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CLASIFICACION DE TODOS LOS HOLOMORFOS RELATIVOS DE UN GRUPO
ABELIANO DE TIPO Cy x Cpy(*)

A. VERA LOPEZ Y J. SANGRONIZ

Departamento de Matematicas. Facultad de Ciencias.

Universidad del Pais Vasco. Apartado 644. BILBAO (Espafia).

In this paper, we classify the 53 relative holomorphs of an
abelian group of type C4xC4. For each of these groups we give

the number of conjugacy classes and the conjugacy vector.
INTRODUCCION

En lo que sigue, G denotard un grupo finito y r(G) el numero
de clases de conjugacién de G. Si S es un subconjunto no vacio de
G, rG(S) es el numero de clases de conjugacidén de G que tienen in-
terseccidon no vacia con S. Si {&s:--,8,} €5 un sistema completo de

representantes. de las clases de conjugacidén de G que cortan a S,

ordenado de manera que |CG(gl)| ST |CG(gt)|, definimos el vec-
G G

tor e = (|CG(gl)|,...,|CG(gt)|). La r-tupla A, = A, se llama vec-

tor conjugacidén de G. En orden a simplificar la notacidn escribire-—
GEN nj n G njg Nt

mos Ag = (a1 seeesdy ) en lugar de Ag = (al,....,al,...,at,...,at).

g(G) denota el nimero de distintos subgrupos normales minimales de
G, S(G) es el zécalo de G, es decir, el subgrupo producto de todos
los subgrupos normales minimales de G y, a(G) denotara el numero

de clases de conjugacién de G no contenidas en S(G).

Cuando se estudia el problema de la clasificacidén de los gru-
pos finitos con un nuimero dado de clases de conjugacidén, han de ana-
lizarse frecuentemente, ciertas secciones del grupo que resultan ser
holomorfos relativos de algunos grupos abelianos de orden bajo.

En este sentido y, para simplificar estos cdlculos resulta de

gran interés el disponer de la clasificacién completa de todos los

(*) Este trabajo ha sido subvencionado por la Universidad del Pais Vasco.
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asi como de los invariantes

holomorfos relativos de estos grupos,
mencionaaos anteriormente. A. Vera y L. Ortiz de Elguea obtienen

en [1] todos los holomorfos relativos de un grupo abeliano elemen-
tal de orden 16. En este trabajo, determinamos todos los holomorfos

relativos de un grupo abeliano de tipo CAXCA. Ademéas, para cada uno

de ellos se obtiene el valor de los invariantes r(G), A g(G) y
al(G).

Consideremos los siguientes automorfismos del grupo <xX,y> =
:C4xC4:

- - - b
x*1l = x l, x%2 = x ly2, x%3 = x l, x%4 = x, = Y, b= s

-1 -1 2 -1 =i -1 -1 b -1 -1
e Rl Clms e e sl S L s e T e

; i 4
Se tiene que Aut(CdxCA) = <al’a2'“3’a4>xx<a’b> ~ CZXAZ3 con

la accidén ) dada por:

e i am= ate

@y T Q35 05 = 05055 Qg T G5y G, = G50,
b o DS DA :
@7 = @33 05 = Q5035 Qg = Ggs O, = 04 0307%

Para determinar todos los holomorfos relativos de CaxC4 se
obtiene primero un sistema completo de representantes de las clases
de conjugacidn de subgrupos de Aut(CaxCA). Para cada uno de estos
subgrupos K, se obtiene el correspondiente holomorfo relativo
Hol(Ci,K). Finalmente, se determina cudles de estos grupos son iso-

morfos.

El céalculo del vector conjugacidén y del numero de clases de
conjugacién de cada uno de los grupos obtenidos se hace utilizando
el Lema 2.11 de [2], en el que se determina AG para los productos
semidirectos G = NXAK con N abeliano. En este mismo trabajo pueden

encontrarse ejemplos de la utilizacidén de este Lema.

Cuando se conoce una presentacién de un grupo finito G, es
posible obtener, teéricamente, el vector conjugacién de G utilizando
métodos computacionales. Este procedimiento no es adecuado cuando el
nimero de generadores y relaciones es elevado. Sin embargo, cuando
G es un producto semidirecto de un subgrupo normal abeliano N por un
grupo arbitrario H, el problema puede reducirse a determinar el vec-
tor conjugacidén del subgrupo H. De hecho, la tabla II se ha obtenido
también mediante un ordenador utilizando un programa escrito especi-

ficamente para el caso mencionado.



TEOREMA: Sea G — Hol(CaxCA,K) con K £ Aut(CdxC4). Entonces, G es isomorfo a
alguno de los grupos Gi o H01(C4xc4’Ki)’ die o conce Ki espunoideiion
grupos de la siguiente tabla:
TABLA I

K= sa1= = ¢ Kops 52,4050 = G50,

K2 = e c2 K27 =<q ,a4b> CZXCA

K3 = <ojaqa,> = C, K28 = <al,a3,b> = C2X02XC2

KieRbe = C) Koo = <e.,0,,0.> = CoxCoxC,

Ko = <o, > = C, K3O = Sa,,0,,8,2 = C,xC xC)

K6 = <ala2> = C2 K31 = <ula2,a3,u4> = C2><C2><C2

Kop=i<a>i= co Ko o pd iy

Kg = <ab> = C, K o0 b,a0.0 > = Dy

Kg = <a2a4b> =C, K34 = <a2b,a1a2> = D8

310 S : fasiE e dieiciag = Dy

K1 <aj04,b> = C,xC, K36 = g0 DEo e Dg

K12 = <a4,a2a3> C2x02 K37 = <a1,a2a3a4a> = C2XC6

K <a;,8,> = C,xC, K38 o onasa, bRl RiC Xz

Kl4 = <u1,u4> = CZXCZ K39 = <ala,a2a3a4b> = DC3

K15 = <og,a,> = C,xC, KAO =.<u3,a2,a> = A4

Kl6 = <a4,ulu2a3> = CZXCZ Kdl = <al,u2,a3,u4> = C2><C2><C2><C2

Kl7 = <al,a2a3a4> = szcz K42 = <al>x<a4b,b> & C2xD8

K18 = <a2,a3> = ngC2 K43 = <a1>x<a2b,b> ] CZXDB

K19 = <a4,ala3> C2xC2 K44 = <a4b,a3,a2> B [C4><C2]C2

Ko = Spo0 226 e Kgg = <a,b,a 0 ,a,> = [c,xC ],

Kou= So,,b> = €;xC) K6 = <eg,0,,a,b> =5

K22 = <a3,b> = CZXC2 K47 = <a,a2u3a4b,a2a3&4> = [C3]D8

K23 <aja> = Cg K48 = <al>x<a3,a2,a> z CZXA4

Koy = <oj05a,2> = Cg Kpo = <0,8,,0 .0, ,b> = [e,xc xcxc, Ie,

K25 = <a,b> = Za KSO E <al>x<a2a3a4>X<a3,a2,a> = CZXCZXA4




san b>R= S CEha)

= < >x<
e Ol 27%4

= <u3,a2,a,a2a3a4b> = [szCZ]DC

S
o, ,a,b [CZXC2XC2xC2]Z

3

= <a_.,a

L s 3

Los valores de r(G),

8(G) y a(G) para cada uno de los holomorfos Gi

AG,

vienen dados en la tabla siguiente:

TABLA IT




i r(G) Ag g(G) a(G)
18 19 (eaiile=) 3 15
19 28 (bacisoi e 3 24
20 34 (6%, 32%°) 3 30
21 16 (642, 323, 168, 83) = 14
22 16 (642, 323, 168, 83) 1 14
23 10 (g6 =2 oa files e diow) 1 8
24 10 (96, 32, 24, 162, 8, 64) 1 8
25 10 (g6it o> is el ©) 1 8
26 23 @282 625 522 16-9) 1 21
27 29 @282 calison 0 S 1 27
28 29 (1285 64, soic, %) 1 27
29 38 (1287, 64°, 3228) 3 34
30 a4 (228t 642 5522 3 40
31 44 (128, 6452, 3222 3 40
32 17 (28t oa so0 S e 1 15
33 1177 (1282, 64, 323, 168, 83) 1 15
34 20 (1282, 64, 32°, 162, 8°) 1 18
35 20 og oo 2D o 1 18
36 26 (zets oaiaod Lichs) 1 24
37 17 (9oiiieay 455 s 16 1o0) 1 15
38 14 (@92 At fspe 62 55 67) 1 12
39 11 @lso oA 1ee ot e 1 9
40 9 (@oz oA ie s 1 7
41 76 (el ot ency) 3 71
42 40 (256°, 1287, 6412, 3517 6% 1 38
238 oy (2562, 1285, 645, 351° 169) 1 32
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B(G)  a(G)
44 34 (2562, 1282, 645, 3212, 16%) 1 32
45 34 (2562, 1257, 642, a2 ; l6%) 1 32
46 12 (384, 128, 32°, 16°, 8>, 3) 1 10
47 16 (384, 128, 96, 48, 325, 167, A2 8) a0 14
48 18 (384, 128, 96, 642, 32°, &%) 1 16
49 53 (5122, Psebplons 1 sast sof ieD) 1 51
50 36 (768, 256, 192°, 128°, 647, 128) 1 34
51 24 (768, 256, 192, 1282, 64>, 32°, 16°, 6°) 1 22
52 24 (768, 256, 192, 1282, 64>, 32°, 16°, 62) 1 22
53 33 (1536, 512, 384, 2562, 192, 128, 64°, 1 31

eothier o0
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UN ALGORITMO PARA CALCULAR EL VECTOR CONJUGACION DE UN GRUPO(*)

A. VERA LOPEZ Y J. SANGRONIZ

Departamento de Matematicas. Facultad de Ciencias.

Universidad del Pais Vasco. Apartado 644. BILBAO (Espafia).

In this paper, we give an algorithm for the calculation of
the conjugacy vector of a finite group which is a semidirect
product of an abelian group and an arbitrary finite group. We

also give some examples which illustrate our results.

1. INTRODUCCION

El calculo del numerc de clases de conjugacidén y del
vector conjugacién de un grupo es, en general, un problema de
dificil solucién. En [1] y [2] pueden encontrarse resultados
que resuelven tedricamente esta cuestidn para ciertos tipos de
grupos, aunque, en algunos casos, los célculos que se exigen
son largos y tediocsos. En este trabajo, se expone un algoritmo
que permite obtener el vector conjugacién de un grupo
presentado mediante generadores y relaciones. La ejecucidn
efectiva de este algoritmo est4 en funcién de la complejidad de
las relaciones que definen el grupo y de la capacidad del
ordenador disponible. No obstante, en algunocs de los casos
estudiados en los articulos anteriormente citados, este
algeoritmo puede modificarse de forma que su implementacidédn en
un microordenador permitird obtener el vector conjugacién de
muchos grupos en los que un calculo directo requerirfia un gran

trabajo.

(*) Este trabajo ha sido subvencionado por la Universidad del Pais Vasco.
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2. EL CALCULO DEL VECTOR CONJUGACION DE UN GRUPO

En lo que sigue, G denotard un grupco finito. Supongamos

que G = <X|R> siendo X = {x,...,X2> un conjunto de generadores
del grupc y, R = <ri(x,...,xJ)=1, i=1,...,1> un conjunto de
relaciones entre los generadores Xg,...,¥X que definen el
grupo.

El calculo del vector conjugacién del grupc G se reduce,
esencialmente, a la resclucién de los dos problemas siguientes:

1) El problema de la enumeracién de los elementos de G,
es decir, expresar cada elementoc del grupo como producto de
generadores e inversos de los generadores.

2) Determinar un algoritmo que permita obtener las clases
de conjugacidén del grupo realizando el menor numero posible de

operaciones.

El primer problema queda resuelto mediante el conocido
Método de la Enumeraciédn de las Coclases de Todd y Coxeter. Una
exposicién de este método puede encontrarse, por ejemplo, en

[3]1. El Algoritmo de Todd-Coxeter permite obtener una matriz
1

T(i,j) de n filas y m columnas, donde n = |G|, m = |XUX_ [Gitde
forma que, si XUX™t = €z,,.. .,z > con z;=x Ppara 1s<ist, se
tiene una enumeracién de los elementos de G, Gl e ass el

verificando las dos propiedades fundamentales siguientes:

i) Para cualesquiera i y k con 1<i<n, 1<k<m se tiene:
FiZk= 971 ko
it) Para todo i con 2<i<n, existen j<i y k con 1<k=<m tales que:
gi=gdjZk:
Aplicando reiteradamente la propiedad ii) se puede obtener la
descomposicién de cada elemento de G como producto de
generadores y de inversos de generadores del grupo. Estas dos
propiedades permiten realizar operaciones sobre los elementos
del grupo inductivamente. Supongamos, por ejemplo, que dado
x € XUX ' se desean obtener los elementos gx para todo elemen-—
to g del grupo. Se tiene que g>f=g1. Para i>1, gi=gjZx, con j<i
Y zZp € XUX_l, por tanto, g?=g>j<x_1zkx. Como j<i, podemos suponer
que el elemento g’; yYa es conocido de forma que, gi< queda
facilmente determinado aplicando i). Suponiendo que D Y

-1 > ; . ;
X =z,, podembs esquematizar este método en el siguiente

algoritmo:

14



ALGORITMO 1

CONJ(1) =1

e TG

gy = gj2Zx> J<i, z, € Xux *

CONJ(i) «— CONJCj)

CONJ(i) «— TCCONJ(i),s)
CONJ(i) «— TCCONJICid,k)
CONJ(Ci) «— TCCONJCi)d,r)

Finalizado este algoritmo, se tiene que g? = Jeonyiy ¥ 1=i=n.

Estudiemos ahora, el segundo problema que planteadbamos al
comienzo. El método mas directo para calcular el vector
conjugacién de un grupo consiste en fijar un elemento
Y, € 6<{1> y determinar todos sus conjugados. Después, se toma
un segundo elemento y, € G-(L{1>WCl5(y,)) y, asi sucesivamente.
Este método requiere el cilculo de (r(G)-1) |G| elementos
conjugados. El algoritmo que presentamos a continuacidén
solamente requiere el céalculo de t |G| elementos conjugados,

siendo t el numero de generadores del grupo.

Supongamos que H = <b;,...,b> =G y que A = {a;,...,a_>
es un subconjunto de G wunién de H-clases de conjugacidn.
Definimos el vector C cuya k—-ésima componente es C(k)=k, 1<k<s.
El numeroc natural C(k) representa la H-clase de conjugacién que
contiene al elemento a,. Inicialmente, una misma H-clase de
conjugacién estara representada por distintos numer os.

Aplicamos sobre el vector C el siguiente algoritmo:

ALGORI TMO 2

JES=a it

o= e > S

Para a;' = a,

A S e SR T B » S

Si C(j) = max(CCk),C(1)), C(j) «— min(CCk),CC1))

15




Se demuestra facilmente el siguiente resultado:

TEOREMA: Sea C el vector obtenido mediante el algoritmo
anterior. Dos elementos aj,a, € A son H-conjugados si y sdélo si

C(1l) = C(m).

Demostracién

Si C(l) = C(m) es obvio que los elementos 3;, a, son
conjugados. Reciprocamente, supongamos que 3 b = bH' 5 'bi'r € H
Calts quesiiay = aﬁ. Demostraremos por induccién scbre r que
C(1l) = CCm).

SIS n =SS o= a:H. Efectuados los pasos i = i;, k =m,

J=1y, i =i, k =m, j =m se tiene que C(l1) = Clm). y esta
igualdad se mantiene hasta el final del algoritmo.

Supongamos que el resultado es valido V r’< r y, veamoslo

para r© > 1. b = b’bir con b’ = bLI. 8 'b"r—x' Supongamos que
a2,= a,. Por hipétesis de induccidén se tiene que, finalizado el
algeoritmo C(m) = C(n). Por otro lado a partir de los pasos-
is=iieos ki =on, = ju=aliay, s = e ciifk =in, s jEsiindtsettiene ique

Cln) = C(1) igualdad que también se mantiene hasta el final.
Concluimos entonces que, finalizado el algoritmo, C(m) = C(l),

que es lo que queriamos probar.

En particular, si A = H = G, se tendrid que dos elementos
del grupo g;, g; son conjugados si y sdélo si C(i) = C(j). De
esta manera, es facil calcular el vector conjugacidén Ag.
Observemos también que, fijado i el cilculo de los elementos
aE‘ para cada ap, € G, puede efectuarse répidarﬁente utilizando

el algoritmo 1.

3. EL CALCULO DEL VECTOR CONJUGACION DE UN PRODUCTO SEMIDIRECTO

En *[1] A. Vera y J. Vera determinan el vector conjugacién
de un grupo de la forma G = NXKK con N abeliano en términos de
la estructura de los subgrupos N y K y, de la accién A. El

problema de obtener A; se reduce, esencialmente, a calcular Ag.

Supongamos que N = <npx<nz>x. .. x<n> = ClGCsz. S XCyp

X
con = IS EEN ISy K = S GXER> IS con B X = et Sl a>s S v R
conjunto de relaciones entre los generadores de X que definen

el grupo K. Enumeremos los elementos de los subgrupos N y K:

16



N =<m=1,...,m>, K=<L<k,;=1,...,k;> con t = [N| y s = |K|. Los
elementos de G pueden considerarse pares de la forma (h,n) con
h € K, n € N, que se operan segun la férmula:
Chy,n,dChyng) = Chyhy,ni2n,).

Para calcular nh, n € N, h € K, basta conocer cédmo actdan los
generadores de K sobre los generadores de N. Cada una de estas
acciones viene dada por una matriz (ey;) de dimensién rxr
definida por: fo P i
R nmkl kST L L S e

Sea C el vector obtenido en el algoritmo 2 aplicado al
grupc K. Definimos una matriz M de |K| filas y |N| columnas
cuyos valores iniciales son:

MCj,u) = Cj—1) |N|+u, j=1,...,|K|; u=1,...,|N]|.
Aplicando, nuevamente, el algoritmo 2 con A = G, H = N, deter-—
mi namos A: Como N es abeliano, Chnd)™ = hih,mln para cualesquie-—
ran,me Ny h € K. Esto simplifica notablemente el cilculo del
vector A:. Finalmente, determinamos Aj; conjugando cada elemento

de G por los generadores de K.

Podemos esquematizar este método en el siguiente algoritmo:

ALGORI TMO DE TOD—-COXETER
SOBRE EL GRUPO K=<X |R>

l

ALGORITMO 2 SOBRE K > Ap

l

e LR S i e

go=at s s alhial

Calcular [k;, n;]

J =iise s an K] :

Ll 1,...,|N| ’AG
Calcular [k, n;Im, = m,

o = alss ot o I

Si MCj, f) = max(MC j, ud, MCj, v)),
MCj, f) «—— minCMCj, ud), MCj, v)I)

l

17




Sl Y

i =S e =R =l N

Calcul ar k)jcL =l T e Sl

el=E1, 0 gl it g ICGeD=CdgD e =1 JaR LN

Si M(e, f) = max(M(j, u),M(w, v)), entonces:
M(e, f) «— minCM(j, ud, M(w, v))

Finalizado el algoritmo, la matriz M verifica que, dos
elementos k;jm;, k,m son conjugados en G si y sdlo si

M(i,j) = M(e,f). La matriz M contiene toda 1la informacidén

necesaria para determinar Ag.

Si el subgrupoc K también es abeliano, el algoritmo
anterior puede simplificarse notablemente puestoc que, en este
caso, los elementos de K se enumeran directamente sin necesidad

de utilizar el Algoritmo de Todd-Coxeter.

4. EJEMPLOS

Basa&ndonos en los algoritmos comentados anteriormente, se
han escrito varios programas en lenguaje FORTRAN que permiten
obtener, en muchos casos, el vector conjugacién de un grupoc

‘dado come productoc semidirecto de un grupo abeliano por un
grupo arbitrario. En particular, los vectores conjugacién de
todos los holomorfos relativos de los grupos C xC, y CgxCg han

sido calculados de esta manera.

A continuacién damos algunos ejemplos en los que puede
apreciarse la complejidad de los grupos que pueden ser  tratados

por estos programas. Se han adoptado los siguientes convenios:

i) a,(n,)....2(n ) denotard el vector conjugacidén del
JEUDGA S CaliE Rt e o S A )
ii) Si X = {X;,...,%> es un sistema de generadores del

grupo, el elemento x; se representard por el numero i.

18



Los numeros t+1, t+2,... reprsentaridn a los elementos

x;i, x;, ... respectivamente, salvo si ol(xg)=2.
iii) Una relacidén r(x,...,x) = xfixf: =1, e&=H1, se
representard por la sucesién de numeros k, &,,...,5,,

donde, k es la longitud de la relacién y, &; dencta el

5 e
numeroc que representa al elemento x;_-l!.

Sean los grupos:
Gl = A = <o hdllleci =1 G s DR Gl =1 O

G, = <x1,x2,x3,x4>x)\<a.b> = C;x)\( CexCz) con A dada por:
a a a a b
XK TXgXK» Xp =Xy X=X XKgTXK 1 XKaXgr Xq =Xy X5 TXns g =X Xa, XgTX XX,

Sirgh2 2 R LE e
Gy = <x1.x2,x3.x4>><)\<a,b,d|a =b =d =(ba) =1, (a’ba ) =a > =

= C;x)\Z5 con A dada por: xa;=x2, xg=x3, x§=x4, xj=x1x2x3x4, x?=x1x2,
2 b
Ko TXqs XKg=3KaXg» X =X1Xg, XX » X5 230, Kg TXaXg, X 53X XX,-
G, = <x,y>x ((La,b>x <c>)x <d>) = ng (SL(2,3)x_C;) con
2 (o 85 d = d 2{\ 2lar st
a,b>=0),, ac=b, bc=ab, a =a 1, b =b 1, c =cb,x =,y =y ,X =Yy,
biSciitielic2 —1 ci =2 d &
Y =X ,X =X Y LY =X Y,X =Y,y =X.
Gy = Hol(C,xC,) = <x,y>xk(<a1,a2,a3.a4>xy<a,b>) =
~ 2, el a_ a_ a_ a_ 3] B
= Cdxx szpza) con a;=a,, az=azag, Az=a5, A4TA53,, AT, A;TA5A5,

b = ayisl -1 daniiiot oas i 2l has i a1
Ag=ag, a4724338,4, X =X L, Y =Y X =X Yy , Y =y , X =X ,
G 2=l su a1 A a__-1 -1 b_ b_ -1 -1
Yo CEY sy pICHO S0 YRS Y D A0 St S AR SRS R U £

A continuacién damos los datos de entrada /salida proporcio-—
nados por un microordenador al ejecutarse los programas mencio-—

nados anteriormente para cada uno de estos grupos.

EJEMPLO 1

ESCRIBE EL NUMERO DE GENERADORES DEL GRUPD 2

ESCRIBE EL MUMERD'DE GENERADORES E INVERSDS 4

ESCRIBE LOS INVERSOS DE LOS GENERADGRES 3, 4,1, 2,

ESCRIBE EL VECTOR DE LAS RELACIONES S, 1 ,1,1,1,1,5,2,2,2,2,2,4,1,2,1,
ZoBin 37 - iR onl gl S

EL NUMERD DE CLASES DE CONJUGACION DEL GRUPO ES: 7

EL VECTOR CONJUGACION DEL GRUPO ES:

SRORD COGRT OURD. | SEAY - A
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EJEMPLO 2

ESCRIBE EL NUMERO DE GENERADORES DE N 4

ESCRIBE EL TIPO DEL SUBSRUPON 2,2, 2, 2,

ESCRIBE EL NUMERO DE GEN. DEL SUBGRUPO K 2

ESCRIBE EL TIPO DEL SUBGRUPOK 6, 2,

ESCRIBE LOS VALORES DE LAS MATRICES DECONJ. 1,1,0,0,1,0,0,0,0,0,0,1,1,0
Tt 10 07,407,200 it S0 e 0 U0 RIE M0 1 el R0 5 10

EL NUMERD DE CLASES DE CONJUGACION 6RUPO ES: 17

EL VECTOR CONJUGACION DEL GRUPD ES:

o2 (1 Aty ag (3t s () 2 (¢ al)

EJEMPLO 3

ESCRIBE EL NUMERO DE GENERADORES DE N 4

ESCRIBE EL TIPODEN 2,2, 2,2,

ESCRIBE EL NUMERD DE GENERADORES DE K 3

ESCRIBE EL NUMERO DE GENERADORES E INVERSOS DE K 5

ESCRIBE LOS INVERSOS DE LOS GENERADORES DEK 4 , 5,3, 1,2,

ESCRIBELASHATRICESDECONJUGACIDN (0 e 08 0 O ST e 0 8 e 6 ol Sl o
oo oooo s fla el O dl g Dy Ok 0 05 Ta 005 Gy 1t
1,0 Sy o 2
ESCRIBEELVEETDRDELASRELACIDNESDEY 5l e SIS0 ol ol S e s
CHEET G o Lt TR o T a0
5:

EL NUMERD DE CLASES DE CONJUGACION DEL GRUPD E
12

EL VECTOR CONJUGACION DEL GRUPD ES:

19205 (15)- 2128 (F18) A8 (SR =328 (C2VNENT 6 #{528) SR B R(328) (o 6720y o el

EJEMPLO 4

ESCRIBE EL NUMERD DE GENERADORES DE N 2

ESCRIBEEL TIPODEN 5,5,

ESCRIBE EL NUMERD DE GENERADORES DE K 4

ESCRIBE EL NUMERO DE GENERADORES E INVERSOS DE K 7

ESCRIBE LOS INVERSOS DE LOS GENERADORES DEK S, 6,7 ,4,1,2,3,

ESCRIBE LAS MATRICES DE COMJUBACION 2, 0,0,3,0,1,4,0,3,4,3,1,0,1,1,0,
ESCRIBE EL VECTOR DE LAS RELACIONES DEK 4, 1, 1, , 4

e R S S T ol s L e G G
21 bR a T A S A0

EL NUMERD DE CLASES DE CONJUGACION DEL GRUPD ES: 14

EL VECTOR CONJUGACION DEL BRUPO ES:

1200 (1) S0 (1) 48(3)

40 (1) 12(8) 10 (1) 8 (1)




EJEMPLO 5

ESCRIBE EL NUMERO DE GENERADORES DE N 2

ESCRIBE EL TIPODEN 4, 4,

ESCRIBE EL NUMERO DE GENERADORES DE K 6

ESCRIBE EL NUMERO DE GENERADORES E INVERSOS DE K 7

ESCRIBE LOS INVERSOS DE LOS GENERADORES DEK 1, 2,3 ,4,7, 6,5

ESCRIBE LAS MATRICES DE CONJUSACION 3, 0,0,3,3,2,0,3,3,0,2,3,1,0,0,3,0,1,
E ORI a3

ESCRIBE EL VECTOR DE LAS RELACIONES DEK 2, 1,1,2,2,2,2,3,3,2,4,4,4,1,2,1,2
AR T s ad AR T S i o) Sl ol i R tnai o S R s e sl s s s
G (e A S R G S e S G IO I R LG e
yhy5,4,1,6,1,6,353,3,2,6,2,6,4,3
EL NUMERO DE CLASES DE CONJUGACION DEL GRUPO ES:
3B
EL VECTOR CONJUGACION DEL GRUPO ES:
158810 15120 (1) 38R (1)) T25An (20 1920 (1) 128 (07 ) 6 (A 2 0a ) 6 (A 12 (8
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AT VERAT NOPEZ ;S J i VERAT NOPEZ. “ tCGllassifilcation of finite
groups according to the number of conjugacy classes'.

Isr. J. Math. 51, p. 305-338, (1985).

[2] A. VERA LOPEZ, C. LARREA. "Conjugacy classes in finite

groups II*". Por aparecer en Houston J. Math.

[3] J. LEECH (y otros). "Computational Group Theory'. Editado
por M. D. Atkinson. Academic Press Inc. Londres, (1984).
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ON TOTALLY GEODESIC INVARIANT SUBMANIFOLDS OF AN S-MANIFOLD

L.M. FERNANDEZ

Dpto.: Algebra, Computacién, Geometria y Topologia.
Facultad de Matematicas. Universidad de Sevilla.

Apdo. de Correos 1.160. 41080 SEVILLA (Espafa).

In [1], S-manifolds, which reduce in a special case to Sasa-
kian manifolds, were defined. In this note, a condition for an
invariant submanifold of codimension greater than 2 in an S-mani-

fold to be totally geodesic is obtained.

0. INTRODUCTION.- D. Blair, (Blair, [1]), has defined
S-manifolds which reduce, in a special case, to Sasakian
manifolds. On the other hand, many authors have studied
invariant submanifolds of Sasakian manifolds, (see, e.g., Kon,
[5] and Kon, [6]). Kobayashi and Tsuchiya, (Kobayashi and
Tsuchiya, [4]), have investigated some topics in the geometry
of invariant submanifolds of S-manifols. Specially, they have
obtained a condition for an invariant submanifold of
.codimension 2 1in an S-manifold ' of constant invariant
f-sectional curvature to be totally geodesic.

The purpose of the present note is to study invariant
submanifolds of codimension greater that 2 and with flat
normal connection in S-manifolds whose invariant f-sectional

curvature is constant and to obtain a condition for them to be
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totally geodesic. To this end, in section 1, we give a brief
summary of notations and formulas for submanifolds and, in
section 2, definitions and some properties of S-manifolds. In

section 3 we get the main result.

1. PRELIMINARIES.- Let N° be a Riemannian manifold of
dimension n and M" an m-dimensional submanifold of N". Let g
be the metric tensor field on N as well as the induced metric
on M". We denote by V the covariant differentiation in N? and
by V the covariant differentiation in M" determined by the
induced metric. Let T(N) (resp. T(M)) be the Lie algebra of
vector fields on N© (resp. on Mm) and 'I‘(M)l the set of all
vector fields normal to M.

The Gauss - Weingarten formulas are given by
@ =) §XY = Y + o(X,Y),
V = -A X + DV, X,YeT(M), VeT (M) %,

<

X

where D is the connection in the normal bundle, & is the
second fundamental form of Mm, Av is the Weingarten
endomorphism associated with V and it satisfies:

g(BX,¥) = g(o(X,¥),V).

We denote by R, R and RD the curvature tensors associated
with V, V and D respectively. If rP vanishes identically the
normal connection D is said to be flat. The Ricci equation is
given by
@) R(X,¥,0,v) = RO(X,Y,U,V) - g([Ay,A,lX,¥),

X,YeT (M), U,VeT(M)",

where [AU,AV]X = AUAVX = AVAUX.

24




Finally, the submanifold M" is said to be totally
geodesic in N? if its second fundamental form is identically
zero.

2n+s

2. S-MANIFOLDS.- Let N be a (2nt+s)-dimensional manifold

with an f-structure f of rank 2n. If there exist on N2n+s
vector fields gl,...,gs, such that, if Myre--sNgy are dual

1-forms, then

(2’1) na(EB) = aaB; fEa = 0; naof =0;
2
fe = Tl ) Ea © M o,Be{l,...,s},
o
2n+s . s E
N is said to have an f-structure with complemented frames.

Further, the f-structure is said to be normal if

[EEEs] T 25 Ea ® dna =0,

where [f,f] is the Nijenhuis torsion of f. Moreover, it is
known that there exists a Riemannian metric g on N2n+s

satifying, (Yano, [7]):

(2.2) g(x,Y) = g(£fx,£fY) + &(X,Y), X,YeT(N),
where ¢ (X,Y) = } nv(X)nV(Y)‘ The fundamental 2-form F on N2n+S
v
is defined by
F(X,Y) = g(X,fY), X,YeT(N).

A normal f-structure with F closed is called a
K-structure and N°""® is called a K-manifold. In such a
manifold, the ga are KRilling vector fields, (Blair, [1]).

Let ¢ denote the distribution determined by = and M the

complementary distribution. M is determined by f2 + I and

spanned by El""’gs' If Xe¥, then na(X) = 0, for any o and if
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XeM, then fX = 0.

A K-structure such that F = dna, o =1,...,8, is called

an S-structure and N2n+s is called an S-manifold. These

manifolds have been studied in (Blair, )R Eor = iEhe
Riemannian connection V of g on an S-manifold N2n+s, the

following were also proved:

(243) §Xga = —fX, XeT(N), oc{ld,..«,S},
(2.4) (ﬁxf)y = Z[g(fX,fY)Ea + na(Y)fzx], X, YeT (N) .
o

A plane section m is called an invariant f-section if it
is determined by a vector Xef(p), peN2n+S, such that (X, fX) is
an orthonormal pair spanning the section. The sectional
curvature K(X,fX), denoted by H(X), is called an invariant

f-sectional curvature. If N2n+s

is an S-manifold of constant
invariant f-sectional curvature k, then its curvature tensor
has the form, (Kobayashi and Tsuchiya, [4])

(2.5) R(X,Y,Z,W) = ) (9(£X,fW)n (¥)ng(2) -
o,

= g(fX,fZ)na(Y)nB(W) i3 g(fY,fZ)na(X)nB(W) =

= 9(£Y, fW)n (X)mg(2) } +

+ ((1/4) (k+3s) {g(X,W)g(fY,fZ) - g(X,Z2)g(fY,fwW) +

+ g(fY,fw)®(X,2) - g(fY,fZ)®(X,W)} +

+ (1/4) (k-s) {‘F(X,W)F(Y,Z) - F(X,Z)F(Y, W) -

- 2F(X,Y)F(Z,W)}, X,Y,Z,WeT(N).

In the case s = 1, an S-manifold is a Sasakian manifold.

For s=2, examples of S-manifolds are given in (Blair, [1]),
(Blair, [2]), (Blair, Ludden and Yano, [3]). Thus, the bundle
space of a principal toroidal bundle over a Kaehler manifold

with certain conditions is an S-manifold. In this way, a
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generalization of the Hopf fibration 700 SETH S TV
introduced as a canonical example of an S-manifold playing the
role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry.

Now, let M" be an m-dimensional submanifold immersed in
an S-manifold N2n+s. For any XeT (M), we write
(2.6) £X = TX EINX,
where TX is the tangential component of fX and NX is the
normal component of £fX. Then, T is an endomorphism of the
tangent bundle and N is a normal-bundle valued 1-form on the
- tangent bundle. It is easy to show that if T does not vanish,
it defines an f-structure in the tangent bundle. On the other
hand, if one of the Ea is normal to Mm, then T = 0, because

g(X,£fY) = F(X,¥) = dn_ (X,¥) = 0, X,YeT(M),

The submanifold M" is said to be invariant if all of Ea
(x = 1,...,s) are always tangent to.Mm and N is identically
zero, i.e., fXeT (M), for any XeT(M). It is easy to show that
an invariant submanifold of an S-manifold is such that
fVeT (M)*, for any VeT(M)l. Moreover, it is an S-manifold too
and, so, m = 2p+s. For later use, we prove the following

- Lemma 2.1.=- Let M2p+s

2n+s

be an invariant submanifold of an

S-manifold N Then, for any XeT(M), VeT(M)l, (4= 1k 5 s A

(2.7) A X = FAX = A FX.
Proof: By using the Weingarten formula (1.1), (2.4) and

m+s

the fact that M is an invariant submanifold, it is easy to

show that AfVX = fAVX. Now, if YeT (M), we have

I(RgyX,¥) = 9(X,Apy¥) = g(X,fALY) = -g(A£X,Y)
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and (2.7) holds.

3. INVARIANT SUBMANIFOLDS WITH FLAT NORMAL CONNECTION.- In

this section, let N2n+s(k) be an . S-manifold whose invariant
f-sectional curvature is a constant k. Let M2p+s be an
invariant submanifold of N2n+s(k) such that the normal

D

ZBhs is flat, i. e., R = 0. Then, by using the

connection of M
Ricci equation (1.2) and Lemma 2.1, we have
R(X,£Y,V,£V) = 2g(AX,A ),
for any vector field X,YeT(M) and any unit vector field
VeT(M)l. Now, from (2.5) we obtain
(a¥E) (s-k)g(£X,£Y) = 4g(AyX,A,Y).
Then, we get the following

2p+s

Proposition 3.1.- Let M be an invariant submanifold of an

2n+s

S-manifold N (k) with flat normal connection. Then, K=s and

2p+s

the equality holds if and only if M is totally geodesic.

Now, we prove

Theorem 3.2.- Let M2p+s be an invariant submanifold of an
S-manifold N2n+s(k). If the codimension of M2p+s is greater
than 2, then the normal connection of M2p+s

is flat if and

2p+s

only if k = s and M is totally geodesic.

Proof: From the Riceci equation (1.2) and (2.5), it is

2pt+s

clear that if M is totally geodesic, then its normal

2p+s

connection is flat. Now, we suppose that M is not totally

geodesic. We can choose a local field of orthonormal frames

2pts

for vector fields in M in the form



(Byoeee B By = fBp, 00 By = £E €0, £ ).

If Av(Ei) = 0, for some unit vector field VeT(M)l, then,

from (3.1), we get that M2P*'S

is totally geodesic, by virtue
of Proposition 3.1. Thus, AV(Ei) # 0, for any Ei and V, and
so, AV(El)""’AV(Ezp) are linearly independent.

on the other hand, it is easy to show, by using (3.1)
again, that
(3.2) AAL + AAL = 0,

for any orthonormal vector fields V,WeT(M)l.

Thus, from (1.2)
and (3.2), we get ‘
R(X,Y,V,W) = 29 (A X,ALY), X,YeT(M).
Using (2.5), we obtain

(3.3) (s-k)g(X,£Y)g(V,fW) = 4g (A X,ALY) .

If the codimension of M2p+s

is greater than 2, we can
take a unit vector field W in T(M)l which is orthogonal to V
and fV. Regarding to (3.3), it follows that g(AVX,AWY) =0,
for any X,YeT(M). Consequently, the vector fields

AV(El) ISA0ES IAv(Ezp) IAw(El) 5SS, IAw(Ezp)

are linearly independent, which is a contradiction. Therefore,

M2P*S g totally geodesic and k = s.

Finally, for codimension 2, we have the following
Theorem 3.3.- (Kobayashi and Tsuchiya, [4]) Let M5 pe an
invariant submanifold of codimension 2 in an S-manifold
2n+s

N (k). Then, M™S is totally geodesic if and only if T

is of constant invariant f-sectional curvature.
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We introduce here two kind of ends which are related with
the metric structure of the space, and so we can get a metric
completion based on the definition given here. With this comple-
tion, each Peano's continuum is obtained as the set of end points
of a metric space homeomorphic to Slx[O,l). The relation between
both ends and the main properties of these ends and the metric

completion are studied.

In this-paper, all of the spaces will be metric spaces and the
subspaces will be with the induced metric. J will denote the closed—open
unit interval [0,1) and by up-map we will understand a uniformly
continuous and proper map.

1.- Up-ends

We give here two definitions of up-end which are related with
the definition of ends given in [1].

1.-Definition. i) Two up-maps f,f:J —> X are said to be Fup-related if
there exists ng e N such that for all n > n, there exists a path f; from
f(1-1/n) to f'(1-1/n) and the length of f, tends to zero when n grows to
infinity. Each class under this relation will be called a Fup-end of X. The
set of all the Fup-ends of X will be denoted by Fryp(X).

i) Two up-maps f,f:J —> X are said to be up-related if there
exists a up—map H: M — X, where M = {(x,y)/0<x<1, 0<y<1-x}, such
that H|{y=0} agrees with f and H|{y=1-x} agrees with f' Each class
under this relation will be called a up-end of X. The set of all the up-
ends of X will be denoted by Fyp(X).

31




2.-Examples. Obviously, the definition given in 1 depends on to the
metric of the space, for instance, the open interval (0,1) has two Fup-
ends and two up-ends, however the real straightline has not Fup-ends or
up—ends.

3.-Proposition. There exists a map : Fpub(X) — Fyp(X).

The proof is easy from the definition. Later on we will make a
study of this map, before this it is necessary to introduce the notion of
up-completion:

2.- up-completion of a space.

