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Sumas de potencias naturales de nimeros naturales

Jesus Hernando Pérez
I.B.M. Los Castillos

Abstract

The natural power sums of natural numbers can be directly obtained by means
of an expression which involves the wellknown Bernoulli’s numbers By. The aim of
this article is to give an iterative method by which the sums for a r exponent can
be easly found from the low orders.

1. Introduction

Presentamos la suma de series divergentes de potencias naturales de niimeros naturales
en términos de sencillas expresiones en forma de sumatorios que seran desarrollados pre-
viamente. La elaboracién de esta herramientas es elemental y su aplicacién al célculo
aparece de forma tan metddica como natural, ilustrando adecuadamente la solidez de
estos procedimientos matemaéticos.

2. Primeras férmulas y notaciones.

Usamos la siguiente notacion:
n
=) i"'=1"+2"+..+n,Vn,reN
i=1
con la que obtenemos la expresién:

Sp(r+1)— Sn;zrz—l > i+ 1) (1)

i=1 1=0

3. Expresiones para sumas de series divergentes de potencias naturales.

D Si(r) =1 +1"+2)+...+ (1" +2"+ ... +n")
i=1

=nl"+(n—-1)2"+...+ [n— (n— 1)]n"
=n(l"+2"+....4+n") — 1.2 +2.3" + ...+ (n — 1)n7]

n—1

=nSy(r) — Z (i 4+1) = (n+1)Su(r) — Sa(r + 1)

i=1

donde se ha tenido en cuenta la expresién (1).




4. Otras expresiones para la suma de potencias naturales de orden .
Sa)=04+0)+(1+1D)" +..+[1+(n— 1)]"
14+ ()1 et QU+ + (=D o+ () 1) (3)
‘ e (1)5,,_,(1) e (;)5,1_1(1-)
vy aplicando reiteradamente esta expresion, tendremos

Sa(r) = n+ (]) Sa-1(1) + . +[(n—1) + (1) Sac2() + o + (1) Saa(r)]

—n+m—1)+..+1+ ()25(1 (T;)Tfsi(fr

= 5.1+ (}) [2 Si(1) - Sn(l)} +ot (1) [é Si(r —1) = Sa(r — 1)} v
S URS o WLXCEENERY

donde se ha utilizado la expresién (2).
Otra forma para hallar estas sumas, mds en consonancia con nuestro objetivo, es la

siguiente:

Snlr) = 1= [snu) +rnSa(r —1) + Z < >{nS — Su(k+1)} (5)

obtenida de la expresién anterior y que nos permite calcular cualquiera de esta sumas
cuando son conocidas las anteriores.
Como ejemplo, aplicaremos la ecuacién anterior en los casos n =2y n = 3.

5. Aplicaciones.

Sn(0) =n

8(1) = @

Sn(2) = 1[Sa(1) + 2n8,(1)] = Ml_)fj(@i) o
5a(3) = 1 [Sa(1) +3n8a(2) + () {nSa(1) - Sa(2)}]

= 1{(3n+1)Sa(1) + (3n — 3)Sa(2)] =
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DOS APLICACIONES MATEMATICAS
DEL TEOREMA II DE BUCKINGHAM

L. Agud , 0. R. G. Cataldn y J. Garay.

Departamento de Matematicas. Area de Analisis Matematico.
Facultad de Ciencias
50009-Universidad de Zaragoza

Abstract

In this paper, a connection between Dimensional and Mathematical Analysis is es-
tablished and the natural direction of the application of mathematical results to physics
is inverted. In this article, two Mathematical classic Analysis theorems are proved tak-
ing the celebrated physical II Theorem of Buckingham as origin. These two theorems
are the n-dimensional Theorem of Taylor and the Rule of Barrow for analytic functions.
The idea is opened for establishing more loops between both Analysis.

§0.- INTRODUCCION

Habitualmente los fisicos suelen utilizar resultados matemadticos para sus aplica-
ciones. Contrariamente en este trabajo que podemos calificar de un ensayo seguimos el
sentido contrario. Utilizaremos un teorema clésico de la fisica para probar con él dos
resultados cldsicos del Andlisis Matematico. Nos referimos respectivamente al teorema
II (fisico), al teorema de Taylor y la regla de Barrow (ambos mateméticos).

El teorema II constituye el nicleo del Anélisis Dimensional que es una disciplina
fisico-matemadtica que estudia todo lo relacionado con el andlisis de las dimensiones de
las magnitudes fisicas. El primer tratado sobre esta materia se debe a Bridgman [1],
aunque algunos autores citan como precursor al propio Fourier [2] en su obra clésica




sobre el calor.

Por ejemplo Langhaar (3] dice: ”Fourier fue el primero en llamar la atencién sobre
la naturaleza de las entidades fundamentales y el concepto de dimensiones fisicas.”

M4s recientemente y a nivel de nuestro pais, hay que destacar las aportaciones
de Julio Palacios [4] y la actividad que desarrolla actualmente el grupo de Analisis
Dimensional con sede en la Escuela de Arquitectos de Madrid y encabezado por el
profesor Gonzalez de Posada.

Como antes hemos comentado, el nicleo del Andlisis Dimensional lo constituye el
Teorema II de Buckingham, asi llamado por ser este autor quien al parecer publicé la
primera demostracién [5]. De todas las maneras, existen varias interesantes anécdotas
sobre el origen del teorema que el lector puede encontrar en [6] del grupo anteriormente
citado.

Una vez conocido este teorema, ha sido utilizado ampliamente en miltiples aplica-
ciones técnicas por fisicos e ingenieros.

Como dijimos al principio, aqui lo vamos a utilizar para presentar una nueva prueba
del Teorema de Taylor y de la Regla de Barrow.

En la seccién primera, presentaremos el contenido del Teorema II, con una idea
abreviada de su demostracién. En las secciones 2 y 3 presentamos las correspondientes
demostraciones del Teorema de Taylor y de la regla de Barrow.

§I - TEOREMA II

Supongamos que en un problema fisico intervienen n magnitudes fisicas (4, B, .., Z).
Sean M, M, ..., M} las magnitudes fisicas fundamentales correspondientes al problema.
Supongamos las siguientes relaciones dimensionales entre unas y otras magnitudes:

A= MO M. M

B=M M2 M

Ze MM M

Sea mj,ma,...,m un sistema de unidades de las magnitudes fundamentales. Sean
a, B, ...,¢ las medidas de A, B, ..., Z respecto de estas unidades. Sea finalmente

#(a,B,....0) =0

una férmula del problema fisico objeto de estudio.




Sea {z1,z2,...,2k} una k — tupla de nimeros positivos, y tomemos como nuevas
unidades fundamentales las siguientes:

my mo mp
TESieg Tennacqze v e ghioa
Ty 9 T

Ahora las medidas de 4, B, ..., Z serdn o/, 4/, ..., (', que como sabemos se relacionan

con las anteriores mediante:

ali=ra(zlii ot

B = B(zh...aP)

G ((zf‘xi")

Como la férmula que rige el fenémeno es completa, también se verifica:

gla(zl ciaxgt ) (fosh :z:i" )] =0

Si ahora fijamos una n — tupla a,f,...,¢ y dejamos variar las zj, obtenemos la
siguiente funcién en z; que ademés ser4 idénticamente nula

B2y, 2aseeyzr) dlala ..cxgk), ,C(:cf’:ci‘)] =0

Ahora derivamos F' respecto de z1:

OF i 4
=—=(zi5ws ) =drao o3 11:2“2...1:‘,:“ + .. + PnClizi lzgz...zi‘* =0

61:1

Il

donde con ¢; indicamos la i—ésima derivada parcial de ¢. Haciendo z; = z = ...
zTr = 1 se obtiene:

aa1¢1 + BP1g2 + ... + ((16. =0 (1)

Ahora reemplazamos las n variables (a, f,...,() por (a”,8",...,¢") en la forma
siguiente:

a) Si a; # 0 hacemos a = (o)™

b) Si ;1 = 0 hacemos B = 3".

De esta forma se tiene

¢(a, IB) 2229 C) e ¢[(a”)al7 ", QEs) (C”)Cl] =
= G(a", B",....¢") =0




Observemos que la dimensién de estas variables respecto de M, es o bien uno (si
ay # 0) o bien cero (si f; = 0).

Calculando las derivadas de G, la relacién (1) se convierte en:

alIGl + ﬂ”GZ + + C”Gn = O (2)

Ahora introducimos unas nuevas variables (21, z2, ..., 2n—1,("") en la forma siguiente:
a) Si a1 # 0 hacemos a' = 21("
b) Si B; = 0 hacemos 3" = 23

Notemos que todas las variables z; son de dimensién nula respecto de M;.
Asi tenemos:
Gla" Bl =G a0 s e
=H(21a22> """ 7zn—11<”):0

Ahora se ve ficilmente que la derivada de H respecto de la dltima variable ¢ es
idénticamente nula, dando asi lugar a una nueva funcién:

‘1’1(21,22, eeey Zn—l) = O

equivalente a la inicial que describia el problema con una variable menos y ademas,
como ya lo hemos indicado anteriormente, todas ellas adimensionadas respecto de la
primera magnitud Mj.

Como es facil ver, este proceso se puede reiterar y en cada paso se reduce en una
unidad el ndmero de variables y se gana una magnitud respecto de la cual las nuevas
variables son adimensionadas.

De esta forma en la etapa final se llega a una funcién de la forma

\II(HI)HZP"’Hn—k) =0 (3)
equivalente a la inicial y con todas sus variables totalmente adimensionadas.

Ahora bien, ;Cdmo son las variables II;?. Recordemos que en la primera fase se
tenfa:

21 =a°‘_1'<71-

= F
Asi siguiendo los sucesivos cambios se puede observar que en general la forma de
las dltimas variables es:

II; = a™ B2, (*n

donde todos los exponentes ); son racionales. Es decir cada nueva variable II j es un
monomio formado por el producto de potencias de las variables iniciales con exponentes

racionales. Esto justifica la notacién II; y el nombre del teorema, que pasamos ya a
enunciar:




Teorema II.- Si en un problema fisico intervienen n magnitudes fisicas y hay
k magnitudes fundamentales (n > k), eziste una relacidn funcional que describe el
problema, entre n — k variables adimensionadas, cada una de las cuales es un producto
de potencias con ezponente tacional de las variables iniciales.

§II.- TEOREMA DE TAYLOR.

Dada una funcién f : R® — R, consideraremos cada una de las n+41 variables
(z1,.-.,Zn,y) como medidas de unas magnitudes fundamentales y trataremos de aplicar
a f la técnica del teorema II.

Si indicamos con (Xj,...,X,,Y) dichas magnitudes fundamentales, resulta que
las dimensiones de las n+1 variables (z1,...,2Z,,y) y de las sucesivas derivadas de y,
suponiendo que existan, y denotando con:

ap 6pl+~~-+}7n
OxP i 6I1p1 oo .6$np"

son las que aparecen en la tabla siguiente :

2 . 7 2 £
1 n Yy a.'l:ly 6Iny OxP

T 1 0 0 -1 0 —P1

Tn 0 1 0 0 ! —Pn

Yy 0 0 1 1 1
* * *

Segin la técnica del teorema II, hemos de elegir n+1 columnas de manera que la
matriz que aparezca sea no singular. En este caso seleccionamos las columnas marcadas.
Las columnas restantes las indicamos con la n-tupla que marca su orden de derivacién.
En particular (0,...,0) representa la columna encabezada por y.

Supondremos sin pérdida de generalidad que todas las derivadas son tomadas en el
origen (0,...,0) y que y(0,...,0) =0.

Ahora cada variable IT(,, ., ) estd formada por un producto en el que intervienen
las n+1 columnas de la matriz fundamental elegida y la propia variable

oP

axP

11




con exponentes A; que luego determinaremos:

e Koufsguaytatisfifgbind fres
Mipy,pn) =21 222 a—l_l'y OxP

La forma para determinar los exponentes, consiste en exigir que la variable sea adi-
mensional, es decir, en igualar a cero los exponentes correspondientes a cada magnitud
fundamental.

Coeficiente de X7 : A; —Apy1 —p1Ang2 =0
Coeficiente de X, : A\, —pnAnsz =0
Coeficiente de Y :  Aq41 +Ang2 =0

Como el sistema es homogéneo, hacemos A,42 = 1 y de esta forma tenemos la
solucién:

Ar=p1—1;...; Aa=pn; Ant1==1; Apga=1

asi la variable adimensional es:

I T
(P1,--,Pn) = a_,z:y 9xP
De esta forma la funcién (3) es:
T y T Ty it . zP» QP 0
= T ok —Y,...| =
Tipey T150y Zamat). o1y Oxp
Y que a su vez origina:
= 5} 0] oP
v —Y, ... =—, ..tk —y | =
|:yazl axlya y Tn 6$nya 211 Ty, axpy7 ] 0

Esta igualdad nos permite despejar y obteniendo una nueva funcién H de la si-
guiente forma:

0 0 oP
y=H(zla—$1y,...,mnﬁy,...z’f‘...zﬁ“ axPy"”) (4)
Ahora probemos que H es una funcién lineal viendo que sus derivadas parciales

son constantes.

Sea a = («(y,,. p.)) € Dom H. Esto supone la existencia de una funcién analitica
f y un punto a= (a,.. .ap) € R™ tales que:




A

Pn
a(Pl,-uPn) =a; ...a,

y por consiguiente:

Flai ™,

y@n)
Ahora elegimos una n-tupla q = (g1,...,¢n
g#(zl)"'ymn) —_—f(Il,...,

Se comprueba ficilmente que:

5P
B ,0)

25 £(0,...,0) +p

" (ol

OxP

9.(0,...,0)

donde q! = ¢1!..., ¢l

A

oP

05550
= 5(0,...,0)

(py yeesspn)s ) (5)
) y definimos para cada p real la funcién:

q
TS e deh e da

si (P1,-++,Pn) # (q1,---,qn)

q' si (plv"'apn)=(ql""aQn)

De esta manera expresando la funcién g, mediante la férmula (4) tenemos que:

7] 3]
) = H! —fyesZn=—f,
gp(xl z ) <751 a:rlf In aInf
Sustituimos la n-tupla (z1,...,z,) por (aj,
queda:
gu(as,...,an) = f(ay,...,a,) + pal
0 0
= <alb?1f’”.’an£f,
=H (01(1,0, 0)r - @0,
Para abreviar tomaremos § = a%uq! y

H correspondiente a la variable de lugar (g, ...

féormula (5) tenemos:

H(...,C\/(qhm,qﬂ) + 5,) - H(---,a(q1,...,q,.)7"-)

1),...

q1
Sisiery Dy

01

...,Qpn), con lo cual la expresién anterior

N
N 1 11

P ,
witifn [%f + uq.] ,)
g gr)i Al )

calculando el cociente incremental de
,dn), teniendo en cuenta para ello la

il

)

q

y en consecuencia existe la derivada parcial de H respecto de la variable de lugar

(¢1,---,¢n) y ademds dicha derivada es constan

temente igual a 2.

En consecuencia, H es lineal y de la forma:

13




xP gP

y éste es precisamente el desarrollo del Teorema de Taylor.

§III.- REGLA DE BARROW

Ahora supongamos f(t) una funcién real con dominio algin intervalo que contenga
al 0. Para cada = dentro del dominio tratamos de valorar la integral de f sobre [0, z]
interpretada como el 4rea encerrada entre f, el eje OX y las ordenadas en 0 y en z.

Dicha integral la indicaremos con I(f, z), y supondremos como consecuencia de su
significado geométrico que I es lineal y mondtona respecto de f.

Como el Teorema, IT sélo admite un conjunto contable de datos, hemos de limitarnos
a suponer que f es analitica y asi queda determinada por sus derivadas sucesivas en un
punto, que en nuestro caso elegiremos el origen. También suponemos que la funcién no
es idénticamente nula y que por consiguiente existe k € N tal que f(™(0) # 0. Aqui
supondremos que k = 0 y por lo tanto f(0) # 0. '

Exponemos a continuacién la tabla de dimensiones de las diversas variables, en
funcién de las dos magnitudes fundamentales que indicaremos con X e Y.

A G e R R ) Bt oA )
T 1 1 0 ] =
Y 0 1 1 1 1

Eligiendo las dos columnas marcadas para formar la matriz no singular y proce-

diendo en forma anéloga a lo hecho en la seccién II, encontramos las siguientes variables
adimensionadas:

1, 20 _ SO

f0) - =£(0)

En general:
02 200 _ 2 f(0)
R S )

Segin el teorema II existe una funcién @ tal que:




O, My, ..., O, ..] =0

y por consiguiente:

i
HI — T(O) = F[H],Hg, ...,Hn, ]
de donde:
. 2(0) 2f1(0) = FM(0)
I =zf(0)F| 2f(0)* 2f(0) "7 2 f(0) e
y finalmente:

I = G[zf(0),z*£'(0), z°£"(0), ..., z" ! f™)(0), ...

Hasta aqui llega el Andlisis Dimensional. Ahora bien, jcémo es la funcién G?.
Analizando sus derivadas parciales veremos que es lineal respecto de cada una de sus
variables:.

Elegimos cualquier punto (a,) del dominio de G. Esto supone que existen f,
funcién analitica y un nimero positivo a tales que:

an, = a1 f("(0) Vn
Para cada 6 # 0 definimos:

gs(t) = a flat) + §¢"

Se ve que entonces:

a, +6n! sik=n

gg(k)(O) i {ak sik#n
Ahora tenemos:
I[a f(at), 1] = G(ao, ey O 1,0n, Oty )
I[gs, 1] = G(ao,.-.,@n-1,an + 0!, any1,...)
Asi podemos calcular el cociente incremental de G respecto a la n- ésima variable:
A£G Ilgs1) = Haf(at),1] _ If%1] .
énl én! )

donde hemos tenido en cuenta la definicién de g5 y la propiedad de linealidad supuesta
al principio para I.

Vemos por (6) que existe derivada n- ésima de G y que dicha derivada es constante.

Vamos ahora a calcular dicha derivada G,. Si p(t) = t" tenemos:

15




L(z) = I(p,z) = G(O,...,0,z"*'n!,0,...)
Derivamos respecto de z:
3—L(:c) =Gu(n+1)z" nl=Gp(n+1)! 2"
i

En particular, si £ = 1, tenemos:

dL

—(1) =G, 1)! T

P1)=Cu(n+1) ™)
Por otra parte:

L(1+¢) - L) = Ilp,1+ ¢ — I[p, 1]

y utilizando las hipétesis iniciales se tiene:

e<Ipl+d—Ipl<e(l+e)r

por lo que resulta

dL
Sy
(1)
que reemplazéandolo en (7) nos da el valor de:
= 1
" (n+ 1)
De esta manera tenemos ya el valor de I(f,z):
+o0 +o0 -
= POy sug
f@)dt = I(f,z) =) G,z f(0(0) = z"
| e = x = ED e

Si a esta nueva funcién la llamamos F se observa que F' = f, es decir que F' es
una primitiva de f.

Asi hemos llegado a la conocida regla de Barrow para nuestro caso:

| 10 =r@ - ro)
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ERROR BOUNDS FOR AN ALMOST
FOURTH ORDER METHOD UNDER
GENERALIZED CONDITIONS

Ioannis K. Argyros

Cameron University
Department of Mathematics
Lawton, OK 73505, U.S.A.

Abstract. We provide a convergence theorem for an almost fourth order method in
a Banach space. The same method was found to be convergent of order four under
standard Newton—Kantorovich-type assumptions (3]. In this study we show how to
improve on these ever further by introducing some Ptak-like conditions.

I. INTRODUCTION

In this study we are concerned with the problem of approximating a locally unique solution z*
of the nonlinear equation
F(z)=0 (1)

in a Banach space F;, where F' is a nonlinear operator defined on some convex subset D of E;
with values in a Banach space Fj.
We recently introduced the method given by

o = 20 — F(22)  F(z2) @)
H(zn,tn) = F'(an)™ (F (20 + 20n = 20)) = F(zn)) 3)
a1 = U = $H(zns0n) (1 = 2H(zn,0n)) (0n = 20) (@

for all » > 0 and for some 29 € D. Here F'(2,) denotes a linear operator which is the Fréchet-
derivative of the operator F evaluated at 2 = z,. We showed that under standard Newton-
Kantorovich hypotheses the order of convergence of the iteration {z,} (n > 0) to a locally unique
solution z* of equation (1).is four (3], (4], using Lipschitz hypotheses on the second Fréchet-
derivative of F.
In this study we improve further on these results by assuming that the following conditions are
satisfied
I1F! (2 + h) = F'(2)]| < A(t + |14l (5)

for all z € U(zo,R) = {z €.E; | ||z - zo|| < R} C D for some fixed zo € D and sufficiently small
.and fixed R > 0 with ]| < R — ¢. The function A is continuous in both variables and such that
if one of the variables is fixed then A is an increasing function of the other on [0, R].

. We first introduced these conditions in [1]-[3] and the references there, for Newton and Newton-
like methods to improve on the error bounds related with Ptak or Zabrejko-Nguen assumptions
[5], [7] and the references there. We also show how to choose the function A.
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II. CONVERGENCE ANALYSIS

We will need to introduce the constants
to =0, s0 > llvo — zoll, B> ||F'(z0)7"|| for some zo € D
a=1-pBA(R,,0)
a0=1—ﬂA(R1,0) lfR=R1 or

ﬁ R
=1- t dt
ao R_Rl/RlA(,O)

for fixed Ry and R with 0 < R; < R, the sequences

@n = 1= BA(|lzn — z0l],0)
a, =1- ﬂA(tn,'O)

¢ : 2
B = A ln = 30l + 2l = 2l l2n — 2all

tn+ 25,
b= A —=,t,
(=)

"Bhnt1

Qn+41

Snt41 = tag1 +

Cn
tn+1 =S+ —,

Qan

thil 3n
B =/ A s)dt+ [ At ta)dt + cu + dn,

tn
3 PA (fatlm 3041l
o : ui ) (1 * 2 ( ai ) inslnl;
3‘4 tn+2sn’ 2
d, = MA(tn,Sn)(sn —tn),

Gn
"1 =
it = B[1= [ A )l = moll + tnrs — zoll, O]

1
o /0 A(llzn = o]l + tll* = zall, |2 — Zol)l|a" — 24|/dt for all n > 0

and the functions

T(r) = so+ [ Alt.r)dr+ [ A+ f(rym,

1) = 34t (1+ 2E0) 4 3 B2 D 4
3 BA(r,T) 3 BA(r,T)
1 a(r) (1 i 2 a(r) )

and
a(r) =1 — BA(r,0) on [0,R].

We can now state and prove the main result:

(16)

(18)

(19)

(20)

(21)

(22)

(23)

Theorem 1. Let F:D C E; — E, be a nonlinear operator whose Fréchet derivative F' satisfies

condition (5) on U(zo, R) for some fized zo € D and R > 0.
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Assume:

(i) There erists @ minimum nonnegative number Ry such that

T(R) < Ra. (24)

(i) The numbers R, Ry with 0 < Ry < R are such that the constants a and ag given by (7) and
(8) respectively are positive and U(zo,R) € D.

The(r;.) the scalar sequence {tn} (n > 0) generated by (14) and (15) is monotonically increasing and
bounded above by its limit, which is number Ry; ki
(b) the sequence {za} (n > 0) generated by (2)-(4) is well rleﬁner.i, remains in ‘U(xo,Rl) for all
n > 0, and converges to a solution 2= of the equation F(z) =0, which is unique in U(zo, R).
—Moreover, the following estimates are true foralln >0

llyn — all £ sn = ta, (25)
llzns1 = Ynll < tng1 = Sns (
llz™ = 24|l < Ry — tn,s (
|lz™ — snll < R1— s, (28
IF(zns1)ll € Prgr € hnta (
[|2* = znsall £ ensihni1 < R1—tat1 (

and 5
”Un‘l'n” < “I-_In“'*'E_Pm (31)

where f_ln+1 is given by

1
i = [ Allyn = 2oll + lznss = 3all v = 2olDllznss = vallds
1
+ /0 All2n — zoll + tlltn — Zalls l2n — ZolDllyn — zalldt

3 2
+ 24 (Il 2oll + Zllvn = 2all. ll2n = 20l I = 2
by

|
+ 5= A(llzn = Zoll + |y = nll, 172 — zoll|vn = 2l

3 2 I—)n
+ ZA (”T” - 2ol + g”yn — Zall, ||z = 130”) ﬂa“yn — Zq|.

Proof. (a) By relations (6), (14), (15), and the monotonicity of the function A4, we deduce that
the sequence {t,} (» > 0) is monotonically increasing and nonnegative. By the same relations
we can easily get to < sop < t; < 83 < Ry. Let us assume that t; < s < thy1 < Spg1 < R, for
k=0,1,2,...,n. Then by relaiions (14) and (15) we can have in turn

B tkyn Sk
tey2 S tep1 + —{/ A(t,sp)dt + A, ty)dt
Sk

Q(Rl) 4
3 2 25 ﬂ4 Eﬁzs—k‘tk ﬁA t.+25k’tk
+ -A <( i SL,tk) 1+_Lg (sk_tk)+l_(_'s_—)A(ll;,Sk)(Sk—tk)
4 3 = - -
384, ) 4 304 (M) (3 p4(85 ) t
———— (s — 1 ST IR J S G Y AR
4 aj k k 1 = + 3 = (S/\ )
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8 [1™ g, ry)at +/ AL, Ry)dE + ARy R )(1 +‘J’“'”“R”)1
S, A(t, dt A(t, ‘ ARy, e
$0c S sod a(Rl)[/;O : 0 : TRy a(fty) '
1 BA(RL. RY) 3 ( :s,u,\(/zl.n.)> }
LB Uty R B Al Ry R [ 2 2
T e 2 oRy) :

= T(R)) < Ry by (24).

Hence, the scalar sequence {t,} (n > 0) is bounded above by R;. By hypotheses (24) R, is the
minimum positive zero of the equation T'(r) — 7 = 0 in [0, R;] and from the above R) = limp_.o tn-

(b) Using (6), (7), (14) and (15) we get 21,30 € U(zo, R1), and that estimates (25) and (26) are
true for n = 0. Let us assume that they are true for £ = 0,1,2,...,n — 1. In fact by the induction
hypothesis

lzk+1 = zoll < llzk4+1 = voll + 1Yo — zol| < llzk+1 — yill + llye — voll + llyo — zoll
<or L (tepr = Sk) + (86— s0) + 50 <ty < Ry,

and
[lye+1 = zoll < [lyk+1 = voll + 1vo — zoll < llyks1 — Teaall + |1 — vkll

+ [lyx = voll + llvo — zol|
<o L (Skga = trgr) + (trgr — Sk) + (Sk — S0) + S0 < sky1 < Ry

That is z,,yn € U(2o, Ry) for all n > 0. Using hypothesis (5) we can have

1 F'(z0) 7 || - | (z) — F'(z0)ll < IBA(||zx — zo|,0) < BA(2,0)
<BA(Ry,0) < 1.

It now follows from the Banach lemma on invertible operators [4] that F’(z}) is invertible, and
Iy =i 1 =< E, 32
1P s 22 < 2 (32)
By (2)-(4) we can easily obtain the approximation
1
Flzn41) = ./; [F'(gn + (a4 — ¥n)) — F'(yn))(Tn+1 — yn)dt
1
+ [ [Fn + (v~ 20)) = F'(2))(v0 — 2n)at
0
§ s [(Tn + 2yn> y
2 (P (222) - Pa) (e - 20

-3 {0 - P - § (7 (2E22) - Few) ) Hnsn)on - 20) (39

for all n > 0.
Using condition (5), the induction hypothesis and (32) we can have in turn

1
1EGnsll < [ Alun = 2oll + tons = vall, o = 2ol)llznss — snllds
1
+ [ Allln = zoll + Hlvn = 2l Izn = 2ol)llvn ~ zalld

3 2
+ 24 (llen = 50l + Zlln — 2l za = 2l 1 —

+ 38==Allzn = zoll + [lyn = zall, llzn — ol)lyn — 2|l

W |

4
T

2 : bn =
A ”7'11 = TO” 25 5”.7/7\ = xn“v”l'n = IO”) ﬁa—”yn = In” = hn+1 (34)




1 1
< / A(sn ar t(tn-i-l o Sn)vsn)(tn+1 e sn)(lt 37 / A(t" + t(s" I t")’t")(s" = t“)(“
0

¥ A
3 2 ( g__(’—l A t —t
+ ZA (tn + ;—3-(5,1 = tn),in) (5n—ta) + > T A(sn,tn)(Sn — ta)

: BA (a2 ¢,
+ %A (tn + §(5n S tn)stn> ( . )(57\ ST tn) = hn+ly b}' (16) (3‘5)

Qn

By relations (2) and (35)
Bhas1 = Bhnt1

lomss = Zasall € IF s - 1P (nr)l] € Z2EL € FRREL = s — by
by (14), which shows (25) for all n > 0.
Similarly from (3), (4) and the above
3 ba 3 bn
llentr = vall < 7 7 <1 s -—> lyn — zall
ﬂA tn+2s. 7tn ﬂ/-l tn+2s ;

JaPalEEs Rl : oA (ien 1)

T an an
‘(571 =7 tn) = tn41 — Sn,

which shows (26) for all » > 0.

It now follows from estimates (25) and (26) that the sequence {z,} (n > 0) is Cauchy in a
Banach space E; and as such it converges to some z* € U(zo, R1) with F(z*) = 0 (by (2)).

To show uniqueness, we assume that there exists another solution y* of equation (1) in U(zo, R).
Then from hypothesis (5), we get

1 o) [ 1P + -~ 27)) = F'(mo)

1
< B [ Al +t(y" ~=") - woll, 0)dt
1
< B [ A= D)lla" = zoll + tly" = ol 0)at
< ﬂ/ (1-t)Ry +tR,0)dt < 1, since ap > 0 by (i).

It now follows that the linear operator fo F'(2* +t(y™ — z*))dt is invertible, and from the approx-
imation

F(y) - Fe) = [ P+ oy - o iy = o)

it follows that z* = y*.
Estimates (27) and (28) follow easily from estimates (25) and (26).
Finally, using the triangle inequality, and the approximations

Tt =20 = B Bl Ene1)
1
B / Fl(z® + t(zaps — a°))dt
0
1
yn"znzz-_$n+F( n)— {/ (‘E,.+t(2 —I") ,(Iﬂ))(z-—zﬂ)dt}

and the estimates
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1 o) - [ NP +tans = 27) - F(zo)ll

IA

1.
8 / A(lle” + nsr — 27) — o], 0)dt
0

IN

1
B / A((1 = t)lz” = zol| + tllznss — zol|, 0)dt

IA

1
[3/ A((1 - t)Ry +tR1,0)dt < BA(R1,0) < 1 by a > 0,
0

and
1Bz 520l < ensrs

where e, is given by (19), we can immediately obtain estimates (30) and (31).
That completes the proof of the theorem.

Remarks. (a) The function A appearing at the right hand side of condition (5) can be chosen as

At + [IAll8) = sup I1F'(z + k) = F'(2)]|.
=€U(z0.t) [lH|SR~t

Condition (5) will then follow from the above choice of the function A.
(b) Let us assume that instead of condition (5) the following is true

1F'(v) = F'(w)]| < q(r)llv — wl| (36)

for all v,w € U(zo,7) C U(zo, R) for some nondecreasing function ¢ on [0, R]. Then as in 3],
condition (5) will be true for

t+|IAll
A+ = [ g(s)dz. (37)

For an application of this choice of A to the solution of nonlinear integral equations using Newton’s
method see [3] and the example that follows.
Moreover we can choose ¢(r) = k for all r € [0, R] and for some k > 0. Then with A as in (a)
above
At + IRll,2) < kIR, A+ IA]l,2) < Ax(t + [[A]],2)

and
Ai(t + IRl 2) < K|A]]-

These estimates (especially the first one) show that we can improve on the distances ||y, — || and
||zn — 2*|| as we did in [1]-[3] for Newton and Newton-like methods.

(c) Estimates (30) and (31) can sometimes be solved explicitly for ||z, — z*|| for all n > 0. For
example we can choose ¢(r) = k and A as 4; in (b) above.

III. APPLICATIONS

We will complete this study by providing an example that shows how to choose the constants
B, so and the functions q(r) and A; (given by (36) and (37) respectively).

Let us assume that F} = F, = C = C[0,1] the space of continuous functions on [0, 1] equipped
with the usual supremum norm. We consider Uryson-type nonlinear integral equations of the form

F(z)(t) = z(t) — /: K(t,s,z(s))ds. (38)

We assume for simplicity that zo = 0, and make use of the following standard result whose
proof can be found for example in [3].




Theorem 3. The Lipschitz condition (36) for the Fréchet-derivative F’ of the operator (38) holds
if and only if the second derivative K}/, (t,s,u) exists for all t and almost all s and u, and

1
sup sup | Iy, (t,s, u)Ids < 00. (39)

t€(0,1] /O |u|<r

uu

Moreover, the left hand side in relation (39) is then the minimal Lipschitz constant g(r) in (36).
Moreover, the constants 1 and [ are given by

1 1 1
n= sup / I\'(t,s,O)ds+/ r(t,s)/ K(s, p,0)dpds (40)
tef0.] 1/o 0 0
and
B =1+ sup |r( s)|ds, (41)
te(0,1]

where 7(t,s) is the resolvent kernel of the equation
1
/ K2(t, 5, 0)h(s)ds —/ K(t,s,0)ds. (42)
0

Let us consider a simple example. Suppose that K'(¢,s,u) = c1(t)ca(s)ea(u) with two continuous
functions ¢; and cp, and c3 € C%. We set

1 1
d; = / co(s)ds, do = / ci(s)ea(s)ds. (43)
0 0
Then relation (42) becomes
h(t) = [c,c5(0) — dic3(0)]ex(2), (44)
where

4 /01 ca(s)h(s)ds. (45)

Substituting relation (44) into (45), one may calculate cj and hence find the resolvent kernel (2, s)
in case dyc4(0) < 1, to get

_ ca(t)ea(t)es(0)
(T58)i= LI dgc'3(30) ; (46)
Using relations (39)-(41) we obtain
q(t) = llealldr sup |ez(u)l, (47)
[Jul|<r
= el (48)
and -
p=1+ T200 . (49)

c3(0)

Thus, in this case a complete and explicit computation of the function T" given by relation (21)
is possible. As an example, let us choose

3 2 1
ca(s) = —s and ca(u) = —u® +——u+

t) = —t
alt) = gt 10 o

on [0,1]. Then using relations (43), (46)—(49), and (G) we get

1 2 2
di=—, dy=— 50) = —
1= 150 %= 1000 290 =550 <L
6 15 514
r(t:2) = 199t )= 155" 0= 00° P=Tso'




The hypotheses of Theorem 1 will be satisfied if

7 — 85.470938047° 4 .026310589r +2033.815799r> — 1.7028509017%2 —917.4203967 +27.55261348 < 0

and

R < 5.688635222 = Rp.

That is, the hypotheses of Theorem 1 will be satisfied if we choose

R; =.03007 and R = Rp.

The conclusions of Theorem 1 can now follow.

[

(2

[7
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On the convergence of a Chebysheff-Halley-type method using
divided differences of order one.
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Lawton, OK 73505, U.S.A.

Abstract

Local and semi-local convergence theorems are provided for a Chebysheff-Halley-
type method in Banach spaces using divided differences of order one. The order of
convergence of our method is almost three.

L Introduction. In this study we are concerned with the problem of approximating a

locally unique solution x* of the equation
F(x) = 0 (1)
in a Banach space E;, where F is a nonlinear operator defined on some convex subset D of E4
with values in a Banach space E,.
The method of tangent hyperbolas or the Chebysheff-Halley-type method is a cubically
convergent iterative procedure for solving nonlinear equations. This method has been
generalized for nonlinear operator equations in Banach spaces by [5]-[8]. Recently a

Chebysheff-Halley-type method of order three was introduced in [4]. In particular the method

is given by
Yn=%- Flxp TF(x) e
Ho= - Px) " TP (x) (Yq- %) el
xn+1=vn—%F'(xf[":;"Hn]qF"(Xn)(yn-Xn)z i

for some x;e D andall n>0.
Here F(x,), F"(x,) denote the first and second Frechet-derivatives of F evaluated at

x = x_. Note that these operators are linear and bilinear respectively. With the exception of

=
some special cases these generalizations have no practical value because they require an
evaluation of the second Frechet-derivative at each step (which means a number of function
evaluations proportional with the cube of the dimension of the space). Discretized versions of

the above method will be usefull in numerical computations. That is why we introduce the

following iterations 27




Ln= ‘FI(Xn)-1([xn‘yn] = [Xn'xn]) (6)

Xne1 = Yo~ FO) 710 - L) M(Ix0 ¥l - BoXpl) (Y- %o (7)

foralln >0 and some x5 e D,

and
Y= X [ g Xl VB (8)
M= [Xq. %0l ™ 11X ¥l = DXl ) (9)
Xrie1 = ¥n o DXl 700 = MOE ERERIGR M ] iV = ) (10)

forall n>0 and some Xx_q,X%g € D.
By [xyl, x,y € E; we denote a generalized divided difference of order one. We provide semi-
local and local convergence theorems for the above iterations using the majorant theory.
Some applications are also provided.
nvergen Analysis.
We will need the following definition [3], [7].

Definition. Let F be a nonlinear operator defined on a subset D of a linear space E; with
values in another linear space E, and let x,y be two points of D. A linear operator from E,4
into E,, denoted [x,y], which satisfies the condition

xyl(x - y) = F(x) - F(y) (11)
is called a divided difference of order one of F at the points x and y.

The condition (11) does not uniquely determine the divided difference, with the exception of
the case when E, is one-dimensional. An operator [..]: DxD — L(E{,E,) satisfying condition
(11) is called a divided difference of order one of F on D. If we fix the first variable, we get
an operator

[Xg, 1:D - L(E,Ep). (12)
Let v,w be two points of D. A divided difference of the operator (12) at the points v,w will
be called a divided difference of the second order of F at the points z,v,w and will be devoted by
[z,v,w]. We have by definition

[zv,w] (v-w) = [zv] - [z.w]. (13)
Obviously, [zyw] belongs in L(E,, L(E{,E5)). From now on we assume that E,,E, are
Banach spaces and D is a convex subset of Ej.

We can now prove the following result:




Theorem 1. Let F be a nonlinear operator defined on a convex subset D of a Banach space
E, with values in a Banach space E,.
Suppose:

(a) the equation F(x) = 0 has a solution x* € D at which the Frechet-derivative F'(x*)
exists and is invertible with ||F'(x*) || < b,

(b) the nonlinear operator F has divided differences of order one satisfying the Lipschitz

condition :
lxy1-tuvifsp,lix - ull + Jy - v [ (14)

for all x,y,u,v e D and some p'1>0.

(c) The ball U(x*,rqy) = {x € E5 | |[x - x*|| < ry} is included in D, where ry isa

positive number satisfying the inequalities
16p31rf—22p21rf+9p1r1—1<0 (15)
4pr <1, with p > p. (16)

Then the iteration {x;} n > 0 generated by (5) - (7) for x5e U(x",ry) is well defined,
remains in U(x*,ry) for all n >0 and converges to x* in such a way that the following

estimates are satisfied:

P 2
Iy o=l g e e o< (7

| )
1—p1(2“xn—x'

X=X '||s ly = x *||+

n+1

Ixa-v.f (18

oyl

for all n2>0.
Proof. We will show that F'(x) and |- L. are invertible for all n > 0. Note first that
condition (14) implies that F'(x) = [x,x] for all x e D. Using condition (14) we now have
HEx U P () = B = PG Nixpxgd - x5 x*Il
Spy(lIxp- ¥+ [Ixq- x*[1) (19)
< 2pyrq <4pyrq < 1 by hypothesis (16).
It now follows from the Banach lemma on inversible operators that F'(x, is invertible for
all x,e U(x*,ry) and
e i (20)

29




Moreover, by (6), (14) and (20) we get for alln>0

HLE < HF 0 T T X Yol = [Xne Xl T

Pxa=Yal
“1-2p Jx,-x7 "

Furthermore, by (5), (14) and (20) we obtain in turn from the approximation

Yoo X = Xo- X' - Fi(x) 'G(x) = Fiix) " IF (%) (Xq - X7 - (F(xp)
1
=F‘(xn)_1“:F'(xn)—F'(x'+t(xn—x'))]dt(xn—x')
0

that
2p 1

S1—2p x1—x' _“lxn—(x'+t(xn—x'))"dt“xn—x'"
1“ n “ o

“yn—x'

p 2
“;Tp‘m"xn-x'\l

r
35 Py
'1—2p1r1

I, =% “l<llxa-x I<,. (by 16)

which shows estimate (17)and that y,e U(x*,ry) foralln=0 .

From estimate (21), we now have that

el e
1‘291"Xn‘x H 1—2p1r1
which shows that | - L, invertible and
1 1—2p1||xn—x'

L) @R x T v D

It now follows from (7), (14) and (24) that

P,
= p1(2-"xn =X

2
1

[aei=x Y= lyn—x "1+ 5 [%a-val

+xa=¥al)

which shows (18) for all n > 0.
Moreover from (18), (20), (24) and the triangle inequality we obtain that

*qe1 - XN < clixg - x7l,

(27

(x1))]

(22)

(23)

(24)

(25)



e

where

0 P
<c_1_2pr -

pr.(i-pr)
11 211 <1
11 (1—2p1r1)[(1—2p1f1) —p1r1(1—p1r1):|

by hypothesis (15).

Furthermore from estimate (25) we deduce that x e Ux .ry) and II1|_’n_1_ X, =x".

That completes the proof of the theorem.

Similarly, we can prove the following theorem:

Theorem 2. Let F be a nonlinear operator defined on a convex subset D of a Banach space
E, with values in a Banach space E,.

Suppose:

(a) the equation F(x) = 0 has a solutions x* € D at which the Frechet-derivative F'(x")
exists and is invertible with [[F'(x*) || < Bo:

(b) the nonlinear operator F has divided differences of order one satisfying the Lipschitz
condition

lix.y1-twvill < p, (lx —ull+lly = v )

forall x,y,u,veD and some p,>0.

(c) The ball U(x*ry) is included in D, where r, is a positive number satisfying the

inequalitites

16p1r‘;-24p22r22+10p2r2—1<o
4p,r,<1, with p,2pp,.

Then the iteration generated by (8)-(10) for x_4,xqe U(x*,rp) is well defined, remains
in  U(x*,r;) forall n>0 and converges to x* in such a way that the following estimates are

satisfied:

a2
+I|Xn_xq|)

pz(“Xn—1 =X2
_pz(llxn—1 SE

lya-x"ll=3 Ixa=x"]

2
pzuxn_ yn”

e, (el >l syl

[%oei= % | lya=x "]+

for all n>0.
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Moreover, we can show the following result:
Theorem 3. Let F be a nonlinear operator defined on a convex subset D of a Banach space
E, with values in a Banach space E,.

Suppose:
(a) there is a point x, € D at which the Frechet-derivative F'(xy) exists and is invertible

and let numbers t, and sy satisfy t; =0, s52 [lyg- Xpll; with
HF*(xg) ™Il < By: (26)

(b) the nonlinear operator F has divided differences of order one satisfying the Lipschitz

condition
ltx.y1-tuvis e, (lx = ull+ Jly - v b (27)
forall x,y,u,v eD and some p,>0.
(c) there exists a minimum nonnegative number I3 satisfying

T(rg) < rg, (28)

where the real function T is defined by

5 p;‘r2 p3r+1
t)_80+1—2p3r 3+ 1—2p3r : (29

(d) the following estimates are true:

4p,ra<1, p,2p,B,, (80)
U(x,.r,) =D. (39

Then

(i) the scalar iterations {t.} and {sq} n=>0 defined by

P, 2
sn+1—tn+1+ m {(t n+1— Sn) +2(Sn_tn) (t n+l_ Sn)

3 2
i Py(Sa—t) +[1—2p3(tn—to)](sn—tn) 7
1_p3|_2(t"—t0)+(sn_tm 1_p3|_2(tn—to)+(sn—tn)]
and
2
5 P (s, -t,)

t
= n+1—p3|.2(tn_to)+(sn_tn)_|' o




are monotonically increasing with 0 <t <s <t <s

n S and bounded above by their

n+1
common limit, which is number rg.

(ii) The iteration {x,} n >0 generated by (5)-(7) is well defined, remains in U(xg,T3)
forall n>0 and converges to some x* e U(xq, r3), which is the unique solution of the

equation F(x) = 0 in U(xq, r3). Moreover, the following estimates are true for all n > 0;

vt s, (34)

”y n+1_xn+‘l|S Sn+1_ tn+1 (35)

||xn—x'sr3—tn (36)
and

ly,—x*|<r,-s,. (37)

Proof. (i) We first note that by hypothesis (30) the number ry is the unique positive
solution of the scalar equation T(r) -r =0 on [0,r3]. From hypothesis (26) and (33) (for
n=0), weget 0=ty<sy<t;. By assuming that te<se<t,q k=012 ..,n we obtain
teeq S Skp1 S Y0 < Si,o by iteratons (32) and (33). Hence, the sequences {t,} and{s.}

n 20 are monotonically increasing. From hypotheses (26) and (30) we get tg<sgsty <13,

Let us assume that ty<sg<t,q<rg for k=0,1,2, .., n-1. Then from iterations (32) and

(33) we can have in turn

Py

tn4»2S1n+1+ 1—2p3r2

{(tm— sn)2 +2(s -t )t -s)

n+1

(38

3 2

PalS,—t,) [1-2p,(t,~t,)](s, - t,) 2
+1—p3[2(tn—to)+(sn—tn)J+ 1-p 2t~ t )+ (s,-t,)] uliteeaes ) }

But, we also have
2
(t"‘*”_sn) o 2(5" _t") (tn+1_ S") 5 2(tn+1_s") (tn+1_t") i a(tn+1_tN) 5 2(23,

(Speib e (5120 @ 0 (5= )2 s e, kb (e oy T ey ]

2
sra(sn—to)sra,
3 R
(5,=1,) +(Sn—1—tn-1) +o+(sg-1p) Sr:![(Sn_tn)*k(":'n-1—tn—1)+"'+(so_to):l

2 3
< 23
S s(sn to)sra,
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and

1 <
1-p [2(t,- 1) + (s,-t,)] ~1-2p,7,

Therefore, relation (38) becomes
t.0< T(r3) < ry by hypotheses (28).

