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Presentamos la suma de series divergentes de potencias naturales de números naturales
en términos de sencillas expresiones en forma de sumatorios que serán desarrollados pre­
viamente. La elaboración de esta herramientas es elemental y su aplicación al cálculo
aparece de forma tan metódica como natural, ilustrando adecuad amente la solidez de
estos procedimientos matemáticos.
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Sumas de potencias naturales de números naturales

Jesús Hernando Pérez
LB.M. Los Castillos

Abstract

The natural power sums of natural numbers can be directly obtained by means
of an expression which involves the wel1known Bernoulli's numbers Bi : The aim of
this article is to give an iterative method by which the sums for a r exponent can
be easly found from the low orders.

1. Introduction

2. Primer as fórmulas y notaciones.

Usamos la siguiente notación:

n

Sn(r) = I >r = I r + 2r + .. ..+ n r
, \In , r E N

;=1

con la que obtenemos la expresión :

n n-l

Sn(r + 1) - Sn(r) = L ir(i - 1) = L i( i + 1)'
;=1 ;=0

3. Expresiones para sumas de series divergent es de potencias nat urales .

n

L S;(r) = Ir + (1' + 2r) + ....+ ( Ir + 2r + .. ..+ n")
;=1

= n I' + (n - 1)2r + ....+ [n - (n - 1)]nr

= n(F + 2r + ....+ n r
) - [1.2r + 2.3r + ....+ (n - l)nr

]
n-I

= nSn(r) - L i(i + 1)' = (n + I)Sn(r) - Sn(r + 1)
;=1

donde se ha tenido en cuenta la expresi ón (1).
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6

(6)

(4)

Sn(O ) = n

Sn(1) = n(n + 1)
2

Sn(2) = HSn(1) + 2nSn(1)] = n(n + 1~(2n + 1)

Sn(3) = ~ [Sn(l ) + 3nSn(2) + m{nSn(1) - Sn(2)}]

= H(3n + I)Sn(1) + (3n _ 3)Sn(2)] = n
2(n:

1)2

1. Spiegel Murr ay, R. (1981): Manual de Fórmulas y Tablas Matemáticas. McGr aw­
Hill Latinoamericana S.A. Bogotá.

2. Quinet , J . (1980): Curso elemental de Matemáticas Superiores, 3 ed. Par aninfo.
Madrid

...,.//(,-) = (1 + ll)'" + (1 + 1)'" + .... + [1 + (11 - 1)]'"

=1 + G;)I11 + .... +G) lr + .... +(~) (l1 -1)O+ .... +(~) (n -l )l' (3)

= 11 + (';)SII _l( l) + .... + (~)Sn- l (-r )

SII(I') = 11 + (~)Sn-l (l ) + .... + [(n - 1) + (~)Sn-2 (1) + .... + (~) .Sn-2(r)]

= [n + (n - 1) + .... + 1] + (~) ~ S;(I ) + .... + (r ~ 1)~ S;(r - 1)

= SII( I) + (';) [~ S; ( I ) - Sn(1)] + .... + (r~l) [~ s; (r - 1) - Sn(r - 1)]

= Sn(l) +E(~) [nSn(k) - Sn(k + 1)]

6. Bibliografía.

5. Aplicaciones.

obtenida de la expresión ante rior y que nos permi te calcular cualquiera de esta sumas
cuando son conocidas las ante riores.

Como ejemplo, aplicaremos la ecuación anterior en los casos n = 2 Y n = 3.

donde se ha utilizado la expresión (2).
Otr a forma para hallar estas sumas, más en consonancia con nuestro objetivo, es la

siguiente:

y aplicando reiteradamente esta expresión, tendremos

4. Otras expresiones para la suma de potencias naturales de orden 1".
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DOS APLICACIONES MATEMATICAS
DEL TEOREMA TI DE BUCKINGHAM

Abstraet

§O.- INTRODUCCION

L. Agud , O. R . G. Catalán y J. Garay.

Hab itualmente los físicos suelen utilizar resultados mat emáticos para sus aplica­
ciones. Contrariamente en este trabajo que podemos calificar de un ensayo seguimos el
sentido contrario. Utilizaremos un teorema clásico de la física para probar con él dos
resultados clásicos del Análisis Matemático. Nos referimos respectivam ente al teo rema
TI (físico), al teorema de Taylor y la regla de Barrow (ambos matemá:ticos).

El teorema TI constituye el núcleo del Análisis Dimensional que es un a disciplina
físico-matemática que est udia todo lo relacionado con el an álisis de las dimensiones de
las magnitudes físicas . El primer tratado sobre esta materia se debe a Bridgman [1],
aunque algunos au tores cit an corno precursor al propio Fourier [2] en su obra clásica

In this pap er , a connection between Dimensional an d Mathematical Analysis is es­
tablished and the natural direct ion of the application of mathemati cal result s to physics
is inver ted . In this ar ticle, two Mathematical classic Analysis theorems are proved tak­
ing the celebrated physi cal TI Theorem of Buckingham as origino These two theorems
are the n-dimensional Theorem of Taylor and the Rule of Barrow for an alytic funct ions.
The idea is opened for establishing more loops 'be tween bo th Analysis.



sobre el calor .

Por ejemplo Langhaar [3Jdice: "Fourier fue el primero en llam ar la atención sobre
la naturaleza de las entidades fundamentales y el concepto de dime nsiones físicas."

Más recientemente y a nivel de nuest ro pais, hay que destacar las aportaciones
de J ulio Palacios [4J y la actividad que desarrolla actualmente el grupo de An áli sis
Dimensional con sede en la Escuela de Arqui tectos de Madrid y en cabezado por e!
profesor González de Posada.

Como antes hemos comentado, el núcleo de! Análisis Dim ensional lo cons ti tuye el
Teorema TI de Buckingham, así llamado por ser este auto r quien al parecer publicó la
primera demostración [5J. De todas las maneras , existe n varias interesantes an écd ot as
sobre el origen del teorema que el lector puede encont ra r en [6J del grupo anteri ormente
citado.

Una vez conocido este teorema, ha sido utilizado ampliame nte en múltiples aplica­
ciones técnicas por físicos e ingenieros.

Como dijimos al pr incipio, aquí lo vamos a utilizar para presentar una nu eva prueba
del Teorema de Taylor y de la Regla de Barrow.

En la sección primera, presentaremos el contenido del Teorema TI , con una idea
abreviada de su demostración. En las secciones 2 y 3 present amos las corres po nd ientes
demostraciones del Teorema de Taylor y de la regla de Barrow.

