el sistema carbonatado respecto a soluciones con concentraciones muy diferentes de
los elementos participantes en dicho sistema.

Los programas de especiación-solubilidad utilizados para este estudio han sido
el WATEQ4F (BALL el al., 1987) y el WATEQB (ARIKAN, 1988), análogos en
cuanto a su estructura operativa pero con algunas variaciones en sus bases de datos
termodinámicos. Ambos programas se han manejado indistintamente para obtener una
mayor generalización de los resultados y evitar las posibles influencias inherentes al
propio modelo.

Como indicación de la respuesta global a las variaciones en el modelo de
especiación realizado en función del pH considerado, se han tomado los índices de
saturación (I.S.) definidos como :

I.S. = log [PAI / K(T)]

donde PAI es el producto de actividad i ónica y K(T) la constante de equilibrio del
mineral correspondiente a la temperatura T. Si I.S. > Ola solución está sobresaturada
respecto al mineral considerado, y tanto más cuanto mayor sea el valor; si I.S. < Ola
solución estará tanto 'más subsaturada cuanto menor sea el valor obtenido; y si I.S. '"
O,la solución estará en equilibrio respecto a ese mineral. Para un mejor conocimiento
de los principios y el funcionamiento de este tipo de programas nos remitimos a la
extensa bibliografía existente sobre el tema (TRUESDELL & JONES, 1974 ;
PLUMMER el al., 1976; WIGLEY, 1977; NORDSTROM el al., 1979; JENNE,
1981; NORDSTROM & MUÑOZ, 1986; etc.).

3. ANALISIS COMPARATIVO

Partiendo de los datos apuntados en la tabla 1 se ha realizado la modelización
de cada muestra de tres formas distintas:

(a) Considerando el pH de laboratorio y la temperatura estándar de 25 C.
(b) Considerando el pH de laboratorio y la temperatura real de cada
surgencia.
(c) Considerando el pH medido en el campo y la temperatura de
surgencia.

En una primera observación de los resultados obtenidos expresados mediante
cuatro ejemplos representativos de las muestras consideradas en la tabla 1 (figuras 1 y
2 y tablas 2 y 3), podemos apreciar que las diferencias presentes entre los modelos
que parten de las condiciones de laboratorio (pH de laboratorio y 25 "C ) y aquellos
que lo hacen de condiciones de surgencia, son muy notables, en especial si
atendemos a los minerales relacionados con el sistema carbonatado (calcita, aragonito,
dolomita y magnesita) .
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TABLA 2 . Indfcee de saturac i ón de las eues t r- a s Ca-6 "1 Ca-s sf!RÚn distintos p er- éee t.r-o s de pH y t emper a t ur a

suministr ados a l proer ama WATEQ4F .

- 2. 04 1

-3 .923

-3 . 41 7

- 6. 492

- 2 . 252

- 4 . 6 23

-3 . 25 4

-8 . 91 3

- 1. 425

. 90 4

- 2 . 33B

- 2 .1B 6

-. 169

pH campo-6 .78

Temp= 30 .6 ·C

-1 .142

- 3 . 0 24

- 3 . 41 7

- 4 . 6 89

-1. 605

-3 . 330

-3 . 225

-B .91 3

- .1 3 2

1. 40 7

-. 537

- .7B1

. 631

pH l ab=7 . 43

Temp= 30 .6 oc

- . 746

- 2 . 695

-3 .472

-4 .494

- 1. 682

- 3. 54 4

-3.254

- B.900

. 55B

2 . 0 29

- .043

.072

1.370

pH lab 7 . 43

Temp= 25 -c

-2. 4 48

- 4 . 39 4

- 3 . 259

-B . 033

- 2 . 0 74

-4 .402

-3 . 006

-B .140

- 2 . 534

.034

-3 .48 9

- 3. 639

-1 . 212

- . 739

- 2 . 68 5

- 3 . 259

- 4 . 6 10

- 1. 20 B

- 2 . 669

- 3. 006

-8 .140

. 357

1. 71 8

- . 069

- .243

1.034

pH l ab _7 . 52 pH c ampo_6.65

Te mp= 21. 8 oc Temp=2 l .8 oc

- . 976

- 2 . 882

- 3 . 227

- 4 . 7 33

-1. 162

- 2 .538

-3 .009

-8 . 147

- .05B

1. 345

- . 36 7

- .756

. 590

pH l ab_ 7. 52

Temp= 25 -c,

ADULARIA

ALBITA

ANH IDRI TA

ANORTITA

CALCIT A

DOLOMI TA

YESO

HALITA

I LLITA

CAOLINI TA

LAUMONTITA

MI CA POTASICA

MONT. CALCICA

TABLA 3 . Indices de saturación de las muestras 5a -2 y 5a -6 se gún di s tint os parámetros de pH y temperatura

suministrados al progr ama WATEQB.



. En la figura lA se representan los distintos índices de saturación obtenidos
según diferentes opciones de modelización consideradas para la muestra Ca-6. Tal y
como pued e observarse, las variaciones producidas al considerar pH de campo o
laboratorio en el modelo de especiación pueden ser tan importantes como para pasar
de condiciones de sobresaturación a subsaturación respecto a calcita, aragonito o
dolomita. Por otro lado , puede comprobarse que para algunos minerales (yeso,
fluorita, cuarzo; tabla 2, Ca-6) la variación de temperatura (de 25 "C en laboratorio a
4S "C en surgencia) supone un cambio en los índices de saturación más importante
que el debido a la propia variación de pH.

En la figura lB se han representado los índices de saturación obtenidos para la
muestra Ca-S. Se trata de un agua bicarbonatada en la que la variación de la
temperatura de surgencia (I5.4 "C) a la de laboratorio (25 "C) es menor que en la
muestra anterior y, por tanto, los cambios debidos a la modificación de este parámetro
para los minerales fluorita, yeso o cuarzo son, asímismo, menos importantes (tabla
2). Respecto a la influencia del pH considerado en el modelo, continúa siendo tan
importante como en el caso anterior.

En la figura 2A y 2B se han representado los resultados obtenidos en la
modelización de dos muestras del Macizo Central Francés, la SA-2 y la SA-6 (tabla
3). El ambiente geológico de estas aguas es muy distinto respecto al asociado a las de
la zona Fitero-ArnedilIo, lo que se refleja en el total de sales disueltas, mucho menor
en las primeras (tabla 1) de tal modo que los índices de saturación obtenidos para los
minerales considerados están casi siempre por debajo de cero. Sin embargo, los
rangos cuantitativos de variación continúan siendo muy importantes.

Respecto a yeso y anhidrita, poco influídos por la variación de pH en las
muestras anteriores, continúan manteniendo esta tendencia en las nuevas
modelizaciones, a la vez que presentan una escasa variación por la temperatura ya que
las diferencias entre las condiciones de campo y las de laboratorio en estas muestras
son menores de 6 "C. Sin embargo, para la calcita o la dolomita las variaciones en el
índice de saturación según el pH considerado están en el rango de una unidad de 1.S.,
con lo cual continúan siendo muy importantes.

. La existencia de datos analíticos de Al en estos ejemplos permite constatar la
variación sufrida por el sistema aluminio-solución en función del modelo
considerado. De esta manera los I.S. obtenidos según el pH considerado van a ser
muy diferentes (compárense p.e. los correspondientes a mica potásica, laumontita o
rnontmorillonita cálcica; tabla 3). Por otro lado, las pequeñas variaciones
consideradas en la temperatura para estas muestras, pueden inducir por sí mismas a
variaciones de medio punto en el 1.S . (p .e. en montmorillonita cálcica, mica
potás ica).

Las variaciones máximas en los pH considerados para las muestras que se han
tomado como ejemplo en este trabajo, oscilan de 0.5 a 1 unidad de pH para cada una
de ellas. Evidentemente, los cambios sufridos en la modelización de muestras con una
mayor variación desde la determinación de campo a la de laboratorio (tales como la
Ca-S, Ca-9 o Ca-lO) son todavía más extremos.

4. CONSIDERACIONES Y CONCLUSIONES

Es de dominio general que los sistemas carbonato-solución y aluminio­
solución son "pH-dependientes". Existe una ámplia bibliografía sobre esta cuestión y
no vamos a entrar en este trabajo en una descripción termodinámica de los parámetros
y ecuaciones que rigen estos sistemas.
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Sin embargo, queda claramente demostrado que a la hora de plantear un
análisis de especiación en un sistema hídrico natural no basta la determinación de este
parámetro en un momento y bajo unas condiciones analíticas cualesquiera.

Independientemente de las causas que producen la variación de pH en la
muestra durante el transporte (cambio de temperatura, procesos de precipitación,
pérdida de C02, etc .) y cuyo análisis será motivo de otro trabajo más detallado, lo
cierto es que los cambios observados, tal como se ha mostrado anteriormente, pueden
ser lo suficientemente importantes como para originar considerables diferencias en los
resultados de la aplicación de los modelos de especiación.

Un examen somero de las posibilidades de utilización de pH determinado en
diferentes circunstancias lleva a concluir que para lograr la máxima aproximación al
sistema real debe utilizarse la medida de pH realizada en las condiciones de
temperatura de surgencia, poniendo especial cuidado en que la metodología analítica y
de muestreo para el resto de parámetros a determinar permita la máxima adecuación a
las condiciones naturales del sistema. La utilización indiscriminada de datos
bibliográficos en los que no se indica la metodología de toma del pH, o bien en los
que esta determinación ha sido realizada en el laboratorio, puede proporcionar
resultados alejados de las condiciones reales a la hora de plantear estudios de
especiación de las soluciones consideradas.
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Rev . Acad . Ciencias Zaragoza , 43 (19 88)

LA TEXTURA EN LA VELOCIDAD
DE ROCAS YESIFERAS

INCIDENCIA DE
DE DI SOLUC ION

U.E . I. de Edafología. Estación Experimental de Aula Dei . e .S.I .C ..

Apartado 202 . 50080 Zaragoza (Es paña) .

In t he pr e s en t study, 53 experimental essays ha ve been carr i ed

out in order to quantify t he i nc idence of the t exture of the gypsum

rocks on t he dissolution process: In the two types of alabastrine ­

gypsum used , and under t he same experimental co ndi t i ons , different ­

dissolution .ve l oc i t i e s have be en recorded , a ccording t o the diverse

textural characteristics . Mesocrystalline gyps um dissolution velocity

is 22% higher than that of microcrystalline.

F. ALBERTO Y A. NAVAS

En la dep r s s i ó n del Ebro , el ye s o es el cons t i t uve n t e ma vontario de

las form aci ones evapo rí ticas pre c ip it adas durante su r el leno s edimentarl C

en e l Terc ia ri o , y su e x i s t e nc í a es qene r a l r c ada en lo s s ue l os

de sa r roll~dos sob re litofacies ye s f f e r as . A causa de s u na tu ra l e z a so l uble,

su pr e s enc i a puede alterar gra nd emente l a Quí mic a de sue los y aguas .

La bi bliog r á fí a con~ulta d a mu est ra que l a ve l oc i dad de disol ución de l

yes o e s tá i nf l ui da po r l a fu erza i 6ni c a de l a solución, por l as

con ce ntr aci one s de i ones c a l c i o o sulfato en sol UCión, por El áre a

supe rfi c ial y el ta ma ño de particula (KENPER et al. , 1975 ) Y pnr el espeso r

de l p l ano de d i f us i ón existente alrededor de l a s part í cu la s de ye s o ( BARION
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r e ac c i on de primer gr ado ( LI U .¡ ~JA N C OLL A S . 19 71 ; f:EREN '¡ GHA I NBí: RG. I ~ B i :
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( J)

e l oc i da d de dl sal u~ lón c a ffil E n ~a a es ta r

19 8 4 ) . c as ad a e n la teo r í a or i q i na í sen t e pr opu esta nor

de ; dt = K ([ s - el

119u 41 . que asu me la e xistencia de un gradIente de c on c entra c i ón

e Ca++ en l a s o l uc i ón. l a

K es el co efi cI ent e de l a ve l oc i dad de dIS ol uc ión, qu e e s In v er samente

por por ciona l a l es pesor del pl ano de d i f us ió n e =is t e nte en la s upe r f ic Ie dE

l as pa r tí cu l as . de ve s o y depend e I1n e alm ent e de l ár ea s up e r t i c i a í y de l

coe f i c i ente de d i fusión del ye s o e n e l pl an o de s o l UCI ón. A s u ve : . e l

es pe sor de l plano de difu sión es f unc i ón de l a ve l oc I dad de l agua , de l a

v I s cos i dad cine á t ic a .

De ac ue rd o a l os datos experI ment ales de BARTON y WI L UE , 19J l 1 c uan do

e l co c i ente CfC s es ext r e ada en t e peq u e ~o; l os factore s que contr o l an l a

velocid a d de d i s oluc i ón s on exc l us i va ment e fí SI CO S . tale s c omo e l ár ea

s upe r fic ia l expues ta , e l e spesor del pl ano de difu s i ón . V l a ve l oc ida d a l a

cua l e l Ca + di suelt o e s tr ans f er I do . Con e l IncreQen t a de l a conc entr a c Ión

Est e preceso ha sIdo desc r ito ~edIante ~ na ec uac I ci n c I n ~ t l c a de

a -ec tada pDr s u conc en tr ación , aunque l os f a c tor es Tí si co s aün SI guen

SIendo 1 por t antes. Fina l ente, a Qas a l tas conc en trac I on es de Ca ~ ' . lo s

iDn e s SO = podri an en t r a r en JUEgO.

APPELO et al . •

lin e a l a tr a vi s de un pl ano de sol uc I 6n adherIdo a la s up er f I cI e de !

cr i st al , cuvo espeso r es in dependiente de l a Vi s cos I da d V de l a t empera t ur a

de l a so l uc i ón. Segú n esta ec uación. la ve l oc I dad I dCidt ) con la c ua l el

ye s o p asa a l a solución es función de la di fe rencia entre la con c ent rac i ón

de la s o Luc i on a s s t ur ac i on, Cs . y la c cnc an t r ac i ón de l a sol ución e n un

tIempo da do , C. As í . f or ma l ment e . l a ve l oc i dad de dis o l ucI ón de l os

cr i s ta l e s de ye s o qu ed a ma te mát Ica mente descri t a co mo :

NERN5T



int ens i f I cará n este pr or.e s o. Por e llo, e l ob j e t i vo de es te Es t ud i O e s
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in crementar á con la combin ación de aquell os elemen tos te xt ura les qu e

i mp1Jquen un aumento del áre a. sup e r f i c t a l . Ademá s , la presencia de poros ,

min e r a l ógi coesqu e l e tode l

12 . 1 1 g / cm" I, su bpr oduct o de l a

que la ve l oc i da d de diso l UC Ión seforma

1 nt a r r upc I ones

de

del tama¡o y la forma de lo s c r I s t a le s en la velo cidad

otra su

cementantes,

La inciden cia

mi c r o+i s u r a s ,

agent e s

dens I dad ent r e el ye s o i ndu s t r i al

Pe ro a dem~s ! la ve Joclda d de diso luclcin de l 'le s o dep end e de l a

na t ur a le za de l materi a l . ~st e he ch o na s i do e f ect i vamente cons ta t ado por

KEF:EN v SHAINElER G ( 198 1 ' , que r e gi s tran mayore s ve l oc i da des de di sol uc i ón

en e l yes o r nu us t r i a l ' resp ect o de l mineral, deb id o il la s di f e r enc i a s de

in dustria de fertilI zant e s fo sf at ados, • el de ori gen min era l (2 .3 2

g/ cm' ) . Esta es tambi~n la r azón por la que CRAHTREE y f RUD GILL ( 19 84 )

cons tat an mayores ve l oc i dade s de dlsoluclcin en el ye s o comercial obt enI do

tras la adición de agu a al hemihidratc .

de diso~ución del ye s o ha Sido estudiad a ecper~mental mente en labor atorio

por CAI1PBELL y i AN I Cr: (1 932) , HARDIE ( 196 7> y HE SSE ( 19 74) ; sin embargo no

se t i ene n referencias de estudios de estos aspectos e n c ampo.