That completes the proof for part (i).

BS
= 2phixee

&

o||

o= =

Using the approximation

+ ( [ an Yn] 2 [Xnv xn]) (Xn+1 &

1

0

([an Yn] %

HYne1 = Xnaqll < IF () 1 1TF (X0 ,9) |

P

n+l

1

Xn+1)= J(|:y“+t(xn+‘l_y“)'y"-i-t(xmn_y"
0

S8 1) R T BT ) B

Yol + (1

_[(i:x +t(y, =%, )X, +t(y —x )]

[an Xn] ) ] (Yn =

(5)-(7), (27), (39) and (40) we obtain in turn

1—2p nx

3
Pyla= .l

(i)  As in the proof of Theorem 1, we can show that for alln > 0

(39)

(40

)-[Vae¥a]) (X, ,~ Yot

[Xns XaD)

X 1) (y,—x,)dt

1
+(l—Ln)_1j[([xn+t(yn—xn),xn+t(yn—xn)]—[xnxn])
0

Xpdt,

g~ g vl 2l il v

1= 2p3“x -x “

TR, X T

xRy el [ e




P, 2
s—— 3 3t -s) +2(s, -t )t .—8,)
1-2p (1,,,-to) {( ma~ S}t 2(8a et n

3 2

Py(s,—t,) [1-2p,(s,—t)](s,_t,)
+ + SIS it
1-p 28, -t )+ (5510 dsepfan, 2t +ls 0] vt o

where we assumed that (34) and (35) are true for k = 0,1,2, ..., n-1 and also used the
estimates
[1Xn41- Xoll < [Xq41- Yoll + llyg- Xoll < lIXqe1- Yall + llyq- Yoll + llyo - Xoll

IA

« S (the1- Sp) * (Sp- Sg) + gty 1S 13

and

||yn+1' Xoll < lYne1- Yoll + llyg-Xoll < ”yn+1' Xnaqll + 11Xn4q- Yn” + ”Yn' Yoll + llyo- Xol |
S e S (Spp1t thet) F (g - S + (S Sg) +Sg<Sh,q S T3
Thatis, X,,¥,e€ U(xq,r3) forall n20.
Moreover from (6), (7), (27), (39) and the induction hypothesis, we obtain in turn for all

nx0

Xne1 = Yall < HF06) M- 1Q = L)' HIXg Yt - Do Xalll Y= Xl

2
Py(s,—1,)
< = S
1—p3|_2(tn—t0)+(sn—tn)J n+1

which shows (34).

Furthermore from estimates (34), (35) and the triangle inequality we obtain

Ilyn-r-1 = yn” S Snyt1” Sp
and

|]xn+1 - xll £t q4-t, n20.

It now follows from the above estimates that the sequences {x.} and {y,} n>0 are Cauchy
in a Banach space and as such they both converge to some x* € U(xqg,r3) with F(x*) =0
(by (5)).

Finally to show uniqueness, we assume that there exists another solution y* of equation (1)

in U(xq, r3). Then from hypothesis (27) we have in turn

1 =it
7 e gy o+ woxsmy oy vy i -
0

35




1
< 2p3j Hy +1(x -y ')—ondt
o

+t||x0-x'

)dt

1
S2;):5-[((1_””)(0_3/ !
0

< 2pgrg < 1, by hypothesis (28).

It now follows that the linear operator

1

1
,[F'(Y'H(X'—Y')) dt=,[[¥'+t(x'-Y').Y'H(X'—Y')] dt
0 0

is invertible. From this fact and the approximation

1
Hx2) =iy = IF'(Y'H(X Sy xasyE)de,
0
it now follows that x* = y™.

That completes the proof of the theorem.

We will now find the order of convergence for the iterations {x.}, {t;} n=0 by introducing
standard Newton-Kantorovich hypotheses. Let ry be the minimum nonnegative zero of the
equation T(r) -r =0 on (0r3]. Moreover, let us assume that there exist nonnegative
constants K,B,n,h,c such that

BK <2ps, n<sy, c<2h=2Kpn< 1, < 2n

2
2n ;
c=1-|t—-1|, provided that r ;=0.
3

If r3=0, wechoose m=sg=h=0, and our conditions reduce to Bk < 2ps only.

We define the scalar iterations for all n >0 by

4w,

w
n n

sw =0,

gh( W)= 0




A

the scalar function

g(t):%tz—%-t+%

and the constants

With the above hypotheses the following are true
r3<zy, WosSto, vpSs,, Wooq- vps<t -8, and v,- w<s, - t, forall n20.
The first inequality reduces to showing that c < 2h, which is true by hypothesis. The rest of
the inequalities can be proved easily by using induction on n. Indeed for n = 0, we have in

turn by using the above hypotheses that

2 2
k(Vo_Wo) Py(sy—1,)

W=V - <s + ———— =t =>w_<t_,
1 0 oW o ST i) 1 sl
QQT 3150 20

2 E 2
k(v_—-w ) p.(s,-t)
0 0 3t207 0
WV = < =t —-Ss =W -v <t -s,
15540 V_+W = 0] 185205 e
zg{_ig_ﬁJ Lo 9

2

gw,) Bk
v1=w1— = =iWis:
g'(w)) 2(1- Bkw )

R

Bk(vo—wo)s ‘{1 kB(vo—wo)]

’ 2(1-pkw ) | 2(1- pkw))
3
P, 2 Bk(vo—wo) 3 kB(vo—wo)
SII+W (11—50 + 2(1-ﬁkWo) '1—2(1—Bkwo) .

we would like to show that

ps(vo_wo) PalVo-Wy) 2p3(so—t0)+(1—2p310)
e — = <
1—2p3w0 ‘1—2[)3WO 1—p3(t0+so) :
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But, we can have that

Ps(Vo-Wy [ pa(vo—wo)]< pa(vo_wo)

1-2p,w, 1-2p,w, =q5p ((o,rso)-

3

So it is enough to show that

p3(Vvg- Wo) < 2p5(sq - tg) + 1 - 2paty,
which is true by hypothesis.
Therefore, we obtain

3 2

p 2 2p.(s.—t) +(1-2p,t)(s,~t,)
S 3 (t _So) i 30 0 30RO O 1,
L g TR 1=p (it +s) 1

|
[

= v, <s; and from the same arguments v; - wy < sy - t;. Thatis we have showed the validity
of all the above inequalities for n = 0. We now assume that they are true for

k =0,,2, ..., n-1. The induction will be completed easily if we repeat the proof we gave for

n =0, by observing that we can replace the subscripts 1 by k+1 and 0 by k.

From the proof of the theorem it can now be easily seen that the uniqueness of the solution
x * can be extended in the ball Ux ,r) with z <r<z,, provided that UWx  r ) D

and 2B( ry + 25) < 1.
The following estimates can now be proved easily

_k 1
gwn)—é-anbn. a=z-w,_, bn:zz—wn, bn=an+(1—62)6,

n 1 n

3
9 1 (an 1+bn-1)

n— =

3
(anEba) —iasnbaia(dsnbor)

n-1 n-i - n-

3
b n-1 (b n-1 i an—-1)

3
(an-1+ bn—1) _an_1b —




.

Note that 8< 1, provided that 2h < 1. From the above error estimates it now follows that
rg=2q, énd
rg- ty<a,<c, for all n2>0,

from which it follows that the order of convergence of the iterations {x,} and {t;} n20 is
almost three.

A similar analysis for the order of convergence can be given for the iteration {x;} n 2 -1
generated by (8)-(10) via Theorem 4.

The conditions ¢ < 2h and ry < 2n are used only to show that ry < ry. If these conditions
are violated we can reason as follows. For sufficiently large n and since
[%p¥nl = XpXgl = X Yo Xal (Y- Xq). the operator [x,,y, x,] can be approximated by

il

2 F'(x). Here [x_ ,y_ . X

.l denotes adivided difference of order two for F and F" (xn)

the second Frechet derivative of F evaluated at x = X,- Replace now the difference operator in

1

approximation (7) by >

F"(x,) and use the same letters for the new iteration {x}

n 2 0. Moreover, let us assume that [|F*(x)|]| < M, [IF*(x) - F"(y)I| £ N ||x - y|| for all

| =

-1

x,yeD, "F'(Xo) <B, ”Vo'xo”Sn’ ax (3M2+ &] i

3p
Then the sequence {w,} n2>0 majorizes the sequence {x;} also and in particular
[1Xq- x*|]| < ¢, forall n2>0. (See also, [4].)
Proposition 1.  Under the hypotheses of Theorem 3, the following estimates dre also

available forall n> 0

)
*| < - n+1 < —t
” 1—P3("x —x0"+ ||xn+1—x0") ST

pa"xn_x‘r

1- 2p3| Xo= X,

"x -x
n+1

¥ a=xal= Ixa=x[+

where &4 is given by (41).

Proof. From hypothesis (27) we obtain in turn

) = 1
(RS TRE TP ) RO
(0]
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1

= 2P3J‘H(1 SN x0)+ Hx o= Xo)“d‘s pa(HX i Xo“+ Hxnn— Xo”)
0

< 2pgrg <1

by hypothesis (28). It now follows that the linear operator

1
= - e - - =) * ° s 8 I m
Ann__[[x +t(x"+1 Xanax +t(xn+1 X )]dt isinvertible ai
0

B

ol T (= mo R oa %ol

n
The results now easily follow from the approximations

-1
X nd X = (An+1 )F(xnﬂ)'

forall n>0.

n+

1 .

Y, - X, =X '—xn+[xn,x"]_1 J-[xn+t(x —x )X, +t(x '—xn)]—[xn,xn] (x *-x )dtt,
0

the above inequality, the triangle inequality, (8) and (41).

The proof is now complete.

Note that the second inequality above can be solved for |[x, - x*|]| to provide a lower bound
on this estimate for all n > 0.

Similarly, we can prove the result:

Theorem 4, Let F be a nonlinear operator defined on a convex subset D of a Banach space
E; with values in a Banach space E,.

Suppose:

(a) there is a point x5 € D at which the Frechet-derivative F'(xy) exists and is
invertible with ||F'(xq) " " < B4, and let numbers t 4,t; and s, satisfy
Yo~ Xoll <8p- Xg O<|lx_4- Xoll Stg- tyand t 4= 0;

(b)  the nonlinear operator F has divided differences of order one satisfying the Lipschitz

condition
ltx.y1-tuvill< py (b = ull + fly =v )

forall x,y,u,veD and some p,>0.




(c) There exists a minimum nonnegative number ry satisfying
Ti(rg) <1y
where the real function Ty is defined by

2
P,r P, +2
T (r )=so~1-1_2p4r 3+ =2, |

(d) The following estimates are true:
4p‘r4<1, pP,2 p'4B4,
Uk, r)<D.

Then

() the scalar iterations {t)} n>-1-and {s;} n>0 defined by

. P 2
sn+1=tn+1+ 1_p4L(tn_to)4+ (tm_‘_ﬂ {(t nd s") +I:(sn_tn—1) +(sn_tn)](tn+1_ sn)

2
PL(s,~t,)

TG W+ (- ) T (o )] (Sa=toi)

1—p4[ S (t“—to)]
L 1—p4|_(sn—$n)+(tn_1—to)+(tn—to)] [2(sa- 1) +(tn-‘,,_,)](sn-‘n)} =9

and

2
t =s + Py(Sa=to) n>1
nd on 1—p4(tn_1—to+tn—to) 5

are monotonically increasing with 0 <t < s <t

n+1 S Sp4q and bounded above by their
common limit, which is number ry.

(ii) The iteration ({x;} n > -1 generated by (8)-(10) is well defined, remains in
U(Xg, I4) foral n=-1 and converges to some x* e U(xg, r4), which is the unique solution of
the equation F(x) = 0 in U(xg, r4). Moreover the following estimates are true for all n > 0:

”xn+1 = yn|| <t S
e s eXaaallisisnge Gaqs

lixa=mxil=< Pl s

IA

HYn- Il < rq- s,

41




As in Proposition 1 we can show:

ition Under the hypotheses of Theorem 4, the following estimates are also

available for all n >0 ‘

Xn+1—X'lSp4{ xn+1—sn2+|:|yn—xn—1 & "Vn"‘n"]lxnn“ynl }
R [ 5
1_p4UIy"_X"|I+“Xn—1—Xo”+”Xn_xo“J
1= P %= %ol %o = %] ] i i |
WP | P e 1 e | LR I |
(1= 2 =X [ xaDT 7o |
o |

p4l|xn_ X ’|( IXn—-Xn_1“+ "X '—xn”)
=P, (ko= X e %)

Iy a=xals e =x ]+

Note that the second inequality above can be solved for [[x, - x*|| to provide a lower band on
this estimate for all n > 0.

Remarks (1). The approximation for F(x,,¢) in Theorem 4 is given by

1

F(xn+1)=J([y“+t(xm—yn),yn+t(xn+1—yn)]—[yn.yn])(xn+1—yn)dt

0 |

+ ([yHIYr\] = [Xn-‘]vxn]) (Xn+1 B Yn)
1

+(1- Mn)_1[xn_1,xn]_1([xn,yn]— [x ,,_1'Xn]) J-[[xn+ ty —%,).

0

X0+ Y= X =[x, o X1y .- x,) dt

i Mn)_t‘[[([anrt(yn— xn),xn+t(yn—xn)]—[xn_1,xn])— ([xn,yn]—[xnxn])](yn -x ) dt

forall n2>0.

(2) Theorems 1 and 2 can be used to solve autonomous differential equation of the form
F'(x) = P(F(x))
where P is a known operator. It then follows that since F'(x*) = P(0), the linear operator

F'(x*) is known despite the fact that x* is not known.




The iterations introduced here are faster than the ones introduced for the Euler-

(3)
Chebysheff method in [5]-[8]. These authors used hypotheses on divided differences of order
one and two, whereas we only used hypotheses on divided differences of order one. Similar
results can be proved for the Euler-Chebysheff method.

(4) The main idea for the introduction of our iterations came from the observation that due

to (1 3) the linear operator %F" (x Ny,—-x,) appearing in(3)and(4)can be approximated

by [Xp Yol - Xy Xl The approximations [x,,X.] - [y, Y, and [x,x,] - X, ¥, canalso be

used. The linear operator [x x,] can also be replaced by [x,, X4 or [y,_{.X,]-

Nzl

(5)  The hypothesis on F'(xg) in Theorem 4 can easily be replaced by a hypotheses on the
starting linear operator [x,.4,Xg]. Similar results can then follow. Moreover, similar
results can easily be developed if in all previous iterations we set F'(x)) = F'(xg) and
[xn_1,xn] = [x.4,%9] forall n> 0 (the convergence will then be slower).

(6) Similar theorems can be proved if the Lipschitz hypotheses on the divided differences

are replaced by Holder hypotheses of the form

qlllx - ylP+ [ly - vIiP)
for p e [0,1) and some q > 0, [1], [2], [3].
(7)  Our results can also be extended to include nondifferentiable operators [2], [3]. Let
us consider the equation
Fi(x) = F(x) + Q(x),
where F is as before and Q satisfied estimates of the form
[1Q(x) - QI < dix - yll

for all x,y e D and some d'> 0.

Then leave the derivative F'(x) as it is in (6) say, and replace F(x) by Fi(x) in (5).
The hypotheses (15) and (16) will change to

5 2
Caiis 4 r
1'5 pS 5]

p
2 p|r .+ ———
P > 1[ 5 == 2p1r5

<Tr
5

2
pro+p.r
43 15 5.5
p1[3 rs+—~—1_2p1rs




respectively, where pg > Byd' and rg is a positive number satisfying the above

i liti | i 17) an extra term of the form pSHX"_X'”
inequalities . In estimate (17) -2 ‘—-QFHHX_VTH

at the right hand side.

will be added

The hypotheses (c) in Theorem 2 will change to
2

2
o +2p2r6+p6rs
2p i Pal"s 1-2p.r
2 6 2 6 o
1-2p.r 2 6
Hk 1- 3r +———2p2r6+p€r6
Pal® Lo &t som
2 6
and
2pyr Py 1
26

respectively, where pg 2 Byd' and rg is a positive number satisfying the above

PeliXa—
inequalities . An extra term of the form t%ﬁx—-ﬂ willbe added at the right
2 n

*

hand side of the estimate for |ly,- x*||. Similar changes will take place for Theorems 3 and 4.
The results of all the previous theorems will then hold for the equation F,(x) = 0.

(8)  For some applications of these results to nonlinear integral and differential equations,
we can refer the reader to [3] and the references there. We also note that the above error

bounds can be further improved if we use Ptak-type estimates (see, [2] for Newton's method).

(9) The constants pq,P5.P3 and p, as well as the construction of the divided differences
can easily be found in finite dimensional spaces. See the elegant description by Potra in [7].

(10)  We finally note that all the above results remain valid if in the Lipschitz condition,
[u,v] is replaced by F'(z) for all z e D.

(11)  From the proof of Theorem 3, (28) and (32) it can easily be seen that the bracket in

the definition of T (see(31)) can be replaced by 4, whereas the expression inside the braces
in (32) can be replaced by (ty,1 - t)2+ 2(Sp- t)2+ (Spiq - tneq) 2 The bracket in the

definition of T; can be replaced by 6, whereas the expression inside the braces in the

definition of s, 4 can be replaced by

2
(the1 - thg) S+ 2(s,- tn)z'*' 2(sn- o) (Sp- ty) + (Spyq- tn+1)2‘
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A Simplified Proof Concerning the Convergence
and Error Bound of A Rational Cubic Method
in a Banach Space and Applications to
Nonlinear Integral Equations

I.K.Argyros* Dong Chen fand Q. Qian *

Abstract

In this study, under standard Newton-Kantorovich conditions, we estab-
lish the Kantorovich-type convergence theorem for the Chebyshev method in a
Banach space.

1 Introduction

In this paper we study the problem of approximating a locally unique solution z* of

the equation

F(z) =0, (1)

in a Banach space X, where F' is a nonlinear operator defined on some convex subset

D of X with values in a Banach space Y. Let zo € D and define the Chebyshev

method for all n > 0 by
Yn = Tn — F’(Iﬂ)_lp(zﬂ)v (2)

1 ! — "
Tntl = Yn — §F (In) W (In)(yn o xn)z' (3)

"Department of Mathematics, Cameron University, Lawton, Oklahoma 73505, USA
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Here F'(z,) and F”(z,) denote the first and second Frechet derivatives of F' evaluated
at r = ,. Note that F’(z,) is a linear operator whereas F"(x,,) is a bilinear operator
for all n > 0 [1], [2]. If the sequence {z,} defined by (2) and (3) converges to a point
z* € D, then z~ is a zero of equation (1). The Kantorovich-type convergence analysis
for the Chebyshev method in the classical form has been studied by Candela and
Marquina in [3]. We reduce all extra assumptions given by above authors. In fact we
define an equivalent form of the Chebyshev method in a Banach space setting and
we show that under standard Newton-Kantorovich assumptions [4-7] the Chebyshev
method converges faster to a zero z* of equation (1) than Newton’s method. An
explicit form of the error bound will be given. An application of the Chebyshev
method to an integral equation appearing in radiative transfer [1] and [2] will be also
investigated. We also show that previous results cannot be applied to solve general

quadratic equations in a Banach space.

2 Convergence Analysis
We will first need the following results:
Lemma 2.1 Let F: D C X — Y. Assume:

(a) The nonlinear operator F is twice Frechet differentiable on the D;

(b) The iterates z, generated by (2) and (3) belong in D and F'(x,)™" ezists for all
n > 0.

Then the following approzimation is true for alln > 0:

F(1n+1) = /0 F”[yn £ t(In—H = yn)](l T t)dt(zn-H = yn)2

_% V/o [F”[In i t(yn = Jin)](yn — In)F/(In)_IF”(zn)(yn T zn)z

+ [ (P en+ o — 2]~ 8) = 3 F(ea) (o — 2]

Proof: We start with the approximation
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F(zk41) = F(2a41) = F(yn) = F'(yn)(Tnt1 — yn)
+F(yn) + F'(yn)(@n+1 — ¥n)
= [ Pt (o = 4l — Otz ~ )
+F(yn) = F(2n) = F'(20)(yn — zn)
+[F'(yn) = F'(za)l(znt1 = ¥n) + F'(20)(Za1
We need to use the facts:
F(2a) + F'(za)(yn — z,) = 0,

1 ! — 7
Tnt1 — Yn = _EF (zn) W/} (J:n)(yn 3 zn)zu

and

P = [ Flont tra = 2n))(1 = )di(o — 22)

—Yn)

to simplify the above and then the conclusion of the lemma will follow . Now we can

state our main results.

Theorem 2.1 Let F: D C X — Y, X and Y are real Banach spaces, and D is an

open conver domain. Assume that F has 2nd order continuous Frechet derivatives

on D and for given an initial value zo € D that the following standard Newton-

Kantorovich conditions are satisfied:
I F(z) l< M, || F(z) = F"(y) IS N |z -y ||,

| F'(z0) ™" II< 8,1l F'(z0) ™ F(20) |I< m,
1/2

= i rEp
3M2ﬂ] < K,h = KBn < 0.485

U(.’Eo, t‘) (& D,

ML+

)

where U(z,r) = {z' € z ||| 2’ — z ||< r}, and we have set

1
g(t) = Kt - Ll

Pl
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e e

9

h 7, (9)
TP TR S

Jel L IR (w0)

1-V1-2h
S e A

Then the iteration generated by (2) and (3) is well defined for alln > 0 and converges

(11)

to a unique zero =™ of equation (1) in U(zo,t)fort® < t < ™. Moreover Tn, Yn €
U(zo,t*), for all n > 0. Furthermore the following error estimates are true for all
w0

ot e = (12)
= ﬁ[ﬁb’]

where {t,}22, and {s.}32, are defined by

g(tn)
Sn =1lq — m, (13)
1g"(tx) 2
tn+1 = Sp — 5 g/(tn) (Sn = tn) 3 (14)

with the starting point to = 0.

Proof: It suffices to show that the following items are true for all » by mathematical

induction:

(1n) : zn € U(zo, tn); -

(L)% | Fi(za)72 IS =4/ ()7
(I11,) : | yn—2n IS Sn—tn;
(IVn): Yn € U(zo,50);

(Va) : | £at1=4n IS tnt1—sn.

It is easy to check in the case when n = 0 by the initial conditions. Now assume that

the above statements are true for a fixed n > 1

(In41): We can have




” Tag1 —Zo || £ |[Zapa —Ynll + 40— 2a | + 1l za — o I

S (tu-H = 511) + (Sn = tn) E (tn = tO) = tn+1~
(IIn41): from the approximation
1
Floa) = Fl(z3) = / F[z0 + H(zast — 20)|dH(Ens1 — 7o),
0
so we obtain in turn

I F(@nt1) = F(zo) | € M| Zapi =20l £ K(tws1 —to) = Ktop

L= sk JiE g
* = ]{——————— — K—
< Kt 5 n KBn n
= 1 1
et s e i S e
g g 7 T F(zo) ]

and by the Banach lemma, F'(z,41)~! exists and

g F(zo)™* ||
FI J:n 3 < “
I @)™ | S T F Gy I [ F ) = Flea) |
B = 1
e aEEeEry] B e
1 1
o S ST s el i
= 1= K(tap1 —to) I — Kton ACY

(I1I,41): By using the identity in the lemma 2.1, we can estimate F(z,4+1) to obtain

M 1 M?
FIn S |l Tn - Yn 2+* NISve Ty 2
| F(znsa) l ) | 21 = ym |l 2%—M I Zn — o | | yn — 2 |l

N
+€ | 2w ”3

M? + N
M 246D,
< =iz, || =+ | yn — za ”3
2 =Ml z.— 0|
K K?%(s,
S T(tn+l == Sn) % = g(t1x+l)'
2(= — Kt,
(3 )
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Moreover, we have

H Yn+1 — Tntl “ —=H| —FI(InH)_1 “ ” F(Inﬂ H

IA

| F'(zns) " I | Fznt) |l

IA

_gl(t"+1)—lg(tﬂ+1) = 3n+l_tn+1.

(IVay1): we also deduce that
| gner = 2ol £ l¥nt1—nll tlTasr =l + |40 —Za || + ]| 22 — 2o |
S (sn+l =T tn+1) SE (tn+1 e Sn) =I5 (sn = tn) + (tn == to) = Sn41-

(Vat1): From (1), we have

1 -
Tnt2 = Ynt1 = —§F'(In+1) IFII($n+1)(yn+l = $n+1)2;
and then
1 1 =1 17 2
| Znt2 —gnrr I < |l —§F (zat1) ™ Il F*(2n41) |l yn41 — ZTapa ”
< —§g’(tn+l)_19”(tn+l)(5n+l = tn+1)2 = tn42 — Sny1-

Now we are ready to derive the error bound (12). Notice that

K

9(tn) 5

(T =4)@= =),
and
/ K a
(ta) = =Sl =) + (7 — 1))
[t 1s simple calculus to show that

L= tn L [t- = t'n.—l ]3 [(t" =20 tn—l) + 2(t‘- T tn—l )1
B —t, ot —tay [208r = tasy) FET — taa)]

Now since 0 < :—‘tﬂ < 1, we obtain

R

= ot
<2 %

el e

The estimate (12) now follows from the equalities ¢t* = (14+0)p,and t== =t"+ L#M

Finally to show uniqueness, we assume that there exists a secon solution y* of the

equation (1) in U(zo,t) for t € [t*.¢™"). We now obtain the estimate.
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| F'(zo) ™" | /01 | F'(z" +1(y" = z7)) - F(zo) || at

z*+t(y*—z*) 1
< 8 / | P Ml dz]) < BM / e e e

IA

ﬂM/O (A=)l z" —zo || +t(y" — zo ||Jdt £ BM(t +t7) < 1.

Hence the linear operator fol F'(z* + t(y" — z™))dt is invertible. It now follows from

the approximation
1
[ Pty = ety =2 = P - Fa) =0,
0

that z* = y*. The proof of the theorem is now complete.

3 Applications

In this section, we use the Theorem 2.1 to suggest some new approaches to the solution

of quadratic integral equations of the form:
1
() = y(s) +aa(s) | als.t)ate)at (19)
0

in the space X = C[0,1] of all continuous functions on the interval [0,1] with the
norm
[l adiia sl (16)

Here we assume that « is a real number called the "albedo” for scattering and the

kernal g(s,t) is a continuous function of two variables with 0 < s,¢ < 1 and satisfying
0<gq(s,t)<1,0<s,t<1, (17)

q(s,t) +q(t,s) =1,0 < 5,6 < 1. (18)

The function y(s) is given by a continuous function defined or (0,1}, and z(s) is
the unknown function sought in [0,1]. Equations of this type are related with the

work of S. Chandrasokhar(1,2], and arise in the theories of radiative transfer, neutron




transport and in the kinetic theory of gasses. There exists an extensive literature on
equations like (15) under various assumptions on the kernel g(s.t) and « is a real
or complex number. One can refer to the recent work in [1, 2] and the references
there. Here we demonstrate that the theorem via the iterative procedures (2) and
(3) provide existence results for (15). Moreover, the iterative procedures (2) and
(3) converge faster than the solution of all the previous known ones. Furthermore,
a better information on the location of the solution is given. Note that the cost is
not higher than the corresponding one of previous methods. For simplicity, we shall
assume that
s

q(s,t)=s+t,0§s,t§1. (19)

Notice that g(s,t) satisfies (17) and (18) above. Let us now choose y(s) = 1 for all s
in [0,1] and define the operator ' on X = C[0,1] by

s
s+t

F(z) = am(s)/o z(t)dt — z(s) + 1. (20)

Note that every root of the equation F(z) = 0 satisfies the equation(15). Set zo(s) = 1
and o = 0.25, use the definition of the first and second Frechet derivatives of the

operator F' to obtain

0<s<1

1
M =2|a| max |/ —>_dt|=(2In2) | « |= 0.34657359,
o S+t

N=0,K=M,§B=| F'(1)™ ||= 153039421, 7 > 0.265197107,
t* = 0.28704852, 6 = 0.08239685, ¢** = 3.483731664

and
)2
| 22 — 2" ||< #M_"
1- =[V26p
0.26339662
(0.116526742)3"

(V20"

== = (0.116526742)%" 1
V2
for all n > 0, which shows that =~ is unique in U{(zo,t*), for t € [t

Remark (a) The results obtained in {3], 4] ,[6] and the references there cannot apply




to solve the above integral equations since they require N > 0. but here N = 0.
(b) In fact the above mentioned results cannot apply to solve an important class of

nonlinear equations, the quadratic equations of the form
Q(z) = B(z,z) + L(z) + 9,

where B, L are bounded symmetric bilinear and bounded linear operators, andy € X

is fixed [1], [2]. Note that N =0 here also.

Acknowledgment: We would like to thank the referee for providing several valuable

comments.
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Summary. We provide two asymptotic results on the precision of two variance
estimators of the mean of m independent subsample means of equal size r with
srsr design, from a sample of size n > r, obtained with srs design from a finite
population of size N > n.

1. Introduction

There are several recent contributions to the resampling and bootstrap in finite
populations, as Bickel et al. (1984), Chao et al. (1985), McCarthy et al. (1985),
Kovar et al. (1988), Cepar et al. (1990), Sitter (1992), Ruiz Espejo (1993) and
Booth et al. (1994).

Consider a finite population of size N, from which a sample s (with srs design
of size 71, with the notation of Cassel et al., 1977) is obtained. From this sample
s, a number m of independent resamples s; are drawn (each with srsr design of
size T < n).

Denoting Zs to the sample mean of s, and Z! to the sample mean of s;, we

define

=
Toi=

m
=/
o
=1
This estimator Z/ is unbiased for the finite population mean X, since
E(zl|s)= z,

and

E(z) = B[E(#ls) = E(z,) = X.

Consequently




2. Results
The variance of Z! is

V(3" — N (N—n_*_n—1>a2
= mn(N—-1) \ N T

where ¢? is the finite population variance. The proof is as follows:

1

V(#) =V (@)

b
PN,
B

Il

&

-

N
=
+
<
e
P ey
S
7

Il
&=

T
S|
S

+
=
o
81
S

Il

(N -1)

where o2 is the variance of sample s.
Following Ruiz Espejo (1993), two unbiased estimators of V' (Z/) are:

r

~ em e NE Rt e
x (N+r>;si

where s/2 is the sample quasivariance of s;; and

m2n

mim = 1) &

The variances of these estimators are asymptotically

V@) == E<““"—Uﬁ>

m3r3 ot

(where p4p, is the central moment of order 4 in the sample s of size n) and

7 (=] - 1 /l4-0’4
Y [V2 (a:r)] - m2(r—1)2n o

(where p4 is the central moment of order 4 in the finite population of size N).
Then, asymptotically:




1. If 7 and n are fixed, with m — oo,

v Vi) <V )],
2. Ifmisfixedand 1 K 7 K n < N,

v [Vi@)] >V [Vaan).
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Summary. If we make an order of a quantity N of good units produced with-
out defects for our reception and acceptation, and if the production corresponds
to a superpopulation model of analytic study (Koop, 1986; Cassel, et al., 1977)
that assigns probability ¢ (quality) to produce a good unit, and 1-g of defective,
the finite population of produced units is a simple random sample with replace-
ment of the model. In these conditions we characterize the economic rentibility
expected under our exhaustive quality control, substituting defective units after
their detection by previous non-destructive inspection, for others of the produc-
tion, and in this way inspecting these again and substituting the new defective
units for others of the production reoccurringly until the N units are good for our
acceptation.

1. Introduction

The economic decision rule that we will obtain refers to the problem of non-
destructive and exhaustive quality control of reception or acceptance. In order to
do this, let us suppose that each unit produced by the supplier has a probability ¢-
in order to fulfill the agreed standards by the supplier and receiver, independently
of the remaining units. This can be understood as an analytic study (Koop, 1986),
or infinite population generated by the punctual binomial or Bernoulli distribution
B(1,g) that represents the distribution of a generical unit that if it is good (with
probability ¢) it has value 1, and if the unit is defective (with probability 1-q)
it has value 0. We allow that each produced unit follows this model. The total
production is the finite set of units specified in a simple random sample with
replacement of the previous binomial model, being independent of each other the
result of the ”good” or ”defective” of each unit, of the remaining produced units.

We add the condition that the cost for allowing a defective unit in our acception

Is ¢1, as well as the cost for inspecting a unit for our part is ¢y, and the inspection
is non-destructive.
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From the data g, ¢; and ¢, we obtain when it will be profitable, in terms
expected, the exhaustive inspection until we obtain from production N good units
for our acception. The order consists of satisfy the requisites or standards agreed
upon the supplier and ourselves as receivers of N good units.

2. Rule of decision

The rule of decision is based on the criterion of the greatest expected profit, or
equivalently, on the lowest expected cost. In order to do this, the ”expected cost
consequence of the defective units not substituted after the completed inspection”,
that we call C (= 0O, in our case the quality control being exhaustive and non-
destructive), plus the ”expected inspection cost”, that we call C’, it must be less
than the ”expected cost that we would have in consequence of accepting defective
units in reception, in the case of not inspecting them”, that we call C”. That is
to say,

C+C'<C".
Calling E(.) the operator mathematical expectation,
C' = oNE(I).

Where I is the random variable ”number of inspected units of the production,
until getting the first good unit”,

1=1+§(ng).

Where X; is the random variable "number (1 or 0) of defective units per con-
trolled unit from the production in the inspection j (=1,2,3,...) until completing
the IV good units”; the inspection j =1 consists of observing if they are good, one
by one, N units produced and delivered to reception for their control. The in-
spection j (j = 2,3, ...) consists of observing a number of produced units, equal to
the number of defective units observed in the inspection j — 1, with the objective
of substituting the detected defective units in the inspection j — 1 for new units
from production, and in this manner reoccurring in successive inspections of the
substitutes until obtaining the N good units ordered. X; is distributed binomial
B(1,1-¢) and it is independent of the remaining inspections due to the properties
of the superpopulation model for analytic studies. Now,

Z(HX)

i=1 \j=1

=1

E()=E

f[ E (Xj)} =

j=1

= ; 1— 1
SCERRIE e e
i=1 q q




On the other hand, C” is calculated as
C” = ClNE (Xl) = C]N (1 T q) 5

Imposing the criterion of the lowest expected cost, we have

ciq[\—rzC+C'<C”=c1N(1—q).

Simplifying N, it results the searched inequality

C2
—iig(l=ig)k
= alsn)
In this formula, ¢ (g # 0;1) is the quality of the received product, ¢, is the cost
of inspecting a unit, and ¢; (¢; > 0) is the cost of admitting in our reception a
defective unit, without the quality control and inspection proposed in this paper,
and accepting the first shipment of N produced units.

3. Practical use of the decision rule

In practice, the costs ¢; and ¢y are known, but the same is not usually true
for the quality g. The value q(1 — g), as the variance of the distribution B(1,1-
g), it can be estimated unbiasedly by the sample quasivariance; if we take a

sample of size n of distinct produced units, and p is the sample proportion of
the correct units, E (p) = q. Then, the estimator p (1 — p)n/ (n — 1), the sample
quasivariance, is the unbiased estimator of the variance ¢ (1 — ¢), and it converges
in probability to this variance. For this, if 7 is sufficiently large, the condition

e _p(l-pn
ci n—1

will indicate to us, in a sufficiently close manner, when the economic rentibil-
ity expected exists in carrying out the exhaustive, recurrent and non-destructive
proposed quality control.

In this way our quality control represents an investment that, like any other,
must produce adequate yeild that justifies its implementation.
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Summary. This paper considers an unbiased method of estimation of a finite
population mean, when the population under consideration is divided into a num-
ber of subgroups, not necessarily disjoint, called lapels. We call this estimation
technique as lapelled sampling, a generalisation of traditional stratified sampling,
which requires in practice substantial use of computing.

1. Introduction

The traditional stratified sampling is based on the fundamental assumption
that the finite population under consideration can be divided into a number of
mutually disjoint subgroups (strata). But, this condition cannot be easily realiz-
able in many practical situations. Suppose that a finite population U of size N is
divided into m overlapping subgroups Uy, Us, ..., Un, called lapels, such that (as
in Singh, 1988)

U = U Ui-
=1

Let y be the variable of interest taking values y;, 3o, ..., yn over the units of U and
we seek to estimate the population mean

i JEei

It is well known that the probability of the union of a finite number of events
can be expressed as a linear function of the probabilities of the possible inter-
sections of the events. With this background, the size (or population mean) of
U can be expressed as a linear function of the sizes (or means) of all possible
intersections of the lapels Uj, Us, ..., U,,. Thus, it is possible to construct an un-
biased estimate of Y availing sample informations from each lapel based on any
desirable probability sampling design. This mechanism of estimating ¥ may be
called lapelled sampling which can also be fruitfully employed in estimating other
parametric functions as totals or proportions. We next calculate the probability
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of unbiasedness of the proposed sampling scheme in the case of post lapelling (an
analogous tool to the post stratification) and finally show that lapelled sampling
is a generalisation of stratified sampling.

2. Probability of the union of events

Let {A;},1=1,2,..., m be a finite sequence of disjoint events. Then, by the
third axiom of probability (as stated by Kolmogorov), the probability of their
union is the sum of their probabilities, i.e.

(1)
P (1@1 Ai) - i:ilp (4:) .

But, if the events are not necessarily disjoint, then the probability of their
union can be obtained as follows:

where the events A;, A;NA;, A;NA;N A, ... and ﬁ A; are called lapelled events.
i=1
The formula (2) is a generalization of (1).

3. Size of a finite population as a function of the sizes of the lapels
If N = card(U) is the size of the finite population U, let N; = card(U;),
N,-j = card(Uij) where Uij = Ui n Uj, Nijk = Ca’l'd(Uijk) where Uijlc = Ui ﬂUj n Uk,

until Nyg ., = card(Uss. ) where
UlZ..m = ﬂ Ui)
i=1

Ui being the ith lapel (¢=1,2,...,m). Then we have the following relation (based
on the theory of measurement)

3)
m ey —2 m—1 m

N:ZNi— Z Z Nij+ Z Z Nijk_"'+(_1)m+1N12..Am)
i=1 =1 j=i+1 =1 j=i+1 k=j+1

which allows us to give the population size as a linear function of the sizes of the
lapels. If the lapel-groups U are disjoint two against two (Ni; =0, for all i < j of
{1,2,...,m}), then we have, as in the usual stratified sampling (Cochran, 1977)

)

66




(4)

Thus formula (4) can be identified as a particular case of (3).

4. Lapelled population mean 3
Analogously to formula (3), the population mean Y can be rewritten as

(5)

m—2 m—1

i Nig.m
+3 % Y SR (i ey,

i=1 j=i+1 k=j+1

where we have denoted

= 1
Y.= N, 2 Yior
t qeU;
= 1l
}fij = N Z yij,m
8] q€U;;
Yio.m= N Z Y12..m,q;
12..m gelyp .m

Yig> Yijg» --» Y12..mq being the values of y for gth units in the lapels U;, Uy, ...,
Usa. .m respectively.

Denoting W; = N;/N, W;; = N;;/N, ..., Wia..m = Nia_m/N, we can also
rewrite (5) in a simpler way. If furthermore N;; = 0 foralli < j = 1,2,....m
then we would have

(6)
- AL —
V=Y W,
i=1
as is expected in a stratified population, a particular case of a lapelled population.

5. Unbiased estimator in lapelled sampling

Allowing simple random sampling with or without replacement in each lapel,
an unbiased estimator of Y is given by

m m—1 m
=N Wagi— Y, Y Wygy+
=1

i=1 j=i+1l

m
Z u/z]kyzjk ( 1)m+lWI2...mQIQ,,.m
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where i, %ij,..., J12..m are the sample means ir_1 the lapels U; Uz 55
respectively, and are unbiased estimators for Y;, Yi;, ..., Yio .

5.1 Necessary and sufficient condition of unbiasedness

If Njj g >0with 1 <4< j < ..<k < m, the necessary and sufficient
condition for g, given in (7) to be unbiased for Y is that the sample size assigned
to the lapel Uj; x i.e. ni; & > 1 (Hanurav, 1966 and Ruiz Espejo, 1986).

5.2 Probability of unbiasedness with postlapelling

In some cases Ni2_,, > 1. Then a simple random sampling with replacement
(srsr-n) or without replacement (srs-n) of size n can be selected from the finite
population. Once selected it is decided to lapel it and then compute g, using

formula (7) as an estimator of Y. From section 5.1, the necessary and sufficient
condition for g, to be an unbiased estimator for Y, is that the sample size n15_n >
1

The probability of this event under srsr-n design, is
Pni2.m>1)=1-pMm=0)=1—(1-Wy )"

which is asymptotically 1, if Wiy, > 0, for n — co.
Under srs-n design, this event has probability

p(n12,,_m > 1) — 1 —p(numm = 0) ==

:1_ﬁ<N—N12___m—'i+1>:

> N

L Nl2...m+i'—1
_1—1'[(1—————N )

provided n < N — Nio_ .

6. Generalisation of stratified random sampling

It is observed that when the possible lapel-groups of the population are disjoint
two against two, the size and the mean of the population are respectively given
by (4) and (6). Then, the formula for the estimator g, reduces to

m
Up =y Wilii,
i=1

which is the usual unbiased estimator in stratified sampling. Thus, the lapelled
sampling can be regarded as a generalisation of stratified sampling.

68




References

[1] Cochran, W.G. (1977). Sampling Techniques (3rd edition). John Wiley.
New York.

[2] Hanurav, T.V. (1966). Some aspects of unified sampling theory. Sankhya
Ser. A 28, 175-204.

[3] Ruiz Espejo, M. (1986). Estimable parametric functions in sampling theory.
Estadistica Espariola 28, 69-73.

[4] and Sahoo, L.N. (1996). Lapelled sampling for finite populations.
COMPSTAT 1996. Proceedings in Computational Statistics, 103. A. Prat and
E. Ripoll, eds. Institut d’Estadistica de Catalunya. Barcelona.

[5] Singh, S. (1988). Estimation in overlapping clusters. Comm. Statist.
Theory Methods 17, 613-621.

69




ON THE USE OF PARTIAL AUXILIARY INFORMATION
by

M. Ruiz Espejo

Departamento de Economia Aplicada Cuantitativa
Facultad de Ciencias Ecgnémicas y Empresariales
U.N.ED.

C/. Senda del Rey, s/n

28040 Madrid

Summary. In the estimation of the population mean, we prove that the
use of partial auxiliary information is preferable to not use it when taking into
account the gain in precision with respect to strategy (simple random sampling
without replacement ”srs”, sample mean ”j”) (see Cassel et al., 1977) when the
population sizes, with and without auxiliary information, are sufficiently large.

1. Introduction

In finite populations it is common to find oneself facing the problem of estima-
tion of the population mean, Y, of a certain interest variable 7, with the following
characteristics:

a) Auxiliary information, X;, is available in just part of the finite population
of size IV, let’s say in N; units.

b) Auxiliary information is not available for the rest of the finite population.
The size of this complementary part is N,, which verifies IV; + Ny = N.

c) Both N; and N, are sufficiently large.

2. The strategy proposed

When considering two strata, of relative sizes W; = N;/N (i = 1,2), with
proportional allocation (this does not required additional information to the one
already used with (proportional allocation, W1y; + Wais) except for the infor-
mation in itself of the auxiliary variable), the stratified estimator which uses the
regression estimator t; in the first stratum, and being the sample mean 7; in the
ith stratum, we use 7, in the second stratum, the estimator of ¥ would be the
particular ”semiseparated regression estimator” ¥, = Wit; + Wais, then (from

Cochran, 1977) under design srs independently for each stratum of sample sizes
n1 and ny, the estimator 7,; is approximately unbiased to estimate ¥, and its
variance is (for n; fixed)

Ni—n Ny — ny

SE 1
1% (Prop,yst) = Wle;Ll—‘Sfy (1 = p?yx) + ngSgy,
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where if n; = Win, i = 1,2 (proportional allocation), we have

w, Wi} W, W2
v Eropga) = (2 - T0) 8, (1= ) + (22 - ) b

being S?y the quasivariance in the stratum ¢ of the variable y, and p%yx is the
correlation coefficient in the stratum 1 between the variables y and z.

3. Comparison

If N — co so that W; is constant, we can write the asymptotic inequalities
(where 0’3 is the population variance of the interest variable y)

/pensi) L i - 4 + )

<1(W 2 +W. 2)<—03
— o o

= 1%1y 209y ) = &
That is to say, asymptotically

V (Prop,jst) < V (Prop,W1i1 + Wais) < V (s7s,7).

In this formula, the first inequality is due to the fact that pfyx
second is due to

> 0, and the

2 2 2
0'3 = ZWiO'?y +ZW1 ()—/, — }7)2 > ZVV,—U?y,
3 =1

=1 =1

being U?y the variance of stratum 4 for the variable y, and Y; is the mean in
the stratum 7 for the interest variable y. Thus, as a conclusion, the auxiliary
information, being partial, permits to improve in many cases the precision in the
estimation of the population mean Y given by the admissible estimator sample
mean § (Joshi, 1965).
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Summary. We propose some classes of unbiased estimators for the finite
population variance which make use of one or more auxiliary variables, under
simple random sampling with replacement. These proposed estimators can im-
prove the precision of the ”sample quasivariance” (unbiased UMV-estimator for
a distribution-free setting). Other related questions are also treated.

1. Introduccion _

Cuando disponemos de un estimador insesgado de cierto parametro pobla-
cional (como la media muestral, §, de la media poblacional, Y, o bien la cuasi-
varianza muestral, sf‘, de la varianza poblacional, 05) bajo disefio de muestreo
aleatorio simple con reemplazamiento -masr-, entonces podemos estimar, usando
una o mas variables auxiliares, la varianza poblacional de la variable de interés
con un estimador de regresién miltiple que usualmente mejora la precisién del es-
timador insesgado UMV (uniformemente de minima varianza) para distribucién
libre: la cuasivarianza muestral, s.