§I .- TEOREMA TI

Supongamos que en un problema físico interv ienen n magnitudes físicas (A, B , .., Z ).
Sean MI, M 2 , •• . , MI¡ las magnitudes físicas fundamentales correspondientes al problema.
Supongamos las siguientes relaciones dimensionales entre unas y otras magnitud es:

B = M{3¡ M {32 M {3k
I 2 ••• k

Z = M(¡ M (2 M (k
I 2 . . . k

Sea mI, m2, ..., mk un sistema de unidades de las magnitudes fundamentales . Sean
0' , {3, ..., ( las medidas de A, B , ..., Z respecto de estas unidades. Sea finalmen te

ifJ(O',{3 , ....,() = O

una fórmula del problema físico objeto de estudio.
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(1)

9

r,b(0:, {3 , ..., () = r,b[(o:l)"'t, {3 I , ...,(( "Y=I ] =

Ahora derivamos F respecto de X l :

{3' - {3( {31 (3k )- Xl . . •. X k

- ,-, ... ,

= G(o:l,{3I , ..., ( " ) = O

Sea {Xl , X2, ••• , xd una k - t up la de números positivos, y tomemos como nuevas
unidades fundam entales las siguientes:

(' = ((xil ....Xik)

Como la fórmula que rige el fenómeno es completa, t ambién se verifica:

Ahora las medidas de A , B , ..., Z serán 0:' ,{3' , ..., ( ', que como sabemos se relacionan
con las anterior es mediante:

r,b[o:(Xfl....X~k) , , ((xii....xik)] = O

Si ahora fijamos una n -tupla 0:,{3, , ( y dejamos variar las xj, ob tenemos la
siguiente función en X j que además será idénti camente nula

donde con r,b; indicamos la i-ésima derivada parcial de r,b. Haciendo Xl = X 2 = ... =
Xk = 1 se obtiene:

Ahora reemplazamos las n variables (0: ,{3, ..., () por (0:1 , {31 , ..., ( " ) en la form a
siguiente:

a ) Si 0:1 =1- O hacemos o: = (0:")"'1
b) Si {3l = O hacemos {3 = {3" .
De esta forma se tiene



Observemos que la dimensión ' ele estas variables resp ecto de !vII es o bien uno (si

0' 1 ¡. O) o bien cero (si (31 = O).

Calculando las derivad as de G, la relación (1) se convierte en :

0' " (;1 + (3"G2 +...+ee; = O (2)

Ahora introducimos unas nuevas variables ( ZI, Z2 , . . •, Zn -I, (") en la forma siguiente:
a) Si 0'1 ¡. O hacemos 0'" = ZI ("

b) Si (31 = Ohacemos (3" = Z2

Notemos que todas las variables Zj son de dimensión nula respecto de MI '

Así tenemos:

G( 1/ (3" 1' 11) G[ 1'" 1'" 1'11]0', ' ''','> = ZI'> ,Z2,·· ·,Zn- I,> ,o,

= H ( Z I , Z2 , .... . ' Zn -I,(") = O

Ahora se ve fácilm ente que la derivada de H respecto de la última variable (" es
idénticamente nula, dando así lugar a una nueva función:

WI(ZI, Z2, •. . , Z n - I ) = O

equivalente a la inicial que describía el problema con una variable menos y además,
como ya lo hemos indicado anteriormente, todas ellas adimensionadas respecto de la
primera magnitud MI,

Como es fácil ver, este proceso se puede reiterar y en cada paso se reduce en una
unidad el número de variables y se gana una magnitud r.especto de la cual las nuevas
variables son adimensionadas.

De esta forma en la etapa final se llega a una función de la forma

(3)

equivalente a la inicial y con todas sus variables totalmente adimensionadas.

Ahora bien, ¿Cómo .son las variables II j? Recordemos que en la primera fase se
tenía:

0'" 1-1

ZI = (iI = O'at(Ci'

Así siguiendo los sucesivos cambios se puede observar que en general la forma de
las últimas variables es:

IIj = O'A, (3A2 ...(An

dond e todos los exponentes A¡ son racionales. Es decir cada nueva variable IIj es un
monomio formado por el producto de potencias de las variables iniciales con exponentes
racionales . Esto justifica la notación IIj Y el nombre del teorema, que pasamos ya a
enunciar:

10



***

§II.- TEOREMA DE TAYLOR.

Teorema TI.- Si en un problema f ís ico in te rvienen n magn itudes fís icas y hay
k magnitudes fundamentales (n > kJ, existe un a relació n fu n cion al que describe el
problema, entre n -k variabl es adimensionadcs, cada una de las cuales es un producto
de potencias con exponente racional de las variables iniciales .

11

Dad a una función f : ]Rn -¿ ]R, consideraremos cad a un a de las n-l-I variables
(Xl," " X n , y) como medidas de unas magnitudes fundamentales y t rataremos de aplicar
a f la técnica del teorema TI.

Si indicamos con (X I, . . . ,Xn,Y) dichas magnitudes fundamentales, resul ta que
las dimensiones de las n-l-l variables (XI' '' ''Xn,y) Y de las sucesivas derivadas de y ,
suponiendo que existan, y denotando con:

8P 8P¡ + . ..+Pn

8xp 8x 1P¡ . •• 8Xn Pn

son las que aparecen en la tabla siguiente :

8 8 8P
Xl ... X n y - y ... - y ... axp y ...

8X I 8x n

Xl 1. ... O O -1 .. . O ... -PI . ..

X n O 1 O O -1 -Pn

y O O 1 1 1 1

Según la técnica del teorema TI, hemos de elegir n-l-I columnas de manera que la
mat riz que aparezca sea no singular. En este caso seleccionamos las columnas marcadas.
Las columnas restantes las indicamos con la n-t up la que marca su orden de derivación .
En par ti cular (O, .. . , O) representa la columna encabezada por y.

Sup ondremos sin pérdida de generalidad que todas las derivadas son tomadas en el
origen (O, ... , O) Y que y( O, ... , O) = O.

Ahora cada variable TI(P¡ ,...,Pn ) está formada por un producto en el que intervienen
las n+1 columnas de la matriz fundamental elegid a y la propia variable



(4)oo.)

oo .] = O

Y = H(XI~Y'éJXI

-[ éJIIJ y , X l éJXI y ,

con exponentes A¡ quc luego determinaremos:

X~l '" x~,n éJP
II (p, ... . .Pn) = x 8 y éJxPy

1 8 Xl

La forma pa ra determ inar los exponentes, consiste en exigir que la variable sea ad i­
mensiona l, es deci r, en igualar a cero los exponentes correspo ndientes a cada magnitud
fundam enta!.

Coeficiente de X n : An - Pn An+2 = O

Coeficien te de Y : An+l + An+2 = O

12

De est a form a la función (3) es:

Coeficiente de Xl : Al - An+l - PI An+2 = O

AI '= PI - 1 ,; "' ; An = Pn; An+l = - 1; An+2 = 1

Ahora probemos que H es una función lineal viendo que sus derivadas parciales
son constantes.

Como el sist ema es homogéneo" hacemos An +2 = 1 Y de esta forma tenemos la
solución:

Sea a = (a(Pl ""Pn ») E Dom H . Esto supone la existencia de una función analítica
f y un punto a = (al, '" an ) E IRn tales que:

Esta igualdad nos permite despejar y obteniendo una nueva función H de la si­
guiente forma:

así la variable adimensional es:

[
y X 2 X X~l ,• • • x~n éJP ]

IIJ 8' 8 'oo., ~ 'oo ., 8 8xpY,. oo = 0
X l 8x , y X l 8x, y X l 8x, y Xl 8 x , y

y que a su vez origina:



(5)

1
=

q!