If F(X) is the set of ends of X (either Fup-ends or up-ends), it is
not possible, in general, to define a metric on X U F(X), such that X is a
dense subset and preserve the natural covergences, thus at the first
time it is necessary to do a quotient in X U F(X) and so o and B ends of
X are said to be related (denoted o®, B) if there exist f,f:J — X
representatives of aand B respectively such that lim d(f(x),f'(x))=0.

It is easy to see that X = (X U F(X))/® is a subset of the
completion of X, and so we can give in X the induced metric. X will be

called the up—completion of X and the points of X-X will be called end
points .of X.

4.-Examples. 1) The up-completion of a space can have up-ends: let X be
all of the points of J excépt the points of the sequence {1-1/n}.
Obviously, the end points of X are the points of this sequence, because it
is impossible to get the point 1 of [0,1] via continuous map from X, so X
is equal to J which has a up-end. 22

2) Obviously, if the distance between X and Y is larger than zero,
the up—completion of the union of X and Y is the union of the up—
completion of these spaces, but this is not true in general, for instance, if
X is like in 1) and Y is the set of the points of the sequence {1-1/n} it is




easy to see that the up-completion of X U Y is equal to [0,1] and XuY
is equal to J.

5.-Proposition. The up-completion of XxY agrees with XxY.

6.-Proposition. a) All up-map f: X — Y extends to f: X — ¥.
b) If two metric spaces are up-homeomorphics, then their up-—

completion are homeomorphics.

7.-Examples. The inverse of Proposition 6 b) is not true in general, for
example, let X be the set of the natural numbers and Y the points of the

sequence {1/n}. Obviously, X=X,Y = Y and X and Y are homeomorphics
but not up—homeomorphics.

3.- Accessible ends.

We study here the relation between the proper and the
Freudenthal ends with' the up-ends and the Fup-ends.

8.-Definition. A proper end o is said to be accessible if there exists a up—
map representative of o.

From this definition it is easy to see the following proposition.

|
9.-Proposition. a) Each metric end a of X defines a point of the
completion of X; this point will be denoted by Xg.

b) A proper end o is accessible if there exists f:J — X

representatives of o such that the net (J,f) converges in X

10.-Proposition. Let X be a compact connected space, given
M = {x1,...,xn} subset of X, such that for each xj; € M, there exists {V},}
basis of neighbourhoods of xj, with V,il—{xi} path-connected. If Y = X-M,
then Y has n Fup-ends.

33




Proof. X is T and locally path-connected and thus given xj there exists a
countable base of decreasing path-connected neighbourhoods {Vn} of x1
such that Vo N (X-Y)=0.

Given f, f: J — X up-maps with lim f(x) = lim f'(x) = x1,
without loss of gcnerality, we can suppose that f(J) € Vg, f'0) € Vi
and f(x), f'(x) € Vp if 1-1/n <x <1. Then for each Vj there exists a path
f, contained in Vj from f(1-1/n) to f'(1-1/n). Thus we can define a up-
map h from M to X, where M is the following space:

M=((x,y)/x=1-1/n, 0<y<l-x : neN} U {(x,y)/y=0, 0sx<1}
U {(x,y)ly=1-x, 0<x<1}

h will be a relation between f and f'.

11.-Remark. From the last Proposition we know that, when we are in
good conditions, the number of Fup-ends agrees with the number of
Freudenthal's ends.

It is easy to prove the following Proposition.

12 .-Proposition. Let M be the interior of a closed manifold with
boundary oM, then M=M U oM.

13.-Theorem. Let C be Peano's continuum, then there exists a metric
space X homeomorphic to S!xJ such that X-X agrees with C.

Proof. If C is a Peano's continuum, we know that there exists a quotient
map f: SI —> C (Hahn-Mazurkiewicz's Theorem). Let My the cylinder of
this map, if My is a metric space we claim X as M;s-C (space
homeomorphic to S1xJ) and from Proposition 12 we know that XX
agrees with C; but it is a metric space from Theorem 20, Chapter 5 and
Theorem 12, Chapter 3 of [2].

14.-Remark. Obviously, the metric of X in last theorem depends on to the
choice of f. It is easy to give examples of two maps f and g such that Ms
and Mg are not up-homeomorphics (In other words, such that Mg and
Mg are not homeomorphics), let C be the unit closed interval [0,1] and
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f: S1 — [0,1], g: S1 — [0,1]
xy) — Ix| (x,y) — (x+1)/2

It is easy to see that Mfis not a manifold but, on the other hand, Mg is a
manifoid.

4.- Relation between up-ends and Fup-ends.

15.-Definition. Let o be a up-end of X (or Fup-end of X), we call open *—
neighbourhood of o, to any open V of X such that for any f:J] — X
representative of o, the set f-1(X-V) is a compact subset of J.

16.-Theorem. Let V: Fryp(X) —> Fyp(X) be the map of Proposition 3. If o
is a up—end of X then V-1(¥(a)) is in an 1-1 relation with liml {o(Vn)}
where {Vj} is a countable base of *#-neighbourhood of «. Thus it verifies:
a) If the inverse system satisfies Mittag-Leffler's condition then
V=1(¥(a)) is only one end.
b) In other case, ¥=1(¥(a)) has the continuum power.

Proof. If o is a up-end of X, we intersect a countable base of xu with a
suitable *-neighbourhood of o and we get a countable base of *-—
neighbourhood of o, and now, the proof follows in the same way as in

[3].

17.-Remark. a) The last Theorem means that the relation between Fup—
ends and up—ends is the same as in Freudenthal's ends and proper ends
showed in [1].

b) If Y is the complement in a compact of a set with a finite
number of points, in the same conditions as Proposition 10, Y could have
a number of up—ends distinct of n.

Let Y be the following set:

Y = {(x,y)/x=1-1/n, 0<y<l-x : neN} U {(x,y)/y=0, 0<x<1}
U {(x,y)/y=1-x, 0<x<1}

It is easy to check, thanks to Theorem 16, that Y has as ends as power

continuum.
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CENTRAL SEQUENCE OF LIE ALGEBRAS

J.R. GOMEZ
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We define the central sequence of a resoluble or nilpo-
tent Lie algebra and we study some of its properties. This
concept gives a tool for the classification of such alge-
bras. We study its relation with the nilpotent sequence of
nilpotént Lie algebras and we give a characterization of

filiform Lie algebras.
1. INTRODUCTION.

Nowadays, the classification of resoluble and nilpotent Lie Algebras is an open prob-
lem, although the clasification of semisimple Lie Algebras was obtained long time ago.

Dixmier classified in 1958 the nilpotent Lie Algebras of dimension < 5 (Cf. [3]),
and Morosov (Cf. [8]) obtained the classification of nilpotent ones of dimension < 6.
Bkjelbred and Sund has got (C{f. [10]) a classification procedure for dimension n + 1, if
it is known the clasification of nilpotent Lie Algebras of dimengion < n. This procedure
is complex, and has been applied only to dimension 6, obtaining, in 1986, the Morosov's
results. : 32

The difficulties of this clasification procedure on dimension 7 are not casual; it is well
known that the case of dimension 7 is particularly important and interesting in this
algebras: this is the minimal dimengion with a colection of elements and phenomena no
present in dimension < 7, such as the existence of maximal abelian ideals of different

dimensions, the existence of continues series of non isomorphic algebras and problems



relating with the concept of stratified nilpotent algebra. The importance of dimension
7 in Physic is great too, because the manifolds of nilpotent group of minimal dimension
7 appear in the theory of Kaluga-Klein and in the transition of Classical Mechanic to '
Quantic Mechanic.

Magnin studied in 1986 (Cf. [7]) the classification of nilpotent Lie Algebras of di-
mension < 7, obtaining a plus fine classification than Morosov’s one for dimension 6,
determining all the nilpotent Lie Algebras of dimension < 7 with a given Lie subalgebra
of dimension 6 and justifying that the classification given in 1964 by Safiullina (Cf. [6])
is not complete. Goge and Ancochea (Cf. [1] and [5]) gave a classification of nilpotent
Lie Algebras of dimension 7, and studied, in 1987 (Cf. [4]), the classification of filiform
ones of dimension 8. '

Lépes Garzén (Cf. [6]) has studied the choose of special bases, with elements that
define ideals of dimension 1 (1987). These elements may be of two classes: central and
normal elements. If L is a Lie Algebra, a central element is an element of the center of
the algebra, and a normal element is an element Y € L such that

[Y,Z2)=aY forallZel

where a is an element of the basical field of L. It will be supposed in these notes that
the fields X or X; are central ones and ¥ or ¥; are normal ones.

2. CENTRAL SEQUENCE OF LIE ALGEBRAS.

Let L be a Lie Algebra of dimension n, and let Z; be its center, if exists. Let L) be
the quotient algebra L/Z; and Z; its center, if exists. Let L(s) be the quotient algebra
L3)/Z3 and Z; its center, if exists... If L(;) is the algebra L and ;) is the quotient
algebra L(;_1)/Z;_1, then Z; will design the center of L), if exists. This sequence is
not an infinite sequence, because it will happen that there is a L) without center or
such that its center is L(;). Let L(q) be the last one appearing on the iteration of this
process.




DEFINITION 1. Let L be a Lie Algebra, and let Z;, 1 < 1 < g, the centers that
may be obtained on the above process.

The vector

(21,22, ...,Zq,O)

where

z.-:dimZ.- 15i_<_q
i8 called central sequence of the Lie algebra L.

Henceforth, z; will denote the dimension of the last center obtained by means of the

above construction, unless the center of L is 0, where the central sequence of L is 0.

The numbers z;, 1 < § < g, must satisfy z; < n, 1 < 1 < n. Furthermore, they satisfy

PROPOSITION 1. Let L be a Lie algebra. It is held

q
Zz.- #n—1
=1
PROOF:_

If the last equality is held, it exists some basis in L, such that all its elements (except

~ just one) are central ones. And this is impossible, because the bracket of this class and

any other is null. Hence, this class is a central one, what is a contradiction, and it is

held
q

Zi=n
1=1

Q.ED.

The central sequence of a nilpotent Lie algebm holds too the next result :

PROPOSITION 2. If L is a nilpotent Lie algebra, it is held

q

and
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PROOF:

If L is nilpotent, exists r € N such that L, = {0}. This fact stratifies L so that,
there is a basis {Xy, X3, ..., X,.} of L, such that the brackets of its elements are lineal
combinations of the elements of {X1,Xs,...,Xc,}, ca < n (that is a basis of L;); the
brackets of these cq elements and the elements of the basis of L are lineal combinations
of the elements of {X1,Xa,...,Xe, }, ca < c3 (that is a basis of L3), and so on. On the
rth-step, the elements of {X;, X3,..., X, }, ¢r < cifori=1,2,...,r — 1, satisfy that
their brackets for the elements of {X;, X3,..., X} are null.

Hence, the brackets [X;, X,], 1 < 1,5 < n, are null or elements of some class of any

Zi, 1 <3 < q. Hence, all the elements X;, 1 < ¢ < g, are in any class belonging to some

Z;, or, what is the same
q

Zi="n
=1

The dimension of Z; is 2,. If z; = 1 then it exists only one basic element in Zq. By
a similar way to proposition 1, it is obtained that this element belongs to Z;_;.

Q.ED.

Really, the second part of proposition 2 says that dim L; < dim L — 2

PROPOSITION 3. It is held:

a) If
q
Zi=n
1=1

then L is an algebra without normal fields.

b) If L has got a normal field, then

zz<n-—2

-

=1

c) If L has got m linearly independent normal fields, then

q
Zz,-ﬁn—m-—l
i=1
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PROOF:
a) A normal field Y of L satisfies
[YEXs = a ke 1<i<n

where {Xj, X3,..., Xy} constitutes a basis of L, being some of the a; not equal to 0.

Hence, the class of Y ig not a central class and there is not a central field in L because

q
Z2i—=n
=1

b) Let ¥ be a normal field of L. By the réasoning above, -

Xq:z,'gn—l.
=1

This sum is not n — 1 (by proposition 1). Hence

q
zz<n-—2
=1
¢) In this case, it can be choosen a basis of L such that
Y Xa, = W Xa, Xy oo X o)
where Y;, 1 < i < m, are normal fields. It is held
[Yi)XJ']=ainl' ISISM, ISan"'m

being some of the a;; not equal to 0, for each 3, because in other case, as

(Y5, YJ] =0
(because they are normal fields), all the Y; are central and not normal fields.

Hence, at least one X; (1 < 7 < m — n) does not belong to Z;, 1 < i < m, where c)
holds.

Q.E.D.
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PROPOSITION 4. If(n,c3,ca,..-,¢r) and (21,23, ...,2,0) are the nilpotent and

central sequences of a nilpotent Lie algebra L, it is held that r = ¢ and

k—2 q—k+1
ck<n—) 2z-i= Ezi, 2<k<g
1=0 =1 }

PROOF:

Really, a nilpotent Lie algebra is such that a basis of its ﬁlay be split in disjoint
subsets {X1,..., Xz, )y {Xauttse- s Xashy o) {Xz,_1+1)- -, Xn}, holding that

(X X
"is a basis of Z; and the classes that content the elements of

{Xzf—1+l:---;Xz;} ZS‘ISq

constitute a basis of Z; (2 < i < g). Le,, it is held that the brackets are:
[X:, X]=0, 1<i<z,1<j<n
[X:, Xj]= 20, ok Xa, z1+1<i<zmzn+l<j<n

[X"’ X,]: f;—ll ai'le, Zk—1 + 1 S 1 S Z2ky2k—1 + 1 S J S n

[X.‘,X,']= Z:lz;_llL ai‘jxh Zg-1+1<1<2521+1<j<n

Hence, a generator system of L; is constituted with the fields
(X0 X Xty o Xapea 1y

i.e., it is held that:
q—1
cg < Z=n—2g

Similarly, it is held that: :

q—2
c3 < Ez,-zn—zq—z,,_l

t=1




5= ﬂi'.lw"

A e e

T R A

and, generaUY; q—k+1 k—2

ck < z,-:n—Ezq_.-
=1 1=0

To see that r = ¢ (and, consequently, that 2 < k < g in the expression above), it is

sufficient to see that the brackets of the elements of

{th-—1+1$ see JX'k}

and the elements of
{Xlk-rH’ X ‘!X3h1X’k+1l see )Xﬂ}

must be linear combinations of the elements of

{Xll"'lxlk—l}

and it is impossible they are linear combinations of the elements of

e e

only because, if they were, the elements of

{th—l‘l'll coe ,Xgh}

would belong to the previous stratum, i.e., they would generate central classes in Lx_p),

that is contradictory with the fact that these classes constitute a basis of Z.
Q.E.D.:

Consequently, a nilpotent Lie algebra may be stratified so that the central elements are
in the first stratum; the elements such that their brackets with the rest of the elements
are either null, either non null central elements, are placed in the second stratum, and,
in general, we place in the sth-stratum the elements such that their brackets with the
rest of the elements are either null, either elements of the s — 1 previous strata, holding
that it exists a bracket (as minimum) of each element of the sth-stratum which is linear

combination of one or more elements of the (5 — 1)th-stratum.

43




its central sequence is
’ (3 1240)

PROOF:

COROLLARY. Let L be a n—dimensional Lie algebra. L is filiform if and only if

An n—dimensional filiform Lie algebra is a nilpotent Lie algebra with nilpotent se-

quence :
(n,n—2,n-3,...,3,2,1)

Let

(zlyzﬂr---)zq’o)

be it8 central sequence. It holds

g <n—2z

and hence,

Zg<n—cy=2
As L is nilpotent, z; > 2; therefore, z, = 2. On the other hand, it holds
c3S<n—2;—25-1

and hence

Zq_1 Sn—Zq—C:;:l
Therefore, z;_1 = 1. Similarly, it holds
C4 S N—2¢— 251 — 252

and hence

Zg-2SNn—2;—231—c4=1
Therefore z;_g = 1.

In general, let’s suppose that

Zg—1=2g-2=:-=2p41 =1




e L e LG RS VA

and, naturally, 2, = 2. It holds that

g—k
Co—k+a SN — Z 29—i
=0
and hence
g—k—1
zZr<n— Z Zg—i — Cq—k+2 =
1=0

=n—(2—-(1+---+1))—-(n—(¢-k+2)=1
and therefore 2 = 1.

Conversely, if the central sequence of an n—dimensional Lie algebra Lis (1,...,1,2,0),
it can be chosen a basis {Xj,..., Xy} of L such that the center of L is generated by
X, the brackets of X3 and the other fields are null or multiple of X; (and any must be
# 0), the brackets of X3 and the other are linear combinations of X; and X3 (and some
of these must be # 0 and some coefficient of X3 must be # 0); in general, the brackets
of the fields X;, 2 <t < n—1, are linear combinations in {Xj, ..., X;_1}, being some of
these # 0 and some coefficient of X;_; # 0. Finally, the brackets of X, and the other
fields are linear combinations of the fields Xj, ..., X;;_2, being some of these # 0 and

some coefficient of X,,_3 # 0.

Therefore, this algebra is nilpotent ( because L,—; = {0} ) and filiform (because the
nilpotent sequence is (n,n — 2,7 —3,...,2,1)).
Q.E.D.
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OBSTRUCCIONES PROPIAS DE TIPO COMPACTO-NO COMPACTO I
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In this paper we begin to devélop an obstruction theory for
the extension and classification of proper maps f:X * Y where X
is a finite proper regular CW-complex and Y is a topological
space with a finite number of proper ends. We obtain a proper
extension theorem, similar to the Eilenberg's Theorem for conti-

nuous maps.
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Agradecimientos: Los autores agradecen la ayuda econémica prestada por la Universidad de
Zaragoza, que junto con la Accién Integrada Hispano-Britdnica 51/18 (1988-89) ha hecho
posible la realizacién de este articulo.

1.INTRODUCCION

Los problemas de la extension y clasificacién de aplicaciones continuas han sido
fundamentales en el desarrollo de la Topologia Algebraica. La teoria de obstruccién es un
intento de encontrar una solucién comuin para estos problemas. H. Whitney [26] sitda el punto
de partida de esta teorfa en un articulo de Hopf del afio 1933 [17] en el que clasifica las

a7




aplicaciones de un complejo n-dimensional en la n-esfera. En 1937 el propio Whitney [25]

demuestra el teorema de Hopf utilizando técnicas cohomoldgicas.

En el marco de la teoria Shape, Yu F. Lisitsa [19] desarrolla una teoria de obstruccién
utilizando grupos de homologia de Alexandroff-Cech y grupos fundamentales de Borsuk y
obtiene teoremas de clasificacién homotoépica de sucesiones fundamentales.

T. Porter [22] desarrolla una teoria de obstruccién en pro-categorias utilizando una
teoria de cohomologia definida por €l con coeficientes en un pro-grupo abeliano.

La categoria de las aplicaciones propias tiene aplicaciones en Topologia Geométrica y
Teoria Shape, ver [3], por lo tanto es importante analizar el problema de la extensién y
clasificacién de aplicaciones propias. En [12], [13], [14], el segundo autor desarrolla una
teoria de obstruccion para aplicaciones propias utilizando una cohomologia con coeficientes en
un morfismo de pro-grupos. Estudia aplicaciones propias de un complejo de celdas localmente
compacto y segundo numerable en un espacio arco-conexo con un solo final de Freudenthal
[10]. Utilizando esta teorfa de obstruccidn, el célculo de los conjuntos de clases de homotopia
propia es a veces una tarea dura y complicada, ver [13] [14].

Utilizando una cohomologia de tipo propio con coeficientes en un morfismo de grupos

abelianos, los autores han desarrollado en [4] ,[6] y [9] una nueva teorfa de obstruccién para-

aplicaciones propias de un CW-complejo propio regular y finito en un espacio arco-conexo con
un unico final propio. La ventaja de esta teoria es que permite realizar cémputos de manera
sencilla.

En el presente articulo se comienza a desarrollar una teoria de obstruccidn, que
generaliza la anterior, para aplicaciones propias en las que el espacio de llegada puede tener
mds de un final propio. La categoria elegida para desarrollarla es aquella cuyos objetos son de
la forma (gg,X,A), donde X es un CW-complejo propio regular finito, A un subcomplejo de X
y go una aplicacién del conjunto de los finales propios de X, F(X), en el conjunto de los
finales propios F(Y) de un espacio fijo Y. La eleccién de esta categoria estd justificada por lo
siguiente:

1.- Dada una aplicacién propia f: A — Y, siej, €; son dos finales propios de A tales
que F(@)(eq) = E(i)(ep), donde F(@): F(A) — F(X) es la aplicacién inducida entre los
respectivos conjuntos de finales por la inclusién i: A — X, entonces para que exista una
aplicacién propia g: X — Y que extienda a f (gl A=f) es necesario que E(f)(e1) = E(f)(ey)
donde F(f): F(A) — E(Y) es la aplicacién inducida por f.

2.-Si f,g: X—> Y sondos aplicaciones propias homot6pas propiamente, entonces
las aplicaciones inducidas F(f),F(g): F(X) — F(Y) coinciden.
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Para definir la nueva teorfa de obstruccion se necesitan los grupos de homotopia propia
de Steenrod Ty, Iy, los grupos de homotopia de Hurewicz m, y las teorfas de

(co)homologfa propia J*(*), Ex(*), H«(*), cuya definicién se recordard brevemente en el
pérrafo 2. En este mismo parrafo se define la cohomologia 3 *(gg,X,A;¢) con coeficientes en
un [Zmy]-médulo @, donde ;. es una categoria cuyo conjunto de objetos es {0,1,....k} y
cuyos tnicos morfismos son j = jpara0<j<ky 0 — j, 1 <j<k. Para desarrollar esta
teoria de obstruccion se sigue un método andlogo al utilizado en los tratados cldsicos sobre este
tema (p.cj. [18], [24]) y se obtiene un teorema de extension para aplicaciones propias andlogo
al Teorema de Eilenberg para aplicaciones continuas.

2. PRELIMINARES

Sean X e Y dos espacios topolégicos. Una aplicacion continua f: X — Y se dice
propia si f-1(K) es compacto para cada subconjunto compacto-cerrado K de Y. Dos
aplicaciones propias f,g: X — Y son hométopas propiamente si existe una homotopia de fa g
que es una aplicacion propia; en tal caso denotamos f = &. Un subespacio A de X se dice que
es propio si la aplicacién inclusién de A en X es propia, en este caso diremos que (X,A) es un
par propio. De modo natural se definen las aplicaciones propias entre pares propios y las
homotopias propias entre pares de este tipo. Un rayo en X es una aplicacion propia o: J — X,
donde J es el intervalo semiabierto [0,+20) de la recta real R. Un espacio con rayo base es un
par (X, o) donde o es un rayo en X. Una aplicacién propia entre dos espacios con rayo
base f: (X,o) = (Y,B) es una aplicacién propia f: X — Y que verifica foat = B. Del modo
habitual se definen aplicaciones propias entre pares o triples con rayo base asi como las
correspondientes homotopias propias.

Recordamos a continuacién algunos invariantes del tipo de homotopia propia que seran
utilizados en el desarrollo de la teoria de obstruccion propia en los parrafos posteriores.

Sea (X,A,ot) un par propio con rayo base. En [2] Z. Cerin define x,(X,0) como
el conjunto de clases de homotopia propia de aplicaciones propias del tipo

F: (8" xJ*x]) = (X,0), *e8n,  f(%,1) = a(b),
bajo larelacién de homotopia propia relativa a * x J. Estos conjuntos admiten estructura de
grupo sin 2 1 (abeliano si n > 2). Notar que mo(X,o) es el conjunto de clases de homotopia
propia de aplicaciones prépias de J en X; diremos que es el conjunto de finales propios de X y
lo denotaremos por F(X). De manera andloga define gn(X,A,a) pero considerando ahora

aplicaciones propias del tipo
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f: (DT, SP-1xJ*xJ — (X,A, @)
donde D" es el n-disco unidad, (son grupos sin =2 y abelianos sin 2 3). De modo similar,
el segundo autor en [11] e independientemente Brin y Thikstum en [1] definen los grupos de
homotopia propia T,(X,0), T,(X,A,0) cambiando SPxJ por S xJ/SMx(0 y DnxJ
por. DU x J /DR x 0. Pueden encontrarse definiciones alternativas de estos grupos en [15] y en
[23] y un estudio detallado utilizando cubos no compactos (Ikx 7T, donde I = [0,1]) en [23].
Una relacién entre estos grupos y los de homotopia de Hurewicz &, viene dada por la sucesién
exacta: .
© 2 Tne 150 o5 e 1(X,0(0) D) 5 ma(X0) s - - (D)

Existe una sucesion similar para el caso relativo.

El homomorfismo ¢ puede definirse del modo siguiente:

Sea f:(In+1 91+1) — (X,00(0)) una ‘aplicacién continua que representa un elemento
€ de 41(X,0(0)). Definimos
G:IxIxQUIMx0OxJ UIlxIx] — X

haciendo G(x,t,0) = f(x,t) si(x,t) e IPxI
G(x,0,s) = a(s) si(x,t)eInx]
G(y.,t,s) = a(s) si (x,t) € dIM xIx]J.

Ahora aplicando la propiedad de extension de homotopia propia, ver [23.1.1,11] la aplicacién
propia G se extiende a una homotopia propia F: I xI xJ — X. Definimos @ ({) como el
elemento de gn(X,a) repre'sentado por F;, donde F;(x,s) = F(x,1,s). Este homomorfismo
jugard un papel relevante en posteriores parrafos.

Es importante observar que QI(X,(X) actia en la sucesion exacta (1) (gl(A,(x) en el
caso relativo) ver [23.1.6.7]. Se dice que X es (T)n-simple si la accién de T (X, ) en
gn(X,a) es trivial para cada rayo o en X. Si t;(X,x) actda trivialmente en mt,(X,x) para cada

x € X, se dice que X es (m)n-simple. Conceptos similares se definen para el caso relativo.

W. Massey desarrolla en [20] la teoria de homologia singular Hx utilizando cubos
singulares (aplicaciones continuas T: I* — X). Inspirados en esta teoria pero utilizando cubos
singulares propios (aplicaciones propias T:I" — X o T:I?-1xJ — X) los autores definen en [5]
las teorias de homologfa propia Jx, Ex que se describen brevemente a continuacién:

Sea Ci(X) = QpX) /Dn(X) donde Q,(X) es el grupo abeliano libre generado por todos
los n-cubos singulares propios de X, y D,(X) el subgrupo generado por los n-cubos

degenerados (un n-cubo singular propio se dice degenerado si existe algin indice i tal que




SRR M=

T(X15-+,Xj5e-Xn) = T(X1,...X15..,Xp) para cada xj, x;' € I). Se define el operador borde 9 del
siguiente modo:
aT= & (1 (00T - (o)*T)

donde (o;)* es el homomorfismo inducido por la i nclusion a;! definida por
041X 155X} 15X+ 15-:Xn) = (X15--Xi.151,X;415--Xp) donde 1= 0,1 para i=1,..,n siel dominio
de TesIM ysi esI1xJ,1=0,1 parai=1,..,n-1y1=0parai=n,en tal caso (ail)* =10}
El complejo de cadenas que se obtiene se denota por Cx(X) y su n-ésimo grupo de homologia
por J,(X).

Sea S%(X) el complejo de cadenas de los cubos singulares en X (S,(X) es el grupo
abeliano libre generado por todos los n-cubos singulares de X médulo el subgrupo generado
por los n-cubos degenerados). Se define E(X) = H,(Cx(X)/S*(X)). Dado un par propio
(X,A) y un grupo abeliano G se definen de la manera habitual los grupos de homologia y
cohomologia con coeficientes en G.

La siguiente sucesién exacta relaciona la anteriores teorias de homologia:

- D Ep(X) - Hy(X) - Ii(X) - Ey(X) — - 2)
donde H,(X) denota a H; (Sx(X)). Andloga sucesién se obtiene para el caso relativo. Por
ultimo, conviene hacer notar que para espacios compactos las homologias Hx y Jx coinciden v
la homologia Ex es 0. Un desarrollo més detallado de estas teorias puede verse en [5] [23]

Para estos invariantes de homotopia propia también existen homomorfismos naturales

de tipo Hurewicz
pPr: X)) — Jh1&X),
Pr: Ea(X®) = Ep(X)
que junto con el homomorfismo habi_tual
pr: mp(X,0(0)) ->H(X),
relacionan de un modo conmutativo las sucesiones exactas (1) y (2). También en el caso
relativo.(referimos al lector a [7] y a [23]).

Los autores han elaborado recientemente unas nuevas teorias de cohomologia que
generalizan las anteriores (ver [8]) y que se utilizardn en este trabajo para desarrollar una teorfa -
de obstruccién para aplicaciones propias en las que el espacio de llegada tenga varios finales
propios.

Sea F un conjunto finito fijo. Consideramos la categoria p-Topg cuyos objetos son de
la forma (g,X) donde X es un espacio topoldgico y g: F(X) — F una aplicacién del conjunto
de finales propios de X en F; un morfismo h entre dos objetos (g,X) (f,Y) es una aplicacién
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propia h: X — Y tal que foF(h) = g siendo F(h) la aplicacién inducida por h entre F(X) y
F(Y). p-Topg(2) denotard la correspondiente categoria de los pares cuyos objetos, denotados
brevemente por (g,X,A), representan realmente la pareja ((g,X), (goF(i),A)) donde F(i) es la
aplicacion inducida entre los conjuntos de finales propios por la inclusién i: A — X de un par
propio (X,A).
Si F = {ey,....ex}, denotamos por Cx(X,g 1(e;)) al complejo de cadenas de cubos
singulares propios en X asociados a g-1(e;), es decir,
CaXog71(ep) = Qu(X.g () /Dn(X.g (1)
siendo Q,(X,g1(e;)) el grupo abeliano libre generado por los n-cubos singulares de la forma
T:I0 5 X 6 T:I1xJ—— X talesque T es propia y F(T)(comn-1y1) € gl(e;) (eopn-1y
denota el tinico final propio de In-1x J), D, (X,g-1(e;)) denota el subgrupo de Q,(X,g-1(€;))
generado por los cubos degenerados. El operador borde estd definido de la manera habitual.
Al n-ésimo grupo de homologfa H, (Cx(X,g1(e;))) se le denota por J,(X,g-1(e;)).
Al n-ésimo grupo de homologia del complejo C *(X,g'l(ei))/S % (X) sele denota
por E (X,g1(ey))-
Para cada i = 1,... )k, se tiene una sucesion exacta larga
- S HX) - I,X.gle)) -2 ExX.gle) » Hp X)) — - .
Definimos ahora el complejo de cadenas SC«(g,X) en la categoria Ab K de funtores
covariantes-de Ty (categoria definida en la introduccién) en la categoria de los grupos
abelianos Ab. SCx(g,X) = {SC(g,X),0,} donde SCp(g,X) denota el siguiente objeto
b, CoX.g 1(ey))
SpX) T CuX.gler)
Iy CaX.g7 1 (o)
. 1; denota el homomorfismo inclusién para cada i. El operador 9, es el inducido por los

D

operadores borde de los distintos complejos.

Recordemos que Mitchell en [21] demuestra que la categoria Ab X es equivalente a
una categoria de médulos sobre el anillo de la categoria Z 7. Este anillo, denotado [ 271,

es el anillo de matrices (k+1)> (k+1) con coeficientes enteros de la forma:
[ZOO Z()]evvnnenns Zok ]

Puede verse un estudio de esta categoria en [21] y [8].




Cuando X es un espacio compacto, el tinico objeto posible asociado a X es (J,X) y
SCx(90,X) resulta ser

L S *(X)
S ) == S ()

A 2
Sx(X).
Llamaremos n-ésimo grupo se homologia propia de (g,X) y lo denotaremos por
9,(2.X) a H,(SCx(g,X)). Notar que G,(g,X) es el [27]-mddulo representado por:
A X ler)
Hy(X) ——> IhXglep)

G LKele).

Si (f,Y) es otro objeto de p-Topg y h € p-Topg ((g,X),(f,Y)), entonces, como
foFE(h) = g se induce de modo funtorial un homomorfismo de médulos §,(h): S,(g.X) —
Sn(f.Y). Asi, para cada n, 9, es un funtor covariante de la categoria p-Topg en la categoria
Ab TK, Ademds, si h,h": (g,X) — (f,Y) son dos aplicaciones propias tales que h =p his
entonces F(h) = F(h') y 8,(h) = §,(h"). Por lo tanto, §* es un invariante de homotopia
propia. ;

Si A es un subespacio propio de X, definimos los mddulos de homologia relativa
9n(g.X,A) como H,(SC«(g,X,A)) donde SC,(g,X,A) es el [ZTy]-mbdulo representado

por:
S CaXAg 1)
> CuXAgley)

SN

Sn(XA)

CaX.Ag 1 (ew),
siendo SpX,A) = Sy(X)[Sp(A)  y
Ca(XAg () = CrX.g71(e))/Cr(AL(g o FG) ) 1(ey)).
F(@): F(A) — F(X) es la aplicacién inducida por la inclusién i: A — X.
Asociada al objeto (g,X,A) € p-Topg(2), se tiene la siguiente sucesion exacta larga:
= 9n(g o F@).A) — 9n(g.X) = n(8.X,A) = 3p.1(g ° F(1),A) —> -
\

1
Dadoun [Zm]-médulo G, representado por:
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de la manera habitual se definen §1(g,X;G) y 80(g,X,A;G). Propiedades de las
(co)homologias @x(*) pueden verse en [8]. Notar que si A; =0 paracada 1 <i <k,
91(g.X;G) = HA(X;Ap) yquesi Ap=0, 80(g.X;G) = @ ER(X;A)) 1 <i<k. Igualmente en el

caso relativo.

Describimos a continuacioén la categoria de los CW-complejos propios que generaliza la
categoria de los CW-complejos y la categorfa de los complejos ciibicos propios finitos [6].
Estas categorias son adecuadas para el estudio de las anteriores teorias.

Consideramos en R1T la norma del mdximo (llxll = max{lx;l | i = 1,..,n}, x =
(X1,----Xp)) y usamos las siguientes notaciones:

En ={xe R|lIxll<1},

el ={xe RM|lxll <1},

Snl=(xe ROlxll =1},

e+l = (enxJ)-(e" x {0}) (n = 0),

e0 =EO = {0}.

Definicién 2.1: Un CW-complejo propio es un espacio de Hausdorff X junto con dos
conjuntos de indices A, y B, para cada enteron 2 0 tales que Bo=9D , A, B, =D y
aplicaciones propias

D, ED — X paracadan=20yoa e A,

Qpn:E™IxJ — X paracadan>0yp e By,
que satisfacen las siguientes propiedades:

PI)"  Xi= nUY‘Dy“(C") paracadan=0y ye A ;UB,, dondecl=e" siye A ,ycl= €l

siye By. 4
P2) @f‘(c“) N PgM(cM)= & salvosi n=m y y=39.

P3) ®y|cnesl-lparatodon20y Ye A U B,
P4) Sea X, = UQy"(c™) para todo 0Sm<Sn y todo Y€ Ay U B.

Entonces,

D (S-1) © X jparatodon>1y ae A,

@B"((E"'l x (0}) U(SM2xJ)) € X, paratodon>2 y B e B,
(DBI(EOX {0)) € Xpparatodo B € Bj.




P5)  Un subconjunto C de X es cerrado siy solo si paracadan=>0ycadaye A, UB,,
(d)yn)'l(C) es un conjunto cerradoen ERsi ye A, 6enEn-1xJsi ye B,.

P6) Paracadan=0, (Dy‘(Z") estd contenido en un numero finito de subconjuntos de la
forma ®gM(c™) paracada ye A, UBdonde Zn=Elsiye A y EZ0=ENIxJsi
Y€ B;.

Las aplicaciones propias (Dyn se llaman aplicaciones caracteristicas de X, los
subespacios @y‘(E“) n-celdas compactas de X y los subespacios CDy‘(E“'l x J) n-celdas no
compactas de X. El subespacio X, se llama n-esqueleto de X, y si X[, = X para algiin n se dice
que X es de dimensién finita, el menor n para el que X, = X se llama dimensién de X. Si
no existe ningin n tal que X, = X, X es de dimensién infinita. Si X tiene un niimero finito de

celdas se dice que es finito. Si cada k-celda admite una aplicacién caracteristica inyectiva y su
borde @yX(ZX) es la unién de (k-1) celdas el CW-complejo propio se dice regular.

Definicién 2.2: Dado un CW-complejo X, un subespacio L de X se dice que es un
subcomplejo si para cada n = 0 existen subconjuntos A,', B,,' de A, B;,, respectivamente,
tales que:

a) L=u (IDY“(c“) paratodon=20 y yeA,'UB,

b) CDYn(Z") CL paratodon=20y ye AU B,"

Denotaremos por CWPREF la categoria de los CW-complejos propios regulares y
finitos y aplicaciones propias y por CWPRF(2) la categoria cuyos objetos son los pares (X,A)
donde X es un CW-complejo propio regular y finito y A un subcomplejo de X. Notemos que
la aplicacién it A — X es propia. Recordemos (ver [9]) que si (X,A) e CWPRF(2) entonces
(X,A) tiene la propiedad absoluta de extension de homotopia propia (PAEHP), esto es: Dada
una aplicacién propia f: X — Y tal que existe una aplicacién propia F: A xI — Y con F(a,0) =
f(a) para todo a € A, entonces existe G: X xI = Y tal que G(x,0) = f(x) paratodo x € X y
GlAx1=F.

Sea X un CWPRE. En [9] puede verse un algoritmo de cdlculo de las homologias Hx,
Jx y Ex de X que describimos brevemente a continuacién: El complejo de cubos singulares
propios Cx(X) es homot6picamente equivalente al complejo Cx(X) = {C,(X),0,} donde
CyX) = J,(X,Xn-1) es isomorfo al grupo abeliano libre generado por las orientaciones

elegidas para todas las n-celdas de X, es decir, si ¢ una n-celda (n 2 0) y 6 su borde,
notemos que por ser X regular o tiene también estructura de CWPRE. Se define una
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orientacién sobre una n-celda ¢ como uno de los dos posibles generadores del grupo ciclico
infinito J(0,6) (si © es compacta, J;,(0, &) = Hy(0, 6)). Supongamos que se ha elegido una
orientacién o para cada ¢ de X. Entonces se verifica que

J (X, X01) =@ { J,(0,0) lo esunan-celda de X}
y que el homomorfismo asociado al triple (X, Xy, 1,X5.2)

O In(XnXn-1) = I 1(Xp1:X02)

satisface para cada celda o que 0J,(0g) =2 €9; or dondet describe todas las (n-1)caras
dec yeS; =10 €9 =-1. En el caso que €9; = 1 diremos que T tiene la orientaci6n
inducida por & (og es la inducida por og) y si €9 = -1, diremos que t tiene la orientacién
opuesta a la inducida por ©.

El operador borde d de C#(X) es el homomorfismo descrito anteriormente y estd
determinado, para cada n-celda o, por las (n-1)caras de ©, las orientaciones elegidas oG y og
para o y sus (n-1)caras T asi como por las orientaciones que ¢ induce en sus (n-1)caras <.

También en [9] se prueba que el complejo Sx(X) de los cubos singulares compactos de
X es homotopicamente equivalente al complejo S*(X) donde S#(X) es el subcomplejo de
Cx(X) generado por las orientaciones de las celdas compactas. Finalmente, se prueba que
C#(X)/S%(X) es homotépicamente equivalente al complejo cociente Cx(X)/S%(X). Nétese que
es isomorfo al grupo abeliano libre generado por las orientaciones de las celdas no compactas y
que el operador borde es precisamente el que Cx(X) induce en el complejo cociente (Dada una

n-celda no compacta, solo se deben considerar sus (n-1)caras no compactas).