2. Estimador de regresion multiple
Si y es la variable de interés y disponemos de k variables auxiliares z; (j =
1,2,...,k), el estimador propuesto es

k
T=5 Y b (T - t;)

J=1

donde s? es la cuasivarianza muestral y t; es un estimador insesgado -bajo disefio
masr- de 7; (pardmetro conocido asociado a la variable auxiliar j-ésima). En
principio suponemos que b; es una constante por determinar. El estimador [73 es
insesgado para la varianza poblacional 03, y su varianza es:
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V() =V () -2 b,Co0 (sEit5) + SO 3 b Cov (8 £).

j=1 i=1"9=1
Esta varianza se hace minima cuando para j = 1,2, ..., k,
k k
Cov (33, t]-) rt Z b,CO’U (ti, tj) Cyj == Z b{C,;j
bj = = = 7
: V (t;) Cii

o bien se hace minima si y solo si para j = 1,2, ..., k,

k
Cy; =) bCi;
i=1

que constituye un sistema (digamos S) de k ecuaciones lineales con k incégnitas:
by, ba, ..., bx. Estas b; son minimas, pues la matriz Hessiana cuyo término ij es

gula) o
0b;0b; e
es la matriz de covarianzas (por 2), que es simétrica, y definida o semidefinida
positiva (Tucker, 1973, p. 164, ejercicio 7; Cuadras, 1991). Por ello V (&3) es
una funcién convexa en (by,bs,...,bx) € R*. El sistema S no puede resolverse
directamente en la practica pues C,; son covarianzas desconocidas. No obstante,

los valores de b; pueden estimarse por b; mediante el método de los momentos, es
decir, para j =1,2,....k

k
cy; =D _biCy;
=1

donde cy; es el estimador muestral por el método de los momentos del pardmetro
poblacional Cy;. Los valores minimos de b; permiten estimar insesgadamente la
varianza poblacional y resultan ser tales que al sustituirse verifican

Ky ok
V(@) =V (s) - L by <V (),
=1 )=

para b; fijos y minimos, pues la matriz (C;;) es semidefinida positiva.

Al variar k y t; se obtienen las distintas clases de estimadores de la varianza
poblacional. Algunos trabajos adicionales relacionados con la estimacién de la
varianza poblacional para poblaciones finitas, estdn recogidos en las referencias.
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3. Algunas cuestiones relacionadas

2
. s b S . = .
La recta de regresién de v = V() = -* sobre la media muestral y = g, admite
la expresién

donde p3 es el momento central de orden 3 en la poblacién finita para la variable
de interés. Esto se deduce de que

= 552, K3

Cov (y, n) ==
a partir de Cramér (1953, p. 401). De aqui deducimos que 3/ (nas) es el incre-
mento al que tiende la estimacién f/(g), cuando g crece una unidad. Notemos
que p3 puede ser no nulo cuando la poblacién finita no es simétrica. Por tanto,
gy V(g) son dos variables dependientes en el muestreo de poblaciones finitas
con diseno masr, pues como sefiala Cramér (1953) la media y varianza muestrales

son independientes si y solo si la poblacién es normal, cosa imposible para una
poblacién finita.
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Summary. We determine the quantity function of the random variable € =
"number of draws with replacement to obtain a fixed cost sample of a finite
population of size N”. If the effective sample size is n, 1 < n < N, the random
variable € takes the values n,n+1,n+2,... The methodology necessary to obtain
this quantity function is similar to the proposed in Ruiz Espejo (1994). The
sample mean based on €, ¥s, is unbiased for estimating the population mean.

1. Introduccion

Determinamos la funcién de cuantia del mimero de extracciones con reem-
plazamiento para obtener una muestra de costo fijado de una poblacién finita de
tamano N.

En el muestreo aleatorio simple sin reemplazamiento de tamafno n, con 1 <
n < N, el coste de observacion es nc, siendo c el coste por unidad observada. En
el muestreo aleatorio simple con reemplazamiento de tamafio n, el coste de obser-
vacién es ve, una variable aleatoria, donde v es el mimero de unidades distintas
o diferentes de la poblacién finita seleccionadas en la muestra, cuya funcién de
cuantia ha sido proporcionada en Ruiz Espejo (1994). El resultado demostrado

en este trabajo citado consiste en la determinacion de la funcién de cuantia de la
variable aleatoria v que puede tomar los valores 1, 2, 3, ..., min{n,N}. La funcién
de cuantia probada es:
N
()
X

P(l/) — X;_L‘
n—v+1 n—v+2

n—1
X z : j : 2 : ])1111‘13—11 ,,,,, Ty—1 —y—25—1py—1

711=1 i0=1;+1 Ty ety =g
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donde :
m!

Pml,m2,w,mk e e L
T mylma! - - - my!

es el niimero de permutaciones con repeticién de m elementos iguales, de los que

m, son iguales entre si, my son iguales entre si y distintos de los anteriores, ...

hasta los my iguales y distintos a los anteriores, con

Un enfoque econémico del problema es partir de un costo o presupuesto fijo
nc, donde n es el miimero de unidades distintas observadas (1 < n < N), pudiendo
aparecer unidades repetidas (ya sin coste) en la muestra, hasta la seleccién de la
unidad distinta (n + 1)-ésima por primera vez que ya no se procederd a observarla
y deteniendo.aqui el proceso de seleccion de unidades con reemplazamiento y
probabilidadés iguales a 1/N en cada extraccién.

Aplicando una metodologia andloga para obtener la funcién de cuantia de la
variable aleatoria v, podemos deducir la funcién de cuantia de la variable aleatoria
€ = "namero de extracciones con reemplazamiento y probabilidades iguales para
obtener una muestra de n unidades distintas, hasta obtener por primera vez la
unidad distinta (n. + 1)-ésima” que no se contabiliza a efectos de coste, al no
observarse esta tiltima unidad, ni incluirse en la muestra.

2. Funcion de cuantia
Aplicando el axioma de la probabilidad condicionada y posteriormente la regla
de Laplace, para € = n, n+ 1, n + 2, ... tenemos la siguiente funcién de cuantia:

MdZ%?%;X

e—n+1 :—n+2 -1
% ( Z Z A Z _Piix.ia-ix ----- in—1—2n—2,6—in_)
11=1 12=1;+1 Tn—1=Iin-2+1
donde P indica el niimero de permutaciones con repeticion.
Finalmente, la media muestral g. con el diseno de muestreo aleatorio simple
con reemplazamiento de coste fijo nc, es un estimador insesgado para la media

poblacional §, pues haciendo uso del concepto de esperanza condicionada por la
variable aleatoria obtenida en este trabajo, resulta que

E(g) = E[E(%le)l = E(5) = 7-
Es decir, la media muestral basada en las ¢z unidades seleccionadas bajo el

diseno de muestreo con reemplazamiento de coste fijo nc, es un estimador inses-
gado de la media poblacional
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Los conceptos manejados en este resumen pueden consultarse en las referencias
citadas, as{ como en el libro de Cochran (1977).

3. Conclusiones

1. Con un.esquema de muestreo bdsico, como es el muestreo con reemplaza-
miento y probabilidades iguales, pueden construirse distintos disenos muestrales
como son:

1.a) Muestreo aleatorio simple con reemplazamiento de tamano fijo.

1.b) Muestreo aleatorio simple con reemplazamiento de tamano fijo v con-
servando la informacién muestral de las unidades distintas seleccionadas en la
muestra con reemplazamiento.

1.c) Muestreo aleatorio simple con reemplazamiento de tamaiio aleatorio hasta
obtener una muestra de costo fijo de la poblacién finita.

2. Con cualquiera de estos disenos de muestreo (1.a, 1.b y 1.c) el estimador
media muestral es insesgado para estimar el parametro media poblacional. Las de-
mostraciones pueden realizarse utilizando el concepto de esperanza condicionada
o directamente con la esperanza matemaética.

3. La precisién de estas estrategias de muestreo es variable, si bien aumen-
tard cuando el nimero de unidades distintas de la poblacién seleccionadas en la
muestra aumenta, como consecuencia de la suficiencia del dato no ordenado y sin
repeticiones o duplicidad de tales unidades.

La referencia obligada para justificar el punto 3 de las conclusiones es el libro
de Cassel, Sdrndal y Wretman (1977).
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Summary. We propose some classes of unbiased estimators for the finite
population variance which make use of one or more auxiliary variables, under
simple random sampling with replacement. These proposed estimators can im-
prove the precision of the ”sample quasivariance” (unbiased UMV-estimator for
a distribution-free setting). Other related questions are also treated.

1. Introduccién

Cuando disponemos de un estimador insesgado de cierto parametro pobla-
cional (como la media muestral, §, de la media poblacional, Y, o bien la cuasi-
covarianza muestral, 55’ de la varianza poblacional, U;‘;) bajo diseno de muestreo
aleatorio simple con reemplazamiento -masr-, entonces podemos estimar, usando
una o mas variables auxiliares, la varianza poblacional de la variable de interés
con un estimador de regresiéon miiltiple que usualmente mejora la precisién del es-
timador insesgado UMV (uniformemente de minima varianza) para distribucién
libre: la cuasivarianza muestral, 33.

2. Estimador de regresion miultiple
Si y es la variable de interés y disponemos de k variables auxiliares z; (j =
1,2,...,k), el estimador propuesto es

k
e kSl Y e
=1

2 . - . - . . ~
donde s, es la cuasivarianza muestral y t; es un estimador insesgado -bajo disefio

masr- de T; (pardmetro conocido asociado a la variable auxiliar j-ésima). En
principio suponemos que b; es una constante por determinar. El estimador &3 es
insesgado para la varianza poblacional 03, ¥ su varianza es:
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S L
V(62) =V () — 258,00 (s, 85) + 3. Y bbsCon ().
j=1

i=1;=1
Esta varianza se hace minima cuando para j =1,2,..., k,
2 S hOovltit) G5 BC
Cov (sy,t5) — X biCov (L, t5 i — 2. 0G5
( y J) = 3 i e j
V(t5) Cj;

b; =

o bien se hace minima si y solo si para j =1,2,...,k,

k
Cy; = b:iCy

=1

que constituye un sistema (digamos S) de k ecuaciones lineales con k incégnitas:
by, ba, ..., bx. Estas b; son minimas, pues la matriz Hessiana cuyo término 7j es

RV (a?)
~bh; 200

es la matriz de covarianzas (por 2), que es simétrica, y definida o semidefinida
positiva (Tucker, 1973, p. 164, ejercicio 7; Cuadras, 1991). Por ello V (53) es
una funcién convexa en (by,b,...,b) € R*. El sistema S no puede resolverse
directamente en la practica pues C,; son covarianzas desconocidas. No obstante,

los valores de b; pueden estimarse por b; mediante el método de los momentos, es
decir, para j = 1,2, ...,k

cy; =) _biCi;
i=1
donde cy; es el estimador muestral por el método de los momentos del pardmetro
poblacional Cy;. Los valores minimos de b; permiten estimar insesgadamente la
varianza poblacional y resultan ser tales que al sustituirse verifican

E Kk
(22 2
Vi) =V (s2) =SS bab,Cy <V (s2),
=1 j=1

para b; fijos y minimos, pues la matriz (C;;) es semidefinida positiva.

Al variar k y t; se obtienen las distintas clases de estimadores de la varianza
poblacional. Algunos trabajos adicionales relacionados con la estimacién de la
varianza poblacional para poblaciones finitas, estdn recogidos en las referencias.

3. Algunas cuestiones relacionadas

.-’ y 2
La recta de regresién de v = V(7) = fn‘i sobre la media muestral y = 7, admite
la expresién
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donde p3 es el momento central de orden 3 en la poblacién finita para la variable
de interés. Esto se deduce de que

32 H3
Govil i) ==
= (y n) .

a partir de Cramér (1953, p. 401). De aqui deducimos que u3/(no?) es el incre-

v =

mento al que tiende la estimacidén V(gj), cuando ¥ crece una unidad. Notemos
que p3 puede ser no nuld cuando la poblacién finita no es simétrica. Por tanto,
gy V(gj) son dos variables dependientes en el muestreo de poblaciones finitas
con disefio masr, pues como sefiala Cramér (1953) la media y varianza muestrales
son independientes si y solo si la poblacién es normal, cosa imposible para una
poblacién finita.
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Abstract

In this.article, we compare the results obtained by the application of several
methods to the correction of orbits of visual binary stars, with the purpose of to
verifying which of these methods are the best for each type of orbit.

In the comparison we employed the Comstock method, the modified Thiele
method and the method designed by R. Cid and C. Longés, using Fourier series.
These processes are applied to simulated orbits with the purpose of obtaining the
previous orbit in each case.

1. Introduccién

Cuando se calcula la érbita de una estrella doble visual con el niimero necesario y suficiente
de datos, se obtienen resultados diferentes, segin los lugares normales elegidos. Por esto,
si se parte de una 6rbita previa, con resultados no aceptables, habrd que recurrir a su
correccion.

De hecho existen varios métodos de correccion de 6rbitas que pueden ser aplicados para
minimizar las diferencias (O-C) (observacién-célculo); pero ordinariamente, en todos ellos
se aplica el siguiente esquema de célculo:

Sea f = f(gx,t) una funcién que coincide con cualquiera de las coordenadas observa-
bles, esto es, los 4ngulos de posicién 6 y las distancias p, y que depende del tiempo ¢ y de
un conjunto de pardmetros g (k= 1,2,...,7).

Si se conocen valores previos g de dichos pardmetros y se aplica el método de minimos
cuadrados, el problema de ajuste consiste en encontrar incrementos Agx, que sumados a
los valores previos, hagan mimima la suma de cuadrados de las diferencias (O-C), es decir

m m

> =3 lhlant) - £T, (1)

i=1 i=1

siendo m el nimero de observaciones.
Suponiendo que la funcién f(gk,t) cumple las condiciones analiticas necesarias para
que pueda ser desarrollada en serie de Taylor, en torno a los valores previos gg, tendremos

- —af
f(Qk)t)=f(Qk:t)+Za_AQk+.... (2)
k=1 99k
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En el caso de utilizar el criterio de minimos cuadrados, se llega a un sistema de
ecuaciones normales de Gauss, que tiene el mismo numero (k = 7) de ecuaciones y de
incégnitas Agg. Dicho sistema tiene asociada una matriz simétrica de coeficientes que
simplifica notablemente los célculos.

2. Meétodos de correcion de orbitas

Describiremos brevemente los célculos que requieren los métodos de Comstock, de
Thiele modificado y de Cid-Longas utilizando series de Fourier, que serdn aplicados en
este trabajo

2.1 Método de Comstock

. En este método, las ecuaciones a tratar por minimos cuadrados, en funcién de los elemen-
tos orbitales previos (ao, €5, To, 7o, o, Wo, 1), €sto es (semieje mayor, excentricidad, época
de paso por el periastro, movimiento medio, éngulo del nodo, argumento del periastro e
inclinacion), son, para cada observacién de dngulos de posicidn y distancias (6, p;), las
siguientes:

AAQ + BAI + CAe+ HnAT + KAn = A6;

1
ala + AL + yAe + mAT + kAn = ;Api

1

donde los coeficientes vienen dados por las igualdades:

A= 1 o= _1.
a

B= —%sen 2(0; — Q)tanI B= Btan(f; — Q)

o sen2(8; = Q) -
5 sen2(w + f;) 7= Ctan(6; — Q) —tan(w + f;) a)
a 1 a 7
= C(l_ez‘f';)senfi = ’Y(l—_?-i-;)senfi—;cosfi
b
H = -—-a—q-COSI nN= _a_rl)) (,y+a_esenEi>
8 P’ b
K= —-H(t-T) K = —n(ti i T)

siendo (f;, ;) las anomalias verdadera y excéntrica correspondientes a la época t;.

2.2 Método de Thiele modificado

En este método, se utilizan solamente diferencias Af; en dngulos de posicién, por consid-
erar que las observaciones en distancias presentan mayores errores.

Para explicar su fundamento, comencemos definiendo unos elementos orbitales previos
(€0 T, Mo, 2y, wo, I,,), a partir de los cuales calculemos las constantes de Innes escritas en
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la forma:
A= (cos,cosw, — sin Q, sinw, cos I,),
B = (sin€,cosw, + cos Q, sinw, cos L),
(4)
F = —(cosQ,sinw, + sin 2, cosw, cos I,),
G = —(sinQ,sinw, — cosQ,cosw,cos I,),
asi como los cocientes
B F G
ba=27 fo=27 gozz<

Entonces, si para un instante dado ¢;, consideramos los valores

£ai 74l ] 2
X; = cos E; — ey, Y:=4/1 —e2sen E;,

que corresponden a un movimiento eliptico, tendremos

boXi + gay’i

tanei = —\;+—f)/—'

N i Pi iy RS,
En estas condiciones, si ponemos k; = —, el problema de la correccion de érbitas se
a

0
reduce a tratar por minimos cuadrados la relacion

kiAG; = A[(X;Ab, + Y;Ag,) cosb; — YiAf sen 6;] —

cos [
Ki

(PAe + QinoAT + RiAn), (5)

que nos proporcionars los incrementos (Ab, Af, Ag, Ae, AT, An), en funcién de los coefi-
cientes

Xi2er V2 } Y2+ Xi(1 — e2)(X; + e,)
P —dyp il : ,
[ N(L—e?) Niy/1 — e — 0?)

R; = —Qi(t: — To), siendo  N;=1—e?—e,X;

Una vez obtenidos los incrementos mencionados, tendremos inmediatamente los nuevos
valores e = e, + Ae, T = T, + AT y n-=n, + An, asi como b = b, + Ab, f = fo+Af,y
g = go+Ag, deduciendo los elementos orbitales (A2, Aw, AI), por medio de las conocidas

relaciones b f ;
tan(w+Q)=1—+g, tan(w — Q) = b

I

oI 1—gcos(w+Q)
AN e s
2 1+ gcos(w—9Q)

Como en este método de correccién no intervienen las distancias, para calcular el
semieje mayor a, podemos proceder del siguiente modo: Calculemos unas distancias (pi)e
con @ = 1 y comparemoslas, por cociente, can las distancias observadas (p;),. Entonces,
podremos determinar el semieje mayor a, por medio de la igualdad
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2.8 Método de R. Cid y C. Longas

En este método, que utiliza solamente diferencias (O-C) en dngulos de posicién, se aplica
la formula (R. Cid y C. Longds, Rev. Acad. de Ciencias de Zaragoza, Serie 2, 47, pag.
132)

Aai Abg
AG; = Abp+ Xy {%(1—(:% kMi)—i-T}'sen le}

\/1—e2cosl, A
<M T noAT)

2
K3 Mo

+

donde para cada t;, M; representa la anomalia media correspondiente, x; = LS y (6,)c el

B
angulo de posicién correspondiente a la anomalia media M, = 0. <

El tratamiento de la ecuacién anterior por minimos cuadrados, nos permitird calcular
los incrementos Af,, An y AT, asi como los incrementos Aay, Abg, de los distintos
coeficientes de la serie de Fourier.

Siguiendo con este proceso, y poniendo e, = cos ¢, se tiene

Ae = b [((j) — €,C0S ¢)

2,/1—¢2

Finalmente para calcular los incrementos AQ, Aw y AI, podemos utilizar la relacién

An

= noAT]

0

AQ + RiAw — S;AT = A, (7)

que debera ser tratada por minimos cuadrados y donde los coeficientes R;, S;, vienen
dados por las igualdades
_ cos?(8; — Q,) cos I,
cos?(w, + fi)

S; = tan(w, + f;) sen I, cos®(6; — Qo)

La correccion del semieje mayor a, debera efectuarse del modo descrito en el método
de Thiele.

Observemos, que en la aplicacion de todos estos métodos, el proceso es iterativo, de
manera que un primer resultado puede servir de base a un nuevo proceso. La iteracién se
proseguird hasta que las diferencias (O-C) se consideren aceptables.

3. Abplicaciones numéricas

En nuestro estudio, la correccién por los metodos mencionados, ha sido aplicada a una
orbita simulada, que consta de 60 épocas t; (i = 1,2,...,60), tomadas aleatoriamente, y
donde se supone que todas las observaciones utilizadas tienen el mismo peso.

En esta érbita, que denominamos ezacta, hemos elegido un conjunto de elementos
orbitales, con los que hemos calculado efemérides en dngulos de posicién y distancias. A
cada una de estas efemérides se le ha sumado un ntimero aleatorio, con una distribucién
de Gauss, de media 0 y de varianza conocida, de manera que el conjunto de valores asi
obtenidos determinan lo que denominamos drbita observada del par visual.

Los métodos de correccién citados, se han implementado por medio de programas de-
sarrollados en FORTRAN 77, que fueron disefiados y utilizados en nuestra Tesis doctoral
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(C. Longés, 1993), y modificados posteriormente para el tratamiento de érbitas simuladas.
En todos ellos figura la subrutina Gauss, de inversién de matrices.

En resumen, nuestro esquema de célculos consiste en partir de una drbita ezacta, a
la que hemos asociado una drbita observada. En estas condiciones, hemos elegido unos
elementos orbitales previos o iniciales (€o, Ty, o, 20, Wo, 1o), con ayuda de los cuales hemos
calculado las diferencias (Af;, Ap;). Aplicando a estos resultados un método de correccién,
hemos obtenido los incrementos (Aa, Ae, AT, An, AQ, Aw, AI), correspondientes a una
primera iteracion. Los valores asi obtenidos (a = a, + Aa,e = ¢, + Ae, T =T, + AT, n =
ne + An,Q = Q + AQ,w = w, + Aw,I = I, + AI), pueden ser considerados como
elementos orbitales previos para una nueva iteracion, continuando de este modo hasta
obtener un resultado aceptable.

En concreto, nuestro estudio ha sido aplicado a una drbita simulada, de excentricidad
no muy elevada y de movimiento retrégrado, cuyos elementos orbitales (exactos), entre
los que se ha incluido el periodo P, en lugar del movimiento medio n, son los siguientes:

P = 63.050, T = 1932.560, a = 1".800, e = 0.580

Q = 215°.600, w = 145°.300, I = 125°.400.

A dicha érbita le hemos asociado, como drbita supuestamente observada, observaciones
de dngulos y distancias, preparadas con desviaciones tipicas de 1° y 0”.1, respectivamente.
Esto significa que el 95.45% de las observaciones tienen un error menor que 4° y 0.4
segundos de arco, respectivamente.

Asimismo, hemos elegido dos versiones de elementos orbitales previos, que incluimos
como Caso A y Caso B, aplicandoles posteriormente los métodos de correccion de Com-
stock, de Thiele modificado y de Cid-Longéds. En las aplicaciones se han efectuado seis
iteraciones en el método de Comstock (”Coms6”) y cuatro en el de Thiele modificado
("Thiel4”). En el método de Cid-Longés por medio de series de Fourier, se han utilizado
tres versiones distintas, segtin el nimero de coeficientes (Aay, Aby) considerados. Asi, en
el método de correccién, denotado como ”F2”, se han utilizado dos coeficientes Aay. y dos
coeficientes Aby, en tanto que en el método, denominado ”F3”, han sido tres de cada uno
de ellos. Finalmente, en el método ”F25” hemos tomado coeficientes promedio (Aa,, Ab,)
de 25 coeficientes (Aay, Aby).

Dado que la convergencia de los métodos de correccién de Comstock y Thiele es mas
rapida que la obtenida para las distintas opciones por series de Fourier, es natural que se
hayan empleado en éstas un mayor nimero de iteraciones, ordinariamente ocho, aunque
en algunas ocasiones se ha llegado hasta 25.

4. Dos ejemplos de correccién de érbitas
En ambos casos el célculo se ha efectuado con 0y =1.0y 0, = 0.1.

4.1 Caso A

Una vez elegida la 6rbita previa, que tiene un error medio de 12° y una desviacién tipica
en angulos de 12°, y aplicados los distintos métodos de correccién, se ha obtenido la tabla
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Ia, que se incluye a continuacion:

Tabla Ia.- Elementos orbitales

P

JE

Q

63.050
61.790
62.023
63.279
63.035
63.050
63.012

Exacta
Previa
Thield
Coms6
Four-2
Four-3
Four25

1932.560
1933.965
1932.544
1932.517
1932.423
1932.560
1932.411

17.800
17.730
17.799
123781
17.810
17.800
17.814

0.580
0.604
0.581
0.587
0.588
0.580
0.589

215°.600
219°.038
215°.155
215°.136
213°.810
215°.600
213°.706

145°.300
141°.289
144°.919
144°.787
142°.638
145°.300
142°.430

125°.400
120°.243
125°.491
125°.735
125°.400
125°.480
124°.805

En la tabla Ila, se han consignado: a) las sumas de cuadrados 3(Af)? y 3(Ap)?, que
resultan ser, respectivamente, 320 veces y 7 veces mayores en la érbita previa que en la
exacta, b) los promedios Af y Ap y c) las desviaciones tipicas a(Af), o(Ap).

Tabla ITa.- Diferencias con las observaciones

(A0)?

> (Ap)?

A

aAf Ap

ocAp

Exacta 5.75480E1
Previa 1.86255E4
Thield 5.54959E1
Coms6 8.36048E1
Four-2 7.26240E1
Four-3 7.42369E1
Four25 8.17135E1

6.17900E-1

4.33026E0
6.25258E-1
5.93257E-1
6.65154E-1
6.69809E-1
7.09373E-1

-1.61980E-1

-1.27962E1
-2.17384E-4
-1.22305E-4
-2.60610E-2
-5.26874E-2

2.25256E-1

9.65865E-1

9.57070E-1

1.21113E1

1.18043E0
1.09987E0
1.11108E0
1.14506E0

6.08188E-3
1.38737E-1
7.74921E-3
7.77605E-3
7.51799E-3
7.38549E-3
7.23115E-3

Tabla IITa.- Diferencias con la 6rbita exacta

La tabla IIla contiene las desviaciones tipicas de las diferencias O-C entre las efemé-

o(Af)

a(Ap)

Thiel4
Coms6
Four-2
Four-3
Four25

1.301490E-1
7.068544E-1
6.225533E-1
6.4577T44E-1
7.017192E-1

2.740280E-3
1.286939E-2
1.647837E-2
1.719644E-2
2.533614E-2

rides obtenidas en cada método y las efemérides obtenidas con la érbita exacta.

1.01298E-1
2.30050E-1
1.01789E-1
9.91321E-2
1.05021E-1
1.05334E-1
1.08672E-1



4.2 Caso B

Con idéntico criterio se ha elegido una segunda drbita previa, cuyas tablas figuran a
continuacion:

Tabla Ia.- Elementos orbitales

154 15 Q

Exacta 63.050 1932.560 1”.800 0.580 215°.600 145°.300 125°.400
Previa 64.250 1931.510 1”.690 0.567 212°.735 148°.222 123°.108
Thiel4 62.023 1932.544 17.799 0.581 215°.155 144°.919 125°.491
Coms6 63.279 1932.517 1”.787 0.587 215°.136 144°.787 125°.735
Four-2 63.022 1932.645 17.803 0.577 215°.515 145°.264 125°.275
Four-3 63.044 1932.643 17.789 0.577 216°.044 146°.473 125°971
Four25 63.044 1932.638 1”.790 0.577 215°.993 146°.368 125°.879

Tabla ITa.- Diferencias con las observaciones

2 (A0)2 L3 (Ap)? Ad Ap alp

Exacta 5.75480E1 6.17900E-1 -1.61980E-1 9.65865E-1 6.08188E-3 1.01298E-1
Previa 1.13118E4 1.96865E0 1.08572E1 8.40541E0 1.27772E-1 1.28394E-1
Thield 5.49585E1 6.25258E-1 -2.01453E-4 9.57066E-1 7.74895E-3 1.01789E-1
Coms6 8.36053E1 5.93258E-1 9.40283E-5 1.18043E0 7.77600E-3 9.91321E-2
Four-2 9.62114E1 6.46602E-1 -5.27016E-1 1.15142E0 8.05750E-3 1.03498E-1
Four-3 6.32634E1 6.10243E-1 -4.29329E-2 1.02594E0 8.06098E-3 1.00527E-1
Four25 6.29181E1 6.11481E-1 -5.83471E-2 1.02237E0 8.05110E-3 1.00631E-1

Tabla IIIa.- Diferencias con la érbita exacta

o(AB) a(Ap)

Thiel4 1.301453E-1  2.740076E-3
Coms6  7.068607E-1  1.286939E-2
Four-2 6.019721E-1  8.723500E-3
Four-3 3.167834E-1  8.007020E-3
Four25  3.053665E-1  7.160012E-3

Como se comprueba en las tablas precedentes, esta orbita resulta ser algo mejor que
la anterior, puesto que la suma de cuadrados de las diferencias O-C es, en angulos, 200
veces mayor que en la exacta, teniendo un error medio de 10° y una desviacién tipica de
8°. Los resultados obtenidos coinciden exactamente con los de la érbita anterior en los




casos de Comstock y Thiele modificado. En los casos Four-2, Four-3 y Four25, se obtienen
mejores resultados en los elementos Q, w, I.

5.
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De la observacién al movimiento estelar. Aplicacion al célculo del

apex del Cimulo Abierto en Coma Berenices.

Carlos Abad y Jurgen Stock

Abstract

A particular form of getting proper motions from direct phographic exposures is
given. The planification of observations and the reduction of plates using overlap-
techniques-and the correction of systematic errors between catalogues are also dis-
cussed. A new fitting function for digitised images is used to improve the measure-
ment of the centroid’s rectangular coordinates of saturated images in a plate. These
techniques have been used to derive new proper motions for the Coma Berenices

Cluster. Also, a discussion on apex determination is given.

1. Introduccién

Un cimulo estelar se puede definir como un conjunto de estrellas formadas, a partir de
una misma nube, en un intervalo de tiempo relativamente corto. Las estrellas del cimulo
comparten, a grandes rasgos, sus movimientos, conservando su estructura a través del
tiempo.

La Astrometria calcula los movimientos estelares a partir de observaciones de la posi-
cién de las estrellas. La desproporcion entre el periodo de tiempo en el que se poseen
observaciones y la escala temporal de los movimientos, hace que, para la mayoria de las
estrellas sea practicamente imposible detectar movimientos que contengan aceleraciones.
Por ello, en lo que sigue, nos limitaremos a la proyeccién sobre la esfera celeste de la parte
lineal del movimiento de la estrella, es decir, a su movimiento propio.

El movimiento propio de una estrella se obtiene ajustando una recta al conjunto de
observaciones de la estrella realizadas en diferentes épocas. La pendiente de dicha recta
indica la variacién de la posicién de la estrella con respecto al tiempo. Este ajuste se realiza
por separado para cada una de las coordenadas que definen la posicion de la estrella. La
precisién del movimiento propio obtenido depende de la calidad de las observaciones, de
el intervalo de tiempo que abarcan dichas observaciones y por ltimo de la reduccién de

todas ellas a un mismo sistema de referencia, carente de errores sistematicos.
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El movimiento lineal y paralelo de dos estrellas en el espacio se traduce, al restringirnos
a la geometria impuesta por la esfera celeste, en un movimiento sobre dos circulos méaximos
que se cortardn en dos puntos diametralmente opuestos. El concepto de corte cambia al
de convergencia cuando, como en un cumulo, el nimero de estrellas que comparten el
movimiento lineal y paralelo es mayor que dos. Este punto hacia el cual parece que las
estrellas se mueven, pero que nunca alcanzaran, se denomina dpex.

Una vez calculado, el 4pex nos permite conocer la componente radial del movimiento
del ctimulo y por tanto su movimiento lineal espacial. Como consecuencia, con ayuda
de observaciones espectroscépicas, se puede determinar, con probabilidad muy alta, la
pertenencia de las estrellas al cimulo.

El estudio de cimulos cercanos es bésico para conocer las relaciones existentes en-
tre parametros tan importantes como magnitud, color y tipo espectral de las estrellas.
El conocimiento de los miembros de un cimulo y de sus caracteristicas, contribuye al
conocimiento de la estructura y dindmica de nuestra galaxia y a un mejor conocimiento
de la evolucién estelar, ademéas pueden ser usados como patrones de distancia.

El cimulo estelar abierto en Coma Berenices es un cimulo similar a la mayoria de los
cumulos estelares catalogados, pobre en nimero de estrellas, pero que por su proximidad
al Sistema Solar se presenta como angularmente extenso, abarcando en el cielo un campo
de unos 10 grados de didmetro [26]. Esta caracteristica, unida a que los movimientos de
las estrellas que componen el ciimulo son pequefios y no destacan del resto de aquellos de
las estrellas que aparecen en el mismo campo, hace del célculo del dpex un tema delicado
astrométricamente hablando. El célculo de movimientos propios debe ser muy preciso y
obtenido obligatoriamente a través de la unién de posiciones absolutas obtenidas para las
distintas épocas de observacion.

El trabajo que en este articulo se resume, eminentemente astrométrico, estudia los

pasos a seguir para que, partiendo de unas observaciones a realizar, de otras ya realizadas

y de unos catdlogos ya elaborados, se obtengan movimientos propios precisos que nos
lleven a un mejor conocimiento de los cimulos estelares.

El ctimulo estelar abierto en Coma Berenices ha servido de excusa para tratar y mejo-
rar la determinacién de posiciones a través de placas fotograficas, y una vez calculados
los movimientos propios de las estrellas del campo, para tratar también la biisqueda de

asociaciones estelares.

2. Reduccién de placas fotograficas

Reducir una placa fotogréfica consiste en determinar las coordenadas astronémicas (v, 6;).

de los astros que aparecen en la misma, a partir de las coordenadas (z;, ;) obtenidas en
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un sistema reetangular definido sobre la placa.

La determinacién de las coordenadas se realiza de una forma relativa, ya que éstas se
obtienen a partir de las posiciones de estrellas ya catalogadas cuyas imagenes han podido
ser identificadas sobre la placa.

Cuando la reduccién se realiza en forma individual, es decir, para una sola placa, las
estrellas de referencia tienen la misién de trasladar el sistema de referencia del catdlogo a
la placa, ademéds de dar la formulacién que nos permite pasar de coordenadas cartesianas
(z:,9:) a esféricas (ay, 6;).

Podemos dividir en dos grupos los modelos mateméticos que realizan una reduccion.
El primero, que podriamos llamar clésico, trabaja en el plano y calcula la posicién que
ocuparian las imagenes de las estrellas de referencia en la placa a través de una proyeccién
que es funcién de la distancia focal y el tipo de telescopio utilizado en la observacion. Las
coordenadas obtenidas por observacién se hacen coincidir con las obtenidas por medio de
un desarrollo en serie

n3

Z buz’yjﬂ—z Z digmFaiy’ —I—Z > eijctaiy’

j+i=1 k=1 j+i=1 k=1 j+i=1

L n2

Z GiTyY +> > My mzyj+z Zpucaz/

j+i=1 k=1 j+i=1 k=1 j+i=1

funcién de éstas y donde pueden aparecer otros parametros como m, ¢, relacionados con
la magnitud y el color de las estrellas.

En la mayoria de los casos se conocen los términos que serdn significativos, incluso
se puede calcular una buena aproximacién de sus valores. Los términos lineales van a
ser los encargados de buscar la coincidencia en orientacién y escala de ambos sistemas,
mientras que el resto de los términos de mayor orden van a representar las deformaciones.
Cuando nos referimos a éstos ultimos y hacemos hincapié en el tipo de proyeccién utilizada
estamos hablando de distorsion.

Un segundo grupo estd basado en la busqueda de una solucion espacial en lugar de
plana. A este grupo pertenece el método de reduccién de Stock [22]. Dicho método parte
también de una proyeccion dependiente de un factor de escala y del telescopio utilizado
en la observacién, pero traslada a la esfera unidad los puntos (z;,y;) que representan
las imdgenes de la placa. Es alli donde relaciona las coordenadas (a;,6;) de la estrella
de referencia, dadas por el catdlogo, y expresadas en forma cartesiana como (&, &2, &3)
con las (z;,y;) en su forma proyectada (u;;,u;,;3). Dicha relacién se obtiene por la
composicion de dos rotaciones elementales y viene definida por tanto por una matriz A

teéricamente ortogonal. Un esquema representativo del método puede ser el siguiente:

((Yi, 5i) "ansm’mén (@'1, §i27£1‘3) Gl (un, ui27ui3) pm&ion (H»‘i,'yi)
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donde el sistema de ecuaciones a resolver viene dado por la expresién

3
‘Sik = Zakjuij (k = 17 27 3)1
j=1

siendo ay; los elementos de la matriz de giro A.

3. Técnica de traslapo

No siempre es posible encontrar el nimero suficiente de estrellas de referencia o de catdlogo
que permitan realizar la reduccién de una placa determinando los parametros significativos
del desarrollo y que influyen en la posicién final de las estrellas.

Existe una técnica que consiste en programar la observacion, de forma que, el area del
cielo a estudiar sea cubierta por varias placas cuyos campos se superponen o traslapan.
Con dicha técnica se consigue que cada estrella tenga imégenes en mdas de una placa o
exposicion. A las estrellas que tienen mdas de una imagen las llamaremos de traslapo. Si
se ha realizado la observacién segun esta técnica, es posible encontrar una solucién en
forma conjunta a las placas, sin mds que tener en cuenta que imdgenes que provienen de
una misma estrella deben dar posiciones idénticas en el cielo [15].

En el método de Stock [22], las estrellas de traslapo producen un nuevo tipo de ecua-
ciones (2). que se suman a las formadas por las estrellas de referencia (1).

3
> a,(-;)ugl) = Zag?)ug') (k=1,2,3), (2)
j=1 j=1
donde ag-l) y aS;-n) representan las matrices solucién a las placas n y m respectivamente,
donde se encuentran las imdgenes comunes de coordenadas ufj'-l) para la imagen [ de la
placa n y u(k’;l ) para la imagen k de la placa m .

El nimero de ecuaciones de condicién formadas a partir de las estrellas de traslapo es,
en general, mucho mayor que el de las ecuaciones formadas a partir de las ecuaciones de
referencia, pudiéndose decir que las estrellas de traslapo van a dar la rigidez al entrelaza-
miento de unas placas con otras, mientras que, las de catdlogo van a aportar el sistema
de referencia al conjunto.

El mismo nimero de estrellas de referencia que antes era necesario para la obtencién
de la solucién de una placa, lo es ahora para el conjunto. De tal forma que, si para la
reduccion, en forma individual, de N placas que se traslapan eran necesarias 3N estrellas
de referencia, al hacerlo en forma conjunta, el nimero se reduce a 3.

Este hecho es muy importante por su aplicacién a los actuales detectores como el
CCD. Debido a su pequeno tamario, es imposible, en la mayorfa de los casos, encontrar
un nimero minimo de estrellas de referencia que hagan posible asemejar una exposicién

tomada con CCD a una exposicién fotogréfica y tratarla como tal [4].
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Taff [24] desarrolla una variante de traslapo que se puede aplicar en la reduccién de
una solo placa. Aplica el modelo de reduccién en forma idéntica a dreas diferentes de la

placa que se traslapan. De ésta forma estudia la falta de acoplamiento del modelo segiin

el area o, lo que es igual, las deformaciones de la placa respecto al modelo.

La idea original del trabajo que aqui se resume, era la introduccion en las ecuaciones
(1) y (2) de los términos que representan la distorsién cuando se usa el método de Stock
[22] en su forma de reduccién en bloque, pero finalmente derivé en un tema mds general y
completo, donde se da una solucién al problema de la distorsion cuando se manejan placas
que se traslapan, empleando cualquier tipo de reduccién en su forma maés sencilla.

La siguiente tabla da una relacién de los catdlogos que se han reunido, haciendo

mencion a sus épocas medias, y a si han sido reducidos el trabajo mencionado

Catélogo poca media Reduccion
AC Zona Paris 1894 si
AC Zona Oxford 1903 si
BOSS 1900 -
HECKMANN 1926

YALE 1926

AGK2 1930

NIRS 1950

POSS 1953

AGK3 1960
CARLSBERG 1987

C. SCHMIDT (CIDA) 1988

C. SCHMIDT (CIDA) 1990

C. SCHMIDT (CIDA) 1994

La unificacién de los diferentes catalogos en un mismo sistema para el cdlculo de
movimientos propios, exige la eleccién de ese sistema. El sistema Hipparcos hubiera sido
el ideal para ello, pero a falta de su disposicién, dos son los candidatos: el sistema definido
por el catdlogo Carlsberg y el definido por el catdlogo PPM. La eleccién del primero

respecto al segundo se debe a las siguientes razones:

— en la actualidad, la densidad en ntmero de estrellas para la zona estudiada es

semejante a la del PPM,
— el error en posicién es menor para el catdlogo Carlsberg,

— llega a magnitudes superiores,




— su época media es similar a la de las tltimas épocas de observacién tomadas con la
Cémara Schmidt, telescopio no especialmente astrométrico y donde los problemas
de reduccién son mds variados. A veces estos problemas son de origen desconocido

y de magnitud importante.

Existen dos formas de corregir los errores sistematicos entre catélogos. La primera
consiste en estudiar la parte sistematica de las diferencias en posicién para estrellas
comunes, llevadas a una misma época. La segunda consiste en reducir uno de ellos respecto
al otro. Como ya se ha indicado anteriormente, en la reduccién de placas, las estrellas
de referencia tienen como misién el trasladar su sistema, por ello, y para comprobar,
para cualquier tipo de telescopio, todas las técnicas novedosas que aqui se ensayan, se
han vuelto a reducir aquellos catélogos para los cuales se disponia de las placas (POSS
-Palomar Observatory Sky Survey) o de las posiciones de sus imégenes medidas (z,y)
(AC -Astrographic Catalogue). Para ello se ha usado el catédlogo Carlsberg como catalogo

de referencia.

4. Determinacién de posiciones sobre la placa

Las imagenes que producen las estrellas sobre una placa, pueden considerarse como man-
chas extensas que, en condiciones 6ptimas, deben poseer simetria radial, con un méximo
de densidad en el centro.

Una vez definido un sistema cartesiano sobre la placa, ésta puede medirse sustituyendo
univocamente las imdgenes por puntos que las van a representar. Dichos puntos van a
ser los centros aparentes de simetria de las imdgenes, cuando el operador es quien decide
en forma visual el punto, o el mdximo de la distribucién de densidades asociadas a los
pixeles, o elementos de area, para los procesos digitalizados. En esta tltima forma, la
funcién de densidad que se suele elegir es la gaussiana, que, aunque no reproduce en la
mayoria de los casos la funcién verdadera, si da, y en una forma bastante sencilla, el
maximo de la distribucién. El principal problema se presenta para imdgenes saturadas
que, en general, seran imagenes correspondientes a estrellas de referencia y por tanto muy
importantes para el proceso de reduccién. En ellas, el valor de densidad asociado a los

pixeles centrales, fluctiia levemente alrededor de un valor constante, y la funcién gaussiana

pierde sentido ante posibles deformaciones de la imagen, provenientes de la observacion,

y que serian mas obvias en su parte externa. La solucién en dicho caso se encuentra,
asignando mayor peso a los pixeles que encierran la parte externa de la imagen que a los

internos.
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Figure 1.—Formacién de perfiles a través de una resta de dos funciones arcotangentes. Con las
funciones que representan la parte (A) de la figura, se pueden crear perfiles simétricos, parte (B),
o asimétricos, parte (C), semejantes a los que se pueden encontrar en una seccién transversal de
una imagen fotografica. Basta para ello, variar los pardmetros que definen la anchura (c) y la

inclinacién (b) de cada una de las funciones arcotangentes que definirdn la imagen.




En el trabajo se desarrolla una nueva funcién, dependiente de la funcién arco tangente
a la que se le han agregado 2 pardmetros que permiten manejar el desplazamiento y la
inclinacién de la misma

d = arctan [b (z — ¢)] (3)

Restando dos funciones de este tipo, en donde se han variado uno o ambos parametros,
pueden modelarse perfiles como los que se muestran en la figura 1.
Tomando como independientes las funciones de densidad para uno y otro eje, la funcién

que representa a la imagen queda, una vez normalizada, en la forma

gy AT m [arctan (b, (z — ¢;)) — arctan (b (z + ¢2))] (4)

1
2 arctan byc,

[arctan (by (y — ¢y)) — arctan (by (y + ¢))]

Por lo general, los ejes de barrido durante el proceso de digitalizacion y los de simetria

de la imagen no van a coincidir, debiendo efectuar una reorientacién de los primeros
(z — zo)cos ¢ + (y — yo) sen ¢ (5)
— (z — zo)sen d + (y — yo) cos ¢

quedando en definitiva la funcién que representard a la imagen como

A

4 arctan b, c, arctan b,c,

flu,v) [arctan (b, (u — ¢,)) — arctan (b, (u + c,))]  (6)

[arctan (b, (v — ¢,)) — arctan (b, (v + ¢,))] + G + Gu + G

donde: A es la amplitud o densidad méxima de la imagen, b, y b, estén relacionadas con
las pendientes en cada uno de los ejes de simetria de la imagen y ¢, y ¢, , con el tamano
de la imagen en cada uno de los ejes de simetria. (zo,yo) representan el centro de la
imagen segun las direcciones de barrido y ¢ el dngulo entre los ejes de barrido y simetria
para la imagen. Por tltimo (i,(, (3 representan pardmetros que definen un plano que
representard el nivel del fondo del cielo.

Para la determinacién de los pardmetros que definen la funcién (6), el modelo debe
ser aplicados a las imagenes a través de un proceso de ajuste por minimos cuadrados. La
falta de linealidad obliga a la bisqueda de la solucién en una forma iterativa, partien-
do de valores iniciales que deben ser lo suficientemente buenos como para conseguir su
convergencia.

Suponemos simetria en la imagen y por ello los pardmetros iniciales definidos para uno
de los ejes, lo seran también para el otro. Cuando no existen problemas de saturacién sobre
la placa, el parametro densidad o cuenta mdzima tiene una relacién muy bien definida

respecto a los parametros inclinacion y anchura de la imagen. Pero, segin se puede
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Figure 2.—Se muestra la relacién existente entre dos de los pardmetros que conforman la funcién
de ajuste a una imagen fotografica y los parametros cuenta maxima de los pixeles que contienen
la imagen y suma de cuentas para esos mismos pixeles. La finalidad es apreciar que, ante la
saturacién, el parametro suma de cuentas es un mejor calibrador del resto de los pardmetros
que el parametro cuenta méxima que permanece acotado a partir de un cierto valor. El grifico

estd basado en el ajuste de imdgenes pertenecientes a una de las placas del catalogo POSS.




apreciar en la figura (2), el pardmetro volumen o suma total de cuentas para pizeles que
encierra la 1magen parece el mas adecuado, ya que esta relacién se mantiene, incluso en
los casos de saturacion.