{
::p J(O ~ , O)

::p f(O, , O) + ¡t q!

H ( oo · , O'( qli .. . ,qn ) + 5'00') - H (oo. , O'( q¡ ,.. . ,qn ) ' oo , )

5

oP
-o91' (0 , ... , O)

xP

= f(al" ' " an ) + ¡ta
q

- H (.!-f .!-f q, s«- al J:l , ••• , a n o ' ...,al . .. a n
uXl X n

= H (0'( 1,0,. .. ,0), ' .. ,0'(0, ... ,1), . .. , O'(q¡ ,.. . ,qn) + a q I1q! . .. )

Se comprueba fáci lmente que:

Ahora elegimos una n-tupla q = (ql, ' . . , qn) y definimos para cada ¡.t real la función:

13

8P
O'(p , , ... Pn) = af' . . .a~n 8x p feo, .. .,O)

donde q! = ql ! "" qn!.

De esta manera expresando la func ión 91' mediante la fórmula (4) tenemos que:

y por consiguiente:

Sustituimos la n-tupla (x 1, .. . , X n) por (al , . . . , a n), con lo cual la expres ión anterior
queda:

y en consecuencia existe la derivada parcial de H respecto de la variable de lugar
(ql, . .. , qn ) y además dicha derivada es constantemente igual a J,.

. q.

En consecuencia,' H es lineal y de la forma:

Par a abreviar tomaremos 5 = aq ¡t q! y calculando el cociente incremental de
H correspondiente a la variable de lugar (ql, . .. , qn), teniendo en cuenta para ello la
fórm ula (5) tenemos:
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*

y =

*

x I(J,x) feO) ¡'(O) .. . f (n)(O) . ..
x 1 1 O - 1 -n

y O 1 1 1 1

x P apL I-a y(O, . .. ,O)
p . x p

(PI ,..•,Pn)

y éste es precisament e el desarrollo del Teorema de Taylor .

Eligiendo las dos columnas marcadas para formar la matriz no singular y proce­
diendo en forma análoga a lo hecho en la sección 11, encont ramos las siguientes variables
adimensionadas:

En general:

Según el teorema II existe una función 1> tal que :

1
III = x f( O)

x f'(O) x2f'(0)
IIl--- --....:~...!...

- f eO) ~ x f( O) .

§IIL- REGLA DE BARROW

Ahora supongamos f(t) una función real con dominio algún intervalo que contenga
ala. Para cada x dentro del dominio tratamos de valorar la integral de f sob re [O , x]
int erpretada como el área encerrada entre f , el eje OX y las orden adas en Oy en x .

Dicha integralla .indicaremos con f (J, x), y supondremos como consecuencia de su
significado geométrico que I es lineal y monótona respecto de f.

Como el TeoremaII sólo adm ite un conjunto contable de datos, hemos de limi tarnos
a suponer que f es analítica y así queda determi nada por sus derivadas suces ivas en un
punto, que en nuestro caso elegiremos el origen . También suponemos que la función no
es idénticamente nula y que por consiguiente existe k E N tal que f (n)(o) =1= O. Aquí
supondremos que k = OY por lo tanto f eO) =1= o. .

Exponemos a continuación la tabla de dimensiones de las diversas variables, en
función de las dos magnitudes fundamentales que indicaremos con X e Y.



(6)

si k # n
si k = n

J[96,1) - J[af(at) ,l)
=

Sn!

15

Ahora tenemos:

Se ve que entonces:

J[af(at),l) = G(ao, , an- l ,an, a n+J " " )

J[9ó,1) = G(ao, , an- 1>a n + SnI, a n+l , ' '' )

Así podemos calcular el cociente incremental de G resp ecto a la n- ésima variable:

Para. cada S # O definimos:

9ó(t) = af(at ) + St n

J
III = xf(O ) = F [III , IIz, ..., IIn , . ..]

xz1'(0) x3 f" (0) X n+1 f(n )(o)
J = xf(O )F[ xf(O) , x f (O) , ..., x f (O) , ...)

J = G[xf(O), X
Z¡t(0), X

3¡"(O), ..., X
n+1 f(n)(O), ...)

y finalmente:

Hasta aquí llega el Análisis Dimensional. Ahora bien, ¿cómo es la fun ción G?
Analizando sus derivad as parciales veremos que es line al resp ecto de cad a una de sus
variables:

Elegimos cualquier punto (a n ) del dominio de G. Esto supone que existen i ,
función analítica y un número positivo a tales que:

de donde:

donde hemos tenido en cuenta la definición de 96 y la propiedad de linealidad sup uesta
al principio para J.

Vemos por (6) que existe derivada n- ésima de G y que dicha deri vada es constante.

Vamos ahora a calcular dicha derivada G n . Si p(t) = i" tenemos:

y por consiguiente:



1'" +00 +00 J(n)(o) '
J(t) dt = IU, x ) = L e; x n+1 J(n)(o) = L xn+1

o n=O n=O (n + 1)!

Si a esta nueva función la llamamos F se observa que F' = J, es deci r que F es
una primitiva de f.

Así hemos llegado a la conocida regla de Barrow para nuest ro caso :

L(x) = I(p,x ) = G(O, ...,O,x n+1n!,O, ...)

Derivamos respecto de x :

dL (x) = Gn(n+ 1) z " n! = Gn(n + 1)! z "
dx

En particular , si x = 1, tenemos:

dL
dx (1) = Gn(n + 1)!

Por otra parte:

L(l + E) - L(l) = I [p , l + E] - I[P,l ]

y utilizando las hipótesis iniciales se tiene:

E:::; I[p, l + E] - I [P,l] :::; E(1+ E)n

por lo que resulta

~~(1) = 1

que reemplazándolo en (7) nos da el valor de:

1
Gn = -,---.,-

. (n+1)!

De esta manera tenemos ya el valor de IU, x):

1'" J(t) = F(x ) - F(O)
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1. INTRODUCTION

19

(2)

(4)

(3)

(1)

(5)

F(x) = O

JIF'( x +h) - F'( x)1I ~ A(t + IIhll,t )

H (xn,Yn) = F'(Xn )- 1 (F' (xn + ~(Yn - xn)) - F'(xn))

Xn+! = Yn - ~ H: (Xn' Yn) (I - ~H(xn ' Yn )) (Yn - Xn)

for all n ~ O and for sorne Xo E D . Here F' (x n) denotes a line ar operator which is th e Fréc he t­
deri vati ve of th e operator F eval uated at x = Xn' We sho wed that un der st andard Ne wt on­
Kantorovich hypotheses the order of convergence of the iterati on {Xn} (n ~ O) to a locall y unique
solution z" of equation (1) ·is four [3], [4], using Lipschitz hypotheses on the seco nd Fréchet ­
derivativo of F .