Como se ña l an LIU v NA NCO LLAS ( 19 7 1 ) , KE HPER et a l. ( 19 75 ) y MANDADO et

a l. ([984) , e l pr oc e s o de diso lución del ye s o es un f enómeno superfi cial

que est á d i r e c t ame nt e relaC Ionado co n el área e ~puesta, por t a nto, la

te xtur a de la r oc a ye s i f e r a es uno de los factores físico~ que co ndiC i ona

su solubilidad .

A este r e s pe c t o , seria lógico pensar que l es di fere ntes t ip os

te ct ural ss del ye s o (a l aba s t r I no , sacarOIdeo : megacristal ino, lent icu lar,

en tur rón, etc ., ' presentar án, a igualdad de condiciones e xpar i nen t a I e s ,

distintas ve l oc i dade s de disolución en función de las diferenc ias de tama ño

cr I s t al i no , trabazón de los cristales e Interposición de matr I z u otros



2.- MAT ERIAL Y METODOS

IAqui t an i ens e- Vin dobonl ens e i .

tot a l i za ndo 53 en s a yos .

de ma yor

con co nt actos menos

crist ales

es tán const it uÍdos po r

por

me so c r i st a l ino s

micro crl st al ino s e st án c on s t i tui do s por

fue rtement e interpenet ra dos. con c onta cto s ~u y

a í ab as t r t no s

al ab astr l no s

seleccio nado c onsi ste en s e I s rocas de ye s os a labastrinos

I ~ ~ ld& n c ia de la t exlur a de l a roca ve s i f e r a en el proce s o, ­
. ~

ye s osLos

Los

El materi a l

La es tr uc t ur a de la s rocas ye sl f e r a s es nodu l a r e ~ turr¿n, con n¿d ulo s

cr is t a l es co n e xt In ci ón no uniforme (c . e . n .u . ¡ . de tama¡o e ntre 100 y 5 00

pm, es meno r que el de microc rista les.
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El estudIo exp eri mental de disol uc i dn se ha r ealizado mediante l a

cris ta l es de mayor t ama¡ o , entre 400 a 1000 pm,

s ut ur a do s y un ele vad o porcent a je de cr i stal e s co n extinCIón no uni torm e .

tam a¡o en el bor de de los n6du los y tam bi ~n fi nas ve na s de ye s o fi bros o

se cunda rio, qu e c orresp onden a l paso de anhidrita a yes o . El porcen taje de

e l onga do s v pr es e ntan text uras orient ada s con c i e rta tendenCIa co ncént ric a .

c r ist a les al otrlo morf os ,

Se obser van estr uc t uras nodu lar e s constitu id~ s

ti po c hi cken- wi r e ( MA NDADO, 198 7 : .

s utur ados v un t ama¡o co mp rendido en tr e 20 y 100 p m. Los crist a les e s tán

d iagen~t i c as sec und ar i as, ori gIn ada s por hidr at acIón de an hI dr ita nod ular

co a l e s c ent e s y fina s int e r po si c ion e s de mate r Ia l l ütítlc o. Las t ex tu r a s so n

micro V mesocristalinos, tr es de c ada t i po textu r al, que pro c e de n de las

can teras de Qu i nto de Ebro, pertenecientes a la Formación Ye s os de Zaragoza

i nme rs i dn de r oc as ye s i j e r as susp end I das en cursos de agua natu rales ,

de:" d t s o í u c r ón .
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diferentes ve l oc i da de s de disolución , la i nmers ión de las es fera s, que s e

prolonga durante una hora, sigue una pau ta rot acional entre l os puntos y

Pr es ent an abu ndant e s ve na s c 2 n t l fu ~ t r i c a s de ve s o l i br os o . r e l le nas por

cri s t a le s de t or mas ac i c u lare s que se d i s oone n perp end ic ular ment e a las

te xt ural es prod uc I rí ancaracteres

asegur ándos e as í l a r epr e se ntat i vi dad v

distintos

En es tos ves os la e s t r uc t ur a notiula r e s mucho mas

losquePensando

te mpera tura, el pH y se reco ge una mue s t r a de agu~ par a e l aná l I s i s de

paráme tr os hi dr oqu í ml c os .

par edes de l as vena s .

cursos de agua selecci onados.

a l ea t or i edad de los resu )tados.

En c ada una de l as i nme r s i on e s se deter mi na l a ve l oc I da d de flu jo , : a

gruesa .

Las rocas ye s í f e r as se han t orn ea do hasta pr op orcio narl es f or ma

esf éri ca. El peso de cada una de l a s esferas os c i la en t re 4973 y 5 17 7 g co n

di ámetros medios de 16 a 16. 2 c m a los que corresponde n ár eas s uperf i cial e s

comprendidas entre 802 y 820 cm2 • Las es feras d~ ye s o se han prepa rad ¿

convenIentemente de forma que pueden ser f ác i l me nte susp endida s en el agua

mediante la utilización de sirgas aceradas.

Los cursos de agua pr e s ent a n v a l ore~ me dio s de ve l oc i da d de f l uj o

ent re 0 . 3 y ' l . l ID / S , de conducti vidad eléct r ica entre 0 . 35 y 9 dSm- 1 ,

de concen t ración de ye s o en solución en t re 0 . 0 2 y 1. 2 3 gL-l e í ndice s

de saturación en yes o entre -. 3 3 y - 2.1.

En c ada curso y para ve r i f i c a r la inci de ncia de l a te xtur a de l a r oca

yes í f er a en el proceso de disol uc i ón a ig ua lda d de c ondic I one s hidr ául i ca s

e hidroquímicas, se ha n se lecc io nado has t a un máxi mo de t r es punt os 'pa r a

suspender las esferas de ye so . Esta situaci ón se ma nt iene du r ante tod o e l

estudio experiment al I t ant o a lo largo de l a secci ón t r an s ve r s a l co mo e n la

ve r t i c a l .



3.- RESULTADOS Y CONCLUSIONES

disol uc ión de los yes os en f unc i ón de sus c a r act e r e s textura les. Estas

d i f e r enc i a s s on de l or den de l 22 % s up erIor es en l os ye s os me sDc r i st al in os

respecto de los micr oc ri sta lin os .

se han cons ta tado diferencias en l a s ve l oc i dade s dee xperimentales ,

En el · Cuadr o 1 se recogen los resul tad os de ve l oc i dad de d i s o l uc i 6n de

los ye s os alabastrino s mIcro y mesocrista linos . En l os ye s os alabas t rI nos

mic rocristal inos el va l or promedio de ve l oc i dad de disoluc ión e s de 136

g /m~h, con va l or es mín imo y mj ximo de 69 y 24 1 g / m2 h. En l o s

ye s os a la bast ri nos mesoc ri stalinos s e han obtenIdo may or e s ve l oc i dade s de

dis o l ución que alcanzan l os 174 g im2 h . con va l or e s mínimo y má:: i mo de

88 y 302 g i m2 h. La medi a a rit mit ica de l a s dif e r en CI as de l a s

ve loc i dade s de di so luc ió n e ntre los ye so s meso y micro cr lstal inos es de 39

g /m2 h .

En el es t ud io de dis olu ción r ea liza do . v a i gual dad de cond i c Io nes

~ e s p u is de c ada ensa yo se obse r va l a evolu ci6n de Id mo r~ol oQ{a de las

esfe ras (apariCIón de peque ñas fracturas. poros, et c .; y de l os caractere s

te xt urales en lupa · binoc ular. y tran scurridas lb hor as de se ca do de l as

es feras al ai re, se control a la pérdida de pe so y se c ua nt i f ic a l a

ve l oc i dad de disolución de l ye s o prod uci da por u~l dad de superficIe y

tie mp o, que se e xpr es a en g ! m~h .



v mesocris tali nos .

lo s cr Is tales.
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los cr i s tales es tán fuertementequeadebe n

~ i c r o c r i s t a li n o s me socristal i nos !J

165 .6 2 19 . 8 54 .2
241. 2 302 . 4 61.2
212 . '1 2 7 7 . 2 64 . 8
209.5 25 3.5 44 . 0
2 03 . 1 263 . 2 60.2

84 . 9 9 1.6 6 .7
123 .9 164 . 2 40 .3
113. 0 145 .3 32 .3
135 .4 144.7 9 . 3
114 . 5 163 . 4 48 . 9
115. 9 137. 9 22 .0

69 .1 89 .1 20 . 0
69 .5 88 . 2 18 . 7

108.6 165 .6 57 .1
131 .4 185 .4 54 . 0

7 3 . 6 97 . 9 24 .3

X 135 . 7 174. 3 38. 6

s e

En Jos ye s os me so c rlstalinos . e l mayor ta maño de los crIs tales, s u

Cuadro i. - ~ e l o c i d a d e s de di so luc 16n de l os ye s os a la ba s t r i nos micro

VELOCI DAD DE DISOLUCION DE YE SOS ALAB ASTRI NOS
g/ 12h

La s menores ve l oc i dade s de disolUCIón r e gi s tr a da s en los ye s os

conSI de r ab l e t a ma ño . Ad e má s , lo s c on t act os in t e r c ri st al i nos y los pl anos de

de exfol iac i6n de l os crist a l e s , que en l os ye s os mesocris ta li nos so n de

heterome tría y e l me nor grado de trabazón interc ri stalino, multiplica la s

cris t ales, s e i nc lu yen l a s de c on t ac t o i nt e r c r i s t a l i no y las de l os planos

su per ficies de d i s olu c ión , entr e l a s que ade má s de l a s pr opIas caras de l os

mic rocris talinos

nódulos s in que ha ya pe ne tración de agua a tra vés de los cont ac to s ent re

det ermin a que la sup erficie de dis ol uc ión sea e l pr opio borde de los

i nterpenetrado s y 105 planos de exfoliación son mu y pe que ¡os, lo que



mas ac u s ad as.

dos t i pO S t e:tu r al e s est udiad os . s e confi rma la in c i denci a del ca racter

c on ab undan tes incl us ionesi mper fect as.

in cide t a mbién en las ma yores ve l oc i dade s de

l os c r i s t a I es can e::ti nc í ón no uni f o rme presentan

cri s t al ográ f i ca s

mlcrocris ta llnos.

Por ot r a par t e .

I

inte rc a lac ione s de mat er i a l e s l ut ít ico s Yl o mar go - cá l c a reos es común en l os

La s va r i a c i one s obs e r va da s en l as ve l oc i da de s de diSoluc ión de l ye s o ,

Puest o que e l de s a r r o l l o de micro f l s ur ac l ón y la e~lstencl a de finas
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te xt ural de l ye s o en el pr oc eso de disoluc i ón, y ya que este hecho se ha

ver i f i c ado aún c uan~o l a s text uras s on relati vamente s i mi l ar e s. s e pu eden

dedu c ir f ácilmente las consec ue ncias cua ndo l as di ferencias te ::tu ra l es sean

198 71 . V en consecuenc ia tien e n mayor f acili dad pa ra disol verse. Por tanto , '

fi na l de la exp er imentac ión supo ne un ma yo r tlempo de contacto de l os ye s os

no se pue de n ach ac a r a la ma s i nte nsa vel oc i da d dé f l uj o que oc as iona ría l a

disg regac ión me cáni ca de l a r oc a . ni t a mpoco a un proceso f í si c o de

lo s

con el ag ua .

des mo ro nami ent o pr oduc i do en los s uc eSl VOS pe rí odos de inmersión, lo qu e al

diso l uci ón pr oduci das en lo s pr i mer os .

líq uida s y num er osa s d l s c on t l nu l dad es en su e s tru ctu r a crist al i na ¡MANDADO.

e l ma s a l t o con teni do de c. e .n. u. en l os ye s os mesocr istalinos respecto de

estr uct uras

rugosldad de l a supGr f ic le y se pro duc e . un aumento not able del are a

de sa gra gec ió n f í s i c a de l os cris tales, con lo que se incrementa la

e x ; üi l a ~ l ó n co ns t it uy en v í as de pene t rac l ón de ag ua que fa vore cen la

s upur I i ci a l .
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ESCORRENTIAS SUPERFICIALES PRODUCIDAS SOBRE SUELOS
YESIFEROS SOMETIDOS A LLUVIA SIMULADA

F. ALBERTO Y A. NAVAS

U.E .'I. de Eda f ol ogía. Es t ac i ón Exper i men t a l de Aula Dei . C.S.I .C .

Apartado 202 . 500S0 Zar agoza (Españ a) .

In this wor k we us e rain s i mul at i on techniques to s tudy t he

effects of he avy stor ms , t ypical in the Ebr o med ium valley , on

the p r o d.u c tr í o n.. of s urface runoff from gyps í f'er-ous soils

Different r ainfal l int en sities were ap pl i e d to soils varying

i n slope , perc ent age of rocks at the s ur f a ce, mo i s t ur e and ve ­

getat ion cove r .

We f ound a c lear relat ions hip be t we en the characteristics

of sur face runoff and sorne environmental factors, mainly soil

slope and pe r cent age of rocks at t he surface . The runoff charac­

terist ics were dependent also on other factors , such as soil co ­

ver , ini t i a l moisture of soil and r ai n i nt ens i t y.

1.- INTRODUCCION

El agu a precip itada sobre la su perfic ie de la tier ra, puede dis cur r i r

por ella, acumularse sobre el suelo o bien in filtrarse. La relac ión en tre

la intensidad de la lluvia y la capacidad de i nfiltración será la que

determine la cantidad de agua que penet rar á en el s ue lo y l a que por

escorre ntía directa alimentar á los cauces supe rficiales (CUS TODIO y LL AM AS ,

1976) .

Si bien 105 · modelos c lásicos de infi ltrac ión, pr edi cen l a gen er ac ión

de es correntía su pe rfic ial únic ament e cua ndo las i nt ensi dades de la l l uvi a

excede n la capacidad de inf il trac ión del sue lo , KN APP (1978) Y KIRK BY

(1978) señalan que és t a puede ocurr ir a in t en s id ade s de ll uvia por de ba j o
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escorrentía y el ángulo de la pendiente,la

a l incrementarse la pendiente el agua escurre mas

de

que

la cobert ura veget a l produce l a intercepción de la llu via

c ons t a t an do

rápidamente.

Otros f ac t or es que afectan a la escorrentía superficial s e refieren a

de sen cad en ami ento

LA FFDRGU E 11977 1 Y CASE NAVE 119821,.

La pend i e nt e del terre no, su microtopograf{a y longitud, infl uyen en

el hec ho de mantener durante mas o menos tiempo una lámina de agua so br e el

s ue lo. PLOE Y y BRYA N ( 1986 ) est ablecen re laciones entre el tiempo de

La t extu r a i nf luy e por sí misma y a través de su incidencia en la

estab ilid ad de la estructura (PLDEY y PDESEN, 1985). La presencia de

ho r izontes c on diferente s capacidad es de infiltración, o la e xistencia de

an isotropí a con desarrollo de capas de diferente conductividad hidráulica ,

los carac teres prop ios del s uelo. Entre ell os ha y que destacar el tipo de

suelo, la te~tu ra, la est ruct ura , la e xistencia de anisotropía, el estado

de humedad inicial, etc. Así las canti dades de ' es correntí a va r í an en

f un c i ón del tipo y propiedades del suelo ¡PDNCE, 1975; HDDGES y BR YAN 1982;

PEPPER Y 11 DRR 1SEY, 1985 ).

t err eno ,

de la ca pa cidad de infiltración en suelos estratif i cad os, cuan do l a

e ~ iste n cia de un horizonte inferior de r e duc i da conducti vidad hidráulica

li mi t a la capacidad de almacena miento de la ca pa superior.