Sea L un conjunto finito fijo (L = {ej,...,ex}). Denotamos por CWPREF, la
subcategoria de p-Topp, cuyos objetos son delaforma (g, X) donde X € CWPRF y
. g: F(X)— L. CWPREFT (2) denotard la correspondiente categoria de los pares.
Sea (g,X) un objeto de CWPRF] , podemos considerar el complejo

Cx(X,g l(e)
-7
SH X == > CxXgley)

2 > 1
C*(X7g_ (ek))7
que denotaremos SCx(g,X) y donde C,(X, g'l(ei)) es el grupo abeliano libre generado por las

orientaciones elegidas en n-celdas compactas y aquellas no compactas tales que la aplicacién
inducida por su aplicacién caracteristica envia el final de ER-1x J en g‘l(ei). El operador borde

se define como en los casos anteriores, al considerar las orientaciones elegidas en las celdas y
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las orientaciones inducidas en el borde. Notese que si T es una cara no compacta de o,
entonces 0 y T determinan el mismo final propio de X.

Teniendo en cuenta que las equivalencias construidas en [9] "conservan finales" y de
[16,IV-4] facilmente se sigue (ver [8]) que los complejos SCx(g,X) y SCx(g,X) son también

homotépicamente equivalentes.
En este trabajo la orientacién og para una celda s, se denota a veces simplemente por s

y a dicho generador se le denomina celda orientada.

Para un estudio mds profundo de las propiedades de los CW-complejos propios
referimos al lector a [23] [9].

3.- EXTENSION PROPIA DE APLICACIONES PROPIAS

Sea Y un espacio arco-conexo con un niimero finito de finales propios y (gg,X,A) un
objeto de la categorfa CWPRFgyy(2). X, denotard X, U A e it A = X, iy X = X las
aplicaciones inclusién. Sea f: (goeF(i),A) — (idgy), Y) un morfismo de la categoria p-Topgy)

(por comodidad, siempre que no haya lugar a confusion, se denotard f: A— Y).

Definicién 3.1: Sea n un entero positivo, decimos que f es n-extensible propiamente en (gg,X)
si existe una aplicacién propia g: (ggeF(1), X,) — (idF(Y),Y) tal que gjA = f.

Se llama indice de extension propia de f al supremo de todos los n € -N tales que f es
propiamente n-extensible.

El indice de extensi6n propia es un invariante del tipo de homotopia propia y no
depende de la estructura de CW propio regular finito de (X,A) como prueban los siguientes
teoremas:

Proposicién 3.2: Si f,h: A — Y son aplicaciones propias tales que f =p h. Entonces f y h
tienen el mismo indice de extensién propia.
Demostracién: Sea @: X; — Y una n-extension propia de fy F: AxI — Y una

homotopia propia entre f y h. Por PAEHP (ver pdrrafo 2), F se extiende a una
aplicacién propia H: X xI — Y tal que Hjpo x1=Fy Hix x0= @ . Entonces la aplicacién

W¥: X, — Y definida por ¥ (x) = H(x,1) para cada x € X, es una n-extensién propia de h.
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Proposicién 3.3: Sea (gy,X,A) un objeto de CWPRFgy)(2) y f: A — Y una aplicacién
propia. Entonces, el indice de extensién propia de f no depende de la estructura de CW propio
regular finito del par (X,A).

Demostracién: Sea (X',A') otra estructura CW propio regular finito para el par topolégico
(X,A). Por el Teorema de aproximacion celular propia [9] existe una homotopia propia H entre
la identidad de A y una aplicacién celular g: A' — A (considerando las dos estructuras).
Aplicando PAEHP, H se extiende hasta una aplicacién propia H': X' xI — X tal que H'p es
id: X' > X. De nuevo por el Teorema de aproximacién celular propia, existe una aplicaciéon
propia y celular h: X' — X'tal que h~,H; y hjp=g.

Suponiendo ahora que f: X, — Y esuna n-extensién propiade f: A - Y,la

composicién X' B, X f_“) Y es una n-extensiéon propia de foh|p'. Como

foh|A! =p feidA'—, A, se deduce de la Proposicion 3.2 que f: A' = Y es n-extensible

propiamente sobre X'.

Proposicién 3.4: Dado (gg,X,A) toda aplicacion propia f:(gg°F(i),A) i (idp(y).Y) es1-
extensible propiamente, y si 7;(Y) = 0 entonces es 2-extensible propiamente a (gq,X).
Demostracién: Para cada x € A, definimos g(x) = f(x). Sea yg un punto cualquiera dado de Y,
entonces, para cada vértice v de X-A definimos g(v) = yo.

Sea ¢ una 1-celda de X que no estd en A y sea hg la aplicacién caracteristicade ¢. Sio
es compacta y su borde estd formado por las 0-celdas v; y v, elegimos un camino 3 en Y que
una g(vy) y g(vp) y definimos g(x) = bo(hg)-1(x) para cada x € ©. Si © es no-compacta y su
borde es la 0-celda vy, consideramos un representante o de go([hgl) y B un camino que una
g(vy) y a(0); entonces definimos g(x) = 10(h6)'1(x) paracadax € ¢, donde :J——Xesla
aplicaci6n definida por I(t) =B(t) si0<t< 1y I(t) = ou(t-1) sit> 1. Asi g:X;—> Y es una 1-
extension propia de f.

Supongamos ahora que ©1(Y) = 0. Sea ¢ una 2-celda de X que no estd en A, con
aplicacién caracteristica hg. Si 6 es compacta gohg|gp2 representa un elemento del grupo
trivial m;(Y) y portanto g se extiende a ©.Si © es no-compacta, las aplicaciones
gohglEIxo U 0xJ Y g°hgl1 x yrepresentan el mismo final propio de Y, lo que unido al hecho

de ser 1(Y) = 0, permite probar facilmente que g se extiende de manera propia a todo ©.

Si a es un final propio de Y, denotamos por T,.1(Y,a) (n 2 2) el conjunto de

clases de homotopia propia de aplicaciones propias del tipo h: d(I"xJ) —— Y tales que




F(h)(ooa(ln % J)) = a, y denotamos por 7,(Y) el conjunto de clases de homotopia de
aplicaciones del tipo h: oI"t1—— Y.

En lo que resta de trabajo Y serd, ademds de arco-conexo, (m)-n-simple y (9)-(n-1)-
simple para un entero n = 2. Con estas condiciones, de [18] se sigue que 7,(Y,yg) = ©(Y)y
de [23] que T,.1(Y,®) = 1,.1(Y,a) para cada yg € Y y cada rayo o representante del final a.
En el cason=2,como Y es (_) 1-simple y TI(Y a) = 1:1(Y oc)/Q,tl(Y o) siendo Qtl(Y o)
el subgrupo generado por los elementos de la forma & -(u &) 1 donde & e TI(Y o),
ue m;(Y,a)yu & denota la accién de u en &, se sigue que, en estas condiciones de

simplicidad, gl(Y,a) es un grupo abeliano.

Sea F(Y) = {ay,..,ax}, 0,..,0 Tayos en Y representantes de aj,..,ay respectivamente
y tales que 07(0) =...= o (0) = * (la existencia de tales representantes estd garantizada por ser
Y arco-conexo) y sea (pni: (Y, *) > ;n_l(Y,(xi), i =1,.,k, el homomorfismo definido en el

pérrafo 2. Entonces el objeto de Ab '
1
S

Tn-1(Y,001)

7.

(0GR == Tn-1(Y,000)

Sl
(\On _I_n-l(Y:ak)’

lo denotamos por
- gn—l(YQal)
() T T(Y.a)

\> .
gn-l(Yaak)v

y lo llamamos ¢,(Y), pues es independiente de la eleccién de los rayos base.

Dado (g,X,A) € CWPRFg(y)(2), asociada con una aplicacién propia f: X, — Y,
n > 2, tal que F(f) = go o F(i,) vamos a definir una cocadena obstruccién propia que
denotaremos sc™*1(f) e SCM*1(gp,X,A;0,(Y)) = Hom(SCp41(g0,X,A);0,(Y)), donde
SCh41(80:X,A) es el [Zmyc]-mddulo representado por:
7 Ca1XoAgo @)
Sns1XA) = Cru(X.A.go 1 (a)

Cni1(XA,g071(ap),




siendo S;,1(X,A) el grupo abeliano libre generado por las (n+1)-celdas compactas orientadas
de X queno estdn en A, y Cn+1(X,A,gO'1(aq)), q = 1,...k, el grupo abeliano libre generado

por las (n+1)-celdas compactas orientadas de X que no estdn en A y por las (n+1)-celdas no
compactas orientadas de X que no estdn en A y tales que su aplicacién caracteristica hg

verifica que F(hg)(c°gn « J) € go‘l(aq). sc+1(f) viene dado por los homomorfismos

sHL(f) : 81, 1(X,A) — 1t (Y)

g™ 1(f): Cri (XA g0 (ag)) — Tn1(Yoag), a = L.k,
que estdn definidos del modo siguiente:
1) Dada una (n+1)-celda compacta ¢ de X-A se define

sT1(£)(0) = Ty (16 ° P 1(0)
donde & denota el borde de la celda 6, pr: T,41(0,6,%) —> H,1(0,6) es el isomorfismo
de Hurewicz, 0 es el operador borde de la (1t)sucesion asociada al par (0,6) y T,(flg,")) es el
homomorfismo inducido por f|g en los grupos de homotopia.

2) Para definir cq“”(f), distinguimos dos casos:

a) Si o es una (n+1)-celda compacta de X-A, entonces definimos

™)) = pI ™ 1(f)(0))
b) Si c esuna (n+1)-celda no compacta de X-A tal que F(hg)(c°gn «J) € go'l(aq),

definimos

g™ 1(£)(©) = 2n.1(fie)° 9 °p:1(0)
donde pr: I,(0,6,0) — Jp11(0,0) es el isomorfismo de tipo Hurewicz definido en [7]
(o es un rayo cualquiera en G), 9:1,(0,0,0) — 't=n_1(6,oc) es el operador borde de la
(D)sucesidn exacta asociada al par (6,6) y Tn1(fle): b_l(d,a)—) Tn1(Y.fo o) =1y, (Y,ag) es

.el homomorfismo inducido por f.

Definition 3.5: A la cocadena sc™*1(f) la llamaremos (n+1) cocadena obstruccién propia de f.
Dada una (n+1)-celda ¢ de X-A, si ¢ es compacta, la aplicaciéon f: 6 — Y

representa un elemento de 7,(Y), si 6 es no compacta y F(hg)(eogn « J) € gO'l(aq), la

aplicacién f:6 — Y representa un elemento de gn_l(Y,aq). En ambos casos, si el elemento

representado es cero, f tiene una extensién propia sobre ¢. Debido a esto y a que X, tiene
solo un nimero finito de (n+1)-celdas se obtiene:

Teorema 3.6: Si f: X, — Y es una aplicacién propia, entonces f tiene una extensién propia
sobre X, 1 si y solo si sc™*1(f) = 0.




Teorema 3.7: La cocadena sc™+1(f) es un cociclo.
Demostracién: Si ¢ es una (n+2)-celda compacta de X-A, se comprueba que sn+1(f)(dc) = 0

de manera andloga a la realizada en [18,4.VI-3.1]. Por otra parte, para cada q = 1,..,k,
cg™*1()(@0) = ¢4, (s"+1(f)(90)) = ¢9,(0) = 0.

Si 0 esuna (n+2)-celda no compacta de X-A tal que F(hg)(0gn+1 ) € go'l(aq),
consideramos ¢ como un CWPRF (n+2)-dimensional, G denotard el (n+1)-esqueleto de ¢ y
o el (n)-esqueleto. Tenemos entonces él siguiente diagrama conmutativo, donde o es un rayo
en o :

o Pt -

Jn+2(0’6) = I_.n-‘}-l(c’o’a)

U9 L9,

o B oow

'l'jl 1«]2 N 0

H: (G0 Pz (6, 0, 00) Tn1(0,00) Zn-1(f| o) Tn1(Yoag)

donde 07 y 95 son los correspondientes operadores borde de las sucesiones de homologia y
homotopia propias asociadas al par (0,6), d el operador borde de la sucesién exacta de
homotopia propia asociada a (G, ©) yj1 ¥ Jjp vienen inducidas por inclusiones

En virtud de que :_l:_i(('s, G )=0 paracada i<n-1 y 7((0) =Tp( 0 ) =T(S) = T9( T )
= 0, aplicando el teorema de tipo Hurewicz [7] se tiene un epimorfismo P gn(c's, o ,0) >
Jn+1(6, ©) y es fécil verificar que H= 2, 1(f|5)* ° p_r_-l: Jh41(0,0) g ZIn1(V,ag) estd

bien definido y ademds H(") = cq“+1(f)(1’|) para cada (nll)-celda T de ¢. Ahora es inmediato
comprobar que cq“+1(f)(ac) =0.

Proposicién 3.8: Si f',f: X,—— Y son dos aplicaciones propias tales que f ~ pf', entonces
scM+1(f) = sei*1(f").

Iniciamos ahora el estudio del problema de la extensién propia de homotopias propias,
introduciendo el concepto de cocadena diferencia propia y obtenemos un primer resultado
sobre la extension propia de una aplicacion propia.

Dado (gp.X,A), como F(I x X) = F(X), podemos considerar (gg,I x X,I x A) y
denotamos (BX), =0x X, U Ix X1 U 1xX;.




Dadas dos aplicaciones propias f, f: X;,—— Y tales que existe una homotopfa

propia G entre f|Xn.1 Y f'[Xn.1» definimos F = (f,G,f"): OX), — Y por
FloxXn=1f; FlIxXn1 =G ; Fl1xXn =f.
Asociado a F tenemos €l cociclo
sctH1(F) e SCh1(gg,IxX,IxA;¢,(Y)).
Por otra parte, podemos definir
k,: SCp(g0.X,A)— SCp,1(go.I x X, Ix A) por ky(0) = Ix ©.

Notar que si ¢ es compacta, k;(0) también es compacta, y si G es no compacta tal que
F(hg)(oogn-1 « J) € go‘l(aq) entonces k;,(0) es no compacta y F(h 1 s g)(°°En « J) € go‘l(aq).
En general la aplicacién k: SCx(gg,X,A) —— SCx(gp,I x X,I x A) no conmuta con los

operadores borde.

Definicién 3.9: Con las notaciones anteriores, denotamos

AN(F) = A(£,G.f) = sc™*1(F) o k
y diremos que AN(F) es la cocadena diferencia propia asociada con F = (f,G,f"). Si f|Xn.1 =
F'I%n1Y G es la homotopia "constante" denotaremos también AN(F) por A™(f,f").

Como en la teoria de obstruccién "standard" se obtiene:
Proposicién 3.10: & AR(F) = sc™+1(f") - sci+1(f).

Proposicién 3.11: Sea H: 0 x X, U Ix X, ;—— Y una aplicacién propia y sea c (E
SCo+l(gy, X, A;¢0,(Y)).Entonces existe una extensién propia F de H sobre (LX), tal que
AN(F) =c.
Demostracién: Sic es no compacta tal que F(hg)(eogn-17) € go‘l(aq), consideramos la
aplicaci6n propia H|) x g U 1xdc = H O. Ahora bien, el elemento ¢(0) € Z,.1(Y,aq) estard
representado por una aplicacién propia g: d(I xc) ——> Y. Como O0xc U Ix0s tiene el
mismo tipo de homotopia propia que J y E(H 9)(co) = aq (oG denota el tinico final propio de
0) deducimos que g|) x 6 U Ix 9 es hométopa propiamente a H . Aplicando PAEHP se
obtiene que H O tiene una extensién propia F 9: d(Ixc) —> Y tal que F O representa al
elemento c(0).

Si G es compacta, con las mismas notaciones H O tiene una extensién F O a (I x o)
que representa a c(0) € m,(Y) como puede verse en [18.VI.4.3].
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Por dltimo, definiendo F por medio de las F O, como I x X es un CW-complejo finito,
F es una extension propia de H tal que AM(F) =c.

Como consecuencia se obtiene el siguiente teorema, andlogo al Teorema de Eilenberg
para obstruccién "standard":

Teorema 3.12: Sea f: X;, —— Y una aplicacién propia. Entonces f|,.; tiene una extension

sobre X, si y solo si sc™*1(f) es cohomélogo a cero.
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INTRODUCCION

En este trabajo continuamos el iniciado en "Obstrucciones propias de tipo compacto-no
compacto 1" (ver [4]) y nos dedicamos fundamentalmente a estudiar el problema de la
clasificacion de clases de homotopia propia de aplicaciones propias. Obtenemos teoremas para

tal clasificacin en términos de grupos de cohomologia propia. Seguimos la misma notacién,

teminologia y numeracién que en el trabajo ya resefiado.




4.- EXTENSION PROPIA DE HOMOTOPIAS PROPIAS Y TEOREMAS
DE CLASIFICACION

Sea (gg,X,A) € CWPRFg(y)(2), donde Y es un espacio arco-conexo con un nimero
finito de finales propios (w)n-simple y (t)(n-1)-simple. Dadas dos aplicaciones propias
£.hi(go,X) — (idg(y),Y) tales que f|A = h|A, el problema que nos planteamos es decidir si

f y h son o no hométopas propiamente rel. A.

Definici6n 4.1: Diremos que f es m-hométopa a h (rel.A) si f|Xm = p hixXm (el.A).

Notar que, como Y es arco-conexo, f y h siempre son 0-hométopas propiamente.
Ademis si 7;(Y)=0 es fdcil ver que son 1-homdtopas propiamente. El supremo de los
m e N tales que f y h son m-hométopas propiamente se llamard indice de homotopia propia
del par (f,h). Si f :pf' y h =p h', es fécil ver que los pares (f,h) y (f',h’) tienen el mismo

indice de homotopia propia.

Supongamos que f y h son (n-1)hométopas propiamente (n = 2) (rel.A) a través de
una homotopfa G. Asociada a las aplicaciones f, G y h tenemos F = (f,G,h): (X),— Y yla
cocadena diferencia propia AM(F) definidas en el pédrrafo anterior. Como ahora f y h estdn
definidas en X, sus cociclos sc™*1(f) y sct*1(h) son 0 y por lo tanto, de la Proposicién 3.10,
se sigue que AP(F) es un cociclo que representa una clase de cohomologia de
91(gp, X,A;¢0,(Y)). De la Definicién 3.9 y de los Teoremas 3.6 y 3.12 se deduce:

Teorema 4.2: AR(F) = 0 si y solo si existe una homotopia propia entre f| X, y h|Xn que es

una extension de G.

Teorema 4.3: A"(F) es cohomdlogo a 0 si y solo si existe una homotopia propia G' entre f| Xn
y h|Xn que coincide con Gen X 5

Introducimos a continuacién alguna terminologia con el propésito de abordar el

problema de la clasificacién de aplicaciones propias:

Sea f: (go,X) — (idF(Y),Y) una aplicacion propia. Sea QM(X,A;f) el conjunto de
aplicaciones propias H: Ix X ,; — Y tales que H(O,x) =H(1,x)=f(x) sixe X, iy
H(t,a) = f(a) sit € I, a € A.Consideramos en Q%(X,A;f) la relacién de homotopia propia




relativa a dI x X,.; U Ix A y denotamos el conjunto cociente por RMX,A;f). La
composicién standard de homotopias dota a R*(X,A;f) de una estructura de grupo.
Definimos ahora la aplicacién
En(H): RIX,A; ) — 9™(g0.X,A;00(Y))
del modo siguiente: el elemento de R?(X,A;f) representado por la aplicacion propia H es
transformado por ,(f) en la clase de cohomologia representada por AP(f,H,f).

Proposicién 4.4: {,(f) es un homomorfismo.
Demostracion: Se deduce del siguiente Lema:

Lema 4.5: Sean F'F": (IxXX),—— Y dos homotopias propias relativas a A tales que F'(1,x)
= F"(0,x) para cada x € X,. Entonces, la aplicacién propia F: (IxXX),—— Y dada por:

F@2tx) si 0<t<1/2
F(x,t) = {

F'2t-1,x) si 1/2<t<1
verifica que = AMNF) = AM(F') + An(E").
Demostracién: Es andloga a la del Lema 5.5 de [3], sustituyendo para una n-celda no compacta
o tal que F(hg)(°°gn-1 x J) € go‘l(aq) el grupo T,.1(Y) por Tn_1(Y.ag).

Con una demostracién andloga a la de homotopia standard, del Lema 4.5, se deduce
que el subgrupo {,(f)(RE(X,A;f)) tinicamente depende de la (n-1)clase de homotop{a propia
de f relativa a A.

Como en la homotopia standard, definimos a continuacién los conjuntos obstruccion.

Definicién 4.6: Dadas dos aplicaciones propias f,h:(g9,X) — (idg(y),Y) que coinciden en
A, denotamos por 67(f,h) el conjunto cuyos elementos son las clases de cohomologia propia
representadas por AM(f,G,h) donde G es una (n-1)-homotopia propia (rel.A) entre f y h. Si f
y h no son (n-1)-hométopas propiamente, 67(f,h) = & .

Del modo habitual, dada f: A——> Y propia, se define 61+1(f) como el conjunto de
clases de cohomologfa propia representadas por sc™*1(f,,) donde f, es una n-extensién propia
de f a (go,X)- Si f no es n-extensible propiamente, 87+1(f) = & .

Proposicién 4.7: Dos aplicaciones propias f,h:(gy.X) — (idgcy),Y) que coinciden en A
son (n-1)-homoétopas propiamente rel.A si y solo si 67(f,h) es una coclase de



HRYX,A;f)) en 80(go, X, A;0,(Y)). Ademds, f y h son n-hométopas propiamente rel. A
siy solo si 60(f,h) = {,(HRX,A;L)).

De la Proposicion anterior se deduce que dos aplicaciones propias
f.h: (g0, X)——> (idg(y),Y) (n-1)-hométopas propiamente rel.A determinan un tunico
elemento en Coker {,(f) al que denotamos ¥"(f,h) y llamamos elemento caracteristico del par
(f>h). Es claro que f y h son n-hométopas propiamente rel. A si y solo si 3%(f,h) = 0. Como

consecuencia, se obtienen los siguientes resultados:

Teorema 4.8: Sea f: (go,X) — (idg(y),Y) una aplicaci6n propia. Sea Y (m)r-simple y
(7)(r-1)-simple y Coker {.(f) = 0 para cada entero r tal que n <t < m.Si una aplicacién propia
h-;(gO,X) — (idF(Y),Y) es n-homotopa propiamente a f rel. A, entonces f y h son m-
hométopas propiamente rel. A. '

Corolario 4.9: Si 1(Y) =0, Y es @(r-l)—simple, y 91(gp.X,A;0.(Y)) =0 para cada entero
r tal que 1 <r < dim (X-A), entonces dos aplicaciones propias f,h:(gy,X) — (idrey), Y) que
coinciden en A son hométopas propiamente relativas a A.

Demostracién: Como 7, (Y) = 0, f,h son 1-hométopas propiamente; que son homdtopas

propiamente es una consecuencia del Teorema 4.8

Dada f:(gg.X) — (idF(Y),Y), sea ®= {h:(gp.X) — (idF(Y),Y)I h y f son
(n-1)-homotopas rel. A} (® esuna (n-1) clase de homotopia propia rel.A). Notar que cada
h e © tiene asociado un elemento ¥2(f,h) de Coker {,(f).

Definicién 4.10: Un elemento a € Coker {,(f) se dice f-admisible si existe h € © tal que
" X"(f,h) = a. Denotamos por A (f) el conjunto de los elementos f-admisibles.

Proposicién 4.11: Si f y h son dos aplicaciones propias que pertenecen a la misma clase de
(n-1)-homotopia propia rel.A, @ entonces A, (f) = x™(f,h) + Ap(h).

Teorema 4.12: EI conjunto de n-clases de homotopia propia rel.A contenidas en una (n-1)
clase de homotopia propia © estd en correspondencia biyectiva con el conjunto A (f), donde f
es una aplicacién propia representante de © .

La demostracién de estos teoremas se omite pues es andloga a la de sus
correspondientes en obstruccion standard [5].
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5. OBSTRUCCIONES PROPIAS PRIMARIAS

En este parrafo, supondremos que el espacio Y, ademds de las usuales condiciones de
simplicidad del pérrafo anterior, satisface que es ()(n-1)-conexo y que 5i(Y,ag) = 0 para cada
final propio agde Y,0<i<n-2,n22.

Sean 0lp,...,04:: J—— Y aplicaciones propias tales que 0;(0) = ...= o, (0) y que
representan a los finales de Y aj,...,a respectivamente. Dado un objeto (gg,X) en
CWPRFR(y), puede definirse una aplicacién propia n X— Y tal que si o es una celda
compacta, M la aplica en el punto @(0) =...= 04(0) y si ¢ es una celda no compacta tal
que su aplicacién caracteristica hg: EM-1 x J—— X satisface F(hg)(eogm-1 ) € go‘l(aq)
entonces F(N)oF(hg)(°Em-1 4 J) = a4. Para definir n utilizaremos que X es G-compacto y
por tanto puede construirse una sucesion creciente de subespacios compactos {Kj};e N tal
que

Ko € int K; € K; € int Ky € ...
verificando que Kj contiene todas las celdas compactas de X y que para cadai = 0 el
nimero de arco-componentes de X-K; es F(X). Teniendo en cuenta la particién F(X) =
go'l(al) u...-.‘u go'l(ak) y que para la anterior sucesiéon F(X) = lim rp(X-K;), cada arco-
componente C de K - int K¢ determina un tnico final ag, entonces se define

Ni: Ky — Y del modo siguiente:

1) Six e K, M&) = a1(0) = ..= g (0) \

2) Six € Kj-int Ky: Sea C la arco-componente de x en Ki-intKg. Cn Kgy
C n Fr(K;) son dos cerrados disjuntos del T, compacto C, y por tanto, al ser C normal,
existe una aplicacién continua fo: C—— [0,1] tal que fc(C N Kg) =0 y foFEr(K,;)) = 1.
Entonces, si ag es el final de Y determiando por C, definimos

M) = og(Fo))-

A continuaci6n, de nuevo cada componente C de K- int K determina un final ay(c) de
Y. De nuevo, por el Lema de Uryshon, existe fo: C——[1,2] tal que fc(CnKj) =1y
fc(Fr(Ky)) = 2. Por tanto ahora se define

Ny: Ko —— Y del modo siguiente:

1) Ma(x) =N1(x) six e Ky
2) M%) = ogc)fck) sixe C
Procediendo por induccién se obtiene la aplicacién 1.

Dada una aplicacion propia f: A — Y tal que F(f) = ggoF(i), debido a las

condiciones sobre Y, deducimos que existe una (n-1)-homotopia propia H: = IxA; 1 —> Y
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entre Nla y f. Al elemento de 3M(goF(i),A;@,(Y)) representado por AM(nla,H.f) lo
denotamos por ¥1(f) y lo llamamos elemento caracteristico de f. Veremos a continuacién que
%(f) no depende de la eleccion de H: j

Lema5.1: Sea f: A——> Y una aplicacion propia y h,h': X, —— Y extensiones propias
de f. Entonces sc™+1(h) es cohomologo a sct+1(h').

Demostracién: Como 7;(Y) =0, h y h'son 1-hométopas propiamente. Ahora, por ser
0.(Y)=0 para 1<r<n-1, del Teorema 4.8, se deduce que existe una homotopia propia

H:I1xX,; — Ydehah' Entonces 8ANh,H,h') = sc™*1(h') - sc™*1(h).

Proposicién 5.2: Sean M'|A, f: A—— Y aplicaciones propias homotopas propiamente
a mMJA y f respectivamente y sean H,H:IxA;; ——> Y homotopias propias
H: MlAn1=p flAna ¥ H: N'lAn-1=p f'lAn-1. Entonces AMM'|AHLE) ~ AR ALHL ).
Demostracién: Consideramos el par (Ix A, 0xA U 1x A) y las aplicaciones propias

G=maAHS, G=mIaAHS): GA)— Y,

donde (IxA),=0xAUIxA;;UlxA.
Notar que GlgxA U1xA =p GloxAuUlxA- Como Y es (m)(n-1)-conexo

y T(Y,a))=0 (0<i<n-2) para cada final propio ag deY, se sigue que Gl(I_xA)H:p
ZpG'|(IxA)n_1~ Aplicando PAEHP Gl(IxA)n ~pLj siendo L;: (IxA)p—— Y una

aplicacién propia tal que Lil(xA),1 = G'I(IxA),, ;- Como consecuencia del Lema 3.8
scB*+1(G) = scP*1(L;). Por otra parte, G'y L; son extensiones propias de G'|gx A U 1 x A-
Por lo tanto, del Lema 5.1, sct+1(G") ~ sct+1(L;). Como ANG) =sc™1(G)ek y ANG') =
scm*+1(G")o k donde

k: SC,(g0°F(1),A) —> SCp,1(go°F@), Ix A, I x A)

es un isomorfismo, se sigue que ANG) ~ ANG").

Volvemos al elemento caracteristico de f. Como w1 (Y) = 0, f es 2-extensible
propiamente. Ademds, como ¢,(Y) = 0 para 1 <1 <n-1, §™*1(g,X,A;¢(Y)) = 0 y por tanto
sct+1(f) = 0, luego por el Teorema 3.6, f es n-extensible propiamente sobre (gq,X). Asf el
primer conjunto obstruccién no trivial es 67*1(f). Por otra parte si H: f|A,4 =pMAn-1,
aplicando PAEHP existe f: A — Y tal que f'~; fy f|An1=TM|An-1; asf, por la
Proposicién 3.2, 6m*1(f) = §0+1(f"). Como consecuencia podemos considerar que f|An =
MN|An1 Y que la homotopia H utilizada para definir el elemento caracteristico de f es constante.
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Proposicién 5.3: 6n+1(f) consta de un tnico elemento @+l(f) = §* xXn(f) €
gn+l(g) X, A;0,(Y)) que se llamard obstruccién propia primaria a extender f.
(3% : 8M(gp° F@),A;0,(Y)) — 3m+1(g(,X,A;0,(Y)) es el homomorfismo coborde de la
sucesion exacta de cohomologia asociada a (gg,X,A)).

Demostracion: Como f|An.1 =M | An.1> f tiene una extension propia f: X, — Y tal que f,

coincide con | en X -A. Ademds flx, 4 ~p M[Xn-1 2 través de una homotopia constante.
Notar que A(N|x.,. 1) € SCR(gp.X;9,(Y)) es la extension trivial de AP(n|a.f). Por tanto
o"*+1(f) estd representado por SAN(N|xp.fn) = s 1(fy) - seM1M|x,) pero seM*1(n|x,) =0
pues 1 esté definida en todo X, y por consiguiente wi*1(f) € On+1(f).

Supongamos ahora que [sc"+1(g)] € O1+1(f) donde g: X, —— Y es una extensién
propia de f. Del Lema 5.1 se sigue inmediatamente que [sc™*1(g)] = wt+1(f).

Consideremos ahora dos aplicaciones propias f,h: (gg,X) — (idF(Y),Y) tales que
flA = h|A. Debido a las hipdtesis sobre Y, f y h son (n-1)hométopas propiamente rel.A.

Entonces se tiene:

Proposicién 5.4: El conjunto obstruccién propia 69(f,g) consta de un unico elemento w?(f;g)
que se llamar4 obstruccién propia primaria a extender la homotopia propia rel.A. Ademds se
verifica que j*@(f,g) = x"() - x™(g). G*: 81(g0. X, A;0,(Y)) — 91(gp,X;9,(Y)) es el
homomorfismo, inducido por la inclusion, de la sucesion exacta de cohomologia asociada a
(80.X,A)).

Corolario 5.5: 1) {,(HRMK,AF)) =0
2) Coker {,(H) = 9M(gp.X,A;0,(Y)) -

Como en la teorfa standard, un elemento x de 87(goF(i),X,A;¢0,(Y)) se dice
extensible sobre (gp,X) si x € Im §1(i) donde 37(): 3(gp,X;0,(Y)) = S2(goF(D),A;9,(Y))
es el homomorfismo inducido por la inclusién de A en X. Ademads se obtienen los siguientes
resultados:

Proposicién 5.6: Dado (g, X,A),para una aplicacién propia f: A—— Y son equivalentes:
(1) fes (n+1)-extensible propiamente sobre (gg,X)
(2) o™1(f)=0 |
(3) x(f) es extensible sobre (gg,X).
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Proposicién 5.7: Dos aplicaciones propias f,h: (go,X) — (idg(y),Y) tales que f|A = h|A

son n-hométopas propiamente rel.A siy solo si @?(f,h) = 0.

Corolario 5.8: Para dos aplicaciones propias f,h:(gg,X) —> (idp(y),Y) son equivalentes:
(1) fy h son n-hométopas propiamente
(2) o(f;h) =0.
(3) x*() = x"(h).

6. TEOREMAS DE CLASIFICACION PARA HOMOTOPIA PROPIA

Finalmente, con las mismas hipétesis iniciales que en el parrafo 5, vamos a dar algunos
teoremas de clasificacién para aplicaciones propias.

Sea f: (g0,X) — (idp(y),Y) una aplicacién propia. Se considera el conjunto
{h:(gg,.X) — (idF(Y),Y)lh es propia y f|A = h|a }. Debido a las condiciones sobre Y,
sabemos que hay tnicamente una clase de (n-1)homotopia propia rel.A. El siguiente Teorema,
dar4 una clasificacién de tipo cohomoldgico del conjunto de las clases de n-homotopia propia
rel. A

Teorema 6.1: SiY es (m)r-simple y Q) (r-1)-simple, y 9’+1(g0,X,A;(pr(Y)) = 0 para cada
enteror tal que n <r < dim(X - A), entonces las n-clases de homotopia propia rel.A estdn en
correspondencia (1-1) con los elementos del grupo 87(gy,X,A;¢,(Y)). La correspondencia
aplica la n-clase ®; representada porh en el elemento @w"(f,h) € §%(gg.X,A;9,(Y)).

Demostracién: Por el Corolario 5.5 (2), sabemos que Coker {,(f) = 97(gp,X,A;0,(Y))-
Ahora bien, para cada elemento ¢ de 97(g,X,A;9,(Y)), existe una aplicacién propia
h:(gO,X)——>(idF(Y),Y) tal que f]ao =h|A y @°(f,h) = c. En efecto, de la Proposicién 3.11

deducimos que existe una aplicacién propia g: X,—— Y tal que f|)‘(n_1 = EIXE
AN(f,h) = z, donde z es un cociclo que representa a c. Entonces, como scB+l(f) =0 y
0 = 8AN(f,h) = sch*1(g) - scn+1(f), se deduce del Teorema 3.6 que g se extiende propiamente
a Xp,1- Ahora aplicando reiteradamente el Teorema 3.11 se obtiene una extensién propia de
g h:(gp,X) — (idg(y),Y) tal que flpo = h|A. Es inmediato que w(f,h) = c. Asi cada
elemento de Coker (;,(f) es admisible, luego A, (f) = 8M(gg,X,A;jn(Y))- A continuacién basta
aplicar el Teorema 4.12. ;
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Teorema 6.2: Si Y es (m)r-simple y Q__t)(r-l)-simple, y 9T 1(go,X,A;0.(Y) = 0 =
81(gp.X,A;0,(Y)) para cada r tal que n <r<dim(X-A),entonces el conjunto de clases de

homotopia propia rel.A de aplicaciones propias del tipo (gg,X) — (idg(y),Y), que
denotamos [gO,X,Y]pA estd en correspondencia (1-1) (definida como en el Teorema 6.1) con
los elementos de 37(gg,X,A;¢,(Y)).

Notar que si ademds T, 1(Y,aq) =0 para cualquier final propio ag de Y, entonces para
cada aplicacién gp: F(X) — F(Y), [gO,X,Y]pA estd en correspondencia (1-1) con
HM(X,A;m,(Y)), pues en este caso 90(gg,X,A;9,(Y)) es HY(X,A;m,(Y)). Por lo tanto hay
tantas clases de homotopia propia de aplicaciones propias de X en Y rel. A como aplicaciones

del conjunto de finales propios de X en el conjunto de finales propios de Y multiplicado por el
cardinal de H(X,A;m,(Y)).

Ejemplo: Vamos a clasificar las clases de homotopia propia de aplicaciones propias del interior
M de una p.l. variedad N compacta orientable con borde, en el espacio producto S™ x R.

Calculamos en primer lugar los grupos de homotopia t; y homotopia propia g Y I
del espacio Y = S™ x R:

1) Es obvio fme Tg(Y) = mg(S™), : A

2) En [1] Cerin demuestra que Tq(X,00) = 7y(T(X,),pq), donde X denota la
compactificaciéon de Alexandroff de X por el punto ee. T(AX,oo) ={hiI—> Xl h(t)=oosiy
solo si t = 1} (espacio tangente en oo, definido por Hu en [6]) y pg:(L,1) —> (9(,oo) es el
camino definido por pg(t) = a(t/l-t) si0<t<1 y pg(l)=ee. Como o= es un punto cénico
en Y, tiene un entorno cénico, podemos aplicar el Teorema 14.5 de [6] y obtenemos que
Ty(Y,0) = mo(S™,*) para cada q > 1. Ademds es fécil ver Y tiene dos finales propios.

3) Para calcular 7,(Y, o) consideramos la sucesi6n exacta que relaciona los grupos g,
L9y 4 '

© = B (Vo) — g (V,a(0) —  1q(Y.0) — mg(Y,0)— -

Por la forma en que estdn definidos, los homomorfismos gq(Y,a) e nq(Y,OL(O))
son isomorfismos para q = 1, luego gq(Y,a) = (0 para q 2 1. Calculemos go(Y,oc), para ello
estudiamos 1a enterior sucesién exacta en las dimensiones bajas:

- — m1(Y,00 — 73(Y,00)) — Tp(Y,00) — mo(Y, &) — (Y, 0(0))
sim>1 7(Y,0(0)) = 7p(Y,(0)) = 0, luego o (Y, ) = mo(Y, ),
sim=1 zt__l(Y,oc) = m(Y,a(0) = 2,y mp(Y,0(0)) = 0 luego ;'O(Y,oc) = o(Y,). Con
esto conocemos todas las (pq(Y)




0
0 siq<m,
0
0 sig=m,
0
0 siq=m+l,
S, 0
pE == —o. U siq>m+l.

Supongamos que dim M < m. Una vez hecha la eleccién de aplicacién g entre los
finales de M y los finales de Y, [g,M, Y], = 0, es decir, hay tantas clases de homotopia propia
de aplicaciones propias entre M e Y como aplicaciones del conjunto de finales propios de M
(nimero de componentes borde de la p.1. variedad N) en el conjunto {0,1}.

dim M = m, para cada eleccién de g, M(g,M;0,(Y)) es HR(M;2Z) . Para calcular
HM(M; 2) utilizamos el Teorema de los Coeficientes Universales:

HM(M;2) = Ext(H,,.;(M);2) © Hom(H,(M);Z).
ComodimM = m,H,M)=0y H™M;Z) = Ext(H,.;(M);2).
Calculemos Hy,,_1(M): De la Proposicién 9.1 de [2] y teniendo en cuenta que Hy(M) =
H;(N) se obtiene:
H,,.;(M) = HI(N,0N).
Utilizando otra vez el Teorema de los Coeficientes Universales
HL(N,0N) = Ext(Hp(N,0N); Z2) ® Hom(H;(N,0N); Z).
Como Hy(N,0N) y Hom(H;(N,0N);Z) son grupos abelianos libres, Hy,, (M) también lo es,
y en consecuencia HM(M;Z) = 0. Notar que obtenemos el mismo resultado que en el caso
anterior.

dim M = m+1, ahora solo podemos calcular las m-clases de homotopia propia. Estas,
una vez hecha una eleccién de aplicacién g, estdn en correspondencia 1-1 con los elementos del
grupo 8™M(g,M;¢,(Y)) que, como antes, es HN(M;Z).