In thi s study we irnprove further on th ese result s by assurning th at th e following condi t ion s are
satisfied

in a Banach space El, where F is a non linear operat or defined on sorne convex subset D of El
with values in a Ban ach space E2 .

'vVe recent ly introduced the method given by

Ca meron University
Dep artment of Mathema tics
Lawton, OK 73505, U.S.A.

Rev. Academia de Ciencias. Zara goza. 51 (1 996)

ERROR BOUNDS FOR AN ALMOST
FOURTH ORDER METHOD UNDER

GENERALIZED CONDITIONS

Abstract. We provide a convergence theorem for an almo st fourth order method in
a Banach space. Th e same method was found to be convergent of order four under
standard Newtou-K antorovich-type assump tions [3J . In thi s study we show how to
improve on these ever further by introducing sorne Ptak-like conditions .

Ioan nis K . Argyros

In this study we are concerned wit h the problem of approxirnating a locally uniqu e solu tion x'
of the nonlinear equation

for all x E U(xo,R) = {x E.EI I lIx - xoll ~ R} ~ D for sorne fixed Xo E D and sufficientl y small
and fixed R > Owith IIhll ~ R - t . Th e function A is conti nuous in both variables and such that
if on e of the variab les is fixed then A. is an increasi ng funct ion of the other on [O,RJ.

We first int rodu ced these condit ions in [lJ-[3J and the references the re for Newton and Newton­
like met hods to imp rove on the error bounds related with Ptak 01' Zabrejko-Ngucn assumptions
[5], [7J and th e references there . \Ve also show how to choose the function A .



11. C ONVE R G ENC E ANALYSIS

(6)

(7)

(8)

(9)

(23)

(20)

(19)

(17)

(15)

(14)

(16)

(18)

(1.3 )

(22)

(21)

(10)

(11)

(12)

. '(3 hn+1
sn+l = tn+l +- ­

an+1
Cn

tn+1 = Sn+-,
an

o(r ) =1- (3.'1 (r , O) on [O,R] .

T( r) = So + r .'1(t, r) c1t + r .'1(t,r)dt + f(r )r,s; Jo
f (r ) = ~.'1(r,r) (1 + (3.'1(r,r)) + ~ (3.'1( r , r) .'1(r, 1')

4 . a(r ) 2 . a(r )

3 (3.'1(r,r) ( 3 (3.'1(r ,r))+- - - 1+ - - - -
4 a(r) 2 a(r)

(in = 1 - ¡3.'1( lI xn - xoll,O)

an = 1 - (3.'1(t n ,'O)

bn = A (lIxn- xoll+ ~ IIYn - xn ll .Ilxn- xoll)

b - A (tn +2sn )
n - 3' tn

to = O, So ~ lI yo - xol!. (3 ~ IIF'(xo)-11I for sorne Xo E D

en+! = {3 [1 - (3[ .'1((1 - t)lIx' - xo ll+ tllxn+l _ xo ll, O)dt] -1 ,

Pn = [ .'1(llxn- x~1I + tllx' - xn ll, IIxn- xolDllx' - xn lldt for all n ~ O

20

'¡Ve can now sta te and preve th e main result :

We will need to int rodu ce the const ants

Theorem 1. Let F :D ~ El -> E2 be a nonlinear operator whose Fr échet derivative F' satisfies
condition (5) on U(xo, R ) [or sorne fixed Xo E D and R > O.

and

and the fun ct ions

a = 1 - (3 .'1(R1 ,0)

ao=1- ¡3.'1(R 1 ,0) ifR =RI or

ao = 1 - R ~R rR
.'1(t,O )dt

. l JR.
for fixed R1 an d R with O~ R I < R, the sequences



Assume:

(31)

(25)

(26)

(27)

(28)

(29)

(30)

(24)

I!Xn+1 - Ynl! ~ tn+l - Sn,

I! xo - xn l! ~ R 1 - tn ,

I!x' - Snl! ~ R1 - sn,

I!F(xn+tll! ~ iin +l s hn +l

I! x' - Xn+l l! ~ en+I iin+1 ~ R 1 - tn+ l

iin+l = l A( JlYn - xo ll + t Jl Xn+1 - YnJl, JlVn - xolll Jlxn+1 - YnJldt

+ l A( Jl xn - xoJl + tJlYn - xnJl, Jlxn -:- xolllJlYn - xnJl dt

+ ~A ( Jlx n - xoJl + ~II Yn - xnJl , Jlxn- xo l!) JlYn - x nJl

1 bn
+ -213::- A(lI xn - xoJl + JlYn - xn Jl , Jl xn- XoJl )Jl Vn - xnl!

an3(2 -
+ 4.'1 I! xn- xo l! + 3"Jlvn - xnl!, Il xn- xo l!) (3~n JlVn - xnJl.

an

where iin +l is given by

Proof. (a) By relations (6), (14), (15), a nd the monotonicity of the function A, we deduce that
the sequence {tn} (n 2: O) is monotonically increasing and nonnegative. By the sam e relat ions
we can easily get to ~ So ~ tI ~ S I ~ R1. Let us assume th at tk ~ Sk S tk+l ~ Sk+I ~ R1 for
k =0,1 ,2, . . . , n. Th en by relat ions (14) and (15) we can have in turn

(3 {ltk +! j Sktk+ 2 ~ tk+I + - (R ) A(t , srJdt + A(t , trJdt
a 1 3 1l: tI,;

+ ~A (k + 2Sk t) ( (3 A. ( tk+32Sk , tk)) 1 (3A(t
k+

32S
k

,tk)
4 3' k 1 + (Sk - trJ+:- A(t k" sk)(sk - tk)

ak 2 ak

+ ~ 13A ( tk , skl.(s._ t . ) } ~,8A(~,tk) ( . :3f3 A ( tk+32Sk , tk) )
4 ak k k + 4 ak 1 + 2 ak (Sk - tk)

21

(i) There ezists a minimum nonnegative numbe r R1 such tluit

(ii) The numbers R, R 1 with O~ R1 ~ R are such that the eonstants a and ao given by (7) and

(8) respectively are ]Jositive and U(xo , R) S D.

and

Then
(a) the sealar sequenee {tn} (n 2: O) generated by (14) and (1.5) is monotonically inereasing and

bounded above by its limit, whieh is number R 1;
(b) the sequenee {xn} (n 2: O) generatéd by (2)-(4) is well defined, remains in U(xo, Rtl [or all

n 2: O, and converges to a solution XO 01 the equation F(x ) = O, which is unique in U(xo , R).
Moreo ver , the lollowing estima tes are true [or all n 2: O



< ... < So +~[tk +I A(t,R¡)rlt t I" A(t , H¡)tlt + ~A(H ¡ ,R¡) (1 + ¡J..\(:~¡ , Ud) u,
- - a(R I ) J,o Jo <1 " 11 )

1 (3 rl( R¡. R¡) . :l ( :3 ¡J,\(U I , R¡») ]
+"2 a(R

I
) A( R1,R¡)R I + ;¡ A( R¡, R¡) 1 + :1 a(R¡) R I

= T(R¡) ~ RI by (24) .