El proceso se ha aplicado a mds de 40000 imégenes, correspondientes a la serie de
placas Schmidt (1994) y POSS, eligiendo en forma aproximada los pardmetros iniciales
para una primera determinacién, usando los casos donde se encontré convergencia para
definir la relacion existente entre parametros y aplicando éstos, como iniciales, en una
segunda vuelta de cédlculo. Se consiguié convergencia en forma automadtica para un 90
% de las imdgenes. Las demds debieron ser estudiadas con mds detenimiento y por lo
general correspondieron a imagenes de objetos no estelares como galaxias o nebulosas,
objetos dobles o multiples, objetos muy débiles (para los cuales no existe un nimero
suficiente de pixeles con informacién clara y distinguible del ruido electrénico), o incluso
manchas en la propia placa.

El acoplamiento entre imagen y funcién lo definimos como el error medio por pixel
de las diferencias entre la suma de cuentas, para los pixeles que contienen la imagen
corregidos por el fondo de cielo, y el volumen que encierra la funcién determinada en el
ajuste. El valor de este error es del orden de entre 1 y 2 veces el valor del ruido de la

digitalizacion. Se puede decir que el acoplamiento es casi perfecto.

5. Nuevo modelo matematico para la reduccién

Una planificacién de la observacién en forma de traslapo hace que cada estrella tenga
tantas posiciones como imégenes tiene en las placas. Una reduccién en bloque trata de
imponer que esas posiciones coincidan. La no coincidencia se puede achacar a todos
aquellos problemas que no han podido absorber los pardmetros que definen la solucién de
cada una de las placas.

La posicién final de cada estrella vendrd dada como el promedio de las posiciones
individuales obtenidas, para esa estrella, en las placas donde tenia imagen. Aparece cdn
ello un residuo asociado a cada una de las posiciones individuales. Se trata de descubrir
la informacion que contienen dichos residuos, y en especial extraer de ellos la parte sis-
tematica, si la hay. Para ello se hace uso de una funcién ya definida por Stock y Abad
[23]. Dicha funcién esté definida en forma discreta tal como se describe a continuacién.

Sea un conjunto de puntos (z;,v;) sobre el plano, que llevan asociados cada uno un
valor real A;. El valor asociado A a un punto cualquiera (zo, %) lo vamos a determinar
a través de los valores asociados A; a los puntos (z;,y;) pertenecientes a un entorno, con

centro en el punto (zo,yo), de radio ¢ fijado previamente, y que mantendremos constante

durante todo el proceso. El valor Ay = Q(zo,%0) se obtiene a partir de una sencilla
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funcién polinémica Q(z,y), que se ajusta a los puntos iniciales (z;,v;). Para un nuevo
punto (zo,¥o), su valor A, se obtiene trasladando el entorno de radio 7y usando este
punto como nuevo centro, y realizando de nuevo el ajuste de la funcién Q(z,y) a los
A\; iniciales que han quedado dentro del nuevo entorno. De esta forma, los valores 2\,
que se van obteniendo forman una funcién P(zg,yo) que puede llegar a ser continua y
derivable. Durante el proceso de cédlculo de los Ay se introduce un peso a los valores A;
que intervienen en su cdlculo, que depende de la distancia r; del punto (z;,v;) al central

(z0,%0) en la forma

siendo n un nuimero entero.
Se puede demostrar que la funcién P(z,y) asi definida, es continua y derivable si
n>1, y las k-ésimas derivadas son continuas cuando n = 2k , (Abad, [1]).

Esta funcién se aplica, en el presente trabajo, en las dos formas que se expresan a

continuacion e independientemente de los residuos de cada una de las coordenadas.

— Trabajando con placas que se traslapan, los residuos Aa y A, que resultan
al comparar posiciones finales de las estrellas con las posiciones individuales que
contribuyen a esa posicién final, pueden asociarse a la posicién (z,y) que ocupan
las imégenes sobre la placa. De esta forma puede obtenerse informacién sobre
las deformaciones que introduce el sistema 6ptico del telescopio, y que no fueron
detectadas en la solucién. La asociacién, si se completa, con algin pardmetro que
esté relacionado con el tamano de la imagen, puede determinar incluso los llamados

problemas de magnitud.

Trabajando con catédlogos, la funcién debe servir para determinar sus diferencias
sistematicas, sin mas que trabajar con los residuos o diferencias entre las coorde-
nadas « , 6, dadas por los catalogos para las estrellas comunes, una vez llevadas a

una misma época.

En ambos casos, una vez trabajados los residuos para cada una de las coordenadas
por separado, podemos llegar a visualizar los resultados y hacer que estos sean de gran
utilidad cuando, al definir una red sobre la superficie que contiene los puntos para los
cuales hay residuos, se calculan los valores que corresponderian a los nodos de la red.
Estos valores, se pueden mostrar en un grafico como vectores asociados, cada uno a su
nodo, de médulo la composicién de los valores obtenidos para cada una de las coordenadas
y orientacién la que indiquen dichas componentes.

Esta visualizacion permite observar cuales van a ser las deformaciones que indican

los residuos no absorbidas por la reduccién o comparacién de catalogos, segiin el caso,
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permitiéndonos comprobar la complejidad de las mismas y ayuddndonos en la decision del
cémo se van a eliminar. Si la estructura mostrada es facil de representar por una funcién
analitica, el proceso se limitara a sustituir las deformaciones puntuales por la funcién que
las representa y aplicarla a los valores iniciales. Si por el contrario, la estructura es com-
pleja, una red més densa en nodos puede ser utilizada para encontrar, por interpolacién,

el valor a aplicar individualmente a cada uno de los puntos a corregir.

6. Aplicacién del modelo

6.1 a la reduccion de placas fotogrdficas

El modelo descrito se ha aplicado a diferentes series de placas que provenian de diferentes
telescopios, debiendo hacer especial mencién a aquellas provenientes de telescopios tipo
Céamara Schmidt. Dicho telescopio tiene la particularidad de que la superficie focal debe
ser una seccion esférica, de centro idéntico al de la superficie del espejo y la mitad del
radio de curvatura del espejo. Para conseguir que todos los puntos de la placa estén en
foco, la placa debe ser curvada hasta conseguir dicha curvatura o bien se debe utilizar un
aplanador de campo que hace el papel de dicho doblamiento.

Esta manipulacién de la placa hace que el telescopio no sea el idéneo para la calidad
de los trabajos astrométricos, aunque si es envidiable por su rapidez de respuesla y su
campo ancho.

En las series de placas tomadas con la cdmara Schmidt del CIDA, se detectaron prob-
lemas dificiles de determinar que pusieron a prueba la capacidad del método aqui desar-
rollado. Parte de los resultados obtenidos para diferentes telescopios ya fueron publicados
en [2] y [3].

La serie realizada en 1988 es presentada como ejemplo de dichas dificultades. La
figura (3) muestra una dependencia de la distorsién, en funcién de los puntos de contacto
y presién del grupo de anillos, que el sistema de tensado de la placa de la propia camara,
disponia en ese momento. Parte de dicha deformacién era encubierta, en una forma

totalmente casual, por la simetria en la ubicacién de los centros de las placas al planificar el

traslapo. Esto da pie a afirmar, que la mejor planificacién de una observacién con traslapo,

es aquella que, sin dejar zonas del cielo peor cubiertas que otras, tienen distribuidos los
centros de las placas en forma aleatoria.

La aplicacién del método a los problemas relacionados con el tamano de la imagen
(también llamados problemas de magnitud), se realiza agrupando las imégenes en inter-
valos no disjuntos del parametro que represente al tamafio de la imagen. Dicho pardmetro
sera: el didmetro de la imagen, la magnitud de la estrella, el volumen encerrado por la

funcién de ajuste a la imagen una vez digitalizada, o cualquier otro que lo represente.
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Figure 3.—Campo de distorsién calculado, a través de una solucién lineal, combinando la
comparacion de posiciones individuales, obtenidas de la reduccién, con las dadas por el catdlogo
Carlsberg (fuente externa), y con la posicién promedio de posiciones para una misma estrella

(fuente interna). Placas medidas con la PDS de Munster.




El pardmetro mds conveniente es el relacionado con el volumen ya que permite unificar
criterios, en una forma mads rigurosa, para placas o exposiciones diferentes. Una vez
separados en intervalos, se aplica el método en forma similar a como se realiza para la
distorsion.

En las series de placas reducidas, tanto del Catdlogo Astrogréfico, como las tomadas
con camara Schmidt, no se aprecian errores graves dependientes del tamano de la imagen.
De todas formas, cuando se calcularon los errores medios finales de la reduccién, éstos,
fueron desglosados por magnitudes, para repetir y corregir el proceso de reduccién si fuera
necesario al ver alguna dependencia error—magnitud.

A continuacién se presenta una tabla, reducida a los errores medios finales obtenidos

en la reduccion de todas aquellas series para las cuales se aplicé el método

Series de placas 0a(s) 0s(”) n° imégenes
Paris (AC) 0.014 0.19 19466
Oxford(AC) 0.021 0.25 8162
Heckmann 0.015 0.26 610
POSS 0.024 0.30 443
Schmidt (1988) PDS 0.009 0.13 8162
Schmidt (1988) PSK2 0.019 0.30 13639

Schmidt
Schmidt

1990
1994

0.018 0.29 19311
0.012 0.16 26738

(1988)
(1988)
Schmidt (1988) PDS+PSK2 0.013  0.19 51435
(1990)
(1994)

Parte de la serie de placas tomadas con la cdmara Schrnidt del CIDA en 1988 fueron
medidas con la PDS de la Universidad de Munster (Alemania), mientras que la serie toma-
da con la misma cadmara en 1994, se midié con la PDS del Departamento de Astronomia
de la Universidad de Yale (EEUU). Se puede apreciar la gran influencia, que ejerce una

buena medicién sobre los resultados finales.

6.2 a la unificacion de catdlogos ya elaborados

El modelo se aplicé a las diferencias en posicién para estrellas comunes entre los catalogos
ya elaborados y el catédlogo Carlsberg (tomado como de referencia, para todo el trabajo),
llevadas a la época del catalogo a corregir. Una muestra de cémo se presentan las correc-
ciones a aplicar se ve en la figura 4, que representa las diferencias sistemadticas entre los

catalogos AGK2 y AGKS3 con el catdlogo Carlsberg.
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Figure 4.—Representacion en forma de diagrama de flechas de los errores sistemédticos entre
catélogos obtenidos a partir de las diferencias de posicién para estrellas comunes, cuando estan
referidas a una misma época y equinoccio. Estas diferencias estdn expresadas bajo el diagrama
y en trazo maés suave. El catdlogo fuente o de referencia es el catédlogo Carlsberg para ambas
partes del grafico, correspondiendo el superior a las correcciones del catalogo AGK2, y el inferior

al catalogo AGK3.




7. Catdlogo y movimientos propios

El cdlculo del movimiento propio de una estrella se reduce a la obtencién de la proyeccién
del movimiento rectilineo y uniforme de esa estrella, para ello, se realiza el ajuste de una
recta a la posicién en o 0 6 respecto a la época.

Es necesario, como ya se ha indicado anteriormente, que todos los puntos (posicién,
época) estén en el mismo sistema de referencia y lo més libre posible de errores sis-
temédticos, condicién conseguida al realizar la reduccién de las observaciones basandose en
el mismo sistema de referencia (catdlogo Carlsberg) o aplicando los métodos de reduccién
de errores entre catdlogos como antes se ha escrito.

El célculo se realiza mediante el ajuste de una recta a los diferentes valores de posicién
(a;,6;) de una misma estrella respecto a sus épocas epoca; referidas a una época media
epocap usando el método de minimos cuadrados y en forma independiente para o y para

6. El término independiente (v, §y) nos dara la posicién para dicha época media.

o ap + Lo, (epoca; — epocag)

6; = 6o+ s, (epoca; — epocag)

La diferente calidad de los catdlogos debe reflejarse en la contribucién de cada uno de
ellos al cdlculo, mediante un peso a aplicar a cada una de las ecuaciones de condicidn,

proporcional a

1
a,
donde 045 es el error medio, en @ o 6, segun el caso, de las posiciones dadas por el
catdlogo. Por lo general dicho peso estd normalizado al mayor de ellos,

El error medio calculado para el movimiento propio, viene dado por el error en la

determinacién del pardmetro p por el método de minimos cuadrados segin

| 026504, 4)
€a,6 = )
n—m

donde 0,6 son los errores medios en @ o 6 del ajuste, n el nimero de ecuaciones
(X pesos;), m el nimero de incégnitas a calcular y s(j,7) el elemento de la diagonal
correspondiente al parametro p de la matriz inversa a la formada por las ecuaciones
normales en el ajuste.

Para la formacién del catdlogo compilado definitivo es necesario el presentar las posi-

ciones y los movimientos de las estrellas, refiriéndolos a un mismo sistema y a una cierta

época para el caso de las posiciones. Dicha época puede ser una época comtn a todas las

estrellas o, como en el presente caso, una época individual para cada una de ellas, definida

como la época media de las que contribuyeron a la creacién de esa posicién. El cédlculo
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de la posicion para la época media es sithultdneo al del movimiento propio, al usar las
ecuaciones de condicién (7).

En la formacién de nuestro catalogo para la zona imponemos la condicién de la ex-
istencia de un intervalo minimo de épocas de observacién, superior a los 30 afios, para

cada una de las estrellas que aparecen en él. Las placas o catdlogos mds profundos son los

correspondientes al POSS (1950-1955) y a las observaciones con la cdmara Schmidt del

CIDA (1988-1994), con lo que estamos imponiendo la confirmacién, al menos, de ambos
catdlogos para la inclusién de una estrella o no.
Segin todo esto, el catalogo tiene 2078 estrellas y sus errores tanto en posicién como

en movimiento propio son:

posicién: €a—=0%012 es = 07.166 ,

movimiento propio: €,, = 0°.0007 , €,, = 0".001 .

Las magnitudes que aparecen son promedios de las magnitudes calculadas a través de
un ajuste del pardmetro que las define en las placas, a las dadas por el catdlogo Carlsberg,
ddndole un peso muy superior a las obtenidas de la reduccién de las placas del POSS ya
que el parametro usado fue el volumen encerrado por la superficie de ajuste a la imagen,
mucho m4ds fiable que la apreciacién directa de los didmetros por diferentes operadores o
a los obtenidos de placas con otros problemas adicionales. Cuando la estrella estd en el
catdlogo Carlsberg se ha respetado su informacién de magnitud.

El catdlogo contiene, ademads, la informacién sobre los errores medios, tanto en posicién
como en movimiento para cada una de las estrellas, asi como el intervalo de épocas que

intervinieron en la elaboracion de esos datos.

8. Asociaciones estelares

Una asociacién estelar se caracteriza, entre otras cosas, porque sus miembros conservan
un movimiento espacial similar, y por tanto, su proyecciéon sobre la esfera celeste, tiene
caracteristicas bien definidas.

Por un lado, los movimientos propios también seran similares entre ellos. Por otro la-
do, los movimientos espaciales se representaran como movimientos sobre circulos méximos
al pasar a la esfera celeste, y por tanto, el paralelismo se transforma en convergencia. Al
punto de convergencia, si puede determinarse, lo denominaremos dpez de la asociacion.

Una simple representacién sobre un plano de los movimientos propios del conjunto de
las estrellas, donde los ejes coordenados Oz, Oy representen los movimientos propios en
a yen 6 respectivamente, debe mostrarnos si existen agrupaciones de los mismos, o lo

que es igual, si se destaca un grupo de estrellas del resto por su movimiento.
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Figure 5.—Representacion de los movimientos propios para todas las estrellas del drea de
Coma. No se muestra, de forma evidente, la ubicacién del cimulo en la figura, pero si se ve un

desplazamiento sistematico de todos ellos hacia el tercer cuadrante.

En el caso particular que se ha trabajado, da la coincidencia de que los miembros del
cumulo de Coma presentan movimientos muy pequenos, y similares al movimiento comun
de desplazamiento en el drea (figura 5), pero, al ser ya conocida la existencia de dicho
cumulo, si restringimos el gréfico a las estrellas maés brillantes, es posible confirmar dicha
agrupacioén (figura 6).

Como se desprende de lo dicho anteriormente, no es siempre tan facil el determinar
posibles asociaciones. y mas cuando nos vamos a magnitudes cada vez mayores, es decir,
a estrellas mas débiles.

El método que aqui se expone, puede dar luz a esta bisqueda y esté basado en la

distribucién sobre la esfera celeste de los puntos de corte de los circulos maximos que

representan a los movimientos propios. Si existe una zona del cielo donde hay una mayor
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8 < mag < 10.5
r = 3°5 (centro cumulo)

Figure 6.—Cuando nos restringimos a las estrellas mas brillantes del area, se puede apreciar

que muchas de ellas tienen un movimiento comun, lo que revela la existencia del cimulo. En

el panel superior se representan los movimientos propios para estrellas més brillantes que la

magnitud 8, mientras que en el inferior y restringido a un drea circular de 3°.5 de radio, se

representan los movimientos propios peara estrellas con magnitudes comprendidas entre 8 y 10.5.




Figure 7.—Figura conteniendo los puntos del cielo, representados en forma plana a través del
programa IRAF, en donde han habido cortes entre los circulos méaximos que representan las

trayectorias de las estrellas contenidas en el drea de Coma en estudio. Se aprecian de manera

clara dos direcciones de preferencia de corte, una perteneciente al desplazamiento general y

sistemadtico existente en la zona y otra en la direccién del cimulo de Coma que se estd estudiando.

Poniendo un limite inferior al nimero de cortes por punto o pequefia érea de estudio, se pueden

resaltar detalles del grafico.




concentracién de puntos de corte que en el resto, es porque hay un grupo de estrellas con
movimientos, al menos en direccién, parecidos. Es alli donde debe comenzar la bisqueda.

El panorama puede ser diferente cuando examinamos la. distribucién en el exterior
(figura 7), o en el interior (figura 8) del area cubierta por las estrellas que disponemos.
Puntos aislados, como los representados en la (figura 8), provienen, como los de la (figura
9), de estrellas cuyos movimientos estdn representados por flechas, de médulo proporcional
a la composicién de movimientos, tanto en o como en 6, y direccién la indicada por dichas

componentes.

Figure 8.—Los puntos representados son pequenas areas iguales en tamario, a modo de pixeles
donde se ha contabilizado un nimero de cortes entre trayectorias superior a un limite inferior
arbitrario y restringido al drea cubierta por las placas. Se aprecian zonas o puntos aislados, que
indican una mayor concentracién de puntos de corte que para el resto de puntos de su entorno.

Algunos han sido numerados a fin de identificarlos en la figura siguiente.

El manejo matematico del método es muy sencillo, y consiste, en trabajar con los

vectores perpendiculares a los circulos maximos, o vectores directores, que definen el
movimiento propio de cada estrella. El producto vectorial de dos de ellos nos dara la
direccién, y por tanto el punto de convergencia, de ambos circulos.

El método puede usarse en forma similar para representar las trayectorias de un con-
junto de estrellas. Para ello basta trabajar con el vector direccional de cada circulo
maximo representante del movimiento de cada una de las estrellas, vy el vector direc-
cional de un circulo méximo que, conteniendo el didmetro perpendicular al plano medio
del movimiento comin del ciimulo, va variando su orientacién (figura 10) . El dpex es-
tard sobre el circulo méximo perpendicular a la trayectoria media del ciimulo donde sea
minima la dispersion de los puntos de interseccién entre las trayectorias de las estrellas y
cada uno de esos circulos perpendiculares a la trayectoria media. El dpex vendra definido

como el punto medio de todas esas intersecciones.
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Figure 9.—Representacién, en forma plana, de las estrellas y sus movimientos (como flechas
proporcionales a ellos), que dieron lugar a la formacién de alguno de los puntos que aparecen
numerados en la figura 8. Se han eliminado todas aquellas estrellas cuyo nimero de cortes con
el resto y en ese punto, es inferior al niimero de puntos de cortes promedio, que en ese punto
tienen las estrellas que lo formaron. Los graficos no indican agrupaciones fisicas estelares, sino

que pueden ser base de estudio para el encuentro, si lo hay, de dichas agrupaciones.




Figure 10.—EIl método, permite visualizar las trayectorias seguidas por cada una de las estrellas

segin su movimiento propio. El gréfico representa dichas trayectorias, pasadas al plano, para

estrellas miembros del cimulo de Coma, donde se han senalado con trazos mas fuertes, las

trayectorias que corresponden a las estrellas més brillantes, a fin de comprobar la ausencia de

dependencia de las mismas con la magnitud.




9. Cumulo de Coma. Movimiento y apex.

El primer trabajo importante referente a dicho cimulo se debe a Trumpler [25]. En
dicho trabajo, Trumpler estudia la pertenencia o no de las estrellas de campo al ciimulo,
determinando una lista de 37 estrellas que da como miembros seguros, a través de los
criterios de movimiento propio, velocidad radial y estudio espectroscopico. Esta lista se
ha mantenido précticamente hasta nuestros dias.

Trumpler da como movimientos propios promedio anuales p, = —07.013, ps = —0”.017
respectivamente, como velocidad radial —0.4 km/seg, y como punto de convergencia, o
dpex el punto de coordenadas (8"4™, —47°). Posteriores estudios, como los de Weaver
[26], Johnson y Knuckles [17] y Mendoza [18], se centran en las propiedades fisicas de las
estrellas que lo componen, haciendo comparaciones con otros cimulos mejor conocidos,
como las Hyades, Pleiades y Praesepe.

Gatewood [16] obtiene su paralaje trigonométrica dando la cifra de 07.013534-0”.00054,
que corresponde a un médulo de distancia de 0.34 magnitudes +0.09, equivalente a 73.9
parsecs, y que estd en concordancia con la dada por Trumpler [25] y resaltada por Weaver
[26], quienes afirman ademds, que el cimulo tiene una simetria esférica con didmetro de
10 parsecs, donde el punto medio estd a 75 parsecs de distancia.

Los datos obtenidos para el ctimulo, basados en las mismas estrellas dadas como
seguras por Trumpler [25], son de po = —07.00118 , us = 07.0107 lo que representa un
movimiento de mddulo igual a 0”.0192 en la direccién 213°.93 .

Tomando los datos dados por Gatewood [16] sobre la paralaje del ciimulo, se puede
determinar la velocidad del mismo, resultando ser de 6.74 kms/seg.

Si a la composicién de movimientos propios obtenidos en el trabajo que aqui se resume,
se le afiade la velocidad radial determinada por Trumpler [25], se puede determinar el

movimiento espacial y éste nos dice que el punto de convergencia del cimulo va a estar a

93°.4 grados en la direccién 213°.93, dando como punto de convergencia (7".287, —31°.6) .

Ello nos indica que el movimiento del cimulo es paralelo al nuestro ya que el apex estd
situado alrededor de los 90° y que la falta de convergencia, segiin muestra la figura 10,

podria deberse a un pequefio movimiento de expansién del mismo.
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Abstract

We reanalyse the several schemes of load transfer of the fiber-bundle type used in
stochastic models of quasistatic fracture (i.e. the equal load-sharing, the local load-sharing,
and the fractal load-sharing schemes), assuming that a fraction of the acting stress is lost in
each transfer event. The inclusion of this dissipative effect can make these models, usually
discussed in the restricted area of bundle strength and materials science, have a more clear
projection in earth sciences, and more specifically in the mechanics of earthquakes.

1. Introduction

There are very few mechanical problems more complex, more difficult to cast into a
definite physical and theoretical treatment than the range of phenomena associated with
fracture. And also, there are few problems with a wider range of fields of applications:
material science, engeneering, rock mechanics and rock physics, seismology and earthquake
occurrence. Mechanical failure of a sufficiently large sample of a heterogeneous material
consists of a crack nucleation process, followed by the formation of an unstable crack and
finally catastrophic failure. Traditional fracture mechanics bypasses the crack nucleation
stage by postulating the existence of a crack and analysing its consequences. Since fracture
properties are determined by the presence of defects at the microscopic -atomic- scale
(impurities, dislocations, vacancies, etc.), analysis of the nucleation of fracture is a problem
in heterogeneous nucleation. As in most heterogeneous nucleation processes, significant
sample-to-sample and configuration-to-configuration variability occurs in fracture strength
and other fracture properties. For this reason, a stafistical analysis is often necessary, and in
fracture this analysis is usually based on the Weibull and other extreme value distributions.




Our understanding of fracture processes in heterogeneous materials (i.e., composites,
rocks, ceramics, textiles, wood, concrete, etc.) has improved recently with the development
of simple algorithms to simulate these processes in quasistatic loading; most of these
algorithms are based upon the framework of percolation theory, and include models of
random resistor networks (Arcangelis et al., 1985), spring networks (Feng and Sen, 1984;
Kantor and Webman, 1984), and beam networks (Roux and Guyon, 1985). However, it is
difficult to determine scaling and asymptotic properties with these models because the
algorithms are quite slow and also because the asymptotic properties are weak, so that many
decades in sample size are required for a definite analysis. A more important problems is
that fracture depend on the properties of the fails of the failure distribution, in particular on
the properties of the "high-reliability" tail of the failure distribution. Naturally it is difficult
to sample the tails of the distribution using conventional Monte Carlo methods (all the
models cited above are based ultimatelly on a Monte Carlo sampling of the failure space). It
is thus very important to develope a set of simple models which can be analysed, either
analytically or numerically, with precission and with clear asymptotic and scaling
behaviours, in order to guide in the understanding of more complex models.

The load-transfer models that we review here belong to this group of simple,
stochastic, quasistatic fracture models amenable to either closed analytical or fast numerical
solution, and whose output, spaning many orders of magnitude in sample size, allows a
precise characterization of their asymptotic behaviour. The collective name given to this
type of models is fiber-bundle models or fiber-bundle paradigm, because they originated in
close connection to the strength of bundles of textile fibers (Daniels, 1945). Since Daniels'
seminal work, there has been a long tradition in the use of these simple models to analyse
failure in heterogeneous materials. Some of the models are of mean-field type and ignore the
stress enhancements near localy failed regions: these are the equal load-sharing (ELS)
models (also known as "democratic" models, because the load supported by a failing
element is shared "democratically”, i.e., in equal parts, among all the surviving elements),
and they are usually analytically solvable (see, for example, McCartney and Smith, 1983).

The case where the stress enhancements are taken into account has proven much
more difficult, and with the exception of the early work by Harlow and Phoenix (1978a, b,
1981a, b) and Smith (1981), and a small number of recent works (Duxbury et al., 1986,
1987; Gomez et al., 1993c; Duxbury and Leath, 1994) there are few reliable results.
Although all the models belonging to the local load-sharing (LLS) sheme are quite simple in
principle (an almost invariably one-dimensional), they appear to contain many of the key
scaling properties of more complex, higher dimensional models. The classical LLS model
(Harlow and Phoenix (1978a, b) consists of a set of N elements burdened uniformly with a
given load (weight, stress, etc.) per element, in which the local failure thresholds are drawn
from a continuous distribution, such as the Weibull distribution (Weibull, 1939):

_oP

Ps=1-e 1)

(where p is an integer called the shape parameter or Weibull index, and o is the load,
measured in a prescribed unit, acting on the element), and in which local stress




enhancements occur after local failure. The succession of produced failures ends either with
a total collapse, or with a partial collapse of the system. In every case an important goal is
to calculate the strength of the whole set in terms of the probabilistic properties of the
individual elements. The probability of total collapse of a set of N elements, initially loaded
with a weight o per element, will be denoted by P (Np).

A third group of fiber-bundle models of fracture rely on the scale invariance of the
process of fracture, and try to mimic this scale invariance using hierarchical structures of the
fractal-tree type (Turcotte e al., 1985, Smalley ef al., 1985, Newman and Gabrielov 1991,
Gomez et al., 1993a, Newman et al, 1994). There is substantial evidence in the material
science and, especially, in the geophysical literature that universal scaling laws for failure
can possibly emerge (the best known of these relations is the Gutenberg-Richter magnitude-
frequency law, which relates the "size" of an earthquake to the relative occurrence of such
events) and, consequently, these models try to elucidate the patterns and scaling of failure of
the macroscopic system given that the microscopic properties are known (in principle!). We
called these group of models the fractal load-sharing (FLS) models, due to the general
hierarchical, fractal-tree-like structure common to them. ‘Also due to this hierarchical
structure, they are readily solved using renormalization group methods (Newman et al,
1994).

In the standard application of all these models (ELS, LLS, and FLS), the total load
applied to the system is kept constant and thus, at any step in the process of breaking, the
sum of the weights acting on the surviving elements remains unaltered (see Gomez et al.,
1993a for a review of the conservative models). This seems reasonable when one is dealing
with a man-scale system, as a bundle of fibres, a cable, or a piece of composite material
stressed during a laboratory experiment, but not when one intends to apply these models to a
large fracture system as for example a tectonic fault (Turcotte et al., 1985, Smalley et al.,
1985). In this second case, a non-negligible fraction of the stress stored in the elements is
lost during the transfer events and the system, as a whole, is partially relaxed (Lachenbruch
and Sass, 1980, Scholz, 1990). The 'migration' of stress through the boundaries of our
system depends on the physical properties of the elements, of the embedding materials and
on the relative topology of the system and the surroundings.

Thus, the question we want to address here is: How the known properties of the
stochastic fiber-bundle models are modified when the concept of stress dissipation is
included? In the next sections we will analyse this question for the three standard modalities
of load transfer. In Section 2 we will analyse the ELS model. Section 3 is devoted to the
LLS model. Here we will first consider 1-dimensional models in the standard two-sided
mode, and in a new simplified one-sided version. In these models, we will also distinguish
between the case in which the state of loading of the system remembers how that situation
was reached, and the case where it is insensitive to the previous process. In a second
instance, we will also analyze LLS models in 2 dimensions, of the type with memory. In
Section 4, we will analyse the fractal load-sharing (FLS) models in 1- and 2-dimensions.
Finally, in Section 5 we will state our conclusions.




2. Equal load-sharing models

For this mean field, "democratic" scheme, let us first deduce the value of the critical
load, using a recursion method. Phoenix (1978) used a similar recurrence sheme, but casted
in a more rigurous procedure. We will end up with the same recursion relation, but from an
intuitive viewpoint, imitating the way a Monte Carlo simulation of the process works. Let us
denote by o the load per element in the initial loading of the system, and we have to
calculate the probability of total collapse of a system formed by N, elements, as a function
of o).

By the very nature of this model, if at a given stage of breaking the number of
surviving elements is &V, then the load that they actually bear, o, fulfils the relation

Ngog = No. @)

Just after the initial loading, when the elements support a weight o, the number of
"casualties", Ay, derived from it would be

Ay = Nops, = No(1— € °) = Ny — Noe™ . 3)

Hence, the number of surviving elements, Nj, after this first sweep is

Ny = Nye™ 7. )

It is convenient to normalise the number of surviving elements at each stage with respect to
Np; thus, defining y; =N; /N, eq.(4) reads

= O-OP

n=e ©)

Now, in the 2nd sweep of breaking A, elements will fail; this number can be calculated by
multiplying the number of surviving elements after the first sweep, Nj, by the conditional

probability of breaking under the load oy, having survived a load o. In our notation, this
leads to

and therefore the fraction of surviving elements after the 2nd sweep is

Ep
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This simple form for y, holds after any number of sweeps, and thus one finds
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or, using eq.(2), we finally obtain

T e o ©)

This recurrence relation implies that, for o smaller than a critical value, o, , y, tends to a
non zero limit, denoted by Y, ; in other words, P (Ng)=0, whilst for 6y > o, y, tends to
zero, i.e. Py (Ng)=1. This is the critical structure of the ELS model as obtained originally
by Daniels (1945). Solving for o, one analytically finds

o.=(p eylp. (10)

and, likewise, the fraction of surviving elements at the critical point is

Yoo (O) =Y =€ 1P, (11)

The value of y,, for any 6 < o, is numerically obtained by using the recursion (9), which
starts at yop=1.

Having analysed the conservative case in which the total load is maintained along the
process of breaking, let us now study the situation in which in each step of transfer only a
fraction a (0<a<1) of the load is transferred from a breaking element to the set of surviving
ones. The other fraction, 1-o, is supposed to be lost. o, in a sense, acts also as a correlation
parameter because, in the limit of a=0, each element breaks independently from the rest,
and all the weight previously borne by a breaking element is completely dissipated. For
simplicity, o will be taken as a constant along the whole process.

For any a, and sticking to the previous notation, we have that

(12)

but as eq.(2) no longer works, eq.(12) does not adopt the simple form of eq.(8) or eq.(9).
The generalisation of eq.(2) to this case adopts the following recursive form
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which is obtained by noting that now
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and hence

cn+1=cn{l+a[NN”1 —lﬂ. (15)
n+

Thus the solution of this model when a1 derives from the simultaneous solution of eq.(12)
and eq.(13), having fixed p, o, and op, and starting from yy=1. These results are
illustrated, in the case of p=2, in Fig. 1. (Other values of p, leads to similar results.)
There, the fraction of surviving elements, y, is plotted versus 6. The curve ao=1 is the
standard ELS model, for which, if p=2, o.= 0.4289, and y.= 0.6065 (by egs.(10) and
(11)). As a gets smaller, o, moves to the right, and y. comes down in a smooth,
monotonous way. In every case, the discontinuous jump of y,, at the critical point, from its
value at 67, (y=Y), and at o+, (y=0), is clearly apparent.

Our conclusion in this section is that the critical structure of the ELS model is not
qualitatively affected by the consideration of an o.<1. The inclusion of dissipation provokes
the growth of o, which sounds logical because if some load is lost, a bigger value of o
must be needed to provoke the total collapse.
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Fig.1. Fraction of surviving elements, y, vs. oq for the ELS model, supposing different values of
the dissipation factor, a.




3. Local load-sharing models

The results presented in this section refer to LLS models. As in this type of models
(as well as those belonging to the FLS of the next section) there is no critical load as
occurred in the ELS case, it is convenient to define a strength for the set. This strength can
be defined as that initial load, for which Pg (Np) is equal, for example, to 1/2. Hence we

will use the symbol o, for this concept, and it will be a function of Nj.
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Fig. 2. Fits to (o1 /2)—1 in the two-sided (no-memory) LLS model, in 1 dimension. (a) Logarithmic

fit. (b) Potential fit. The continuous line interpolates the Monte Carlo points and the dotted lines are
(a) the pure logarithmic and (b) the pure potential dependence.




Let us start with the conventional 1D two-sided model in which if a crack of length /
is opened in the chain during the breaking process, then the two limiting surviving elements
support a load concentration factor (LCF) equal to 1+//2 (Scop and Argon, 1969, Smith,
1980). Notice that this criterion for assigning the LCF to the surviving elements implies a
loss of memory of how the crack of length / was opened: the crack history does not count,
and the LCF depends only on /. (In this group of no-memory models, one can include the
one in which the stress at the end of a crack is proportional to the square root of the crack
length: Gotlib et al., 1973). Later in this section we will discuss models in which the
previous history of breaking is taken into account. It is necessary to recall here that the
quantitative analysis of this 1D model has proved to be quite difficult and that exact results
have been obtained only for very small Ny (Harlow and Phoenix, 1981a). Harlow and
Phoenix (1981b) developed recursion relations for large bundles but very heavy
computationally. In the last decade, however, several approximate asymptotic methods have
been developed for this system (Phoenix and Smith, 1983). Based on limited Monte Carlo
simulations (up to Np=216) Smith (1980) conjectured that the strength of the two-sided
model had a logarithmic dependence with N, i.e.

(61/2)”" = constant +a, log Ny, (16)

ap being a constant.

Before introducing a dissipation factor, let us indicate that we have analysed this
model through extensive Monte Carlo simulations, borrowing a vector transputer from the
RTN collaboration of Zaragoza. Our results extend up to Ny=220, and are shown in Fig. 2a
and 2b, where a logarithmic and a potential fit of the results are tested. There, one can
confirm that the Smith (1980) conjecture was correct and eq.(16) is the proper asymptotic fit
for the strength of this model. Specifically, for p=2, a,=0.3221.

In this model, the dissipation factor, o, has been introduced simply by assuming that,
if a crack of length / is opened, the corresponding LCF is equal to 1+(af)/2. This is
consistent with the hypothesis of memory loss commented in Section 1. Thus for a crack of
length /, the assumed dissipation amounts to /(1-ct), with no reference to the specific history
of the crack. In Fig. 3, we show the strength of this model versus o, obtained from Monte
Carlo simulations for a Weibull index p = 2. There we observe the smooth increase of 6/,
as o gets smaller; and the decrease of the strength with an increasing value of Np. At the

right of the figure, the dependence of oy, with Ny is of logarithmic type, as established
previously in Fig. 2 and eq.(16).

Within the 1D LLS models without memory, let us now refer to the one-sided
model, which is a simplified version, introduced by us (Gémez et al., 1993c), of the two-
sided one, and as its name indicates, the weight transfer is uni-directional. This
simplification makes the model solvable using a simple iterative method, and in the case of
no-dissipation, we have found a logarithmic dependence of the global strength as a function
of Np. As in this model the LCF is always an integer, (1+10),  being the length of the open
crack, so its generalisation for including dissipation is carried out through the substitution




Fig. 3. Strength vs. a plot for the two-sided (without memory) LLS model in 1 dimension. Dots,
triangles, and crosses correspond to sets formed by 102, 103, and 104 elements, respectively.

Fig. 4. Strength vs. o plot, for the one-sided (without memory) LLS model in 1 dimension. Dots,
triangles, and crosses stand for Ng= 102, 103, and 10%, respectively.

129




(14+0)—(1+al). The consideration of an a<1 does not modify the strategy introduced in
Gomez et al. (1993c) for obtaining the recursive solution, so that, for any o, the global
strength, ©1/,. can be found without having to resort to numerical simulations. However,
the results presented in Fig. 4, again for p=2, have been acquired through Monte Carlo
simulations. Here we observe a trend quite similar to that of Fig. 3 for the two-sided model,
i.e. a monotonous decrease of 61/, with N,

Let us now comment how these 1D LLS models behave when the memory is
introduced into the process of load transfer. Here, even for the one sided model, one has to
resort to dedicated numerical Monte Carlo simulations. The point is that now, in the
breaking process, the LCF assigned to each surviving element is the accumulated load
transferred from failing neighbours, without proceeding to symmetrize the LCF between the
two sides of an open crack. Besides, when the dissipation is at work, in each transfer event
only a fraction o of the nominal load to be delivered is actually transferred. This contrasts
with the simple -bold- recipe of the memoryless case and leads to a drastic modification of
the maximum load that can be transferred when long cracks are opened. Fig. 5 illustrates,
with an example for the two-sided, conservative model, the difference between the memory
and memoryless cases, in particular the absence of a symmetric LCF on the two elements at
the crack tips (when no interactions among cracks exist). An open circle represents an
unbroken element, a cross a broken one, and a cross superimposed on a circle, an element
currently transferring load. After a number of sweeps, both cases end with a crack of a
length of 5 units, but the distribution of loads at the crack tips is different for the model with
memory and for the one without memory. When interactions among cracks are taken into
account, the LCF discrepancy between the two cases could be much more conspicuous.
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Fig 5. Illustration of the difference between the load concentration factors (LCF) in the memory and
memoryless cases for the LLS, two-sided, conservative model. Note the symmetric LCF in the
model without memory, and the non-symmetric LCF in the model with memory.
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Fig. 6. Strength vs. o plot, for the two-sided (with memory) LLS model in 1 dimension. Dots,
triangles, and crosses stand for Np= 102, 103, and 104, respectively.

Fig. 7. Strength vs. a plot, for the one-sided (with memory) LLS model in 1 dimension. The dots,
triangles, crosses, and squares represent Ng= 102, 103, 104 and 105, respectively.




The results for the 1D models with memory, in the one- and two-sided variants, are
shown in Figs. 6 and 7. It is interesting to point out that the two LLS models, with and
without memory, when a=1, are practically indistinguishable. For the two models, one
appreciates a distinct behaviour of o/, versus o, with respect to the no-memory case of
Figs. 3 and 4. Here, there is a sizeable value of a for which curves of different N intersect.
In the one-sided case this value of o is quite clear at about 0.85. In the two-sided model,
there is a broad region of a for which oy, is practically independent on Ng. This is
remarkable because it leads to a behaviour somewhat similar to that commented on in
section 2 for the ELS model, in which, asymptotically (large Ng), the strength is Ny-
independent.

Let us refer now to two-dimensional LLS models. In this respect we have
numerically studied the oy, of 2D square arrays, with Ny=102, 202, 502, and 1002
elements respectively. We have supposed that the load transferred in a breaking event is
given to only the surviving nearest neighbours. This implies two things. First, our transfer
rule assumes that the system has memory (recall comments for 1D systems, and Fig. 5), and
the stress existing along the perimeter of a crack is not uniform. And second, in two spatial
dimensions, this rule of transfer can lead to the existence of isolated ever-surviving islands.
(This outcome is usual in all types of local models of this sort. See, for example, Lomnitz-
Adler ez al., 1992). The existence of these 'islands' has led us, in this case, to define o7/,
as the median value of the initial stress which leads to the triggering of the maximum
earthquake induced in that system. The number of elements broken in these maximal
earthquakes are then smaller than Nj. The results for configurations with p=2, are shown in
Fig. 8. There, we observe that the crossing of lines of different N, that we first observed
in Fig. 6 also holds, and it is even more convincing. Hence, we deduce that in these models,
when dissipation occurs, 61/, is, in a wide range of a, practically Ny-independent.

In Fig. 9, we have shown the size of the biggest earthquake occurring in these
models, as a function of o. The size is expressed as a fraction of Nj. There, we observe
interesting crossings indicating that o values far from 1, can imply a considerably reduction
in the size of the biggest avalanche.

4. Fractal load-sharing models

This type of organisation can simulate, for example, that of a cable with a
hierarchical distribution of its components (Newman and Gabrielov, 1991), or the geometry
of load transfer between the asperities of a tectonic fault (Turcotte et al., 1985, Smalley et
al., 1985). Likewise, it could, with the proper perspective, correspond to a fluid (or
electric) distribution network (Gémez et al., 1993b).

Let us start this section analysing the strength of a fractal tree with a coordination
number of two (two branches per knot). Each level, labelled by the n index, is formed by
pairs of elements linked together to one element of the (n+1) floor. The latter element is




Fig. 8. Strength vs. a plot, for the LLS model (with memory) in 2 dimensions. Dots, triangles,
crosses, and squares stand for square arrays with Np=102, 202, 502, and 1002 elements,
respectively. Note the small error bars attached to the Monte Carlo results.
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Fig. 9. Size of the biggest avalanche (expressed as a fraction of Np) vs. a for the LLS model (with
memory) in 2 dimensions. Dots, triangles, crosses, and squares stand for N0=102, 202, 502, and
1002, respectively.
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paired likewise so that the whole structure looks like a level-independent form (for details
see, for example, Turcotte et al., 1985 or Gémez et al., 1993a). It is important for our
purpose here, to understand that the "superstructure" of the tree is nothing but a
representation of how the transfer of loads between the physical elements occurs (the
physical elements are represented by the lowest lying legs, i.e. those of the level n=1).
Notice also that the failure of a leg in level () implies the corresponding failure of the 27!
first-level elements under it. We will denote by (Wp, the probability of failure of a leg in
level (n) which was supporting a weight ac.

In general, the fractal tree structure is very inappropriate for performing Monte
Carlo simulations. It is, however, very well suited to a renormalization group approach (see,
for example, Newman et al., 1994 for a comprehensive explanation of the renormalization
technique applied to fracture problems) due to the fact that the probability of failure of the
legs in two successive levels can be easily related. Denoting by (")PZa,a the conditional
probability, for a level (n) leg that not having failed under a load ac, does fail under a load
2ac, we can write for the simplest fractal tree mentioned:

(n+1)

oy
Pra = (n)pa +2 (")pa[l 3 (n)pa] (n)PZH.a =2 (”)P?_a (n)Pa = (n)Pg’

where

(")Pza _ (n)

Pa
Paa =
< = ('l)pa

is the definition of conditional probability.

Dealing with N (physical) elements in the set, if N0=2”, 1 would be the number of levels,
or height, of the fractal tree. Then, we can see that the probability of total failure of such a
tree derives from the progressive calculation of the following pile:

P

o
3
Op,,

(u)szl
The elements of the first row are calculated directly from the assumed Weibull function,
i.e., Upyo = Mpy = 1-exp(cP), Up,1 = Wp, = 1-exp[(20)P], etc., where & is the load on




that particular leg. Each element of the 2nd row, is calculated from (Dpyi and (Dpyi-1, both
located in the first row, using eq.(17a). As a particular example, let us compute ()p,1 =
@)p,s , the first element in the second row:

(2) =) (=S (1) =250 (&2 2cP R P —fereis of =
Pos = 'Pc Ps— Ps=|1-e€ l=e JEses ol

For the particular case p=1, eq.(19) reads

2) 2

Pro = 2Si= c+e30'. (20)

This process proceeds along the elements of the successive rows and concludes by obtaining
(Wpyu, which is the global strength of the fractal tree, i.e. P (Np). The results emerging

from this process fulfil the double logarithmic dependence found by Newman and Gabrielov
(1991) '

-1
(o1/2) " ecloglog Ny , @1
Nyo—o

i.e. the global strength of the system decays proportionally to the logarithm of the number
of floors (i.e., mass), p, of the corresponding tree.

Now, the inclusion of the concept of stress dissipation in this structure will be done
in the spirit of the no-memory models of the Section 3, i.e. by fixing the fraction, o, of load
transfer between two successive floors of the tree structure. The calculation of a model with
memory in this case would be awkward because of the above mentioned difficulty of the tree
structure for performing Monte Carlo simulations.

The process of reducing the load transfer between contiguous floors, in a factor o, is
easily implemented by noting that a calculational pile, similar to that of (18), can be
defined. For the fractal tree with coordination equal to 2, this pile is as follows:
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The scheme of calculation is analogous to that commented above, using the
appropriate generalisation of eq.(17a), which now reads

(n+1)

D2 = (n)pg +2 (n)pa[l = (”)pa] (”)P(1+ a)o,o - (23)

The results of this scheme are plotted in Fig. 10, for p=2. In this figure the
dependence of o/, with N, fulfils the double logarithmic dependence of eq.(21) and for
this reason, quite distinct Ny lead to close values of 6/,. The general aspect of this figure is
rather similar to that of Fig. 3 and there is a monotonous decrease of 6/, with a.