La cantidad de ' es c or r ent í a superficial depende de un conjunto de

factore s, que no son ind ependientes entre sí. entre los que c a be destacar

l a s prec ipitaciones, la topografía, la ve ge t a c i ón y el tipo de suelo .

Re s pe ct o a los f actor e s que hacen re ferencia a las caracter ís ticas de l

f avor eci endo su infiltración. Es ob vio, que tanto la espe cie como la

'dens idad de l a vege t ac i ón j uegan un papel prepo nderante en los procesos de

escorrent ía supe rf fcia l, como así han e videnciado LAFFDRG UE y NAAH ( 197 61,



LAF FOR GU E (1977 ), CAS ENAV E · ( 1982 ) , AGASSI e t al. (1 985 ) y BURT ( 1986 ) ,

dat os de AGASSI y ARBEL ( 198 1) .

a fe ct an di rect amen te a la escor re ntía super f i cial, como a s í han constatado

( 1985 ) se ñalan que si bien en est as
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en dist intas co ndicio ne s y t ip os de s uelos

á r i da s la influencia de l a litología sobre lazonas

supe r ficial

lasEn

escorr en t í a

infilt rac ión es muy marcada, hab ida cuenta de s u est recha relación con la

dens idad de la red de drenaje, por lo que cuando ésta sea mu y densa, como

~s el caso de la depr esión me dia de l Ebro en la que la s formaciones

yes í f e r as centrales presentan un modelado en "bad- l ands" , l a escorrent l a

s upe rf icia l alcanzará mas r ápidamente los c ur s os de agua .

Por el lo, e l objet iv o de este estudio es deter min ar l a pr oduc c i ón de

reg iones semiár idas, AGAS SI et al.

zona s l a preci p i t ac i¿n an ual es ba ja , se pro du cen gr a ndes pirdidas de · agua

por escorrent ía supe r f ic i a l. Así, en el Nor t e de l Ne ge v ( I s r ae l) , c on

va l or es de preci pi taci ón me dia a nua l de 3 80 mm , sim i lares a 1 0 5 e xistentes

en la de pres i ón me di a de l Ebr o , HILLEL (1967) registra cantidades de

es corr entía de l 30 - 5 0% del to ta l de la l l uvia caída sobre parcelas

experi me nta l e s de 6 m2 , y de l 5 a l 20% e n par celas de 10 has segun

qui ene s ademá s se ñalan que el estado de hu medad inici al del suelo es un

f ac t or condicionante de su capaci dad de infi lt rac i ón y por t an t o del

desa rro ll o de escorrent ía s uperf ic ia l .

En el ot r o gr upo de factores que define n las características de las

l lu vi as , de s t a c a n , f undamenta lmente, la intensidad y duración de las

precipitaciones. De fo rma genirica, se puede af irmar que si la intensidad

de la lluvia es super ior a la capacidad de infiltración, una ve z saturado

el s uelo se pro ducirá escorrentía, si por el contrario es inferior no se

gen erara escorrentía. a menos que influ yan otros parámetros.

En cuanto a la ocurrencia de las escorren t ías superf iciales en las



1.25 m so met id as a l luv ia si mul ada.

húm edo.

de epi sodios torment osos de máximaocurren cia1 a

re pre sen t a t i vos de la s car acterísti cas pluvi ométri cas de l

s ue l os pre s entan una ve ge t ac i ón natu r al le ñosa IV), c uya

tra s

Estos

Las i nt ens i dades de 11uvi a sel ecci onadas de 48 (P 481 Y 58 (P581 mmí h,

duración ,' con un perío do de re tor no de 10 añ os y un ni ve l de pro babili da d
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son r epr es en t a tiv a s de las precipitaciones má xima s de 15 mi nut os de

en e l ámbi to de ' 1a de pres i ón medi a del Ebr o.

El ti empo de aplicación de lluvia sim ul ada s ob r e c ada un a de l as

16X. La superficie de la parcela es lisa s in r rqos i datí es o acan al adu ras qu e

parce las es de 15 minu t os. Las s eri e s de e xp er i mentaci ón en ca da parc e l a

At endi e ndo a los factores que i nc ide n pr imor dialmente en la producc i ón

El es t ud i o s e r ealiz a e n par ce las experime ntale s de di me ns iones 1. 25

de oc ur re nc ia del 90X, c orr e sp ondi ent es a e piso dios tor mentoso s pr oducid os

dis tr ib uci ón po rce nt ua l va r í a desde e l I X en Syf.osem s a l 50X Serosems .

Los ens ayos ' se real i za n en do s esta dos de hu me dad de l s uel o, seco y

/
La s pa rce l as pr e s ent an pendien tes Ipl con va l ore s prom e dio s de 4, 8 Y

2.- METDOq EXPERIMENTAL

l a For mación Zaragoza . El porce nt a j e de ro co s i da d IRI as oc i ada a cad a t i po
¡

de sue lo aba rca desde e l 0 .2 X en Sero s ems a l ~ 4 X e n Sysrose ms.

fa c il i t en o retarden l a eva cuac i ón de l a e s c o r r e n~ í a .
f

Ser os ems, desar ro l la dos sob re li tofacies yesíf er as mas i vas perten eci ent e s a

la clasific ac i ón de KUB1 ENA 119521 a Syr os ems ca lizo s , Xe r o r ends i nas y

de escorrent ía se han seleccionad o s uelo s ye s íf e r os , que corresponden se gún

inten s idad ,

yesif er os,

sector centr al de la de presi ón del Ebro.



e=per imentaci¿n se reg is tra la c a nt i dad t ota l de es cor r en t Í a ILI re cogi da,
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3.- RESULTADOS

f inal i z ar la

(e ) r epresenta elEl coeficiente de e s c or r e ntÍaen mm /h.

Las c ant idades de escorrent ía pr e s ent an una no t ab le va r i a bi l i dad e nt r e

parce las de un mis mo tipo de s uelo. El va l or med io mín imo (4 . 18 mm/ h ) se

De las posib le s al tern a t i vas pa r a l a expres i ón de l os r e s ult ad os de

cada experime nto, ya sea la e s t i ma ci ón de l a medi a ar itmé t i c a de l as c i nc o

mues t r a s , con lo que los va l or e s a sí obt eni dos se r ef er ir ía n a l epi s od i o

t or ment os o de· 15 min uto s de dura c ión, o bie n la co ns i deraci ón de la med ia

ar it mét i ca de lo s val or e s de la s c ua tro ~lt im a s mu e s t r as, c omo expr es i ón de

una situac i ón de equ il ibri o , se opt ó por esta ~lt i m a .

Los resu lt ados de l os 15 experimentos real iz ad os en Syro s ems y

Xer or ends i na s respectivamente y de los 21 corresp ond ien tes a Se r os p.m s se

recogen en el Cuadro 1.

Al inicio de la escorrentía se "registran va l or e s mínimos; no obs t ante,

t ransc urridos los tres pr imeros minutos de s u desencadenam iento , el proc e so

de escorrentÍa presenta un a clara te nde nc i a a l a r áp i da es t abi li z aci ón de

sus val or es .

porcentaje de prec ipitaci ón que aparec e como escorrentÍ a, par a su

estimación se mide el vo l ume n de agua aplica da en c ada expe ri me nto.

de t res min utos, t otali~ando 5 muestr as po r ens ayo. Al

expre sada

c i nco ensa yos.

En c ada ensayo e l mues t r e o de l a esc or re nt Ía se r ea liz a a i nte rva lo s

comie nz an con su e lo s eco y vege t a c i órr (s e UI y l lu via de 48 mm /h, para

seguir por es t e or den co n l l uvia s de 58 y ~8 mm Jh en c ond i ci one s su c e s iv a s

de s uelo h~me do con ve ge t a c i ón IHCV) y s i n ve ge t ac i ón (HSV) ha st a comple t a r
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Cuadro 1. - Media aritmética y desviac i~n e standar d e l os valores d e es­

correntía superfic ial ( L) y coeficiente de escor rent ía (e)

para las distintas condic iones de pendiente , r ocosidad , vege­

tac ión e intensidad de precipitación de l os s uelos yes íferos .

estudiado's .
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mm / h y 2B. 4 Y 5.7 para l a de 58 mm /h, con una ordenación de va l or e s de

co rr es po nd en a l os r e a l i z ados en pa rcelas en estado hú me do y sin vegetación

los

los

de

directamente c on l a

(hume dad in ic i al ) ;

va r ía n

in de pendi en t ement e

que

o edáf icos

mm /h

experi mentos con l l uvi a s imulada ,

35 .9

r oc osi dad)

(v e ge t a c i ón)

y

los

Xe r or e nds i na s y Syr osems , que se identifican en el

14. 7

son, respecti vamente, 26. 7 y 6 . 6 para la llu v ia de 4B

t odos

de

(pe nd i e nt e ,

biológic os

entre

(mm/h )

má:{i mo

y pode r establecer las f unc i one s - de r e l ac i ón co n f ac t or e s

a

De

De f orma gener a l i zad a y pa ra to~os los t ipos de suelos , 105 va l or e s

IH SVI , de Sero s e ms ,

mínimo

mm / h .

parti da,

pend iente. La distr ibución de los va l or e s de l coeficiente de escorrent ía

confir ma es ta tend encia .

La r eali z ac ión de un t est de sig ni f ic ac i ón de difere ncias de l as

Cuadro 1 media nt e un aster isc o.

Pa r a los 18 e xperiment os de referencia, y confirmando los datos de

HILLEL ( 1967>, l a medí.a aritmÉtica y desviación estandar de la escorrentía

fi s i ogr á f i cos

cond i cio nantes

superficial

seleccionados como refe rencia para un ificar la s i t uac ión e xperimen t al de

medi os má xi mos de escorrentía se pro du c en , e n pa r c e l a s en estado húmedo y

s i n vege t ac i ón , y 1 05 mínim os en parce las en estado seco y con v eqe t ac í on .

Resp ec t o al coe f iciente de escor rentía, los va l or e s medios mínimos de

O. OB y 0 . 16 se registran en Syrosems SCV y el miximo de 0.61 en Serosems

HSV, 8i. . Los mayores coeficientes de escorrentÍa se prod ucen en Serosems,

se gui dos de Xe r or e nds i na s y Syros ems.

pr odu ce en 5yrose ms SCV, 8i. y el má:<imo (3 5 . 9 mm/h ) en Se r os e ms HS V, Bi.. No

obs t ant e , los rangos de va r i ac i ón de la escorrentía pa r a l os distintos

tipos de s uel os son bast á nte si mil a r es . En Sy r os e ms os ci la n entre 4.1B y

30 .8 mm / h, en Xe r or ends i na s e nt re 18. 9 y 3 1. 7 mm /h y en Serose ms se

a l canzan 1 0 5 mas a ltos va l or e s que est án co mpr endi dos entre 20 .3 y 35 . 9



25 0

pendiente. Se puede afirmar, por tanto, que cuando las diferenc ias de

y 2 . presenta n va l or e s medios de escorrentí a

17 . 6 - 0 .217 R (%) + 0 . 416 P (%) + 0.170 P (mm/ h )

fUf.IITf. DE GJlIIDDS DE SUM~ DE MElll~ nE f
v~nI~ClOtl LIBERT~D CUIIUIIJ\DOS CUIIUIIIIUOS

Regresión 304 101 4.4
R % 213 213 9. 3
p % 77 77 3. 4
P .m/h 13 13 0.6

Residual 14 322 23
R

2
0.485

Error s. 4.8

L (mm/h)

R 0 . 700

la rocosidad, l a pendiente y la intensidad de la precipitación .

El siguiente análisis de va r i anza muestra que la ordenación de

múltiple estableci da .

producción de escorrentía está fundamentalmente a fectada por la pend i e nt e.

producción de esco~rentía super ficial conc urren factores del medio físico y.

El análisis de los resultados ha puesto de manifiesto que en la

porcentaje de rocos idad en los suel os yesíferos no son mu y marcadas, la

parcelas de Syrosems

medias a r i tméticas de esco rrent ía en tre las 18 parce la s de r e f e r e nci a , a

los mas altos porcentajes de rocosidad en esta s parcelas, y diferenciados

factores con incidenc ia en el proceso de escor rent ía, es de mayor a menor :

climáticos, cuya partic ipación en el ~roceso se mue s t r a en la regres ión

los valores medios de escorrentía están originadas fundamentalmente por l a

t r avés del a t de St 11den t (eua dr o 2) , ha pue s t o de mani f i e st o que 1as

de l as otras. Entre las demás parcelas de Syrosems, Xe r or ends in a s y

significati vamente diferentes de las restantes parcelas, ello es debido a

Serosems predominan las situaciones de homogeneidad , y las dif erencias de



Cua dro 2 . - Similaridad es tadí s tica d e l a s me d i a s ar itméticas de escor rentí a superficia l e ntre cada una de
l as parcelas e n es t ado húme do y s in vegetac ión .

1 2 3 4 5 6 7 8 9 10 11 1 2 13 14 1 5 1 6 17 18

1 - *** *** *.** *** *** *** *** ** *** *** *** *** *** *** *** ***

2 * ** *** ..... * ** *** ** ** * *** ** *-** ** * *** ..**

3 * ** * - - *** - - - * - *** *** *** ***

4 - - * - - - - *

5 - *.. - - - - ** - - ** ** *

6 * - - - - *

N 7 - *..* - - - * - *** ....... *** .......
C11....

8 ** - - - - - *** *** *** **

9 ** *** *** - ** **
*** > 3 . 71

10
** 2 .4 5 - 3 .71

11 - - - *** *** *** **
* 1. 94 - 2 . 44

1 2 - - *** *** *** "***

13
- > 1. 94 - *** *** *** ***

14 i - 5yro sem 41.P48 7- X er o r e :1d=- ~:¡ a 4:~p <18 1s- 5 ~ r o s e m 4'l.P48 ** ** * *.. 5y r os e m 4'l.P58 8- Xe r or Ena s i na 4/.P58 14- Se r os em 4'l.P58
1 5 3- Syr osem 8'l.P48 9 - Xe r oren as ln a 8:(>' 48 15 ·· Se r os em 8'l. P48
16 4- Syr os e m 8'l.P58 10- Xeror.en osl noi 8i:P58 16- Se ros em 8'l.P48

S" Syros em 16'l. P48 11 - Xer or ends i na 16'l.P48 17- Serose m 16'l.P48
17 b - Syrose m 16i(P58 12-· Xe ro re nd s i na 16'l. P58 18- Sero se m 16'l.P58
18



La ca ntida d de es c or r ent í a varía dir e ctamente con la inten si dad de l a

pa rcelas en estado seco .

( r =O. 756, SE> = 0 . 9 75), Y

(y) , para l a intensidad de

(P58 ) , y re fl e j a el e f ect o de

entre l os va l or e s de escorrentía de pa r c e l a s HCV

de val or e s ne gati vos s upo ne una mayor pro du c ci ón de

me di o f í s i c o , con una inci denc ia primo r d ia l de l a r oc osidad y

los prod uc idos en pa rce l as SCV",

La r egresió n l ine al

predominio

l a pendiente .