Hence, the scalar sequence {tn} (n 2: O) is bounded aboye by R l . By hypoth eses (24) R, is the
mínimum positi ve zero of the equation T(r ) - r = Oin [O, R¡J and from the aboye R, = lim n _ oo tn.

(b) Using (6), (7), (14) and (15) we get XI, Yo E U(xo, R¡), and that est imates (25) an d (26) are
t rue for n = O. Let us assume that they are true for k = 0,1 , 2, . . . , n - 1. In fact by the indu ction
hypoth esis

IIX k+l - xoll ~ II Xk+l - yo ll + lIyo - xoll ~ II Xk+l - Ykll + IIYk - Yoll + lIyo- xoll
~ .. . ::; (tk.,. l - sd + (Sk - so) + so::; tk+l ::; Rl,

and

IIYk+l - xoll ::; II Yk+1 - Yoll + lIyo - xoll ::; IIYk+l - Xk+l ll + IIXk+l - Yk ll

+ II Yk - Yo ll + lIyo - xoll
::; . . . ::; (Sk+l - tk+l ) + (tk+l - Sk) + (Sk - so) + so::; Sk+l ::; Rl .

T hat is xn ,Yn E U(xo,R¡) for all n ~ O. Using hypo th esis (5) we can have

IIF1(xO)-1 1l 'IIF1(Xk) - r (xo)lI ::; I1 13A(lIxk - xoll ,O)::;13A(tbO)

s 13.4(R 1, O) < 1.

It now follows from the Banach lemma on invert ible op erat ors [4] that r (Xk) is invert ible, and

(32)

By (2)-(4) we can easily obtain the approxim ation

F(xn+l) = f [F1(Yn +t (xntl - Yn)) - r (Yn)] (Xn+l - Yn)dt

+ l[F(Xn + t(Yn -- Xn)) - r (Xn)](Yn - xn) dt

- ~ (r (X
n ~ 2Yn) _ F (Xn)) (Yn - Xn)

- ~ {(F1(Yn) - F'( xn)) - ~ (F1en ~ 2Yn) - F1(Xn))} H(xn ,Yn)(Yn - Xn ) (33)

for all n ~ O.
Using condit ion (5), the induction hypothesis and (32) we can have in turn

IIF(xn+l)11::; l A(IIYn - xoll + tllXn+l - Ynll,IIYn - xoll )lIxn+l - Ynll dt

+ l A(lIxn - xoll + tllYn - xnll,lIxn - xoll)lIYn - xnlldt

+ ~A ( lI xn - xoll + ~ IIYn - xnll.llxn - xoll) IIYn - xnll

1 bn+ '213 ii A(lIxn - xoll + IIYn - xnll,lIxn - xoll) lIYn - xnll
n .

+ ~A (lIx n - xoll + ~IIYn - xnll.llxn .: xoll) f3 ;: IIYn - xnll = iin +1 (34)

22



::; l A(sn + t(tn+l - Sn), Sn)(tn+l - Sn)clt + l A(tn + t(Sn - tn), tn)(Sn - t,,)dt

3 (2 ) ,6 A (~, t n )+ 4A tn + 3" (5n- tn ),tn (Sn - tn) + 2 an A(Sn, tn)(Sn - tn)

3 (2 ) ,6A ('nV$n,tn)+ -A t.; + - (s" - tn), tn (Sn - tn) = hn+\, by (16). (35)
4 3 Un

By relations (2) and (35)

, -1 I ( II ,6h.n+! ,6hn+1 ' tIIYn+1 - xn+111 ::; IIF (X n+1) " 11· IF xn+d ::; -_-- ::;-- = Sn+1 - n+1
On +1 an +1

by (14), wh ich shows (2,5) for al! n ~ O.
Similarly from (3) , (4) and the above

I 3 /i" ( 3 bn ) IIXn+1 - Yn ll ::; 4' (in 1 + 2 (in IIYn - x,, 1

3,6A Cn~2$n,tn) ( 3 ,6A ( tO+32$0 ,tn) )
< - 1 + - ----'------'-----'-
-4 ~ 2 ~

'(Sn - tn ) = tn+1 - Sn,

which show s (26) for all n ~ O.
It now follows from estimates (25) and (26) th at th e sequ ence {Xn} (n ~ O) is Cauchy in a

Banach space El and as such it converges to sorne x' E U(xo,R1) with F( x' ) = O (by (2)).
To sh ow uniqueness, we assume th at there exists anothe r solutio n Y' of equation (1) in U(xQ, R).

Th en from hyp othes is (5) , we get

IFI(xO)- l l · l "F'(x · + t(y ' - x' )) - F' (xo)lIdt

::; ,6l A(lIx' + t (y' - x') - xoll,O)dt

::; -: A(l - t )llx' - xoll + tlly' - xo ll. O)clt

s ,6l A((l - t)R1+ tR,O)dt < 1, since ao > O by (i).

It now follows that the linear operator f¿ F'( x' +t(y' - x') )clt is inver t ible, and from th e appro x­
imation

F(y') - F(x') = l F'(x' + t(y· - x·))clt (y· - x')

it follows t hat z" = y".
Estim a tes (27) and (28) follow easily from estimates (25) and (26).
Finally, using the triangle inequality , and th e approximatious

xn+! - x· = B;;~\F(xn+ 1 )

B,,+\ =11

F' (x' + t(xn+! - x·))clt,

Yn - X n = x· - X n + F'(xn)- l {l (F'(x n + t(x · - Xn)) - F'(xn ))(X' - xn )dt}

and the estimates
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and

In. A P P LICAT IO N S .

(38)

(37)

(36)

.:A l (t + ll h ll , t) = t q(s)dz .

F(~)(t) = x(t ) -l f{(t , s ,x(s ))ds.

IIF'(v) - F'(w)1I ~ q(r)lIv - wll

Condit ion (5) wil! th en follow from the aboye choice of the fun cti on A.
(b) Let us assum e that instead of condition (5) the following is tru e

For an applicat ion of this choice of Ato the solution of nonlinear integral equations using Newton's
metho d see [3] and the example th at follows.

Moreover we can choose q(r ) = k for all r E [O , R] and for sorne k > O. Then with A as in (a)
ab oye

IIF,(.1:o)- IIl ·lIlF'(X" +t(~n+l - x")) - F'( xo)lldt

~ {J l A(lix• + t(Xn+ l - X-) - xoll,O)dt

~ pl A((1 - t)lIx" - xoll + t llxn+ l - xoll,O)dt

s; pl A((1 - t )Rl +tR1 ,0 )dt s; PA( R 1, 0) < 1 by a > O,

an d

A(t +IIhll,t) ~ kllhll , A( t + IIhll, t) S; A 1(t + IIhll,t )

24

"Ve assume for simplieity that,xo = O, and make use of the following standard result whose
proof ean be found for exarnple in [3J .