Fig. 10. Strength vs. a plot, for the FLS model in 1 dimension. Dots, triangles, crosses, and
squares stand for Np= 26, 210, 214 and 218, respectively.

We now proceed to generalise these results to a 2-dimensional hierarchical structure,
using for that matter a fractal tree with a coordination number equal to 4 (this structure
would correspond, for example, in a cable, to having twisted four individual fibres at a
time, then four of these bundles twisted together, etc. See, for example, Newman et al.,
1994 for apictorical representation of the general 2-dimensional hierarchical structure).
First, one has to argue which type of transfer is convened within the four elements that
constitute each individual bunch, in a given floor. This transfer can be of the ELS type, or
local in any of its modalities. Newman and Gabrielov (1991) and Newman et al. (1994) used
an ELS transfer inside each bundle, both in their 1-dimensional and 2-dimensional fractal
tress. This means that the load supported by a failing bundle was transferred in equal
proportion to the remaining bundles. For maximum simplicity we have chosen a local
transfer of the one-sided type. This simplifies the numerology of the associated calculational




pile, without affecting the qualitative conclusions. For brevity, we omit the details of those
piles and only indicate that the basic recursive relation to be used in this case is

8+ Dpyy = g+

4 ™p3 - ®p,) (")P(1+ 3oya,at

2 2
4 ™pZ1- Mp,y? (")P(1+ 2a)a.a(")p(l+ 3a)a,a

2 (n)Pz%(l o (n)Pa)z{(n)P(ZH ayaa T 2[(n)P(H a)a,a(l iy (n)P(H cx)a,a) (”)[’(1+ 3o)a,(1+ a)a]} 5

4 (")Pa (1- (n)pa)3 (n)P(1+ a)a.a (n)p(1+ 20.)a,a (")p(1+ 3o)a,a-
(24)

In eq.(24) each term on the right hand side represents a different way in which the
closed chain of four bundles of order (n) can be broken following a one-sided local load-
transfer scheme. Full datails of the one-sided LLS model can be found in Gémez et al.
(1994), but a brief description follows. The chiral local load-sharing (QLLS) model was
proposed as an analytically solvable alternative to the classical two-sided LLS model. The
quirality simplifies the model to the point of allowing its analytical solution but do not alter
the qualitative properties of the (more general) local models. To have a pictorical view of
the QLLS model, consider N elements positioned, in order, along a circumference and that
the load transfer affects only the new unbroken elements following the one which failed.
Thus, while in conventional LLS models in 1-dimension the load transferred is always
divided between the two surviving elements flanking the failed one, here only one element
accepts the load. As the loop of elements is closed, although the load transfer is
unidirectional, a fracture initiated at any point along the circumference can give rise to an
unstoppable crack, afecting the N elements. This unidirectionality introduced in the load
transfer assumption simplifies the model considerably, so that the model can be expressed in
a closed form using an iterative matrix method (Gémez et al., 1994).

Having described the QLLS model, it will be apparent that a chain of N=4 elements
(i.e., bundles of order (n)) can be broken in five different ways. Each term in eq. (24)
reffers to a way of broken this N=4 chain, namely: (i) all four bundles break simultaneously
with a load ao; (ii) three consecutive bundles break with a load ao, and the last breaks with
the augmented load 4ac; (iii) two consecutive bundles break simultaneously with a load ac,
the next bundle breaks afterwards with a load 3ac, and the last bundle breaks with the final
load 4a4c; (iv) two non consecutive bundles break simultaneously with a load aoc; the
remaining two bundles can fail simultaneously due to the augmented load 2ac , or one can
fail with the load 2ac, and the other survive until the final load 4ac breaks it; (v) only the
first element break with a load ac, and then the remaining elements fail in order with the
loads 2ac, 3ac, and 44c.




The resulting strength of these "two-dimensional” fractal trees is shown, for p=2, in
Fig. 11. There is no distinctive behaviour with respect to that of the simple fractal tree of
Fig. 10, and 6}/, diminishes monotonously with a, and, for fixed a, very slowly with Np.

Fig. 11. Strength vs. a plot, for the FLS model in 2 dimensions. Dots, triangles, crosses, and
squares stand for Np= 46 410 414 yp4 418, respectively.

5. Conclusions

In this paper we have analysed the impact that stress dissipation has in the stochastic
load-transfer models of fracture. Dissipation has been included in a simpler manner through
a parameter 0<o<1, which measures the fraction of load that is actually transferred in any
event of failure. One of our main motives for this analysis is to find out if an a#1 is able to
qualitatively modify the behaviour of these models, which could enhance their richness and
scope of applicability, especially in fracture phenomena in earth sciences.

In the ELS model the critical behaviour of the model is maintained (Fig. 1), in the
sense that there always exists a critical load, o,. o, increases as o decreases. The fraction of
surviving elements at 6=c, also diminishes, but there is always a finite jump for this
fraction when the stress reaches o.

Regarding LLS models, we have analysed systems in 1 and 2 spatial dimensions. We
have first studied the standard -no memory- two-sided model in one dimension and showed
that Smith's (1980) conjecture about the logarithmic decrease of the strength was correct
(Figs. 2a and 2b). We have also discussed a new simplified no-memory, one-sided model.
For both models the introduction of the dissipation parameter does not alter their qualitative
behaviour, as shown in Figs. 3 and 4.




The introduction of memory in these 1D models provokes, on the contrary, an
interesting crossing of the curves of 6y vs. a, for various N (see Figs. 6 and 7). The
consequence is that, in a broad range of o, oy, is practically independent of N;. In other
words, the existence of dissipation is able to provoke the appearance of a critical behaviour,
similar to that existing in the ELS model. That is, in the limit of large Ny, for o<o., P4
+No)=0, and for 620,, P (Np)=1. This crossing also exists in 2D LLS models, as shown
in Fig. 8.

It is important to remark that in the memory-less case, there also exists a crossing of
the curves at very small a (see Figs. 3 and 4, and also Figs. 10 and 11). This crossing is
necessary because in the oo=0 limit, the N, elements forming the set are completely
uncorrelated; hence, the probability of total collapse is trivially calculated as the probability
of individual breaking up to the Ny power. This implies that sets with bigger N, are more
difficult to break. As in the large o limit the trend is the opposite, a crossing of lines must
exist. From this perspective, the difference between the memory-less and the memory
models is that in the latter, the crossing point receives a strong push towards large values of
o. In this respect, what we consider worth of emphasizing is that in the models of Fig. 6
(two-sided 1D LLS), and Fig. 8 (2D LLS), the crossing is very smooth, which allows the
definition of an effective critical point.

Finally, in the hierarchically organised structures of the FLS type, we have
introduced stress dissipation for trees with coordination numbers equal to 2 and 4. In this
latter case, the modality of transfer between the four units forming the basic bunches has
been supposed to be of the one-sided local type. For a=1 we have recovered the

quantitative results discovered by Newman and Gabrielov (1991), whilst for arbitrary values
of o, the qualitative behaviour is not altered. See Figs. 10 and 11.

Throughout this work, several computational strategies have been used. The ELS
model has been solved by analysing simple recursive relations. In the LLS models, except in
one occasion, Monte Carlo simulations have been used. This exception refers to the one-
sided model without memory, which has been studied using the strategy explained in Go6mez
et al. (1993c), where the concept of k-failure (Harlow and Phoenix, 1978a, b) permits the
implementation of a simple recursive method. The fractal structures have been studied
numerically through the introduction of appropriate computational piles, where one handles
successive vectors. The use of Monte Carlo simulations in these models is prohibitive for
two reasons. First, the hierarchical organisation would make the simulations quite
cumbersome; and second, the very slow dependence of 6, with Ny calls for the use of very
large sets, in order to be able to obtain clear conclusions.
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RESUMEN

En este trabajo se sefiala la presencia del helecho Weichselia reticulata en la Formacion
Escucha, dentro de la Cuenca de Castellote. Se pone de manifiesto la importancia de este taxén
como indicador paleoambiental, debido a las particulares condiciones ecoldgicas en las que se
desarrollaron sus comunidades durante el Cretdcico inferior, y se aportan nuevos datos sobre su
distribucién paleobiogeogréfica.

ABSTRACT

The fern Weichselia reticulata is found in the Escucha Formation (Lower Cretaceous),
Castellote basin. Due to the particular palaecoecological requirements, the finding of this taxon is
important as a palaeoenvironmental marker: near to the sea shore under a warm, markedly
seassonal climatic conditions. Finally, new data on its palacobiogeographical distribution are
given.

ANTECEDENTES

La Formacién Escucha fue definida inicialmente por AGUILAR et al. (1971) en el drea tipo de
Utrillas, siendo divididas las antiguas Capas de Utrillas en las formaciones Lignitos de Escucha
(Aptiense sup.-Albiense) y Arenas de Utrillas. Posteriormente, CERVERA et al. (1976)
redefinen la serie y proponen una divisién de la Formacion Lignitos de Escucha en tres
miembros, en la que el miembro inferior coincidiria con el estratotipo definido por AGUILAR et
al. (1971). Sobre esta base PARDO y VILLENA (1979) redefinen nuevamente la Formacién entre
el Aptiense calcareo y la Formacién Utrillas, deduciendo una edad Aptiense superior-Albiense
inferior para la Formacién Escucha. Caracterizan los tres miembros, que presentan como una
megasecuencia negativa con una sucesion de ambientes de plataforma, palustres y aluviales, y
definen sus limites. Estos autores son los primeros en elaborar un mapa de isopacas referido
exclusivamente a la Formacién Escucha (en el que se diferencia claramente la cuenca de
Castellote como una de las dos cuencas de mayor magnitud en todo el sector oriental de la Rama
Aragonesa de la Cordillera Ibérica), proponiendo para la misma el ambiente de sedimentacion de
tipo deltaico ya mencionado. La paleogeografia propuesta es corroborada para el 4rea del




ESTRATIGRAFIA

Estratigraficamente la Formacién Escucha constituye un conjunto esencialmente detritico,
con facies heterogéneas entre las que destacan por su interés economico los niveles de lignitos.
Estd constituida por tres miembros (PARDO et al., 1987) diferenciados en funcién de sus
caracteristicas estratigraficas y sedimentologicas.

El Miembro Inferior, equivalente a la definicion de la Formacion Escucha que realizaron
AGUILAR et al. (1971), se compone de lutitas grises y margas de color caqui con intercalaciones
de areniscas rojizas a grises en cuerpos de tendencia tabular y potencia métrica. Aparecen
niveles carbonatados englobados en los tramos mds blandos, asi como capas de lignito de
potencia centimétrica a métrica.

Dentro de este Miembro se describen diferentes ambientes sedimentarios que se suceden en
la vertical, a partir de tres asociaciones de facies interpretadas como la implantacion de un medio
continental por medio de una llanura aluvial costera, el relleno de un lagoon y llanuras arenoso-
lutiticas dominadas por el oleaje.

La edad propuesta para este miembro a partir de los fésiles encontrados en las lumaquelas de
sus tramos inferiores es Aptiense superior - Albiense inferior.

El Miembro Medio estd constituido por lutitas grises y negras, con niveles de lignito
explotables, entre los que se intercalan cuerpos laminares de arenas y limos de grano fino en los
que aparece la paleoflora descrita en este articulo.

Sedimentolégicamente este Miembro estd compuesto por una sucesién de secuencias

esencialmente lutiticas de gran continuidad lateral y potencia métrica. Destacan las capas de
lignito con elevado contenido en sulfuros y yeso secundario. En el dltimo término de la
secuencia aparecen las arenas de grano fino con gran cantidad de restos vegetales en la zona de
estudio. A techo del mismo aparecen perforaciones debidas a raices y costras ferruginosas.

Los materiales que constituyen este Miembro habrian sido depositados por decantacién,
aprecidndose acumulacién de restos vegetales y aportes cada vez mds importantes de material

detritico, por lo que estas asociaciones se interpretan como depdsitos de colmatacién de
marismas.

El Miembro Superior estd constituido por limos arcillosos de colores claros con
intercalaciones de potentes niveles de arenas blancas y amarillentas. Los tres tipos de secuencias
bésicas que se describen para el mismo se interpretan como canales estuarinos, canales con
tendencia meandriforme e influencia mareal y una tercera, de génesis menos clara, posiblemente
formada por oleajes provocados por tormentas.

Los materiales referidos en este estudio corresponden, por sus caracteristicas
sedimentoldgicas, a los descritos en este apartado como Miembro Inferior de la Formacién
Escucha.




GEOLOGIA REGIONAL

Regionalmente, el nivel fosilifero de Alcaine se ubica dentro de los materiales mesozoicos del
sector oriental de la Cordillera Ibérica conocido como Rama Aragonesa, separada de la Rama
Castellana o sector occidental por la fosa terciaria de Calatayud-Teruel. En esta zona afloran
materiales cuyas edades abarcan desde el Precdmbrico hasta el Terciario, siendo la disposicion y
la distribucién de los mismos un efecto directo de la historia geoldgica que, durante millones de
anos, ha modelado sus caracteristicas estratigraficas, sedimentolégicas, paleontolégicas y
estructurales.

El hecho de que la Cordillera Ibérica se haya visto afectada por dos grandes ciclos
orogénicos (el Hercinico y el Alpino) bien diferenciados ha dado lugar a que el estilo tecténico
de la misma sea del tipo de zdcalo y cobertera. Tras el Ciclo Hercinico y la posterior etapa de
fracturacién tardihercinica del Estefaniense y el Pérmico, los materiales precambricos y
paleozoicos constituyen el zécalo de la Cordillera. Estos materiales, junto con los del Mesozoico
y el Terciario que conforman la cobertera, fueron posteriormente afectados por los movimientos
orogénicos del Ciclo Alpino. Es este tltimo ciclo el que, en su etapa de distension creticica,
condiciona el depésito de los materiales sobre los que se desarrollaron los procesos bioldgicos y
de fosilizacién que afectaron a los ejemplares estudiados.

Siguiendo un orden cronoldgico a partir de la finalizacién del Paleozoico, tras la etapa de
fracturacion tardihercinica y la sedimentacién moldsica del Pérmico, la Cadena Ibérica se ve
sometida a un régimen distensivo que sefiala el inicio del Ciclo Alpino. Esta fase provoca una
tectonica de bloques debida a la reactivacion de las antiguas fracturas tardihercinicas y, como
resultado de este proceso, la aparicién en el zécalo de umbrales y surcos que van a actuar como
zonas de erosién 'y depdsito respectivamente. Tiene asi lugar la sedimentacién de los materiales
tridsicos y jurdsicos siguiendo el modelo de tipo aulacégeno propuesto por ALVARO et al.
(1978). Este depdsito comienza con una etapa de subsidencia por riffting (Tridsico Inferior y
Medio) que disminuye progresivamente hasta pasar a una etapa de subsidencia térmica durante
el Tridsico Superior. A comienzos del Jurdsico se instala una extensa plataforma carbonatada en
toda la regién. La elevada produccién de carbonatos durante este periodo hace que la tasa de
sedimentacion sea muy similar a la de subsidencia, por lo que los depdsitos dominantes dan
lugar a la formacion de facies someras.

La apertura del Golfo de Vizcaya y la subsecuente rotacién antihoraria de la Peninsula Ibérica

a finales del Jurdsico Superior da lugar a una nueva etapa de actividad tecténica que condiciona
toda la sedimentacién creticica de la Cordillera Ibérica. Durante el Cretdcico Inferior,
coincidiendo con el inicio de una nueva fase de riffting (SALAS y CASAS, 1993), se instaura
una tectdnica de caracter distensivo que provoca otra reactivacion de las fallas tardihercinicas.
En esta ocasién la articulacion de la Cadena en surcos y umbrales afecta también a los materiales
de la cobertera tridsicos y jurdsicos depositados hasta el momento, que son denudados en las
zonas de erosion.

A partir de este momento, y centrandonos ya en el drea del Maestrazgo se suceden una etapa
de progradacion y otra de retrogradacion que dan lugar al depésito de las facies continentales del
Weald y a las facies marinas del Urgon. En la zona de estudio este tipo de sedimentacién




perdura hasta finales del Aptiense, momento en el que una nueva progradacion da lugar al
dep6sito continental de la Formacién Escucha en la que aparece el nivel fosilifero estudiado. La
sedimentacion de esta Formacion se produce a favor de un gran aparato deltaico cuya
distribucion areal de subambientes y situacion paleogeogréfica llevan a QUEROL y SALAS
(1988) a proponerlo como un sistema de delta-estuario.

PALEOBOTANICA

La flora hallada en el nivel fosilifero de Alcaine consta de una sola especie identificable hasta
el momento, el helecho Weichselia reticulata (STOKES et WEBB) FONTAINE, el cual es
totalmente dominante.

Aunque la relacion de esta especie con las Matonidceas es clara, debido a la presencia de
soros recubiertos por el indusio y a-a similitud de las esporas, presenta una serie de caracteres
que la apartan de los miembros conocidos de esta familia. Entre estos caracteres, ALVIN (1971)
seflala la estructura bipinnada de las divisiones primarias de las frondes, la dictiostela
policiclica, la aparente presencia en los tallos de rizéforos o raices-soporte, y las pinnulas
fértiles filiformes, no laminares, con los soros agrupados en estructuras redondeadas. Por todo
ello, de acuerdo con la propuesta de ZIMMERMANN (1959), actualmente se sittia esta especie
en una familia aparte, las Weichselidceas, muy tempranamente derivada y especializada a partir
de las primitivas Matonidceas.

La reconstruccién mds aceptada es la propuesta por ALVIN (l.c.) (fig. 1), que muestra a
Weichselia reticulata como un helecho arborescente, de tallo masivo, que puede alcanzar hasta
15 cm de didmetro. El contorno del tallo es irregular, debido a la presencia de las bases de los
peciolos dispuestas de forma espiralada, y a los érganos de tipo rizoforal orientados en
direccion opuesta al peciolo. La superficie de los tallos, peciolos y rizéforos es netamente
rugosa, con pequefios tubérculos diseminados por todo el tallo.

Las frondes vegetativas constan de un peciolo, con una estructura similar a la del tallo, de
cuyo dpice parten las pinnas primarias, dispuestas de forma palmada. De ellas parten las pinnas
secundarias con sus correspondientes pinnulas. Las pinnulas miden aproximadamente unos 5
mm de longitud y estdn unidas por toda su base al raquis de la pinna. Presentan una tipica
venacion reticulada, con una vena principal claramente marcada (fig. 2), y poseen una cuticula
gruesa, con los estomas hundidos.

Las frondes fértiles son también bipinnadas, pero tienen una estructura filiforme, no laminar.
De las pinnas de tiltimo orden nacen los soros agrupados en estructuras redondeadas, cada una
de las cuales lleva unos 12 esporangios, totalmente recubiertos por el indusio.

El material f6sil de Alcaine consta fundamentalmente de impresiones de frondes vegetativas
y, en menor medida, de fragmentos de tallos. No se han encontrado hasta el momento
estructuras reproductoras.

Las frondes vegetativas son muy abundantes y, en general, presentan un buen estado de
preservacion. En muchos casos se conserva la estructura de las pinnas primarias y se puede
observar la insercién en ellas de las pinnas secundarias (ver Ldmina). También estd bien
conservada la venacién de las pinnulas (fig 2).
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Los fragmentos de tallos son menos numerosos, pero no son raros. Presentan el contorno
irregular tipico de la especie, debido a la presencia de los restos de la base de los peciolos y de
los 6rganos rizoforales.

Todas las caracteristicas morfoldgicas de los fosiles hallados en Alcaine se corresponden con
las definidas para Weichselia reticulata, de tal forma, que su atribucién taxonémica no ofrece
dudas.

El material fésil estudiado en el presente trabajo se encuentra depositado en el Museo
Paleontolégico de la Universidad de Zaragoza.

PALEOGEOGRAFIA

Weichselia reticulata es un especie con una amplia distribucién durante el Cretacico inferior.
ALVIN (1971) recopila citas de numerosas localidades de Europa, de Siberia y Asia central,
Oriente medio, mitad septentrional de Africa, norte de la India, norte de Sudamérica y sur de
Norteamérica. Sin embargo, no tiene una distribuciéon cosmopolita, pues falta en Australia,
sudeste de Asia, sur de Africa, sur de Sudamérica, norte de Norteamérica y nordeste de Siberia.

Segin los datos de MASSE et. al. (1993) sobre la distribucién de los continentes en el
Aptiense inferior (fig. 3), todas las localidades citadas estarfan situadas entre las paleolatitudes
40° Ny 40° S, y préximas a la linea costera del Tethys. Weichselia reticulata seria, pues, segin
estos datos, un helecho propio de las zonas tropicales y templado-calidas, con clara influencia
maritima.

La localidad de Alcaine estaria situada, segiin la citada reconstruccién paleogeogrifica,
aproximadamente entre los 20 y 30° de latitud Norte. Por otra parte, como ya se ha
mencionado, la Formacion Escucha representaria un sistema delta-estuario, por lo cual, esta
localidad se situaria presumiblemente, muy cercana al mar. Los datos presentados en este
trabajo confirman, pues, la distribucién paleogeografica atribuida hasta ahora a Weichselia
reticulata.

PALEOECOLOGIA

Weichselia reticulata posee una serie de caracteristicas claramente xeromérficas, como son:
la presencia de una cuticula gruesa, los estomas hundidos, los ejes con una capa externa
endurecida y la orientacién de las pinnulas en forma de “alas de mariposa”, para evitar la
mdxima insolacién, como se observa en plantas actuales de climas célidos y secos. Sin
embargo, la presencia de 6rganos de tipo “rizéforo” sugeriria un medio pantanoso, quizas con
presencia de aguas salobres, proximo al mar (DABER,1968).

Por otra parte, como sefialan WATSON & ALVIN (1996), la presencia de los soros con los
esporangios completamente encerrados por el indusio, endurecido y sin ninguna via clara para
la salida de las esporas, recuerda a las estructuras reproductoras de algunas Angiospermas y
Coniferas actuales de “fire-climax”, cuyas semillas s6lo quedan libres después de que los frutos

o las pifias hayan sido quemadas por el fuego.




Ademds, existe el hecho reiteradamente constatado, y confirmado por los datos presentados
en este trabajo, de que la presencia de restos abundantes de Weichselia reticulata en un nivel
determinado, rara vez esta asociada con la existencia de otras plantas en ese nivel, lo cual,
refuerza la idea de que este helecho es dominante en algiin tipo de medio de caracteristicas
ecoldgicas extremas.

Todos estos hechos nos llevan a pensar que Weichselia reticulata seria la planta dominante
(practicamente exclusiva) de una comunidad que viviria en medios proximos a la costa, con una
alternancia de periodos himedos, en los cuales el suelo estaria incluso inundado, y de periodos
secos, durante los que serian frecuentes los incendios.

CONCLUSIONES

El hallazgo de un nivel fosilifero con restos abundantes y bien conservados del helecho
Weichselia reticulata en un afloramiento de la Formacion Escucha préximo a Alcaine (Teruel),
permite aportar nuevos datos paleontolégicos para el conocimiento de esta formacién en la
Cuenca de Castellote.

El estudio de los ejemplares recolectados hasta el momento, confirma la reconstruccion
morfoldgica propuesta por ALVIN (1971) y permite afiadir una nueva localidad al drea de
distribucién de este interesante taxon.

Los datos sedimentoldgicos y paleogeograficos previos son coherentes con los deducidos a
partir del estudio paleobotdnico, y reafirman la idea de que Weichselia reticulata era era un
helecho con amplia distribucién en las zonas tropicales y templado-cdlidas, préximas al mar.

Las peculiares caracteristicas morfolégicas y de fosilizacién de Weichselia reticulata hacen
suponer que se trataba de un helecho que formaba una comunidad pricticamente
monoespecifica, que se desarrollaba en un ambiente cdlido, préximo al mar, y con una
alternancia de periodos himedos, con suelo inundado, y periodos secos, con frecuentes
incendios.

Todos estos hechos muestran la importancia de este nivel fosilifero, y su interés para el
mejor conocimiento de la paleoecologia de este sector de la Cordillera Ibérica durante el
Cretdcico inferior.
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Figura 3: Distribucién de los continentes en el Aptiense (segin MASSE et
al., 1993).




Léamina: Weichselia reticulata

A) Insercion de las pinnas secundarias en el raquis de la pinna primaria

B) Pinnas secundarias
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Abstract

The analysis of lineaments and fractures from remote sensing data (satellite imagery, or
aerial photograph) involves the treatment of large data sets. Automatic evaluation of such data is a
powerful tool in the statistic approach to the fracture geometry and properties. However, such
automatic evaluation incorporates some methodological drawbacks, as the problem of assessing
the true orientation of short lines (modellized with a small amount of pixels) and the true length of
oblique fractures. The solutions of those problems are on the use of work scales in which the lines
to be analysed display larger lengths, and on the use of some trigonometrical expressions to
correct the length according the fracture-strike.

1. Introduccion

El andlisis tecténico de lineamientos o lineas de fractura, en general, necesita de
mecanismos que permitan el tratamiento cuantitativo de grandes conjuntos de datos,
permitiendo asi extraer conclusiones sobre la geometria de la fracturacion en diferentes areas

y capacitidndonos para efectuar comparaciones entre ellas.

En este trabajo estudiamos la fiabilidad de los resultados obtenidos al analizar las
caracteristicas geométricas (bdsicamente orientacién y longitud) de dos conjuntos de lineas
mediante un programa de exploracién automatico elaborado en el Centro de Tratamiento
Digital de Imégenes de la Universidad de Zaragoza. El primer conjunto es la materializacién
de los lineamientos tect6nicos observados en una imagen LANDSAT de la Cuenca del Ebro
(figura 1). El segundo conjunto corresponde-a la cartografia de detalle de la fracturacién de un
sector de la Cordillera Ibérica situada unos 20 km al Sur de Teruel (Sierra de Camarena,

figura 2). Analizaremos la bondad de los resultados brutos obtenidos en funcién de la

mecanica de obtencion de los mismos, identificaremos los problemas que presenta este

tratamiento y propondremos una serie de soluciones metodolégicas para solventar los
problemas encontrados.
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2. Metodologia
2.1. Elaboracion de cartografias de lineamientos y fracturas

Los lineamientos son alineaciones fisiograficas que corresponden a fallas, fracturas o
diques materializados en el propio terreno; en unos casos son identificables en campafias
convencionales de investigacion in situ, mientras que en otros no pueden localizarse en la
superficie por un simple reconocimiento de campo. Este inconveniente se suele solucionar
complementando los estudios geoldgicos usuales con exhaustivas cartografias o con el
andlisis de imédgenes obtenidas por satélites (Sabins, 1987; Jutz y Chorowicz, 1993; Drury y
Berhe, 1993).

La cartografia de los lineamientos de la Cuenca del Ebro se ha realizado (Arlegui et al.,
1994; Arlegui, 1996; Arlegui y Soriano, 1996) con la ayuda de una imagen de satélite Landsat
5 (199-31). Este satélite lleva a bordo el sensor Thematic Mapper que registra siete bandas,
cuyos intervalos de longitud de onda abarcan el espectro visible y zonas del infrarrojo préximo
(bandas 1, 2, 3, 4, 5y 7). Ademds la banda 6 registra un intervalo de longitud de onda que
corresponde a la zona del infrarrojo térmico. La resolucién de todas ellas sobre el terreno es de
30 metros, a excepcion de la banda 6 que es de 120. El programa utilizado en el tratamiento
preliminar de las imagenes es el Geo-Jars y el equipo un IMCO 1000 de Kontron, conectado a
un MicroVax 2 como ordenador central. Las observaciones de las imédgenes se han realizado
en un monitor de alta resolucién (1280x1024 pixels). Toda esta zona presenta caracteristicas
semidridas con lo que a excepcién de las zonas de regadio la vegetacién presente en el
momento de registro del satélite es escasa lo que permite observar con mayor facilidad la
respuesta espectral del terreno.

Se realizaron diversas combinaciones de tres bandas, eligiéndose finalmente la de falso
color que resultaba de utilizar las 2, 4 y 7 (en azul, verde y rojo, respectivamente) cuya
tonalidad facilitaba el andlisis visual de las mismas (White, 1993). A continuacién para
realzar el contraste de la imagen se procedié a efectuar su normalizacién con umbral 50 (con
lo que se pierde un 5% del total de informaci6n) y se llevaron los nuevos extremos del
histograma a 0 y 255. Las bandas 4 y 7 son especialmente efectivas para la determinaci6n de
lineamientos con expresion morfolégica (como drenajes, rupturas de pendiente y escarpes).
Ademds, al corresponder a regiones del infrarrojo préximo se evitan efectos atmosféricos,
obteniéndose asi gran nitidez. Las combinaciones en falso color proporcionan informacién

sobre cambios texturales, cambios en los usos del suelo y contactos entre unidades

geoldgicas, completando la visi6n del terreno. No se aplicé la correccién geométrica, aunque
se calcul6 su valor, por lo que todas las imdgenes estdn giradas 9-10° respecto al N. La
imagen asf tratada se transfiri6 a un programa de dibujo y, se marcaron los lineamientos
observables (reconociéndose un total de 5681 lineamientos, figura 1).




El otro mecanismo de andlisis de la fracturacién, y mds habitual en los estudios
tecténicos, es la observacién y estudio de ésta en cartografias realizadas a partir de fotogramas
aéreos (Razack, 1979; Grillot, 1981; Liesa, 1993). Las escalas mds comunes en fotografia
aérea son la 1:33000 y la 1:18000 obtenidas en los vuelos de finales de los anos cincuenta, las
primeras, y de los ochenta, las segundas. Sin embargo, el andlisis de fracturacién en la zona
de Camarena de la Sierra - La Puebla de Valverde se realiz6 a partir de varios fotogramas
aéreos 1:18.000 ampliados hasta una escala aproximada 1:4.300. El tratamiento posterior se
aplicé tnicamente a una parte de la misma (fotograma S90EI11) con una superficie
aproximada de 1.2 km?2 (figura 2) Al trabajar con una escala tan grande se pretendia reconocer
la fracturacién de escala decamétrica a kilométrica con el méaximo detalle posible. Se elabord
un mapa detallado de las fracturas observables en los fotogramas y se convirtié la zona
elegida de tal cartografia (con un total de 3494 fracturas) a formato digital mediante un
scanner de 600 ppm de resolucién (figura 2).

2.2. Empleo del programa de exploracion automdtica

Si se han trazado las lineas con un programa de dibujo, se ha de seleccionar una anchura
de 1 pixel para las mismas, si se han obtenido a partir de scanner (figura 3a, caso de
Camarena) se ha de realizar un adelgazamiento de éstas hasta un tamafio de 1 pixel con objeto
de facilitar el seguimiento posterior de las mismas en el siguiente proceso (figura 3b). El
documento que contiene las lineas reconocidas se guardé en formato TIFF y se abri6 con el
programa de exploracion.

Seguimiento de
2 vecinos

/

— Seguimiento de
1 vecino

A B €

Figura 3. a) En formato TIFF una linea aparece como un conjunto de pixels, antes de la exploracion se la
somete un adelgazamiento. b) La misma linea adelgazada a un pixel. c) La exploracion se realiza por
ventanas cuadradas de tres o cinco pixels de lado dependiendo de que deseemos incluir un vecino o dos cono
criterio de exploracion.

El andlisis de orientaciones y longitudes de ambos conjuntos se realizé con un programa
de exploracién automatica elaborado por el Centro de Tratamiento Digital de Imagenes de la
Universidad de Zaragoza (figura 3c). La exploracién automatica se inicia en un origen de
coordenadas escogido y que, en nuestro caso, es el norte geografico pues asi los resultados
obtenidos coincidirdn con la direccién de la falla. Esta exploracién va barriendo, primero en el

eje X y luego en el Y, la imagen a analizar hasta que se detiene en el primer punto de una

linea. Posteriormente el programa procede al seguimiento de la misma considerando los pixels
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que estén dentro de una ventana cuyo tamafio puede ser escalado. El tamafio de ventana
escogido serd menor cuanto menor espaciado tengan las fracturas, es decir cuanto mas
proximas estén unas de las otras. En nuestros ejemplos el tamano de ventana era de 1 pixel (1
vecino) para la Cuenca del Ebro y de 2 pixels (2 vecinos) para las fracturas de la Sierra de Ca-
marena. Una vez que en el proceso de seguimiento de una linea ningtin pixel queda dentro de
la ventana establecida, el programa sigue barriendo a partir del siguiente pixel del inicial de la

linea anterior hasta que encuentra un nueva linea comenzando de nuevo el proceso anterior.

Este programa presenta algunos problemas de seguimientos de las lineas en los cruces
entre éstas, por lo que si las cartografias analizadas presentan intersecciones entre familias de
fracturas, como es el caso de las fracturas de ambos conjuntos (figuras 1y 2), es recomendable
diferenciar tantos ficheros comé sean necesarios con el fin de evitar cruces entre lineas.
Normalmente, el niimero de ficheros escogido viene determinado por el nimero de familias

diferenciadas en un primer andlisis visual de la cartografia.

El programa de seguimiento de lineas genera un fichero que proporciona, basicamente,
los siguientes pardmetros: las coordenadas XY del primer y tltimo punto o pixel, su longitud
en pixels, la pendiente de cada linea y la calidad del ajuste a una recta de pendiente igual a la
dada. No obstante también puede obtenerse otro tipo de informacién como es la posicién de
todos los pixel que componen una linea. A partir del fichero se representan las longitudes y
orientaciones de las fracturas estudiadas y se pueden hacer anlisis estadisticos de los mismos.
Ademds, teniendo en cuenta las coordenadas XY del primer y tltimo punto de cada linea se
pueden separar dominios para estudiar y analizar per separado y poder establecer
comparaciones entre los mismos.

3. Fiabilidad de los resultados

A la hora de evaluar la fiabilidad de los resultados e identificar los posibles problemas
analiticos que presenta el proceso descrito, nos vamos a centrar en la calidad de los valores
obtenidos en cuanto a la orientacién y longitud de las lineas.

3.1. El andlisis de orientaciones

En Tecténica, el anélisis de orientaciones de fracturas se suele hacer representando éstas
frente al nimero de medidas en forma de histograma de frecuencias o rosa de direcciones. Sin
embargo, en cualquier estudio que tenga como base una cartografia el andlisis de

orientaciones de las Ifneas (lineamientos, fracturas,...) se hace ponderando el nimero de
medidas con la longitud de las mismas.

Ahora bien, si representamos la longitud de los lineamientos frente a su orientacién
podemos encontrar una distribucién anémala como la observada en la figura 4. En la parte

baja de la gréfica (menor longitud), los puntos presentan una agrupacion preferente en torno a
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las direcciones principales 000, 045, 090 y 135. En puntos correspondientes a lineas de mayor
longitud, el reparto de direcciones es mds variado.

8000 | | 1 1

7000

longitud en pixels

longitud en metros

T

090
Direccién
Figura 4. Grdfico de distribucion de direcciones de lineamientos en la Cuenca del Ebro frente a su longitud
(un 31% de las lineas poseen una longitud menor de 20 pixels). En el drea ampliada se observa con detalle

como aparecen sectores vacios en los que los puntos correspondientes han sido aspirados por valores de
direccion cercanos.

Esta situacién se debe a que para lineas comparativamente cortas, es decir, formadas por
un nimero bajo de pixels, su pendiente viene determinada esencialmente por el nimero de
pixels (figura 5). Asi, para una linea formada por dos pixels los tinicos dngulos posibles serdn
de 0, 45, 90 y 135°. Para una linea formada por tres pixels los dngulos posibles serdn 0, 22.5,
45, 67.5, 90, 112.5, 135, y 157.5°. Para lineas formadas por 6 pixels el intervalo posible de
orientaciones es de 9° y para 10 pixels el intervalo es de 5°. En general, el intervalo resultante
viene determinado por la férmula 45/ (n° pixels-1). En la figura 6 mostramos un dbaco a partir
del cual se puede estimar el nimero minimo de pixels por linea para obtener una resolucién
dada en las orientaciones de los lineamientos (en grados).

Para minimizar este efecto antes de ejecutar el programa se debera tender a considerar

lineas con un nimero de pixels mayor, es decir, deberemos aumentar la escala de trabajo tanto

cuanto sea posible. En este sentido deberd tomarse en cuenta que cuanto mayor sea la imagen
a tratar mayor ser4 el niimero de pixels a considerar y mas largo serd el proceso de tratamiento
en ordenador. No obstante, estos valores obtenidos por debajo del grado de resolucién (en
grados) deseado pueden ser desestimados en el tratamiento posterior de los resultados.
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Figura 5. Una misma linea, de orientacion N104E (a), presenta una orientacion NO9OE cuando la resolucion
es muy baja y se representa por 5 pixels (k) y una orientacion mds proxima a la real cuando el nimero de
pixels es mds elevado.

Por otra parte, usualmente la representacion de distribuciones de direcciones se realiza o
bien en rosas de direcciones o bien en histogramas con clases de 5 o 10°. Esto significa que
variaciones angulares por debajo de este nivel de resolucién no tendrdn practicamente
ninguna importancia.

50

Indeterminacién en grados

Niimero de pixels
Figura 6. Abaco con la relacion entre longitud en pixels e indeterminacion angular. Cuantos menos pixels
contiene una linea, esta puede presentar menos valores de orientacion. En el drea recuadrada y ampliada

vemos cémo emplear esta grdfica para determinar el nimero minimo de pixels por linea dependiendo de la
amplitud angular de las clases que vayamos a considerar.




En la figura 6 se incluyen dos ejemplos en este sentido. Si vamos a realizar
representaciones con clases de 10° basta con asegurarnos de que las lineas a explorar posean
longitudes mayores de 10 pixels, si las clases consideradas van a ser de 5°, entonces el tamano
critico serd de 22 pixels.

En la figura 7 se muestra un ejemplo de esta situacién correspondiente al caso de los

lineamientos de satélite de la Cuenca del Ebro. En el histograma superior (figura 7a) se
muestra el histograma obtenido con un conjunto de lineas inicial en el que un 31% de las
mismas poseian una longitud menor de 20 pixels (la amplitud de las clases en el histograma es

de 2°). Obsérvese la notoria aparicién de frecuencias anormalmente altas en las direcciones
000, 045 y 135.

Niimero de lineamientos

R |
000 020 040 060 080 100 120 140 160 180

Direccién

2 T L L P L

TTTT

Tl

Numero de lineamientos

i 7 o o e ]

000 020 040 060 080 100 120 140
Direccion
Figura 7. a) Histograma de direcciones de lineamientos en la Cuenca del Ebro a partir de un conjunto inicial
de lineas de las que el 31% era menor de 20 pixels. b) Histograma de direcciones después de aumentar la

escala del documento inicial de modo que el tamafio minimo de las lineas fuese de 20 pixels. En ambos
histogramas las clases son de 2°.




Una vez efectuado el cambio de escala en el documento de origen, asegurdndonos de
que el tamafio minimo de las lineas es ahora superior a 20 pixels, y sometido de nuevo al
proceso, obtenemos el histograma inferior (figura 7b). Las clases que resultaban anémalas en
el grifico anterior se han normalizado, la distribucién es ahora mas suave. Dado que la
resolucién de la imagen de satélite LANDSAT es de 30 m en las bandas combinadas (es decir,
el pixel minimo tiene de lado 30 m), eso significa que lineas por debajo de 600 m de longitud
tendrdn una cierta indeterminacién en su direccién ya en el documento de partida, y que esa

indeterminacién se vera realzada en el resultado final.
3.2. El andlisis de longitudes

En el proceso seguido, la lorigitud de las lineas se mide en funcién del nimero de pixels
que las componen. Posteriormente y considerando la escala del pixel (que depende de la
escala de la imagen tratada) se recalculan las dimensiones de los lineamientos o fracturas. No
obstante, los valores obtenidos presentan errores inherentes al propio método y que aparecen
como consecuencia de medir esa longitud por el nimero de pixels de la linea. Este error es
resultado de la propia geometria de los pixels. Asi, las longitudes obtenidas dependen de la
orientacion de la linea original, para lineas orientadas segtin 000 6 090 la longitud obtenida es
correcta (la longitud de la misma es la suma de las longitudes de cada pixel), pero para
orientaciones diferentes la longitud obtenida es funcién de su pendiente, siendo la
discrepancia méxima para lineas orientadas segiin 045 o 135. En estos tltimos casos la
dimensién real serd N° Pixels / sen 45°, es decir, 1.41xLongitud Inicial. Obviamente, al
realizar un estudio tecténico se desea evaluar la importancia relativa de cada familia de
fracturas (fracturas de la misma orientacién), y de no efectuar algin tipo de correccién se
estaria minusvalorando las familias de estas orientaciones frente a las de orientacién
meridiana o las de orientacion E-W.

Teniendo en cuenta la geometria del pixel y mediante un tratamiento simple podemos
estimar la longitud real (Lr) que tendrd la linea en funcién de la longitud inicial (Li) de la
misma (N° de pixels X Longitud del Pixel) y del 4ngulo (o pendiente) de la misma respecto al
Norte Geografico (o) (figura 8c). Esta relacion entre longitud inicial y longitud real depende

del octante en el que se sitie la misma de manera que viene establecida por las siguientes
expresiones:

Si0< <45, Lr=Li/cos a
Si45<a<135; Lr=Li/sen
Si135< o< 180; Lr=-Li/cosa

Esta correccion debe ser realizada a los valores obtenidos tras el tratamiento y antes de
ser analizados y representados éstos. No obstante, debemos considerar que esta correccion es

inicamente una aproximacién mis realista a la longitud de la linea, pero que existen otros
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problemas que no se contemplan tanto porque creemos producen un error comparativamente
mucho menor como porque también tienen peor solucién. Entre estos casos podemos
contemplar aquellos en los que una linea puede tener varios pixels que uinicamente estin
cortados en parte por esa linea.
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Figura 8. Correccion de las longitudes de las fracturas segiin su dngulo en las fracturas de Camarena de la
Sierra. A. Histograma de longitudes iniciales (Li). B. Justificacion de la correccion de la longitud segiin el
dngulo de la linea. C. Correcciones propuestas y D. Histograma de longitudes corregidas.

En la figura 8 se ilustra un ejemplo del efecto de la correccién de la longitud de las
lineas respecto de su 4ngulo. En él se muestran los resultados antes y después de usar esta
correccién a las fracturas de la Sierra de Camarena. En este caso la diferencia existente es
bastante grande pues de las cuatro familias diferenciadas en este 4rea (maximos 010, 053, 089
y 134) dos de ellas presentan dngulos (010 y 089) que tienen una minima correccién en
longitud y las otras dos (053 y 134), tienen orientaciones en que la correccién de longitud es
maxima. Con ello tenemos que antes de la correccién de longitudes los valores de longitudes
medias para las distintas familias era parecido (figura 8A) mientras que después de la
correccion estas longitudes medias estin mds diferenciadas (figura 8D) adquiriendo mayor
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importancia las familias NE y NW, como era de esperar. Esto es importante puesto que
normalmente las fracturas mayores son las primeras que se han formado y en este caso puede

ayudar a establecer una determinada cronologia entre ellas (Rives, 1992; Arlegui, 1996).
4. Conclusiones

El estudio de lineamientos y lineas de fractura en general mediante un programa de
exploracién automética de elementos cartografiados presenta la gran ventaja de facilitar la
medicién y manipulacién de conjuntos grandes de datos. Sin embargo deben hacerse una serie
de consideraciones metodoldgicas previas para evitar sesgos en los resultados.

En primer lugar, la orientacion que se obtiene para las lineas cartografiadas depende del
nimero de pixels que componen cada una de ellas. Si ésta estd por debajo de 20 pixels, la
indeterminacién angular es inversamente proporcional al nimero de pixels que componen
cada linea individual. Por tanto, deberemos procurar evitar el que una proporcién elevada de
lineas presenten longitudes por debajo de este umbral. Esto puede traer problemas adicionales
en el caso de andlisis de imédgenes de satélite, en las que el limite de resolucion de las mismas
imdgenes de partida supone un condicionante a la fiabilidad de la orientacién de las lineas
menores de 600 m, factor éste que debera ser tenido en cuenta a la hora de hacer las oportunas

interpretaciones en términos tectonicos.

En segundo lugar, al aproximarnos a la longitud de las lineas mediante la concatenacién

de elementos cuadrados (pixels), la longitud depende de la orientacién de la linea original,

debiendo corregir trigonométricamente la equivalencia pixel-unidad de longitud para poder
obtener resultados fiables.
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Abstract

Rare Earth Element (REE) concentrations were determined in the acidic soil solutions
Jfrom Bocono watershed (Venezuela). The REE content of these waters ranges over one order of
magnitude and is depleted by 10* to 107 relative to host lutitic materials. Both NASC-normalized
and host lutite-normalized plots show similar patterns for all the acidic soil waters. These
patterns show important Heavy REE (HREEs) enrichments with a maximum centered in the
Intermediate REEs (IREEs; Eu-Tb). Enrichments of IREEs relative to Light Rare Earth Elements
(LREEs) are always greater than those relative to HREEs (Gd,/La, > 30 and Gd,/Lu, < 5) and
convex patterns show an asymmetrical shape.

Similar convex patterns are observed in other low temperature acidic systems (streams,
lakes and groundwaters) but always with lower IREE/LREE ratios (Gd/La, < 10), similar
HREE/IREE ratios (Gd,/Lu, < 5) and, therefore, with a more symmetrical convexity. Pattern
differences berween the acidic soil solutions and the other acidic systems may be related to
specific water-mineral interactions in the edafic environment.

1. Introduccién

El estudio sobre el comportamiento geoqufmico de las Tierras Raras (REE) en soluciones
naturales de baja temperatura estd recibiendo una considerable atencién en los tltimos afios.
Como resultado de ello se dispone ya de abundante informacién acerca de los contenidos y pautas
de distribucién de estos elementos en distintos tipos de sistemas acuosos, fundamentalmente en
aguas de pH neutro o alcalino (aguas marinas, subterréneas, rfos, lagos, etc; p.ej. De Baar et al.,
1988; Elderfield er al., 1990; Moller y Bau, 1993; etc).