HM(M;Z) = Ext(H,.1(M);Z2) ® Hom(H,(M);2).
H,,(M) = H{(N,0N) (Prop. 9.1 de [2] y H;(M) = H;(N)), en consecuencia Hom(H,(M);Z)
es un grupo libre.
Por las mismas razones, Hy; (M) = H2(N,9N).
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In [14] conditions to the existence of homotopy theory on a
category A are given. These conditions were extracted of Huber's
standar constructions [10] and completed with others, so that ho-
motopy groups exact sequences could be defined and the principal
properties of wusual homotopy were verified. In this work it is
analysed the particular case that A is an additive category. The
original conditions are reduced enought, arrived in spite of it,
to analogous results. The importance of this homotopy axiomatic
on additive categories was in the fact that, in spite of its sim-
plicity, it contains the more import homotopy theory defined on

additive categories.
0.- INTRODUCCION

Este trabajo da una axiomatixacibén de las teorias de homo-
fopia definidas sobre categorias aditivas. La axiomatizacidén de
la homotopia se busca desde hace tiempo. Ya en 1955 Eckmann y
Hilton [4] obtienen algunos resultados. Posteriormente, han sur-—
gido axiomdticas como las h-c-categorias de Heller [7], los com-
plejos cubicos de Kan [12], las categorias modelos de Quillen
[13], las construciones standar para categorias semi-simplicia-—
les de Huber [10] y otras mds actuales como las de Brown [2] y
las de Baues [1]. Durante este proceso, o las axiomaticas no
abarcaban todos los casos o surgia una nueva homotopia que no
respetaba la axiomatica. Por ahora, la que mas casos engloba es
la obtenida sobre las categorias de cofibraciones de Baues [1].

La axiomdtica desarrollada en este trabajo abarca todas las

(*) Este trabajo ha sido realizado con la ayuda de la Consejeria de Educacién de Canarias, pro-
yecto n2 11, conv. 2-6-1987.
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teorias de homotopia existentes sobre categorias aditivas, y

sus axiomas son mas manejables, por su simplicidad, que los de
otras axiomadticas. A través de las construcciones cono o arcos,
similares a las construcciones standar de Huber [10], siguiendo
ideas andlogas a las de Dieck, Kamps y Puppe [3] se desarrolla
una teoria de homotopia que posee las propiedades mas usuales
de cualquier homotopia, relativas a grupos de homotopia, fibra-
ciones y cofibraciones, sucesiones exactas de grupos de homo-
topias, etc...

El trabajo consta de cuatro partes, la primera dedicada a
la obtencién de los grupos de homotopia, la segunda analiza y
estudia las cofibraciones y sus sucesiones, la tercera dualiza
las dos partes anteriores y crea las sucesiones exactas de los
grupos de homotopia y en la iltima se analizan ejemplos relati-
vos a esta teoria.

A lo largo de todo el trabajo A representarda una categoria
aditiva con conticleos, salvo en la tltima parte, donde se harén
algunas distinciones. Las proyecciones e inclusiones se notaréan
por p e i con un subindice de objetos si es suma directa y de

morfismos si es (co)nticleo.

1.- GRUPOS DE HOMOTOPTIA

Toda teoria de homotopia lleva asociada una relacidbén de
equivalencia entre sus morfismos. En esta axiomatica, la rela-
cién se obtiene definiendo nulhomotopia por factorizacién a
través de un cono y extendiendo ésta, por medio de la suma, a
homotopia.

Siguiendo este proceso, se define, primeramente, la nocibn
de cono, obteniendo como consecuencia, la de morfismo nulhomé-
topo y, usando la suma, no olvidar que la categoria es aditiva,
la de morfismos hométopos. Se crea asi la categoria homotépica
Ah y el funtor II;, O-grupo de homotopia, que mediante una sus-
pensién, darad origen a los funtores Hn’ n-grupos de homotopia.
Se finalizard analizando la homotopia de pares y la homotopia

relativa.
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1.1 Definicidén: Tlna construccién cono (C,k,p,q) sobre A consta
de un funtor covariante C: A4 > A y de transformaciones natura-
les k: 1 > C, p: CC » C y q: CC > CC, verificando los siguien-—
tes axiomas:

Cl: C transforma el objeto cero y los cuadrados co-

cartesianos en el objeto cero y cuadrados cocartesia-

nos respectivamente.

C2: p(kC) = 1

C3: q(kC) CliyEq(Cl)Ri=" kG

1.2 Definicibén: Un morfismo f: A > B se dice nulhombtopo (£=0)
cuando se factoriza a través de kA, esto es, cuando existe un
morfismo F: CA > B tal que f = FkA.

El conjunto de morfismos nulhométopos desde A a B se re-
presenta por Nul(A,B) y los morfismos cuyo dominio sea un cono
se denominan nulhomotopias. La diferencia de dos morfismos nul-
hom6étopos es, por la diferencia de las nulhomotopias respecti-
vas, nulhométopo y, por tanto, Nul(A,B) es un subgrupo de
Hom(A,B) para todo par de objetos A y B de la categoria 4. Al
grupo cociente Hom(A,B)/Nul(A,B) se denomina O-grupo de homoto-
pia de B respecto de A y se representa por Ig(A,B).

La homotopia surge ahora como consecuencia obvia:
f,g: A > B, f=g si y s6lo si £-g=0.
1.3 Proposicién: La relacién de homotopia "=" es compatible con
la composicién de morfismos.

Demostracidn:

Basta observar que si f~0 por una nulhomotopia F en-

tonces fg=0 por la nulhomotopia FCg y gf=0 por la nulhomotopia

gF, donde Cg es el cono de g.

La categoria cociente A/~ se denomina categoria homotoépica
de A y se representa por 4h. Una h-equivalencia es un morfismo
de A cuya clase es un isomorfismo en Ah.

Los objetos contractiles son aquellos cuya identidad es
nulhométopa y, por el axioma C2, se tiene que el cono de un ob-
jeto es contractil. Utilizando la proposicién 1.3 surgen como

consecuencias inmediatas:
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1.4 Corolario: f=0 si y sbélo si se factoriza a través de un ob-
jeto contractil.

1.5 Corolario: Son equivalentes:

@l X contréctil.

(2) Mo(X,Y) = 0, para todo objeto Y de 4

(3) Mo(Y,X) = 0, para todo objeto Y de 4.

El caracter funtorial de Il; viene expresado en el siguien-—

te teorema:

1.6 Teorema: Para cualquier objeto A de 4,
@) s @ N e A =

(2) Mo(A,-),lo(=,A): AR > Ab

son funtores aditivos, donde 4b es la categoria de los grupos

abelianos.

Demostracidn:
Evidente usando la propiedad distributiva de la com-

posicién respecto de la suma y la proposicién 1.3.

La categoria de pares de 4, representada por A(2) tiene

como objetos los morfismos de 4 y como morfismos de f en g, los

pares de morfismos (hg ,h:1 ) de 4x4 que conmutan con los anterio-
res, hif = gho. E1 cono (C,k,p,q) de 4 induce en A(2) el cono
(C,(k,k),(p,p),(q,q)) y, por ser A(2) aditiva, se obtienen re-
sultados andlogos a los anteriores.

Notese que ho y h: pueden ser nulhombétopos por medio de
nulhomotopias Ho y Hi y que en cambio, por ser gH, # H Cf, el
morfismo (ho ,hi1 ) no serlo. Por otro lado, 1f = (1A,1B) ﬁ;
(f: A > B) y si A y B son contrictiles por nulhomotopias F y G
respectivamente, entonces fF = leF = GkaF = GkaAF = GCflA =
= GCf y, por tanto, los objetos contractiles de A(2) si son

aquellos que tienen su dominio y su codominio contractiles.

Para la homotopia relativa, se considera la categoria bajo
un objeto A, represeﬁtada por AA, cuyos objetos son los morfis-— éf
mos de A con dominio A y cuyos morfismos de un objeto (£f,X) en
otro (g,Y) son los morfismos h: X » Y que hacen el tridngulo
conmutativo: hf = g. E1 cono (C,k,p,q) de A induce un cono

(0,kP,p,q) en esta categoria, donde P es la proyeccién sobre el
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conticleo del objeto y el codominio de O es el cono del contcleo

del objeto: codom O = Ccoker. Esta categoria no es aditiva pe-
ro, usando la aditividad de A4, se obtienen resultados andlogos
a los de A.

Obsérvese que el codominio de un morfismo nulhométopo es
el morfismo O y que, por tanto, los objetos contractiles son
los morfismos ceros con codominio contrdctil. Por otro lado, si
el objeto distinguido es el 0O, la homotopia relativa coincide
con la homotopia normal.

Otras caracterizaciones de la homotopia relativa vienen
dadas por el siguiente teorema:

1.7 Teorema: Sea f: (g,X) > (0,X'), son equivalentes:
(1) £=0 (rel. A)

(2) £=0, donde f: coker g > X' es la inducida por f
() BetsEE 105 0 = 2 Eall qua S Fky y FCg = 0.

Demostraciébn:

(1) => (2) La nulhomotopia relativa a A de f es una
nulhomotopia de f, por la unicidad de la induccidn.

(2) => (3) Sea F la composicién de la nulhomotopia de
f con la proyeccién en el conticleo de Cg. Las igualdades resul-
tan por 1la unicidad de la induccidén y por transformar el funtor
C coniicleos en conticleos.

(3) == (1) Una nulhomotopia relativa a A de f es 1la

inducida por F en el conticleo de Cg.

Se puede asi definir, usando el funtor suépensién
S = coker k, los grupos de homotopia de un objeto y los de pares
de objetos como los funtores siguientes:
(1) n-grupo de homotopia de B referido a A: H:(B) = Iy (S"A,B)
(2) n-grupo de homotopia del par g: X > Y referido a
A G, X) = (Ko, e)

2.— COFIBRACIONES

Se vera que, en esta axiomatica, las cofibraciones de Eck-

mann — Hilton, morfismos que poseen la propiedad de extension

de homotopia, y las de Serre, morfismos que poseen la propiedad




de extensibén de nulhomotopia, coinciden.

Todo morfismo es composicién de una cofibracidén con una
h-equivalencia y, por medio de las cofibraciones inducidas me-
diante cuadrados cocartesianos, se le asocia funtorialmente
tres sucesiones de cofibraciones equivalentes: la de cofibras
homotépicas canbénicas, la de cofibras homotépicas y la de Pup-— 1
pe. F

Para las equivalencias anteriores se usaran felaciones en— §
tre retractos y retractos por deformacién, viéndose que, en am-
bos casos, coinciden los diferentes tipos.

A menos que se diga lo contrario, en todo el parrafo, i

representard un morfismo con dominio A y codominio B.

2.1 Definicibén: i es cofibracidén si para todo morfismo 3
for A X f=0lexiste una lextensioniEl o BE XS all Elg el il Sl %
2.2 Proposicidén: Son equivalentes:
(1) i cofibracién
(2) Para todo X contractil, Hom(-,X) transforma i en un homo-
morfismo suprayectivo
@BHE 8 AT G E~ 0 entonc est ex s Lol fltt BEOSSYE SN Syl 18— St
(4) Ci tiene una retracciodn
(5) f=gi entonces existe g'=g y £ = g'i.
Demostracidn:
(1) => (2) Al ser X contractil, todo morfismo es nul-
hométopo y, por tanto, por (1) tiene una extensidn.
(2) => (3) Por ser f=0, se factoriza a través de un
objeto contradctil. Por (2) existe una extensién de B a dicho
objeto que compuesta con la nulhomotopia de f da una extensioén
de f. Evidentemente, esta extensién es nulhométopa por factori-
zarse a través de un objeto contractil.
@hiE=—2= ) kA, por (3) tiene una extensién. La compo-

sicién del cono de dicha extensidén con Py ©s la retraccidén bus-

cada.

(4) = (5) Sea F la nulhomotopia tal que f—gi = FkA.
Seatzoil = FrkB, donde r es la retraccibén existente por (4).
g' = g+g'' verifica (5). Nétese que g''=0.

(5) == (1) Basta coger g = 0.
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Facilmente se comprueba que la composicién de cofibracio-
nes es cofibracién y que si la composicién de dos morfismos es
cofibracibén, también lo es el primero. Si el cuadrado 0.i =

i

= iaa es cocartesiano e i es cofibracidén, dado un morfismo g=0
componible con @, se tiene que gt=0 y por 2.1 existe una exten-—
sién g' tal que g'i = gt y por cocartesianidad, existe h tal
que hai =0y hia = g. Por tanto, la inducida de una cofibra-
ci6n por cocartesianidad es una cofibracién. Nétese que una ca-
tegoria aditiva con conticleos posee cuadrados cocartesianos y,
como consecuencia, cofibraciones inducidas. Por otro lado, si
el dominio de una cofibracibén es contréactil, utilizando que su
identidad es nulhométopa y que el funtor C conserva cofibracio-

’ ; Y ,
nes y conucleos, se tiene que la proyeccion sobre el contucleo

de la cofibracién es una h-equivalencia.

Sea f: X > Y un morfismo y considérese <f,kX>: s YHIENEE
2.3 Teorema:
@S OY<f,kX>
(2) DY es h-equivalencia
@3 <f,kx> es cofibracién
Demostracién:

(1) Evidente

(2) pyily = ly, lygex=iyPy = IcxPcx™0:
(3) Si g: X > Z, g=0 por nulhomotopia G, entonces

{0,G}: YOCX > Z es una extensién

Si se consideran las definiciones usuales en homotopia de
los diferentes tipos de retractos:

(a) retracto débil, ri=l

@bPire tralct o, ind = 1A :

(c) retracto por deformacién débil, riﬁlA, irﬁlB

(d) retracto por deformacibén, ri = lA’ vl

(e) retracto por deformacién fuerte, ri = lA’ eTRE— lB (@il A

Se tiene:
24 Sllc oemass \Sit ik estlcofitbracion L (ad<—>EEbPE<=N(c)s <=M({dH < =>
<> (e).

Demostracién:

Ea) = () S ri=1A, por ser i cofibracidn, existe
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xS tallique th il 1,.
(c) => (b) y (c) <=> (d) Como el anterior, observando
que se puede conseguir r'=r.
(d) <= >(e) Obsérvese que en los retractos por defor-

macién, i es h-equivalencia.

SHEEhE S 52 h=1B, por una homotopia F, entonces h' =
h+h-hh = 2h—h221B (rel. A) por la homotopia FCh-F.

Si hi' = i y h tiene inversa homotépica a izquierda h',
entonces i'*h'hi' = h'i y, por ser i cofibracidn, existe
hiE=hidES e lh Rl — B R T oo hetedho e i ey, h"hle, por lo ante-—
Eilon, h Phh h —hi St hhShis= (2h"—h"hh")h=lB (rel. A). Luego
h tiene inversa homotépica (rel. A) a izquierda.

Si hi' = i y h es h-equivalencia, por lo anterior, existe
h' tal que h'hﬁlB (rel. A). Si h'' es la inversa homotépica de
h, se tiene h''=h'hh''=h' y, por tanto, h' es h-equivalencia
con h'i = i'. Repitiendo el proceso, existe h''' tal que
h'h"':1B (rel. A) y h'''=h. Luego h es h-equivalencia (rel. A).

i1A = i e i h-equivalencia, por lo anterior, existe r tal
que ri = lA e ir:lB (rel. A).

De este teorema surgen relaciones entre las diferentes
h-equivalencias: .
2.5 Teorema:
((a)i Sitsgit =l W e e eSSl i cofdibracilones: y it ,'glih—equitvailien—
cias en 4 entonces (f,g) es h-equivalencia en 4(2)
(b) Si fi = i', i' cofibracién y f h-equivalencia, entonces
f: coker i > coker i', la inducida por f, es también h-equiva-
lencia.

Demostraciodn:

(a) Sean f' y g' las respectivas inversas homotépicas

de f y g. Entonces g'j=if', y por ser j cofibracién, existe
g'' tal que g''j = if'. Sea h = g"g—jFrkB, donde F es la homo-
topia entre f'f y lA y r es la retraccién de Ci. h es una h-
equivalencia y hi = i, por el teorema anterior, h es h-egquiva-
lencia (rel. A). Sea g''' = h'g'', donde h' es la inversa homo-
tépica (rel. X) de h. (f',g''') es una inversa homotépica a iz-
quierda de (f,g). Repitiendo el proceso con (f',g''') y usando

la asociatividad de la composicién se concluye el resultado.




(b) Por el teorema anterior f es h-equivalencia (rel. A) y como
la induccién en los conicleos es un funtor aditivo, por 2 de

1.7, se concluye el resultado.

1
Todo morfismo a: A > A' induce un funtor ag: Asiil de-

finido, de forma natural, por cocartesianidad. Si se definen
las matacategorias AA, con objetos las clases de morfismos des-
de un objeto de 4; cofAA, con objetos las clases de cofibracio-
nes desde un objeto de A; y como morfismos en ambas, las clases
de equivalencias naturales de los funtores, se tiene:

2.6 Teorema:

@Sl AA, cofAA, AAh (rel. 4), cofAAh (rel.A) es un fun-
tor covariante sobre cualgquiera de las metacategorias del codo-

minio.

(2) -,: Ah » cof4an (rel.4) es un funtor covariante.

Demostracidn:

(1) Todo, salvo la homotopia, son simples comproba-—
ciones, algunas de las cuales ya han sido indicadas. Si f=g
(rel. A) mediante la homotopia F, se tiene aiFCi = uiO =0 =
= OCu y, por conservar el funtor C la cocartesianidad, existe
G GUnica tal que GCiu = 0 5 GCOLi = aiF. G es la homotopia busca-
da que hace o, (f)=0,(g) (rel. A').

(2) Supbngase @;~0, mediante una homotopia

CA > A'. Sean Q. : A'®CA > A' (k = 1,2) definidas por q,
Ppr ¥ g = pA.+FpCA. iA' se puede interpretar como un funtor

1 1
iA.: cofA o Ah (rel. A'®CA) > cofA Ah (rel. A') y considerar
(qk)j:
una cofibracién j: A'®CA -+ B, como una transformacién natural.
Sean G, : CA'®CCA »~ A'®CA definidas por Gi = Oﬂ)pA y

= < 2 ; ] i 6 ;
€n = 0 FfICA>pA}' Gk_O y, por ser j cofibracién, existe

iA' > (qk)*, la inducida por cocartesianidad mediante

Hk: CB >~ B tal que Hij = ij. Como (1—HkkB)j = i,10p existe
Iy inica tal que jk(qk)j = l—HkkB y jkja = e Por otro lado,
(qk)ijCj =0 = Oqu y por cocartesianidad existe Fk tnica tal
que FkC(qk)j = (qk)ij y chja = 0 Fk hacen l—(qk)jjk (rel.
A'"). Luego (qk)a son h-equivalencias relativas a A.

Sea g: A > A'®CA, g = @1+k,. Dendtese por t la equivalen-—

A
cia natural que hace que -, conserve la composicién. Entonces
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v = tla;'gx)(qagy)t: a1y = (918)y > @2y = (g28)y es una equiva-

lencia natural.

Nétese que Vj(al)j:(QZ)j para toda cofibracién j. Como
consecuencias de este teorema, observando la forma que adoptan
los cuadrados cocartesianos en categorias aditivas con cont-
cleos, se tiene:

2.7 Corolario: Si a: A > A', a=0, e i cofibracidbén entonces

@) A DA es h-equivalente relativo a A' a
a (o)

iA.: A' > A'@coker i
(2) Si f': coker j » coker i, la inducida por f, es h-equiva-
lencia, entonces fa' la inducida por cocartesianidad mediante
@, es h-equivalencia relativa a A'.

Y usando las transformaciones naturales que hacen de
funtor entre las categorias ya sefialadas:
2.8 Corolario: Si i es cofibraci6n, entonces
(1) Si a: A > A' es h-equivalencia, también lo es o,
(2) Si A es un retracto por deformacién fuerte de A', entonces

Q- es h-equivalencia relativa a A.

2.9 Definicidén: Un morfismo c se dice cofibra de otro a4k
cf = 0 y para cualduier otro morfismo g tal que gf = 0 existe
uno h tal que hc = g.

Si se cambia "=" por "=" se tiene el concepto de cofibra
homotépica, que es, en particular, una cofibraciédn.

De forma natural, dada una categoria 4, se definen las me-
tacategorias: SA+4, sucesiones crecientes de morfismos en 4 y
SCA 4+, sucesiones crecientes de cofibras en A. Si la categoria 4
es abeliana, SEA+ representa la metacategoria de las sucesiones
exactas crecientes de morfismos en A. De esta forma, las suce-
siones crecientes isomorfas en Ah, esto es, los objetos isomor-
fos en SAh?t, se dirdn h-equivalentes . Notese que cualquier su-
cesibén creciente h-equivalente a una de cofibras homotépicas es
también de cofibras homotépicas. De forma andloga se definen
las sucesiones decrecientes, Y.

Si F: A > B es un funtor covariante (contravariante), se
induce de forma obvia el funtor, que por simplificacién se de-—

nota de igual forma, F: SA4 -+ SB4 (SBY) y, como consecuencia,




usando la proposicién 1.6, se tiene la siguiente caracteriza-
cién de los objetos de SCAh*:

2.10 Proposicidén: Io(-,Z)(SCAh *) -estéd contenido en SEAbY y

Mo (=,Z) ' (SEAbY ) = SCAht .

Dado un morfismo g: A > A', siempre se le puede asociar

una cofibra homotépica candnica g, = (kA)g. Notese que R; =

8, ©s una nulhomotopia para g,g. Si se denota por Cg ellSicodio=
A

minio de g, , reiterando el proceso se obtiene la sucesion de
cofibras homotépicas candénicas asociada al morfismo g:

2.11 Proposicién: F: A(2) » SCAht definido por

83
) = 5,
es un funtor covariante.
Obsérvese que SA = coker g,, surgiendo asi la sucesién de
Puppe asociada al morfismo g:
2.12 Proposicién: G: A(2) > SAht definido por
g, sg,

Glg)h— Ao E A M C, SIS sc,

es un funtor covariante.

Notese que Cg = coker<g,—kA> y, usando el teorema 2.3 y el
apartado (b) del 2.5, se tiene que la h-equivalencia proyeccidn
pA. induce, si g es cofibracién, una h-equivalencia
e: Cg > coker g. Si se llama h la composicidén de la proyeccidn
pg1 con una inversa homotdépica de la h-equivalencia inducida,
se obtiene la sucesi6n de cofibras homotépicas asociadas a una
cofibracidén g:

2.13 Proposicién: H: cof A > SAh* definido por

H(g) = A & &' ?§ coker g 2 SAF=SE Qi Sig Scoker g %P SZAs
es un funtor covariante con dominio la metacategoria de cofi-
braciones de 4.

Demostracidn:

Simple comprobacidén, observando que el funtor S es
aditivo y que si f=0 mediante una nulhomotopia F, entonces la

inducida en el conucleo por Cf—kBF, (B = codom f) compuesto con

pkB es Sf y, por tanto, Sf=0 .y, en consecuencia, S conserva la




homotopia.

2.14 Teorema:
(1) F(g) es h-equivalente a G(g)
(2) Si g es cofibracién, H(g) es h - equivalente a G(g).
Demostracidn:
(1) Por el mismo razonamiento que se uso para
creacién de la sucesién de cofibras homotépicas, existe

equivalencia e : G mES @ . Por naturalidad de k,
n-3
y, por cocartesianidad, existe

gn— 3

tal que MR =
n n-1

n-o

iltimo, usando de nuevo cocartesianidad existe N:

tal que NRn+l = 1ch y Ngn+1 = M. Finalmente, por la
n-2

dad de la cocartesianidad, P
n+i:

torizarse a través de un cono. De donde Sgn+2e

i (_en+1)gn+2'

Luego la sucesién de cofibras homotépicas canénicas aso-

ciada al morfismo g es h-equivalente mediante (1%, 1 1

A 1 C ’
. 7 g
ey, —€,, eq, —ea,...) a la sucesibn

o)
g
A E A' +1 Cg +1 S(F). Aplicando el funtor S sucesivamen-—

te a esta h-equivalencia se concluye el resultado.

(2) Si g es cofibracién, (lA, 1 1 Siel

A e, ISA’
152A,...) hace h-equivalentes a G(g) y H(g).

SAI,

Como consecuencia de este teorema, los funtores G y H se
pueden también considerar con codominio SCAht. Si en el cuadra-
do cocartesiano gii = igg, i cofibracién y g epimorfismo, en-
tonces el cuadrado R, .Ci = Gs(i,ig)R1 es cocartesiano; ademés,

()i

Ci tiene una retraccién que hace de CA un retracto por deforma-—

cién de CB y por el teorema 2.6, entonces Cg es un retracto por

deformacién de Cg a través de G3(i,ig). De lo cual se concluye
i




que Gan(l,lg) y Han(l,lg) son h-equivalencias.

3.— DUALIDAD

Todo lo dicho hasta aqui, tiene una teoria dual: Si A es
una categoria aditiva con ntcleos y una construccién arcos
(€',k",p';q"), esto es, un funtor covarante C': A4 > A y trans-—
formaciones naturales k': C'> 1, p': C' > C'C' y
-GG CH Gy e i fiilcan'dloflC Hli= (@ Ut s ainisif omma el Mo bl e ot c e RONY,
los cuadrados cartesianos en el objeto cero y cuadrados carte-—
sh amloish, ire specti viamentes, G2 EaiC )=y GBI ECH =
= ORI ERvR (G L) R =N CRE 1 illlilzamidof el Fun o=l alzlois R i=tlde il
se definen de forma dual los grupos de homotopia de un objeto y
de un par referidos a un objeto. Asi mismo, definiendo fibracio-
nes como los morfismos que verifican la propiedad de elevacidn
de homotopia, a través de las fibraciones inducidas por cuadra-
dos cartesianos, se llega a la creacidén de las tres sucesiones
de fibras homotépicas duales equivalentes: la canbnica, la de
Eckmanﬂ — Hilton y la asociada a una fibracidn.

En una categoria A aditiva con ntcleos, contcleos, una
construccidén cono y otra arcos, existen dos homotopias, en
principio, diferentes. En este parrafo se estudia cuando estas
homotopias son coincidentes, utilizando para ello el concepto
de adjuncidén, y obteniendo, las sucesiones exactas de grupos de
homotopia.

La adjuncibén que se utilizarad es la de Kan, esto es, C es
adjunto a izquierda de C' o, equivalentemente, C' es adjunto a
derecha de C, si y sélo si existe una equivalencia natural
t': Hom(C=, =)' > Hom(—,C'"-).

3.1 Definicidén: Dos construcciones cono-arcos (C,k,p,q) y

(C',k',p',q") se diradn adjuntas, cuando C es adjunto a izquier-—

3 : : Sy
da de C' mediante una equivalencia natural que hace k =k,
#*

*
P ¥y ¥ q Q. )

Nétese que al ser k Yk}, el funtor suspensioéon S es adjunto
a izquierda del funtor lazos @ y que, por tanto, los grupos de

homotopia definidos por construcciones adjuntas son isomorfos,
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esto es, Mp(S"A,B) ¥ me(S" %4,0B) & ... 2 No(SA,R"'B) %
L Mo(a,Q"B).

Dada una construccién cono (C,k,p,q), es suficiente tener
un funtor adjunto a derecha C' de C para obtener construccione

cono-arcos adjuntas. Para ello basta definir k' = kt_l(lc,_),

1 1 1

p! = erpt (loh ) imig! = ietats
to k: Hom (C-,-) » Hom(-,-), p: Hom(CC-,-) > Hom(C-,-) y
q: Hom(CC-,-) - Hom(CC-,-) definidas de forma obvia. De forma

t_l(lc,c,_), donde se ha supues

dual sucede con una construccién arcos y un funtor adjunto a
izquierda.

Por otro lado, construcciones adjuntas en 4 inducen cons-—
trucciones adjuntas en A(2) y la homotopia relativa y su dual,
la correlativa, pueden ser definidas usando arcos y conos, res—

pectivamente.

A partir de aqui 4 se supondra con construcciones adjuntas.
Si se considera el dominio de la fibra homotépica canodnica
como  un. funtoxn E:vA(2) > A R @) = Fg’ se tiene
3.2 Proposicién: Existe una equivalencia natural entre los fun-
tores H? y HSF.
Demostracidn:
Seant me s Yy (mgv)s kA -~ g, entonces k%t(v) =

= va = gu y, por cartesianidad, existe una tnica w: A > Fg tal

que r'w = t(v) y glw = Gg(u,v) = ‘w; 0% Hom(kA,—) > Hom(A,F )

es una equivalencia natural. Nétese que 6 %(w) = (g WG D)
Bg conserva la homotopia, pues si (u,v)=0, se tiene que

w = hW, donde W = ec.g(U,V), (U,V) es una nulhomotopia para ar-—

cos de (u,v) y h = F;(u,v) (F' la dual de 2.11). Entonces w se

factoriza a través de FC'g que es contractil como consecuencia

del teorema dual al 2.14 y, por tanto, w=0.

G;Itambién conserva la homotopia, pues si w=0, (U,V) =

= (C'glw,tnl(qéC'rIW)) es una nulhomotopia para arcos de (u,v);
donde W es una nulhomotopia para arcos de v. O es entonces la

equivalencia natural deseada.

3.3 Teorema:
(1) P: A(2) > SEAbY definida por P(g) =
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A A 2R AN 4 5
Ly G GO P @ O OOk o el
donde £3"72 = 8l rHERE g;eg y G Sgy(igl)*t—l es un fun-

tor covariante.
(2) Q: £fA > SEAb¥definida por Q(g) =

A 31 A 3 A -3 -l -5
= G L THOON RO D) G OOl NG )

.9

demele 5 T S SR (104 i°% = hlt, (h' es dual de h

en la proposicién 2.13), es un funtor covariante.

Nétese que fan_l([u,v]) = [u] y fsn([v]) = [O,ik s v].

S A
Por otro lado el cuadrado cartesiano sobre g: Y - B y p: E> B,
con p fibracién y g monomorfismo, como consecuencia del teorema

diuail S a 128 4 Fg es un dilatado por deformacién de Fg a través

P
dielthit= F;(pg,p) y, por tanto, h, es un isomorfismo natural vy,

*

— e A A
como (pg,p)% = 68 h%egp resulta que Hn(E,Fg) A Hn(B,Y).

4 .- EJEMPLOS Y RELACIONES

Todas las teorias de homotopia definidas sobre categorias
aditivas, son ejemplos de este desarrollo. Asi para la teoria
proyectiva e inyectiva de Eckmann - Hilton [9], basta conside-
rar la envoltura proyectiva e inyectiva, respectivamente, de
los objetos. También en la homotopia de los complejos de cade-
nas [6], [11] sucede lo mismo considerando C(X)rl = xnmxn_l. To-
da homotopia obtenida a través de cilindros o caminos, puede
ser también obtenida a través de conos o arcos, anulando las
respectivas segundas inclusiones o proyecciones. Homotopias re-
cientes han sido creadas y desarrolladas siguiendo este método,
como la de grupos abelianos de L.J. Hernandez [8] y la de R ca-
si-médulos de M. Sanz [15] y, de forma andloga a éstas, se pue-—
den definir otras sobre R médulos, grupos topolégicos, espacios

vectoriales topolégicos, etc...
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A GLOBAL THEOREM FOR THE SOLUTIONS OF POLYNOMIAL EQUATIONS

I.K. ARGYROS

Department of Mathematical Sciences. New Mexico State University.

Las Cruces, NM 88003.

A new global theorem for the solutions of polynomial equa-
tions is provided. The result is obtained by splitting the poly-

nomial equation in a system of two linear equations. SEu

Introduction. With the exception of Rall’s work on the solutions of

polynomial operator equations on a normed space X all published existence
theorems depeﬁd in some way on contraction mapping theorems [1], [9], and
[10].

In this paper we prove a global theorem for the solution of the
polynomial equation of order two (or quadratic equation)

P(x) =0

P(x) = B(x, X) + L(x) +y ,

where B is a bilinear operator on X [9], L is a linear operator on X
and y is fixed in X.
Our work was motivated from a question raised in [11, p. 395] concerning

global theorems for the solutions of polynomial equations.




uSShaT) b

As in the case of the real quadratic equation, under certain assumptions
we reduce the problem of solving equation (1) to a system of two linear
equations that is easier to solve.

Our results can then immediately be extended to include polynomial
equations of order n

Pn(x) =0 i (2)
with
n-1

X A QO a2t x2 + M.X + MO .

o n
Pn(x) = Mnx + Mn_ 5 1

1
‘The notation xk denotes (x, x, **+, x) and Mk, k=S stele i IS Y'S

-k times-
a k-linear on X [4], [10], [11].

Finally an example is also provided.

Main results.
Let L(X) denote the vector space of all linear operators on X. Denote

by B(y), y € X the linear operator defined on X by

B(y)(x) = B(y, x) for.all x € X .

Proposition. Let A denote the set defined by
A = {L € L(X)/B(L(y)) = B(y)L, with B, y as in (1)} .
Then A is a vector subspace of L(X).

Proof. Obviously A # @ since the identity operator I € A. Let Cqv

c, be arbitrary numbers in the field of X and assume that L1 and L2 cin

2

Then

B (c1Lg + cLp) (v) = BlegLy (¥) + Ly (y)) = ¢1B(Ly (v) + c,B(Ly(y)) =

Il

czB(y)Ll + czB(y)L2 = B(y)(clLl + c2L2)

so, clLl +c,L, € A and the proof is camplete.
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Note that the problem of finding a solution x of (1) can be reduced to

finding a pair (x, Ll), X €X, L € L(X) satisfying the system

B(x) + L = L; (3)

L(x) +y=0. (4)

Definition. Let Nl and N2 denote two linear operators on X. Then the

linear operator Ny is a square root of N, if Ng =N. In this case we

denote N, by N, = Vﬁ;.
We can now prove the main result.

Theorem 1. Assume:
(a) the square root of the linear operator L2 - B(y) denoted by S

exists;

(b) the operator L € L(X) given by L= E%§ is invertible on X;

(c) LIl € A;

(d) the linear operators L and S commute, that is LS = SL.

Then (1) has a solution x given by
= =1
x = -2(L + S) “(y) . (5)

Proof. By the previous remark it is enough to show that the pair
(x, Ll) satisfies (3) and (4). If x is given by (5) then (4) is satisfied.

Also,

L+S
ST

Lf - LL; + B(y) = 0 (by (a), (d)) »
-B(Y)Lzl t LoD (by (b)) =
B(-Ly (y)) + L =L (by (c)) =

B(x) + L= L1 %




Thatlii's), (X} Ll) satisfies (3) and (4). Therefore x 1is a solution of (1).

Remark 1. If the operator L1 is not invertible, we can still make use of
the theorem. Let P'(xo), P"(xo) denote the first and second Fréchet
derivative of P at X [8]. As in [9], there is no loss of generality to

assume that B is symmetric in (1). We then obtain using Taylor’s theorem

P(x0 + h) = P(xo) + P'(xo)(h) + %»P"(xo)(h, h) (6) -

P'(xo) = ZB(xo) + L and P"(xo) = 2B .
Equation (6) can now be written as

P(x, + h) = P(xo) + P'(xo)(h) + B(h, h)

0

The linear operator P‘(xo) may now be invertible. We can then set

y = P(xo) and L = P'(xo). If the rest of the hypotheses of the theorem are

now satisfied we obtain a solution x in the form
X =Xy + h
where h is given by (5).
Remark 2. Rall [9] has shown some elegant existence results if P'(xo) is

invertible for second kind quadratic equations. However, the solution x if

it exists lies in what he calls "factor set" which is not a vector space.

Remark 3. If the linear operator S does not exist the transformation in
Remark 1 may produce an operator which is the square root of the new
"discriminant" operator. However, if B(xo), L €A and live in a commutative

algebra the transformation does not work, since

(2B(x,) + 2= 48(2(x,)) = 4B(x0)2 2

+ ZB(go)L + 2LB(x0) - 4B(y) - 4B(L(x0)) - 4B(B(x0x0))

- 12 - 4B(y)




Applications
Remark 4. The real quadratic equation may serve as an example for the

theorem. However, a more interesting example when X = RZ is now provided.

Example. Let X = R2 with the ordinary bases {(1, 0), (0, 1)}. It is well
known [10] that a bilinear operator B on X is uniquely associated with an

array of real numbers
11 12 11 12
21 22 21 22
i e bs

with respect td the chosen ordered bases. In fact, we define B by the

: x
following calculation scheme if x = [ xl J
2

B(x, y) = {(x;, xz)trT} . [

Y)

11 21 12 22
B Baesy LIRS SR [yl]

11 21 12 22
BRI 51X s o s

(a new form of vector-array multiplication)

11 21 12 22
S gl Do Yol DR iYo o uEoY)
11 21 12 22
BoRE Yol DoV Do Yo sk BoioY)
(ordinary matrix-vector multiplication).

Then B is plainly bilinear and the array T is its representation with

respect to the chosen basis. And, conversely, the value B(x, y) of any




bilinear operator on X can be calculated using the above scheme.
We also observe that for any x € X the linear operator B(x) on

has the ordinary 2 x 2 matrix representation.
1L 21 12 22
By Bt 20X i Hi0) %)
B(x) = 5 (8)

11 21 12 2
o Alih Py b iy

Consider now the quadratic equation X given by

B(x, x) + L(x) + y =0 (9)
where
1 -1 2 2

Bialio g/t

0F 2 1

4

L = , and y =
3 1 1
2 2 =i

Using (7) and (8), (9) can be written as

x2 + X.X5 + 3x2 - 2x

s e s p el
1 :
2xl Xy 53X T Xy - T = 0
We now have that
3 1= 202
JL—4B(y)= =S
3l
Q)
where
—z 1 0
B(y) = : Also, L + S =
3 0 ()l
4 .
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Therefore,

Note that this is a solution that we can find and not the only solution

of (9).

Remark 5. Let X =R". For a bilinear operator B = {ﬁzk}, Sl )3 i

1, 2, ---, n one can define as in [10]

m m
Bl = sup max E | } ﬁgkfkl :
xii=1 (1) 520

from which it follows at once that

m

m
jk
Bl < Tg§ } E Iﬁi |
tia1 k=1
A simple calculation shows that the norm of B given in the previous

example is 6 for m = 2. Also, llyll = %. Moreover, the condition

1 - 4uBll - lyll > 0

in [9] is violated. Therefore, the solution obtained in the previous example
cannot be obtained using the contraction mapping principle iteration given in

[2] or [9].

Remark 6. The problem of finding a solution x of (2) can be reduced to
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finding a pair (x, L), x € X, L € (X) satisfying the system

n-1 n-2
Mnx + Mn_lx + e 4+ MZ =L (10)

Lx + M) = 0 5 (11)

The proof of the following theorem, as similar to the proof of Theorem 1,

is omitted.

Theorem 2. Assume:

(a) there exists an operator L € L(X) such that L_'l satisfies

=1 k-1 k-1 k-1 -1 k-1
Mk((L ) (Mo)) = Mk(MO) (L ) ’ k i 2! 3[ Wil n

and

(b) the operator L satisfies the equation

n n-1 n+an—2 -1

n-2
L' -L M+ (-1) 0)

2 n
MO, )+ e (L) STM (M = MR =0

7

Then equation (2) has a solution x given by

x = L7 (m))
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VIETTA-LIKE RELATIONS IN BANACH SPACE

I.K. ARGYROS

Department of Mathematics. New Mexico State University.

Las Cruces, NM 88003.

We derive a number of results on the number of solutions of

quadratic equations in Banach space.

Introduction. Consider the quadratic equation
X =y + B(x,x) (1)

in a real Banach space X , where y € X is fixed and B 1is a bounded
symmetric bilinear operator on X [1], [2], [3].

It is well known that the real quadratic equation

X =y + bx2

has at most two solutions X10 Xy which satisfy the Vietta relations

.

b i) E=01

1
b(xlxz) =y .

2

Here we study how the above results can be extended in a Banach space.
Assume if there exists a z € X such that the linear operator

B(z) : X > X given by

B(z)(x) = B(z, x) = B(x, z) for all x € X
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and

Then

Main

Theorem 1. Let 2z € X be such that B(z) = I and X11%y € X be solutions

of (1) with

Then

Also,

satisfies the condition

B(z) = I , where I is the identity operator on X

if Axl and x, are solutions of (1), the following are true:

B(xl + x2) =T

(2)

B(xl, x2) =y .
We also derive some results on the number of solutions of (1).