5.- CONCLUS IO NE S

252

bibliog ráfi cos, la prod ucción de e s cor r e nt í a se re la ciona di r ec tamente c on

El efec to de la vege t ac i ón se anali za mediante el es t ab l ec i mi e nt o de

escorre nt ía s upe r f i c i al.

l l uvi a , de f orma que un i nc r emento de és ta en un 10 % s upone un 3 % más de

Pa r a un episo dio tor mentoso y c onf i r mando numero sos antecedentes

Como se muest ra en la Figur a 2, l a prod ucción de escor rentía es mayor

factores de l

la pr oduc c i ón de escorrentía que es s ig nif ic at i va mente infer i or en las

pr ec ip ita ci ón de 48 mm í h es y = -4 .25 + O. 83x

evidenc ia qu e e l estado de humedad inicial del suelo c ond i c i ona f ue r t ement e

retenció n de a gu a po r la ve ge t ac i ón .

en las parcelas HS V respecto de las HCV, e s t e hech o que se c on stat a e n la

va l or es de la di f e r enc i a de es co rr en t í a en parc el a s HC V y HSV (Fi gura 1) .

pr eci pitación como par a ambas.

l ~ mayor i nte nsidad " de pr ecipitació n

reg resion para ambas inten sidades de pre cipitación, es aún mas a cu s ado pa ra

El

escorrentía en parcelas HS V, tanto par a cada una de l a s intensidades de

regresiones linea les simples entre el porc entaj e de co bertura ve ge t a l y los
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Figura 2 . - ' Regr es i one s lineales entre los valores de escorrentía en parcelas
HSV y HCV, para ambas intensida~es de precipitación y para cada una
de e llas por separado.

Fi gur a 1.- Regresiones l i neales entre el po rcentaje de cobertura vegetal y los
valores de l a diferencia de escorrentía en parcelas HCV y HSV; para
ambas in t en s i dade s de precipitación y para c a da una de ellas por s e
parado .
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Ecologyc al st u dy of Huec h a r i ~e r .- I n t his papel' , a st u dy

phy s i c al-che mic al i t is e ve n as eco logyca l of t he zones Hue c h a

r í v e r , where h a s ce rtai n wa t e r e va l ua b le . Its compi lent t.he

s pe c í.e s i de nt ificated durin g o ne y e a r. In t he f o u r- stations

t hat h a v e stu died, i t is set up a Cladopho retum g lome r a t ae asso­

ciation i n t he H- 3 a n d H-4 stations¡ a Me los i re t um a r enariae

associat io n a l l toget her wi th Diatomet o - Mer id i on etum for stat ion

H- 2 a n d fi na l ly t he Oscill a torietum association, i n t h e H- l sta ­

tion .

INTRODUCCI ON

Como conti nuació n d e un a serie d e trabajos qu e estamos

realiza ndo acerca d e l a s ca racter ísticas e c o l ó g i c a s d e los

ríos d e Ar a g ón , e x po nemos a cont i nuac ión un est ud io d el rL o

Hue c h a .

El r ío Hue c h a tiene s u n a cimi en t o e n l a s est ri bac iones

del Moncayo , p r óximo a l pueblo d e Añón. Di s cu rr e a p rox i mada ­

me nt e e n dir e c c ión N. E . , pa sa por Al c al á d e Moncay o y al ll e­

gar a l o que ll aman l o s del l u g ar c omo e l Vad o , t ue rce s u c u r­

so h a c i a e l Este, d i s cu r r i endo s u cauce, seco y ped r e g o s o , pa­

ra l e lo a l a Cu r -r-e t e r a Na cion a l 122 , pa s and o por los puebl o s

de Bulbuen t e y Mal e jón .

El c u rso d el r í o Hu e ch a se d e sl i z a a l o la rgo d e Ainzó n

y má s tarde po r las cercan ías d e Maga l 16n, atraviesa la Carre­

t era 122 d e Zaragoza a Bor j a , d i s c u r r i e ndo p o s t er i o rm ent e por

Ag6n, Fr e s c a l o , Mall én y Co r-to s , d e s emb o c and o en e l Ca nal I m-
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pe r' i al y r io Ebro e n el pu eb l o d e Novi l las .

NA VARRA.

ZA RAGOZA

Esque ma de l a cuenca del r ío Huecha y ubicación de las es t aci ones aues treo.

Escala 1:400.000.

El cauce de éste ri o se e ncuentra tot a l mente seco e n gra~

d e s t ramos . Regat o d e ag~ a que discurre por Al cal á d e Mon c a y o

e igualmente pobre a s u p a s o po r Bulbuent e , a u n cuand o a la

sa li da del pueblo recu pera a lgo d e s u e xcaso ca u dal por' el

a p orte d e un ma n anti al d e l que se a u r-t e n los mo r a d o r e s d e l

puebl o . Se ma ntien e , a s u pa s o po r Malejón y se i ncrement a

considerablemente e n Ai nzón, d e b ido a d o s manant i al e s i mpor­

tantes . Las aguas e n éste puebl o so n util i za d a s par a e l r i e ­

go d e l a s huertas med i a n t e a z u des, por' ~o q ue al ll e g ar a Ma­

ga l16n se reduce considerab lemente s u ca u da l, qu e a l ser u t i ­

l i z ada s sus excasas aguas par a e l r iego , d e t e rm in a qu e a s u

pa s o po r Ag6n a pa re zca u n ca uce tota l mente seco . A par t i r d e

Mall én , debid o a l a po rte d e a gu a s d ivers as , a par'ece un cau da l

relativamente impo r t ant e q u e se man t i en e con a lte r nati vas v a ­

rias h a s t a s u d e s e mbo c ad u r a e n el r io Eb ro .
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MATERIAL Y METOnOS

a) Campo de t rabajo

Se h an elegido como e s t a c i o nes d e mue s tre o , las qu e a

c ont i nu a c i ón d e citan :

Es tación H-l

Se e nc uentra ub i c ad a h a c i a l a pa r t e i z qu ie r d a d e l pu e n t e .

qu e s a l va e l cauce s eco del r í o Hue ch a , d e sde la carret e ra c o ­

marc al d e Ve ruel a d e Añón , al pueblo d e Alca lá d e Mon c a y o .

El a mp l io cauc e tota l mente sec o se hal l a r ec ubierto d e ca ntos

roda dos y ~nicament e ~n s u margen d e r e cha , d i s cu r r e un peque ñ o

regato d e a gu a que s e corres po n de a l o s comi e nzos del c urso

de l rí o Hue c h a , El ca u da l e s sumament e r educ i do, c a u ce muy

e s t re c h o , ·d e un o s 1 5 c e nt í metros de p r o fund idad c omo má x imo.

Se a prec ian a lgu n os e n s a n c h a mi e n t o s , d on d e d omi n a u n p Lo c ó n

de e s pe c i e s d e l género Os cillatoria así c omo gran c antidad d e

mat eria orgánica e n descomposición. Las o ri l la s mu e s t r a n u n a

vegetación po c o d e s a r r o l l ada , estan do r e presentada e s pec ia l ­

ment e po r ma t a s d e Ly th r um sa lica r ia y Xanthium st rumar ium .

Estac ión H-2

Esta e stación se s í. t úa e n e l pu e b l o de Bulbuent e, a g uas

a ba jo del puent e que salva e l cauce del rí o Hue ch a , e n la c a­

r rete ra c oma rca l d e Bu lbuent e a l a l o c al idad d e Amb e L , Se

trata de un a mp l io cauce, s u mame nte pedre g o s o y tot a l ment e s e­

c o. La e s t ac ió n d e mue s tr e o s e h a ub i c ado , aguas a bajo , a

un os 2 kilóme tro s del citad o puent e , l oc al i z á nd o s e e n l a ma r ­

gen derecha, un est rec ho cauce d e un o s 20 c e ntímet ros d e a n­

c h u r a , por donde di s cur r e e l a g u a act u a l de é s te río . Es t e

cauce vestigial se e n c ue nt r a e nma r cado po r un a fro ndosa ve g e ­

t aci ón rep r e sent a da por c ho pos, Rubu s f r uticosa, Lythrum sali­

caria e n frondosa s ma t a s , fl orida s du r ant e e l me s d e s ept i em ­

b r e a s í c omo igualment e ma t a s muy d e s a r r ol l ada s d e Men tha syl­

v est r i s, i gualment e flori das e n di ch o me s. Las zonas s ecas
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d e l cauce, pr6 x ima s a é s te regatu d e agua, se h a l l an cub iertas

po r a mplias ma t a s de Sc irp u s Hol o s ch oenus , as í como igua l me nt e

po r un a densa vegetaci6n r e prese ntada po r el Samb ucu s n i gra.

Estaci6n H- 3

Se sit~a e s t a estaci6n aguas arriba del puent e que sal va

e l rí o , e n l a carrete ra d e Bor j a a Ain z 6n . Ex ist e u n a mplio

r e manso que a lcanza un a p rofun di da d d e má s d e un me t r o . El

cau da l de l r ío Huecha se e n c uent r a incre menta do p o r l a p r e s en ­

cia de un pot ent e man a nt i a l qu e vi e r t e s us aguas, a u nos SOO

me t r o s a ntes de l citado puent e. Son aguas limpias y trans pa ­

rentes . Durant e e l me s d e ma y o , e l fo n d o del c itado r eman s o

s e hall a tot almente invadido po r e l Nasturtium offi cinal e.

Entre l a s ma t a s del Na st u rt i um o b e r r o , s e e n c u e nt r a n f o rm a ­

c i on e s de Ca l lit ri ch e stag na l i s . En las orillas, a r b u s to s d e

'Se mbu cu s n i gra y ma t a s d e Ly th rum sa l i car i a .

Estac i6n H-4

Se ub i c a a la e nt r a da del puebl o d e Maga l 16n, a un lado

y otro del · puent e corres po n di e nt e a l a carretera d e Za r a g o z a

a Bo r j a .

El cau da l s e e nc ue nt ra sie mp re muy di sminuido , e x i s t i e n d o

área s de est a ncamiento . El cauce se hall a tota l me nt e invadido

po r el Nastur tium offi cinale y l a p a r t e cent ra l está e n g ra n

p a r t e i nvadida por e l Ca l l it ri ch e stagnalis.

A un lado y otro d e l pu ent e y oc u pa ndo e l área d e aguas

más o me n o s e s t a n c a d a s, a p a rece n ma s i v a s formac ion es del Iris

pseudoacorus , f lo r i dos du r an t e e l me s de mayo . Estas aguas

so n i gua lme nt e l impi a s y t r ansp a r ent e s .

No.se h an e s t a b lec i d o má s estac io ne s d e mue s t r e o a pa r t i r

d e ést e ~ltimo lugar, ya q ue e l c urso a parec e totalme nte s eco ,

e n localidades como Ag 6n y Fr- és c a n o mi ent r a s que a pa r t ir d e

Mal lén, so n aguas que . n o a portan caract e res e c o1 6 g i c o s n a tura­

l .es de éste curs o f l u via l .
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b) Técnicas de trabajo

De sde oct u bre d e 19 8 6 h a s t a fi nales d e s eptiembre d e

1987, se h an llevado a ca bo muestreos mensual es y e n ocasiones

quinc e nales, par a estudiar posibles variaciones e n los paráme­

tros f ísico-químicos así como e nla mi c r o f l o r a y mi c r o f a u n a .

Para l a determinació n de la tempe ratura y oxíge no di suel­

to, se h a utili z ado el a pa r a t o Be ckman Mod . Fieldlab .

Lo s a ná l isis qu ími c o s se h an r ealizado e n l a Estación Ex­

perimenta l de Aula De i , agradecie n do a l Dr. Lui~ Monta fiés, s u

cola bo raci ón e int e r é s en faci litar nos los pa r áme t r o s qu ími c o s

que n o s in t e r e s aban.

En la i de ntificación d e l o s ejemplares corroespo n di e nt es

a la mi c r oflo r a y mi c r o f a un a se h an consu ltado los t.rab a j o s

de MA RGALEF (1 9 5 3 , 19 5 5 ) , DOSSET y MON ZON ( 198 8), CAMA RA NIÑO

(195 1), KO STE ( 1978), HARTMUT BI CK (197"2), KIEFE R Y FRYER

(197 8) .

OBSERVACIONES Y RESULTADOS

a) Parámetroos físico- q u ímicos

Las d e t e rm ina c i o ne s efectuadas e ntre 19 8 6-1 9 8 7 corres po n­

di e nt e s a l conte n i d~ e n oxígeno, tempe ratura y pH , n o s h an

p roo poroc io n a do los sigui e ntes d a t o s medi o s :

Estació n H-l H-2 H- 3 H-4

Te mpe r a t ura e n CQ 15 14 15 14

O2 e n mg ro s. jl 4 , 3 7 4 , 1 1 ,2

pH 7 7,5 7 8

Se observa qu e e n la estación H- 2 , donde e l agua circula

c on relat iva v e l o c i d ad e ntre las p i ed r a s s u merogi das, d e t ermina .

l a e x i s t e n c i a d e u n alto cont en i do e n oxígeno, mi.e rrt r-a s que
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la estación H- 4 , con u n cau da l muy r educ ido , ac u mu lado e n pe ­

queño s remansos, con gran canti da d de r e s t o s o rgánicos, es

r-e s po n's a b Le de u n exiguo contenido e n oxígeno .

El análisis q uímico d e é s ta s aguas en l a s estaciones d e

mu e s t r ,e o n o s h an p r o p o r c i o n ad o los siguientes resultados .

Ta bla 1 . - Co mposic ión d e l a s a g ua s del rí o Hue cha apr e c iad a en las d i s t i n t a s e s t ac i o nes .

Año 19 86 - 19 87.

Al c al á d e
8ulbu~nte Ainzón Magallón

Monc a yo

' 11 - J 11 - 2 11 - 3 11 -4

mgr. / I me q /I mgr·. / I meq /l mgr· . / I meq/1 mgr·./ 1 meq/I

Cu r' b u n a l o t:J 0,0 0,0 0,0 0 ,0 0,0 0,0 0,0 0 ,0

U i c a r-b ona t .oes 3,104 S, 09 3,0 2 4 ,96 3, 23 5,36 3 , 19 5,2 3

Su l f a t.os 0 ,0 0,0 0 ,0 0 ,0 0,0 0 ,0 0 ,0 0,0

Clo r u r o s 1 ,09 3,08 1 ,07 3 ,40 1 , 6 3 4,6 2 ,4 6 ,7 6

Ca lc io 0 ,64 3, 2 1 0, 804 4,02 1, 1 8~ 5 ,93 1 ,99 9 , 96

Magne s i o 0 ,1 26 I,O S 0,11 6 0, 97 0 ,23 2 1,94 0 ,7 38 6, 15

Sodio 0 ,57 5 2, .SO 0,096 0,42 0 ,547 2,8 3 1 ,16 8 5,08

Cunduct.i vi da d
~Ip.cl rica e n 0 , 9 8 0 ,4 9 1 ,07 2 , 03
mmhot:i

Con los resultado s a nal íticos obtenidos e n las aguas q ue

d i s cur r e n p o r las d i s t in t a s estaciones, se o bserva e n p r ime r

lugar la a use ncia tota l d e s u lfatos resu ltante d e que e l r í o

Hu e ch a n o circu la p or ter re nos yesosos .

Lo s b i c a rb on a t o s e n co ncentrac iones más bien b a j as , se

mant i enen e n co ncent raciones d el orde n d e l o s 3 mg rs. p o r l i ­

t ro, experime nta n do un a concent r ació n má s e le v a d a e n l a esta­

ció n d e Bu lbu en t e con u n a va lo r med i o d e 4 , 9 mgrs. /l, p o s ibl e ­

ment e d e b ido a su p a s o po r un a a mplia zona ca l i za .

Las concentraciones catiónicas so n má s bien b aj as, p o r

lo que se trata d e u n a s aguas ma r c adam ent e pura s si n contami-
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mineromedicinales,

géne r o Nasturtium

nant es p r o c edent e s d e i n dustr i as, coincide nte con las caracte­

rísticas de éste c u rso f l uvia l, c uyas aguas, especialmente las

que c ircu lan por l a estación H- 3 i ntensamente alimenta das por

manant iales s ubterráneos y rápidamente ut i l i z ad a s pa r a riegos,

no han ten i do tiempo para a lte r ar l a pu r e z a d e las mi sm a s.