Los trabajos realizados en aguas 4cidas naturales son, en comparacién, m4s escasos. Sin
embargo, los caracteres de este tipo de soluciones resultan especialmente adecuados para tratar
algunos de los aspectos mds importantes y discutidos de la geoqufmica de estos elementos, tales
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como: el frecuente desarrollo de pautas de distribucién convexas (Auqué er al., 1993;
Johannesson y Lyons, 1995; Nordstrom ez al., 1995); su fraccionamiento durante los procesos
de precipitacién de fases amorfas (Auqué ez al., 1993; Nordstrom et al., 1995); la incidencia del
efecto tetrada en las pautas asociadas a fenémenos de interaccién agua-mineral (Nordstrom ez al.,
1995; Gimeno er al., 1996b); o la existencia de determinados efectos competitivos en la
formacién de complejos de estos elementos en solucién (Auqué et al., 1995; Gimeno ef al.,
1996a).

Los sistemas de aguas 4cidas actualmente m4s estudiados se reducen a arroyos instalados
en materiales con mineralizaciones de sulfuros dispersas (Auqué et al., 1993; Nordstrom e al.,
1995), lagos con aguas de esas caracterfsticas (Johannesson y Lyons, 1995) y soluciones
subterrdneas de pH 4cido (p. ej. Miekeley er al., 1992; Fee er al.,1992). En este trabajo se
analizan los contenidos y pautas de distribucion de REE en un nuevo ambiente de baja
temperatura, todavfa no estudiado: las soluciones asociadas a suelos hiperdcidos. Y se presentan
los primeros resultados obtenidos en las aguas 4cidas asociadas a este tipo de suelos en
Venezuela, compardndose con los de otros sistemas dcidos descritos en la bibliograffa.

2. Localizacién de la zona de estudio y caracteres generales.

El 4rea estudiada estd situada dentro de la cuenca del rfo Bocond, en el extremo oriental
de Venezuela (Andes venezolanos; figura 1). En esta cuenca de 1540 km? se produce un
importante desarrollo de suelos hiperdcidos, alineados a los largo de la gran falla de Boconé y
que afecta a una extensién total de 180 km?. Las zonas de mayor acidez se acumulan en los
alrededores de la poblacién de Niquitao, préxima a la de Bocond (figura 1), lugar en €l que se
localizan los suelos estudiados en este trabajo.

El material parental sobre el que se desarrollan estos suelos dcidos corresponde a lutitas
grises con abundantes cristales milimétricos de sulfuros. La oxidacién de estos sulfuros dispersos
es el mecanismo responsable de la formacién de este tipo de suelos hiperdcidos, generando
soluciones de pH inferior a 3 donde la acidificacién es m4s intensa y con valores préximos a 5
en la periferia de estas zonas hiperdcidas (Cornieles y Valles, 1995).

La capacidad de movilizacién de aluminio y hierro de estas soluciones 4cidas tiene que
ser considerablemente elevada. Frecuentemente se observa la formacién de fases amorfas
sulfatado-alumfnicas (inducida por procesos de concentracién evaporativa) y la precipitacién de
oxihidréxidos férricos (debida a procesos de oxidacién del hierro disuelto) en la superficie de
estos suelos y en las zonas de encharcamiento de agua (Cornieles y Vallgs, 1995). Por otro lado,
las aguas alcalinas procedentes de la parte alta del paisaje de la cuenca del Boconé se mezclan
localmente con las aguas 4cidas de los suelos provocando de nuevo la precipitacién de fases
amorfas alumfnico-sulfatadas y de oxihidréxidos férricos, en un proceso muy similar al descrito
por Auqué et al. (1993) en el Arroyo del Val (Espafia).

Estos caracteres qufmicos provocan la casi total deforestacién de esas zonas, a pesar de
que el clima tropical favorece la produccién de una biomasa elevada. La ausencia de cobertera
vegetal favorece, a su vez, la erosién de las capas superficiales ya lavadas y menos 4cidas, que
son desmontadas por las lluvias tropicales provocando la exposicién subaérea de las lutitas
parentales con sulfuros frescos. Este proceso autoalimentado evita el desarrollo de un perfil
ed4fico definido y provoca que los materiales responsables del proceso de acidificacién se
encuentren siempre préximos a la superficie, impidiendo el desarrollo de la vegetacién.
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Figura 1. Situacién y esquema geoldgico simplificado de la zona estudiada (leyenda: 1.Falla
activa. 2. Falla inversa. 3. Fosa tecténica. 4. Cabalgamiento. 5. Cuaternario. 6. Mioceno-
Plioceno. 7. Oligoceno-Mioceno. 8. Mesozoico-Terciario. 9. Materiales del Cretacico
(sedimentarios y volcanicos). 10. Complejo ofiolitico. 11. Precambrico-Paleozoico).

3. Metodologia

Las aguas 4cidas utilizadas en este trabajo fueron tomadas en una campafia mds amplia,
no restringida tnicamente a soluciones de estas caracterfsticas qufmicas, que abarcaba el
desmuestre de distintos tipos de soluciones superficiales de la cuenca del Boconé. Las muestras
de agua en los suelos 4cidos corresponden a escorrentfas de circulacién hipodérmica tomadas
directamente en zonas de rezume.

Se determinaron in siru la temperatura, pH y conductividad de las soluciones, tomédndose
en cada punto de muestreo dos alicuotas, una para el andlisis de aniones y otra para el de




cationes. Los andlisis de aniones fueron realizados mediante Andlisis I6nico Capilar en un aparato
de electroforesis modelo Waters y los de cationes mediante ICP, modelo Jovin-Yvon JY24. En
la tabla 1 sélo se indican las concentraciones de sulfato y de algunos elementos metdlicos en estas
soluciones. Para la determinacién de las Tierras Raras se seleccionaron inicialmente cuatro
muestras, escogidas de forma que cubrieran el rango de pH y de concentracidn total de elementos
disueltos definido para todo el conjunto de soluciones 4cidas muestreadas.

El tratamiento de las muestras para la determinacién de las Tierras Raras incluyd la
preparacién y andlisis en el laboratorio de alfcuotas filtradas a través de mallas de 0.1 micras y
acidificadas, de muestras unicamente acidificadas y de muestras no tratadas. Los resultados
obtenidos sefialan la existencia de pequeiias diferencias no sistemdticas en las concentraciones de
lantdnidos (incluso en las muestras no tratadas), sin cambios apreciables en las pautas de
distribucién obtenidas. Y; por tanto, la posible contribucién de partfculas en suspensién y
coloides al contenido de Tierras Raras en estas soluciones es minimo, resultado similar al
obtenido por Johannesson y Lyons (1995) en sistemas 4cidos de este tipo.

La determinacién de los contenidos de Tierras Raras fue realizada mediante ICPMS
modelo VG Plasma Quad. Se utilizaron estdndares sintéticos para calibrar el aparato y se
analizaron soluciones de referencia junto con las muestras para controlar las fluctuaciones en las
condiciones del plasma. Los Ifmites de deteccién del aparato son de 10~ ppm para todas las REE
excepto para el Lu con un valor de 5:10° ppm. Los duplicados realizados durante el an4lisis de
las muestras indican que las incertidumbres en la precisién de los andlisis son inferiores al 5%
para todos los elementos de las Tierras Raras excepto para el caso de Er, Tm y Lu, con valores
del 8 al 14%. Se procedié asimismo al andlisis de algunas muestras en un segundo laboratorio,
también mediante ICPMS (modelo Perkin-Elmer) con diferentes calibrados y rutinds analfticas,
obteniéndose resultados muy similares. Los resultados de las cuatro muestras analizadas se
presentan en la tabla 1.

Para el andlisis de REE en los materiales lavados por las soluciones se procedié al
triturado de una muestra de las lutitas grises de la zona en un molino de 4gata y a su ataque total
con una mezcla de HF, HCl y HNO;. El andlisis de Tierras Raras se realiz6 también mediante
ICPMS con Ifmites de deteccién de 0.1 ppm para todos los elementos de la serie, excepto Eu y
Lu para los que el Ifmite de deteccién es de 0.05 ppm. Los resultados de la muestra analizada
se presentan también en la tabla 1.

4. Caracteres geoquimicos y contenidos de Tierras Raras en el sistema

Las soluciones analizadas presentan los rasgos composicionales caracterfsticos de las aguas
dcidas de lavado de minas, es decir, valores de pH bajos (entre 2.3 y 3.35; tabla 1), sulfato como
anién dominante y muy elevados contenidos de elementos met4licos disueltos (en la tabla 1 se
muestran las concentraciones de Fe, Al y Zn). La distinta intensidad del proceso de acidificacién
(oxidacién de los sulfuros dispersos en los materiales drenados) es la responsable de las amplias
variaciones detectadas en los contenidos de sulfato y elementos metélicos de estas aguas 4cidas,
especialmente elevados en la muestra C-5, la de pH mds bajo de todas las analizadas (tabla 1).
Resulta destacable la presencia de elevadas concentraciones de aluminio en estas soluciones como
responsable de los ya mencionados efectos fifot6xicos en estos suelos.

Como en otros sistemas de aguas dcidas (Auqué ef al.,1993, 1994; Gimeno et al., 1996a),
los contenidos de Tierras Raras en estas soluciones son muy elevados, con concentraciones totales
(EREE) de 0.113 a 1.24 ppm (tabla 2). Estos valores son superiores en tres o cuatro érdenes de




magnitud a los determinados en aguas marinas o en cursos superficiales de cardcter neutro-bdsico
y s6lo resultan parangonables a los encontrados en arroyos dcidos naturales como los de la zona
de Bddenas en Espana (muestra BS-3 y Arroyo del Val, figura 3A; Auqué er al., 1993; Gimeno
et al., 1996a) o los de las San Juan Mountains en USA (muestra 9OWA111, Nordstrom er al.,
1995). Unicamente las soluciones 4cidas subterrdneas de la mina de uranio de Osamu-Utsumi en
Brasil (muestra GW-47, figura 3A; Miekeley er al., 1992) presentan contenidos en REE
ligeramente mayores que los detectados en las aguas de los suelos dcidos venezolanos.

Los contenidos de Tierras Raras en las lutitas grises lixiviadas por las aguas (tabla 1) son,
en promedio, el doble de los presentes en NASC (North American Shale Composite; Haskin er
al., 1968; Gromet et al., 1984). Su pauta de distribucién es prdcticamente paralela a la de ese
estdndar (figura 2A) con un'ligero enriquecimiento en las Tierras Raras ligeras (LREE en la
literatura anglosajona) sobre las Tierras Raras pesadas (HREE) y una cierta anomalfa negativa
en Eu. Las aguas 4cidas presentan unos contenidos de REE entre dos y cuatro érdenes de
magnitud menores de los encontrados en estos materiales.

Tabla 1: Caracteres composicionales y contenidos en Tierras Raras en las soluciones 4cidas y rocas
lutiticas de la Cuenca de Boconé (Venezuela). Las concentraciones de SO,~, Fe, Zn y Al estén
expresadas en mmoles/l y las de las Tierras Raras en ppm.

C-1 C-5 C-10 c-14
Temp. (°C) 22.7 22.8 20.5 21.1

pH 3:35 2.30 2.97 3%

Conduct. (uS) 1600 4920 1169 1600
S0,” 7.89 58.46 4.30 10.03
Fe=ts 0.03 9.35 0.08 0.08
2N 0.05 0.15 0.02 0.04
Al 2.61 16.71 1.76 3.73
Contenidos en Tierras Raras
La 6.61:10° 2.07:102 2.50-10° 1.28:107
Ce 2.22:10? 1.04:10" 7.14:10° 5.18:1072
Pr 4.26:10°% 2.14:102 1.57-10° 1.09:107?
Nd 2.91:102 1.49:10" 1.17:1072 77102
Sm 1.80:102 1.12:107 7.65:10° 3.71:1072
Eu 4.74-10°% 3.16-1072 1.95:10° 9.09:107
Gd 3.41-107 1.81:10" 1.39:107? 4.84-107
Th 5.11:10° 2.74:10? 2.13:10° 8.36:107
Dy 2.57-1072 1.26:10" 1.11:102 4.16:10
Ho 4.25-10° 1.94:1072 1.82:10% 7.12:1072
Er 9.52:10° 4.38:102 4.22:10° 1.61:107?
Tm 1.17:10% 5.49:10° 5.18:10* 1.82:10°
Yb 5.82:10° 2.82:102 2.58:10° 9.67-10°3
Lu 7.70-10* 3.56:10° 3.70-10* 2.70-10*




La concentracién total de REE de las aguas 4cidas venezolanas se encuentra directamente
relacionada con el grado de acidez y, a grandes rasgos, sus: valores aumentan al disminuir el pH
y al aumentar la concentracién de sulfato de las soluciones. El sulfato es el tinico ligando activo
que forma complejos con los lantdnidos en aguas 4cidas naturales (Auqué et al., 1994; Gimeno
et al., 1995, 1996a) y, por tanto, la transferencia de REE en los proceses de interaccién agua-
roca se va a ver favorecida en las soluciones con mayor capacidad de formar complejos con esos
elementos.

§. vPautas de distribucion de las REE en las soluciones dcidas

Las pautas de distribucién de las Tierras Raras en las aguas dcidas de Venezuela -
normalizadas frente a NASC se han representado en la figura 2A. La normalizacién respecto a
los contenidos de la roca lutftica en contacto con las soluciones (figura 2B) no introduce ninguna

- modificacién-en la pautas observadas, motivo por el que la descripcién que sxgue a continuacién
se referird a los resultados normalizados frente a: NASC. :

Todas las aguas analizadas muestran, globalmente, un enriquecimiento en las. Tierras
. Raras pesadas (HREE) respecto a las ligeras (LREE) con relaciones normalizadas de ‘Lu frente:
- aLa (Lu,/La,) entre 5 y 12 (tabla 2). Pero lo mas destacable en:estas pautas es:la-existencia de

un enriquecimiento- relativo en las Tlerras Raras mtermed}as (IREE; Eu, Gd y Tb) respecto al
resto de los lant4nidos. ;

La anomalfa de-IREE se traduce enel desarrollo de una morfologfa convexa en las pautas
de las Tierras Raras en solucién,: con enriquecimientos-en los lant4nidos-m4s pesados desde La
a Gd y empobrecimientos, también respecto a fos mds pesados desde Gd a Lu. Esta morfologfa -
convexa no es. simétrica y las pendientes de las trazas de: Gd-La y Gd-Lu son- marcadamente:
distintas: las-relaciones normalizadas- (Gd,/La,) presentan valores superiores.a 23 mientras que
las relaciones (Gd,/Lu,) presentan- valores inferiores a 5 (tabla 2). O lo: que es lo misma, el
empebrecimiento en LREE es mucho mds marcado:que el de las: HREE, ambas respecto a IREE.

En las figuras3 Ay B se muestranbomparativamente-l'as pautas de las soluciones ed4ficas
respecto-a las-de otras soluciones. dcidas naturales; Como.puede apreciarse tanto la- morfologfa
convexa como las-demds caracterfsticas sefialadas para. la distribucién de REE en las soluciones -
estudiadas- son- andlogas a los: encontradas. en las soluciones 4cidas de arroyos: (Auqué er al.,
1993, 1994; Gimeno et.al., 1995; Nordstrom-et al., 1995) y lagos (Johannessony Lyons, 1995)..

. Tabla 2: Pardametros y relaciones. de interés para- los contenidos. en Tierras Raras-de las
- soluciones &cidas de Venezuela: Ekcontenido total de REE (ZREE) est4 expresado.en ppm y las |
" relaciones: presentadas corresponden a los valores normahzados frente a NASC de los" *

elementos. en-cuestién. . ;
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Figura 2. Pautas de distribucién de las Tierras Raras en: A.- las soluciones acidas y roca lutitica
en contacto con ellas, normalizadas frente a NASC. B.- las soluciones acidas normalizadas
frente a la roca lutitica en contacto.

No obstante, aunque los rasgos genéricos son similares, existen diferencias en la intensidad

con la que aparecen algunos de ellos en las soluciones edéficas. De esta forma, el enriquecimiento
en HREE respecto a LREE de esas soluciones es mucho mds marcado que en cualquiera de las
aguas 4cidas presentadas en la figura 3A y cuya relacién normalizada Lu,/La, no supera el valor
de 2.5 (recuérdese que en el caso de las soluciones edéficas los valores de esta relacién se sitiian
entre 5 y 12; tabla 2).

Por otro lado, la traza que va de Gd a Lu en la pauta de distribucién presenta pendientes
muy parecidas a la de los otros sistema 4dcidos (todos ellos con valores de la relacién Gd,/Lu,
menores de 5) pero la que va de La a Gd presenta pendientes claramente distintas, mds marcada
en las aguas de Venezuela. Las relaciones Gd,/La, de esas soluciones son superiores a 23 (tabla
2) mientras que las encontradas en las aguas 4cidas de otros sistemas (figura 3A) son inferiores
a 10. De esta forma, el empobrecimiento en LREE respecto a las IREE que caracteriza esta parte
de la pauta convexa de las soluciones 4cidas es mucho m4s marcado en las aguas venezolanas.

Independientemente de estos caracteres particulares, la distribucién convexa de REE en
las aguas 4cidas de Bocond presenta marcadas diferencias respecto a la de los contenidos totales
de estos elementos en las rocas lutiticas en contacto (o respecto a NASC; figura 2). Y, como
ocurre en otros sistemas 4dcidos naturales generados por idénticos mecanismos de oxidacién de
sulfuros (Auqué er al., 1994; Johannesson y Lyons, 1995; Gimeno et al., 1995), las pautas
convexas no parecen ser el resultado de una transferencia directa de la pauta asociada a la roca
en contacto con las soluciones.
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Figura 3. Comparacién de las pautas de distribucién de Tierras Raras en distintos tipos de
soluciones. A.- Pautas de distribucién en agua de mar (Elderfield y Greaves, 1982), agua de rio
(Elderfied et al., 1990), aguas acidas de Colour Lake (Canada; Johannesson y Lyons, 1995),
aguas acidas de la zona de Badenas (Espana; Arroyo del Val y muestra BS-3, Auqué et al.,
1994; Gimeno et al., 1996a), aguas &cidas de San Juan Mountains (muestra 90WA111;
Nordstrom et al., 1995) y soluciones &cidas de la mina de uranio de Osamu-Utsumi (Brasil,
muestra GW-47; Miekeley et al., 1992). B.- Rango en la pauta de distribucién en las aguas
acidas de Venezuela, definido por las muestras de mayor y menor concentracion de Tierras
Raras (C-5 y C-10, respectivamente).

6. Discusién de resultados

Las reacciones de formacién de complejos de las REE en soluciones 4cidas estdn
dominadas por el sulfato, anién que no produce fenémenos de fraccionamiento apreciables a lo
largo de la serie de las REE (ver por ej. Gimeno er al., 1996a) y que, por tanto, no puede
Justificar la aparicién de este tipo de pautas convexas. En otros sistemas 4cidos, la presencia de
este tipo de pautas enriquecidas en IREE se ha relacionado con procesos especificos de interaccién
agua-mineral, fundamentalmente respecto a oxihidréxidos de Fe y Mn.

Gosselin ez al. (1992) sefialan la presencia de pautas convexas de distribucién de REE en
las salmueras subterrdneas que estudian, encontrando pautas similares asociadas a 6xidos y
oxihidréxidos de Fe y Mn, carbonatos arcillosos y minerales de relleno de fracturas (calcitas
férricas y piritas) en los materiales del acuifero. Y sugieren, que las pautas enriquecidas en IREE
de las aguas proceden de procesos especificos de interaccién (disolucién, intercambio iénico o
procesos de adsorcién/desorcién) con estas fases. Una génesis similar, referida mds
especfficamente a la disolucién de 6xidos y oxihidréxidos de Fe y Mn es la propuesta por
Johannesson y Lyons (1995) para las aguas 4dcidas de Colour Lake (figura 3A).
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Figura 4. Pautas de distribucién de las
REE en las fases aluminico-sulfatadas
precipitadas a partir de las aguas 4acidas
en los arroyos de San Juan Mountains,
Colorado (USA; muestras PB-01, PB-02 y
PB-03; Nordstrom et a/., 1995 y datos no
publicados) y del Arroyo del Val,
Zaragoza (ESPANA; muestras C-1 y C-
12; Auqué et al., 1993 y datos no
publicados).
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Los 6xidos y oxihidréxidos de Fe y Mn son fases que tapizan frecuentemente las
particulas sedimentarias de rocas lutiticas como las drenadas por las aguas 4cidas de Venezuela
y, de hecho, se ha verificado la presencia de oxihidréxidos secundarios en estos materiales
(Cornieles y Valles, 1995). Estas fases se disuelven ficilmente en contacto con soluciones de pH
dcido con lo que, comparativamente, podrfan ser consideradas como las responsables de las
pautas convexas también en las soluciones de Bocond. Las diferencias en la morfologfa convexa
de estas aguas vendrfan heredadas de las existentes en los oxihidréxidos de este ambiente edéfico,
si se considera que el tipo de interaccién establecida es simplemente de disolucién (tal y como
sugieren Johannesson y Lyons, 1995).

No obstante, los caracteres del medio eddfico (con bajas relaciones agua/roca) sugieren
la existencia de interacciones mds complejas entre las soluciones y los materiales drenados,
haciendo factible la intervencién de otras fases minerales y no tinicamente a través de procesos
de disolucién. Gosselin et al. (1992) observan, por ejemplo, modificaciones en las pautas
convexas de sus aguas subterrdneas seguin la litologfa en contacto con las mismas, haciendo
factible que las diferencias en las pautas de las aguas dcidas de Venezuela sean consecuencia de
la intervencién de otras fases (aparte de los oxihidréxidos de Fe-Mn), y de procesos mds
complejos que el de disolucién mineral. La formacién de fases secundarias enriquecidas en LREE
ha sido citada en estudios de meteorizacién como uno de los controles en la movilizacién de las
REE (p. ¢j. Banfield y Eggleton, 1989); y la precipitacién de este tipo de fases podrfa resaltar,
evidentemente, el empobrecimiento de LREE respecto a IREE en soluciones que tuvieran ya una
pauta convexa de distribucién, favoreciendo la aparicién de morfologfas como las de Boconé.




Por otro lado, durante la evolucién de los suelos hiperdcidos estudiados aparecen fases
amorfas alumfnico-sulfatadas similares a las encontradas en otros sistemas de aguas 4cidas. Las
pautas de distribucién de las REE en estas fases presentan morfologfas muy similares a las de las
soluciones eddficas venezolanas (figura 4; Auqué er al., 1993; Nordstrom ez al., 1995) con lo
que su redisolucién puede contribuir también al desarrollo de este tipo de pautas convexas en las
aguas dcidas.

Una caracterizacién mds precisa del origen de estas pautas convexas de las REE en
medios 4cidos requiere, evidentemente, la realizacién de estudios mds detallados sobre los
minerales (y sus pautas de distribucién de REE) especificamente involucrados en el control de
esos elementos. En la actualidad se estdn continuando los trabajos en distintos sistemas dcidos
para verificar algunas de las posibilidades mencionadas.

7. Conclusiones

Las soluciones relacionadas con el desarrollo de suelos hiperdcidos en la cuenca del
Boconé (Venezuela) presentan elevadas concentraciones de Tierras Raras en solucién (con valores
de ZREE de 0.113 a 1.24 ppm), en rangos tinicamente comparables a los detectados en otros
sistemas 4cidos de baja temperatura. Los contenidos totales de Tierras Raras son directamente
proporcionales a las concentraciones de sulfato e inversamente proporcionales al pH de las aguas
y, por tanto, estdn controlados por la intensidad del proceso de oxidacién de los sulfuros
dispersos en los materiales drenados, responsable del fenémeno de acidificacién.

Las pautas de distribucién de las Tierras Raras, normalizadas respecto a NASC o respecto
a las lutitas en contacto con las soluciones, presentan marcados enriquecimientos de HREE
respecto a LREE, con relaciones (Lu,/La,) > >1. Pero lo mds llamativo es el desarrollo de
morfologfas convexas caracterizadas por enriquecimientos de IREE respecto al resto de Tierras
Raras. Este modelo de distribucién es cualitativamente andlogo al encontrado en otros sistemas
4cidos superficiales de baja temperatura (lagos, arroyos). Sin embargo el modelo obtenido en las
aguas dcidas de Venezuela presenta caracteres cuantitativos especificos, todavia no descritos en
la literatura sobre el tema. De esta forma, las morfologfas convexas obtenidas no son simétricas
respecto a las IREE como sucede en otros sistemas 4cidos, con relaciones Gd,/La,
considerablemente mds elevadas.

Los procesos de formacién de complejos de REE en este tipo de soluciones 4cidas no
pueden producir los procesos de fraccionamiento de las REE necesarios para justificar este tipo
de pautas convexas. El desarrollo de estas morfologfas todavia no esta firmemente establecido,
pero tiene que estar condicionado por procesos especificos de interaccién agua-mineral con
determinadas fases de los materiales drenados, como 6xidos y oxihidréxidos de hierro o fases
amorfas aluminico-sulfatadas.

Los caracteres particulares encontrados en las pautas convexas de las soluciones 4cidas
estudiadas pueden estar relacionados, por tanto, con diferencias en las pautas de los minerales
especificamente lixiviados en los materiales drenados o con la intervencién de mecanismos m4s
complejos (intercambio idnico, procesos de adsorcién/desorcién, precipitacién de fases
secundarias), favorecidos por las bajas relaciones agua/roca del ambiente edéfico, en el control
de las REE en solucidén.
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Resumen

El metamorfismo hercinico de la Faja Piritica se define de Baja Presién con temperaturas
préximas a 200°C. Los indices de cristalinidad de la ilita (Kubler) lo sitdan en ambiente
anqui-epizonal. Las paragénesis encontradas son similares en los materiales Devonicos,
Carboniferos y en el Paleozoico Inferior que limita la cuenca en su zona norte.

Abstract

The Hercynian metamorphism in the Pyrite belt is of Low Pressure type, with temperatures
about 200°C. On the basis of the illite cristallinity index (Kubler) this metamorphism is
defined as anchi-epizonal. Similar paragenesis are founded in materials of Devonian,

Carboniferous, and also Lower Paleozoic ages, which aré delimiting the Pyrite belt to the
north.

Introduccion

Dentro del sector SO del Hercinico espafiol. la Faja Piritica constituye el extremo mas
meridional del Macizo Ibérico. Los materiales que la constituyen pertenecen al Paleozoico
Superior. Devonico y Carbonifero ocupan una cuenca situada al sur de la zona de Ossa
Morena formada por materiales plutonicos y del Paleozoico Inferior mayoritariamente.

El conjunto Devénico-Carbonifero de la Faja Piritica ha experimentado los procesos de
deformacion v metamorfismo hercinicos que se muestran a su vez sincronicos con una etapa
intrusiva de rocas plutonicas acidas e intermedias (Aparicio et al. l977) que originan
fendmenos de contacto en la roca-caja. Una parte de estas manifestaciones de contacto
corresponden a procesos de granitizacion que modifican fuertemente la composicion de las
rocas atectadas (Sanchez Cela v Aparicio 1982. 1991).

Dada la importancia minera de la Faja Piritica los aspectos estructurales y estra{igréﬁcos han
sido ampliamente estudiados desde antiguo. En época reciente ha sido publicada toda la
cartografia geologica del sector por el ITGE a escalas 1/50000 y 1/200000. y son de destacar
en el area de la Faja Piritica y zonas limitrofes. los trabajos de Vazquez Guzman y Ferqéndez
Pompa (1976) Gabaldén et al 1983. Crespo-Blanc y Orozco (1988), Apalategui y Sanchez
(1991). Abalos y Eguiluz (1992. 1994). Azor et al 1994... etc.
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Algunos aspectos sobre el metamorfismo de la Faja Piritica y zonas limitrofes han sido
estudiados por Lecolle (1970). Lecolle y Rogers (1976). Schermerhom (1975, a v b). Quesada

)1’9.;41unh§91990, Castro y de la Rosa (1991), Abalos et al 1991, Lopez Munguira et al 1988.
-1993!

Sin embargo las caracteristicas metamortficas de los materiales peliticos del Paleozoico
Superior de la Faja Piritica no han sido tratados hasta ahora con detalle. en cuanto a sus
paragénesis. intensidad y condiciones fisicas. En ello influye el hecho de tratarse en su mayor
parte de materiales pizarrosos mondtonos de baja intensidad metamorfica. En la bibliografia
regional este metamorfismo es calificado como de bajo grado y le asignan una facies de
esquistos verdes, zona de la clorita. Asi un estudio algo mas pormenorizado, permite encontrar
algunas variaciones significativas en sus caracteristicas y su continuidad con el metamorfismo
que afecta al limite sur de la zona de Ossa Morena.

Para el desarrollo del trabajo se tomaron un total de 100 muestras en el area piritica y zonas
de borde. La localizacion de las muestras se puede observar sobre el esquema geoldgico de
la Fig. 1. Fueron tomadas exclusivamente en materiales peliticos y se prescindié de muestrear
en series afectadas por procesos de granitizacion (sefialadas como F.G. en Fig. 1), al tener
modificadas su mineralogia y composicion.

Las determinaciones mineraldgicas de Rayos X fueron hechas sobre muestras en polvo vy
agregados orientados.y sus condiciones se ajustan a las descritas en Aparicio et al. (1993) de
acuerdo con los esquemas definidos en Dunoyer de Segonzag (1969). Kisch (1991). Para la
obtencion del parametro b, se ha seguido el método de las secciones perpendiculares a la
pizarrosidad descrito por Sassi y Scolari: (1974).

Metamorfismo

En la Tabla 1 se indica la situacion cronoestratigrafica de las muestras asi como su
composicion y algunos pardmetros metamérficos significativos.

En la figura-2 se expresa. en funcion de los indices de cristalinidad de la ilita (I.C) (Kubler
1968) la situacion metamoérfica de las' muestras pertenecientes al Carbonifero. Devonico y
Paleozoico Inferior (borde de cuenca). La proyeccion del IC. para Devonico v Carbonifero.
se realiza sobre los campos epizonal v anquizonal. En el Devénico el predominio es del
campo epizonal. mientras en el Carbonifero dominan las muestras anquizonales. [gualmente
se proyectan en ambos campos las muestras del Paleozoico Inferior. No existe pues, en
funcion del IC, una neta relacion con el nivel estratigrafico. Sin embargo la distribucion
superticial del [C en las muestras pertenecientes al Devonico, delimita una zona de mayor
intensidad metamortica en el drea de Zalamea la Real, esta zona se prolonga durante el
Carbonifero hacia el NO, quedando la zona de menor intensidad metamortica (diagenética)
en el extremo suroriental.

La distribucion del parametro b, que proporciona valores relativos de la presion (Guidotti ¥
Sassi 1976, 1986). presenta sus valores mas altos en las muestras del Paleozoico [nferior en
el borde Norte de la cuenca y en la franja devonica situada en este limite. Otro maximo de
b,. se observa en el centro del drea estudiada para muestras pertenecientes al Devénico. y algo
mas desplazado al NO durante el Carbonifero. En general los valores maximos de b, se
muestran concordantes con los minimos del [C y ambos se encuentran desplazados de SE a
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NO desde el Devonico al Carbonifero.

Tanto el Devénico como el Carbonifero experimentaron un proceso metamorfico de baja
presion. con un ligero aumento de estas condiciones en el paso Carbonifero-Devonico-
Paleozoico Inferior (Tabla 2). siendo el Paleozoico Inferior el que manitiesta ya un transito
hacia presiones intermedias. hecho va determinado por Lopez Munguira et al (1993) en las
pizairas cambricas de Ossa Morena.

La secuencia de los valores medios de IC (Carbonifero-Devonico-Paleozoico [nferior) presenta
una disminucion de sus valores (excepcion del Ordovicico) y por tanto mayor intensidad del
metamortismo coincidente con el incremento de b,.

Devénico y Carbonifero presentan paragénesis similares (Tabla 1) por lo que la intensidad del
metamortismo que experimentaron debio de ser muy parecida.

Cuarzo+ilitatcaolinitatcloritatclorita/vermiculita es la paragénesis mas frecuente. La aparicion
de plagioclasa (albita) se circunscribe a 4 muestras (3 del Carbonifero y 1 Devonica). La
esmectita es igualmente rara y se localiza en 2 muestras del Carbonifero v 1 Devonica. La
paragonita solo esta presente en 1 muestra Devonica y localizada en una fractura.

En las muestras del Paleozoico inferior. al Norte del area estudiada. se detectan paragénesis
similares. La clorita. bastante frecuente. queda excluida en el sector NO, mientras que la
caolinita se circunscribe a una amplia banda de direccion este-oeste. y se encuentra ausente
al norte v borde SO.

Los interestratificados clorita/vermiculita. al igual que la ilita. se encuentran practicamente
distribuidos por todas las formaciones incluyendo el Paleozoico Interior.

Teniendo en cuenta esta identidad paragenética entre el Carbonitero v Devénico es deducible
que las condiciones fisicas del metamorfismo que les afecto fueron similares.

Si nos atenemos a la casi desaparicion de la esmectita v a la no presencia de
. Interestratiticados ilita/esmectita se puede considerar que se alcanzaron temperaturas proximas
a los 200°. (Kristmannsdottir 1979. Schittman y Fridleifsson 1991). aunque otros autores
como Reves y Cardile (1989) Abercrombie et al. (1994) situan la desaparicion de esmectita
por debajo de 200°. La presencia de esmectita solo en escasas muestras aisladas confirmaria
el situamos en unas condiciones proximas a su desaparicion.

En los mismos limites de temperatura nos situaria la presencia de caolinita (Clayton et al
1968. Duroyer de Segonza¢ 1969. Aoyagui y Kazama 1980, Weawer v Broekstra 1984. Curtis
1987).

Sin embargo la desaparicion de caolinita en el sector norte. que incluye el Paleozoico Inferior.
reflejaria un aumento de estas condiciones a T>225° e inferiores a 320° (Maxwell y Hower
1967. Velde 1977). [gualmente temperatura inferiores a 200° pudieran haberse alcanzado en
la franja sur donde la caolinita se encuentra ausente y los IC indican la menor intensidad
metamoriica (Fig. 1).

Un célculo aproximado de la présién que experimentaron los materiales se puede deducir a
partir de los valores de b, (Tabla 2) v de los calculos realizados por Guidotti y Sassi 1976.
1986) teniendo en cuenta valores de T= 200°. Asi para el Cambrico. los valores determinados
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serian de =1.2 kb. valores que van decreciendo hasta el Carbonifero (P < 0.5 kb). Esta
variacion de presion se observa en el diagrama de frecuencias del valor b, para el Paleozoico
[nferior. Devonico v Carbonifero (Fig. 3). Una comparacion con otras dreas metamorficas
significativas (Sassi y Scolari 1974). delimitan el metamorfismo de la Faja Piritica como de
muy baja presion.

Discusion

Uno de los principales problemas en el estudio metamorfico de los materiales paleozoicos del
SO hercinico espaiiol radica en la dificultad de la limitacion estratigrafica. La separacion
Devonico-Carbonifero no esta suficientemente establecida debido a la ausencia de datos
paleontologicos. Por otro lado la presencia masiva de rocas graniticas superficiales modifican
ampliamente la composicion de la roca original, dando lugar a formaciones granitizadas (FG).
En numerosas ocasiones estas FG son tomadas como limite entre ambas formaciones. por lo
que es muy posible que en algunos casos se estén individualizando series con la misma edad.
Un dato a favor de ello se encuentra en la similitud de las paragénesis y de los parametros
metamorficos en Carbonifero y Devonico.

En cualquier caso el metamorfismo hercinico de la Faja Piritica se presenta como de muy baja
presion, en contraposicién a lo anteriormente establecido por Schemerhom (1975 ay b) y
Lecolle y Rogers (1976). Estos ultimos autores asignan el metamorfismo de la Faja Piritica
a la facies esquistos verdes con unas condiciones fisicas (P =4-5 Kb. T = 350-400) e I.C. de
la ilita (2 a 2.7) sensiblemente diferentes a los determinados en este trabajo.

Dentro del Hercinico Ibérico v en dreas donde el Devonico esta representado. no parece haber
grandes diferencias en cuanto a la intensidad del metamorfismo, en comparacion con el aqui
estudiado. Tanto en el Sistema Central (Aparicio y Galan. 1980) como en Menorca (Garcia
et al 1992) y sectores de la Zona Cantabrica (Galan et al. 1985. Aparicio et al. 1993), estas
condiciones pueden ser similares. Por otro lado el Carbonifero de la Faja Piritica presenta una
intensidad de metamortismo algo superior a la del Carbonifero de otras areas hercinicas
(Aparicio v Galan. 1980). Aparicio et al. (1991 a). Garcia et al. (1992). si bien en la Zona
Cantabrica (Aparicio et al. 1993) v Cordillera Ibérica (Aparicio et al. 1991 b) se encuentra
una cierta similitud. siendo en este ultimo caso donde incluso las presiones alcanzan valores
< 1kb.

En la provincia de Cordoba. materiales carboniferos estudiados por Abalos et al. (1991) son

asignados a un ambiente epizonal-anquizonal similar a lo encontrado en el drea estudiada.
pero no especifican las condiciones de este metamortismo.
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Tabla 2

Valores medios del indice de cristalinidad (Kubler) y de b, por periodos en materiales
de la faja Piritica (Devonico y Carbonifero) y su limite norte (Paleozoico Inferior)

LC i bo

3,87 £ 0,72 8,9887 + 0,0604

3,67 £ 0,78 8,9916 + 0,0110

3,91 £ 0,75 8,9957 + 0,0127

3,64 £ 0,31 9,0012 + 0,0167
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Abstract

The 5”0 SO,~ - 5'%0 H,0 isotope geothermometer is applied to the Caldas de Bohi,
Arties and Luchon alkaline thermal waters (Central Pyrenees). Subsurface temperatures obtained
using this geothermometer and those calculated from chemical geothermometers are in close
agreement for the Arties and Caldas systems. These results support the existence of oxygen
isotope equilibrium between sulphate and water in the reservoirs of both geothermal systems. For
the Luchon system, however, isotope geothermometer provides temperature values clearly lower
than those predicted by chemical geothermometry.

In view of the known kinetic constraints for the ‘30 exchange reaction, the time to reach
isotope equilibrium can be deduced for the relevant temperature and pH conditions of the fluids.
The calculated values agree with the residence times of thermal waters dated in some Pyrenean
systems. In the Luchon system the age of the thermal waters would be enough to artain isotope
equilibrium and therefore secondary mechanisms during the ascent of thermal solutions must have
disturbed the deep 6°0 values.

1. Introduccién

Los sistemas hidrotermales de aguas alcalinas, instalados en los materiales graniticos del
Pirineo, constituyen un conjunto ampliamente estudiado de manifestaciones con caracteres
homogéneos. La aplicacién de técnicas geotermométricas quimicas para la evaluacién de la
temperatura en el reservorio de estos sistemas comenzé ya en la década de los 70, con los
trabajos de prospeccién geotérmica llevados a cabo en la vertiente pirenaica francesa. Y, desde
entonces, los estudios realizados sobre los procesos de interaccién agua-roca (y situaciones de
equilibrio heterogéneo en el reservorio) en este tipo de sistemas han contribuido tanto al
desarrollo especifico de calibrados geotermométricos qufmicos como al planteamiento de técnicas
geotermométricas basadas en cdlculos de modelizacién geoqufmica (Michard 1990; Auqué, 1993).

Sin embargo, la aplicacién de técnicas geotermométricas isotépicas no ha constituido una
metodologfa normalmente usada en sistemas geotermales de este tipo, probablemente porque la
bondad de los resultados ofrecidos por la geotermometrfa qufmica, con requerimientos analfticos
mds sencillos y baratos, las han excluido. Unicamente en algunos trabajos, como los de Criaud
y Vuataz (1984) en los manantiales de Luchon (Francia) y de Rangon ez al. (1984) en los de Les
Escaldes (Andorra), se utiliza puntualmente la reaccién de intercambio isotdpico del oxfgeno entre
los sulfatos disueltos y el agua (geotermémetro sulfato-agua, §'*0 SO,~ - 6'*0 H,0) para calcular
la temperatura de las soluciones en profundidad.

195




LEYENDA

=L
[ 4] Granitoides

l;ﬂ Gneises (facies granulitas)

Sildrico, Devonico y Carbonifero inferior

Cambro-Ordovicico metamorfizado

Carbonifero Superior, Pémico,
Mesozoico y Terciario

Surgencias

DB: Domo de Bossost

DP: Domo de Payasos

SL: Sinclinorio de Llavorsi

ASN: Anticlinorio de Siera Negra

Figura 1. Esquema geoldgico y situacién de los sistemas geotermales estudiados.

El geotermémetro 6'%0 SO, - 6'*0 H,O es una de las técnicas isotépicas m4s usadas (y,
aparentemente, con mejores resultados) para el cdlculo de temperaturas de base en reservorios
de media-alta entalpfa (McKenzie y Truesdell, 1977; Truesdell y Hulston, 1980). Sin embargo,
las temperaturas de base que proporciona en los dos sistemas mencionados anteriormente son
inferiores a las calculadas mediante geotermometrfa qufmica, lo que parece cuestionar su
adecuacién a este tipo de sistemas geotermales de aguas alcalinas.

En este trabajo se presentan los resultados del geotermémetro sulfato-agua (6'%0 SO,~ -
8"%0 H,0) en dos sistemas geotermales del Pirineo Central espafiol, los manantiales de Caldas
de Bohf y Arties, para los que se dispone de andlisis isotépicos adecuados. Los resultados
obtenidos, junto con las recientes dataciones realizadas en distintos sistemas geotermales de la
vertiente francesa permitirdn analizar la posibilidad de que se establezca un equilibrio isot6pico
en el reservorio de estos sistemas y/o discutir la existencia de procesos secundarios que alteren
este equilibrio durante el ascenso de las soluciones. Uno de los sistemas en los que se han datado
las soluciones termales es el de Luchon, motivo por el que se reevaluardn los resultados obte-
nidos por Criaud y Vuataz (1984) con el geotermémetro 6'*0 SO, - 6'*0 H,O en este sistema.

2. Caracteres generales de los sistemas
Los manantiales geotermales de Arties y Caldas de Bohf (provincia de Lérida) estdn

situados en la zona axial del Pirineo Central espafiol, préximos a la frontera francesa y en la
misma drea geogrdfica que los manantiales de Luchon (Francia). Todos ellos se encuentran
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relacionados con los macizos graniticos existentes en la zona, si bien algunos de estos manantiales
surgen a través de los materiales carbonatados o metamdrficos circundantes (figura 1). Las
surgencias de Caldas de Bohf manan a través de las granodioritas del Macizo de la Maladeta; la
de Arties lo hace a través de los materiales carbonatados devénicos que circundan el macizo del
mismo nombre; y las de Luchon a través de granitos pegmatiticos y esquistos metamérficos
asociados al Domo de Bossost (Chevalier-Lemire ez al., 1990).

Excepto en el caso del manantial tinico de Arties, la parte terminal del circuito
hidrotermal de estos sistemas se diversifica en multiples surgencias, afectadas por procesos de
enfriamiento conductivo y de mezcla con soluciones mds frfas, de intensidad variable. Asf, los
manantiales de Caldas de Bohf constituyen un amplio conjunto de hasta 37 surgencias (19
inventariadas), con temperaturas entre 6 y 50 °C (Auqué, 1993; Auqué er al., 1996); y los de
Luchon estdn constituidos por 18 manantiales con temperaturas entre 20 y 70 °C (Criaud y
Vuataz, 1984; Chevalier-Lemire ez al., 1990).

Los rasgos composicionales de las soluciones de estos manantiales son andlogos a los
establecidos para el resto de sistemas geotermales pirenaicos (tabla 1): muy baja mineralizacién,
valores de pH elevados, sodio como catién dominante, ausencia de un anién en concentraciones
preponderantes sobre los demds, caracteres sulfurosos y muy bajas concentraciones de magnesio.
Todos estos caracteres son los propios del grupo de las aguas termales alcalinas, uno de los dos
tipos en que pueden clasificarse las aguas termales relacionadas con materiales granfticos (el otro
tipo es el de las aguas ricas en CO,; Sanjuan ef al., 1988; Michard, 1990).

En los manantiales, las aguas presentan una muy baja presién parcial de CO, (con valores
de log pCO, de -4.94 en el manantial de Estufa, de -4.89 en Arties y de -3.26 en Luchon) y una
proporcién importante de la sflice disuelta se encuentra ionizada debido a los elevados valores
de pH (Auqué er al., 1996). En condiciones de surgencia las soluciones se encuentran
sobresaturadas respecto a feldespato potdsico, albita y cuarzo, minerales con los que establecen
relaciones de equilibrio termodindmico en el reservorio (Auqué, 1993). Y, ademds, las aguas de
todos los manantiales se encuentran en equilibrio respecto a calcita y caolinita,
independientemente de la temperatura y pH de surgencia. Ello implica que la evolucién de las
soluciones termales durante su ascenso tiene lugar en sistema abierto, con procesos de
reequilibrio, al menos respecto a ese ultimo mineral (Michard y Fouillac, 1980; Michard y
Roekens, 1983; Auqué, 1993; Auqué er al., 1996).

3. Metodologia
3.1. Datos analfticos

Los datos composicionales de las surgencias estudiadas en este trabajo se indican en la
tabla 1. Los del manantial de Arties proceden del muestreo presentado por Auqué et al. (1996);
los del manantial de Estufa (Caldas de Bohf) fueron determinados en una campana de prospeccién
geotérmica realizada por ENHER (Empresa Nacional Hidroeléctrica del Ribagorzana, S.A.) en
1985 y aparecen recogidos en las recopilaciones analiticas de manifestaciones termales del Servei
Geologic de Catalunya; los de Luchon (Forage 1) han sido tomados del trabajo de Criaud y
Vuataz (1984) y corresponden a muestras de un sondeo realizado en ese sistema. Los datos
isotépicos manejados para las surgencias de Arties y Caldas fueron obtenidos por ENHER en el
muestreo anteriormente mencionado.




Tabla 1. Datos quimicos e isotépicos de las surgencias termales estudiadas en el Pirineo Central.

Las concentraciones de los elementos aparecen expresadas en mmoles/l y los valores isotépicos
estan referidos a SMOW.