Finally, an example is also provided.

results.

We can now prove the validity of relations (2).

B(x1 + xl) =T

B(xl,xz) =y .

Proof. We have

B(xl + xz) =2 B((Z) =51

X

+ X

2 = 2Y + B(xy,%1) + B(xy,x,)

2y + B(xl + Xy, Xp + xz) - 2B(x1,x2)

2y + Xy + Xy = ZB(xl,xZ)

B(x),%y) =y ,




which completes the proof of the theorem.

Theorem 2. Let 2z € X be such that B(z) = I and let x be a solution of
(1) then
X=2z-X

is a solution of (1) also.

Proof. We have

y + B(z - x, 2 - x) =y + B(z,2) - 2B(x,2) + B(x,x)
=y + 2 - 2x + B(x,x)
=y-y+z-X
=2z -X
= X

which shows that x is a solution of (1).

Proposition 1. Let X1 X1 X34 X, be solutions of (1) with

X + Xy =2
X3+ Xy =2
where B(z) = B(z) = I . Then
zZ=2

Proof. We have

Xy = Vit B(xl,xl) =y + B(x3 + Xy =Xy +2 -2, X3+ X, =Xy +2Z - z)

= X3+ X, + X - ZB(xZ,x3 + x4)“
= X3+ Xy = Xy .
(By expanding and rearranging the right hand side of the first equation.)

So, xl + Xy = X3 + Xg0 that is
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Proposition 2. Assume:

(a) there exist r, s € X such that

B(r, s) =0

and X1 X, € X solutions of (1) satisfying (2),
(b) the following estimate is true:
L+X =5+X) .
Then the element x € X defined by

X=r+X
1

or

is a solution of (1).

Proof. By (3) and (4) we have,

7

B(x,X) — x + y = B(x,x) - B(x,x, + x2) + B(xl,xz)

1

B(x — xl, X — X

2)

Blies) =20

Ffe =N -

OF X =HSEEaX S
1

That completes the proof of the proposition.

Applications.

2 : S
Example. Let X =‘R and define a bilinear operator on B on

bi11 by
b b v
B(w,v) -{ (wy vy) | R 122 ! } =
21 1D 4
b b

(3)

(4)

X by




[

B11a¥1 * Pyp¥y  bygoWy + bypowy v,
(B(w))(v) =
br11%1 * Poo1¥y  bBygaWy * booowy | | vy
i
P111%1V1 * Pioi¥Vy BiypiVp + Bypowovy
Dy11%1Y1 * Pag¥aVy  ByypWpVy + byoowovy
Consider the quadratic equation on X given by
vw =y + B(w,w)
1
L e e AL L S R s S
: Y, N s IS D) ORI T D) '
48
b211 = il b212 1% b221 = -1 and b222 =-1 or
1 2
w1 =B 3w1 + 2wlw2 - w2
(5)
W, = — = + W, — 2 :
pbw =g WaWor Takois
: fiione mae o :
The solutions w , w , w , w of (5 are now given by
1 1 2 2
w;© = .0200308  w, = .0200308  w,” = -.5200308  w," = -.5200308
3= i 43580 4 v
w® = -.25 wy® = .1318813  w," = -.25 w, = -.6318812
=5
It can easily be seen that B(z) =I if z= _ . . Note that
Wl'f'W2='W3 +W4=Z
B(wl,wz) = B(w3,w4) =y .
and
B(w:L + w2) = B(w3 + w4) =L
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ON THE DERIVATIVES OF HANSEN’S COEFFICIENTS IN DELAUNAY VARIABLES
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Ciudad Universitaria. 50009 ZARAGOZA (Espaifia).

Giacaglia has given a recurrence relation for the derivati-
ves of the Hansen coefficients Xi’m with respect to the eccentri-

city. ' €. Using this result, we calculate the second derivative

2 2
d Xﬂ’m/de and we deduce the first and second partial derivatives

of XE’m with respect to the Delaunay variables L and G. Finally,

we analyse the existence of small divisors in those derivatives

for small eccentricities and we calculate the zero order terms.

1 Introduction

Giacaglia has given several recurrence relations for the derivatives of the Hansen
coefficients X;"™ with respect to the eccentricity e, that we can resume into the
formula (41) of his paper (Giacaglia, 1976, pp. 522). In this paper, using this
recurrence formula , we calculate the second derivative d2X;™ /de? and we deduce
the first and second partial derivatives of X; ™ with respect to the Delaunay variables
L and G. The interest of these calculations is determined by the presence of the
derivatives 0"H/OL", O"H/OG™ in the developments of the Lie series, when the
canonical Delaunay variables (L, G, H,£,g,h) are used in the theory of artificial
satellite theory motion.

Moreover, we analyse the possible existence of small divisors in those derivatives
for small eccentricities and we calculate the correspondent e~! and €® order terms.
This question is motivated by the study of motions around the Lagrangian point L
within the restricted problem ( see Cid et al[1]).
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2 Hansen’s Coefficients

The Hansen expansions are used for the development of functions of the true anomaly
f, by means of the mean anomaly £ of an elliptic motion. In these expansions, the
Hansen coefficients X"™ are defined by

(:)n exp (imf) = > X;™ exp (ik£),
& k

beings k,n integers and m a non negative integer.
According to Tisserand[7] the X;"™ coefficients are obtained by the expressions

n,m (—ﬂ)k_m
- TG

for k£ > m, and by

n,m (_ﬂ)m—k
o

[Pk—m + Piom41@18% + Prom42@2B* + .. ] (1)

[@mei + Quis1 P + Qe PaB + .. ] @)

for m > k, being

e 1—+/1—¢? 23
= = <e e= : (3)
14 +/1 —e? e 1+ 62

B

The values of the coefficients Py, @}, for a given index k, are obtained by the relations

s=h s=h

n+1—m)\ v n+1+m)\ v}
1B = —1)° ) = =0 4
5 320( )<h——s)s! Qn g(h—és)s! )

ke k

== 5
=5 =1 )
Since the calculation of these coefficients is quite tedious, some authors (cfr. Hug-

hes[5]) have given other expressions more suitable for computing tables.
In relation to the possibility of existence of small divisors in the partial derivatives

of the Hansen coefficients for small eccentricities, we will use the expressions of
Newcomb (1895) in the form

Xpm—emHA 4 B2 + Cet .. ], (6)

where A, B, C are numerical coefficients depending on the integers k,n and m.




3 Derivatives of the Hansen’s Coeflicients

In what follows when there is no confusion, we will write X instead of X;'™
any of the formulas Eq. (1) or Eq. (6), and the relations

Oe Oe
L(;a;—l—/ Gaa—Zé

e e
e e
we get the derivatives
OX _1-ddx oKX 1-diX
oL e de’ oG e de’
oy ek (1 L [d2X ldX]

L2

L

Loma L e s ey

PSS T T

0G? e de e? de?  ede|’

which, as we see, depends on the derivatives dX/de and d*X/de®.
From the formula of Giacaglia

me
41— &)

dXEEeiom= nX‘,;_LmH_Qm +n

e 2 2

rn—1,m—1
X, —

(X2 — ] (10)

we obtain directly

G 1 S
de]; = [(Qm —n)(2m —n + 3) X} Zautl

—2(4m? —n? —n) X7 2™ + (2m +n)(2m +n — 3)X"__‘_2'm‘2]

m(1 + ¢?)
4(1 — e2)?

8(1 —¢€?) [

[X:,m+2 1 X:,m—2jl
—2m@m —n +3) —n}Xpln

+ {2m@2m +n +1) —n}XpHTH
+ {2m(2m —n —1) — n}X,’f—l’m”1
—{2m(2m+n —3) — n}X,’:—l’m_s]

me2

_+_

T o7 [ + 226 = 2mX™ 4 (m =2) X

Similarly, if we consider the formula Eq. (6), we have

dXE

= "M [Ajm — k| + Be*(|m—k | 42) + .. |
de e




dZJY,:l’m

— 2[4 |m k| (|m—k | 1)

+ Be*(|m—k|+2)(|m—k|+1)+..] (12)

4 Small divisors in the derivatives of Hansen’s
coefficients

a) Small divisors in the first derivatives

From the formulas Eq. (7) and Eq. (11) we get easily

0X _ _S0X _ | _ 2yelmeki-2 5 S
Do =G =l [Alm—k|+Be*(|m—Fk[+2)+...], (13)

which shows that the derivatives 0.X/0L and dX/0G do not contain small divisors
for |[m —k |=0 or |m — k | > 2, meanwhile they may appear when |m —k |= 1.
b) Small divisors in the second derivatives

From the formulas Eq. (8), Eq. (9) and Eq. (12) we see it is sufficient to examine
the terms of the expression

e? | de? e de

1 [de 1dX] =|m‘_k|e|m_k|_4 [A(lm — k| =2) + Be(Im —k | +2) +..].

(14)
From this we get that for |m —k |=0, |m —k |=2 and | m — k | > 3 there are no
small divisors. When | m —k |=1 and | m — k | = 3 there are small divisors.

5 Terms of the orders e ! and ¢° in the first deri-
vatives

In what follows we will refer to the derivatives L(0X/dL), G(0X/0G) given by the
formulas Eq. (7) in which we have replace the derivative dX/de by Eq. (10) and
considering e ~ 0. In order to do that we will have in mind the expressions of the
coefficients P;, @; given by Eq. (4) where we have eliminated the divisors (1 + 5?)’,
which do dot affect the calculations. We will put

Po = 1,
PP = n+l—m—k,
P, = 3(n+1-—m)(n—m)—(n+1-—m)k+ 1k




QO = 17
s — n+1-f-m+k,
Q> s+ 14+ m)(n+m)+(n+1+mk+ 1k

In short, we get the results from the formulas

-l e

s 2
+ 2; [(2m —n) Xz~ — (9m + n)xpimY].

a) Terms of the order €°
a1) k=m

In this case we have

0X OXEe Sl 5
. L@L_ GaG_z(_4m + n® 4+ n) + O(B?).
az)k=m+2
Now, we have

aX 0N s 5 5
LaL = ——G-a—G— = 7(4m® —4mn 4 n® + 5m — 3n) + O(B?).
az) k=m—2
Similarly it results

LZ—)L( = _Gg_)(; = 1(—4m? + 4mn + n® — 5m — 3n) + O(B%).
b) Terms of the order e~!
b;) k=m+ 1
The small divisors are of the order
0X OXE )
T EE
It will not be small divisors in the case 2m = n.
b2) k=m-1
In this case we will have

oX 0X 1

It will not be small divisors in the case 2m = —n.

(2m —n) + O(B).




6 Terms of the order ¢’ in the second derivatives

In a similar manner to the previous Section, we calculate the terms of the orders =3,

-1 and €°, in the derivatives L?(8?X/0L?), G*(9*X/0G?) when e ~ 0. In order to

do that, we need to have in mind the following terms

__7_:'_ {X}r:.m—ﬂ gl X:,m—2]

+;n_6 [(m +2)XPTH o X 4 (m — 2)){:""*4]

1
(5 12) [em —m@m —n 43X
_ 5(4m? — n? — ) X2 2T 4 (2m+ n)(2m o+ n = 3)XE 27

1
+§E [—{2m(2m = A=) = n}Xk—l'm.+3
+ {2m(2m + n + 1) - n}Xk—l,m+1

+ {2m(2m —n —1) — X
n.—l,m.—3]

—{2m(2m +n —3) —n}X;

1 i n—1,m+1 n—1,m—1
+ (=55 % 5) [om—mX = @m+ )X

where the signs F correspond to the derivatives L*(8*X/0L?) and G*(9*X/9G?)
respectively.

a) Terms of order €°
aij) k=m
9*X

2
b 0L?




0’X 1 1 9 3 5
2 i 4 3 3 3
G 3G —-m" + Rn“ + m°n — Zmn — Zm — —8—n3 + 2m*n + En?m
1 2
—2m? — Enz -+ %mn + %m + gn + O(B%).
az) k=m—2
0*X il 1 9 3 5
2 G 4
L 9z —_m + En“ —m3n + Zmn3 -+ st — gna + om*in — Enzm
Dl G 3 11 5
+2m + T +-1—6mn—5m——é—n+(9(ﬁ )
9*°X 1 1 9 3 5
2 i 4 3 3 3
G 3Gz —m +En4—m n+zmn +Zm —§n3+2m2n—ﬁn2m
11 21 1 37
_Em2 - ———16712 - -—1065mn + Tm + e + O(B%).

7 Historic remark

Within the Restricted Problem of Three Bodies, we have studied[1] the motion in
the neighbourhood of the Lagrangian point Ls. After the short period terms are
removed, we have arrived to the Hamiltonian

H = Ao(Y) + p[AL(Y) cosy + Ay(Y') cos 2y]

where the coefficients A; are functions of X;"™. Giacaglia pointed out the possibility
of existing of small divisors in the derivatives of A; and A,. We checked the no
existence of small divisors in such case, but our research led us to a general study of
‘the problem, which is the content of the present note.
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MANIPULADORES ALGEBRAICOS EN MECANICA CELESTE

A. ABAD Y M. SEIN-ECHALUCE

Grupo de Mecanica Espacial. Facultad de Ciencias Matematicas.

Ciudad Universitaria. 50009 ZARAGOZA (Espaifia).

The appearance of new techniques involving the use of elec-
tronic computers has been propifious for a fast development in
the different subjects of the Science. In this paper, the impor-
tance of the algebraic manipulators in Celestial Mechanics is
made evident and the basic points which one should bear in mind
to build the best calculation tool for solving its problems:

Poisson series processors, are presented.

1.-INTRODUCCION

Durante tres siglos la Mecénica Celeste constituyé un enorme campo de trabajo para
mateméticos y astrénomos alcanzando su momento cumbre con el descubrimiento del planeta
Neptuno por Adams y Le Verrier mediante un método analitico no observacional.

Delaunay pasé veinticinco afios de su vida intentando hallar la solucién completa al main
problem en la teorfa lunar. La resolucién del mismo problema llevé a Brown quince afios, a los
que afiadi6 diez afios més dedicados al estudio de los efectos debidos a los planetas y siete
ordenando sus férmulas para que los empleados de las oficinas de almanaques pudiesen calcular una
posicién de la Luna cada cuatro horas.

Hacia mediados del siglo veinte se habfa paralizado casi por completo cualquier actividad en
este campo en la mayoria de las comunidades cientificas, fruto de las divergencias surgidas entre
observacion y célculo, y de la maghitud de los célculos involucrados.

Solo en unos pocos lugares sobrevivid, entre ellos en la Universidad de Louvain en Bélgica
donde Monseigneur G. Lemaitre, al mismo tiempo que conseguia importantes logros en Astronomia
hizo grandes esfuerzos para aplicar los progresos de la tecnologia de computaci6n a sus trabajos.
Lemaitre traslad6 sus célculos de las tablas de logaritmos a méquinas calculadoras manuales,
después a miquinas eléctricas y més tarde a méaquinas calculadoras automatizadas mecédnicamente.
Ademés, supo transmitir‘a sus discipulos la idea de que el futuro de 1a Mecénica Celeste pertenece a

117




una nueva raza de astrénomos matematicos: hombres con una formaci6n sélida en andlisis puro,
artistas en programacién de ordenadores, expertos en andlisis numérico y siempre dispuestos a
descubrir como el progreso en la tecnologia hardware puede ayudar a resolver el siguiente reto.

Aparte del papel tradicional de los ordenadores como veloces médquinas de célculo, su uso ha
permitido automatizar paso a paso diversos procesos algebraicos involucrados en muchas Ciencias.
Asfi, uno de los seguidores de Lemaitre, A. Deprit afront la tarea de hallar la soluci6n analitica del
main problem en la teorfa lunar. Los resultados obtenidos dieron una precisién de 50 cm, frente a
los 300 km de error en los resultados de Delaunay y los 3 km en los de Brown (Deprit et al, 1971).
En 18 meses se completaron los resultados que a Delaunay llevaron 25 afios y unicamente se
encontré un error. Ademds de producir los movimientos medios y las expresiones analiticas
completas para la longitud, latitud y paralaje de la Luna, se afiadieron las derivadas parciales con
respecto a las constantes de la teorfa.

Miés tarde y junto a A. Rom y J.M.A. Danby, A. Deprit desarroll6 un paquete de subrutinas
FORTRAN para manipular autométicamente series de Fourier miltiples cuyos coeficientes son
series de Laurent multivariadas, a las que llamé Series de Poisson, y que en la actualidad
constituyen una de las principales herramientas de la Mecénica Celeste (Deprit et al, 1965). A partir
del paquete original MAO (Mechanized Algebraic Operations), muchos han hecho modificaciones de
acuerdo con sus necesidades particulares (Broucke, 1969; Rom, 1970; Dasenbrock, 1982).

Cada avance realizado en el desarrollo del MAO marca un progreso en la automatizacion de los
desarrollos asint6ticos en Mecénica Celeste y en dindmica no lineal.

La automatizacién de los procesos ha servido a lo largo de la historia para rebatir o corroborar
teorias construidas en el pasado y en este 1iltimo caso tratar de mejorarlas. Esto es lo que ocurrié con
un procedimiento que Poincaré desarroll6 con el fin de construir transformaciones canénicas que
normalizaran sistemas Hamiltonianos a partir de un algoritmo inventado por Lindstedt para generar
soluciones peri6dicas de ecuaciones diferenciales no lineales. La automatizacién de este proceso
condujo a A. Deprit a una reformulacién del método para obtener la transformacién canénica
inmediatamente en su forma explicita utilizando las transformaciones de Lie. El rasgo méds
caracteristico de un algoritmo de perturbaciones basado en la transformaci6n de Lie (Deprit, 1969)
es que las operaciones se pueden realizar naturalmente de una forma recursiva, lo que convierte el
problema en una simple traduccién a un programa de ordenador. A partir de entonces reconstruy6
sus trabajos basandose en las transformaciones de Lie.

Ademi4s de los avances que en tecnologia de ordenador se estaban produciendo, otro de los
motivos que ayudaron al resurgir de la Mecénica Celeste fué el problema de los satélites artificiales.
Su lanzamiento y puesta en 6rbita planteaba numerosas cuestiones a resolver que precisaban de la
aplicacién de nuevas técnicas analiticas y computacionales para lograr mayor precisi6n y rapidez en
los célculos. Asf pues, considerando la solucién de Aksnes para el main problem en la teorfa del
satélite artificial, 1a técnica de 1a eliminacién de la paralaje (Deprit, 1981b), ejecutada por ordenador,
abrevia los desarrollos convencionales de Brouwer y Kozai en un 87% (Coffey y Deprit, 1980).
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Con todo esto, hacia los afios setenta la Mecénica Celeste se encontraba mucho més viva que
antes y asf continua en la actualidad, debido, por una parte, al crecimiento masivo de cuestiones que
laera espacial planteay por otra a las nuevas técnicas de programacién (manipulacién algebraica,
sistemas interactivos,...) y los nuevos ordenadores (ordenadores LISP, array processors, etc.) que
posibilitan la realizacién de célculos més complejos, a mayor velocidad y la construccién de teorfas
més precisas (Brumberg, 1988, Deprit, 1981 Richardson, 1988).

2.- MANIPULADORES ALGEBRAICOS EN MECANICA CELESTE

Los programas de manipulacién algebraica constituyen la base del moderno desarrollo de la
Mecénica Celeste.

Dos vias han incidido en esta progresi6n. Por un lado, programas de manipulaci6n algebraica
de tipo general como pueden ser MACSYMA o REDUCE para grandes ordenadores y MUMATH
para microordenadores. Por otro lado, programas especificos construidos para resolver problemas
concretos. Este segundo camino, aunque queda limitado por el tipo de problema a resolver, posee
ventajas con respecto al anterior, pues estos programas son mucho més rdpidos, con lo cual pueden
llegar , en el mismo tiempo de célculo, a 6rdenes mucho maés elevados de la teoria. Por otra parte,
aprovechan de forma més eficiente la capaéidad'de almacenamiento de la méquina, lo que permite su
utilizacién en pequefios ordenadores.

Para hacernos idea de como debe ser un procesador especifico aplicado a problemas de
Meciénica Celeste, repasemos rdpidamente algunos de los problemas que ésta trata.

Problema de dos cuerpos:
Este problema, bésico en la Mecénica Celeste, viene definido por las conocidas ecuaciones del

movimiento
d27 T
Mt

La integraci6n de estas ecuaciones determina un movimiento plano que permite expresar la
ecuacion de la trayectoria en coordenadas polares r=r(f), donde f es la anomalia verdadera. Sin
embargo, no es posible expresar la ecuaci6n de la trayectoria explicitamente en funcién del tiempo
sin efectuar desarrollos en serie. Para esto, hay que tener en cuenta que

T =r1cosf P + 1 senf q
donde P’ y q son vectores que dependen de los elementos orbitales. Por otro lado, r cosf y 1 senf

se obtendréan a partir de las férmulas de Hansen

& (oo TX3% {2} o

siendo M=n(t-T)
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Perturbaciones al problema de dos cuerpos:

En los casos en los que existen perturbaciones, las ecuaciones del movimiento que es necesario
integrar son de la forma

donde @ esla funcién de perturbacién que dependeré de cada problema concreto.

En cualquier caso, equivale a resolver un sistema dindmico de Hamiltoniano H expresado en las
coordenadas canénicas (p,q) y que viene dado por las ecuaciones

oH
%’5*3;
oH
%%“3;

donde H=T+V, T es laenergia cinéticay V es el potencial que depende de la perturbacion.
En el caso del satélite artificial, el potencial V es de la forma

v=-211+ Z@“ (JnPn(senf)+ ¥ I PT(senf) cos(m(A-A]))]

n>1

donde Pp P™ son los polinomios de Legendre ylny 1™ los arménicos zonales y tesserales
Y n P g n

Tespectivamente, .

Tanto en la teoria del satélite artificial, como en la mayorfa de los problemas clésicos de la
Mecénica Celeste (perturbaciones producidas por un tercer cuerpo, movimiento del sélido, etc.), el
potencial perturbado presenta una expresion formal similar a la del satélite, esto es, puede
expresarse como un desarrollo en serie de Poisson

ipip ...ix i3 _ix [sen] . -
Z C i e ge X1 XK {cos} (1¥1 + ....jnYn)

Esto hace de este tipo de series la herramienta fundamental en la resolucién analitica de estos
problemas.

Afortunadamente, el tratamiento automaético de las series de Poisson es posible gracias a sus
propiedades, que aseguran que la suma, diferencia, y producto de dos series de Poisson, asi como
su derivada parcial e integral con respecto a una variable son también series de Poisson.
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3.-PROCESADORES DE SERIES DE POISSON

Si abordamos el problema de la construccién de un paquete especifico de programas que
permitan una automatizaci6n, lo més amplia posible, de la Mecénica Celeste, debemos dividir el
trabajo en tres partes.

En primer lugar, como se ha visto en el apartado anterior, la herramienta bésica que utiliza la
Mecénica Celeste son las series de Poisson. Esto nos lleva a pensar en la construccién de un’
Procesador de series de Poisson (PSP) que nos permita manipular dichas series y efectuar con ellas
todo tipo de operaciones algebraicas posibles. Este procesador constituird 1a base fundamental del
paquete de programas.

Un segundo paso lo constituir4 la resoluci6n algebraica del problema fundamental, es decir, el
problema de dos cuerpos. El conjunto de rutinas que lo resuelven, que llamaremos Procesador
Kepleriano, seré construido utilizando el PSP y permitir4 la obtencién automética de los desarrollos
literales m4s usuales en Mecdnica Celeste, como son entre otros E=E(M), f=f(M), férmulas de
Hansen, T=r (M), etc. (Broucke,1970).

Por iltimo, deben desarrollarse los algoritmos adecuados para la resolucién de otros
problemas, en particular, deben construirse, a partir de los PSP, programas que apliquen la Teorfa
de Perturbaciones a problemas concretos, lo cual permitir4 la resolucién analitica de los mismos.

Centrdndonos en la construccién de un PSP debemos considerar cuatro aspectos del mismo.
1.-Tipos de operaciones a realizar con las series:

Inicialmente deben ser implementados algoritmos que permitan obtener la suma (o combinaci6n
lineal ) y el producto de series,asf como las derivadas e integrales de las series con respecto a
alguna de sus variables, tanto polinémicas como angulares.

Al desarrollar estos algoritmos es preciso tener en cuenta las peculiaridades de cada una de las
operaciones. Por ejemplo, en lo que respecta al producto hay que considerar que es una de las
operaciones que més tiempo de ordenador consume, por ello, es preciso la biisqueda de algoritmos
cada vez més rdpidos (Fateman, 1974).

A estas operaciones bésicas serd preciso afiadir otras, que aunque menos usadas sean de
utilidad en determinados problemas.

Por ejemplo, si pensamos en el desarrollo de una funcién tal como sen(8 + €) en potencias de
€, tendremos

sen(@+¢) = cos € sen 6 +sen € cos 6

3RS
=(( 1—§?+§;—+ ...)sen B +( € -§-r+§]-+ ...) cos O

Este tipo de desarrollo puede ser resuelto implementando una funcién que efectie un desarrollo
de Taylor

okf(x) (Ax)k
oxkK




Este mismo desarrollo de Taylor puede ser también de utilidad en otro problema como es la

resoluci6n iterativa de la ecuaci6n de Kepler
E =M+esenM

Eg=M
Ei=E+esenEg=M+esen M
E2=E+esenE] =M +e sen (M + e sen M)

donde aplicando el desarrollo de Taylor anterior con € =e sen M , se tiene

2.-Limitacion en el orden de los resultados:

Los programas deimanipulacién de series de Poisson suelen ser en general lentos debido al
gran nimero de operaciones que deben realizar. Por ello es preciso minimizar al méximo este
numero para conseguir algoritmos eficientes.

Un elemento fundamental en esta optimizacién de los algoritmos es el truncado de las series en
un orden determinado, lo que permite prescindir, en el momento de realizar alguna operaci6n, de
determinados términos de la serie que cumplan alguna condicién especifica. Esto se hace
particularmente importante a 1a hora de ejecutar el producto de dos series.

Varios criterios de truncado pueden considerarse en un PSP.

Ninguno.- Esto resulta muy sencillo de implementar pero produce programas excesivamente
lentos, con muchos més célculos de los necesarios y un espacio de almacenamiento en memoria
muy grande.

Automdtico.- Truncando siempre en un orden prefijado. Este procedimiento resulta poco
flexible, aunque fécil de implementar. :

A eleccion.- Trunca variando algiin pardmetro del programa en cualquier punto de éste y con
lps siguientes criterios posibles:

* En una variable polinémica.

* En el conjunto de todas las variables (Comparando los 6rdenes de cada una)
* En un multiplo de la variable angular.

* Para determinados valores de los coeficientes.

Aunque éste resulta el procedimiento més dificil de implementar, es el 6ptimo en cuanto a
tiempo de ejecucién y capacidad de almacenamiento.
3.-Entrada y salida:

La primera operacién a realizar es la definicién de una serie introduciendo sus coeficientes y
exponentes de manera que €stos sean posteriormente empaquetados de acuerdo con los criterios de
almacenamiento. Asimismo debemos poder leer y escribir las series en ficheros que pemﬁtan su
utilizacién en otros programas.




Puede ser importante el formato con que se presenten los resultados de los cédlculos. Este
formato puede ser meramente descriptivo de la serie, o bien, compatible con algin lenguaje de
programacién, como FORTRAN, lo que permite su utilizacién en otros programas de célculo
basados en los resultados analiticos del PSP.
4.-Almacenamiento de las series en el ordenador:

El almacenamiento de las series es el problema fundamental de la construccién de un PSP, pues
de éste dependen la velocidad del mismo, la cantidad de memoria central necesaria y la complejidad
de los algoritmos de tratamiento de las series.

Existen diversas soluciones entre las que destacaremos las dadas por Broucke (1969) y por
Dasenbrock (1982).

Recordemos que una serie se puede expresar como

iqip ... i 1 ix sen ; s
z C Gea Xqee X {COS} G1y1 + oerjnYn)
' por lo cual, cada término vendr4 definido por

; igip ... > > ;
a) Un coeficiente C i j122 j x que deberd ser un nimero entero, racional o real (punto

flotante) con la precisién deseada.

b) Los exponentes polin6micos i,is,...ipy los coeficientes de las variables angulares jy.jo, ...
.jn que suelen tomarse siempre como enteros.

¢) Un indicador cuyo valor sea -1, o 1 segiin se trate de un seno o un coseno.

Los coeficienies suelen definirse como un nimero racional, por lo que son suficientes dos
variables enteras para su almacenamiento.

Los indices iy,ip,...ix ,j15j2, --- 5jn Suelen venir empaquetados utilizando la aritmética binaria,
pues en una palabra de 32 bits se pueden almacenar hasta cuatro valores enteros comprendidos entre
-64 <1< 63. De esta forma, una variable entera puede contener cuatro de los indices anteriores,

construyendo las correspondientes rutinas de empaquetado y desempaquetado. La acotaci6én de los
indices dentro del intervalo [-64,63] es suficiente en la mayor parte de los casos.

Normalmente en el desarrollo de un problema aparecen gran nimero de series y con ellas un
nimero mucho mayor de términos a almacenar y manejar. En funcién de ésto, serd necesario fijar
unos limites al nimero de variables polindmicas y angulares a manejar de manera que quede
perfectamente prefijada la cantidad de memoria necesaria para almacenar cada término de una serie.

Los procesadores construidos por Broucke y Dasenbrock estdn ambos escritos en FORTRAN
por ser éste el lenguaje més usado por la comunidad cientifica, sin embargo, este lenguaje no se
adapta bien a este tipo de procesos, por lo que aparecen una serie de limitaciones que serdn
consideradas mas adelante.

En ambos casos, cada término de una serie est4 constituido por un conjunto de variables enteras
que representan el coeficiente, los exponentes polinémicos y argumentos angulares empaquetados y
el indicador de seno-coseno. Nosotros por abreviar, supondremos que este término estd almacenado
en una unica variable dimensionada que llamaremos TERMSERIE. La dimensi6n méxima de esta




variable deber4 coincidir con el nimero mdximo MAXT de términos de serie que se tenga previsto
en funcién del tipo de problemas a resolver y la capacidad del ordenador.

Es preciso también definir una zona de almacenamiento comiin mediante un COMMON que
contenga las variables TERMSERIE para que todas las series sean accesibles desde cualquier rutina.

El procesador de Broucke, que tiene como precedente los de Deprit et al (1965) y
Rom(1970),utiliza un almacenamiento de las series en pilas, de manera que si una serie comienza
con un término almacenado en TERMSERIE(2001), el siguiente estard en TERMSERIE(2002) y as{
sucesivamente . Los términos son almacenados en forma secuencial. Para este tipo de
almacenamiento seré preciso dimensionar una variable entera SERIE(2,MAXS), donde MAXS serd
un nimero que represente el nimero méximo de series que podrd manejar el ordenador, de manera
que SERIE(1,10) represente el indice de la variable TERMSERIE donde est4 almacenado el primer
término de la serie 10 y SERIE(2,10) el nimero de términos de la serie. Las series son definidas
mediante un niimero entero comprendido entre 1 y MAXS.

SERIE(i,j) | i=1 i=2 i TERMSERIE(i)
=1

Espacio libre

En este sistema se van ocupando en orden todos los elementos de la variable dimensionada
TERMSERIE y el espacio no ocupado se agrupa en las iltimas posiciones d¢ TERMSERIE. Es
preciso , por tanto, definir otra variable entera que represente el indice del primer elemento de
TERMSERIE no ocupado por ninguna serie. En el caso de la figura serd el 3501.

Esta forma de almacenamiento es muy f4cil de implementar pero tiene graves problemas si se
considera el tiempo de ejecuci6n, pues cada vez que se borra una serie o se anade algin término hay
que reordenar toda la zona de almacenamiento.

Dasenbrock(1982), construye su PSP incorporando a las series el concepto de /ista en lugar de
almacenarlo en pilas.

Como se sabe, una lista puede incorporarse al ordenador a partir de dos elementos, uno que
define el correspondiente elemento de la lista y que ocupa una determinada posicién en la memoria
del ordenador, y otro elemento llamado puntero que sefiala la posicién del siguiente elemento de la
lista. :




\

FORTRAN no tiene previsto el manejo de variables puntero que indican las direcciones de
memoria de cada variable, como ocurre en PASCAL o C, asi pues, es preciso la definicién de los
punteros de forma artificial. Para ello, se define una nueva variable entera SIGUIENTE(i)
dimensionada de 1 a MAXT.

De esta forma, si definimos la serie 10, el primer término de ésta ocupard la posicién
SERIE(1,10) de 1a variable TERMSERIE. SERIE(2,10) ya no representa el niimero de términos de
la serie, sino la posici6n del ultimo término dentro de TERMSERIE. Si, por ejemplo
SERIE(1,10)=2001, entonces el primer término de la serie estard almacenado en
TERMSERIE(2001), el siguiente término no estard en TERMSERIE(2002) como ocurriria en el
procesador de Broucke, sino en la posicion definida por SIGUIENTE(2001). Si
SIGUIENTE(2001)=5, entonces, el segundo término de la serie estard en TERMSERIE(S). El
siguiente término estard en SIGUIENTE(S), etc. La serie acaba en el término definido por
SERIE(2,10).

SERIE(i,j) | i i i TERMSERIE(i) ,SIGUIENTE()
j=1

MAXT

Aunque este proceso es més costoso de implementar da unos resultados mucho mejores, pues

no es preciso reordenar todo el espacio de almacenamiento cada vez que se modifique una serie,
basta con cambiar el valor de la variable SIGUIENTE.

4.- FUTURO DE LOS PSP

La mayor parte de los PSP construidos hasta ahora, lo han sido en FORTRAN, sin embargo,
aparecen muchas limitaciones al utilizar este lenguaje, pues es muy poco flexible para este tipo de
problemas.

En primer lugar, la estructura de listas, que es la méds adecuada para la definici6n de las series
de Poisson, puede ser tratada mucho mejor utilizando lenguajes que manejen punteros, como
PASCAL o C, o bien lenguajes especificamente disefiados para este tipo de estructuras como LISP.




Actualmente hay construido (Miller, 1988) un programa de este tipo en LISP, sin embargo, la
necesidad de grandes ordenadores para Ia utilizacién de LISP y su gran dificultad y especializaci6n,
hacen aconsejable una soluci6n intermedia que permita al utilizacién de los PSP en ordenadores més,
pequefios, incluyendo microordenadores. En este sentido, miembros del Grupo de Mecénica
Espacial de la Universidad de Zaragoza, venimos trabajando desde hace algiin tiempo en la
construccién de un nuevo PSP escrito en lenguaje C que permitir4, aparte de un mejor tratamiento
de 1a estructura de las series mediante listas, resolver algunos de los problemas que actualmente
aparecen en estos procesadores como son entre Otros:

*  Tratamiento de los coeficientes, cuando el numerador o denominador del nimero
racional correspondiente exceda de la capacidad de almacenamiento de un entero.
Posibilidad de tratamiento de exponentes polin6micos y coeficientes angulares como
nimeros racionales o reales (punto flotante).

Por otro lado, se est4 intentando implementar, junto con estos PSP, algoritmos que resuelvan
problemas analiticos de 1a Mecénica Celeste y que no lleven necesariamente asociadas Series de
Poisson, o bien, que exijan un tratamiento diferente como por ejemplo: el manejo de funciones
elipticas que aparecen en gran nimero de modemos problemas de Mecénica Celeste, y por otro lado
el tratamiento de pequeiios divisores.

Asociado a los PSP y como una extensién més de éstos, surge 1a construccién de paquetes de
Generacion Automitica de Programas de Efemérides, en la linea del METAPROGRAM de Coffey y
Alfriend(1984) para la teoria del satélite artificial. Esto permite la elecci6n de una determinada teoria
en forma interactiva y, mediante un PSP, en este caso el de Dasenbrock, genera una teoria analftica.
La salida de este programa es otro programa FORTRAN que calcula las efemérides del satélite
artificial. Con esta herramienta resultard mucho maés sencilla una comparacion de distintas teorfas
analiticas.
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ESTABILIDAD ORBITAL DE METODOS LINEALES MULTIPASO DE TIPO COWELL

J:M. FRANCO Y M. PALACIOS

Departamento de Matematica Aplicada (E.T.S.I.I.).
Universidad de Zaragoza. 50015 ZARAGOZA (Espaifa).

A class of linear multistep methods for the special second
order IVP y" = f(t,y), conecting the property of symmetry with a
property of periodicity was studied by Lambert and Watson[6].
Frecuently the problems of orbital mechanics incorporate the
first derivative explicitly; in order to integrate such problems,
Franco-Palacios [1] have proposed methods of Cowell-type. Using
the ideas above mentioned we determine a set of linear multistep

methods of Cowell-type for second order IVP which possess the

property of periodicity and we generalize the results obtained by

Lambert and Watson. This set of orbitally stable methods is
illustrated by integrating two problems whose solutions are of

periodic character.

1. INTRODUCCION

Las ecuaciones del movimiento de los problemas de la Mecdnica Orbital pueden
escribirse, en formulacién de Cowell, como un sistema de ecuaciones diferenciales
ordinarias de segundo orden de la forma

y"'(t) = 1£(t, y(1), y'(1) (1.1)

Las ecuaciones diferenciales en las que no aparece la primera derivada de la
soluci6n, es decir y" = f(t, y), pueden ser integradas mediante los cldsicos métodos de
Stormer-Cowell (Henrici[4]). Tales métodos, en la terminologia de Stiefel and
Bettis[9], sufren una deficiencia numérica conocida con el nombre de inestabilidad
orbital, es decir, cuando se computan 6rbitas circulares ocurre que la solucién numérica
que se obtiene espirala hacia el interior de la circumferencia a lo largo del tiempo. Para
evitar esta deficiencia, Stiefel and Bettis[9] proponen métodos de tipo Stormer-Cowell
modificados que precisan un conocimiento a priori de la frecuencia principal del
problema. Alternativamente, Lambert and Watson[6] estudian métodos multipaso para
el problema especial de segundo orden tales que tengan ciertas propiedades de
periodicidad. Cuando se computan orbitas circulares, la solucién numérica
proporcionada por los métodos de Lambert and Watson[6] describe una érbita circular
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aproximada con un error en la fase de la érbita.

Un problema interesante como es el del movimiento de un satélite artificial
terrestre en el que se tenga en cuenta el efecto del rozamiento atmosférico nos lleva
inmediatamente a un sistema de ecuaciones caracterizado por (1.1). Moore[7] estudia la
integracién numérica del problema (1.1) reduciéndolo a un sistema doble de primer
orden y generaliza los resultados de Lambert and Watson[6] para métodos multipaso
que integren problemas de valor inicial de primer orden.

En este trabajo, los autores proponen la integracion del problema (1.1) mediante
métodos numéricos de integracién directa de tipo Cowell que posean ciertas propiedades
de periodicidad de forma que generalicen los métodos propuestos por Lambert and
Watson[6].