IIB;~ lll ~ en+l ,
where en+! is given by (19) , we can immediately obtain estimates (30) and (31).

Th at completes the proof of th e theorem.

R emarks . (a) The funct ion A appe aring at the right hand side of conditi on (5) can be chosen as

A(t + II h ll , t ) = sup II F' (x + h) - F'(x )lI .
:<EU(:<o.t ).lIhll :<; R-t

These estimates (esp ed ally the first ene) show that we ean improve on the distanees IIYn- X n 11 and
IIxn - x" 1I as we did in [IJ- [3] for Newton and Newton-like methods.

(e) Estimates (30) and (31) ean sometimes be solved explicitly for IIxn- x"11for all n ~ O. For
example we can choose q(r ) = k and A as Al in (b) aboye.

for all V,W E U(xo ,r) ~ U(xo, R) for some nondecreasing function q on [O,R] . Th en as in [3J ,
condition (5) wil! be true for

We will complete this study by providing an example that shows how to choose the constants
(3, So and the funct ions q(r) and Al (given by (36) and (37) resp ecti vely).

Let us assume that F1 = F2 = e = e [0, 1] the spaee of eontinuous funct ions on [0,1] equipped
with the usual supremum norm . "Ve eonsider Uryson-type nonlinear integral equat ions of the form



(48)

(47)

(46)

(44)

(43)

(42)

(40)

(41)

(39)

h(t ) = [c~ c; ( O) - dIC3(0))C¡( t ),

h(t ) - f K~ (t , s , O)h(s)ds = - f K (t , s,O)ds.

1J = sup I l ' K (t , s,O)ds + t r(t ,s) t K (S,P,O)dPdS!
tE[O,I) Jo Jo Jo

sup t sup 1 ](~u(t,s , u) lds < oo.
t E[O, lj Jo l u l ~ T .

Moreover, the /eft hand side in re/ation (39) is then the minima/ Lipschit z constant q(r ) in (36) .
Moreover, the constants 1J and /3 are given by

Using relations (39)-(41) we obtai n

on [0, 1). T hen usin g relations (43), (46)-( 49), and (6) we get

d - ~ d, - ~ d ' ( ) _ _ 2_
¡ - 10 ' - - 100 ' 2c3 O - 1000 < 1,

( ) 30 6 15 {3 __ S14.
r t , s = 499 t5, q(r) = 100 1' , So = 499 ' 499
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where

and

{3 = 1 + sup rl ¡r(t , s )lds ,
tE[ O,I] Jo

where r( t, s ) is the reso/vent kernel of the equation

{3 =1 + dIC3(~ ) IIcIII . (49)
1 - d2C3(0)

Thus, in thi s case a complete and explicit computat ion oí th e function T given by relati on (21)
is possible. As an example, let us choose

c~ = l c2(s)h(s )ds. (45)

Subst itu ting rela tion (44) into (4.5), one may calcul ate c~ and hence find the resolvent kernel r(t , s )
in case d2c3(0) < 1, to get

and

Then relation (42) becomes

Let us conside r a simple exam ple. Suppose tha t K (t ,s ,u) = CI (t)C2(S)C3(u) wit h two cont inuous
íunctions CI and C2 , and C3 E C2. We set

T h eorem 3. Th e Lipschiiz condition (36) for the Fr échet-deriuotioe F' of th e operotor (38) ho/ds
if and on/y if the secorul derivative A'~u (t , s , u) exist s for a// t and a/mos t a// s and u, and



The hypotheses of Theorem 1 wil! be sat isfied if

r7 _ 85.47093804r s+ .0263105S9r4 +2033.S15799r3 - 1.702850901r2 - 917.420396r + 27.55261348 ::::; O

and
R ::::; 5.688635222 =1lJ;¡ .

That is, the hypotheses of Theorem 1 will be sati sfied if we choose

R¡ = .03007 an d R = Ro.

The conclusions of T heorem 1 can now follow.
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F(x) = O

Hn = - F'(xn) ' 1 F"(xn) (Yn - xn)
-1

1 -1[ 1 ] 2
X =y - - F' (x ) I- - H F"(x )(y -x )

"+1 "2 n 2" """

lollowing iterations

Ioannis K . Argyros
Department of Marhematics. Cameron University

Lawton, OK 73505, U.S.A.

Abstraet

Local and semi-local convergence theorerns are provided for a Chebysheff-Halley­
type method in Banach spaces using divided differences of order one. The order of
convergence of our meth od is almost three.

Here P(x,,). F"(xn) denote the ñrst and second Frechet-derivatives 01 F evaluated at

x = xn. Note that these operators are linear and bilinear respectively . With the exception 01

some special cases these generalizations have no practical value because they require an

evaluation ot the second Frechet-derivative at each step (which means a number 01 lunction

evaluations proportional with the cube 01 the dimension 01 the space). Discretized versions 01

the aboye method will be uselull in numerical computations. That is why we introduce the

On the convergence of a Chebysheff-Halley-type method using
divided differences of order one.

íor sorne Xo E O and all n z O.

in a Banach space E1• where F is a nonlinearoperator defined on some convex subset D 01 E1

wííh values in a Banach space E2.

The method 01 tangent hyperbolas or the Chebysheff-Halley -type method is a cubically

convergent iterative procedure Ior solving non linear equations. This method has been

generalized tor nonlinear operator equations in Banach spaces by [5]-[8]. Recently a

Chebysheff-Halley-type method 01 order three was introduced in [4]. In particular the method

1. Introduction . In this study we are concerned with the problem 01 approximating a

locally unique solution x· 01 the equation



an operator
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Obvious ly, [z,vw] belongs in L(E1 , L(E1 ,E2». From now on we assume that E1,E2 are

Banach spaces and O is a convex subset 01 E1.

We can now prove the following result:

(6 )

(7)

( 13)

( 1 1 )

(8 )

(9 )

( 1 O)

[z,v,w] (v-w) = [z,v] , [z,w] .

Yn= xn - [xn- 1' xnr l F (xn)

Mn = , [xn_l ,x nr 1( [ xn' Yn1 - [xn,xn])

xn+1=Yn ' [xn_l' Xnr1(1 - Mn) ' l ( [ xn,Yn1 - [xn,xn1)(Yn- xn)

Ln= -F'(xnl 'l ( [ xn'Ynl - [xn,xn]l

xn+1 = v- : F'(xnl - .1(1 - Lnl - l ([ Xn'Ynl - [Xn, xn] )(Yn- xnl

lor all n ~ o and some Xo E O,

[XO, .]:D ~L(El ,E2l. (12)

Let V,w be two points of D. A divided difference 01 lhe operator (12) at the points v,w will

be called a divided difference of lhe second arder of F at the points z,v,w and will be devoted by

[z,v,w]. We have by deli nition

[X,y](X - y) = F(x) , F(y)

is called a divided difference of order one 01 F al the points x and y.

The condition (11) does not uniquely determine the divided difference, with the exception of

the case when El is one-dimensional. An operator [.,.] : DxD ~ L(E 1,E2) satisfying condition

(11) is called a divided difference of order one of F on D. II we fix the first variable, we get

for all n ~ O and some x_t -Xo E D.