Arties Estufa (CALDAS) Forage 1 (LUCHON)"

Temperatura (°C) 39.7 . 49.3 70.1

pH (campo) 9.52 9.34 8.60

Eh (mV) -0.418 -0.365 -0.183

Alcalinidad total 1.53 1.03 2.25

s0,” 0.304 0.489 0.08
cr 0.807 1.325 1.69

E; 0.276 0.181 0.431
1272 1.182 1.42
2.931 3.088 4.33
0.052 0.059 0.118
0.048 0.037 0.090

< 2.0:10° < 2.0:10° 1.6-10°

0.727:10% 1.82:10°% 1.12-10°

Li* --- 0.075 0.033

6'°0 H,0 -11.76 11312 -11.40
6'°0 SO, 6.30 375 8.00

) Datos de Criaud y Vuataz (1984).

Para la realizacién de los andlisis isotépicos se escogieron las surgencias a priori més
representativas del quimismo existente en el reservorio de cada sistema. En el de Caldas de Bohf
y de Luchon (constituidos por muiltiples surgencias), los andlisis isotSpicos se realizaron en
aquéllas cuyas caracterfsticas geoquimicas (mayor temperatura, nulos contenidos de tritio y/o sin
concentraciones apreciables de trazadores "superficiales" como el Mg; p. ej. Michard, 1990)
exclufan, al menos, la presencia de modificaciones composicionales secundarias producidas por
los procesos de mezcla con aguas m4s superficiales, efectivos en estos sistemas.

En el caso del manantial tinico de Arties, los nulos contenidos de tritio y la constancia
en el tiempo de su composicién qufmica (los datos obtenidos en el muestreo de ENHER en 1985

son précticamente coincidentes a los obtenidos por Auqué e al., 1996) aseguran también la
ausencia de ese tipo de modificaciones.




3.2. Geotermometros quimicos

La aplicacién de una determinada técnica geotermométrica requiere que se corresponda
con una situacién de equilibrio en el reservorio y que los elementos involucrados en ese equilibrio
no se vean modificados durante el ascenso de las soluciones (Auqué er al., 1986). Pero la
verificacién de estos condicionamientos bdsicos rara vez puede hacerse a priori. Una vez
obtenidos los resultados es cuando se establece su verosimilitud de forma comparativa con los
ofrecidos por otros geotermémetros.

Para verificar los resultados del geotermémetro §'*0 SO,~ - 6'*0 H,0 en los manantiales
estudiados se han utilizado los geotermémetros qufmicos mds adecuados para los sistemas de
aguas termales alcalinas. De esta forma se han utilizado técnicas geotermométricas basadas en
los contenidos de sflice (geotermémetro SiO,-cuarzo), considerando las correcciones necesarias
para valorar proporciones importantes de sflice ionizada en disolucién (véase, por ejemplo,
Arnorsson ez al., 1983).

Uno de los geotermémetros mds fiables en este tipo de sistemas es el Na-K, basado en
el equilibrio albita-feldespato potdsico existente en el reservorio de estos sistemas (Michard,
1990; Auqué, 1993). Se han utilizado dos calibrados de este geotermdémetro: el primero, de
cardcter tedrico, derivado de los datos termodindmicos propuestos por Michard (1983) para el
equilibrio antes mencionado; y el segundo, de origen empfirico, formulado por Michard (1990)
mediante un ajuste a datos de sistemas geotermales de aguas alcalinas.

Y, por tltimo, se han empleado los geotermémetros Ca-K (Michard, 1990) y el Na-K-Ca
(Fournier y Truesdell, 1973) considerando en la formulacién de este wltimo el valor de 8=4/3
ya que es el que proporciona resultados mas consistentes en sistemas geotermales de este tipo
(Vandelannoote, 1984; Michard er al., 1986).

3.3. Geotermémetro 8'%0 SO, - 6'°0 H,0

Esta técnica geotermométrica hace uso de las variaciones que experimenta el coeficiente
de fraccionamiento isotépico del oxfgeno entre los iones sulfatados en solucién y el agua, al
cambiar la temperatura. Estas variaciones se ha ajustado a partir de datos experimentales de
distinta procedencia. Originalmente, las ecuaciones de ajuste utilizadas procedfan de las
experiencias de Lloyd (1968), de las que se obtenfa un ajuste tal que:

1000 In _3251-1% 56
TR 7{_ )

y de Mizutani y Rafter (1969) y Mizutani (1972) para las que la ecuacién de ajuste era:

6
1000 Ing,, , , =2.88 - % - 4.1 @

y en las que el coeficiente de fraccionamiento isotdpico estd expresado como 1000 Ina y T es la
temperatura en escala absoluta (°K).




Ambas ecuaciones concuerdan razonablemente bien en el rango de 100-200 °C, aunque
a menores temperaturas haya ciertas discrepancias. Las experiencias de Mizutani y Rafter (1969)
se llevaron a cabo a temperaturas entre 100 y 300 °C por lo que parece I6gico pensar en posibles
desviaciones de este ajuste a temperaturas menores; las experiencias de Lloyd (1968) incluyen
datos en el rango de 0 a 100 °C, aunque los valores obtenidos sugieren la posibilidad de que no
correspondan realmente a valores determinados en condiciones de equilibrio (McKenzie y
Truesdell, 1977).

Las anteriores ecuaciones consideran un factor de fraccionamiento para el oxfgeno entre
CO, y agua de 1.047 a 25 °C. Considerando un valor mds reciente para este dato, de 1.0412
(procedente del trabajo de O’Neil e al., 1975), las ecuaciones (1) y (2) quedan:

1000 In “3251'1—06-51
%50,-H,0 = T

1000 In —288'106 3.6
%s0,-H,0 =~ ?' g

respectivamente (McKenzie y Truesdell, 1977).

Estos nuevos calibrados son los incluidos por Friedman y O’Neil (1977) en su amplia
revisién y tabulacién de coeficientes de fraccionamiento isotdpico para distintos sistemas. Mds
recientemente, Giggenbach ez al. (1983) han planteado un calibrado medio entre los de Lloyd
(1968) y Mizutani y Rafter (1969), tal que:

- . 106 -—
1000 Inerg, o = 3.0655 — 4.9 ®)

En la figura 2 se han representado los valores de los coeficientes de fraccionamiento
isotdpico en funcién de la temperatura deducidos a partir de las ecuaciones (3), (4) y (5) que
serdn las utilizadas en este trabajo. Como puede apreciarse, en el rango de 0 a 100 °C, los dos
calibrados propuestos por McKenzie y Truesdell (1977) son los que proporcionan los valores
extremos, siendo los de la ecuacién 5 (Giggenbach er al., 1983) précticamente coincidentes entre
75 y 125 °C con los obtenidos a partir de la ecuacién (4).

4. Valores de temperatura en el reservorio de los sistemas

En la tabla 2 se presentan los resultados proporcionados por los distintos geotermémetros
qufmicos utilizados. Como puede apreciarse, los valores de temperatura calculados por todos ellos
para cada manantial son muy similares, obteniéndose un promedio de 100.8 + 7.2 °C para el
reservorio de Arties, de 105.8 + 6.2 °C en el de Caldas de Bohi y de 122 + 8 °C en los
manantiales de Luchon. Los valores de temperatura obtenidos resultan asimismo coincidentes con
los deducidos por Auqué (1993) utilizando metodologfas mds elaboradas de modelizacién
geoqufmica (con valores de 115, 110 y 125 °C para los sistemas de Arties, Caldas de Bohf y
Luchon, respectivamente). Estos rangos de temperatura servirdn, por tanto, de referencia para
valorar los proporcionados por el geotermémetro sulfato-agua (5'*0 SO,~ - 6'*0 H,0).




Tabla 2: Valores de temperatura en el reservorio de los sistemas obtenidos mediante distintos
geotermémetros quimicos.

Na-K

_ ; Si0,-Cuarzo
Michard Michard (corregido)

(1983) (1990)

Artiés 108.0 95.8 104.0
Estufa 112.0 99.6 105.0
Forage 1 130.0 118.9 121.0

En la tabla 3 se presentan los resultados numéricos propocionados por el geotermémetro
isotépico (junto con los coeficientes de fraccionamiento isotépico, expresado como 1000 Ine,
deducibles a partir de los datos presentados en la tabla 1) y en la figura 2 se muestran
graficamente los rangos de temperatura deducidos para cada sistema.

En los manantiales de Luchon, la temperatura calculada a partir de los datos del sondeo
"Forage 1", es de 86 + 5 °C, considerablemente mds baja que la obtenida mediante técnicas
geotermometrfa qufmica (tabla 2). Sin embargo, en el manantial de Estufa (Caldas de Bohf) la
temperatura de base calculada por el geotermémetro isotdpico es de 125.5 + 4.5 °C, ligeramente
superior a la previamente establecida. Y, por iltimo, en el caso de Arties la temperatura
proprocionada por el geotermémetro isotdpico es de 96 + 5 °C, practicamente coincidente con
el rango establecido mediante geotermometrfa quimica (100.8 + 7.2 °C; tabla 2).

Los buenos resultados proporcionados por el geotermémetro 6'%0 SO,= - 60 H,0 en los
sistemas de Caldas de Bohf y Arties indican que los valores del coeficiente de fraccionamiento
isot6pico del oxfgeno responden a una verdadera situacién de equilibrio en sus reservorios. Y,
ademds, que estos valores no han tenido que ser modificados de forma importante durante el
ascenso de las soluciones termales hasta la surgencia.

Tabla 3: Valores de temperatura obtenidos mediante distintos calibrados del geotermémetro
sulfato-agua (6'°0 SO,~ - ¢'°0 H,0) para los manantiales estudiados.

Mckenzie y Truesdell (1977) Giggenbach et al.
1000 In o (1983)

Ec. (3) Ec. (4)
Arties 18.06 101 91 92

Estufa 14.87 130 122

Forage 1 19.4 91 81




En el caso de Luchon el geotermémetro isotpico no suministra resultados consistentes
con los proporcionados por el resto de técnicas geotermométricas. Sin datos adicionales resulta
diffcil decidir (Criaud y Vuataz, 1984) si la causa de esta discrepancia de resultados se debe a
la inexistencia del necesario equilibrio isotGpico en el reservorio de este sistema o a la actuacién
de procesos secundarios que alteren los valores de un supuesto equilibrio en profundidad durante
el ascenso de las soluciones.

Los manantiales seleccionados para la realizacién de las determinaciones isotépicas eran
los inicialmente m4s representativos de los caracteres composicionales esperables en profundidad
(ver Metodologfa). Sin embargo, los valores del coeficiente de fraccionamiento isotépico del
oxfgeno pueden verse afectados por procesos diffcilmente detectables en un andlisis qufmico
normal. Los fenémenos de oxidacién de los sulfuros disueltos durante el ascenso a la superficie
de las soluciones (frecuentemente descritos en este tipo de sistemas como, por ejemplo, en
Luchon; Criaud y 'Vuataz, 1984) o la presencia de actividad bacteriana sulforreductora en la
mayorfa de estos manantiales (Auqué, 1993) pueden producir modificaciones en esos valores,
incluso en condiciones de surgencia.

Los efectos de este tipo de procesos secundarios son casi siempre diffciles de aquilatar
y, por tanto, también resulta dificil diferenciarlos de la inexistencia de una situacién de equilibrio
isotépico en profundidad. Aprovechando los datos existentes sobre la cinética de reaccién del
intercambio isotdpico de oxfgeno entre sulfatos y agua puede resultar mds f4cil estimar el tiempo
necesario para alcanzar una situacién de equilibrio isotépico en estos sistemas y decidir, asf, si
es factible la existencia de esa situacién de equilibrio. De esta forma, en funcién de los resultados
obtenidos, la presencia de modificaciones secundarias podrd ser evaluada de forma deductiva.

5. Cinética de reaccién y tiempo de residencia de las soluciones

La tasa de reaccién para el sistema binario involucrado en este geotermémetro ha sido
analizada por diversos autores (Lloyd, 1968; Mizutani y Rafter, 1969), encontrando que la vida
media (t,;,) de este intercambio isotdpico estd condicionada no sélo por la temperatura sino
también, y de forma muy importante, por el pH de la solucién. De esta forma, los resultados de
Lloyd (1968) indican que la vida media de este intercambio isotépico puede expresarse como:

3
logt,, =248 -% b ©6)

en la que b es un pardmetro dependiente del pH con valores de 0.28 a pH=9, de -1.17 a pH=7
y de -2.07 a pH = 3.8. En principio, los resultados cinéticos asf definidos presentan algunas
discrepancias con los mds recientes de Chiba y Sakai (1985), pero son los que en su aplicacién
al estudio de posibles situaciones de equilibrio isotépico en sistemas naturales proporcionan una
respuesta mds coherente, incluso en sistemas de baja temperatura (p. ej. Fouillac e al., 1987;
Fouillac et al., 1990).

Considerando los valores de pH calculados mediante técnicas de modelizacién en los
reservorios de estos sistemas (entre 8.1 y 8.6 para los sistemas considerados; Auqué, 1993) y la
temperatura definida por las distintas técnicas geotermométricas, puede estimarse el valor de t,;,
mediante la ecuacién (6). Conociendo este valor, puede calcularse el tiempo necesario para que
la reaccién de intercambio isotdpico alcance el equilibrio en esas condiciones.
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Figura 2. Rangos de temperatura calculados para los sistemas estudiados segtin los calibrados del

geotermémetro 6'°0 SO,~ - 6'°0 H,0 propuestos por McKenzie y Truesdell (1977) y por
Giggenbach et a/. (1983).

Suponiendo una cinética de reaccién de primer orden para el intercambio isotépico de oxfgeno
entre sulfato y agua, la tasa de reaccién puede obtenerse mediante la ecuacién:

In(1-f)=-k-t O

en la que f es la fraccién de oxfgeno intercambiada, k es la constante de tasa de reaccién y t es
el tiempo transcurrido. La constante k puede definirse en funcién de t,,,, tal que:

de manera que la ecuacién (7) puede traducirse en:

t% =A-log(1-f) "ty




en la que t% es el tiempo necesario para que se produzca un determinado % de intercambio
isotépico (en afios) y A = -0.379-107.

Admitiendo incertidumbres de + 10 °C en la temperatura del reservorio de cada uno de
los sistemas (y las correspondientes variaciones de pH asociadas a esta incertidumbre) puede
calcularse mediante la ecuacién (9) el tiempo necesario para alcanzar una situacién de intercambio
isotépico del 99 %. En el caso de Arties este tiempo oscila entre 2250 y 5000 afios, mientras que
en el del manantial de Estufa lo hace entre 2000 y 4000 afios. Considerando los buenos resultados
obtenidos al aplicar el geotermdémetro isotdpico en estos sistemas puede admitirse que el tiempo
de residencia de las aguas, a la temperatura calculada, ha de ser lo suficientemente amplio como
para alcanzar una situacién de equilibrio respecto a la reaccién de intercambio isotépico. Y, por
tanto, el tiempo de residencia de las soluciones deberfa ser igual o superior al rango estimado.

Estos tiempos de residencia pueden resultar, a primera vista, excesivamente elevados,
especialmente si pensamos que nos encontramos en medios de circulacién fisural. No obstante,
en estudios recientemente realizados en otros sistemas pirenaicos como el de Cauterets (de
similares caracterfsticas a los aquf estudiados) se han datado radiométricamente las soluciones
termales, obteniéndose edades de 5000 afios (Soulé, 1990).

En concreto, las dataciones realizadas en los manantiales de Luchon (Chevalier-Lemire ef
al., 1990) indican tiempos de residencia del orden de los 10000 afios para las soluciones termales.
Admitiendo los resultados de temperatura obtenidos por el geotermémetro isotépico para la
muestra de Forage 1 (entre 80 y 90 °C), el tiempo calculado segtin la ecuacién (9) oscila entre
los 3500 y 6600 afios. Y si se adopta la temperatura calculada por el resto de técnicas
geotermométricas (122 °C), el tiempo necesario para alcanzar el 99 % de la situacién de equilibrio
es de tan sélo 700 anos. Es decir que el tiempo de residencia de las soluciones es, con mucho, el
suficiente como para que se alcance el equilibrio isotdpico en el reservorio. Y, por tanto, los

resultados discordantes proporcionados por el geotermémetro 60 SO,~ - §'%0 H,0 en este
sistema deben ser producidos por modificaciones secundarias de este equilibrio en la parte terminal
del circuito hidrotermal.

Globalmente los resultados obtenidos indican que el tiempo de permanencia de las
soluciones termales en este tipo de sistemas serd, frecuentemente, el suficiente para alcanzar la
situacién de equilibrio isot6pico necesaria para el uso del geotermémetro 6'*0 SO,= - §'*0 H,0.
Sin embargo, esta situacién de equilibrio puede verse afectada por modificaciones secundarias de
diffcil evaluacién, motivo por el que la utilizacién de esta técnica geotermométrica ha de plantearse
en combinacién con otras més contrastadas y de mds fécil verificacién.

6. Conclusiones

La aplicacién de distintos calibrados del geotermémetro isotépico sulfato-agua (6'*0 SO,= -
"0 H,0) a los sistemas geotermales de Arties y Caldas de Bohf ha suministrado unos valores
de temperatura en profundidad de 96 + 5 °C y de 125.5 + 4.5 °C respectivamente, similares
a los deducidos por los geotermémetros quimicos tradicionalmente utilizados en estos sistemas.
Sin embargo, se ha verificado que en los manantiales de Luchon la temperatura proporcionada por
este geotermémetro es considerablemente mds baja que la establecida mediante técnicas
geotermométricas cldsicas (Criaud y Vuataz, 1984) o de modelizacién geoquimica (Auqué, 1993),
de forma andloga a lo que ocurre en los manantiales de Les Escaldes (Rangon ef al., 1984).

El tiempo de residencia de las soluciones termales en el circuito hidrotermal de los
sistemas de Arties y de Caldas de Bohf debe ser, por tanto, lo suficientemente prolongado como




para alcanzar una situacién de equilibrio en el intercambio isotépico 60 SO,= - §'%0 H,0, a la
temperatura determinada en profundidad. Los cdlculos realizados en funcién de la cinética de
reaccién de este intercambio sefialan un tiempo de residencia de las aguas de 2250 a 5000 afos
en el caso de Arties y de 2000 a 4000 afios en el caso de Caldas de Bohf.

Las dataciones radiométricas realizadas hasta la fecha en los sistemas termales pirenaicos
parecen apoyar magnitudes temporales similares a las deducidas. En concreto, los resultados de
las dataciones realizadas en el sistema de Luchon (en torno a los 10000 afnos; Chevalier-Lemire
et al., 1990) demuestran que el tiempo de permanencia en el acuffero es lo suficientemente
prolongado como para que las soluciones alcancen la situacién de equilibrio isotdpico involucrada
en el geotermémetro. Por tanto, los resultados discrepantes proporcionados por esta técnica
geotermométrica en los manantiales de Luchon han de estar factiblemente causados por
modificaciones secundarias de la relacién de equilibrio §'0 SO,~ - §'°0 H,O durante el ascenso
de las soluciones a la superficie.

Los caracteres composicionales de todas las soluciones tratadas en este estudio permitfan
considerarlas a priori como representativas de los existentes en profundidad. Los buenos resultados
obtenidos en todos los casos por las técnicas geotermométricas qufmicas han confirmado que no
se han producido modificaciones secundarias de importancia durante el ascenso de las soluciones
termales. Sin embargo, los procesos secundarios que pueden afectar al equilibrio isotdpico
utilizado en este trabajo son muy variados y de distinta fndole a los detectables en los rasgos
composicionales de las soluciones (tal como ocurre en Luchon). Su existencia debe ser deducida
una vez obtenidos los resultados de su aplicacién y, por ello, la utilizacién de este geotermdmetro
debe realizarse en combinacién con técnicas geotermométricas qufmicas.
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Abstract

The PHRQPITZ geochemical code (which incorporates a chemical model based on Pitzer’s
equations) has been used for calculating ionic activities and saturation indexes for a set of brine
samples collected at La Playa saline system (Zaragoza, Spain). These solutions are near-neutral
brines of the Na-Cl type, and reaching extremely high concentrations (up to 12 molal) along their
evaporative evolution.

Saturation states calculated by the code have pointed out that all brines sampled were
saturated with regard to calcite, gypsum and anhidrite. However, their stability diagram shows that
water activity values determine gypsum to be the more stable phase in the Ca-SO-H,0 system for
almost all samples. Halite, thenardite and bloedite reach saturation at a late stage during brine
evolution. The evolving paths of mirabilite, glauberite, polyhalite and epsomite do not show any
evidence of brine-mineral equilibrium process. Nevertheless, mirabilite saturation state should be
taken with caution because of the lack of field temperature data.

The comparison of these results with the research of Garcés et al. (1991, 1992) indicates that
Pitzer’s formulation is the more adequate approach for the physicochemical treatment of highly
concentrated waters.

1. Introduccién

El interés que presenta el estudio de sistemas salinos actuales estriba tanto en la obtencién de
datos que ayuden a comprender los procesos activos en estos medios, como en la aplicacién de este
conocimiento adquirido a la interpretacién de los depésitos salinos de épocas pasadas. El estudio de
sistemas salinos en ambientes continentales plantea una serie de inconvenientes entre los que cabe citar
los siguientes: la necesidad de un desmuestre espacial y temporal detallado (tanto de salmueras como
de sedimentos), para poder as{ detectar los fenémenos més destacables y determinar su orden
cronolégico; la delimitacién de los efectos causados por los diferentes tipos de procesos, como por
ejemplo la modificacién de la concentracién en solucién de un determinado elemento debida bien a




la evaporacién o bien a la variacién de temperatura (Auqué et al., 1994, 1995); el complicado
seguimiento de las etapas finales en las que tiene lugar frecuentemente la desecacién de las salmueras,
debido a la restriccién espacial y a los problemas asociados en el muestreo de las soluciones
residuales; y, finalmente, las dificultades que entrafia el estudio fisicoqufmico de estos sistemas, ya
que la elevadfsima concentracién de las salmueras limita en gran medida la aplicabilidad de los
c6digos de modelizacién geoquimica basados en planteamientos cldsicos de cdlculo de coeficientes de
actividad (Garcés et al., 1991).

La resolucién de todos estos problemas precisa la combinacién de un conocimiento detallado
del sistema natural con la informacién suministrada por el estudio fisicoqufmico del mismo (Weare,
1987). La utilizacién de estas dos metodologfas en el estudio de un sistema salino continental
permitird analizar la evolucién -composicional de las salmueras sometidas a un proceso de
concentracién por evaporacién, y ademds la secuencia de cristalizacién de sales que se produce bajo
esas condiciones. En concreto, en este artfculo se presentan los resultados del tratamiento
fisicoqufmico llevado a cabo sobre una serie de datos de salmueras correspondientes a la laguna La
Playa (provincia de Zaragoza), sistema salino cuyas caracterfsticas hidroqufmicas y sedimentoqufmicas
se conocen gracias fundamentalmente a los estudios de Pueyo (1978-79, 1980) y Pueyo e Ingles
(1987). Las observaciones realizadas por estos autores sobre el propio sistema natural han servido de
valiosa referencia a la hora de interpretar los resultados ofrecidos por la modelizacién geoqufmica.

Este trabajo viene a completar ademds los estudios fisicoqufmicos llevados a cabo por Garcés
et al. (1991, 1992) sobre este mismo sistema salino. Dichos autores realizaron un estudio comparativo
de los resultados que se obtenfan del tratamiento fisicoqufmico de muestras de salmueras mediante
distintas formulaciones de cdlculo de coeficientes de actividad. En el presente artfculo se utiliza una
opcién de cdlculo no contemplada en aquella investigacién, lo que va a permitirnos realizar una
valoracién final de la adecuacién de las distintas formulaciones al tratamiento de soluciones de
concentracién elevada.

2. Localizacién geografica y caracteristicas generales

La laguna La Playa se sitiia en la comarca de los Monegros, y pertenece al término municipal
de Sdstago (provincia de Zaragoza). Forma parte de un conjunto de depresiones cerradas que,
ubicadas entre los niicleos de poblacién de Bujaraloz y Séstago, constituyen el 4drea endorreica més
importante de la Cuenca del Ebro (figura 1). En esta zona hay aproximadamente un centenar de
depresiones, pero sélo algunas presentan actividad evaporftica en la actualidad, permaneciendo las
demds secas y colonizadas por vegetacién haléfila o, en algunos casos, saneadas y ocupadas por
campos de cultivo (Pueyo y De la Pefia, 1991). Todas estas depresiones se distribuyen sobre una
extensa plataforma de relieve muy suavizado, que aparece cubierta por vegetacién esteparia y que se
eleva unos 200 metros sobre el nivel de base del rfo Ebro en la zona Sdstago-Escatrén. El clima de
esta regién puede definirse como de tipo mediterrdneo con influencia continental, caracterizado por
presentar veranos muy calurosos, inviernos frfos y secos y precipitaciones escasas e irregularmente
distribuidas, siendo la primavera y el otofio las estaciones mds lluviosas.

Los materiales que afloran en el sector central de la cuenca presentan una disposicién a
grandes rasgos tabular, corresponden principalmente al Oligoceno y Mioceno y son fundamentalmente
calcdreos, detriticos (de tamafio de grano medio-fino) y yesiferos. El encajamiento del rfo Ebro y sus
afluentes sobre estos materiales durante el Cuaternario ha individualizado distintas plataformas
estructurales en el centro de la cuenca. En la plataforma de Monegros no existe una red hidrogréfica
superficial definida, y el agua presente en las lagunas procede de la precipitacién directa, de pequefias
escorrentfas superficiales e hipodérmicas y, tinalmente, del aporte de aguas subterrdneas. Estudios
recientes (Garcfa Vera, 1994) ponen de manifiesto la complejidad hidrogeol6gica del sustrato de esta
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Figura 1.- Mapa de situacién geogréfica de la laguna La Playa. La zona enmarcada delimita el nicleo
del foco endorreico ubicado entre las poblaciones de Bujaraloz y Sdstago (provincia de Zaragoza).

plataforma, derivada directamente de la elevada heterogeneidad, tanto en la horizontal como en la
vertical, de la distribucién de litologfas. Garcfa Vera (1994) distingue en su trabajo dos niveles
acufferos, uno de los cuales discurre a través de la Unidad Lacustre Intermedia y cuya zona de
descarga se sitia en el foco endorreico de Bujaraloz-S4stago, donde se encuentra enclavada la laguna
La Playa. Algunas de estas depresiones presentan salmueras superficiales de elevada salinidad, que
evolucionan segtin un proceso de concentracién por evaporacién debido a la marcada aridez del clima.

El contenido salino de las lagunas procede del aporte por lixiviacién de los materiales solubles
del sustrato terciario, y sufre un reciclado anual como consecuencia de la propia estacionalidad del
clima. La evolucién geoquimica de las salmueras estd sujeta a la accién opuesta de dos procesos
(Pueyo, 1978-79): por un lado, un aumento progresivo en la concentracién de solutos como respuesta
a la evaporacién; y por otro, la disminucién relativa en el contenido de determinados elementos al
verse involucrados en reacciones de precipitacion salina, en procesos biolégicos y en fendmenos de
adsorcién sobre partfculas arcillosas.

Estas depresiones que albergan salmueras en su interior pueden considerarse como sistemas
activos de playa-lake, aunque la reducida extensi6n areal tanto de las propias lagunas como de sus
respectivas cuencas de drenaje han provocado una escasa diferenciacién en subambientes, siendo los
mejor representados aquéllos que corresponden a las zonas més internas del sistema (Pueyo, 1978-79)
y que segun la terminologfa de Hardie ez al. (1978) son: lago salino (inner salt pan), 1lanura fangosa
salina (outer saline mudflat) y, con menor frecuencia, llanura fangosa seca (dry mudflat). La
evolucién de los cuerpos de agua superficiales depende fundamentalmente de los factores climdticos,
que ejercen un control directo sobre la presencia, extension areal y persistencia temporal de la 1dmina
de agua libre. La precipitacién salina en las lagunas se produce por cristalizaci6n directa a partir de
las salmueras libres, pero también se pueden formar eflorescencias superficiales como consecuencia
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del bombeo evaporftico de salmueras intersticiales. En los estudios realizados sobre la precipitacién
salina en esta zona se determinG un comportamiento estacional (Pueyo, 1978-79), diferencidndose una
secuencia estival de cristalizacién de tipo carbonato de calcio-yeso-halita, y otra invernal, de tipo
carbonato de calcio-yeso-mirabilita.

Estas lagunas presentan un cuerpo de sedimentos lacustres cuaternarios que albergan en su
seno salmueras intersticiales y cuyo espesor mdximo (estimado en unos pocos metros) se sitiia en la
zona central de las depresiones (Pueyo y De la Pefia, 1991). Estos materiales se disponen directamente
sobre el sustrato terciario, y estdn compuestos principalmente por carbonatos (en concreto calcita,
dolomita y magnesita), arcillas, cuarzo y yeso, siendo este tltimo el tinico mineral evaporftico que
se preserva en profundidad. Sobre ellos se desarrollan costras salinas originadas por el proceso de
evaporacién de las salmueras. La Playa es la laguna més estudiada de este sector gracias a su gran
extension areal y a la presencia casi perenne de agua libre en su superficie; sus salmueras son del tipo
Na-(Mg)-CI-(SO,) a Na-(Mg)-CI-SO,, y se pueden considerar representativas del quimismo general
de los sistemas salinos de esta regién (Pueyo, 1978-79; Mingarro et al., 1981). Pueyo (1978-79)
determiné en las costras de esta laguna la presencia de yeso, halita (tanto cristales ciibicos como
morfologfas en tolva), mirabilita y thenardita, aunque esta ltima como eflorescencia y en escasa
cantidad; este autor detectd igualmente la existencia de calcita y aragonito como minerales
subordinados. Por su parte, Mingarro et al. (1981) identificaron allf una aureola salina externa
compuesta por yeso, acompanado por pequeiias cantidades de thenardita y glauberita, que rodeaba una
zona central rica en halita y con contenidos apreciables en thenardita y algo menores en bloedita.

Los datos hidroqufmicos manejados en este trabajo corresponden a una serie de muestras
recogidas a lo largo de un periodo de tiempo ligeramente superior a un afio, y fueron obtenidos por
Pueyo (1978-79, 1980) y Pueyo e Ingles (1987), y recopilados por Garcés et al. (1992).

3. Metodologia

La utilizacién de técnicas de modelizacién geoqufmica en la investigacién de un sistema
hidroqufmico va encaminada principalmente al estudio evolutivo de los principales pardmetros
fisicoqufmicos. Para ello es necesario un modelo qufmico capaz de describir con precisién las
propiedades termodindmicas de las soluciones acuosas. Las caracterfsticas intrfnsecas del sistema
estudiado suelen imponer restricciones a la hora de escoger los c6digos de modelizacién geoqufmica
mds adecuados; en el caso de un sistema salino como el que aquf se analiza, la elevada concentracién
de las soluciones impide la utilizacién de los cldsicos modelos de Asociacién I6nica basados en la
ecuacion de Debye-Hiickel para determinar los coeficientes de actividad de las especies disueltas
(Garcés et al., 1991, 1992), y calcular posteriormente con precisién los productos de actividad iénica
correspondientes a las fases minerales involucradas (Auqué er al., 1994).

Para llevar a cabo los cdlculos fisicoqufmicos sobre las salmueras de La Playa se ha utilizado
el c6digo PHRQPITZ (Plummer ez al., 1988), y la metodologfa empleada es idéntica a la presentada
en Auqué et al. (1994). Dicho c6digo incorpora y amplfa a rangos de temperaturas entre 0 y 60° C
el modelo de interacciones i6nicas o de coeficientes viriales de Pitzer (1973), con los pardmetros
obtenidos por Harvie y colaboradores (Harvie y Weare, 1980; Harvie et al., 1984) para el sistema
Na-K-Mg-Ca-H-CI-SO,-OH-HCO,-CO;-CO,-H,0, inicialmente v4lido sélo a 25° C. El c6digo utiliza
las concentraciones de los componentes analizados para calcular las actividades i6nicas individuales
y determinar el grado de saturacién de la solucién respecto a distintas fases minerales. La evaluacién
del estado de saturacién de las salmueras frente a las fases minerales seleccionadas se ha llevado a
cabo calculando los fndices de saturacién (I.S.) mediante la expresién:
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donde P.A.I. representa el producto de actividad idnica y K(7) la constante de equilibrio
correspondiente. Si el fndice de saturacién muestra valor cero significa que la solucién estd en
equilibrio respecto a esa fase; por otra parte, valores positivos o negativos del 1.S. determinan una
situacién de sobresaturacién o subsaturacidn, respectivamente, cuya magnitud es funcién directa del
valor absoluto de dicha cantidad. Las constantes de equilibrio empleadas en los cdlculos de saturacion
son las que aparecen en la base de datos del c6digo PHRQPITZ, salvo en el caso de la thenardita,
mineral que no aparece en dicho listado; esta carencia se ha suplido tomando los datos
termodindmicos propuestos por Greenberg y Moller (1989), cuya tabulacién se realizé procurando
mantener la consistencia con la parametrizacién original de Harvie y Weare (1980) y Harvie et al.
(1984) que incorpora el PHRQPITZ.

La existencia de imprecisiones analfticas y termodindmicas (y su reflejo en el cdlculo de
fndices de saturacién) se ha tenido en cuenta considerando un rango de incertidumbre para la
determinacién de los estados de equilibrio calculados por el cédigo. Se ha considerado adecuado un
margen de incertidumbre de +0’15 unidades de 1.S. (Auqué e al., 1994), excepto para la calcita, en
cuyo caso se ha ampliado hasta +0’4 dado que este mineral se ve afectado ademds por los problemas
metodoldgicos inherentes a la determinacién del pH en salmueras (Dickson, 1984; Plummer ez al.,
1988).

Los resultados de los cdlculos de saturacién se han completado con la utilizacién del diagrama
de campos de estabilidad del sistema yeso/anhidrita/mirabilita/thenardita, definido por los ejes
log(aH,0) y log(aCa/a’Na) y sobre el que se han representado los puntos correspondientes a las
muestras analizadas.

Es necesario sefialar que la serie de datos analiticos empleada en este artfculo presenta varias
deficiencias que ha habido que subsanar para poder realizar el tratamiento mediante el c6digo
PHRQPITZ: no existen medidas de temperatura de campo ni densidad para ninguna muestra, y
ademds en algunas de ellas no se dispone del dato de pH y/o alcalinidad. La temperatura de campo
no es un dato de importancia capital en un estudio descriptivo cldsico de medios salinos, aunque su
desconocimiento puede llevar a la obtenci6n de resultados erréneos en los célculos de saturacién para
determinadas fases minerales (p. ej.: mirabilita; Auqué er al., 1995); en este caso se ha decidido
asignar una temperatura de 25° C para todas las muestras, pero esta simplificacién se tendrd en cuenta
a la hora de interpretar los resultados obtenidos. La ausencia de datos de densidad supone una
deficiencia importante cuando se trabaja con soluciones de concentracién elevada. La estructura del
c6digo PHRQPITZ (y también de otros muchos cédigos de modelizacién geoqufmica) obliga a realizar
los célculos tomando siempre como referencia 1 kg de agua solvente, lo que hace imprescindible la
utilizacién del dato de densidad de las salmueras; en este caso se ha optado por realizar un célculo
teérico de este pardmetro mediante el programa SOLDEN (Veintemillas et al., 1994; en Sdnchez
Moral, 1994), que utiliza para ello la ecuacién de Redlich y Meyer (1964; en Sdnchez Moral, 1994),
basada en la relacién existente entre la densidad de una solucién y su volumen molar aparente.

Finalmente, la inexistencia de datos de pH y/o alcalinidad en varias muestras se ha salvado
asignando valores procedentes de salmueras de concentracion similar de la misma serie de datos. El
error cometido en este caso no se presume importante, ya que las salmueras de La Playa pertenecen
al tipo neutro, segiin Eugster y Hardie (1978), caracterizado por poseer valores de pH entre 7 y 8’5
aproximadamente, y ademds por presentar un contenido muy bajo en HCO;™ (especie que contribuye
de forma mayoritaria a la alcalinidad en salmueras neutras con concentraciones muy bajas de boro
y sflice) tras la fase inicial de precipitacién de carbonatos de calcio.




log (molalidad) Densidad (gr/l)

oo"‘ Cf 55

(@]

©
ooé@o§cm & o

@:=ikpH

[ ) Densidad

e i — T —
0.40 0.80 1 . 0.40 0.80 1.60
log(FC) log (FC)

Figura 2.- Diagramas de evolucién de composicién iénica (A) y pH y densidad (B) de las salmueras
de La Playa, en funcién del factor de concentracion.

4. Evolucién del quimismo de las salmueras

Para analizar la evolucién de las concentraciones elementales, del pH y densidad de las
salmueras, se ha estimado conveniente determinar una variable indicativa del grado de avance del
proceso evaporativo. Para ello se ha seleccionado el potasio como elemento cuyo comportamiento
puede considerarse conservativo (0 sea, que no se ve involucrado, al menos a priori, en ninguna
reaccién de precipitacién ni disolucién mineral en la escala estudiada del proceso; Eugster y Jones,
1979), calculdndose el factor de concentracién (FC) como el cociente entre el contenido en potasio
en cada muestra y el correspondiente al estadio de mayor dilucién del sistema. Las pautas evolutivas
asf obtenidas se han representado en la figura 2. En el diagrama de concentraciones (figura 2A) se
aprecia una pauta ascendente para Na*, K*, Mg?*, SO,~ y CI, aunque en la etapa final tiene lugar
un descenso en el contenido en CI', SO,~ y Na*, siendo més acusado el de este iltimo. La evolucién
de Ca®* y HCO; es bastante irregular, combinando en ambos casos una tendencia ascendente inicial
con otra descendente en etapas mds avanzadas. En el diagrama se han representado los suavizados
polinémicos en lugar de las nubes de puntos para facilitar de esta manera la visualizacién de las
tendencias evolutivas. Por otra parte, en la figura 2B se aprecia una evolucién ligeramente
descendente para el pH (cuyos valores se sitiian siempre entre 8 y 7°5) y ascendente en el caso de la
densidad, aunque este tltimo pardmetro tiende a estabilizarse en las etapas mds avanzadas del proceso.

S. Resultados de la modelizacién geoquimica

La fuerza idnica de las soluciones (pardmetro que calcula el c6digo, y que se utiliza
frecuentemente como expresion global de la concentracién de una salmuera) aumenta de forma
constante desde un valor inicial ligeramente superior a 1 molal hasta alcanzar una concentracién final
préxima a 12 molal, como se puede observar en la figura 3. Esta circunstancia justifica sobradamente
la eleccién de un cddigo de modelizacién que emplea las ecuaciones de Pitzer para el cdlculo de
coeficientes de actividad, ya que es el planteamiento que actualmente permite obtener los resultados
mds aceptables en estas condiciones. En el mismo gréfico se ha representado la actividad del agua,
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En la figura 5 se han representado los fndices de saturacién correspondientes a varios
minerales sulfatados que han sido detectados en depdsitos salinos y en costras eflorescentes de lagunas
de la regién de Monegros. Los resultados relativos a la mirabilita (sulfato sddico decahidratado; figura
5A) indican una situacién de subsaturacién para todas las muestras aunque llegan a situarse muy
préximas al equilibrio. Por su parte, la fase de sulfato sddico anhidro (thenardita; figura 5B) muestra
una evolucién muy similar a la descrita para la halita, alcanzando ambos minerales el equilibrio de
manera pricticamente simultdnea; una situacién casi idéntica se observa en el caso de la bloedita
(figura 5D), sal sulfatada doble de sodio y magnesio que suele asociarse generalmente a costras
eflorescentes. El resto de fases minerales representadas no muestra un comportamiento que permita
identificar una situacién de equilibrio para el intervalo registrado del proceso. Asf, glauberita (figura
5C) y polihalita (figura 5F) pasan de un estado de subsaturacién a otro de sobresaturacién sin
experimentar aparentemente ninglin cambio de comportamiento en las proximidades de la zona de
equilibrio. Finalmente, la epsomita (figura SE) no llega a alcanzar el equilibrio, aunque la dltima
muestra se queda muy préxima a la saturacion.

La proyeccién de las muestras sobre el diagrama de campos de estabilidad de fases
(determinado por los ejes log(aH,0) y log(aCa/a’Na); figura 6) permite establecer que el yeso es la
fase estable de sulfato célcico a lo largo de la mayor parte del proceso, a pesar de que existe también
una situacién de equilibrio aparente respecto a anhidrita. En este diagrama se observa que los puntos
correspondientes a las muestras analizadas evolucionan dentro del campo correspondiente al yeso,
alcanzando finalmente el de la thenardita tras atravesar el de la anhidrita durante un breve lapso del
proceso. También se comprueba cémo la mirabilita no llega a ser estable en ninglin momento de la
evolucién, hecho que se ajusta a los cdlculos de saturacién mineral.
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Figura 4.- Evolucién de los Indices de saturacién (I.S.) calculados por el cédigo PHRQPITZ en las
salmueras de La Playa para calcita (A), yeso (B), halita (C) y anhidrita (D).

6. Discusion de los resultados obtenidos

Los resultados alcanzados mediante la modelizacién geoqufmica permiten establecer una
secuencia evolutiva de precipitacion salina para las salmueras de La Playa. Estas soluciones se
mantienen en una situacién de equilibrio con calcita, yeso y anhidrita para todas las muestras
analizadas, aunque de entre las fases consideradas de sulfato célcico unicamente el yeso es estable.
El estudio fisicoqufmico ha permitido ademds evidenciar que, en las etapas de concentracién m4s
elevada, otros minerales como halita, thenardita y bloedita parecen verse afectados por un proceso
de equilibrio mineral que queda reflejado en la evolucién de sus fndices de saturacién. De la misma
manera, los célculos realizados indican que mirabilita, glauberita, polihalita y epsomita no llegan a
delinear una pauta evolutiva que denote la existencia de equilibrio mineral entre la salmuera y estas
fases salinas.

La sedimentacién salina que tiene lugar en la laguna La Playa (segtn los estudios de Pueyo,
1978-79, Pueyo e Ingles, 1987, y Mingarro et al., 1981) consiste en una secuencia de precipitacién
bajo ldmina de agua en la que, tras una etapa inicial de formaci6én de carbonatos de calcio, tiene lugar
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Figura 5.- Evolucién de los ndices de saturacién (1.S.) calculados por el c6digo PHRQPITZ en las
salmueras de La Playa para mirabilita (A), thenardita (B), glauberita (C), bloedita (D), epsomita (E)
y polihalita (F).
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El origen del resto de minerales salinos detectados en las costras de La Playa se ha
relacionado en los estudios previos con un proceso de formacidn de eflorescencias, esto es, bombeo
hasta la superficie de salmueras subsuperficiales que son llevadas a sequedad total. La evolucién de
los fndices de saturacion de glauberita, epsomita y polihalita parece confirmar este hecho, ya que estas
fases no se ven afectadas por un proceso de equilibrio ligado a la evaporacién de las salmueras. Por
otra parte, thenardita y bloedita son minerales salinos cuya génesis se ha asociado por los autores
citados con la formacién de costras eflorescentes (salvo en algiin caso excepcional, entre los que no
se encuentra La Playa; ver Pueyo, 1978-79), pero los resultados del tratamiento fisicoqufmico indican
que llegan a alcanzar una situaci6n de equilibrio en etapas de elevada concentracién de las salmueras.
Este es un hecho que contrasta con las observaciones realizadas sobre el sistema natural, pero que no
podrd resolverse hasta que no se lleven a cabo estudios enfocados especificamente a la resolucién de
este problema.

La comparacién entre los resultados .ofrecidos por el PHRQPITZ y por otros cédigos de
modelizaciéon (Garcés et al., 1991, 1992) sobre los mismos datos analfticos muestra la mejor
adecuacién del primero para el tratamiento de salmueras de concentracién muy elevada. Este hecho
se ve materializado tanto en la delineacion de pautas evolutivas bastante m4ds continuas, como en la
mejor delimitacién de las situaciones de equilibrio mineral (ver los gréficos correspondientes en
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Garcés et al., 1991, 1992), a pesar de no disponerse de todos los datos analfticos necesarios y tener
que realizar simplificaciones en algunos casos importantes, como por ejemplo suponer una
temperatura homogénea de 25° C. Todo esto ilustra la necesidad de realizar una toma de datos in situ
simultdnea con el desmuestre, que permita obtener una buena definicién del sistema ("well-determined
system"; Weare, 1987), de tal manera que la modelizacién geoqufmica sirva para conseguir una
informacién valiosa a la par que ajustada a los procesos que en €l tienen lugar.

7. Conclusiones

El tratamiento fisicoqufmico de una serie de datos analiticos de salmueras procedentes de la
laguna La Playa (mediante el cddigo de modelizaciéon PHRQPITZ) ha permitido estudiar la evolucién
geoqufmica del proceso de evaporacién que tiene lugar en dicho sistema salino. El rango de
concentracién total de las soluciones tratadas oscila desde 1 hasta 12 molal, circunstancia que ha
aconsejado la utilizacién de un c6digo que incorpore un modelo geoqufmico basado en las ecuaciones
de Pitzer. Los resultados obtenidos han permitido delinear la pauta evolutiva del sistema de una
manera considerablemente mds precisa que en el caso de utilizar c6digos basados en planteamientos
cldsicos de cdlculo de coeficientes de actividad (Garcés et al., 1991, 1992).

El célculo de los fndices de saturacién mineral ha permitido discernir qué fases salinas se ven
involucradas en situaciones de equilibrio durante la evolucién de las salmueras sometidas a
evaporacion. Los resultados muestran que las soluciones estdn en todo momento saturadas en calcita,
yeso y anhidrita, aunque de estas dos iltimas sélo el yeso es estable durante la mayor parte del
proceso, segun indica el diagrama de campos de estabilidad de fases. Por su parte, halita, thenardita
y bloedita evolucionan desde una situacién de clara subsaturacion hasta alcanzar el equilibrio, estado
en el que se mantienen hasta las etapas mds avanzadas que se han registrado. Todo esto indica que
los minerales salinos que deben cristalizar en este sistema a partir de las salmueras libres son calcita,
yeso, halita, thenardita y bloedita, mientras que el resto de las fases analizadas (mirabilita, glauberita,
polihalita y epsomita) deben generarse como etlorescencias. No obstante, hay que tener en cuenta que
el cdlculo de los fndices de saturacién de mirabilita se ha visto afectado por la ausencia de datos de
temperatura de campo. La suposicién de una temperatura de 25° C para todas las muestras no permite
establecer conclusiones fiables acerca del andlisis del estado de equilibrio de dicho mineral, ya que
su condicién de sal criofflica hace que sea muy sensible a las variaciones de temperatura, viéndose
su precipitacién favorecida en situaciones de bajas temperaturas ambientales.