El gr a do d e pure z a d e éstas aguas viene confo r mada po r

la con duct i v i da d que oscila e ntre 0, 9 8 mmh o s o mi c r o s i eme s y

e l d e 2 , 0 3 mmho s que pr e s en t an l a s aguas d e la estac ió n H-4.

En limnología se est a b lece que un a con ductivida d por deb a j o

de 50 mmhos caracte r i za a unas a gu a s muy pu r a s.

CAMARA NIÑO (1 950) conf i r ma e n s u s obse r vac iones d e aguas

la c i rc u n s tanc ia d e que l a s espec ies del

so n prá cticament e i ncompatib les e n aguas

qu e c o nten g a n s u lfatos, l o que r epre s en t a un ind i c ad o r b i ol ó­

gico - qu í mico, po r la circu nstanc ia d e qu e l a s aguas d e l r ío

Hue ch a a l no pre s ent ar s u lfat os, sea n res ponsab les d e un de s a­

rrol lo masivo del Na stur tium o ff ic i na l e, como hemo s podido ob­

servar, part i cula rm ent e e n l as e staciones H- 3 y H-4.

b) Microf lora caracter íst ica

A continuación se e x po ne n l a s formas v e g e t a l e s pe r t en e ­

c ientes al grupo d e Al ga s que han sido d e t e c tada s a l o l a r g o

de un año de obse r vac iones .

Cianofi ceas

Género GLOEOCAPSA

Sobre la superfic i e d e l as piedra s sume rgida s co r re s po n ­

dient es a la e s t ac i 6 n H-2 s e han e nc ontrado g ran de s c antidad e s

de la e s pec i e Gloeocapsa Juliana, c u yas cé l ulas mid en 4 mi c r a s.

Género GOMPHOSPHAERIA

En t re el mucílago gela tino s o que se s it úa s ob r e l a s u per­

f ic ie d e las p i edra s sumerg idas , s e h a de t e c t ado e n todas l a s
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e st a c iones d e mue s tre o , l a p ~ e s en c i a d e un a s cé l ulas má s o me ­

n o s c u ne í.f o r-mes , que se correspon de n con l a es pecie Gomph o s ­

phaeria la cust ri s , muy típica e n aguas eutróficas . MA RGALEF

(1983) corrobora éste caracter e utrófico en ésta especie, coin

c i dente con u n pH s it ua do en u n v a l o r e ntre 7 y 8 .

Gén e r o APHAN IZON ENON

Entre l a s ma s a s celulares correspondientes a l gé nero Gom­

pho sphaer ia, aparecen unas células cilin droideas, agrupadas en

cortos tricomas, re presentantes d e la: espec ie Aphan izonenon

f 1 osaquae, p r op i a d e aguas eutróficas . En las aguas d e l río

Hue ch a ofrecen un marcad o d e s a r r ol l o , i ndicati vo del caracter

po c o mine r ali z ado que tiene n las mi sm a s , he ch o comprobado por

el análisis qu í mi c o .

Género OSCILLATORIA

En todas las estaciones se h a n d e t e c t ad o d o s especies,

Osc i l lat o r ia sp len d i da, e n tenues filamentos d e 2 mi c r a s d e

d i áme t r o y ·la Osci l lator ia i rrigua, co n fila mentos d e 5 mi c r a s

de d i á me t r o. En las estaciones H- 2, H- 3 y H-4 aparecen muy

dispersas, pero e n cambio la estación H-1 ofrece una ma s i v a

y copiosa ma s a de éstas d o s especies, que d omina n d e tal for­

ma , que h an he ch o d e s ap a r e c e r a otras a lgas fi lamentosas, cons

tit uyen do por tal circunstancia un plo c ón f u n damental d e l gé ­

n e r o Osci l lator i a . Este tipo d e plocón se e nc uentra asociado

en aguas con u n contenido má s bien bajo d e oxíge no (ésta esta ­

ción ofrece una media d e 4 , 3 mgrs . /l) correspon diendo a un me­

d i o marca damente mesosa p robio .

Géne r o PHO RMI DIUM

Este género se nos muestra tapizan do l a s u perficie de las

p iedras sumergidas, pa r t i c u l a r ment e e n las · estaciones H-1 , H-2

Y H- 3 · Pos ib l e ment e se trate d e la es pecie Pho r midi um h omo e o­

tr ich us . Con un a rep resentació n mucho men o r , se h a i dentific~

'd o e n l a s c itadas estaciones, e l Ph ormidium subfus cum.
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Género PLEUROCAPSA

La especie i dentificada ha sido la Pleurocapsa mi nor y

únicamente en la e s t a c i ó n H-1, aparecie ndo e nt re los f i l a men ­

t os . de l plocón Oscil latoria . Son paquetes ce l u l a re s , con c é­

lulas de 6-7 mi cra s .

Gé nero SPIRULLINA

Unicamente se h a e ncont ra do y e n c a n t i d a de s r e ducidas,

la e s pe c i e Spi r u l lina min or e n las estacion es H-1 y H-2 .

Di a t omea s

Este gru po d e a lgas se e ncuentra a mpliamente r eprese ntado

e n l a s aguas del río Hue ch a. DOSSET Y ,MONZON ( 18 8 8) realiza ­

r on e s t u d i o s acerca d e las Di a t ome a s e x i s tente s e n a rroyos y

fu entes del Mo~cayo, a un c uando no cita . r-e c o Lec c í o n e s e n el

río Hue ch a .

En l a s estaciones H- 2 y H- 4 son muy ab undant es las e s pe ­

cies de Navicu la cryptocepha la, N . e llip ti ca y N . cu sp idata .

Lo son igualment e e l Ceratonei s arcus, Fragi llaria s t au r os i ra

y F . mu t abil i s , así como Di atomea hi ema l e y Surirella el egan s.

En la estación H- 2 a pa rece e n forma do minant e, el género

Melo si r a cuyos fila me ntos se agrupan e n tramas d e ns a s. Se h a n

det ectado tres es pecies, u n a má s b i en d omin an t e , r epresentada

po r la Mel osira a rena r la (lámi na I, fig . c), seg~ida e n i mpor ­

tancia po r l o s fila mentos d e Melo si r a var ians (lámina I , f ig .

a ) y e n menor p r oporc i ón Melosira r oes ean a . I gu alment e e n la

e s t a c i ón H- 2 a parece a mpliamente r ep r e s ent ad o e l géne ro Me ri ­

di on co n e l Meri d ion circu l a re (l ámina I, fig . b) Y M. c i rcu ­

l a r e v al'. c on s tr i c tum .

A cont i nuació n se e x po n e un a lista de las espec ies d e t e c­

tadas e n l a s cuatro estaciones d e mue s t r e o.
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Alt ernando con filamentos d e Ulothrix zonata y más bien

poco abundant e y e x c l u s i v a me nte e n la e s t a c i ó n H-4, s e ha de-

Ach n an th es aftinis

A . lanceol ata

A. minutsi

Amp h ip r or a alla t a

Amphora sp.

Amphora ovalis

As t er ionella formosa

Ceratoneis arcus

Cymatopleura solea

CymbelLe cy mb iiormis '

C. prostrata

Denticula tenuis

Diatoma" hiemale

D. vulgare

Encyonema caespitosa

E. gracilis

Epithemia argus

Eunotia arcus

Fragillaria sta urosira

F . mutabilis

Gomphonema constrictum v ar o

Capitatum

G. in tricatum

C. olivaceum

Gyrosigma a c umin a t um

Melosira varians

M. roseana

M. arenana

Meridion circulare

Cloroficeas

Género APHANOCHAETE

Meridion circulare varo

constrictum

Na vicula borealis

"N . cuspidata

N. cryptocephala

N . ell iptica

N . limese

N. oblonga

N . pusila

N. radiosa

N. rhynchocepha la

N . sphaerophora

N. subcapitata

N . viridis

N. vulgaris

Nit zschia acicularis

N . hungarica

N. linearis

N. sigmoidea

N. sinuata

Pleuros igme attenua tum

Pinnularia viridis

Stauroneis anceps

Surirella elegans

S. ova lis

S. ovata

S. spiralis

S. ulna

Tabelaria floculosa



t~ctado la pre s enciá d e la especie Ap ha n ocha ete repens o MAR­

GALE F ( 1983 ) estab lece que n o rm a lme nt e l a s especies d e ést e

género se a socian con Cl a d op h o r a y e n aguas a Lc a Li.nas po r lo

que e n éste caso, se trataría d e un a a da ptación n o so lo e n lo

que respecta a l a composición d e éstas aguas sino e n s u asocia

ción con e l géne ro Ulothri x .

Género CLADOPHORA

Sa l v o e n las estac ione s H-1 y H- 2 , e l géne ro c o n s t Lt.uy e

l a f o r ma dominan t e del plo c ón de é stas agu as, re presentada po r

l a e s pec i e Cladophora g lome r a t a , que a lte r na co n "C l a d op h ora

fracta, e s t a " e n men o r pro fusión y a que es má s bien propi a d e

aguas a l c a l i n a s . Cladophora glomerat a es f orma prop i a d e aguas

de t en idas Y r eman s adas, como ocurre muy pa r t i cul arment e e n l a

e s t a c i ón H-4.

Género COELASTRUM

En l a e st ac i ó n H-2 s e h an e~contrado cantida des abun da n­

t es de la e s pecie Coelas trum mi crop orum, p r opio d e agu as e u ­

troficas .

Género EUDORINA

Muy dispers a , s e h an d e t ectado colo n ias d e Eudorina el e-

g an s o

Género GLOEOCYSTIS

Masas gelatinosas d e é s t a Tetrasporal, se h an hallado e x ­

c l~s ivament e e n la e s tac i ó n H-4, de e s pecie n o identi fic ad a .

Género HORMIDIUM

Bajo f o r mas fil ament osas agrupada s e n mas a s ge lat i nosas,

a pa rece e l Ho rm id i um rivu lare, que t a piza l a s u pe rf ic ie d e l a s

pi edras sumergidas.
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Géne r o KIR CH NERI ELLA

En todas las estaciones ee ha e ncont rado, a u n c ua n do en

p r esencia re duci da, for mas co lo n ia les co r res po n dientes a la

es pec ie Ki r chne r iella obesa.

Géne r o ST I GEOCLONI UM

La s especies d e é s te g én e r o son cons i dera d as c omo espe­

c ies r es ist en t es e n aguas marc ad a ment e polucionadas, FRAN CK E

y TEN CATE (19 80) . La e s pec ie i de n t if ica d a es S t i ge o c l on i um

protensum que se ofrec e e n trama s má s o menos ramif i c ad a s .

Se desenvuel~e e s pec i a l me nte e n l a s már gen e s correspondien t e s

a las estaci o nes H- 3 y H-4 así c omo e n los l ugar e s e n d ond e

s e aprec ian ra s tros del ganad o que se ha a p r o x i ma d o para b eb e r .

Género ULOTHRI X

En l a estac ión H-4 apa r e c en cant i da des masiva s d e U 10­

t h r i x z onata , mo s t r ando much o s d e s us fi lamentos, fo r macio nes

z onares d e ti po r e p r oduc t or .

Con jugadas

Género EUASTRUM

En l a estación H- 3 se h an recogi do a lgu nos e jempla res de

una especie n o identifi cada del g én e r o Euas trum, co n cé l u las

. que miden 40 po r 4 5 micras .

Género CLOSTERIUM

En l a s estac ione s H-3 y H-4 , e n á r eas que s e cor r esponden

a las agua s f i n as y ci r c u l a nte s , s e ha det e ctado e l Closterium

littorale. Ejempla res muy e xc asos d e Cl os te r i um Le ibleni (l á ­

mina III , f~g . b)", co n sus c élul a s mar c adament e curvadas .

En l a estación H- 2 se d e t e c t a l a p r e s encia del Clos terium

navi cula ( lámi na I II , fi g . e ), d e 25 micra s d e l ong i tud co n
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s us cara c t erístico s d o s c lo ro plastos r e fr ingent e s. Ta mbié n

s e h a identific ad o e l Closterium acerosum , co n s u s t í pica s cé ­

l ula s r ectas.

Género SPYROGIRA

.EI género Spyrogi ra fa l t a tota l me nt e e n l a s e s t a c i o ne s

H-l y H-2, mi entras que e n l as e staciones H- 3 y p a r ticula rm en­

t e e n l a H-4 , mezclada con Cl a d op h ora , for ma t u pi do ta piz d e

un a es pec i e d e Spyrogira n o identific ada.

Xantoficeas

Género TRI BONEMA

Como afi rm a MARGALEF (1 9 8 3) , ést e g é nero ofrec e una s is­

t e mát ica poco c lara . Las e s pe c i e s de é s te gé nero s e o f r e c en

baj o l a f orma d e f ilament o s agru pados e n ma s a s a ma r i l len t a s .

En l as e stac iones H-l y H- 2 se h an e n c o nt r a d o r elati vame n

t e a b u ndant es, f i lame nto s d e Tr ib onema vi ri di s , mi en t r a s qu e

e n las e s t a c i o ne s H- 3 y H-4 , e j e mp l a re s d e Tribonema v u l g a r e ,

so l a me nte ob serva dos du r ant e l a p rima v e r a.

e) Mi c r ofau na ca racterística

Ri zópodos

Género AMOEBA

La e s p e c ie Amoeba proteus s e muestra muy e s po r á d i c a y e s ­

pe c i alment e e n áre a s limosas d e las orilla s d e la estac i ó n H-4.

Gén ero HYALOSPHAENIA

Aun cuando é ste g é ne ro e s propio de a g uas marcadament e

ác i das y e n á r eas t u r be ra l e s, l a pr e s enci a d e e x c a s o s e jemp la ­

r es d e l a e s pec i e Hya 1ospha en i a pap i 1 i o e n l a e s t a c i ó n H-4 y

e n aguas e ncharcadas p r ó xima s a l r e gat o flu v i ~l del rí o Hue ch a ,

nos h a c e suponer l a posibl e e x i s te n c i a d e un a s con d iciones muy
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l oc a l i z a d a s qu e pe pmi t en e l d e sa pp ollo d e ésta e s pe c ie .

In fus ori os

Géne po CO LPI DIUM

Se han e nc o rrt r-ad o dos es pecies , e l Colpidium c o l p ode , l o ­

ca l iza do e n las estaciones H- 3 y H-4 , indic ad o p d e me d i o s t í­

picamente po l i s a p pobi o s y l a especie Co l p i d i um campylum, igua~

mente e n las citadas estac iones, pe po co n po c o s ejempla pes .

Génepo DI LEPTUS

Dur-a nt e e l mes d e mayo y l ocal i z ado e n l a estaci ó n H- 3 ,

se h an e ncontpa do ma s iva s cantida des d e Dilept us anser, que

segú n LIE BMAN ( 1962) peppesenta u n organismo i n d icadop o ligo­

sa ppobio .

Génep o EUPLOTES

Este géne po se e ncuent pa a mp l iamente pepresent ado e n l a s

est ac iones H- 3 y H-4 , siendo muy a b u n da nte e l Euplo te s ch a r on

y E . p a t ella . Esta última especie h a s i do d e t e c t ada muy espe ­

cialmente e ntpe pestos vegetales e n ava n za do estado d e d e s c om­

pos i c ión, sien do c on s ide pad o poP KOLKWITZ ( 19 50 ) como opganis­

mo i n d icadop beta-mes o s appobi o , a u n c uan d o se tpata d~ una es ­

pe cie co n n ot abl e capa c idad d e a da ptac ión a medio s muy v a p i a ­

b l e s . Muy espopá dico, se h a i dent ificado e l Eupl ot es affin is

en la estación H- 4 .