2. METODOS TIPO COWELL: INTERVALO DE PERIODICIDAD

Consideraremos la familia de métodos lineales multipaso de tipo Cowell

k k

@ 2% 5@ :
zoaj Yei =D _ZO B oy oy (2.1a)
= J=
k k

M M .
Zoaj Ype; =h _20 Bttty ) (2.1b)
J= J=

para la integracion numérica del problema de valor inicial de segundo orden y" =1(t, y,
¥, ¥(ty) = ¥, ¥'(ty) = ¥'p» definida sobre una red regular de puntos (t, =nh,n =0, 1,
2, ...), y caracterizada por los polinomios

0) < @y o S @)y j
p@ =2 ot iy i o(® =) B L 1212 Le €
=0 =0
Denotamos tal familia mediante {(p @, 6®),i=1,2}. Ademds, supondremos que se
verifican las siguientes hipétesis:
HY) 16814180150, «P>0, i=1,2

@)

H2) p’ () y G(i)(C) no tienen factores comunes, i=1, 2

Py = p?1) = 0,

H3) El método {(p(i), o(i)), i=1,2} es consistente, es decir, p
2, \
pEiiy =20y p A1) = 01 plid) = o)
H4) El método {(p(i), c(i)), i=1, 2} verifica que las raices de p(i)(C) cstzin enel

circulo unidad y las raices de médulo unidad tienen como mucho multiplicidad i.
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(Hacemos notar que H3 + H4 => convergencia de {(p @, c®),i=1,2})

Consideremos el problema test escalar y" +A2y =0, A e R, cuya solucién
general y(t) = A cos At + B sen At es periédica con periodo 27/A, para cualesquiera
condiciones iniciales sobre y e y' no triviales. Aplicando un método {(p @, c®), i =
1,2} a esta ecuacion test, sin mds que particularizar en la expresion del polinomio de
estabilidad dada por Franco y Palacios[2], obtenemos para el problerha test considerado
el siguiente polinomio de estabilidad

(E, 22 = pO(Q) [PAQ) + 226@(Q)] , z=Ahe R 2.2)

cuyas raices {Cj, j=1,2, ... 2k} determinan la naturaleza de la solucién numérica
2k :
=Y A L (2.3)
=1

de la correspondiente ecuacién en diferencias.
Siguiendo las ideas de Lambert and Watson[6], introducimos el concepto
fundamental de estabilidad orbital para métodos de tipo Cowell.

2.1-Definicion: El método {(p @, 6 ), i = 1, 2} se dice que tiene un intervalo de
periodicidad (0, 202-) si para todo 72 e (0, zoz) , las raices Cj del polinomio de
estabilidad (2.2) verifican

{=¢%9 . [ =c®@ .|c.]=1,j=34.,2% 2.4)
donde 6(z)e R y (;, {, sereducen alaraiz principal doble { =1 -del polinomio
p@() , cuando z tiende a cero.

La relevancia de la nocién de intervalo de periodicidad viene expresada en el
siguiente resultado, cuya demostracion es similar a la dada por Lambert & Watson [6].

2.2-Teorema: Sea el P.V.I (problema test) y" +A2y =0, y(0)=y,,y'©0) =y
cuya solucién analitica es y(t) =C, e'*! + C,e*. Apliquemosle el método
{(p®,6M),i=1,2) de orden p con un paso h nonulo'y tal que z2= (A h)>2
pertenece al intervalo de periodicidad del método que suponemos no vacio. Supogamos,
ademds, que los valores de iniciacién del método son también de orden p, es decir:
yO =yt ) + 0(P*24), n=0, 1, .., k-1. Entonces:

1) Las raices Ql, Cz vienen dadas por (2.4), donde

0(z) = z + 0(zP*h) (2.5)
ii) Los coeficientes A : de la solucién numérica (2.3) satisfacen las relaciones
A;=C +0@), A)=C,y+0zP), Aj= 0@zP*),j=34,.,2k  (2.6)
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Demostracién: Tomando la funcién test g(t) = e ™, llevandola a la expresién (2.2) y
dividiendo por e i** | obtenemos teniendo en cuenta que el método es de orden p > 0,

que
£ 0 its, @ . 2,0, i 3
Yl @ (Y @?+27 82 P =0, 2=k
i=0 =0

0, equivalentemente

p+3

', 2= 0Z"), z=2h

Sin embargo, el polinomio de estabilidad (2.2) se puede expresar como
¢, 2) = o (e +2° B) ﬁl -8
T
Silez2 < (0 202), entonces {; = %@ G=¢e i8(2) y por lo tanto,
©€7-¢) (- 0,) (€~ 1) =2 (cos z- cos 6(2) ( z + 0(2)),
donde {;=1 corresponde a la raiz unidad de p® (por la hipétesis H3). Las restantes
raices Z;j serdn de la forma Cj = 0(z),j =4, 5, ..., 2k, siendo Y, # 1 por las

hipétesis H3 y H4. En estas condiciones,

; 2k
M, 2 =2 (iz+0@)) (cosz - cos 62)) [ | (1 -7+ 0) = 0@
j=4

de donde obtenemos

cos z - cos 6(z) = 0(zP*2)
y entonces

0(z) =z +0(zP*Y), z=2Ah

Ademds, como los valores de iniciacién del método son de orden p, tendremos
que la solucién numérica serd

2k ; ;
v, = z Aj Cj" =C, e+ C, e O(hpﬂ)», para todo n=>0
=1
Como 2% € (0, z,?) y teniendo en cuenta que 6(z) =z + 0(zP*!), z=2h,
C] = eiz s 0(hp+1), Cz s -iz + 0(hp+1)

Entonces,

™ LomPth), n20

1

; : 2k :
1Nz -1nzZ b1 1Nz
Alle Al ie +Z3AJ.CJ. =C e +C,

de donde se deduce facilmente que

s 5 e e e A R S

sty bt il e

e e e



b p+l luy p+l
A =C +0(™), A =C,+00"")

A= 0m%™h), j=3,4, .., 2Kk

2.3-Observacion: La solucién del problema test y"+A? y = 0 describe una trayectoria
eliptica en el plano complejo. Sin embargo, cuando integramos numéricamente dicho
problema mediante un método multipaso del tipo (2.1a-b), si las raices del polinomio de
estabilidad verifican | Cj l<1,j=1,2, .., 2k, lasolucién numérica espirala hacia
dentro cuando n aumenta y decimos entonces (Stiefel & Bettis[9]) que el método tiene
inestabilidad orbital. Por otro lado, cuando aplicamos métodos multipaso del tipo
(2.1a-b) con intervalo de periodicidad no vacio y paso h suficientemente pequeifio para
que z2=(Ah)2 < 202, el teorema (2.2) permite deducir que la solucién numérica

estard dominada por las componentes periédicas correspondientes a C, , (,. En
consecuencia, para h suficientemente pequeiio, la solucién numérica describe una
elipse perturbada con un error creciente en la fase y, por lo tanto, el método es
orbitalmente estable. Surge en este momento una pregunta: ;qué condiciones ha de
verificar un método de tipo Cowell para ser orbitalmente estable?. Esta cuestion la

resolvemos positivamente en la siguiente seccion.
3. METODOS TIPO COWELL" Antisimétricos: Simétricos (AS: S)"

Siguiendo las ideas de Lambert &Watson [6], estudiamos condiciones necesarias
y suficientes para que un método de tipo Cowell tenga intervalo de periodicidad no
vacio.

3.1-Definicién: Se dice que el polinomio q(§) = a, +a, {+ - +a (™ es simétrico

si se verifica: a.=a

; n_j,j=0, L, ..,n, a;#0.

Andlogamente se dice antisimétrico si: a=-a,, i=0,1,..,n, a;#0.
3.2-Definicién:  Se dice que el polinomio q(§) =a, +a; { + - +a (™" es
conservativo si todas sus raices estdn sobre la circunferencia unidad.

33-Lema: Si q({)=ay+a; {+ - +a {"es un polinomio simétrico (antisimétrico),
entonces, si {* es una raiz de q({), también 1/C* es una raiz de q(().

3.4-Lema: El producto de dos polinomios simétricos es un polinomio simétrico y el ;

producto de un polinomio simétrico con un polinomio antisimétrico es un polinomio



antisimétrico.

3.5-Lema: Si un método {(p @, o®), i = 1, 2} satisface las hipétesis H1) - H4),
entonces:
p@ simétrico y p!) antisimétrico siy solosi p @ conservativo,i=1, 2.
]

Demostracion:
=>) Sean p@ simétrico y p(!) antisimétrico, entonces por la hipétesis H4) y el

Lema(3.3) se ha de verificar que los polinomios p @, i= 1, 2 son conservativos.

<=) Sean p @, i=1, 2, conservativos. Por la hipétesis H3) dichos polinomios tienen
el factor (- 1)! y por la hipétesis H4) los restantes factores solo pueden ser de la
forma (£-¢i® ((-e19),0<0<2n y (€ +1),s=0(1)i,i=1,2. Asipues,para

el casoi=1 hay un factor antisimétrico y los restantes son simétricos; y para el caso
i = 2 todos los factores son simétricos. Entonces, aplicando el Lema(3.4) queda

concluida la demostracion.

3.6-Definicién: Diremos que un método {(p @, c®), i = 1, 2} es antisimétrico:

simétrico y lo denotaremos por (AS: S), si se verifica que

: aJ@” =- Otffj) -
6@ o® gD gD j=0,1,...k (3.1)
J ST k-j

Hacemos notar que oy, = (- 1)1 0, @ # 0,i =1, 2, y por lo tanto p@({) serd un
polinomio antisimétrico 6 simétrico segin que i =1 6 2. Sin embargo, puede ocurrir
que BP=BP=0 y o) no serd un polinomio simétrico en sentido estricto.

En los dos siguientes teoremas damos condiciones necesarias y condiciones
suficientes para que un método de tipo Cowell posea un intervalo de periodicidad no

vacio.
3.7-Teorema: Si un método de tipo Cowell {(p®, 6@ ), i =1, 2} tiene intervalo de
periodicidad no vacio, entonces, €s antisimétrico: simétrico (AS:S) en el sentido de la

Definicién 3.6

Demostracién: Sea (0, zy%), z,2 >0 el intervalo de periodicidad del método, entonces
para todo z? € (0, z,%) tenemos que
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H(Ci e(z)’ ZZ) (1) 19(2)) [p(2) 19(2) 0'(2)(6i 9(2))] =0

y como pD(el®@) 3 0 para todo z # 0, se deduce que

(2)(ei e(z)) 6(2)(6— 16(z) i6(z), 2

p )=-2210(2)(e ) |” = real

Entonces,

I {p(Z)(cl 9(7.)) (2) 19(1))} Imz B ij0(z) =0
j=k

0, equivalentemente

k k
2 B senj6(z) = 26 (B,-B_)sen j6(z) =
=

j=k
de donde, Bj = B_j, i=0,1,2,..,k y, porel Lema 5 dado en [6], se tiene que

@ =@ R BCL O

Ademds, para todo z2 e (0, 202), las raices del polinomio IT(C, z2) se encuentran
sobre la circunferencia unidad, por lo tanto, el polinomio p({)" es conservativo y, por
el Lema 3.5 es antisimétrico ( a(l)j =- a(l)k_j, 1=0, 10k a)e0).

3.8-Teorema: Sea {(p @, 6®), i = 1, 2} un método de tipo Cowell antisimétrico:
simétrico en el sentido de la Definicién 3.6 y tal que p@({) no tiene raices dobles
sobre la circunferencia unidad salvo la raiz principal { = 1. Entonces, dicho método
posee intervalo de periodicidad no vacio. ;

Demostracion: Consideremos la transformacién de Routh=Hurwitz £ = (1 +n)/(1 - 1),
que proyecta el interior del ¢irculo unidad | 1< 1 en el semiplano complejo negativo
Re n < 0 y la circunferencia unidad | | =1 sobre el eje imaginario Re 1 = 0.
Cuando el método {(p @, 6®),i= 1,2} es AS: S, se obtiene ficilmente que el niimero
de pasos k es par, ya que en caso contrario p@({) y 6?({) tendrian en comiin el factor
(€ + 1), en contradiccién con la hipétesis H4) (Lambert & Watson[6]). Ademds
tenemos que

fPm) =@ -m" p“’(le—T—‘) =nRYmD, es decir, £2(m) impar
-

1+T1) = R(z)(n ), es decir, r (n) par

Py = -nFp®(

135




K @rl+1 7)), ) S
sPm=a-m*d )(I—T—‘) = sPm?), es decir, sP(m) par
-7
Los grados de los polinomios (), 1P(m), s(M), dependen de la paridad de k,
luego podremos escribir :
(k-1)/2

Y0 = ¢- D+ DI €M -t
j=1

(3.4)
/2

(k-1), )
P70 = -V I €-5H €- 1
I% I

y como p®({), i = 1, 2 son polinomios antisimétrico y simétrico, respectivamenete, se
trata de polinomios conservativos y las raices de ambos estardn sobre la circunferencia
unidad. Los polinomios r®(n),i=1, 2, tendrdn una raiz de multiplicidad m en
N =&y - DICy+ 1), si p&(),i=1,2 tiene una raiz de multiplicidad men § ={g, a
menos que {,=- 1, en cuyo caso los polinomios (), i = 1, 2, se reducirdn a
polinomios de grado k-m. Entonces, de (3.4) tendremos que (1) es de grado k-1 y
como p@({) tiene una raiz doble en { =+ 1 y k-2 raices complejas conjugadas
distintas sobre el circulo unidad, entonces R@m?) tiene todas sus raices sobre el eje
imaginaric o, equivalentemente, R®)(t), T=12 tiene k/2 raices reales distintas
satisfaciendo

0=1,>7,>T3>...> T >-0o.
Sin embargo, las raices de un polinomio son funciones continuas de sus coeficientes, de
donde se deduce, que para un z2 >0 suficientemente pequefio, las raices del polinomio

P(t, z2) = R®(1) + z2 S@)(x)
también son reales y distintas. M4s concretamente, podemos encontrar un 112 > () tal
que para todo z2 € (0, z,2), el polinomio P(t, z?) tiene k/2 raices reales T, j=0(1) k2
distintas verificando

0>Ty>T;>...> Ty, >- 00
Pero no podemos asegurar que la raiz T, correspondiente a T, cuando z — 0, sea
menor o igual que cero.

Efectuando operaciones, encontramos que €l coeficiente de /2 en R®)(1) es
p@(-1) # 0, luego existird un z,2 >0 tal que para todo z? € (0, z,%),
signo [ R@(t); T — oo] = signo [ PA)(t, z2); T — o0 ]

Ademds, si tenemos en cuenta que

2) k/2
S e O e
=0 =) b

dt " T=

entonces
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signo [R®(1); T 0] =signo [
dt t©=0

Si ahora suponemos que la raiz T; > 0 y consideramos
- 2 @) = 2
PO,z)=-Tp (-1>I[2<-Tj>+0(z)

=

tenemos que para todo z2 € (0, z,%)

@
Sizno [ P(0, 22)1] = - signo [ B(%, 22); > oo ] = - signo [ ] J 69
dt T=

Un sencillo cédlculo nos proporciona que

2

4R )I =2 @1y = 4 6P(1) = sP(0) = 2 p(0, )
dt ©=0 2

Entonces, la igualdad (3.5) se contradice y laraiz T, <0.

Asf pues, podemos concluir que para todo z2 € (0, z,?) con z,’= min(z,?,z,%},
el polinomio P(z, z2)_ tiene k/2 raices reales negativas distintas, de donde se deduce que
las raices de p@({) + z2 6@({) estén sobre la circunferencia unidad y junto con el
hecho de que p(§) es conservativo, concluimos que el método {(p @, 6®),i=1, 2}
tiene un intervalo de periodicidad (0, zy?), z,? > 0

En estos dos ultimos resultados hemos obtenido condiciones necesarias y
condiciones suficientes para que un método de tipo Cowell tenga intervalo de
periodicidad distinto de vacio. Todos los resultados ekpuestos hasta ahora son
similares a los obtenidos por Lambert & Watson [6] para métodos multipaso que
integran el PVI especial y" = f(t, y). Nosotros hemos generalizado los resultados de
Lambert & Watson [6] para métodos de tipo Cowell que utilizamos para la integracién
numérica directa de problemas de segundo orden y" = f(t,y,y') de tipo orbital (por
ejemplo, el problema del satélite artificial terrestre con rozamiento atmosférico,
movifnientos oscilatorios amortiguados, etc.).

Hacemos notar que la demostracion del Teorema(3.9) es constructiva, de manera
que siempre que el polinomio p)(§) sea antisimétrico podemos encontrar el intervalo
de periodicidad del método de tipo Cowell examinando las condiciones bajo las cuales
cierto polinomio P({, z2) , relacionado con los polinomios caracteristicos del método,
tiene todas sus raices reales, distintas y negativas.

Una forma de construir métodos de tipo Cowell con intervalo de periodicidad no

vacio consiste en considerar los métodos optimales (Henrici [4]) tales que el niimero de




pasos k seaparyque p@() no tenga otra raiz doble de médulo unidad que la raiz
principal. Con este criterio nosotros hemos construido métodos de tipo Cowell con
intervalo de periodicidad no vacio hasta de orden ocho.

A continuacién presentamos los coeficientes, el intervalo de periodicidad y las
constantes de error de métodos de tipo Cowell implicitos y explicitos de k-pasos (k = 2,
4, 6), obtenidos con esta técnica y que llamaremos métodos de tipo Lambert-Watson en
honor a estos autores:

Casok=2:
Explicito de orden 2
@) . () @) @) _ (2) @ _
a, =0’ =1, 0" =-2, B = =0, B;
(1) (1) (1) (€Y) (1) (60
o, =-0ay =10 =0 B"= =0.B

Interv. de period. = (0, 4), C@® = 1/12 , CO=1/6

Implicito de orden 4
@ _ @ @ _ @) _ (2) @D
o, =0y =1, 0" =-2, B = =B ==

(6] (1) (1) 1) _ (1) 1
o, = =10, =0, B,

Interv. de period. = (0, 6), C@ =-1/240 , CD =-1/180

Casok=4:
Explicitode orden 4 (-2<a<2)
af):aéz) =1, ag2) 52) -2-a, oc(z)—2+2a
22) <2>_0 [332—13(2) 14-a ;z)z_g%Sg
SO e

AR R e S T e s o )

(1) (1) -0, (1) Ba)_ 8-a ;) 4+4a
A5 =5 1= S amage by e ey
12 + 6a @ 18+a @ _ 28 +a

I . iod. = =
nterv. de period. = (0, o ——), C 240 60 - 30a

Implicito de orden 6 (-2<a<2)

@ _ (2) 2%
o=

2) (2)
0y

=i =1, o 2-a2,007=2+2a
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@ L2 18+a (2) @ _ 26-3a @2 14-97a

48R 0l A0 e e 120
@ _ (1) ' @ _ 1 _ (@n)
o, =- 0 =10, =-0 " =-2a,0, =0
@) ey 285 H as i a) B ) R G 1 A ) i 810
b STl el e
; 120+60a, (2 190+3la (@) 32+ 5a
Interv. de period. = ( 0, ——), C"" = - ———, e
i (0 =5 50950 ° 720210
Casok=6:
Explicito de orden 6
(2)SE (2) B @) @) @ _ .2 ()
o " =0y =l Oy~ =0 —-2,oc4 =a, —2(1 =-2
@ERO g 5D B(Z) 317 & @_ 31 ;@ 291
6 0 : 240 2 30”73 120
(@) = (1) @ _ (GO (1) B (L) 1)
o =-0p =l =-a =-10"=-a, —1,0cg)—0
) (1)_0 (1)_5(1)_ BUS g = 236 <1)_§§§
6 S ) 2 45 45
@ _ 275 a 286
d = 2 = e———
Interv. de period. = ( 0, 0.802), C = 032" @ 3700
Implicito de orden 8
@ _ @ @ _ (2) = 2 _ (2) @)
o =0y =1, ot =0y =-2,0, = =2,0, =-2
@R @ 2D (2) @ 1021 (2) 13(2) i B(2) 5347
6 0 4032 1 1120° 2240 5040
) _ @hy - (1)F= (1) (1958 (@) 1)
O =-0 ' =lo, =-a; =-Lo =-0, —l,ag)—O

W _ @) _286 o) o) 294 (1> @ L el ey Al

GEE R0l F6TsT 1008 6751 2488 675 R GTS)
e @ . 407 @by o 31933
Interv. de period. = (0, 1.019), C “T7280" =~ 3278800

Hemos de hacer notar que el intervalo de periodicidad es mayor en los métodos
de tipo Cowell implicitos que en los explicitos y que el intervalo de periodicidad
disminuye a medida que aumenta el orden tanto en implicitos como en explicitos, como

cabia esperar.
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4. P-ESTABILIDAD DE METODOS TIPO COWELL

El concepto de P-estabilidad estd relacionado con el hecho de que el intervalo de
periodicidad del método sea de longitud infinita. En esta seccion presentamos algunos
resultados de P-estabilidad para métodos de tipo Cowell .

4.1-Definicién: Diremos que un método {(p®, 6®), i =1, 2} es P-estable si su
intervalo de periodicidad es (0,00).

4.2-Teorema: Sea {(p®, c®), i = 1,2} un método P-estable, entonces:
1) El método es antisimétrico: simétrico con 0(2)(C) conservativo
i1) El método es implicito.
Demostracion:
i) Es inmediato, sin mds que tener en cuenta el Teorema 3.7 y observar que las raices
del polinomio [1(¢, z) se aproximan a las raices de p{({) 6®({) cuando z — oo,
siendo pM({) conservativo.
ii) Si suponemos que B,® = 0, entonces
k
@) 2) _ ,k @) _
s (1)_ij = )
=0
y como todas las raices de s)(n) estén en el semiplano complejo Re n < 0 (est4n sobre

el eje imaginario por el apartado 1)), todos sus coeficientes serdn de signo constante, de

contradiccion con la hipétesis H2)

Para estudiar el orden de los métodos de tipo Cowell P-estables consideramos de
nuevo el polinomio de estabilidad del método expresado en la forma

¢, ©) =QP0) QP (¢, 0), o=iz : 4.1)
donde

Q) =pM() vy QD€ @) =q (@) E* + gy (@) L +..+ q (@)

siendo q; (w),j=0,1,2,.., k, polinomios de grado uno en ®?. Notemos que, de
acuerdo con el Teorema 3.7, podemos tomar como p({) un polinomio ‘conservativo
cualquiera; en particular, podemos considerar un método {(p‘?), o(¥))} multipaso
optimal (Henrici[4]) para problemas de prirnei‘ orden y, en consecuencia, restringiremos
nuestro estudio a las raices de la ecuacion polindmica

o el lenshes Somiaa ol S S

donde se deduce que bj(z) =0, j=0,1,..,k, vy, en particular, c@(1) =b,P =0, en -
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4.3-Definicién: Se dice que la solucién de TI({, ) =0 es de orden p (p = 0), si una
de las raices principales de Q® (€, w), (p. . {;()) satisface
e ®- {,(®) = C wP*! + 0(wP*?) cuando ® — 0

donde C # 0, es la constante del error de {, (o).

El significado de esta definicidn esta relacionado con el orden definido por la
ecuacién en diferencias del método y serd de utilidad para estudiar el orden maximal de
un método P-estable.

4.4-Corolario: El mdximo orden alcanzable por un método de tipo Cowell P-estable es

dos.

Demostracion: Fijado QM(C) conservativo, si todas las raices de Q@ ({, o) = 0 estdn
acotadas por uno, el orden p de la solucién de [1(C, ®) = 0 satisface p <2 grado q,(7),
T = w2 (ver Hairer[3]). En nuestro caso deseamos que las raices de TT({, ®) = 0
verifiquen |1 | = 1 para todo z2 € (0, ©0); y como grado q,(T) =1, entonces p < 2.

5. APLICACIONES NUMERICAS

Para ilustrar el comportamiento de los métodos que hemos desarrollado a lo largo
de este trabajo, realizamos una aplicacién de ellos a dos problemas test cuya solucion es
de caracter periddico.

Consideraremos los métodos de tipo Lambert-Watson de la seccién 3(con a = 0)
y el cldsico método de Cowell, todos ellos de 6rdenes 6 y 8 para resolver
numéricamente los siguientes problemas lineales y no lineales. La iniciacion de los

métodos se realizé, en cada caso, con la solucion exacta del problema correspondiente.

Ejemplo 1 : El sistema lineal de segundo orden

y'=y+4z

z'=-2y-5z
que tiene la solucién exacta y = 2 cos(t), z = - cos(t). Calculamos la solucién numérica
en t = 40r, para los pasos de integracién h = n/36, /24, n/16, ©/12, 7/8, /6. Los
errores absolutos (sol. exacta - sol. numérica) en norma |l - Il,, se muestran en las tablas

que vienen acontinuacion.
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ORDEN 8§

Paso de integracion Met. Cowell Met. tipo Lambert-Watson

h =m/36 0.314x 10 0.327 x 10 -

h = /24 0:158 x10,7 0.984 x 10 - 11
h =m/16 0.449 x 106 0.502 % 1057
h=m/12 0.579 x 10- 0.691 x 10-©
h =m/8 0.229 x 10-3 0.100 x 10-3
h =mn/6 0.239 x 102 0.465 x 10-3

ORDEN 6
Paso de integracién Met. Cowell Met. tipo Lambert-Watson .

h =m/36 0:331 x 107 0.853 x 10-8
h = m/24 0.889 x 10-© 0.901 x 10-?
h =1/16 0.958 x 10> (2528102
h =1/12 Q7135 10 0:192 x10:2
h = /8 0.192x 10:2 0.953 x 10-4
h =m/6 087 1x 10 2 0.268 x 10-2

Ejemplo 2 : El problema no lineal

Z'+ (1 +y+yde ) z=yeitz2

z(0)=1+39,2z(0)=1(1-9d) :
cony>0,0<d<1. ,donde d es un pardmetro de distorsién y Y un pardmetro de no
linealidad. La solucién exacta del problema es z(t) = e!'+ 8 e y representa una
elipse en el plano complejo. El problema ha sido resuelto como un sistema acoplado de
ecuaciones diferenciales reales, en el punto t = 10r, para h=7/12,y=0.1x10-7 y
diferentes valores del pardmetro 8. A continuacién presentamos los errores absolutos
(sol. exacta - sol. numérica), en norma |l - Il, solamente para el caso de orden 8.

Valor del pardmetro 8  Met. Cowell Met. tipo Lambert-Watson
5=0 0.938 x 10-© 0.239 x 10-6
5=0.1 0975, x 1050 ¢ 0.264 x 10-6
§=02 0.102 x 10-3 0:235 x 1075
5=0.3 0.107 x 107 0.205 x 10-6
5=0.4 01310 0166 x 1065
3=0.5 0119 x 105> 0.147 x 10-©
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Los resultados numéricos presentados en las tablas fueron obtenidos en el
ordenador VAX 780 del Centro de Célculo de la Universidad de Zaragoza con métodos
numéricos del mismo orden en cada caso, es decir, métodos comparables en términos

de aproximacion local. De estos resultados se desprenden las siguientes conclusiones:

- Los métodos que tienen propiedades de periodicidad o estabilidad orbital (métodos de
tipo Lambert-Watson) dan mejores resultados que los que no tienen estas propiedades
(método cldsico de Cowell).

- En el caso del ejemplo 2 se observa que la solucién proporcionada por el cldsico
método de Cowell degenera cuando el pardmetro de distorsién 6 aumenta, mientras que
los métodos de tipo Lambert-Watson que tienen propiedades de estabilidad orbital

mejoran su aproximacion.
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ESTABILIDAD ABSOLUTA DE METODOS LINEALES MULTIPASO DE TIPO COWELL

J:M. FRANCO Y M. PALACIOS

Departamento de Matematica Aplicada (E.T.S.I.I.).
& Universidad de Zaragoza. 50015 ZARAGOZA (Espafia).

An important characterization of a numerical method for
first order ODE's is the absolute stability. In this paper the
absolute stability of Cowell-type linear multistep methods for
direct integration of second order ODE are studied. The concepts
of absolute stability, stability region are defined and the sta-
bility polynomial for methods of Cowell-type is obtained. Stabi-
lity regions are obtained for the classical Cowell method using
a second order scalar test equation. Finally, a family of A-sta-
ble methods of two step and second order of accuracy using a sca-

lar test equation with real coefficients is obtained.
4 1. INTRODUCCION

i Los sistemas de ecuaciones diferenciales de segundo orden del tipo
y'(©® = £(t, y(©), y'(V) (1.1)
‘ aparecen de forma natural en la simulacién de muchos problemas fisicos; por ejemplo,
las ecuaciones del movimiento de los problemas de mecénica celeste en formulacién de
Cowell responden a este tipo, as{ como la mayorfa de los problemas de la mecénica
) orbital. Una forma de atacar numéricamente el problema (1.1) consiste en reducirlo a
un sistema doble de primer orden y resolverlo mediante un método numérico estandar
j de tipo Adams, Runge-Kutta, etc.; otra posibilidad consiste en utilizar un método de
! integracion directa, como los métodos de tipo Cowell. Es claro que hay ciertas ventajas
E de rapidez y almacenamiento en el tratamiento directo de ecuaciones de orden elevado,
pero Gear[2] sugiere que hay ciertos peligros desde el punto de vista de la estabilidad, a
menos que se disponga de un mecanismo de control del error local del método.

Si en las ecuaciones (1.1) la primera derivada no aparece explicitamente, es

e Y e s
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decir, y" = f(t, y), el problema suele integrarse mediante los cldsicos métodos de
Stormer-Cowell (Henrici[4]) y la estabilidad de estos métodos tomando como test la
ecuacién del oscilador arménico ha sido estudiada por diversos autores como Vélez et
al.[7], Lambert[5], Lambert and Watson[6] etc.

Los autores[1] han propuesto una clase de métodos multipaso de tipo Cowell de
integracién directa, conocidos como PFML (Pares de Formulas Multipaso Lineales),
que para problemas orbitales del tipo (1.1) resultan mds eficientes que los métodos
estandar que integran ecuaciones de primer orden. En [1] se estudian propiedades de
consistencia, estabilidad y convergencia de los métodos de tipo Cowell que vienen

definidos por las ecuaciones en diferencias

k k
@ N0 ;
z % Y, =h z Bj £t Yo Y osy) (1.22)
]=0 _|=0
k k
(1) (6] '
zoaj yn+j =h ZO Bj f(tn~)~j’ yn+j’ y n+j) (1'2b)
J= =

y que denotamos por {(p®, o®), i = 1, 2}. Pero el concepto de estabilidad estudiado
en [1] resulta apropiado para problemas del tipo (1.1), tales que el producto de la
constante de Lipschitz de la funcién f(.) por la longitud del intervalo de integracién no
sea demasiado grande, ya que las constantes de estabilidad en las acotaciones del error
dependen de este producto.

Por otra parte, es frecuente que los modelos fisicos a integrar representen
problemas fisicamente estables y, por lo tanto, para un buen funcionamiento del método
numérico, hay que exigir que la solucién numérica tenga propiedades andlogas a la
solucién analitica del problema.

En este trabajo, la cuestién especifica consiste en el estudio de la estabilidad
absoluta lineal de los métodos (1.2), es decir, bajo qué condiciones la solucién
numeérica decae cuando n — oo, para un paso fijo h. En particular, estudiamos el
comportamiento de estabilidad de los métodos (1.2) frente a la ecuacién escalar de
prueba

y'=0y +vy, 8,ve C (1.3)

que nos proporcionard una primera indicacién a cerca del comportamiento de los
métodos de tipo Cowell. En el epigrafe 2 generalizamos los conceptos cldsicos de
A-estabilidad y polinomio de estabilidad para los métodos de tipo Cowell; en el 3,
estudiamos la obtencién de la regién de estabilidad de los métodos y, mediante procesos
gréficos, obtenemos algunas regiones de estabilidad para el cldsico método de Cowell
estudiado en [1]; en el 4, estudiamos la A-estabilidad de métodos tipo Cowell de dos
pasos y, en un caso particular, obtenemos métodos A-estables de orden dos.
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2. REGION Y POLINOMIO DE ESTABILIDAD

En este epigrafe, establecemos las definiciones de dominio de estabilidad , region
de estabilidad 'y obtenemos la expresién del polinomio de estabilidad para ecuaciones
diferenciales escalares de prueba de la forma

y'=0y +vy, 8,ve C (2.1
donde 6 y Vv son constantes complejas. Como es bien conocido (ver [3]), si todo Y,
i valor propio o raiz del polinomio caracteristico de la ecuacién (2.1) es tal que Rey, <0,
la solucién de (2.1) es estable y estd uniformemente acotada para todo t = 0. En
particular, si Re y; <0 para todo 7y, valor propio asociado a la ecuacién (2.1),
entonces, la solucién es asintéticamente estable y | y(t) | — 0 (t — o), cualesquiera que
sean las condiciones iniciales.

Si aplicamos el método de k-pasos dado en (1.2) a la ecuacién de prueba (2.1)
con paso fijo h, obtenemos las ecuaciones en diferencias

k
2)SN 2 2 2 '

> [@?-1*vE)y, -ne g @y, 0] =0

i=0

. 22)
1 ; 2

> [ -n0B") @y, 0-nv By, ]=0

=0

Seria deseable que la solucién numérica de (2.2) presentara un comportamiento
asintético similar al de la solucién analitica de la ecuacién diferencial (2.1), es decir, que
) para los ; valores propios asociados a (2.1) tales que Re v, <0, la solucién numérica
dada por (2.2) esté uniformemente acotada. En general, esto no es cierto; para precisar
los valores z, = h2v, Z,= h6, para los que se verifica esta propiedad introducimos la
siguiente

2.1-Definicion: Llamaremos dominio de estabilidad absoluta , D, del método lineal

{(p®, o), i = 1, 2}, al conjunto de puntos z; =h?v, z, =h6 del plano complejo para

los cuales las ecuaciones en diferencias

yn =nn7 Y'n = Tl'n, ne= O, s k-1

k
2 2 7 ;
2, [©? -2 8Py, -2,87 @y, )] =0 @3)
=

k

1 (1) ' (1)
z(’)[(aj( )i z, BJ. ) (hynﬂ.) Sz, Bj yn+j] =0, n20
J:

tienen solucién tnica verificando




n>0

sup Iyg)l <K, sup {Im_LIn'l P =0
0<n<k-1

2.4

donde K, y K, son constantes independientes de las condiciones iniciales, pero que

pueden depender de z; y z,.

2.2-Observacion:

consideramos sistemas lineales

y"=Ry'+Sy,

Si en lugar de considerar ecuaciones escalares de la forma (2.1),

donde R y S son matrices diagonalizables simultaneamente, es inmediato que la

solucién numérica serd acotada en el sentido de (2.4) si y solo si hzvj, hej pertenecen

al dominio de estabilidad absoluta, para v j,ej valores propios de R y S respectivamente.

Introduciendo la siguiente notacién matricial

Yn+k = Iiyn+k’ hy'n+k’ yn+k-l’ hy

(2)

T2 Pk

(1)

=80 Rk

(2) 2)
Oz by
(1) 1)
-2, By
A = O
0
@) ()
g Oph SRz Dy
1)
2B, -
B= 1
0

1)
k-1

@
k-1

+22[3

T
n+k-1> °°%? yn+1’ yn+1:I
OnE=is 01
Qe 0
1
1
@ @ @ |
........... -0, +2z By nis
(1) 1)
k-1 Z Bf)l) o0 Zzﬁ(()l)
0
1

T
M = [0y BNy My B o T, ']

las ecuaciones (2.3) y (2.4) pueden escribirse matricialmente en la forma




Yn+k =)
2.5)
A Yn+k =B Yn+k-1 » N2 0
sup 1Y Il <K linll_
n>k-1 (2.6)

Las raices del polinomio caracteristico asociado a la ecuacién en diferencias matricial
(2.5) vienen dadas por la solucién del problema de valores propios generalizado

[B-waAa]x=0 2.7)

Resolviendo las 2k-2 tltimas ecuaciones del sistema (2.7), obtenemos que la solucion
verifica las relaciones siguientes

K
XA = W X,
i e =0l 2.8)
X =W sz_l

2j-1
Aplicando las relaciones (2.8) a las restantes ecuaciones del sistema (2.7), éste queda
reducido a la forma

5 p(z) W) +z, c? (w) z, 0'(2)(w) Xor 0
= 2.9)
z, c(l)(w) - p(l)(w) +2, 0(])(w) Xk 0

@ SN0 @ o
px(W):Eaj WJ,C‘(W)=§ Bj WJ,i=1,2
=0 j=0

siendo

los polinomios caracteristicos del método. En consecuencia, podemos escribir el
polinomio caracteristico o polinomio de estabilidad asociado a la ecuacién en diferencias

(2.5), como
TI(W, 2,, 2,) = q,(W) Z, + q,(W) 2, + q;(W) (2.10)
donde q;, q, y g5 son polinomios de grado menor o igual que 2k definidos por

q,w) = - sPw) pVw)
a4, (W) =- p2(w) ¢ (w) @11)
g = p2w) pPw)

De acuerdo con esto, estableceremos la siguiente
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2.3-Definicién: Llamaremos region de estabilidad absoluta, S, del método lineal

{(pD, 6W), i =1, 2}, al conjunto de puntos del plano complejo tales que las raices del
polinomio II(w, z;, z,) son de moédulo menor que la unidad, para todo z;, z, € S.

s={@,z)e C?l s Mw,z,2) =0 = Iwi<l}

1%
2.4-Observaciéon: Para z, = z, = 0, se tiene que II(w, 0, 0) = p@(w) p(w), y por

lo tanto, si p@(w) y p)(w) verifican la condicién de las raices dada en [1], entonces,
el origen pertenece a la frontera de la regién de estabilidad.

3. DETERMINACION DE LA REGION DE ESTABILIDAD (S)

Consideraremos la ecuacion escalar de prueba (2.1) expresada en la forma
Y GG YR Y (3.1)
donde y; y 7Y, son los valores propios asociados a dicha ecuacién. Escribiendo
7L1 =hy,, 7\,2 =\h Y, » €l polinomio de estabilidad (2. 10) adoptard la forma
I(w, A, A) =- &) A, q (W) + (A + 1) g,(W) + q(w) (3.2)

Como la regién de estabilidad S estd determinada en el (A,, A,)-espacio por la
condicién de que las raices del polinomio de estabilidad (3.2) se encuentren en el
interior del circulo unidad, es claro que ¢l contorno de dicha regidn estard contenido en
el lugar geométrico de los puntos tales que las raices del polinomio (3.2) estén sobre la
circunferencia unidad (w = e'®). Este razonamiento junto con la anulacién de (3.2),
nos permite obtener una relacion bilineal simétrica (en el sentido de Gear[2]) entre los
pardmetros complejos A, y A, dada por

. 5®%,9,0)
b 2,q,0) - 9,0)

Esta relacion tiene dos puntos fijos ul; I, para cada © (A;= A, = l), que son las
soluciones de la ecuacién

(3.3)

W q,0)-21q,0) - ;) =0 - (3.4)

La transformacién dada en (3.3) queda completamente caracterizada por sus
puntos fijos |1; y I, en el siguiente sentido: dicha transformacion consiste en una
inversion respecto de la circunferencia I' de didmetro [L)-lL;, seguida de una simetria

respecto de la linea recta que une los puntos LL; y |1, , como se puede ver en la figura 1.
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s v.m:aﬂ-'i’

A es una inversion de 12 en[

My A, esuna simetria de A en L

‘ transformada de 1

Figura 1

Figura 2
puntos transformados

La transformada de una linea recta es una circunferencia pasando por el centro de I'. En
particular, la transformada de cualquier recta pasando por de uno de los puntos fijos 1, ,
i= 1,2, es una circunferencia tangente a dicha recta en el punto fijo (ver la figura 2).
De acuerdo con esto, el semiplano abierto que se encuentra en el lado opuesto al otro
punto fijo y de la linea recta 1, se transforma en el interior de la circunferencia
transformada de la linea 1, siendo dicho semiplano y su transformado dos conjuntos
disjuntos. Entonces, si dos puntos A, y A, estdn en dicho semiplano, no pueden ser
cotransformados, es decir, dar lugar a una raiz w = el ® del polinomio de estabilidad
B22):

Ademds, para cada A,, la ecuacién (3.3) especifica un A, de manera que una
raiz del polinomio de estabilidad (3.2) sea de la forma w = ¢19. Entonces, para cada
A, 1a ecuacién (3.3) especifica un lugar geométrico que contiene al contorno de una

regién en el A-plano en la que el método es estable, suponiendo que dicha regién exista.