El estudio realizado ha permitido establecer igualmente unas conclusiones metodoldgicas
acerca de la aplicabilidad del tratamiento termodindmico en sistemas salinos naturales. Se ha mostrado
que la modelizacién geoquimica puede proporcionar resultados muy ttiles a la hora de diferenciar
procesos (en este caso particular, minerales que se generan por precipitacién directa a partir de
salmueras superficiales, o bien relacionados con eflorescencias) que son diffciles de discernir en un
estudio geoquimico clédsico, pero debe tenerse en cuenta que todo ello precisa tanto la seleccién de
uno o varios cédigos adecuados al sistema particular que se quiere estudiar, como la realizacién de
un desmuestre cuidadoso y una toma de datos de campo completa.
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Abstract: Sediments of continental and shallow marine transitional origin are located in the Galve
sincline (Teruel, Spain). The sequence represents the Upper Jurassic-Lower Cretaceous (Tithonian-
Barremian) interval. Several vertebrate localities are found throughout the whole sequence. The
vertebrate fauna is represented by Pycnodontiformes, Semionotiformes, Amiiformes,
Hybodontiformes, Rajiformes, Lamniformes, among "pisces”, Quelonia, Pterosauria, Crocodylia,
Ornithischia, Saurischia and Sauria among Reptilia and Mammalia. Nearly all the rests are isolated
bones and teeth in diferent stages of preservation. There are also dinosaur tracks in two different
levels and reptile eggshells located in the lower layers of the Galve sequence.

1. Introduccion.

El objetivo de este trabajo es en primer lugar situar estratigraficamente los yacimientos de
vertebrados del transito Jurdsico-Cretdcico en Galve (Teruel, Espaiia, Fig. 1). Hacer precisiones
tafonémicas y paleoecolégicas de los restos fésiles de estos yacimientos y poner al dia la lista
faunistica incluyendo los ltimos descubrimientos. Estos datos nos permiten realizar un analisis
de estas faunas desde la perspectiva de la evolucién de los ecosistemas terrestres del trdnsito

Jurdsico - Cretacico en Galve

)
Zaragoza
Fig. 1:
Situacion geografica de Galve
® Galve
( } Teruel 0 50 100 km.
e ——
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Los yacimientos de vertebrados continentales de la base del Cretdcico Inferior son escasos,
a nivel mundial. En el Jurdsico Superior el registro de reptiles y mamiferos se conoce
relativamente bien, gracias a los yacimientos de Norteamérica y de Asia, sin embargo el
transito entre el Jurdsico y el Cretdcico es un intervalo con escaso registro en estas dos dreas. El
panorama es diferente en Espafia (fundamentalmente en la Cordillera Ibérica) donde afloran
materiales en facies "Weald" con un desarrollo de varios miles de metros de potencia. Aunque
hay numerosas. discontinuidades, estd practicamente representado todo el intervalo que
comprende desde el Berriasiense hasta el Aptiense.

2. Contexto estratigrafico y paleogeografico

El drea de Galve se sitiia en el extremo occidental de la subcuenca de Galve y conforma
una estructura sinclinal (Fig. 2), que afecta a una sucesién de materiales de casi 1000 metros de
espesor correspondientes al Jurdsico y al Cretdcico Inferior (Soria ef al., 1995; Canudo et al.,
1996). En la decada de los ochenta se realizé un estudio estratigrdfico y sedimentolégico
detallado (Diaz-Molina et al., 1984, 85; Diaz-Molina y Yebenes, 1987), aparte de las sintesis
de la Serie Magna tanto a escala 1:50.000, como a escala 1:200.000. Estos autores describen
con gran precision las caracteristicas litoldgicas de las unidades neocomienses objeto de estudio
de este trabajo e identifican, para el Cretdcico Inferior de este sector, cuatro unidades
estratigraficas (unidades 3, 4, 5 y 6). Las unidades 3 y 4 corresponden a la Fm. Castellar, la
unidad 5 a la Fm. Camarillas y la unidad 6 a la Fm. Artoles.

A lo largo de la secuencia Titénico-Berriasiense hay una transicién gradual desde
plataformas marinas carbonatadas someras (Formacién Higueruelas) a medios submareales,
intermareales y supramareales de la Formacion Villar del Arzobispo (Fig. 2). El limite de esta
secuencia viene marcado por una discontinuidad con laguna estratigrafica que abarca el menos
desde el Berriasiense superior al Hauteriviense no terminal. Esta discontinuidad se manifiesta
como una discordancia angular de bajo dngulo y un importante cambio litolégico y
sedimentolégico. El registro sedimentario correspondiente al Cretdcico Inferior del Area
Ibérica, constituye un gran ciclo sedimentario limitado por importantes discontinuidades y al
que se ha denominado Supersecuencia del Cretdcico Inferior o Megasecuencia Creticica
Inferior (Salas, 1987, Salas et al., 1991). Las diferentes unidades estratigraficas usadas en este
trabajo son basicamente las definidas por estos autores.

Por encima de la discontinuidad de la secuencia del trdnsito Jurdsico-Cretdcico se sitia la
Formacién Castellar, que constituye por si misma una megasecuencia de depésito. Esta unidad
estd caracterizada por arcillas rojas con intercalaciones arenosas, tipicas de extensas llanuras
lutiticas surcadas esporadicamente por canales, mientras que a techo se produce la instalacién
de un sistema lacustre de muy baja energia, caracterizado por margas y calizas bioturbadas. La

222




potencia de este sistema lacustre no excede en ningiin caso los 20 metros. En funcién de la flora
de carofitas reconocida en los sedimentos lacustres de esta unidad fuera del area de Galve, se le

puede atribuir a esta formacién una edad Hauteriviense terminal-Barremiense basal.

Las facies lacustres del techo de la Formacién Castellar fueron objeto de un detallado
estudio por Diaz Molina y Yebenes (1987) siendo este intervalo estratigrdfico donde mayor
concentracién de yacimientos de microvertebrados se han encontrado ("nivel de Colladico
Blanco"). Los estudios que se estdn haciendo en la actualidad en estos materiales, muestran la

presencia, en las facies margosas, de orbitolinas, ostreidos y gasterépodos tipicos de medios
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Fig. 2: Cartografia geoldgica del sinclinal de Galve. Modificada de Diaz-Molina y Yebenes
(1987)

transicionales, que si bien no son extremadamente abundantes, muestran una presencia muy

constante en los yacimientos estudiados.

Estas facies se interpretan como sedimentos de agua posiblemente salobre, depositados en
lagunas efimeras con aportes ocasionales de material terrigeno. Diaz-Molina y Yebenes (1987)
establecen que los tramos margosos ricos en nédulos se formarfan en las zonas periféricas de
estas lagunas y/o en las fases de desecacion de las mismas, en condiciones palustres. Estas
facies calcdreas estdn constituidas o bien por mudstone-wackestone masivos con carofitas,
gasterépodos y bivalvos o bien por mudstone arcillosos con gasterépodos, bivalvos y
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estructuras prismdticas de desecacién (Diaz-Molina y Yebenes, 1987). No obstante algunas de
estas estructuras no parecen consecuencia, inicamente de procesos de desecacion, de hecho hay
madrigueras producidas por invertebrados (posiblemente crustdceos).

En funcién de estas caracteristicas Diaz-Molina y Yebenes (1987) interpretan para el
conjunto de esta unidad lagunas efimeras de aguas dulces o salobres, situadas probablemente en
zonas no muy alejadas de la linea de costa. Las caracteristicas sedimentolégicas que presenta
esta unidad en el drea de Galve son propias de extensas dreas lacustres de subambientes
supralitorales (palustres) y eulitorales. Recientemente se ha encontrado en la parte media de
esta formacién, un nivel con restos polinicos cuyos primeros estudios indican (Diez et al.,
1995) una relativa abundancia de polen de Gimnospermas, con buena representacién de los
géneros Classopollis y Trilobosporites y, en menor medida, del género /mpardecispora, frente
a la escasez de esporas de helechos. Esta relacién permite confirmar la existencia de una flora
claramente continental de tendencia xerofitica que indica unas condiciones ambientales
relativamente secas.

Respecto a la edad de esta formacién, Martin-Closas (1989) estudia las carofitas de la Fm.
Castellar del drea de Galve a partir de muestras recogidas por F. Gautier en esta localidad. Esta
flora pertenece tnicamente a la biozona Triquetra (subzona Triquetra), por lo se le atribuye a
esta unidad una edad Hauteriviense superior-Barremiense basal, que esta de acuerdo con
Schudack (1989). La parte media de la formacién tiene una asociacién polinica que podria
situarse en el Hauteriviense (Diez et al., 1995). Sin embargo la parte alta de esta formacion, que
es donde se sitian la mayor parte de los yacimientos de vertebrados, tiene polenes de
angiospermas cuya primera aparicion tiene lugar en el Barremiense (Mohr, 1987), por lo qué,
ademds del interés que tiene para los vertebrados fésiles, el drea de Galve seria una de las pocas
del mundo en donde se ha detectado la primera aparicion de de este grupo de plantas.

La Formacién Camarillas se sitiia inmediatamente por encima de la Fm. Castellar y estd
formada por arcillas rojas y areniscas blancas de medios fluviales (Fig. 2). En la Fm.
Camarillas se han encontrado carofitas tipicas de la biozona Triquetra-Neimongolensis
(subzona de Calcitrapus), atribuida al Barremiense inferior (Martin-Closas, 1989). El limite
inferior de esta formacién coincide con el superior de la secuencia de depédsito de Castellar. No
obstante en los sectores marginales de la cuenca de Aliaga, donde no estd representada
Castellar, este limite corresponde a una discontinuidad manifestada como una discordancia
cartogrdfica que en ocasiones lleva asociada discordancias internas progresivas. Esta
formacién estd ampliamente representada, mostrando un cardcter claramente expansivo con
respecto a la Formacién Castellar. El limite superior es otra discontinuidad que se manifiesta
por una paraconformidad y lleva asociada un cambio sedimentolégico neto (aunque en algunos
puntos de la cuenca es bastante gradual), produciéndose a partir de este momento las primeras
incursiones marinas significativas dentro de la cuenca (Fm. Artoles).
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La Formaci6n Artoles estd constituida por arcillas verdes, calizas con ostreidos y areniscas
que marcan la instalacién de un medio marino somero restringido tipo /agoon . En la Cubeta de
Aliaga, esta formacién tiene una edad Barremiense superior-Aptiense basal ya que presenta un
foraminifero aglutinado tipico (Paleorbitolina lenticularis lenticularis). En la base de esta
formacion, las intercalaciones continentales muestran una flora de carofitas correspondientes a
la biozona Cruciata-Pancibractratus (Martin-Closas, 1989). El Ifmite superior es un
discontinuidad que se manifiesta como una paraconformidad, a partir de la cual se produce la
instalaci6n definitiva de la primera plataforma carbonatada de edad Aptiense representada por
la Formacién Chert. Sin embargo en Galve, este limite lleva asociado la entrada de terrigenos
siclicicldsticos de cardcter deltdico correspondientes a la Formacién Morella. Hasta el momento
estas dos ultimas unidades no han dado yacimientos de vertebrados, en consecuencia los
vertebrados mads modernos de Galve hasta el momento son de edad Barremiense inferior .

3. Historia de los descubrimientos de Galve

Las primeras excavaciones de los vertebrados de Galve fueron realizadas en los afios 50
por un vecino de la localidad llamado José Maria Herrero y el Museo de Teruel. Estos primeros
descubrimientos fueron publicados por Ferndndez-Galiano (1958, 1960) y Lapparent (1960),
quién describié dos dinosaurios (/guanodon y un saur6podo) de dos de los yacimientos
cldsicos (Zabacheras en la base de la Formacién Castellar y La Maca en la Formacién
Camarillas). En los afios 60 el profesor Kiihne de la Universidad de Berlin y el equipo del
profesor Crusafont de Barcelona iniciaron la biisqueda de pequerios vertebrados, especialmente
mamiferos. Ambos equipos encontraron diversos tipos de mamiferos que resultaron ser los
primeros del Mesozoico de Espaifia (Crusafont y Adrover, 1965, 66). Kiihne lavé sedimentos
del yacimiento Colladico Blanco (parte superior de la Formacién Castellar) y el equipo de
Crusafont del yacimiento Herrero (parte basal de la Formacién Camarillas). De manera mds o
menos continua el equipo de Berlin ha seguido trabajando en los dltimos afios; su objeto de
estudio han sido los mamiferos, pequeiios reptiles escamosos, cocodrilos, huevos de reptiles,
invertebrados, polen y carofitas. En los afios 80 comienzan las investigaciones de los equipos
de la Universidad Auténoma de Madrid y el Instituto de Paleontologia de Sabadell (Sanz, 1984;
Sanz et al., 1984), los cuales estudiaron los restos de dinosaurios y cocodrilos que se conocian
hasta ese momento, determinando 35 taxones de vertebrados (Buscalioni y Sanz, 1987b).
También se estudiaron las primeras huellas de dinosaurios conocidas hasta ese momento en
esta parte de la Cordillera Ibérica (Casanovas et al., 1983-84).

En el afio 1991, se inicia una nueva etapa ya que un equipo de la Universidad de
Zaragoza retoma el estudio paleontoldgico de las faunas de vertebrados de Galve. En primer
lugar se han catalogado todos los yacimientos conocidos, situandolos en la serie estratigréfica
local (Cuenca-Bescos et al., 1994). Este es un punto importante, ya que en la literatura solia
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citarse Galve como un tnico yacimiento y con una edad imprecisa. Con nuestro trabajo se ha
podido situar en su edad todos los yacimientos y situarlos en un contexto estratigrifico
regional. Hasta el momento hay inventariados 65, de los cuales el material paleontolégico
publicado en parte o completo es de 25 yacimientos, distribuidos en 18 niveles. Este inventario
estd permitiendo hacer una evaluacién de la vulnerabilidad de estos yacimientos para planificar
las acciones a realizar en los proximos anos. Hay diversos factores que determinan las acciones
futuras: disponibilidad de investigadores, peligro de destruccidn, acciones de urgencia,
posibilidades de financiacién, etc. En esta primera etapa se ha dado prioridad, por una parte, al
estudio de los dinosaurios ornitépodos y por otra, al de los microvertebrados, especialmente
mamiferos y pequeiios dinosaurios, para lo cual se han lavado hasta el momento varias
toneladas de diferentes yacimientos, habiendo obtenido abundantes restos que estdn siendo
estudiados en la actualidad.

4. Los yacimientos de vertebrados

Los yacimientos de vertebrados de Galve se pueden dividir en tres tipos de
acumulaciones. La mds sencilla, son los yacimientos con la presencia de un solo resto,
generalmente un dinosaurio y posiblemente en relativa conexién anatémica. Este seria el caso
en el que hay un gran nimero de elementos de un solo dinosaurio (P.e. Las Zabacheras, La
Maca, Cuesta Lonsal, etc.) y practicamente no hay nada més. En estos yacimientos no podemos
conocer si habia conexién anatémica ya que fueron excavados en los afios sesenta y no se
dispone de informacién tafonémica de los restos.

La mayor parte de los yacimientos son una acumulacién més o menos grande de restos
de microvertebrados, con algunos elementos aislados de macro, como puede ser un centro
vertebral o un diente. Con esta situacién hay de dos tipos, el primero tienen una gran
continuidad lateral y una relativa escasa concentracién. Por ejemplo el nivel "Colladico
Blanco", situado en el techo de la formacién Castellar, es una marga gris de pocos centimetros
de espesor que puede ser seguida varios kilometros en el sinclinal de Galve. En todos los
puntos donde el afloramiento es bueno hay una acumulacién de microvertebrados, y
dispersamente algiin resto de de mayor tamafo. Este nivel se ha denominado de diferente
manera en la literatura (Colladico Blanco, Cuesta de los Corrales, P1, etc.). Este yacimiento
podria estar en relacién con un ambiente palustre en conexién con el mar, donde no habria
corrientes que acumularan selectivamente los restos. En estos niveles no es raro encontrar

paladares de peces u otros elementos anatémicos completos.

Un tipo diferente son los yacimientos de la Formacién Camarillas, los cuales tienen

poca continuidad lateral. En este caso, es mds corriente encontrar restos de mayor tamafio que

en los anteriores. La microfauna es mucho mds abundante, pero su conservacién es peor, ya que




los dientes suelen tener abrasién y corrosién. Sin embargo, de manera aleatoria en alguno de
estos yacimientos se han encontrado los mejores fésiles como puede ser un crdneo de
Bernissartia en el nivel Cerrada - Roya Mina (Buscalioni er al., 1984) etc. Aunque no

conocemos bien un modelo que se pueda aplicar para explicar de manera satisfactoria la

formacién de estos yacimientos, una aproximacién podria ser la de canales intermareales que

aportaron elementos del continente y en momentos de subida de la marea la corriente marina
depositaria los fragmentos de vertebrados e invertebrados marinos.

Por dltimo en el drea de Galve son abundantes los elementos aislados de vertebrados
que no llegan a formar verdaderos yacimientos. Son mds frecuentes los restos de grandes
verterados, en su mayoria dinosaurios. Estos descubrimientos aislados corresponde a piezas
6seas en diferentes estados de conservacién. Estos restos han aparecido en todas las
formaciones, habiendo algunos grupos como son los dinosaurios acorazados que hasta el
momento, inicamente se conocen por estos descubrimientos aislados.

5. Los vertebrados del transito Jurasico-Cretacico en Galve

El grado de estudio de los vertebrados de Galve es variable segiin los grupos, asi por
ejemplo los restos de mamiferos y arcosaurios han sido estudiados y se puede conocer su
distribucién estratigrafica. Sin embargo de otros grupos hay menos informacién, como en el
caso de Quelonia y Amphibia. Estos taxones estdn presentes en todos los niveles estudiados,
aunque unicamente han sido estudiados en uno o dos yacimientos. La lista faunistica esta hecha
a partir de las sintesis de Buscalioni y Sanz (1987b), Cuenca-Bescés et al., (1994) y los
resultados inéditos de las investigaciones en curso (Fig. 3). Hasta el momento se han
reconocido alrededor de 50 taxones de vertebrados en el transito Jurdsico-Cretdcico de Galve,
de los cuales 9 se han definido por vez primera en alguno de los yacimientos de esta localidad.

5.1 Mamiferos

Los mamiferos del Mesozoico juegan un importante papel en la historia de los
mamiferos, ya que documentan las dos terceras partes de su evolucién inicial. La gran
diversidad de los mamiferos del terciario y del cuaternario, y todos los mamiferos que viven en
la actualidad, el hombre incluido, tiene su origen en unos cuantos grupos, €scasos tanto en
nimero de individuos como en diversidad. Estos primeros mamiferos competian con los
grandes vertebrados dominantes de los ecosistemas terrestres del Mesozoico, especialmente
Archosauria (Saurischia, Ornitischia, Crocodylia y Pterosauria). Por esto, la historia de los
mamiferos durante el Jurésico y el Cretdcico Inferior es una de las fases mds interesantes, de la
evolucién de los mamiferos. En el Cretdcico Inferior se conocen tinicamente una docena de
yacimientos, de los cuales los del Barremiense son exclusivamente espafioles.
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Hay dos localidades cldsicas: Galve en Teruel y Ufia en Cuenca. y una tercera descubierta
recientemente, Vallipén también en Teruel (Cuenca-Bescés ef al., 1995).

En Galve se encontro el primer mamifero espaiiol del Mesozoico (Crusafont y Adrover,
1965, 66). Posteriormente los descubrimientos han sido abundantes, habiendose reconocido
nueve especies, seis de las cuales (Spalacotherium henkeli, Eobataar hispanicus,
Parendotherium herreroi, Lavocatia alfambrensis, Pocamus pepelui y Galveodon nannothus)
estdn descritas y son exclusivas de Galve y otra (Crusafontia cuencana) ha sido encontrada en
otras localidades espafiolas (Kiihne, 1966; Crusafont y Gibert, 1967; Krebs, 1980, 1985, 1993;
Hahn y Hahn, 1992; Cuenca-Bescés et al., 1995; Canudo y Cuenca-Bescés, 1996). Estos
taxones estdn descritos a partir de dientes sueltos, no habiendose encontrado mandibulas ni
maxilares. También hay restos postcraneales pero por el momento no se han descrito.

La abundancia de taxones demuestra que los mamiferos de esta edad estaban bien
diversificados y eran relativamente abundantes. Su escasez en los yacimientos estd determinada

por procesos tafonémicos: la mayorfa de los restos se encuentran en ambientes poco favorables

para la acumulacién de vertebrados, suelen ser medios de transicién o extensas llanuras de
inundacién en dénde la concentracién es practicamente nula. Lo mds destacable de los
mamiferos de Galve es que son exclusivos en el mundo, lo que podrfa indicar un endemismo de
estas faunas o simplemente que nuestro conocimiento de los mamiferos de esta edad es muy
€scaso.

Los multituberculados son el grupo de mamiferos mds comiin tanto en por su diversidad
como por su abundancia en los yacimientos. S6lo se conocen de momento representantes del
suborden Plagiaulacoidea. Hay representantes de los Paulchoffatiidae (Galveodon, Lavocatia),
familia que se origina y desarrolla en el Jurdsico de Portugal y que se conoce hasta el Cretdcico
Inferior de Europa y el Norte de Africa. Hay también especies pertenecientes a la subfamilia
Eobaatarinae (formas afines a Eobaatar y Loxaulax), familia que se conoce exclusivamente en
el Cretdcico Inferior de Europa y Asia. La especie Parendotherium herreroi es una forma de
afinidades inciertas que estamos estudiando y revisando en la actualidad, pero probablemente,
debido a la pérdida del holotipo, sea considerada como nomen nudun en un articulo en
preparacion.

Los drioléstidos de Galve como C. cuencana constituyen el dltimo registro conocido de
estos terios no tribosfénicos en Europa (estdn representados en el Jurdsico Medio y Superior de
Europa), aunque este grupo continda su historia en el Cretdcico Inferior de Asia y en el
Cretdcico Superior de Suramérica. Los peramuridos son exclusivos del Jurdsico superior inglés
y en el Aptiense-Albiense de Mongolia, por lo que el material espafiol no solo amplia el drea de
distribucién de este grupo sino que nos permite conocer algo mds de este grupo, posiblemente
el tronco ancestral del que derivan los metaterios (marsupiales) y euterios (placentados). Los
simmetrodontos son un grupo numeroso en el Jurdsico Superior también se encuentran en el
Cretécico Superior de Norteamérica. En el Cretdcico Inferior, Spalacotherium, posiblemente




una nueva especie de Vallipén (Espaia, Inglaterra) y Manchurodon de China son los tnicos
representantes (Krebs, 1985).

5.2 Dinosaurios

Los dinosaurios son relativamente abundantes, aunque sus restos son fragmentarios y
aislados. Se han reconocido tanto a partir de restos directos (huesos) como indirectos (icnitas y
fragmentos de cdscaras de huevo). Han aparecido restos de cuatro de los cinco subordenes
conocidos de dinosaurios: Sauropoda, Theropoda, Ornithopoda y Thyreophora (Lapparent,
1960; Sanz et al., 1984a y b, 1987, 1990; Ruiz-Omefiaca y Cuenca-Bescés, 1995).

La gran mayoria de los saurépodos se han encontrado en las Formaciones Villar del
Arzobispo y Castellar, y hasta el momento hay un tinico resto en la Formacion Camarillas.
Hay seis taxones, dos de los cuales son exclusivos de Galve. La especie Aragosaurus
ischiaticus es un camarasaurido descrito por Sanz et al. (1987), del que se conoce un diente
(Sanz, 1982) y parte del esqueleto postraneal. Parte de los restos de este dinosaurio se
encuentran en la sala de exposiciones de Galve y pertenecen al Museo de Teruel. En el Tit6nico
se encuentran los restos de otro camarasairido sin describir (Perez Ofiate et al., 1994) que no
esta totalmente excavado. Recientemente se ha encontrado un diente de diplodécido, también
en el Jurdsico, que junto a otros tres sauropodos descritos en el nivel de Colladico Blanco
(Camarasauridae indet. Forma A, Camarasauridae indet. Forma B, cf. Pleurocoelus =Astrodon

sp.) forman la representacién de este grupo (Sanz et al., 1987). Aunque no se han encontrado

huellas atribuibles a saurépodos, algunas estructuras circulares de los yacimientos de las

Cerradicas y los Corrales del Pelején podrian representar subpistas de huellas de estos
dinosaurios (Cuenca et al., 1993).

Los restos de terépodos se han encontrado practicamente en todos los yacimientos,
especialmente dientes en las formaciones Castellar y Camarillas, a pesar de lo cual han sido
poco estudiados. Se han encontrado dientes, falanges ungueales y vértebras de gran tamafio
(Theropoda indet., Carnosauria indet.) y de pequeiio tamafio (?Coeluridae indet.), ademds de
huellas de diferentes tamafios (Casanovas et al., 1983-84; Cuenca et al., 1993; Perez-Lorente et
al., 1996). En las excavaciones recientes se han encontrado nuevos restos, algunos
posiblemente de dromeosatiridos. En los afios 60, José Maria Herrero encontro un diente de un
terépodo de gran tamafio, que fue determinado por Crusafont y Adrover (1966) como una
forma similar a Carcharodontosaurus. Por el momento no se ha incluido en la lista faunistica,
ya que no se conoce exactamente en que nivel estratigréfico fue encontrado, podria ser de un
nivel equivalente a Colladico Blanco.

Los ornitépodos son los dinosaurios mds abundantes de la formacién Camarillas. Los
ornitépodos pequefios estdn representados por las familias Hypsilofontidae y Dryosauridae.
Han aparecido por €l momento dientes aislados y restos postcraneales de hipsilofodéntidos en
varios yacimientos (Fig. 3). Donde estdn mejor representados es en el yacimiento de Poyales,
donde se encontraron mds de cien restos de un hipsilofodéntido, posiblemente nuevo, que




actualmente se encuentra en estudio (Ruiz-Omeifiaca y Cuenca-Bescés, 1995). En Galve es el
Gnico lugar de Espaiia donde estdn representados los driosatiridos (un femur de cf. Valdosaurus
sp., Sanz et al., 1987).

De entre los ornitépodos de tamaiio grande se han encontrado representantes de la

familia Iguanodontidae. De este grupo se han encontrados nimerosos restos postcranales

(fundamentalmente vertebras) y dentarios de /guanodon bernissartensis e 1. atherfieldensis.

&

Fig. 4: Esquema de las icnitas de las Cerradicas. Modificado de Perez-Lorente et al., 1996.

En la formacién Camarillas se encuentran algunos de los yacimientos cldsicos de este
grupo (Sanz et al., 1984a, b), sin embargo en la formacién Castellar inicamente se han
reconocido por restos indirectos (Corrales del Pelején, Cuenca et al., 1993).

En niveles estratigrdficos méds bajos (posiblemente Berriasiense) hay evidencias
icnolégicas de ornitépodos cuadriipedos de pequefio tamafio (Yacimiento de Las Cerradicas,
Fig. 4). La importancia de estos restos es que constituyen el rastro cuadripedo de
iguanodéntido mds antiguo y mds pequefio que se ha encontrado en el mundo (Perez-Lorente
etal., 1996).




En las Cerradicas se puede observar un conjunto de cuatro rastros, tres de ellos
subparelelos y otro que los corta (en total 40 pisadas). Estas huellas se produjeron en un medio
marino intermareal, que en el momento de producirse no debia estar empapado de agua, ya que
la conservacién es excelente. Las rizaduras de corriente (producidas por una ldmina de agua)
debieron producirse con anterioridad a las huellas. Los rastros 1, 2 y 3 (fig. 4) son huellas
tipicamente tridactilas, producidas por un pequefio dinosaurio, que podria ser un terépodo o un
ornitépodo. El rastro mds interesante es el 4, ya que es la evidencia mds antigua de un

ornitépodo con comportamiento cuadripedo. En el mundo se han publicado 9 rastros de este

tipo, de los cuales el de las Cerradicas es el mds pequeiio de todos. Este rastro es tjpicénientc
de ornitépodo, posiblemente un iguanodontido de pequeiio tamafio (Perez-Lorente et al., 1996).
Los dinosaurios acorazados (Tyreophora) agrupan a los que tienen placas y espinas
dérmicas en el lomo y la cola. Eran dinosaurios ornitisquios, cuadripedos y herbivoros. En
Galve, los tireéforos son muy escasos, estando representados por un diente de Echinodon sp.
(Estes y Sanchiz, 1982), una pia caudal de estegosaurio y una espina dermatoesquelética de un
anquilosaurio-nodosaurio ain por estudiar (comunicacién personal de Pereda-Suberbiola).

5.3 Otros reptiles S

Los reptiles no dinosaurios son relativamente abundantes. En Galve estdn representados
reptiles voladores (Pterosauria), cocodrilos (Crocodylia), tortugas (Chelonia) y lagartos
(Sauria). Los pterosaurios estan representados por dientes y una falange sin atribucién
sistemdtica, que parece estar cercana a un género chino (Dsungaripterus), pero que es de mayor
tamaiio.

Los restos de cocodrilos son muy abundantes y han sido objeto de diversas
publicaciones (Buscalioni, 1986; Buscalioni et al., 1984; Buscalioni y Sanz, 1984, 1987a,
1990; Kohring, 1990) estando representados fundamentalmente por dientes aislados, centros
vertebrales, cdscaras de huevo, osteodermos y un crdneo completo (Buscalioni ez al., 1984). Se
han reconocido tres taxones de cocodrilos (Buscalioni y Sanz, 1987b; 1990): Theriosuchus sp.,
Bernissartia fagesii y Goniopholis cf. crassidens.

Los restos de Sauria son escasos, habiendose reconocido fragmentos de mandibulas y
placas dérmicas, se han identificado cinco taxones: Ilerdaesaurus sp., Lacertilia indet.,
Paramacellodidae indet., Paramacellodus sp. y Scincidae incertae sedis (Estes y Sanchiz,
1982; Richter, 1994a y b). A partir de fragmentos de huevos se han reconocido tres tipos
diferentes de tortugas, una de las cuales podria ser Batagurinae indet. (Kohring, 1990). Los
restos 6seos de tortugas, algunos muy completos permanecen sin estudiar.

5.4 Anfibios
Los anfibios son escasos, estando representados por fragmentos de esqueleto
postcraneal, maxilares y mandibulas. Se han reconocido tres especies de anfibios en el
Barremiense inferior de Galve:Albanerpeton cf. megacephalus, Eodiscoglossus santojae y




Gulverpeton ibericum, de las cuales la tercera es una salamandra definida en Galve (Estes y

Sanchiz, 1982), a partir de una vertebra aislada de la coleccién del Museo de Sabadell.

SStPeces’:

Los pisciformes se han reconocido en todos los yacimientos con microfauna, aunque
solo han sido estudiados con detalle en tres. Los Chondrichthyes (peces cartilaginosos), que
incluyen a tiburones y a rayas, estan representados por dientes, placas dérmicas, y espinas de
hibodéntidos (tiburones primitivos), como ;Hybodus? parvidens y Lissodus microselachos
definido en el yacimiento Herrero a partir de dientes (Estes y Sanchiz, 1982). Este holotipo
esta depositado en el Museo de Teruel. En la coleccién Herrero hay algunos coprolitos que por
su forma espiralada son similares a los atribuidos a seldceos. Posteriormente Cuenca-Bescos
et al. (1994) y en este trabajo se amplia la lista faunistica con la presencia de otro tiburén
tipicamente marino (Lamniforme indet.) encontrado en la Formacién Castellar y de una raya

(Rhinobatos sp.) en la Formacién Camarillas.

Los "peces" oseos son el grupo numericamente mds abundante en los yacimientos de Galve
y el menos estudiado. En la mayor parte de los yacimientos hay escamas, dientes sueltos y
fragmentos de paladares de Lepidotes sp. (muy abundante), también se han descrito otros
cuatro taxones indeterminados: Amiidae indet., Pycnodontidae indet. "Holostei" indet. y
"Teleostei" indet. (Estes y Sanchiz, 1982).

Agradecimientos: José Marifa Herrero ha encontrado la mayor parte de los yacimientos de
Galve, por lo que agradecemos la amabilidad de ensefiarnos todos estos niveles en el campo.
Este trabajo se ha realizado en el marco del proyecto CONAI (PCB 0693). J.LR.O. es becario
de la Diputacién General de Aragén (CONSI + D).
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Nueva especie de Neochordodes
(Gordiacea Nematomorpha)
parasita de Scapteriscus sp. (Grillotalpidae)

D. B. de Miralles y L. C. de Villalobos

Abstract

A new specie of Neochordodes Carvalho (1942) (Gordiacea Nematomorpha) parasite of Scapteriscus sp.
Scudder (Grillotalpidae). A new specie of Neochordodes is described in this paper. It was found as a parasite of a
female specimen of mole-cricket, wich was collected in Santa Elena, San Luis province, Argentine. Damage
produced on the host is analyzed and the adult and junvenile stages of parasite are described in detail

1. Introduccién

Al continuar nuestras investigaciones sobre los nematomorfos de la provincia de San Luis, realizamos
durante el mes de octubre de 1985, un viaje de estudios en el que tuvimos la oportunidad de capturar un ejemplar
hembra de grillotopo (Scapreriscus sp.) del que emergi6 un gordidceo. Esto nos permiti6 realizar una serie de
observaciones coa el propésito de determinar la relacién existente entre ambos.

Los gordiAceos adultos habitan temporariamente las aguas dulces y se los halla en primavera y verano,
aislados o en grupos formando ovillos y pueden deslizarse mediante ondulaciones o estar sujetos a plantas acud-
ticas y entre detritos vegetales. En esta etapa, su Gnica funcién es la de reproducirse. El acoplamiento se realizar
en el seno de voluminosos ovillos formado por individuos de ambos sexos; los huevos se depositan en el fondo,
en forma de filamentos blanquecinos, de €stos nacen larvas que para proseguir su desarrollo deben hallar un
hospedador al que ingresan atravesando la pared corporal mediante el aparato perforante larval y se instala en la
cavidad general del hospedador. Luego cambia su forma, se alarga y se transforma en un verme blanco. Durante
este ben’odo se alimenta del cuerpo graso del hospedador mientras comienza el desarrollo de sus 6rganos genitales;
1a cuticula que lo recubre se espesa y se oscurece, hasta que, progresivamente, alcanza el estado adulto. Frecuen-
temente las larvas penetran en estados inmaduros o adultos de insectos, moluscos, peces y batracios. En el
interior de estos bospedadores ocasionales las larvas pueden continuar su desarrollo o enquistarse en los tejidos.
Si el hospedador es devorado en €stos momentos, por un organismo camnicero las larvas pueden evolucionar
normalmente sin sufrir alteraciones en este Gltimo.

En consecuencia, durante el desarrollo de los gordidceos se pueden distinguir claramente tres estados: un
primer estado larval, un segundo estado juvenil y un tercer estado adulto libre.

Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata
Paseo del Bosque s/n, 1900 La Plata, Argentina
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2. Area de estudio

La prospecci6n se realiz6 en las sierras de la provincia de San Luis y las cadenas limitrofes con Cérdoba
(Argentina) (Fig. 1). La gran antigiiedad de estos bloques fracturados los conecta geol6gicamente con el escudo
arcaico de Brasilia, formando un macizo de rocas metamérficas con abundancia de micas, gneiss € importantes
masas de granito.

2 Mina Ciavers

MERLD

1
| A* Villa Elens
Concardn Cortaderas

CORDOBA

Figura 1. Mapa de la zona de colecta de Neochordodes puntanus n. sp.

La cuenca hidrografica cuenta con numerosos riachos y arroyos de poco caudal que fluyen en distintas
direcciones. En general son cuencas sin desagiies que se agotan por evaporacion o infiltracién.

El clima es variado, predominando el tipo continental, con lluvias moderadas a escasas e inviernos suaves
y veranos célidos. La vegetacion dominante es la de tipo xer6filo y junto a los rios aparecen formaciones higr6-

filas.

Segiin Ringuelet (1961) esta zona corresponde al Dominio Central o Subandino y su fauna es fundamen-
talmente brasilica, de filiaci6n subtropical y con marcada influencia patagénica al sudoeste.
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3. Material y métodos

La colecta de grillotopos se realiz6 en forma manual y se los colocé individualmente en frascos de vidrio
con una cubierta de lienzo. El ejemplar de gordidceo que emergi6 del ortéptero fue fijado en alcohol 70%.

A fin de poder observar y estudiar la cuticula, se efectuaron cortes tangenciales de la region central del
soma, se retir6 la musculatura subyacente y se aclaré con lactofenol. Las regiones anterior y posterior se dibuja-
ron mediante cdmara clara en un microscopio monocular Leitz Wetzlar.

Asimismo los extremos y la cuticula de las formas adultas y juveniles fueron metalizados en oro para
poder observarlas al microscopio electrénico de barrido, utilizando en esta oportunidad el JEOL JSM 100.

4. Observaciones del parasito en el hospedador

En las zonas aledaiias al arroyo San Elena, Cortaderas, provincia de San Luis, Argentina (Fig. 1), colecta-
mos varios ejemplares de Scapteriscus sp. (grillotopo), a pocas horas de ser capturados, de uno de ellos emergié
un ejemplar macho de gordidceo. Como consecuencia de ello, decidimos realizar una disecci6n del insecto y
observamos lé presencia de varios ejemplares de nematomorfos en su cavidad general.

Los gordidceos observados en el interior del grillotopo se encontraban formando un ovillo compacto, que
ocupaba no s6lo la cavidad abdominal sino que se extendian por debajo de la quitina en la zona dorsal envolvien-
do la masa visceral (Figura 2A). Al extraer los pardsitos algunos se fragmentaron pero no afectaron la posibilidad
de estudiarlos, todos correspondian a formas juveniles (Figura 2B). Posteriormente observamos que el sistema
digestivo del ortdptero se hallaba fuertemente comprimido, las ovariolas y los tubos de Malpighi practicamente
destruidos y una ausencia total de cuerpos grasos. Analizando los danos producidos sobre el hospedador conside-

ramos que sus posibilidades de sobrevivir eran pricticamente nulas.

o) —

A

Figura 2A: Vista de la cavidad abdominal de Figura 2B: Ovillo de formas juveniles
Scapteriscus sp. con Gordidceos extraidos del grillotopo




En la zona pleural del cuarto segmento abdominal se detect6é una perforacién por la que suponemos se
produjo la salida del ejemplar adulto observado.

Examinando el sistema digestivo del grillotopo notamos sobre la superficie externa del intestino posterior,
la presencia de formas quisticas (Figura 3). Estos quistes se presentan como cuerpos lenticulares de diferentes
dimensiones. En mucho de ellos pudimos observar un espacio periférico claro y en el centro replegada la larva.
Dichas formas larvales posiblemente no hayan podido desarrollarse debido al gran nimero de parésitos que
ingresaron al hospedador.

100 UM

Figura 3: Intestino posterior de Scqpteriscus sp.
con larvas enquistadas

Si bien es facil explicar la penetracién de las larvas de gordidceos en animales acuéticos, asi como su
aparicién en invertebrados terrestres carnivoros, ya que muchas veces se acercan a los cuerpos de agua para
alimentarse de especies acudticas que pueden estar parasitadas y que actuarian como hospedadores intermedia-
rios o vectores, resulta mas dificil dar una clara respuesta a la aparici6n de quistes o estados juveniles en
invertebrados terrestres no carnivoros, como es el caso del grillotopo, una posible explicaci6n para este fenéme-
no podria ser, que en muchas ocasiones las larvas de gordidceos son capaces de replegarse sobre si mismas,
secretar mucus y enquistarse fijandose a un sustrato pudiendo sobrevivir varias semanas en un ambiente hiimedo,
resultado de las oscilaciones del nivel de las aguas o por evaporacién temporaria, momento en que pueden ser
ingeridas por formas terrestres herbivoras.

Nuestras observaciones concuerdan con las realizadas por varios autores como Villot (1874), May (1919),

Miiller (1927), Dorier (1930), Inoue (1962), Poinar y Doelman (1974) que desarrollan excelentes experiencias
sobre la biologia de los gordidceos.
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5. Descripcion del parasito
Neochordodes puntanus n. sp.

Diagnosis: Cilindricos. Extremo anterior afinado con la boca terminal central. Extremo posterior curvado
con cloaca ventral subterminal. Surcos longitudinales poco evidentes. Cuticula con aréolas de un solo tipo,
ovoides con el espacio interareolar estrecho, con tubérculos espiniformes curvados o rectos.

Descripcion: Holotipo macho. Soma cilindrico. Color castaio. Extremo anterior afinado gradualmente
hacia el 4pice, borde dital redondeado; la calota no se diferencia del resto del soma. La boca ocupa el centro del
borde anterior y se prolonga hacia el interior por un corto tubo (Figura 4), que se evidencia por transparencia; el
didmetro a nivel de la finalizaci6n del tubo digestivo es de 0,183 mm. Los surcos longitudinales dorsal y ventral
son poco marcados. Extremo posterior curvado con una leve depresion en la faz ventral donde se encuentra la
cloaca, a una distancia de 0,256mm del posterior.

o
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Figura 4: Adulto macho de Neochordodes puntanus n. sp.
A: extremo anterior; B: extremo posterior. Referencias: b = boca, cl = cloaca

Cuticula: Las aréolas vistas al microscopio electrénico de barrido a 3.500 aumentos (Figura 5) muestran
un aspecto ovoide, una con mayor longitud que otras, pero todas similares, aunque esporddicamente suelen
aparecer algunas més pequeiias redondeadas o rectangulares que se disponen en forma alternada o lineal en
sentido longitudinal.




De cada una de las aréolas parten finas prolongaciones que las conectan longitudinal y transversalmente
originando una delicada estructura en forma de red. Las prolongaciones que unen a las aréolas longitudinalmente
son mis compactas, estin més unidas y el mimero de ellas varia entre 4 a 9 filamentos. Las prolongaciones
transversales son menos numerosas y estdn separadas unas de otras variando entre 3 y 7 filamentos; algunos de
ellos estdn ramificados o bifurcados, unos son mas gruesos y otros delgados. Entre estas uniones se observan
espacios anhistos.

Ciertas aréolas presentan uno de los extremos henchido, mientras que el opuesto tiene dos cortas prolon-
gaciones, entre las que emerge un tubérculo curvado en la misma direccién que siguen las prolongaciones areo-
lares. Los tubérculos interareolares pueden presentar el extremo distal curvado y redondeado o bien recto y

aguzado. El espacio interareolar es estrecho, presenta tubérculos espiniformes curvados o rectos que sobrepasan
en alto a las aréolas.

ioum
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Figura 5: Cuticula de

N. puntanus n. sp. por 3.500
aumentos.

Referencias:

a = aréola

t = tentaculo

p = prolongaciones
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Material examinado: Holotipo 1 macho de 87mm de largo y 0,439mm de ancho medio. Paratipos 2 hem-
bras juveniles y 3 machos juveniles; col. Miralles, 31-1-1985. Localidad: Argentina, provincia de San Luis,
Arroyo Santa Elena.

Hospedador: Scapteriscus sp. Scudder.

5.1 Formas juveniles

El extremo anterior de los machos (Figura 6) se afina gradualmente hacia el dpice, la boca se encuentra
situada justamente en el centro del extremo.

ijooum

Figura 6: Extremo anteior de macho juvenil de
Neochordodes punt: n. sp.

El extremo posterior es entero donde se insinian depresiones dando la apariencia de una semilobulacién
(Figura 7A); la cara ventral es c6ncava donde se destaca claramente la cloaca ovalada (Figura 7B) ubicada sobre

una prominencia central.

iooum

Figura 7: Extremo posterior de macho juvenil de Neochordodes puntanus n. sp.
A: parte terminal; B: cloaca
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El extremo anterior de las hembras (Figura 8A) tiene 1as mismas caracteristicas sefialadas para los ma-

chos. La boca estd rodeada por una corona de aréolas (Figura 8B) y por varios circulos de tubérculos espinifor-
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Figura 8. A: extremo anterior de hembra juvenil de N. puntanus n. sp. B: boca. i

Referencias: b = boca; a = aréolas; t = tubérculos.
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El extremo posterior es algo més turgente que el resto del soma, su borde es redondeado, evidencidndose i

en el centro la cloaca circular (Figura 9). f

S 3 ;

La cuticula en-estas formas juveniles presenta las mismas caracteristicas que el adulto. F
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Figura 9. Extremo posterior de hembra juvenil ]

de N. puntanus n. sp. Referencias: ¢ = cloaca




6. Discusion

El género Neochordodes se caracteriza por presentar un solo tipo de aréolas, generalmente poligonales u
ovoides y bajas; los surcos interareolares pueden o no presentar cerdas, procesos hialinos u otras estructuras.

Analizando comparativamente las caracteristicas cuticulares de las especies que integran el género pode-
mos sefnalar que Neochordodes puntanus presenta una morfologia peculiar caracterizada por presentar un solo
tipo de aréolas ovoides de borde liso; ademds, en el espacio interareolar se destacan tubérculos espiniformes que
sobrepasan la altura de las aréolas siendo este espacio sumamente estrecho.

N. puntanus n. sp. difiere de N. colombianus Faust y Ramos (1960) ya que en este iltimo las aréolas son
circulares con una estructura suprareolar que se dispone centralmente; de N. tfalensis (Camerano, 1897) por las
aréolas papilares altas y el espacio interareolar presenta granulaciones numerosas; de N. uniareolatus Carvalho
(1946), por la forma poligonal de sus aréolas y por el espacio interareolar estrecho y de N. nietoi (Caballero y
Caballero, 1936) por la presencia de aréolas con contornos regulares y superficie aplanada, con distribucion
irregular en el soma.

En base a lo expuesto consideramos que los ejemplares estudiados poseen caracteristicas bien distintivas
y los consideramos como una nueva especie a la que designamos Neochordodes puntanus.

La elecci6n del nombre de la especie estd dedicado a los habitantes de la Provincia de San Luis a los que
se les designa con el nombre de puntanos.
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