Génepo GASTROSTYLA

Ampliamente d i s t r i.b u i.do e n las est ac iones H-2 , H-3 y H-4

h a sido i dent ificado el Gas t ros t yl a ste ini, muy seme j a nte a

la Sty lonychi a myt i l u s, pe po d e tamaño muy s u pe pior, que al ­

canza las 320 mi c r a s d e longit u d . Esta especie h a si do co ns i ­

dera da po r- dive r s os a u t o r-e s como propi a d e medio s me s o s a p po ­

b i os.
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Género LACRYMARIA

En l a estación H-4 muy a b un da nte durante la primavera,

se desen vue l ve ma s i v ament e l a especie La cryma r i a o lor, que pa­

ra KOLWITZ ( 19 5 0) se trata d e un o rganismo i ndicadór oligosa­

probio .

Género LEMB US

Est e género , a l igua l que Trochi 1 ia y Ur onema a pa rece n

e n c a nt i d a des c o ns i de ra b les, c a ra cte rísticos po r s us rá pidos

movimientos y r educ ido tama ñ o , del orde n d e l a s 2 5 mi c r a s .

La e s pec ie ident i fi c ada es e l Lembus pusi 1 1u s , q ue pro spera

es pec i a l mente e n á reas co n r est o s ve'getales . Para LI EBMAN N

(1 962) e s t a e s pecie r ep r e s ent a un organismo i n d ica dor poli s a ­

p r-ob i. o .

Géne ro PARAMECI UM

Este género of rece un a d i s~ribuci ón cosmopolita, h al l án ­

dose r epresent ado po r las especies Parame c ium ca u d at um y p.

bu r se r i e . En l a estación H": 1 se h a d e t e c t ad o e n canti da des

re lat i vamente conside rables, e l Parame c ium p Ut r i num , con un a s

caracte r íst icas ecológicas muy d i s cut ib l e s , a u n c ua n do se tien

de a c o n s i de r a r lo como org anismo ind i c a d o r po l i s ap r ob i o , como

estab lec ió LIEBMANN ( 1962 ) .

Género SPIROSTOMUM

Est e género s e e nc ue nt ra r ep r esen t ado po r e l Spirostonum

teres, característico por s u g ran t amaño y a mplia y exte n d i da

va cuola t erminal . Sus c aract erística s biológi c a s , est u diadas

por BICK (196 8) s o n co i nc i de ntes con l a s of rec i da s por e l rí o

Hue cha , muy e s pec i a l mente con las estac i o nes H- 3 y H-4 . ' Es

c ons i de r a d o c omo o r ga n ismo indic ador me s a s oprobi o KOLW I TZ

( 19 50 ) y s e loc aliza e n zonas r icas c on r est o s v ege t al e s e n

descomposición y por l o g eneral a lej ado de áreas q ue rec i be n

aguas r esiduales.
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Géne r o STYLONYC HI A

Ubicada e n l a s estac ione s H- 3 y H-4 Y e n cantidade s r el a­

t ivamente abund an t e s , la espec ie S ty lony chia my tilu s se d e s en ­

vuelve a l o la rgo d e l os fi lamentos d e Ul othri x y Cl adop ho ra .

KOLWITZ ( 1950) consi dera a ésta es pecie como o rgani s mo ind i c a­

d o r al f a-me s o s aprob i o /b e t a -m esosap r ob i o .

Género TROCHILIA

En la estación H-1 s e det e c ta l a e s pec ie Throchilia minu t a ,

que e n grande s c antidades se apre cia n e n l a e s t a c i ó n H-l. Es

con s i de r a d o por diversos autor e s como es pec ie oligo-me sosapro ­

bia .

Género URON EMA

Repr e s en t a un géner o d e l o s I nfusorios sumament e abund an ­

te, que s e mueven a g r a n de s velo c idade s , con su cuerpo t í pica­

ment e ovo i dal . So n co n c ur rentes e n a guas que lle v an s ustan­

c ias o r gánicas e n d e s c omposici ón . Ha sido identifi c ad o e n to­

das las estacione s, pe r o s iempre e n luga r e s con r est o s vegeta ­

l e s. Posiblement e se t r ate del Ilr on eme mar i n um, q ue segú n

LIEBMANN ( 196 2) es orga n i s mo indic ado r a lfa - mesosa probio .

Géne r o URO LEPTUS

En l a estac i ó n H-4 se ha ob s ervado la presencia del Ur o­

leptus pi scis . KOLWITZ (1950). l o co ns i de ra como e s pecie indi­

c a d o r a b e ta-mesos ap robia .

Géne ro VORTICELLA

Este g énero e stá r epresentado por ]a Vortice l la conva l l a ­

ria, muy abundan t e sobre filament os d e Ulothrix y Cl e d oph or e .

Se h a identi fic ado igualment e l a Vort i ce lla simi 1 i s, siend o

amb a s e s pec ies p ropi a s d e medio s o l igo- s a p r ob i o s . Muy e s po r á ­

d i ca se e n c uent ra l a Vor t i c e l l a camp an u l a .
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R o tiferos

Gé nero CEPHALO DELLA

Est e g énero s e e n c ue n t r a r epresentado por la Cephalodella

g i bba (lámina 11 ; fig . b), e s pec ie mu y com~n , que se e ncue nt ra

e s pe c i a l me n t e e n med i o s d on d e a b un da e l alga Cladop ho ra fract a,

habi endo sido d e t e c t ad a e n l a es t ac í.ó n H- 4. Se trat a d e una

es pec ie . mu y com~n .

Género COLURELLA

Ha s i do i dentificada l a es pec i e Co l u re l la bi cu sp idat a ( l!

mina 11 , fig . c ), po c o a b u n da nte y s o lo r ecogida e n l a s a gu a s

de l a e st ación H- 3. Sus ca racterísticas e c o l ó g i c a s r e s ul t an

c ue s t i o n a b l e s por a utores d i vers os. MARGA LEF (1 9 8 3 ) la co nsi­

dera como p r o p i a d e l a s aguas dul c e s , mi en t ra s qu e KOSTE ( 197 8) ' ,

l a h a d e t e c t ado e n zo nas l i t o r a l e s así como e n aguas sa lob r e s .

Por ta l ci rc unstancia d e b e s er cons i derada c omo especie d e a m­

plia capacida d adaptativa .

Gé n ero NOT HOLCA

Est e Rotí f e r o Br a ch i on ido se e n c ue nt r-a r-e p r-e s e nt a d o por

la es pec i e Not ho lca a cumi nat a (lámina 11 , fig . a) , organismo

indicador e urihiali no y e s t e n o t e r mo . Au t o r -e s como MARGALEF

( 19 83) y KOSTE ( 197 8), coincide n e n qu e e l r égime n alime nticio

de é s t a e s pecie se b a s a e n d i a t ome a s y cloroficeas .

Géne ro PHI LOD INA

La espec ie Phil odina roseola of rece un h abi t a t muy ampl i o

y ha s i do de t e c tad a s u pre s encia e n e l r ío Hue c h a , MARGA LEF

( 19 83 ) con firma s u ma f' c ad a a da ptac ión a condiciones a mbie nta ­

l e s muy di ver s a s.

Género TESTUDI NELLA

Durant e e l me s d e junio s e h an r e c ole c t ado e jemplares co -
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r-re spond i ent e s a Testudinell a clypea ta , l o c alizados e n l a es­

t ación H- 3. Se l e conside r a como me s oh a l ob i o.

Gas troticos

Género CHAETONO TUS

En l a s · aguas d e l a e staci ó n H- 2 y es pec i a l me nte dur an t e

e l mes de j u l io , h a si do i denti fica do, e n canti d a de s r el a ti v a ­

ment e a b u ndantes, l a es pecie Chae t on otus larus, que se d e spl a­

za e nt re l a s algas que t a p iz a n la s piedra s sumergidas.

Copépodos

En l a s e s tac iones H-2, H- 3 Y H-4 se h an identi fi cado l a

pre s encia d e a lgu no s Copépod o S d e sd e l o s mese s d e abril al 'de

a g ost o , e x pon iéndose a cont inuaci ón s us fo r mas repres~nt ativas .

Género ERGASI LUS

Se h an e ncontrado formas l av a r i a s correspon dientes a l gé­

n e r o Ergasilus ( lámina 1 11 , fig . d ) d e especie no identi f i c a­

da, mos t r ando ést as l arv a s un ma r c ado fototact i s mo p o s i ti vo.

Géne r o EUCYCLO PS

As ociado a l Cl ad op h or et um gl omerat ae se h an e nco nt ra do

con r e l a t iva a b u n da ncia, l arva s e n el est a do 4 2 naupli a l d e

l a especie Eucyc lop s serrulatus (lámin a 111 , fi g. a). Segú n

MARGALEF (1 95 3) se trata d e un a espec ie que tol e r a aguas muy

diversas y que e nt ra d en t ro d e l a s c a r-a c t e r-Ls t í.c a s quími c a s

de é s t a s a gua s.

Género LERNAEA

Se han r e c o g ido fo r ma s l arvarias correspondient es a l es ­

t a do naupl i al d e un a es pe c ie del gé ne ro Lernaea (lámin a 111 ,

fig . c ) . Las fo r mas larvaria s que de s c rib e GRA8DA (1 9 6 3) son

t otalmente coincidentes con l a s e ncont ra d as e n e l r ío Hue cha.

Y IN, LI NG , HSU, CHEN, KUANG y CHU ( 1963 ) h an d e t ec t ad o h a s t a
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c i nco e s t a d o s evolutivo s d e la for ma naupl i a l.

Género THERMOCYCLO PS

Ba s t ant e a b u n da nte y e n p a r t i c u l a r du r a nt e los me s e s d e

julio y agosto, se h a d e t e c t a d o l a especie Thermo cyclop s hyal i ­

n u s , c uyas c ara c t e r í s t i c a s d e s c rit a s p o r MARGALEF ( 19 53) coin ­

ciden con l os e jemplares e ncontra dos e n el río Hue ch a (lámi na

IV, fig . b ) . Es t a especie se h a l l a en zonas de aguas claras

'c o r r e s po n d i e nt e s a l a estación H-4 , e ntre l a a bun da nte vegeta-o

ción del Nasturt ium of f icinal e y l a a lia nza del Cl a d op h or e t um

g lome ra t a e .

Cladoceros

Género ALONA

En la estac ión H-4 se h a e ncontrado relativamente a b un ­

dante l a espec ie Alona rectangula ( lámi na IV, fig . a) que '

igual mente s e e nc uentra asoci a da al C l a dop ho ret um g lomeratae .

Es prop i a d e a gua s e utróficas .

Ost racodos

Género CYPRI DO PS IS

Muy e xten d i do e n l o s pequ eño s remansos del río Huec ha,

hemos det e ctado l a pr e s encia d e l a especie Cy p r i dop s is newton i

(lámi n a IV , fig. c ) . MARGALEF (19 8 3 ) af i r ma que l as especies

del género Cypridopsi s son propias d e aguas dul c e s con un pH

s ituad o e nt re 7 y 8 . Est a e s pe c Le se e nc uent ra asoc iada a l

Cl ad op h or e t um glomeratae aun c ua n d o MARGAL EF (1 9 8 3) l a ha de­

tectad o sobre e l Cladophoretum crispatae.

Anelidos

Género OPHIDONAI S

En la e s tac ión H- 3 se d e s envuelven du r an t e e l me s d e ma y o

una g ran cantidad d e i ndivi d uo s pe rt en e c i ent e s al género Oph i -
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d onai s , de 8 mm. d e l o n g i tud , con s us característicos hac e s

dorsales representados por una larga. y r ígida ce r da . Coinci­

den e n áreas .e n l a s que predomi nan materias orgánicas más o

meno s de s c omp u e s t a s.

Gén e r o PRISTINA

En l a estación H-4 se han i de ntificado a lguno s e jemplares

d e l a especie Pristina rosea, d e color rosáceo, p r e s en t and o

e n c a da tabiq ue, tanto dorsal como ventra l mente varia s ce r das.

Nematodos

Género MONONCHUS

Est e géne ro está r epre s ent ado po r' l a especie Monon chu s

longicauda tus, muy exten di do por l o s r íos d e Aragó n, MARCO

MDLL Y GA SP AR ( 1979) . Se h a e nco nt rado algú n e jemplar esporá­

di c o e n las estaciones H- 3 y H- 4 , pe r o e nla est ac ió n H-1 apa­

rece n cant i dades ma siv a s e ntreme zcladas con e l p l o c ón formado

po r l o s f i lamentos del a lga Os cill a t ori a.

Esp i roquét i do s

Unicame nte e n l a estación H-1 , alternando con l a gra n ma s a

de In fus o r i o s pe r t en e c i ent es a l o s géneros Tro ch ila , Uronema

y Lembus , a parece n gran des c a rrtí. d a d e s d e ést os e s p Lr-o qu é t Ld o s ,

que como i n d icábamos e n nue s tro trabajo del r í o Hue rva , MARCO

MOLL y GASPAR (1 9 79) son siemp r e coinci dente s c o n á reas d e

agua s resi dua les as í c omo d e un a e leva da ca nt i da d d e mat eri a

o r g á n i c a e n d e s c ompo s i ción .

DI SCUSI ON

La composición d e éstas aguas, ofrecen e n e l t ramo que

ha sido ob jeto d e est u dio, un conteni do s u mamente b a j ¿ e n sa ­

les , po r l o que e l cond ic ionamie nto d e l a mi croflo r a y mi cro ­

fa u na s e deben a ot ros factores a mbie nta les, como son muy es -
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pe c i alment e e l grado d e l u mi nosi d a d, ca u dal circulante y po s i­

bl e est a ncamiento d e ma t eria s o rgá n icas · en d e s c omp o s i ci ón .

La e s tación H-f , e n la que p r edomina u n d e s ar r o l l o ma s i v o

de algas pe r t en e c i en t e s a l géne ro Oscilla toria , representa un a

asoc iación tipo Oscillatorietum, co n un o s condiciona mientos

qu e cae n den t r o d e un medio ma r c ad ament e me s o s ap r obio, como

estab le MARGALE F ( 1983 ) a nte éstas ca r acteríst icas .

La e s tac ión H- 2 v i en e con d i ciona da por un d e s arrol l o d e

l a Melosira arenaria que c o nst i t uye e l pl o c ón f u n d a menta l,

a sociada a Diatoma y particularmen t e a l g é n e ro Meridi um . Lo s

co nd ic i o n a mientos d e é st a e s ta c i ó n n o s d e t ermina a e s t a b lece r'

· un a as o c i a ci ón Melosiretum arenariae junt ament e co n un Di ato ­

met o-Meridionetum . La presencia del o rga nismo i n d ic a do r Gas ­

t r os t i l a steni , caracte ri za a é s te medi o como me s o s aprobi o.

La s estac iones H- 3 y H-4 con un p r edomin i o d e Cladophora

g l ome r a t a condiciona l a asociac ión Cladophoretum g l ome ra t a e

que j untamente con l a p r e s en c i a d e o rga n ismos i n d icado res como

Dileptus , Cha ron, Sp i r o s t oma y Lacrimaria , e ntre otros, con di ­

cionan una s caracte r íst i cas má s bien d e ti po oligosa p r'o bio .

RESUMEN

En é s te trabaj o se r'e aliza un es t u dio fí sico -químic o as í

como a mb ienta l de l as á r'e a s del r ío Hue ch a (Aragón), e n d ond e

e x iste un c a u da l r el a t ivament e apreciable.