Nosotros estamos interesados en encontrar una regién S tal que si A, 7&2 (S

entonces el método es estable. Claramente, habrd que excluir de laregién S los puntos
fijos I, y I, , soluciones de la ecuacion (3.4).
Consideraremos ahora la figura 3 y supogamos que exista al menos un par de

valores 7&1, 7»2 en el interior de la region acotada S para los cuales el método es estable.
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/"—_ uz (9)
A- plano
i
— H,0)
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Figura 3

En esta situacion, serfa adecuado preguntarnos si el método es estable para todos los
valores k*l, k*z contenidos en S. En general, la respuesta es negativa, ya que
Gear[2] ha encontrado métodos que tienen regioén de estabilidad en el sentido de la
figura 3 y, en cambio, no son estables para todo par de valores A*;, A", contenidos en
S. Una condicién suficiente para que la regiéon S sea de estabilidad absoluta para el
operador numérico (2.5) es que S sea un conjunto conexo. Este resultado viene
precisado en el siguiente teorema (Gear[2])

3.1-Teorema: Sea S una region conexa verificando que:

1) No contiene parte de ninguna linea segmento |, - LL;

ii) Existen un par de puntos A, , A, € S en los que el método es estable
Entonces, el método es absolutamente estable en todos los puntos de S.

Demostracion: SeanA, , A, € S para los cuales el método es estable, y supongamos
que existen ?»*1 ; ?»*2 € S en los que el método no es estable. Entonces podemos
encontrar un par de caminos A,(s) , A,(s) continuos y contenidos en S, tales que unen
los puntos A; a A"} y A,a A%, respectivamente. Como A*; y A", son puntos de

inestabilidad del método, existen dos puntos A,(s;) y A,(s;) sobre dichos caminos para
los cuales el polinomio de estabilidad del método tiene una raiz sobre la circunferencia
unidad. Ademds, existird una linea recta pasando por uno de los puntos fijos de forma
que A;(sy) y A,(sp) se encuentren en el semiplano determinado por dicha linea y en el
lado opuesto al otro punto fijo. Entonces, por la forma especial de la transformacién

7
s il

e




(3.3), dichos puntos no pueden dar lugar a una raiz unidad del polinomio de estabilidad
del método, luego el método debe ser estable en 7&*1 i ?»*2 ;

3.2-Observacion: Las condiciones del teorema anterior a cerca de la estabilidad
absoluta son suficientes, pero no necesarias, como se puede apreciar en la figura 4,
obtenida por Gear[2] para un método de integracién directa de tipo multipaso. La
regién S es de estabilidad absoluta, excepto quizds en las proximidades del contorno
de la izquierda, puesto que cualquier par de puntos de S, estdn en el interior de un
circulo de diametro [L, - |, y entonces no pueden ser cotransformados el uno del otro,
o bién uno de ellos estd muy préximo a dicho circulo, pero bastante alejado del didmetro

M, - Ky, y tampoco pueden ser cotransformados.

A- plano

/-uz(e)

v
Figura 4

Al final, presentamos algunas regiones de estabilidad absoluta correspondientes a
los métodos de tipo Cowell obtenidos en [1], para los casos de dos, tres, y cuatro pasos
con 6rdenes tres, cuatro y cinco respectivamente. Se observa inmediatamente que la
superficie encerrada en estas regiones de estabilidad es similar a las obtenidas por
Shampine and Gordon [8] para métodos multipaso de tipo Adams.

4. A-ESTABILIDAD DE METODOS DE DOS PASOS
En esta seccién, obtenemos métodos de integracién directa de tipo Cowell

A-estables de dos pasos y segundo orden de aproximacion, considerando la ecuacién

test escalar de coeficientes reales
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y' +ay+0 y=0 @.1)
con la condicién a > 0, lo que equivale a exigir que la solucién de la ecuacién (4.1) es
estable.

Consideremos métodos de tipo Cowell de dos pasos en la forma

(2) (2) (2) 2) (2) (2)
OOl Ynop e %y et Oy, ‘h By £ + By £, + By

(1) 1) . (1) (1) (1) (1)
(X yn+2 i 0.1 yn+1 o =h (B f +2 3 Bl fn+1 & B0 fn)

Suponiendo, sin pérdida de la generalidad, que &, = o,,(V) = 1 e imponiendo las

condiciones de orden dadas en Franco-Palacios [1], tenemos

Primer orden.

(i)a(2)+ a(2)+a(2)—0 (11)cx +20c(2) 0, (111)oc )+(x(1)+oc(2) 0
1
)5 @ +40)- B +BP+B7) =0, W) o +205°- BB -pY =0

Segundo orden.

(vi )_ (a(2) +8 OL(Z)) (B(2) +2 B(2)

(vii) (a‘” +4057) - @B +280) =

Expresando la solucién de este sistema en funcién de tres pardmetros, los polinomios
caracteristicos asociados al método vienen dados por

pP@=0-2¢+1, PQ=BC+1-2B) L+

‘ 1
o0 =C-a+0t+a, Q=G+ IenCrG-Ta-m Ly

En estas condiciones, el polinomio de estabilidad asociado al método de dos pasos serd
2. 3 4
(€2, z,) =8+, C+a, L +a, 8" +a, & (4.2)
donde

a,=0-afz-yz,

1553
-(1+3on)+(-oc+[3+3on[3)z1+(-§+§oc+4y)z2

107
a2=3(1+oa)+(1+oc—3[3—3a[3)zl+(—2--5a-57)22




e

a3=-(3+oc)+(-1+3B+a{3)zl+(%+%a+4y)

I (@
a4=1-le-(5+-2— +7) z,

A continuacién estudiaremos dos casos particulares

Caso a;=a,=0
El polinomio de estabilidad serd bicuadritico, pero al imponer que a; = 0, se
llega a una contradiccién. Por lo tanto, no exixte ningin método de dos pasos y

segundo orden cuyo polinomio de estabilidad sea bicuadratico.

Caso a,=0
El polinomio de estabilidad es reducible a un polinomio de tercer grado y resulta
que a=vy=0, con

(G, 2,,2,) = G(a + 2,8 +a, 8% +2,8>)=LP,©

1 1
: a=-1+fz-=z a2=3+(1-3B)21+Ez

2“2’ 2

. 1 1
a3='3'(1'3ﬁ)21+§'7‘2’ 214=1-[’>zl—7z2

Entonces, el problema se reduce a estudiar las raices del polinomio P3(l;). Efectuando
la transformacién de Routh-Hurwitz { = (1 + 1)/ (1 - M) y teniendo en cuenta que ahora
z,=- @* h%, z, = - a h, el polinomio P5({) se transforma en

2 3
P,(m) =b,+b, n+b,1M +bym
con

b0=a4+a3+a2+al= 0

2in
b1=3a4+a3-az—3a1=20) h
b2=3a4-a3-a2+3a1=4ah

b= —8+2@4B-Do’h’
;=8 -3, +a,-a =8+ 4B-How

En estas condiciones, exigir que las raices de P;({) sean de médulo menor o
igual que la unidad es equivalente a exigir que las raices de P;(1) estén en el semiplano
Rem < 0. Aplicando el criterio de Routh-Hurwitz, esto solamente es cierto si se

verifican las siguientes condiciones
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by>0, by, by, b, >0

4.3)

b, b, > by b,

En nuestro caso, los coeficientes b; (=0, 1, 2, 3) verifican las condiciones (4.3)
para todo ah, @?h?, siy solosi B > 1/4. Ademds, como by =0, el polinomio P,(§) no
puede tener raices multiples de médulo unidad, salvo que a = ® = 0; y en este caso, de
acuerdo con la observacién (2.4), estos puntos estdn sobre la frontera de la regién de
estabilidad.

En consecuencia, podemos concluir que la familia de métodos de tipo Cowell de
dos pasos y segundo orden dada por

2
‘yn+2-2yn+l+yn=h (Bfn+2+(1_2B)fn+1+Bfn)’ BZI/4
(4.4)
/ bl f f
yn+2-yn+1_§( izt fhar)

es A-estable.

4.1-Observacion: Si se imponen condiciones de orden tres, se tiene que P = 1/12,

o =- (1 +12v)/5. Considerando el caso particular a = 0, se tiene que
250 1) 2 252182
nE o 1%, 0 =p® PP + 0’ b 2]
y en el segundo factor de este polinomio se verifica la condicién de A-estabilidad

(condicién de las raices de Dahlquist) si y solo si @w?h% e (0, 6). En consecuencia, no
existe ningtin método de tipo Cowell de dos pasos y orden tres que sea A-estable.
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La solucion numérica de la ecuacion de ondas elastica es una herramicnta muy potente para los
geofisicos encargados de modelar el interior de zonas dc la Ticrra.

En este trabajo se considera la simulacion del fenémeno de la propagacion de ondas. Con este fin,
se formula el problema a partir de las ecuaciones de la elastodinamica lineal, se aplica el método de los
Elementos Finitos para discretizar la parte espacial de dichas ecuaciones y se analizan las caracteristicas
informaticas necesarias para poder hacer cédigos eficientes que aprovechen las particularidades de la
arquitectura escalar o vectorial del ordenador que se utilice.

Introduccion

Los depositos de hidrocarburos se encuentran en zonas sedimentarias con formaciones porosas. La
tarea de la exploracion geofisica es localizar dichas zonas y para ello el método mas comun es interpretar
los datos obtenidos en campatias de prospeccion sismica. I.0s registros sismicos contienen una gran cantidad
de informacién y su interpretacion es bastante subjetiva. Por esta razon, la industria geofisica esta muy
interesada en el desarrollo y uso de la simulacién sismica mediante ordenador, ya que la simulacién del
fenomeno facilita la comprensién del comportamicnto dec la propagacion de las ondas sismicas. Los
resultados obtenidos a partir dec este tipo de simulaciones numéricas se pucden utilizar para:

Hacer mas objetiva la labor de interpretacion de los fendmenos de propagacion ocurridos en las areas
de exploracion, caratcrizadas normalmente por tener entornos geologicos extremadamente complejos.

Generar datos sintéticos a partir de modclos propucstos, con el fin de poderlos comparar con datos
reales. De esta forma los geofisicos pueden demostrar la consistencia de la interpretacién realizada.

Crear bancos de datos sintéticos que son siempre Gtiles para la puesta a punto de nuevas técnicas de
adquisicién de datos en campo o de procesado dc datos en gabinetc.

Aumentar la eficacia de la ensefianza especializada en los fenémenos ondulatorios, ya que los modelos
matematicos asociados a este tipo de fenomenologia son complejos y la extrapolacién del comportamiento
de las ondas a partir de las ecuaciones es normalmentc casi imposible. A través de la simulacién numérica
los fenémenos de propagacion se pueden ver realmente en imagenes.
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Existen varios métodos para simular la propagacion de ondas sismicas en estructuras complejas; “Ray
tracing”, es probablemente la técnica mas utilizada, pcro no puede reproducir fendomenos debidos a
difracciones causadas por fallas o cambios rapidos de curvatura en el frente de la onda ocasionados por
los contornos de los obstaculos. Otros métodos mucho mas utiles aunque mas sofisticados y costosos
desde el punto de vista del calculo que hay que realizar son "Diferencias Finitas”, “Elementos Finitos” y
"Técnicas Pseudoespectrales”.

En este trabajo se considera el método de los Elementos Finitos debido a la versatilidad que tiene
para ajustarse a las caracteristicas geométricas de cada problema, en particular permite el uso de mallas
no uniformes que tengan elementos con diferente tamafnio, gcometria y orden de aproximacion. De esta
manera es posible obtener la exactitud deseada en las diferentes regiones del modelo.

Con este fin, se formula el problema de la propagacion de ondas a partir de las ecuaciones de la
elastodinamica lineal, se aplica el método de los Elementos Finitos para discretizar la parte espacial de
dichas ecuaciones y se analizan las caracteristicas informaticas neccsarias para poder hacer c6digos eficientes
que aprovechen las particularidades de la arquitectura escalar o vectorial del ordenador que se utilice.

Formulacion

Consideremos un medio continuo, elastico, lineal, isotropo, y no homogeneo con dominio Q y
contorno I'. Supongamos que © es una region abierta, acotada y conexa de |R”, que I' es de tipo c'a
trozos, y que I se pude descomponer en dos partes I'g, I'; cada una con medida superficial estrictamente
positiva, de manera que

I‘=I“gUI';, ()=l"gnl",,

Si se denota al vector posicion como r, con dominio en €2, a la variable tiempo como ¢, con dominio
en el intervalo (0, 7) con 7> 0€ |R , y se introducen los siguientes conjuntos

VA
Q=Qur 0r-9 % (0,7) $7-T x (0,7)

se puede formular la simulacion del fendmeno sismico como el problema de encontrar una funcién
desplazamiento

u(r, t) = [ur. ), wyr, 1), w(r, ()] con u,-:a x [0, T] > |R; i=1,23

tal que u(r, ¢) satisfaga las ccuaciones de la elastodinamica [ 1]

Pty = oy, + fi inOr ecuacion de movimiento (1)

Y =g in T condicion de Dirichlet (2)
ayn =k oin Zpp condicion de Neumann 3)
4 (r,0) = u,(r) VreQ condicion inicial 4)

4, (r,0) = Uy(r) Yre - condicion inicial (5)




donde
fir,?): Q7— |R?; son las fucrzas internas
glr, 0):Zgr— R3; son los desplazamientos cn ¢l contorno I
h(r,?): Zp7— |R3 - son las tensiones en el contorno '
p(r) :Q—|R; es la densidad
Ar)and p(r) :Q— |R; son los parametros clasticos de I.ame
a es el tensor de tensiones de Cauchy
£ es el tensor de deformaciones, con componentes
£y (u) = (u‘-/_; %)) 6)

verificandose que las componentes del tensor de tensiones cstan relacionadas con las componentes del
tensor de deformaciones mediante la ley de Hooke

oy = 4 (divu) 6,j + 2uey (7
Las ecuaciones (1-7) son el modelo matematico de la evolucién en el tiempo del campo de

desplazamientos de un medio clastico, lineal, no homogenco e isotropo, cuando esta sometido a una
densidad volumica de fuerzas fy a condiciones de contorno de tipo Dirichlet y de tipo Neumann.

Suponiendo que la solucion u es suficientemente regular, se puede establecer una formulacién variacional
de las ecuaciones (1-7). Con este fin se introducen los siguientes espacios funcionales:

LAQ) espacio de Sobolev de las funciones de cuadrado integrable, segiin la medida de Lebesgue, es decir,

L@ = {71 [1/®Pda< + oo}

con el correspondiente producto escalar y norma

(hgha = [70) s(de ‘ ®

Wl = (ifna ©

H'(Q) espacio de Sobolev de orden 1, es decir,

H'(©Q) = {f e LXQ); ;—f 1LAQ), i=l,2,3}

€
X|

con el correspondiente producto escalar y norma

S of 9
(figha = f(f(r)g(r) - géla—fl)dn (10)

[l = @RS (11
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C™0,7; .X), 0<T< + on cspacio de las funciones continuas m-veces diferenciables en [0, 77]. Si X es un
espacio de Banach con norma |[.|[x, cntonces C™(0, 7 X) es también un cspacio de Banach para la norma

dy
I/ llemo,ry = (ax, L;?;’T“@(”“x] (12)
S espacio de funciones donde se encuentra la solucién del problema
s = {ur0lu(,0 € €70, T; H(Q), u(r.) = &0 Vrelg
V espacio de las funciones peso

V = { w0 | m@) e H(Q), wi() = 0 Vre Ty}

Con estas definiciones se puede establecer una formulacion variacional del problema, utilizando
métodos clasicos tal y como se describe en el Apéndice I. Con lo cual el problema queda reducido a:

Dados f, g, h, ug tip, encontrar una funcién ue S tal que para todo we V se verifique que

5 !
if(w'p")ﬂ,ﬂ +a(w,u) = (w,h)y + (w,f)yq (13)
w(0) = u, (14)
w0) = i, (15)

2
donde iz- se debe entender en el sentido de las distribuciones sobre (0,T)

3
(w,pu) o = ZJ. pu; wy dQ (Forma bilineal, simétrica continua) (16)
i=1
3
a(w,u) = ZJ’ ay(u) g;(w) dQ (Forma bilineal, simétrica continua) (17)
7
3
(w,h)r = ZJ. hw,dl';  (Forma lincal continua) (18)
i1
3
W, oo = EJ. fiw dQ (Forma lineal continua) (19)
=1

La solucién de (13-15) existe si se verifican las siguicntes condiciones [2]
p(r)=>pe>0, pel™(R) AMr)=>A5>0, Ae L°°() u(r)> >0, pel(RQ)
donde L>(Q) es el espacio de las funciones esencialmente acotadas, y

woe [HI@Q)T, o e (LA, fe [1XQNT, he 13T, ge [(LXET.

Esta solucion cxiste ya que se pucde demostrar que a(.,.) cs V-cliptica (desigualdad de Korn [3] ) y que
ambas formulaciones son cquivalentes (Teorcma de representacion de Ritz [4]).
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Meétodo de los Elementos Finitos

El método de los Elementos Finitos sirve para obtener solucioncs aproximadag,de problemas formulados
variacionalmente [5]. Geométricamente este método discretiza el dominio © subdividiéndolo en un
conjunto de subdominios: ;. En principio ¢l nimero de puntos de contacto entre dos subdominios vecinos
es infinito. Posterdiormente se discretiza cada subdominio suponiendo que la conexién entre ellos viene
dada por un numero discreto de puntos denominados “nodos de contorno”. A los subdominios discretizados
Q; se les denomina “elementos finitos” y se denotaran como K;.

Para que la discretizacion mediante elementos finitos sea correcta se deben verificar las siguientes
condiciones: )

A
= Q = UK n = Numero total de elementos.

0
— K; cerrado y con interior no vacio (Kj).

(1))
=7 Kl n Kj = ¢.
— 0K; = contomo de K; continuo y Lipschitz.

Desde el punto de vista matematico, el método aproxima la parte espacial del espacio funcional de
dimension infinita S, mediante un subespacio sh que tiene dimension finita, #n, igual al nimero de nodos.
La base del espacio S" esta formada por funciones

A
Ni:Q >R i=12..1n n = Numero total de nodos.

que se caraterizan por tener un soporte local, es decir, el soporte de la funcion N;(r) esta formado por los
elementos a los que pertenece el nudo i. Ademas, la funcion N(r) verifica N;(r)) = dy.

Si u(r,?) €S representa la solucion del problema, cl método de los Elementos Finitos proporciona
una solucién aproximada u’ (r, ) € S dada por

W) = ) NEag© i=123 (20)
=1

es decir, la funcién uf (r, ¢) es una combinacion lincal “adccuada” de los desplazamicntos de los nodos
(ay) en el instante ¢.

Se puede decir por lo tanto que el método de los Flementos Finitos permite pasar de un dominio
continuo gmﬁnitos puntos) y un espacio S de dimension infinita, a un dominio discreto (1 nodos) y un
espacio S" de dimensién finita. El parametro h hace referencia a una longitud caracteristica que esta
asociada al tamafio de la discretizacion del dominio €. La dimension de S” es una funcion de A y si el
método es convergentc se puede alcanzar la dimensién del espacio S mediante sucesivos refinamientos de
la malla, hligx n(h) = oo.

Esta técnica de discretizacion espacial, generealmente llamada formulacion semidiscreta de Galerkin,
reduce el problema de la elastodinamica (13-15) al siguiente problema [6]:
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Dados f, g, h, ug tig, encontrar la funcion Vigr, 1) = u(r 1) - g"(r, t) con uf", vA, g" e S" tal que
vw" e Vi se satisfagan las ecuaciones siguicntes

2
ii(wh,pvh) + afwh Y= (el ) & (et ) = @1
2
—%(wh.pgh) —a(w' g")
v(0) = u, — g"(0) (22)
w(0) = iy — g"(0) ' (23)
donde

ir) = Y N(r)dy(0) (24)
Jen—ng

whr) = D N(ng (25)
Jen=ngi

() = ), N(r)g(1) (26)
Jemg

y gt es el nimero de nodos con condiciones de Dirichlet.

A partir de las ecuaciones (16-19) se puede obtener el siguiente sistema de ecuaciones diferenciales
ordinarias, lineales, de segundo orden con coeficientes constantes

& A
Md +Kd =1 Yie (0,T) 27)
d(0) = d, (28)
d) = d, (29)
donde
M es la matriz de masa K es la matriz de rigidez
A
f es el vector de las cargas d s el vector de los desplazamientos

El Apéndice Il muestra como se obtienen en la practica estas matrices.

La matriz M esta determinada por la distribucion de densidad en el dominio, la matriz K esta
determinada por las propiedades elasticas del medio y el vector f depende de la fuente utilizada para
excitar las ondas y de las condiciones de contono. Tanto la matriz M como la matriz K son sparse,
simétricas y definidas positivas.

- Puede demostrarse ;I2] que cl problema semidiscreto (21-23) admite una solucion unica Vi y por lo
tanto una Gnica u” = v' + g S




Estimaciones del error de la aproximacion

Las estimaciones del error cometido en el calculo dc la aproximacion a la solucion del problema, se
suelen expresar en términos de normas de Sobolev. [.os principales resultados son los siguientes [7]:

El error e = u”(l) — u(t), satisface

[lell, <ch®[lull, (30)
si para cada instante de tiempo ¢, ue [ H' ]3 yulesh
donde
(c) es una constante independiente de u y de A.
(m) esta relacionado con el orden de la derivada espacial mas alta que aparece en a(u, u).
o« = min( k+1-m , r-m ).
(k) es el grado del polinomio completo que aparece en las funciones base scleccionadas para discretizar.

En el momento en que k+ 1 y r son mayores que m, se obtienc convergencia optima en la norma
H™. Suponiendo que u es es suave, en el sentido de que ue [ H** ! 7" ‘entonces cl error satisface

pkt1=

llelln <c "N e+ ' (€D

expresion que se conoce con el nombre de “estimacion standar del error”.

Estimaciones para el error en normas-H” inferiores, 0 < s < m, suelen ser muy interesantes. Suponiendo
que ue [ HEF! 1, el resultado principal es

llell, < AP llullps, ' (32)

donde B = min ( k+ l-s; 2(k+ 1-m) ). En este caso la aproximacion por Elementos Finitos es 6ptima en
la norma-H’, para todo s tal que 0 < 5 < m.

Por ejemplo, sea k=m= 1. Entonces

2
llello <ch”|lull llell <chllull

La primera relacion da la velocidad de convergencia para los “desplazamientos” y la segunda para los
“gradientes de los desplazamientos” (i.e., deformaciones o tensiones) en un instante de tiempo (¢).

Un analisis similar [2] muestra que si ue C%(0,T; H*" ') entonces

I (0 = u(Olla + N5 (o (0 —w(l = &)

Oflluop (1) = wg(0) lha + llbos(t) —in(loa + A4
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ecuacion que mucstra que el error comctldo en el cilculo de los desplazamientos y de las velocidades es
funcion de la aproximacién matematica (k*) y de la aproximacién de las condiciones iniciales.

La esencia del criterio de convergencia es que cuanto mas sc refina la malla, mas se aproxima u’ a u.

Para poder establecer el criterio de convergencia es necesario [7] que cn cada una de las mallas que se
obtiene al ir variando A, sc verifique la condicion gecométrica ¢ < g V S" cuando A — 0.

Siendo
- h, = diametro de K,.
- pe = diametro de la esfera inscrita en K.
b= e (he)
0 oG
Sl
Sloi= e

Necesidades de almacenamiento

El sistema de ecuaciones diferenciales ordinarias, lineales, de segundo orden, con coeficientes constantes
obtenido en (27-29) se debe de integrar a lo largo del intervalo (0,7) discretizando la variable tiempo como
t, = nAt 0<n<N donde At = T/N. La solucion d( ¢, ) vendra representada por d,.

Existen muchos esquemas de integracion en el tiempo, entre los que destacan el método de Houbolt
[8] el método de Wilson [9] y los métodos de la familia Newmark [10], cuyo analisis esta fuera del
objetivo de este trabajo, pero la mayoria de estos esquemas de integracion conducen a la resolucion en
cada paso de tiempo (n) de un sistema de ecuaciones algebraicas cuya matriz de coeficientes es sparse,
simétrica, bien condicionada y definida positiva.

Ad, = b (34)

Los sistemas que se obtienen cuando se rcsuelvcn problcmas de propagacion de ondas en estructuras
reales son de un orden comprendido entre 10° y 10° ecuaciones, y su matriz de cocficientes suele tener
entre 10 y 30 elementos distintos de cero por fila.

I.a estructura de la dispersion de los elementos distintos de cero en la matriz A, depende de como se
malla el dominio fisico que se desea estudiar. Un dominio regular se pucde mallar de manera sencilla, en
cuyo caso las incognitas se pueden ordenar de mancra que los elementos distintos de cero de la matriz
formen una estructura regular (ver Figuras 1 y 2). Cuando el dominio es irregular es necesario usar
estructuras de mallas mas complicadas, en cuyo caso los clementos distintos de cero de la matriz se
dispersan (ver Figuras 3 y 4). En el Apéndice III se muestran las formas mas comunes de almacenar los
elementos de una matriz sparse, en la Figura 5 se muestran los esquemas de representacion matricial
“compressed diagonal” y “compressed matrix” para las mallas mostradas en las Figuras | y 3 respectivamente.
y en la Tabla I se muestran las nccesidades de almacenamiento para la matriz A, correspondiente a una
malla regular con condiciones de contorno y dos grados de libertad por nudo, para tres tamafios de malla.
Se puede observar que “row-wise” cs el esquema mas eficiente seguido por “compressed diagonal”, “com-
pressed matrix” y en ultimo lugar “skyline” con mucha difcrencia con respecto a los demas esquemas. Sin
embargo tal y como se puede obscrvar en la Tigura §, cn cl caso de mallas irregulares la representacion
“compressed diagonal” s deteriora micntras que la representacion “compressed matrix” mantiene su eficiencia.

b -

d
h
B
3
B
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o
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Table I. Necesidades de almacenamicnto en K-palabras

Method 63x63 127x127 | 257x257
Real 79382 | 322582 | 132098
Skyline 934.2 7922 66781
Row-wisc 70.4 296.2 1234
Compressed-Matrix 143.7 598.5 2481
Compressed-Diagonal 83.2 346.5 1436

El tipo de sistemas mostrado en (34) se puede resolver utilizando métodos directos 0 métodos iterativos.
Los métodos directos:se basan en la eliminacion Gaussiana y han sido muy utilizados para resolver sistemas
dinadmicos pequefios proporcionando siempre resultados satisfactorios. Pero el motivo por el que se
descartan estos métodos en este trabajo, es que cuando los sistemas son grandes su efectividad decrece
debido principalmente a la gran cantidad de elementos nulos que se transforman en no nulos durante la
descomposicion de la matriz, efecto conocido con el nombre de “fill-in”, este fendmeno provoca la necesidad
de tener que disponer de una cantidad de almacenamiento inalcanzable. Los métodos iterativos no generan
el fenémeno de “fill-in” y por lo tanto necesitan mucha menos cantidad de almacenamiento. Ademas si
el nimero de iteraciones necesarias para resolver el sistema no es grande, los métodos iterativos tienen un
coste computacional menor ya que solo operan con los elementos que son diferentes de cero.

Producto matriz-vector

Desde el punto de vista de los cilculos que hay que realizar para resolver un sistema lineal de
ecuaciones mediante métodos iterativos, la operacién producto de una matriz por un vector es la mas
importante, ya que suele emplear normalmente mas del 50% del tiempo necesario para realizar cada
iteracion. Ahora bien el coste de este producto vienc afectado significativamente por el esquema de
almacenamiento utilizado y por el tipo de Unidad Central de Proceso empleado.

En la tabla II se muestra el trozo de programa encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento “row-wise” (ver la notacion en el Apéndice III).

Tabla II.

DO 20 1=1, M
ACC = 0.D0
DO 10 J=TA(D), IA(I + 1)-1
ACC = ACC + D(JAQ)) * AR(J)
10  CONTINUE
Y(I) = ACC
20 CONTINUE
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Obsérvese que los clementos de los vectores AR y JA son scleccionados de mancra sccuencial, en
cambio los elementos de D se seleccionan de mancra aleatoria segin la direccion dada por JA. Si sc utiliza
un procesador escalar, este esquema de almacenamicnto cs muy eficiente.

En la tabla III se muestra el trozo de programa encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento “compressed matrix” (ver la notacion en el Ap&endice III).

Tabla III.
DO 20 I=1, M ’
ACC = 0.D0
DO 10J=1, K

ACC = ACC + D( KA(LJ)) * AC(L))
10  CONTINUE

Y(I) = ACC
20 CONTINUE

Obsérvese que los elementos de los vectores AC y KA sc van seleccionando de manera secuencial, en
cambio los elementos de D se seleccionan aleatoriamente segiin la direccion dada por KA.

En un procesador escalar este algoritmo no es 6ptimo ya que si algunas filas tienen menos de (k)
elementos, se realizan muchas multiplicaciones por cero. Un procesador vectorial puede vectorializar el
interior del bucle 20 utilizando instrucciones de tipo “gather-scatter” [11], para recoger los elementos del
vector D que son necesarios para realizar el producto.

En la tabla IV se muestra el trozo de programa encargado de realizar el producto (matriz por vector)
cuando se utiliza el esquema de almacenamiento “compressed diagonal” (ver la notacién en el Apéndice I1I).

Tabla IV.

DO 101=1, M
Y(I)=0.D0
10 CONTINUE
DO 30 =1, ND
K = LA(L)
NI = MAX(1,1-K)
N2 = MIN(N,N-K)
DO 20 1= NI,N2
Y(I) = Y(I) + DK+ 1) * AD(I,L)
20 CONTINUE
30 CONTINUE




Obsérvese que con este algoritmo todos los elementos de los vectores involucrados en las operaciones
se seleccionan de forma secuencial, mientras que cn el caso de “compressed matrix” era necesario realizar
operaciones de tipo “gather-scatter” con el vector D.

Este esquema de almacenamiento es mas eficiente quc la representacion anterior cuando se utilizan
procesadores vectoriales, debido a que no necesita realizar ningtn tipo de accesos aleatorios. Ahora bién,
este esquema solo es utilizable si la matriz ticne una clara estructura en diagonales que solo se puede
obtener con mallas regulares. En cualquier otro caso se realizan una gran cantidad de multiplicaciones por
cero y su eficiencia disminuye.

Conclusiones

En este trabajo se ha aplicado el método de los Elementos Finitos para discretizar la parte espacial
de las ecuaciones de la elastodinamica lineal con objeto de simular la propagacion de ondas sismicas,
dando los principales resultados sobre el comportamiento del error cometido en dicha aproximacién.

De cara a resolver el sistema de ecuaciones algebraicas que se obtiene en cada instante cuando se
integra en el tiempo, se recomiendan los métodos iterativos por motivos de almacenamiento.

Se ha realizado el estudio de los esquemas de almacenamiento de matrices sparse con objeto de
seleccionar el mas adecuado en funcion del tipo de proccsador (escalar o vectorial) utilizado. El esquema
de almacenamiento de matrices “row-wise” es el mds economico y el mds adecuado para trabajar con
procesadores escalares, pero no vectoriza de forma eficiente. La representacion “compressed diagonal” es
la mas eficiente para trabajar. con procesadores vectorales, pero solo puede ser utilizada con mallas
regulares. El esquema de almacenamiento “compressed matrix” es ligeramente menos eficiente pero puede
utilizarse con mallas irregulares que es el caso mas usual cuando se trabaja con elementos finitos.
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Apéndice 1
La formulacién variacional del problema de la elastodinamica sc obtiene de la forma siguiente.

- 1. Se multiplica la ecuacién de movimiento (1) por una funcién w; € V, se integra en el dominio
espacial y se suma para las tres componentes espaciales

3 3 3 3
ZJ‘puu,w,dQ = ZJ Y oy mdQ = ij,w,dsz (39)
=1 =1 J=1 =1

- 2. Se aplica la formula de Green al segundo término situado a la izquierda de la igualdad

3 3 3

= ZJ ayywdQ = ZI ayw,;dQ — ZJ. ay;myw;dl’ (36)
i=1 i=1 i=1 3
j=1 j=1 j=1

gl il

(el (A e

- 3. Como oy es un tensor simétrico y w;; es un tensor no simétrico, entonces.

G T ) @7
donde wy ) es la parte simetrica de la descomposicion euclidea de un tensor de rango dos.
wy oWy
W(Eh o g (38)
entonces
oWy = aU(u)cU(w) 39)

- 4. A partir de las condiciones de contorno dadas en (3) y como w; = 0 en I'g ( debido a la definicion
del espacio funcional V ), el segundo término del lado derecho de la igualdad (36) se puede escribir como -

3

3 3

= Zf oymwdl = — Zj hwdly — Zf £0dr, (40)
=1 -1
Jj~1

=1

Por lo tanto
3 3 3 g
ZJ-pu,'”w,-dQ + Z[aueudQ = ZI Byw dly, + ZJ-j;w,dQ (41) f
=l i=1" i=1 i~ )

=1 -:‘
Apéndice 11

.La formulacion de Galerkin descrita en (21-23) esta basada en una aproximacién “global” ya que las
funcn'opes base y el resto de las magnitudes que aparecen, se considera que estan definidas en todo el ;-
dominio del problema. Esta descripcion es atil a la hora de analizar las propiedades mateméticas del i
mtf,todo de los Elementos Finitos. Ahora bien, desdc el punto de vista de la implementacién practica del
método, es mejor aprovecharse de la ventaja que ofrcce ¢l “soporte local” de las funciones base. Para ello
se descomponc cada una de las funciones base ¥, en otras funcioncs N, cuyo soporte es un clemento simple.




s

SUY RS

Con la aproximacion global, las ccuaciones (24-26) ticnen la forma
v,"(r,l) = Z Ny(r)dy(t) VreQ (42)
Jen—ngy

que junto con (16-19) se pueden utilizar para calcular dircctamente las matrices de masa M y de rigidez
K, de dimensién nx n y el vector de cargas f de dimension n.

Con la aproximacion local, en vez de utilizar la expresion (41) se utiliza

A
5 ) 0 Vr¢Q,
L EONT e e

k=1

(43)

1 = nimero de nodos en el elemento.
. . ’ . A .
que junto a las ecuaciones analogas a (16-19) pero cxtendidas solo al elemento Q,, sirven para obtener
las matrices elementales de masa m, y de rigidez k., dc dimension /x [y el vector de cargas f, de dimension

/, que se utilizan para calcular de forma mas cficiente las matrices globales de masa M y de rigidez K, y
el vector de cargas f.

Hay que resaltar que:

A
- Nitocat(*) = Njgiobar (1) VreQ,.

- Con la aproximacion local, las matrices globalcs se construyen ecnsamblando adecuadamente las
matrices elementalcs.

La aproximacién local puede hacerse del modo siguiente.

Definiendo

g1 - 9
) = %22

g = || ‘vector’ deformacién g0 = [72| ‘vector tensién (6a)
€12 912
£33 923
€13 . 913
dx 0 0
0 dy 0
0 0 4

L= S Oz operador diferencial de deformacion (45)
0 oJz dy
dz 0 ox
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Ay ! 0 0sto
P A+ 2 A OE RO SRNE0)
A A A+ () () 3
D, = i 0 02.u chews ‘tensor’ dc tensiones (46)
u
0 0 0 Ozt
0 0 0 )0y

y utilizando notacion matricial, las ecuaciones (24,6,7) sc pucden expresar como

Vi@ 1) = N,d, (47)
e — Loy = NI =Rl (48)
g, = D,e, = D,B,d, (49)

Utilizando esta aproximacion local, la semidiscretizacion de la formulacion vanacxonal del problema
de la elastodinamica conduce a

Md +Kd=1 Vie (0, (50)
d(0) = d, (51)
d(0) = d, (52)
donde
M=)m, (53)
e=1 ;
K Yk (54)
e=1
A n
=)0 (55)
e=1
n = Nuamero total de elementos.
y’,
= T
m. = o, [ NIN,do, (56)
k, = | B'D B, do
€ 4 e e e (57)

f, = f NTrdQ, + f Nhdly — kg, — m, i, (o8)
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Apéndice ITI

REPRESENTACION DE MATRICES SPARSE

Una matriz sparse es una matriz que tiene “pocos” elementos diferentes de cero. Consideremos la
siguiente matriz simétrica A como ejemplo de matriz sparse.

SO O NO M~
SONO O
ShOHhON
—_O0O A ONO
ShO OO
ArOoO—~OC OO

Las cuatro formas mas comunes de almacenar esta informacion son
- Por linea de cielo “(Skyline)”.
- Por filas "(Row-wise)”.
- Comprimida “(Compressed matrix)”.

- Por diagonales “(Compressed Diagonal)”.

LINEA DE CIELO (SYLINE).

Si la matriz A es simétrica y sparse, con esta representacion se almacenan todos los elementos situados
desde el primer elemento distinto de cero de cada columna hasta la diagonal principal.

La matriz sparse, A ( nx n), almacenada mediante esta representacion emplea dos vectores, un vector
real AR y un vector entero TA.

- El vector real AR contienc los elementos de A, almacenados por columnas desde la diagonal hasta
la linea de cielo.

- Los elementos del vector IA, son punteros que indican la posicion de los elementos de la diagonal
de A en AR.

Ejemplo.
AR = [4,4,4,0,7,4,0,2,4,0,4,4,0,1]

FAR= o av e ot i oy

FILAS (ROW-WISE).

Si la matriz A es simétrica y sparsc, con esta representacion solo se almacenan los elementos distintos
de cero de la parte triangular superior y de la diagonal principal de la matriz A.

La matriz sparse, A(nx ), almacenada mediantc esta representacion utiliza un vector real AR y dos
vectores entcros JA, TA.

177




- [l vector real AR conticne los elcmentos distintos de cecro de A, almacenados por filas en
localizaciones contiguas de memoria.

- Los elementos del vector entero JA, son punteros que indican cual es la columna de los
correspondicntes elementos de AR .

)

- Los clementos del vector entcro IA, de longitud (n+ 1), son punteros que indican en que lugar
comienza cada una de las filas de A en los vectores AR y JA.

Ejemplo.
AR = [4,7,4,2,4,4,4,1,4,4]
JA = [1,3,2,4,3,5,4,6,5,6]

TA = [l 36 seigiiig oy

COMPRIMIDA (COMPRESSED MATRIX).

La matriz A (nx n) almacenada mediante esta representacion utiliza dos matrices rectangulares, AC

y KA de (n) filas y (k) columnas, siendo (k) el maximo nimero de elementos distintos de cero por fila
de A.

- Cada fila de la matriz real AC contienc los elementos distintos de cero de la corresponiente fila
de A.

- Si una fila de A tiene un numero de elementos menor que (k), la correspondiente fila de AC se
debe completar con ceros hasta alcanzar la longitud (k).

- Los elementos del vector entero KA, son puntcros que indican cual es la columna de los
correspondientes elementos de AC.

- Si el elemento correspondiente de AC es cero, se puede usar cualquier indice comprendido en el
rango I,...n.

Las matrices sparse simétricas emplean la misma técnica de almacenamiento que las matrices sparse

no simétricas. Es decir, todos los elecmentos distintos de ccro de la matriz simétrica se deben almacenar
en la matriz. AC, no solo los elementos de la parte trangular superior y diagonal principal.

Ejemplo.




DIAGONALES (COMPRESSED DIAGONAL).

Si la matriz A es sparse y simétrica, con esta rcprescntacion, se almacenan todas las diagonales de la
parte triangular superior y de la diagonal principal de A, que tengan al menos un elemento distinto de cero.

La matriz. sparse, A (rixn) con nd diagonales con clementos distintos de cero, cuando se almacena
mediante esta representacion emplea una matriz real rectangular AD y un vector entero LA.

- AD con (n) filas y (nd) columnas, contienc las diagonales de A.
- Las diagonales se completan con (k) ceros, siendo (k) el nimero de la diagonal.