By [x,y], X,y E ~ we denote a generalized divided difference of arder one. We provide semi­

local and local convergence lheorems lor the aboye ilerations using the majorant theory .

Some applications are also .provlded.

!I, Convergence Analysjs.

We will need the lollo wing delinition [31, [7].

Del inition . Let F be a nonlinear operalor defined on a subset O 01 a linear space E1 with

values in another linear space E2 and lel x,y be two polnts of D. A linear operator Irom E1

into E2, denoled [x,y], which satisfies the condition

and



( 1 9)

(1 8)

(2 O)

(1 7)

(1 6)

(1 5 )

(1 4 )

IIF'(x ·¡-ll1 II(F'(xn) - F'(x·»)I1 = IIF'(x ·¡-ll1l1[xn,xnl - [x·, x·lIl

s Pl (11 xn - x·1I + IIxn - x·ID

s 2Pl r 1 < 4Pl r 1 < 1 by hypothasls (16).

It now lollows trom the Banach lemma on inversible operators that F'(xn) is invertible tor

II[ x,Yl- [u, vJII $ p) [x - ull+ Ily - vii)

29

lorall x, y, u, v e D . and some P'l >O .

(b) the nanlinear aperatar F has divided differences al order ane satisfying the Lipschi tz

and

.E.rQ.Q.f.. We will show that F'(xn) and I - Ln are invertible lor all n ~ O. Note lir st that

eondition (14) implies that F'(x) = [x,x] lor all x e O. Using condilion (14) we now have

lor all n ~ O.

Then the iteration {xnl n ~ O generated by (5) - (7) lor Xo e U ( x " ,r1) is well defined,

remains in U(x· .r 1) lor all n ~ O and converges to x" in sueh a way that the lallowing

estimates are satisfied:

and

exists and is invertible with 1I F'(xT 111 ::; b1

(e) The ball U(x·,r1) = {x e ~ I Ilx - x·1I s r1} is ineluded in D, where r1 ls a

positive number satisfying the inequalities

eandition

Thearem 1 Let F be a nanlinear aperatar defined on a eanvex subset D al a Banaeh spaee

El with values in a Banach spaee E2.

Suppose:

(a) the equatian F(x) = O has a salutian x· e O al whieh the Frechet-derivative F'(x")



(25)

(23)

(24)

(2 1)

Moreover, by (6), (14) and (20) we gel lor all n ~ O

Y
n

- x" = x
n

- x" - F'(x
n
) -1G(xn) = F'(xn) -1[F'( xn) ( xn - x") - (F(xn) - F(x·)))

1

=F'(xi
1

J[F'( Xn) -F'(X .+t(Xn-x·))]dt( Xn-x·) (22)

o

Furthermore, by (5), (14) and (20) we obtain in turn trom the approximation

30

which shows (18) tor all n ~ O.

Moreover trom (18), (20), (24) and the triangle inequality we obtain that

Ilxn+1 - x·U s cUxn - x·11.

It now tollows trom (7), (14) and (24) that

. p 2

11 xn+1 - X·11 s 11 y n-x · 11 + 1- P1(2~ xn-X ~IAIxn-Y n11) 1I x n-Y n1I '

which shows that I - ~ invertible and

11 (1 - L )-111< _1_ < -:;---/";;1cn--2_P1~11x",n-"...x....::....·11 ----..:-

n - 1-IILnll- 1 - P1(211xn - x · 11+ Ilxn- y nlD

which shows estimate (17)and that yn E U(x " , r1) tor all n ;:: O •

From estimate (21), we now have that

that



where

Pl1 Pl 1(1- Pl 1)
0 < c= 1 2 + [ 2 J< 1

- Pl 1 (1- 2 p r)(1- 2pr ) -p r (1-pr )11 1 1 11 1 1

by hypothesis (15).

Furthermore from estimate ( 2 5) wededJce that x 1EU:x·, r 1) and l im x = x* .
n+ n-+- n

That completes the proof of the theorem.

Similarly, we can prove the following theorem:

Theorem 2. Let F be a nonlinear operator defined on a convex subset O 01a Banach space

~ with values in a Banach space E2.

Suppose:

( a) the equation F(x) = O has a solutions x· E O at which the Frechet-derivative F'(x")

exists and is invertible with IIF'(x·r 111 s ~ ;

( b ) the nonlinear operator F has divided differences of order one satisfying the Lipschitz

condition

Ill x, y ) - lu,v)ll::;; p'2C 11x -ull + lIy -v 11)

for all x,y ,u ,V E O and some P'2> O.

( c ) The ball U(x·,r2) is included in O, where r2 is a positive number satisfying the

inequalitites

and

Then the iteration generated by (8)-(10) for x, 1,xO E U( x · , r2) is well delined, remains

in U(x· ,r2) lor all n ~ O and converges to x" in such a way that the lollowing estimates are

satisfied:

11
y - x *11::;;P2( llx n_1- x *11+ [x n-x ·11) Ilx _ x *11

n ~(x-x * + x -x *) n
' -~2~II~n~ -~ 11 ' IIn n ~ II}

and

lor all n ~ O.

31



( 26)

(3 1

(3 3 )

(28 )

( 29)

(3 O)

(27)

( i) Ihe scalar ilerations (In} and {sn} n ~ O delined by

P3 { 2
Sn+l= l n+1+ 1 - 2p (1 -1 ) (I n+1 -S n) + 2 ( S n- t n) ( t n+1- S n)

3 n+l o

2

t
P3( Sn - tn )

- S +
n+l - n 1="PJ2 (1 - t ) + ( s - t )]'

3 n O n n

111 x,y1-I u, vIII~ p'3 ( 11 x - u11+ 11 y - vii)

32

1t )= S + P/2 [3 + _p--'3'--.r_+_ 1_]
o 1 -2P3 r 1-2P/'

( d ) Ihe following estirnates are Irue :

Ihen

( b ) Ihe nonlinear operator F has divided differences 01 arder one satisfy ing Ihe Lipschi lz

Moreover, we can show the lollowing result:

I heorem 3 Let F be a nonlinear operator defined on a convex subset D 01a Banach space

and

lorall x, y , u, v E D aro sorne P·3 >0.

aro

( c) Ihere exisls a minimum nonnegative number 's satistying

1 ( r3) s 's-

where Ihe real funclion 1 is defined by

~ with values in a Banach space E2,

Suppose:

(a) Ihere is a point Xo E D al which Ihe Frechel·derivalive F'(xo) exlsts and is inverlible

and let numbers le and So satisfy lo = O, So~ lIyo - xoll ; wilh

condition



(34 )
11
x - y 11 < I - S0+1 n - 0+1 n

Ily - x 1I < S - I (35)0+1 0 +1 - 0 ...1 0 + 1

Ilxn- x "11::; r 3 -In (3 6 )

and

Ily n- x "11::; r 3 - S n' (37 )

2 2
( 1 - S) +2(5 -1)(1 - 5 ) ::; 2 ( 1 -5 ) ( 1 -1)::;2r ( 1 -1) ::;2r ,

0+1 n n n 0+1 n 0+1 n 0+1 n 3 0+1 n 3

(38)

But, we also have

33

s r (S -1 \ ::; r 2
3 n rf 3 1

are monotonlcally increas ing wilh O s In s sn s In+1 s sn+1 and baunded abave by Iheir

comman Ilrnit, which is number r3.