Se rec o pi l a n l as e s pec ie s que h an s ido. r e c olectadas e

identificadas dur an t e l os muestreos e fect u a dos e n el período

de un año y s e estab lece finalmente, e n las c uat r o e stacio nes

qu e han s i d o o b jeto d e est u d i o la e x i s te ncia e n l a e st ac i ó n H-1

de l a asoc i ac ión t i po Osci llatorietum ; un a a sociac i ó n del t i po

Melosiretum arenariae e n c o n j u n c ión co n un a ti po Diatometo-Me ­

ridi onetum par a l a estac ión H-2, m í e rrt r-a s que l a s e staciones

H- 3 y H-4 la asociac ión t í pica está re p resentada por un Clado­

ph oretum glomeratae .
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Cont r i b ution to a lgologi e of l owe r f low

En los ríos a ragoneses n o he mo s e ncontrado trabajo algu no,

sa lvo el que e n e l río Hu e r v a pub l i c amo s , MARCO MOLL ( 1979),

po r lo que e l ob jetivo d e éste o púsc u lo , e s c o nt r i b u i r a u n

ma y o r conoc i mie nto d e la algología e n los ríos aragoneses .

So n n ume r o s o s los trabajos acerca d e la pre s encia d e al ­

gas en l a s aguas d e la Península Ibérica, siendo uno d e los

autores q ue má s h an contri b uí do GON ZALEZ GUERRERO, q ue en 19 2 7

pub l i c ó u n trabajo resu men de las a lgas e n España . Es de r e­

salta r que l a s observacion es se h an orientado má s bien h a c i a

Las aguas estancadas, a u n c u a n d o e xisten algunos rea lizados

e n c u rsos f l u via les, como s e h a he c h o co n e l río Manzana r es,

PA RDO (1 935) .

The p a r t i al zone st u die d i nc l u des f rom Zuera un t il r eachin g

t he town of Za r a g o z a.

CONTRIBUCIONALA ALGOLOGIA DEL CURSO INFER IOR DEL RIO GALLEGO

MA RC O MO LL , H. (1 984) . ­

of Gal lego r iver .

A researc h i s made a bout t he mi c r o fl o r a l aspects of t h e wa­

te r s of Ga ll ego river .

Departamento d e Bioquímica y Bi o l ogí a Molecular y Celular .

Facultad de Ciencias . Ci udad Universitaria .

50009 ZARA GO ZA (Es pa ña) .







Género SPI RULI NA

Género PHORMIDIUM

La s especies ident i fi c ada s h a n si do :

Osc i llator ia fórmosa

Osc i l latoria simpl icisima

Osci l lator ia nigra .

Pho rmi di um un cin a tum

Pho r mi dium c eb enn en s e .

Ph ormi d ium sub fuscum

Phormidium in un dat um

Osci l latoria limosa

Osci l latoria an i ma l i s

Osci l latoria ten u i s

Gé n e r o HYDROCOLEUS
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Este gé ne r-o a parece re presentado po r do s especies, l a

Spi ru l i n a J enneri , re presentativa e n zonas con a b u n da ncia e n

a g uas res i d ua les, acompa ñan do a l a Os cill a t ori a n i gra y l a Sp i

ru l ina maj or , d e t e c t ada e n aguas l imp i a s y d e c u rso rápi do .

Es pecies 'd e t e c t a d a s son l a s siguientes :

Es t e géne ro caracter i z a d o po r s us fi lamentos unido s e ntr e

si por una ma s a gelat i no s a , h an a parecido exc l usi vamente e n

l a estaci6n G- l, pa r t i cularment e en r eman s o s existentes e n el

me and r o de ésta zona del c u rso f luvial .

La s espec ies O. t en uis y O. n i gra h an s i do d e t e c t ad a s en

la e staci6n G- 4, e n donde e l grado d e contami naci6 n d e las

aguas es má s i ntensa, a parec ien do es pecialmente l a O. nigra b a

jo l a f orma d e ca pas negruzcas.

En l a s aguas que d i s curren po r la estaci6n G- 3 se h a e n­

cont ra do un a especie del gé nero Hydrocol eu s , p osibl emen t e el

H. homoe ot r i ch u s , que r evi s t e los cantos r odado s s umergi dos

e n e s tas aguas, for man do sob re l a s u perficie d e l os mi sm o s un a

ca pa verdo s a .

i mportante pape l e n l a depu r a c i 6n d e éste ti po d e aguas .



Dia tomeas

Género RIVULARIA

Género MERISMOPEDIA

Amphora ornata

Amphriprora paludosa

Amphriprora ornata
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Achnanthes exigua

Achnanthes lanceolata

Amphora ova l i s

Eugl ena 1 es

A continuación e x po nemos las Diatome as e nco nt r a da s e n t o­

das l as e s t a c i o ne s d e muestreo , indicativas d e una perfe c t a

a da pt a c i ó n a las distintas c o n d i c i o ne s amb i en t al e s que o fr e c en

é s t a s aguas:

Como ocurre e n t o das las a g u a s, l a may o r r-e p r -e s e nt a c í. ón

de a lgas y muy espec i a l mente e n lo que conc ie r ne a l n~mero d e

es pe c ies distintas , c o r re s po n de a las Di atome as.

Así como e~ e l r ío Huerva, MARCO MOLL ( 1979 ), l a Euglena

v i r i d i s s e mani f e s t ab a d e fo r ma muy esporá dica, e n las aguas

del r ío Gáll ego , a parece a mpl iamente re p resentada e n las esta ­

c iones G-l, G- 2 Y G- 3.

Las formas coloniales d e é s te g énero se acumulan muy par­

t i c u l a r mente e n ' las má rgen e s d el rí o , c o r re s po n d ientes a l a s

estac i o ne s G-l, G-2 Y G- 3 con la e s pecie Merismopedia punctata.

En las est a c i o ne s G-l, G- 2 Y G- 3 s e h a regist ra do l a pr e ­

s encia d e dos e s pec ies pert en e cient es a éste gé ne ro, el Nostoc

rivulare y e l Nostoc sphaericum.

En e l c au c e d el rí o y o r i l las, co r res po n dientes a las es­

tac iones G-l y G- 2 . s e h an recogi d o e jemplares de la Ri vul ar i a

dura.

Géne r o NO STOC



Protococales

Género PEDIA STRUM

Género CHARA CIUM

Nit zschia apiculata

Pinnularia viridis

Pleurosigma angulatum

Pleurosigma elongatum

Podocystis s p .

Rhoicosphenia curvata

Surirella ovalis

S ur ir ell a biseriata minor

S ur i r ell a striatula

Synedra ulna

Syn edr a pulchella

Syn edr a affinis

Melosira varians

Na vic ul a rh ynchocephala

Navicu l a alíptica

Na vicula gracilis

Na v icul a oblonga

Navicula lanceolata

Nit z schia elongata

Nitzschia communis

Nitzschia acicularis
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Coconeis sp .

Cy clotel Ie s p .

Cy cl ote l Ie s triata

Cy ma to p le ur a solea

Cymbella prostrata

Cymbella ven tr icos a

Cymbella sp.

Cymbella turgida

Cymbella ventricosa

Cymbella cymbiformis

Denticula tenuis

Diatoma elongatum

Epithemia l or ox

Apithemia turgida

Eunotia arcus

Gomphonema cap ita tum

Gomphonema intri ca 'tum

Gomph onema parvulum

Gomphonema subc1a vatum

Gomphonema c1ivaceum

Gyrosigma a cumi na tum

Mas to gloia smith ii

Un icament e e n l a est ación G-l se ha identificado, e n fo r -

Est e -o r d e n of rece los sigu i ent e s g éneros:

Est e g énero s e e nc uen t r a r epr e s entado por la espe ci e Cha ­

raci um gracilis, e n c o n t r a d a e n las e st ac i o ne s G-l y G-2.

En l a estac ió n G- 2 se locali z an l a Synedra acus var o ra­

dians, as í como la Surirella linearis .



ma muy es po r á dica, un a especie del g én ero Pediastrum , con fo r­

mas c o l o n i a les que obed e c en a la e x p resi ón 1 + 6 + 11 + 16 qu e

se co r re s p o nde al P. birradiat um .

Género COELASTRUM

Las colonias globo s a s d e é s te g énero , se hallan re prese n ­

t a d a s por la e s pec ie Coelastrum morus , r e c o g ido e n las o r il las

·de la estación G-2.

Género SCENEDESMUS

En todas las e s t a c i o ne s d e muestreo, apar e c e una es pecie

d e é s t e género e n l a q u e no h a s ido posibl e det ermin ar la es­

pecie .

Género OOCYSTIS

En la estación G-4 s e ha identi fic ado la p r esenci a d e co ­

l onias · pe r'tenecient es a l Oocyst i s nodulosa , q ue ind i c an s u

a da pt a c i ó n a unas aguas e s tanc a d a s y fuert ement e contami nadas

con e lev a d a s c antidade s d e mat eria o rgá n ic a e n d e s c omp osic i ón.

Ulotri ca l es

En e l grupo de Ulotrical es s e han e ncont ra do dos g én e r o s:

e l género Ulothrix, con la e s p e c ie U . z on a t a , ampliament e re ­

prese ntada e n todas las e s t a c i o ne s d e mue stre o y e l g én ero

Stigeoc loni um, r epresentado por la espe cie S . protensum, que

e n gran des cantidades, s e localiza en las a g u as es t a n c a da s d e

la e s t a c i ó n G- 4, for mando u nos céspedes d e cons i s tenc i a muc oi ­

de en asociació n con diversas e s pe c i e s d e Diatomeas .

Con j ug a d as

Est e grupo s e e n c ue nt ra ampliament e re p resenta do, h ab i én ­

dos e detectado los s i g u ientes g éneros :
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G~nero CLOST ERIU M

Se h a i dentif ic a do e n la estación G- 2 l a presenc i a d e la

e s pec ie Closterium Ehrenbergi , mi entra s que e n l a estac ió n G- 4,

e n r emans o s marcadament e put r efac t o s , se d e s envuelve el Cl o s­

terium s triolatum , d e 3 5 0 micr a s d e l ongitud , d e t e c t ad o e n zo­

n as turb e r al e s por GO NZALEZ GUERRERO (1 950 ).

G~nero COSMARIUM

En las est aci o nes G-1 , G-2 Y G-3 es muy a b u n d a nte e l Co s ­

marium laeve .

G~nero SPHAEROZOSMA

Salvo e n la e st a c i ó n G-4, es r el a tivament e abundan t e un a

e s pe c ie no i dent ifi c a da pert en e c i en t e a ~ste g~nero.

G~nero SPYRO GI RA

El g~nero Sp y r og i r a s e e nc ue ntra a mpliamente r epre s en t a­

d o , f o rmand o ampl ia s masas e n todas l a s est a c iones d el c urso

inferio r del rí o Gállego .

Dada l a di fi cul t ad d e ident i f i c a c ión d e las espec ies d e

~ste g~nero , ya que n o son s u ficie nte s l os c aracteres que n o s

pueden aporta r las cé l u las v egetativa s , si s e ha podido d e t e r ­

minar l a e x isten c i a d e dos e species, c uya s fotografía s pueden

aprecia rs e e n l a Lámin a 111 , que apa r ent ement e difi eren e n la

s eparación d e las vuelt as de las e s pi r a s d e los dos cloro pI a s ­

tos acintados.

Apart e d e e s t a s dos e s pec ie s , se ha detect ado l a e s pecie

Spyrogira tenuissima.

G~nero MICRASTERIA

Muy d i spers a , se ha ident ificado a l a Micrasteria denti­

culata .
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DISCUSION

Aun cuando MARGALEF (1 955) conside ra a l a e s pe c i e Masto -

mund o polisaprobi o a l o s c u a les d eb e co r r espo n d er un a mi cro ­

f a u na c a racte r í st ica .

DOSSET (1 8 88) la iden-
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que la gran a b u nda ncia d e l a C1adophora

l o s c a nto s rodad o s s u mergi dos e n l a s

se e nc ue nt r a sus t i tuída muy espec ia l me n -

To d a s e s t a s especies c itadas, ca e n d entro d e l

do d e e s a s aguas e n ese tramo del río .

La e s pec ie ' Sy n ed r a arcus v ar o rad ian s, c o n s u s 150 micra s

de longitud, que s e ofre c e e n a g r u p acion e s radiant es, e s fr e ­

c u e nte e n las aguas limpias d e las e st ac io n e s G-1 y G-2 .

Dentro d e l a s Diat omeas , la Eun o tia ar cus con un a l on g i ­

t u d d e 60 mi c r a s , se , hall a e s pec i a l mente e n l a e s t a c i ó n G- 2 ,

s ien d o indicadora d e a g uas finas , qu e se c orrespond e n al e s t a -

descompos i c ió n .

tifica como Ce ratoneis arcus y l a e n c u e nt r a e n aguas fi nas y

c l ara s d e los arroyos y torre nt eras d e Panticosa .

te por e l Hydrocoleus homoeotrichus as í como por diversa s e s-

pe cies de l g énero Spyrogi ra , y d e l a e s pecie S t i g eoc1 onium pr!:..

t en sum, pre do mi nant e e n l a e s t a c i ó n G- 4 .

De las observaciones reali zadas y que h an sido e x pues t a s

a nter iormente , pu ede deduci r s e que n o existen a mplias d i v e r ­

ge ncias con r el a c i ón a nue s t r a s observaciones r ealiz a d as a lo

largo del c urso del rí o Hue r v a, MARCO MOLL ( 1979) .

Exi s te un a ma r c a d a c o i nc i de n c i a e n t re l a s zo nas f u e r t e me n '

t e c ontami n a das del rí o Hu e r v a con las del r ío Gáll e g o , e n l o

r e f erent e a la Os cill atoria nigra y O. tenuis , Cianof íceas que

muy po s iblement e s e an i n d ica do r as d e és t e t i po d e a gu a s .

Igua l mente r e sul t a muy s i g n i f icativo qu e la s co lo n ias del

OQcystis nodulosa s e desar r ollen igualment e e n áre a s d e agua s

muy contami n a das y e lev a d a c a nt i d a d d e ma t e ri a s orgá n icas e n

Es d e resalta r

[racta qu e re vest ían

aguas del río Huerva,



g l o i e Smithi i como es pec ie indicado r a d e un medio h a l ó f i l o ,

e l h abe r s e d e t e c t ad o ésta es pecie e n todas l as e st ac iones d e

mu e s t r-e o , podr í a i n d ica r nos un caso d e a da pt ac i ó n al t i po d e

co ncentración salina d e éstas aguas .

El gé nero Amphi p r or a se e nc ue ntra re p resentado p or la es ­

p e c i e Amphiprora ornata, e x istente e n .todas las estaciones de .

mue s t r e o . Igua l mente se pre s ent a co n po c a a b u n danc ia, l a Am­

ph ip r or a pa du lo sa . Au n c u a n d¿ ésta es pecie , s egdn CAMARA NI Ao

(1 951 ) es más bien r epre s en ta t iva d e aguas s alobres, como l a s

d e Median a d e d o n d e l a c i ta , su pr e s en c i a e n l as a g u a s d el rí o

Gá I Le g o , indi c a un posibl e c as o d e a da ptació n . Esta es pec ie

es utili z ad a , junt ament e c o n la A st e rion el l a formosa yla Ci a ­

n ofí c ea Myc rocy st is aeruginosa e n semic u lt i vos continuo s , se ­

g d n trabajos de HOLM y ARMSTRO NG ( 198 1), y a que r esult an t í pi­

cas especies i n dicadoras e n l a s v a r i a c i on e s del S i 0 2 y d e l o s

fos fatos así como igualmente del nitróg en o i no rgán ico, por l o

que sería aconsejab le l levar a cabo experiencia s d e l a b o r a t o­

r i o e n el sentido d e establecer un a relació n e n l a s va r iacio ­

n e s de l Si0 2/P0
4

q u e pueden e xistir e n éstas aguas .

RESUMEN

Este trabajo tiene por o bjeto contribuir a un ma yo~ cono ­

cimiento d e la mi c r o f lora d e las aguas f l u via les d e Ar a g ón ,

cor respon dien do éste est u dio a l c u rso i nfe rior d el rí o Gálle­

go , d e sde Zue ra h a s t a s u d e s emb o c adura e n Zarago za.