- El nimero de una diagonal se obtiene restando el indice de fila del indice de columna de cualquier
elemento perteneciente a dicha diagonal.

- Los elementos del vector LA de longitud nd, conticnen los numeros de las diagonales de la matriz
A que se han almacenado en la matriz AD.

Ejemplo.

LA = [0,2]

P TNy
SO — AN
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Figure 1: Malla rcgular.

Figure 2: Estructura de la matriz correspondicnte a la malla regular.

11
1
1
M

1
11

SO LT

X
X

100004 ¢

Figurc 3: Malla irrcgular.




Figure 4: Estructura de la matriz correspondiente a la malla irregular.

B3 x 11 B32 x 19

1082 x 70 1082 x 23

Diagonal Storage Compressed Storage

Figurc 5: Esquemas dc almacenamicnto para las mallas regular e irregular.
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SOLUBILIDADES DE GASES NO POLARES EN CLOROBENCENO Y BROMOBENCENO
DESDE 263.15 A 303,15 K Y A LA PRESION PARCIAL DEL GAS DE
101,32 kPa.

M.C. LOPEZ, M.A. GALLARDO, J.S. URIETA Y C. GUTLERREZ LOSA

Departamento de Quimica Fisica. Facultad de Ciencias.

Ciudad Universitaria. 50009 ZARAGOZA (Espaia).

Solubility of 10 non polar gases (HZ’ DG NoS 02. CH4, C9H4,
CoHg, CF,, SFg and COZ) in chlorobenzene and bromobenzene has
been determined in the temperature range of 263.15 to 303.15 K,

at 101.32 kPa partial pressure of gas.

The solubility apparatus was designed in our laboratory, and
it is similar to that used by Ben Naim and Baer. For most of the
reported x, solubility measurements the uncertainty was estimated

to be less than 1.0 per cent.

From the experimental results, partial molar Gibbs energy,
partial molar enthalpy, and partial molar entropies of solution

were evaluated.

The regular solution theory was used to predict the solubi-
lity of gases in these solvents. The results obtained by this
theory agree, generally, quite satisfactorily with the experimen-

tal ones. i3

INTRODUCL ION

El estudio de las solubilidades de gases en liquidos es de gran interés tan
to desde el punto de vista de su aplicacién prdctica como para el estudio de las
fuerzas intermoleculares, va que las solubilidades de los gases en liguidos estdn
intimamente relacionadas con la estructura de los lfguidos. Se han propuesto dis
tintas teorfas para el tratamiento de las solubilidades de gases no polares en
liquidos. Cronolégicamente, la primera con la que se obtuvo resultados aceptables
fué la teoria de la disolucién regular, deducida por Hildebrand ! para mezclas
liquidas, y posteriormente adaptada por Prausnit22 a las solubilidades de gases
no polares en liquidos no polares y en liguidos poco polare53 Los resultados
Sbtenidos son comparables, a pesar de las grandes aproximaciones gue en ella se

incluyen, a los obtenidos con tratamientos mds modernos (Teorfia de la Cavidad)

que aplicaremos en un trabajo posterior.

En este trabajo aportamos el estudio de las solubilidades de diez gases no

polares (HZ, D N CHF* C2H4, C2HG' CFiy “ASPway. C02) en clorobenceno y bro-

27 27 02, a 4 6

mobenceno, a la presién parcial de 101,32 kPa, entre 263,15 y 303,15 K. Ambos 11
quidos poseen importancia industrial, y al estar formados por un anillc bencéni-
CO con un uUnico sustituyente,cloro o bromo, -nos permiten apreciar la influencia

de la presencia del halégeno y de la naturaleza de éste en las solubilidades.
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EXPERIMENTAL

Las medidas de solubilidad se han realizado por un método fisico de satura
cién siguiendo una técnica experimental puesta a punto en este Departamento, cu-
ya descripcién se detalla en un trabajo anterior4 . Los liquidos utilizados
fueron: clorobenceno Merck, pureza mayor 99,5%, y bromobenceno Fluka, puriss,
rigqueza mayor 99,5%; éstas han sido contrastadas por cromatografia G-L y mediante
las medidas del indice de refraccién; los valores obtenidos para éste a 293,15 K
fueron: 1,5241 para el clorobenceno y 1,5597 para el bromobenceno, siendo los va
lores de 1la literatura5 1,5237 y 1,5594 respectivamente. Los gases utilizados
fuerop productos de alta pureza, suministrados por la firma S.E.O.a excepcién
del CF4 que procedfa de la firma J.T. Baker. Su grado de pureza es: H2(99,999H
D2 (99,4%) , N2 (99,998%) , O2 (99,98%) CH4 (99%) HiCoH (991, 9%), SCHHA 1 (199/,0%)(; iCE

2ty 2Hg (99%), SF
(99,5%) y co_ (99,998%).

4 6

2

En la tabla I se consignan las solubilidades experimentales obtenidas a
las distintas temperaturas de trabajo asi cowo los pardmetros que se obtienen
de ajustar estas solubilidades obtenidas a la ecuacién

lnx2 = a + b/T + ¢ 1nT Bl (¢1%)
para el clorobenceno, y en la tabla 2, se presentan estas mismas magnitudes’ pa-
ra el bromobenceno. Las imprecisiones para las medidas de solubilidades se es-
timan menores del 1% para casi todos los casos. X2 representa la fraccién molar
del soluto en la disolucién y T la temperatura absoluta.

4
Tabla 1: Solubilidades de los gases expresadas como Xé.lo , en clorobenceno a
distintas temperaturas, y pardmetros a, b y c obtenidos al ajustar

estos valores con la ecuacién 1.

Gases Temperatura/ K ‘Parémetros
263,15 273,15 283,15 293,15 303,15 a b c
H 1,84 2,01 2,19 237 2,55  -9,1387 -525,6594  0,4550
2 . ' ’ ,
2,65 -16,9173 -143,8459 1,6022
D, 1,97 2,11 2,30 2,47 L 7
- 5,9691 1,3682
N, 3,77 3,89 4,03 4,17 4,32 15,9499 15
o, 7,70 7,72 5,75 7,78 7,80 -7,7692 2,1776 0,1061
cH 230 22,1 21,0 20,1 19,2 -2,8723 183,0979 -0,6980
C H 202 171 146 126,5 110,5 -10,1836  1274,1152 0,2581
4 ’
C,Hg 256 213 180 154 135 -21,5401  1830,9258 1,9586
CE, 4,48 4,54 4,61 4,68 4,77 -14,7011 191,5581 1,1235
SF 29.5 27.1 25 3 23 22,6 -26,6343  1332,1788 2,8250
91,0 -0,2467 950,7321  -1,3279

177 148 124,7 106,0
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Tabla 2: Solubilidades de los gases expresadas como x2.10 , en bromobenceno g
distintas temperaturas, y pardmetros a, b y c obtenidos al ajustar

estos valores con la ecuacién 1.

Gases Temperatura/K Pardmetros
263,15 273,15 283,15 293,15 303,15 a b c

H2 1,56 1,72 1,87 2,05 2,24 -17,5806 -226,9756 1,7363
D2 1,68 1,84 1,99 2,14 2,30 -4,2375 -712,8634 -0,3131
NZ 2,70 2,84 2,99 37713 3,26 -6,7645 -379,8671 -0,0020
02 5,83 5,91 6,01 6,09 6,18 -9,5241 -9,5358 0,3792
CH4 18,7 18,0 17,4 16,8 16,2 -5,2601 193,0744 -0,3244
C2H4 174 147 126,2 109,4 96,5 -17,9492 1581,0939 1,4158
C2HS 213 178 152 1312 114,6 -14,2913 1476,3312 0,8665
cp4 2,66 2,78 2,90 300 3,14 -7,2718 -300,7902 -0,0331
SFG 16,7 15,8 15,0 14,32 13,75 -0,0010 59,8394 -1,1881
c02 145 : 120,3 101,2 85,6 /3573 -3,1678 1093,8344 -0,9371

Paré el cdlculdo de las magnitudes termodindmicas AEO, Aﬁo, AEO nos referi
mos a un proceso de disolucién gue podemos escribir en la forma generale:
M (gas, 101 kPa —* M (solucién, hipotética x2=1
Si suponemos comportamiento ideal para el gas y la validez de las leyes de las
disoluciones diluidas, obtenemos las siguientes relaciones para la energfia de

Gibbs, entalpfa y entropia para el proceso de disolucién.

AG°= -RT 1n x, (sat) (2)
AE®= RT ( 91n x, (sat)/ 31ln T) (3)
As°= R {( 31n x, (sat)/ 3la T) + 1n x, (sat)} 3 (4)

La entropia de disolucién de Hildebrand representa el cambio de entropia
para el proceso:
M (gas, 101 kPa) —* M (soluciédn, Xor Py = 101 kPpa),
el estado de referencia es aqui una disolucién de fraccién molar diferente pa

ra cada gas y cada temperatura

As°~= R ( d1ln xz/ 91ln T) (5)

En la tabla 3 se consignan los valores de las magnitudes termodindmicas

obtenidas mediante las ecuaciones 2, 3, 4 y 5 a partir de las medidas de 1los
valores ajustados para las solubilidacdes, y de los pardmetros a,b y c ‘de la ec. (1).

185




Tabla 3: Energia de Gibbs, entalpfa, entropia y entropia de Hildebrand de
disolucién de los gases en clorobenceno y bromobenceno a 298,15

K y 101,32 kPa de presién parcial del gas, en kJ mol_1

CLOROBENCENO BROMOBENCENO

Sases o N As° £5, Ac° AR As° £5,

B 20,60 5,50 -0,051 0,018 20,94 6,19 ~0,049 0,021
D> 20,50 5,17 -0,051 0,017 20,85 5,15 -0,053 0,017
N> 50 2,43 0,056 0,008 19,95 3,15 0,056 0,011
o2 17,74 0,24 0,059 0,001 18,33 1,02 0,058 0,003
oH 15,46  -3,25 -0,063 0,011 15,88 2,41 -0,061  -0,008
CoHy 11,01  -9,95 -0,070  -0,033 11,35 9,64 K olO70M = ~07032
S5 10,51 S =10337 -0,070  -0,035 10,91 -10,13 -0,070  -0,033
A 18,98 1,19 -0,060 0,004 20,06 2,58 0,059 0,009
L 15,05 4,07 -0,064  -0,014 16,29 3,44 ~0,066 0,012
€% 11,46 -11,20 -0,076 0,038 11,99 _11,42 -0,078  -0,038

DISCUSION

: o e3 s .
Prausnitz y Shair consideraron gque el proceso de disolucién de un gas en

un lfiquido se puede desglosar en dos etapas:

i) Condensacién isotérmica del gas a la presién parcial de 101.32 kPa hasta
un estado lfigquido hipotético en el que su volumen molar es igual al volumen mo-
lar parcial del gas en la disolucién. La variacién de la energia de Gibbs para
este proceso es:

—13)

1 o
AGZ = RT 1n (f2 / f2(101 kPa)) (6)

o

f;, es la fugacidad del gas como ligquido hipotético y f2

la fugacidad de ese
mismo gas a 101.52 kPa.

ii) Disolucién del liquido hipotético en el disolvente hasta alcanzar la satu-
racién. La variacién de la energia de Gibbs serd ahora:
ala)) 2

= 2.
AG, = Vz(s1 - 62) ¢1 + RT 1ln X, (7)

siendo 72 el volumen molar del soluto en el estado hipotético, 51 y 52 son los
pardmetros de solubilidad del disolvente y del gas y ¢1 es la fraccidén molar

en volumen del disolvente.

Como el gas estd en equilibrio entre la fase gaseosa y la disolucién:
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e Nei o (8)

y sustituyendo las energfas de Gibbs por sus expresiones se obtiene que:

-ln x, = 1n (f; /e Een) A VIR (S = 8T =gy

5 /&S RT K (9)

Esta es la ecuacidén que expresa la solubilidad de un gas en un liquido segun

la teoria de la disolucién regular. Esta solubilidad aparece siempre como ca-
racteristica del disolvente a través de su pardmetro de solubilidad y fraccién
molar en volumen, y del soluto a través de su fugacidad omo lfiquido hipoté-
tico, pardmetro de solubilidad y volumen molar parcial. Todos estos pardmetros

deben estar referidos a una temperatura, nosotros hemos considerado 298.15 K.

El pardmetro de solubilidad del liguido 51, se puede conocer a través de

7
la expresién de Hildebrand '8:

e {(AHvap. - RT) / vm}ir (10)

AHvap es su entalpfa de vaporizacién y Vm su volumen molar. Los valores obteni-
dos son: 51 =805 688 (Icialls cm_x)i

8§, = 9,77 (cal cm'3)i

y v, = 102,25 S e para el clorobenceno y

Y Vm = 105,51 cm3 mol_1 para el bromobenceno.

Los pardmetros de solubilidad de los gases son los calculados por Prausnitz
S U :
$ y las fugacidades de los gases como liquidos hipotéticos se han calculado

3 357,
a partir de las grdficas de fugacidad reducida frente a temperatura reducida L
excepto en los gases fluorados para los gue hemos tomado unos valores deduciddé-

r

de medidas ekperimentales de solubilidades Los pardmetros de solubilidad de
los gases y las fugacidades de los gases como liquidos hipotéticos se consignan

en la tabla 4

Tabla 4: pardmetros de solubilidad de los gases, fugacidad de éstos como ligui
dos hipotéticos y volumen molar parcial de los gases disueltos en clo
robenceno y bromobenceno, calculados segun la ecuacién (11) o tomadas

*
de la bibliografia

Gases 52/cal <:m-3 f;/atm Vé/cm3mol_1 Vé/cmz‘lmol_1
CGHSCl CGHSBr
u, i e 6.439 54.3 56.8
N2 251519 5037 32.4%* 32.4%
O2 4.00 5.609 330X B3 0X
CH4 5.68 5.100 52F0 K 52.0%
C254 6.60 3.807 63.2 64.8
C2H6 6.60 3.401 68.2 69.8
CF4 4.60 4.489 66.2 80.8
SF6 4.85 2.890 84.9 97.0
CO2 6.0 3.807 53759 56.3
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El volumen molar parcial de los gases, excepto para N 02 Y CH4 que se

2!
5 3 3 A o
han tomado de la literatura ) se evaluan mediante la ecuacién:

ST < . e
V., ={=(A 1) / (3P / 3T) V}*R 1n X, + \12'b (11)

Aes la pendiente de la recta gue resulta del ajuste lineal por el método de minimos cua-
drados de (3ln X, / 31ln T) frente a -1n Xo0 ¥ gue se hace separadamente para los

gases fluorados . Se excluye el CO_, ya que se aparta bastante de esta correla-

cidén En la figura 1 se representin estas relaciones. Los valores de A obteni-
dos son: 1,23 para los gases fluorados y 1,49 para los no fluorados, en cloro-
benceno y 1,52 y 1,55 en el clorobenceno. El valor de (BP/QT)V se obtiene a
partir del coeficiente de dilatacién isobdrico y del de compresibilidad isotér-
mico 2 y su valor es 12,89 atm K_l para clorobenceno y 13,35 atm K_1 para el
bromobenceno. Los volumenes molares parciales obtenidos para los gases en los
respectivos disolventes se dan en la tabla 4. En 1a)tabla 5 se consignan las sé
lubilidades de los cgases en clorobenceno y bromobenceno, a 298,15K, obtenidas
mediante la ecuacién (1) y los pardmetros a, b y c de las tablas 1 (clorobence-
no) y 2 (bromobenceno), y las solubilidades calculadas al aplicar la teori§ de

la disolucién regular.

Figura 1: Representacién gréafica de 3ln xv/alnT frente a

—lnx2 para clorobenceno O y bromobenceno O

H
2
2 | By
B,
CFy
— - 02
c (= 0 L
m o
~ S
~ o~
> 53 cHy
c e SFG
o ‘032
.
CoHy
-4 L
C,H,
6
2Q.COZ 2 I qCOz 1 n
4 6 8 5 e 9
=In XZ ‘U\XZ

Las diferencias existentes entre las solubilidades experimentales y las

teéricas no son grandes, sobre todo si se tiene en cuenta las aproximaciones

introducidas al efectuar los cdlculos del volumen del gas como liguido hipoté-

tico y la fugacidad del gas, también como ligquido hipotético. La mayor discre-
pancia se observa para el hexafluoruro de azufre en bromobenceno (43%).

El comportamiento de los gases es andlogo en ambos disolventes, siendo las
solubilidades en bromociclohexano ligeramente inferiores que en el disolvente

clorado. Para el hexafluoruro de azufre destaca el bajo valor experimental que




resulta para su solubilidad en comparacién con el tedérico.

Al comparar los valores experimentales obtenidos para estos disolventes

10,11,12,13

con los gque se obtienen para estos mismos gases con benceno
serva que las solubilidades son mayores en este ultimo disolvente (excepto en

el caso del CC)2 para el que se presenta un valor intermedio entre el compuesto
clorado y el bromado): Es decir, gque, en general, la presencia de un sustituyen
te halédgeno hace gque disminuya la solubilidad del gas y adem&s esta disminucidn

se acentda cuando aumenta el tamafio del sustituyente. .

Tabla 5: Comparacién entre los valores ekperimentales de las solubilidades (ajus
tados seguin la ec. (1)) y los calculados mediante la teoria de la diso-

lucién recular para clorobenceno y bromobenceno a la temperatura de 298.15 K

Gases clorobenceno bromobenceno

4 4 4 4

x2.10 (exp.) x2.10 (teo.) x2.10 (exp.) x2.10 (teo.)
Hz 2.46 2.58 2.14 152897
D2 2.56 -——— 2.22 -———
N2 4.24 3.26 3R9119 23747
02 S US) 6.55 6.14 5574
CH4 19.6 16.3 16.5 14.0
C2H4 118 87.2 103 74.9
CZHG 144 122 1 122 102
CF4 4.72 . 6.43 3.06 4.82
SF6 2311 23751 14.0 20.5
CO2 98.1 70.1 7:9/41 57.6
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SOLUBILIDADES DE LOS GASES NOBLES EN CLOROBENCENO Y BROMOBENCENO
ENTRE 263.15 K Y 303,15 K Y A LA PRESION PARCIAL DEL GAS DE
101,32 kPa.

M.C. LOPEZ, M,A. GALLARDO, J.S. URIETA Y C. GUTIERREZ LOSA
)]
Departamento de Quimica Fisica. Facultad de Ciencias.

Ciudad Universitaria. 50009 ZARAGOZA (Espaia).

Solubility measurements of rare gases in chlorobenzene and
bromobenzene between 263.15 and 303.15 K and 101.32 kPa partial
pressure of gas, are evaluated. Using the scaled particle theory,
Lennard-Jones 6,12 pair potential parameters for chlorobenzene
and bromobenzene were determined. For this purpose, we have also
used the solubilities of other 10 non polar gases whose measure-

ments appear also in this Revista.

Likewise, a method for the correlation and prediction of so-
lubilities and entropies of solution of gases in liquids by means
of a factor analysis has been considered; agreement is satisfac-

tory, except for the fluorinated gases and the carbon dioxide.

INTRODUCCION

El estudio termodindmico de las disoluciones es una de las lineas de in-
vestigacién mas importantes en Quimica Fisica. Dentro de este drea, el estudio
de las disoluciones de gases en liquidos representa un amplio campo de trabajo,
yYa que las disoluciones estdn intimamente relacionadas con la estructura de
los liquidos y con las interacciones entre las particulas que constituyen la

disolucién.

Reiss y col.l'2 desarrollaron un tratamiento estadistico de un modelo de
esferas rigidas, mediante el cual calcularon el trabajo necesario para intro-
ducir una particula esférica en un fluido .que se considerase constituido por
particulas rigidas y esféricas. Este cdlculo constituye uno de los principa-
les fundamentos de la teoria de la cavidad (Scaled Particle Theory, SPT) que
ha sido aplicada al tratamiento de solubilidades de gases en ligquidos por
Pierott13'4's, Yy gue permite deducir » @ partir de las medidas experimentales
de solubilidades los pardmetros de la funcién de potencial intermolecular de
Lennard-Jones 6,12 entre los pares de las moléculas de disolvente. Esta teo-
ria es actualmente 1la que puede, en forma mas general, interpretar y justifi-

car las solubilidades de gases en lfquidos:

Otro tipo de tratamiento, gue no intenta justificar teéricamente las so-
lubilidades de os gases sino gue tiene como objetivo la prediccién de éstas y

3 6
de las entalpias de disolucidén, es un método propuesto por de Ligny que se
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basa en un tratamiento por andlisis factorial de varios datos de solubilidades
para extraer de ellos unos pardmetros que caractericen a cada gas y a cada di-

solvente independientemente uno del otro.

Hemos medido las solubilidades de los gases nobles en clorobenceno y bro-
mobenceno a varias temperaturas, y hemos aplicado la teorfia de la cavidad y
el método del andlisis factorial de de Ligny a estas medidas y a las efectua-
das con 10 gases no polares (HZ’ D2' NZ' 02, CH4, C2H4, CZHG' CF4, SF6 y C02)
en estos disolventes y que han sido publicados en esta misma Revista, en un
trabajo anterior’.Asi podemos contrastar la bondad de la teorfa de la cavidad

y la utilidad del método del andlisis factorial.
EXPERIMENTAL

Los liquidos utilizados son: clorobenceno, Merck y bromobenceno Fluka,
sus purezas son superiores en ambos casos a 99,5% y han sido contrastadas por

7 7
cromatografia G-L y por medidas del indice de refraccién .

Los gases son productos de alta pureza de la firma S.E.O.(a excepcién
del neon que fue J.T. Baker ) He (99.995%), Ne (99.9%), Ar (99.9990%), Kr
(99.95%) y Xe (99.995%).

Las medidas de solubilidad se han realizado por un método fisico de sa-
turacidn, siguiendo una técnica puesta a punto en este Departamentoa, Se esti-
ma que ]a imprecisién con gue se obtienen estas medidas es: generalmente, menor

del 1%, aunque para He y Ne, en algun caso, podria ser algo inferior.

En la tabla 1 se consignan las solubilidades de los gases a las tempera-
turas de experimentacién: 263,15, 273,15, 283,15, 293,15y 303,15 K a la presién.
parcial de 101,32 kPa , expresadas como fréccién molar, y los pardmetros a,b
Yy C© que se obtienen al ajustar las solubilidades a la ecuacién:

in X, = a +b/T + c 1n T (1)

En la tabla 2, indicamos las magnitudes termodindmicas para el proceso de di

: 9
solucién, calculadas a 298.15 K segin las expresiones :

Energia de Gibbs: AG®° - _RT 1n X, (sat) (2)
Entalpia: AR = RT (dln x,(sat)/31n 1) (3)
Entropia: AS°® = R{(d1n %, (sat)/31lnT) + 1ln x,(sat)} (4)

Entropia de Hildebrand: AEH = R (8ln x,/31n T)




4
Tabla 1: Solubilidades de los gases expresadas como x2-10 , en clorobenceno y bromobenceno
a distintas temperaturas, y pardmetros gue resultan de ajustar estas solubilidades
como funcién de la temperatura segun la ecuacién (1).

‘Temperatura/K Pardmetros

Gases 263.15 273,15 283,15 293,15 303,15 a b c

Disolvente: C L O R O B ENC E N O

He 0,446 0,514 0,594 0,679 0,767 -12,4199 -810,6574 0.9834
Ne 0,669 0,752 0,840 0,947 1,043 -17,0369 -432,6713 1,6269
Ar 8,52 8,53 8,55 8,57 8,57 -7,0521 -11,8735 -0,0052
Kr 387 31,2 29155 . 28,0 26,6 24,8784 -892,4782 -4,8769
Xe 199 171 148 131 115.4 -9,5541 1143,1617 0,2315

Disolvente: B R O M O B E NC E N O

He 0,353 0,416 0,488 0,569 0,660 -21,1678 -584,8330 2,3571
Ne 0,494 0,563 0,657 0,753 0,853 -21,4674 -436,2918 2,3691
Ar 6,59 6,64 6,73 6,80 6,87 -9,4002 15,7659 0,3614
Kr 20575 25,9 24,4 23,2 22,3 -16,8258 818,2865 11,4032
Xe 175 151 131 116,2 103,7 -13,4995 1273,4191 0,8275

Tabla 2: Energia de Gibbs, entalpifa, entropia y entropfa de Hildebrand para la disolucidén
de los gases nobles en clorobenceno y bromobenceno a 298.15 K y 101.32 kPa de pre-
sién parcial del gas, en kJ mol™".

CLOROBENCENO BROMOBENCENO

Gases AG° AE® As® AEH AG° AES As® A EH

e e e

He 23,64 9,18 -0,049 0,031 24,04 51{0)57/51 -0,045 0,036
Ne 22,85 7,63 -0,051 0,025 23,38 950 -0,047 0,032
Ar 175551 0,11 -0,058 0,000 18,07 0,76 -0,058 0,003
Kr 14,63 -4,67 -0,065 -0,016 15,09 -3,33 -0,062 -0,011
Xe . 10,91 -8,93 -0,066 -0,030 11,19 -8,54 -0,066 -0,028
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Como, normalmente, los cdlculos

Tabla 3: Solubilidades de los gases tedricos se refieren
no polares en clorobenceno

y bromobenceno a 298.15 K.

a la temperatu-
ra de 298.15 K, en la tabla 3 consig-

namos los valores de las solubilida-

des que, mediante interpolacién, re-
clorobenceno  bromobenceno -
sultan a dicha temperatura para los
Gases x2.104 x2.104 gases nobles y, ademds, las de los gases:
’ ' v ’ T CES;
H,, D,, N, o2 CH4, C,H,, C,H, "
SF6 v COZ' cuyas medidas experimentales
He 0,722 0,613 : A 7
aportamos en un trabajo anterior .
Ne 0,989 0,802
Ar (5,557 6,83
Xr 27,3 22,7 DISCUSION
Xe 123 110
H, 2,46 2,14 El modelo de la cavidad, propuesto
D2 2,56 2,22 por Plerotl:tozliyl desarrollado por Wilhelm
: ’ A
NZ 4,24 3,19 y Battino considera que el pro-
02 7,79 6,14 ceso de disolucién de un gas en un liguido
CH4 19,6 15,55 se puede desglosar en dos etapas:
C uH
2 4 o 108 La primera, es la creacién de la
C_H 2
2 6 ek 122 cavidad en el disolvente con el tamafio
CF 4,72 =
4 =00 adecuado para alojar la molécula del gas
SF 23501 14,0
6
GOI 98,1 79,1 La segunda consiste en la introduc-
cién en el interior de la cavidad

de la molécula del gas que interacciona con el disolvente. Cuando el gas se ha-
5
lla en equilibrio con el liquido, se tiene que cumplir que el potencial quimi-

co del gas en cada una de las fases sea el mismo.

Considerando la situacién de equilibrio y que se cumple la Ley de Henry,
Yy expresando las magnitudes para un mol de sustancia se obtiene que la energia
de Gibbs para el proceso de disolucién es:
=0 = = ()
A G == RTET-nHK = G + G, + RT 1ln RT/V (6)
H c s 1
donde KH es la constante de la ley de Henry, EC es la eneragfa de Gibbs molar par-
cial necesaria para la creacién de la cavidad, Ei es la energfia de Gibbs molar

parcial correspondiente a la interaccién de la molécula de gas en la cavidad,
fo}

R es la constante de los gases, T la temperatura absoluta y V1

del liguido.

el volumen molar
5 = 7 = < 1,2 5
La evaluacién de Gcha sido llevacda a cabo por Reiss y col. , obteniendo
una ecuacién asintética de la forma:

(7)

en la que Sl B2 el radio de la esfera que excluye los centros de las moléculas de disol-

Y AT UL
Kby

L

i




5 vente en torno a la del soluto y las constantes ki dependen de la densidad, tem

peratura, presién y didmetro de la esfera rigida. Esta expresién se puede desa-
rrollar en funcién llamado factor de compacidad, y]O:

y:ﬁaf/o (8)

al' es el didmetro de la esfera rigida para el disolvente y [ es el nuimero de

densidad para las moléculas: p = NA/V?. Teniendo en cuenta las expresiones para
1

las k,a'hl se obtiene la siguiente ecuacidén para EP: 2
at c.
: 2 2
3 [-'alz\ S 1w Y 12 212 ;

; GHE _BRTAGIE 28— URER 5 + 18 \ = - — S=ie
y g AU ) 1 \1-y 1 1
3 )

- 1n (1—y)3 (9)

Para evaluar Ei’ Pierotti supone gue la energfa de Gibbs molar parcial
para el término de interaccidén es éproximadamente igual a la energia de inter-
accién molar parcial

Shl= (10)
at i
La energia de interaccién de un gas no polar con un liquido polar, puede expre-

sarse mediante:

-6 6 -12
= - ) - - -6
& Cohier s Sam o MG (11)
: P
5 b
Ip son las distancias de los centros de las moléculas de gas y liquido, Cdis y
Cind son las constantes de las energias de dispersién y de induccidén y 012 es
la distancia entre una molécula de soluto y una de disolvente a la cual las
energias de dispersién y de repulsién son iguales en magnitud. C y C
dis ind
pueden calcularse mediante las expresiones dadas por Pierottia.
Para la constante de la energia de dispersidén resulta:
o toa 6 o 6
(@ = THE s a g )/ =
dis (e-€5) Loy + 0,)/2} den 0 (G122

o
2
g el liguido (1) y para el gas (2).

(e}
donde El VAEE son los pardmetros de energia y O y-o2 los de distancia, para

1

La constante de induccién se obtiene mediante la expresién:

Ch = u, a (13)

donde Ul es el momento dipolar del lfquido y a_, la polarizabilidad del gas.

2

: ~ 3 b 4
a La expresién de G, es:
oy Lt

_ = = = 2 3 i 3 (e}
G Gi A e e 1.3331TpNa(u1 az/clz) + 3,555ﬂoR012 (elz/k)

(14)

Como los gases nobles son los uUnicos que cumplen la doble condicién de

ser esféricos y monoatémicos, al correlacionar el logaritmo de la constante
de la ley de Henry con la polarizabilidad del gas y extrapolar a polarizabili-

dad cero (esfera rigida) se obtiene un valor limite, K que es el valor de la

H,0'



constante de la Ley de Henry para una esfera rigida en un determinado disoiven
te. Por otra parte, para determinar el didmetro de esfera rigida de un gas cuya
polarizabilidad sea cero, se debe representar el didmetro a2 frente a la polari

zabilidad o, ¥ extrapolar a o, = 0. El resultado asi obtenido es 0,225 nm. De lo

anterior resulta que:

i = (15)
élm 1n KH 1n KH,O
2 »0
0,25
a, 2 5

Los valores de KH 0 que hemos hallado son: 9,98 para el clorobenceno y
'
10,15 para el bromobenceno. En la figura 1 se pueden ver estas representacio-

nes (la linea punteada corresponde al benceno)

Para dichas esferas rigidas

Figura 1: Valores experimentales de ln Ky frente a la ecuacion (6) se transforma en
@2 para los gases nobles en clorobenceno
O, bromobenceno ® y benceno --- a 298.15 RT 1n K = G + RT 1n R'I‘/vo
Ky 101.32 kpa. H,0 c !
(16)

de modo que conociendo K el

H,0'
volumen molar del lfiguido, toman

10 do a, =02 = 0.255 nm y sustitu-
yendo GC por su correspondiente
expresién (9), se obtiene el dia
metro de esfera rigida, al, que
asimilamos al pardmetro de dis-

tancia del potencial de Lennard-

[o2]

-Jones, 01, para dos moléculas
iguales de disolvente. Los valo-
res obtenidos son: 0,561 nm para

el clorobenceno y 0,572 nm para

-In Kuo

el bromobenceno, gque concuerdan

bien con los resultados hallados

en la bibliografiala.

(=)}

Por otra parte, transfor-
mando la ecuacidén (6), obtenemos

la expresidn:

RTInK_ -G _ - RT1ln (RT/VS) -
H c 1

2 3
= 1,333npNAu1a2/012

3 o
= —3.555"OR012(€1/k)

1 1

1 2
%5102 /em?

w
~F

3

L3 i) 3
(Ez/k)

(17)

El primer término se obtiene a partir de las medidas experimentales de

csolubilidades, de Ec’ Qi ina’ Gi dis ° Gc se puede calcular una vez estimado
o el momento dipolar estéAtomado de la bibliogrgfia12 y se admiten como vd-

17
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dlidas para lcs pardmetros mixtos, las reglas de combinacién sencillas:

Gam (og + 0,)/2 (18)
SO R T 19
Fh12 ST )

En la tabla 4, se dan los valores de las energias de Gibbs correspondien-

tes: a la formacién de la cavidad Ec' de dispersidén Ei y de induccién E.

dis i inc
para el clorobenceno y el bromobenceno.

Tabla 4: Contribuciones a las energias de Gibbs de disolucién: términos de creacién de
la cavidad, de induccién y de dispersién en kJ mol-1 para clorobenceno y bro-
mobenceno.

Gases ac Ei ind Ei disp Ec ai ind ai disp

l CLOROBENCENO BROMOBENCENO

He 8164 -0,01 -2,33 1524654153 -0,01 -2,40

Ne 5 1127%°5:5 -0,02 -6,02 13776161 -0,02 -6,17

Ar 16,58 -0,06 -13,94 17,34 -0,06 -14,26

Kr 18,45 -0,09 -17,66 19,30 -0,08 -18,04

Xe 20,66 -0,13 -21,94 21,63 -0,12 -22,40

H2 . 13,04 -0,04 -5,60 13,62 -0,03 -5,74

D2 13,04 -0,04 -5,78 13,62 -0,03 -5,92

N2 18,67 -0,06 -13,37 19,54 -0,06 -13,66

O2 16,93 -0,06 -13,78 L7l 7L -0,06 -14,09

CH4 18,67 -0,10 -17,18 19,54 -0,09 -17,56

C2H4 21,54 -0,10 -23,38 22,55 -0,09 -17,56

C2H6 24,11 -0,12 -26,03 25,24 -0,11 -26,53

CF4 26,56 -0,08 -21,31 27,81 -0,07 -21,70

2 SF6 34,75 -0,09 -33,23 36,42 -0,09 -33,65

C02 20,51 -0,08 -20,84 21,46 -0,08 -21,10

o

Del segundo miembro de la ecuacién se desconoce uUnicamente El/k' por 1lo
% tanto, representando grdficamente el primer miembro de la ecuacién (17) fren-
: 3

(e} 3
Cesa! (gz/k) 012 para todos los gases obtemdremos una recta cuya pendiente es:

B ‘3:555ﬂpR(ET/k)%- Del valor deducido para esta pendiente podemos obtener asi el

£ valor del pardmetro de energia ST/k_

3
=

197




En la figura 2 se muestran estas representaciones grdficas para cloroben-

ceno y bromobenceno a 298.15 K.

obteni

13
lores que concuerdan bien con los hallados en la bibliografia

respec

Figura 2: Representacién grdfica del primer miembro de la ecuacién (17) frente a 0132(22/}()i
gases, en clorobenceno O. y bromobenceno

dos son: 618 K

tivamente)

-10 para los

= =1
1para el clorobenceno y 637 K

Los valores de los pardmetros de energia

para bromobenceno, va-

(610 y 616

® , a 298.15 K
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Tabla 5: Valores de las solubilidades de los gases calculadas mediante la teoria de la
cavidad, expresadas en fraccién molar (x2'104) a 298.15 K para clorobenceno y
bromobenceno.
Gases CLOROBENCENO BROMOBENCENO Gases CLOROBENCENO BROMOBENCENO
He 0,996 0,854 02 192520 uoe
Ne 3,02 2,64 CH 23:,8 lopd
2 75,8
Ar 14,8 1825515 H 91,4 Y.
2 75,9
Kr 31,4 26,75 H RS &
5 3,76
Xe 73,8 61,69 CF, 5549 5
B, 2 1,82 sF, 22,6 148
D 2520 1,96 CO. 46,2 S8
2 2
N2 5,04 4,11
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Una vez calculados los pardmetros de distancia y energia del clorobenceno
y del bromobenceno, se pueden obtener los valores de la en%rgia de Gibbs de
disolucién mediante la ecuacidén (6). Para ello se reinvierten los cdlculos pa-
ra Ec y Ei' ecuaciones (9) y (14), introduciendo en éstas los pardmetros de los
disolventes junto con los de los gases. Una vez obtenidas las energias de Gibbs
para la disolucién, podemos deducir de ellas los valores de las solubilidades

de los gases, valores que se consignan en la tabla 5

Otro método, mencionado inicialmente, para estimar las solubilidades
de los gases en liquidos es el método del andlisis factorial de de Ligny.
Expresa las solubilidades y las entropias de disolucién mediante ecuaciones
del tipo: n
y =R GE L (20)

ik

Vi representa la solubilidad o entropfa de disolucién y G y L son pardmetros
g,

ajustables, G depende unicamente de la naturaleza del gas y L de la del disol-
vente. Hay que elegir el numero de términos necesarios para que los restos

Y (21)
e’

M5
)

r = 5
g,1l,n g,1

sean minimos.

De Lignys'lq, elige un conjunto de solubilidades de gases en liqui-
dos de los qﬁe desconoce el 50% de las combinaciones, habiendo datos descono-
cidos 1los parametros G y L, no pueden calcularse por el método del andlisis
factorial, ya gue para ello es necesario conocer el conjunto completo de los
datos, por ello idea una variante de este método, gue denomina también método
del andlisis factorial, y por medio de un proceso iterativo calcula los pard-

metros G y L que cumplan la condicidn:

e

(y i

=
= VT @i
g,l g,1 i

S T )
ol T &R (22)

eligiendo el numero n de términos adecuado.

El aspecto m&s importgante de este cdlculo es su capacidad para predecir
solubilidades y entropias de disolucién, cuando conocemos datos de solubilidades de

esos gases con ciertos disolventes y la de esos disolventes con otros gases.

Haciendo un cdlculo de desviaciones, ha resultado6 que para reproducir las
solubilidades, el valor idéneo de n es 2, por lo tanto:
it = L 23
og p/x G1 1 + G2L2 ( )

P es la presién en mm de Hg y x la solubilidad expresada como fraccién molar.

En la tabla 6 se consignan las solubilidades, a 298.15 K, que resultan de

aplicar este método. Los valores de G1 b 62 se han tomado directamente del tra-




habo ae ac Lignye asi como los de Ll b'é L2. Ambas series de pardmetros aparecen

en dicha tabla.

Tabla 6: Valores de los pardmetros Gy y G2 para el cdlculos de las solubilidades6
y solubilidades expresadas como fraccién molar (X;-10%) a 298.15 K para
clorobenceno y bromobenceno.

Clorobenceno Bromobenceno
L =5,665 1L,=0,193 Ly=5.718 1,-0,372

Sages G, G, x,°10* x S0t
He 2,769 0,267 0,759 0,601
Ne 2,697 0,384 1,075 0,897
Ar 2,362 0,009 9,21 6,96
Kr 2,177 -0,167 29,6 21,5
Xe 1,944 -0,264 120 86,3
H, 2,587 0,011 2,65 1,95
D, 2,616 -0,100 2,27 1,60
N, 2,468 0,087 4,78 3,67

5 2,376 0,041 8 ,34 .6,37
CH, 2,238 -0,381 23,6 15,7
c, 8, 1,949 -0.025 102 79,7
CoHC 1,924 -0,343 141 98,6
CE, 2,369 0,334 7,33 6,25
SE 2,110 0,335 =200 2557
£9; 2,044 -0,005 280l Bt

Si tenemoé en cuenta los resultados obtenidos al aplicar la teoria de la
cavidad, el método del andlisis factorial y los obtenidos al aplicar la teo-
rfa de la disolucién regular7, podemos decir gue los tres son comparables,
siendo los gases nobles mas ligeros He y Ne los gue mas se desvian en la

teorfia de la cavidad, hecho gue no se da con los otros dos tratamientos.
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