Apart e d e l a d e s cr ipci ón y e riume r-ac i. ón d e l a s espec ies

e ncontradas, se a pu nta l a p o s ibl e r el a ci ón qu e pued e e x isti r

e nt re a lgunas especies y l a s con dic iones a mbie nta les d e l a s

estaciones d e mue str ~ 6 .
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BREVE INFORME SOBRE EL COLOQUI O
"MAT HEMATIQUES A VENIR. QUELS MATHEMATICIENS POUR L'AN2.000?"

J .L. VIVI ENTE

De p a r t a me n t o de Mat emáticas . Faculta d d e Ci en c i as .

Ci u dad Univers i t ari a . 5000 9 ZARAGOZA (España) .

S e da cuenta d e los principales t e mas aborda dos e n e l Colo ­

quio, al que asistimos d o s e s p a ñ o les , evi d enciando algu na de las

c ausas que , d e n o a doptar medida s a decua das , h a c e n pre v e er una

falta d e ma t em á t i c o s e n Fr a n c i a hacia e l año 2.0 00 y la inicia ­

ció n de u n proceso d e fa lta d e ca lida d mat e mátic a irreversible .

S e c i ta r o n algu n a d e las me d i d a s q ue, p a r a e v ita r t a l, p o s i b i l i ­

dad, se e s t á n e x pe r i me ntan d o por a lgunas u n i v e r s idad e s: Ma g i s t e­

re e n Mat h e ma t i q ues, Ing e ni eur Mathem a tique, etc ., a u n q ue s e

con siderab a n insuficient es . Resalt ó e l h e ch o d e que h o y , más

que nunca , l a fo r mac ión ma t e mática deb e at e n d e r e l d e s a r r o l l o d e

l a capacidad d e a b stracción y análisis junt o a s u ej e rcicio s o ­

b r e probl ema s concretos d e la i n d u s tr ia , part i cul a rment e la d e ­

d i c ada a alta tecno logía .

Introducción .

Los día s 9 y 10 de Di c iembre de 1987, l a S.M .F . y la S .M.F .I . en l 'Eco­

le Po l y technique frances a (Palaisseau, Paris) y baj o e l a l to pat r oc i n i o del

Presiden te de la Repub lica , con as is tencia d e l Mi nis t ro de I nves tigación y

En s eñan za Superior y el de Transpo r tes y Comunic a c i on e s, bajo l a presidenc ia

de Mr . Essambert, no s r eunimo s má s de mil matemá t icos , en su mayo r ía fr an ce­

ses , co n l o s directore s de l os ga b i ne t es de investiga c ión de industrias t a l e s

co mo M. D'As sault, Thomson, Hoes cht, Michelin, El f - Aqu i taine , e t c.

El motiv o del coloquio f ue es t a b lece r un a r efl exión co n j un ta de l o s ma­

temáticos y l a s fuerzas v ivas de l a s o ciedad franc e s a t r atando de encont rar

a lgo análogo al "rapport 'Dav i d" en U. S. A. en 1984 , es de cir, l os med ios pre­

cisos pa ra h a cer frente a l a cons tan t e disminución de matemát icos en Francia

y l a ne c e sidad, cada vez mayor, qu e el mundo a c tual t i ene de e llos . No obs­

tante , _ también se dedicó a lguna sesión a la e xpo s ición de l os gr ande s probl e ­

mas matemá t icos . El t r ab a j o se de s a rrolló en s e s i one s plenarias y mesas r e­

dondas.

Se sion e s p lenarias .

Rea lizada l a a pe rtura del coloquio, las sesiones p l e na r i a s se iniciaron

co n la con f e r e nc i a de l Prof . J. L . Lions, qu ién despué s de ha cer r e f ere nc i a a
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la poca coo r di nación ex is ten te ent r e l a enseñanza de l a s matemá t icas y las ne­

ces idades que de e l la tiene l a i ndus t r ia , citando alguno de l os gr andes proble­

mas que hoy ex igen una profunda actividad matemát ica , como la mode l ización, la

mecáni ca de s ó l i dos (robots e Lá s t i cos , ·ma t e r i a l e s compuestos, e t c , ) , modeli za ­

ción de l o vivo, e tc ., seña ló que debería enriquece rse la enseñanza de l a s ma­

t emát i cas con un mayor contacto co n l a indus t r i a, buscand o un equ ilibr i o en t re

l a transmi s i ón del conocimiento y un saber hacer .

Le sigui6 Mr . P . Pe rr i er ( de av ion~n x. As s ault) q ll~ ~n , rl .Lanclo iligtlna s

de las necesidade s en modelización de l proyecto Hermes , pas ó a seña lar e l i n­

t erés que pa ra l a i ndu str i a tien en l os nuevos estudi os del "Magis t e r i o en Ma­

t emáticas" y e l de "Ingeniería Mat emát ica" , que a lgunas uni ver s i dades fran ce­

sas han i mplantado en co laboración con l a industria l ocal. Es tas úl t i mas, ade­

más , of recen s tages a l os a l umnos a l final del 29 y 3e r curs o . No obstante,

esper a que t al f ormación sea lo suficientemente s ól i da ára permitir, even t ua l ­

men te , e l normal de s arrollo de un 29 y 3
er

c ic lo . Por otra par te, aña d ió , se

debe a tende r , no ·só l o a l a f ormación inicial, sino a l a permanente, ex igiendo

recicl a j e s cada cinco años . De modo aná logo s e exp resó Mr. J ablon de El f­

Aqui tai ne .

Mr . Cur ien , an t iguo Minis t ro de l . y E. S. , profesor de l a Univers idad de

Pa ris VI, después de r e f erirs e a la necesidad de un pr ograma de estimulación

(como el de Bélgica en 1983) que or iente a l a s autoridades sob re las medidas

a t omar pa ra ev itar l a s i tuac ión que padece la matemá tica en Fran cia y poder

a tender las necesidades de una sociedad cada dí a más compet i t iva , seña ló que

hoy en Francia , y en 1992 en Europa, debe pen sars e en que un 80% o un 90% de

los jóvenes debe rán ser bachil l er es . Es tud ios de bach illerato que de berán ca ­

pac itar , a la mayoría, para una f ormación esencia lmen te t ecnológica. I ns i stió

sob re l a necesidad de enco n t rar la ade cuada so l ución en Franc i a , ant es de

1992 , pues el prob lema se ag ravar á a pa r t ir de es ta fecha. Agravación que , en

gran parte, se deberá a l a s diferen cia s que en l os plane s de es t udio s y titu­

laciones pr esen t an l os distintos pais es europeos , y e l lo pese a las reitera­

das t entativas pa ra e l l ogro de una "Car ta Europea de l as Universidades " . Sin

emba rgo , en t iende que e l v í nc u lo puede y deb e hacer se ya en la incipiente "Fo r ­

mación Permanente", apro vechando l a carencia de tradiciones sobr e l a misma .

Concluyó insistiend o en la necesidad de di sponer de un mayor númer o de

jóvenes c on f ormación matemá t ica r elac i onada con l a s necesidades industriales

cui dando de que s u f ormación práctica no s uponga pérdida de su formación con­

cep t ua l y de desar r ol lo de su capac i dad de r a zonamiento ma temá t i co . De ah í

que consideraba esencial "intens i f icar l a r el ación investigación-docencia, aho-
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r a que tanto se hab l a de l a r elaci6n investigaci6n-industria .

En r espuesta a a lgun a de l a s cues t iones anter iores , A. Connes . (meda l la

Fields ) , en un a magistral conferenc ia , ev i de nc i6 e l i mportan t e papel que e l

Al gebra juega en l a f ormaci6n de l matemáti co. Para e l lo se apoy6 en e l es t u­

dió matemático del "efecto Hall cuánt ico" , de particu l ar i n terés t écni co,

r ea lizad o por J . Bel i s sard en 1980 . Es t udi6 que , a s u vez, just i f ica e l ope ­

rar con l a Geometría Diferen cial no conmut a t iva en l ugar de l a clásica .

Mes as redondas.

En ellas, junto a pe queños gr upos de trab aj os, se precisaron y di s cu­

tieron con más detall e las defi c i en cias ev iden ciadas en l a s sesiones plen a­

rias, analizándose l as soluciones que, de modo ex pe r i men ta l , se es taban t o­

mando por a lgunas universidades, e incluso l as r ea li zad as por a lgunos profe-

soreS a

Se insisti6 en que l a f ormaci6n matemática del ingeni er o debe ser más

conc eptual y r eflexiva ya que , ca da vez más , és te debe utili zar un l en guaje

más es t r uct urado , exigiéndos el e una capac i dad de modeli za ci6n cada vez más

fina . Ello es t anto más ne cesario, cuanto más a l ta t ecnología se pr eci s a

des arrollar . La po tenc ia de cá lcul o y s imulaci 6n . que ha permitido el ordena­

dor, en contrap artida exige del ingeniero un a más elevada f ormaci 6n matemá ­

t i ca . . Para hacer frente a tal s i t uaci6n , hasta ahora l a industri a ha di versi­

fi cad o s us cuadr os con t ra t ando a matemáti cos , quienes a l ser mej or pagad os

y poder seguir desarrollando s u act i vidad inve stigad ora no han dudad o en

abandona r la Universidad. Pero, así mismo , están aba ndona ndo l a Univers i dad

de Fran cia los más distinguido del profes orado, invest i gad ores y doc t oran­

dos menores de 45 años , an te lo s ve n tajosos contratos de t rabaj o (o becas )

que of rece l a un i versidad e i ndu stria de Es tados Unidos , en una política

puesta en marcha con motivo del ya c i tado rappo r t David. Es ta fu ga de ce re­

bros matemático s ( lo s mej ores) es tá empobreciendo l a docen ci a y la i nves ti­

gac i 6n de base en mat emáti cas . A e l lo se une , por un l ado l a f a lta de at rac­

tivo que para e l joven bachille r presenta l a Li cen ciatura en Matemát i cas

(en c i erto modo determinad o por l a def i ciente f ormac i 6n matemática que reci­

ben en el bachille rato) y , por o t ro , l a jubilaci6n mas i va de un 50% del pro­

fesor ado universitario actual ha cia l a primera décad a de l os años 2. 000 (e n

gene r a l , l os que ac ce di eron a la docen c ia en l os dos o t res añ os s iguientes

a Mayo de 1968), hacen t emer que, en t re l os años 2 .003 y 2 . 010, de segui r

como hasta ahora, l a falta de mat emáti co s en Fr an cia hab r á ini c i ad o un pro­

ceso de pérdida de cal i da d irrev ersible . Se ci t6 como e jemplo e l caso de l a

mat emáti ca a lemana que, de se r l a primera mundial men te hacia 1933, qued6
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diezmada hac i a 1944 s i n que , pes e a l os muy i mpor tantes crédi tos que ha di s ­

f rutad o, haya podido aún r ecup erar s u esp lendor .

Por nues t ra pa r te comentamos l a or ientac ión divers if icadora que se qu ie­

re as ignar a los planes de estud ios de matematicas en España , en los actuales

proyec tos de r e f orma de las enseñanzas unive rsitarias . Si bien precisamos que

aun no exis t ía un co nsenso en cuanto a las "e s pe c i al idade s " y sus co ntenidos ,

n i qué asigna turas de bían se r tron cal es y cuales e lec t ivas u opc ionales . Sin

emba rgo , e ra c lar o que más de uno de l os probl emas y deficien ci as ex pue s tas

se habían t ambién plan teado en la un i versidad espa ño la . Por e jemp lo , l a "f al t a

de atrac tivo en los j óven es por l os estudios de matemáticas (originada por

análogas razones) o la co rrespond iente jubilación masiva de profesorado (lo

que tendra lugar hac ia los años 2 .0 15Q.

Res umiendo , podemos r es a ltar que , de un modo general , l a serie de i nter­

ven cion es pus i er on en ev i de ncia que en .el moment o actual:

i ) La fo rmac ión de l a pe rsona exige , mas que nun ca, e l dominio de l b i po lo

prac tica-capacidad de abs t racción .

ii) Que en e l dominio de una tal situación, esta llamada a jugar un pa pel

esenc ial la denominada "Formación Permanente" , ya que l a r áp i da evolu­

ción técnica deja pronto obso le ta t oda i nformación ini c i al .

iii ) Que l a f ormación del i ngeniero de be ser divers i f icada de modo que permi ­

t a una fo rmac ión matematica r efl exiva-conceptual de al to ni ve l , como l a

de l a Licencia tura en Matemát icas (y Mai t risse en Franc ia) a l estudian­

te que se sienta atraido por e lla , no sólo por razones vocacionales .

iv) Que "la formación en la Licenciatura de Matemáticas (y Maitrisse en Fran-

' c i a ) debe a s u vez ser diversificada , pe ro a l mismo tiempo enriquecida

con mot ivaciones conc re tas y prác ticas de l a s grandes t eorías, con e l

es t udio de problemas matemat i cos de l a i ngenier ía de l so f twa re , por e jem­

p l o, y con s tages en l os depart amentos de es tudio e i nvestigación en in­

dustr i as de alta t ecnol ogía.

v) Que el peso de los programas de matemáticas debería gravitar sobre el

Algebra, el Anál isis Numérico , la Lógica , la Teo ría de Grafos y la Teo­

ría de Lengua jes.

En la sesión de c lausura de l Coloquio , Mr. Essamber t i ndi có que era i n­

tenci9n el publicar, proximamente , un libro blanco en e l que se r ecoj a t oda

l a problemática, as í como l a creación de un grupo de r e f l exión sob re la ense­

ñan za c ient ífica a nive l nacional, a la par que se realicen debates en tre

pad r es de a lumnos y pro feso res en unos 50 Institutos de Segunda Enseñanza .
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Descanse· en paz este ilustre AcadémiGo.
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En el año 1936 fue Diplomado en Bacteriología por la Escuela Nacional

de Sanidad, prestando sus servicios técnicos en el Laboratorio Central tlel

Ejército desde el año 1936 a 1939.

N E C ROL O G I C AN O T A

Señalemos finalmente que, con independencia de su importante trayecto­

ria científica, era un hombre de carácter amable y abierto al trato con sus

discípulos, indicativos de su gran humanidad.

Además de los numerosos trabajos publicados por este ilustre Académico

en relación con enfermedades parasitarias de los animales, impartió numero­

sas conferencias de su especialidad en diversas capitales de España .

En 1949 Y 1950 se Diplomó en Parasitología y enfermedades parasitarias

por el Instituto de Parasitología de Granada, trabajando posteriormente, co­

mo becario, en el Bernhard-Nocht-Institut fur Schiffs und Tropenkrankheiten

de Hamburgo durante el año de 1957.

En 1963 obtuvo por oposición la Cátedra de Enfermedades Infecciosas y

Parasitarias de la Facultad de Veterinaria de la Universidad de Zaragoza,

llegando a ocupar los cargos de Secretario y Decano de la misma .

Posteriormente orientó sus conocimientos hacia la empresa privada, lle­

gando a ser Jefe de la Sección de Bacteriología, así como Director Técnico

en dos importántes Empresas Industriales dedicadas a la obtención de sueros

y vacunas utilizadas en Veterinaria .

Era natural de Salamanca en donde realizó sus estudios de Bachillerato,

pasando posteriormente a la Universidad de Madrid, donde obtuvo la Licencia­

tura de Veterinaria y más tarde el Doctorado con una Tesis que ostentaba el

título de "Receptividad del cerdo al bacilo Erysipelothrix rhusiopathie suis

y sus aplicaciones biológicas", culminando así una serie de hallazgos rela­

cionados con la patogenia del llamado mal rojo.

El día 22 de Diciembre de 1988, a la edad de 77 años, falleció en Zara­

goza el Ilmo. Sr. D. Angel Sánchez Franco, Académico Numerario de esta Enti­

dad desde el año 1966 y perteneciente a la. Sección de Naturales.
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