( i i) The iteratian {xn} n ~ O generaled by (S}-(7) is well defined, remains in U(xo' 'r3)

tar all n ~ O and converges lo some x" E U(xo' r3}' which is Ihe unique solution ot Ihe

equalian F(x} = O in U(xo' r3 ). Moreover, Ihe tollowing estimales are Irue tor all n ~ O;

.!:.rQQ!" (i) We ñrst nole that by hypolhesis (30) Ihe number 'a is Ihe unlque positive

solution ot Ihe scalar equalion T(r) - r = O on [0,r3l. From hypolhesis (26) and (33) (for

n = O), we gel O= lo ~ So s 11, By assuming that Ik s sk s Ik+1, k = 0,1,2.....n we obtain

Ik+1 s ~+1 s 'k+2 s sk+2 by lteratons (32) and (33). Hence, Ihe sequences (In) and (snl

n ~ are monolonically increasing. From hypolheses (26) and (30) we gel lo s So ~ 11 s r3.

Lel us assume that Ik s sk s Ik+1 s r3 tar k = 0,1,2, ..., n-1. Then from ilerations (32) and

(33) we can have in lurn



(39)

(4 O)

34

,
·S( [ x n+t(Yn -xn),xn+t(Yn-Xn)] -[Xn. xnl)(Yn-xn)dt

o

11 -'11 pF' (x ) < 3
. n -~p x- x, ~~3 I1A n AolI

,
+ (1- Ln)-' f[([X n + t(y n- xn),xn+t (y n- xn)]- [xnxnll

o

(5)-(7), (27). (39) and (40) we obtain in turn

Using the approximation
,

F(x n+') = f([y n+ t (x n+' - y n)' y n + t (x n+'- y n)J- [y n' y nJ) (x n+'- y n) dt
o

and

Theretore , relation (38) becomes

t n+2 S T(r3) S r3 by hypotheses (28) .

That completes the proot tor par! (i).

(ii) As in the proot ot Theorem 1, we can show that tor all n ~ O

and



P3 { 2< I -S + 2 S -1 I - s- 1- 2P (1 _ 1 ) ( 0+1 O) (o 0)( 0+1 O)
3 0+1 O

where we assumed that (34) and (35) are Irue for k = 0.1,2, ...• n-1 and atso used Ihe

estirnates

I1 xn+1 - xoll ~ IIxn+1 - Yoll + IIYo - xoll ~ Ilxn+1 - Ynll + IIYn - YolI + IIYo - xoll

and

IIY n+1 - xolI ~ IIYn+1- Yoll + IIYo- xoll ~ IIYn+1 - xn+111 + Ilxn+1- Ynll + IIYn- YolI + .IIYo- xol l

. s ... s (sn+1 - tn+1) + (In+1 - snl + (sn - so) + So ~ sn+1 ~ 'a-

That ts. xn'Yn E U(xo, ra) for all n ~ O.

Moreover from (6). (7), (27), (39) and Ihe induction hypolhesis , we oblain in turn for all

n~O

which shows (34).

Furthermore from sstimates (34). (35) and Ihe Iriangle inequality we obtaln

IIYn+1 - Ynll ~sn+1 - sn
and

11 xn+1 - xnll s tn+1 - In n ~ O.

It now follows from Ihe aboye estímates Ihal the sequences {xn) and {y nl n ~ O are Cauchy

in a Banach space and as such Ihey both converge lo some x· E U (xo' ra) wilh F(x ·) = O

(by (5)).

Finally to show uniqueness, we assume that Ihere exists another solution Y· of equation (1)

in U(xo' ra). Then from hypolhesis (27) we have in turn

li F' (x /111IlIy .+ I( x . - v' ).Y .+ I (x ._y·)1- [Xo' xo l ll dt
o

35



36

and

oo

w =v-
n+1 n

11 f3 = O, we choose TI = So= h = O, and OUf conditions reduce to ~k::; 2P3 only.

We define the scalar iteralions for all n ~ O by

2

e = 1- (~: -1) , provided that r 3 -# O.

1

F(x *) - F(y 0) = f F' (y *+ t( x *- Y *))(x 0- Y O)dt,

o

1 1

fF'(y o+t( x 0- y O)) dt= f [y 0+ t( x O_y 0). Y 0+ t( x O_y 0)) dt

,
::; 2 P3 f 11y "+ t( X " - y ") - X 011dt

O

1

s 2 p 3 f ((1- t )IIXo - y "11+t IIXo - x "¡i)dt
o

s 2P3r 3 < 1, by hypothesis (28).

it now follows that x· = s:
That completes the proof of the theorem.

We will now find the order of convergence for Ihe iterations {xn} , {tn> n ~ O by introducing

standard NeW1on-Kantorovich hypotheses. Let r3 be Ihe minimum nonnegative zero of the

equation T(r) - r = O on (O,r3). Moreover , let us assume that there exist nonnegative

constants K,~,TI ,h,c such that

~K s 2P3' TI ::; so' c s 2h = 2K~TI ::; 1 , r3 ::; 2T1

is invertible. From this fact and the approximation

It now follows that the linear operator



1+~
h 1]Z

2

z
a=i- .

2

With the aboye hypotheses the following are true

37

we would like to show that

and the constants

and

The first inequality reduces to showing thal e ~ 2h, which is true by hypothesis. The resl 01

the inequalities can be preved easily by using induction on n. Indeed lor n = O, we have in

turn by using the aboye hypotheses that

the scalar function



e3 <~ 3 < ~ 3
n-l-1+28 en_l_e n-2en_l'

2 n
(1 - 8 lTl 3-1

n a
1- 8

3

a 3 e + 1
e =.....!!.=(e \ ....!!=!....-

n b n-1' 1 + e '
n n-1

The lollowing estimates can now be preved easily

gWnl=~anbn ' an=zl- w n' b n=z2- w n' bn=an+(1-a~~.
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But, we can have that

P3(V O- WO) : [1 - P3(V O -W O) ] ::; P3(V O -
W

O> .

1-2P3wO
1-2P3w O 1-P 3(l o+So)

and 2~( r3 + ~l < 1.

~ v
1

s s1 and lrom the same arguments vl - wl s sl - tl . That is we have showed the validity

01all the aboye inequalities tor n = O. We now assume that they are true lor

k = 0,1,2, .._, n-1. The induction will be completed easily il we repeat the proot we gave tor

n = O, by observing that we can replace the subscripts 1 by k + 1 and Oby k.

From the prool 01 the theorem it can now be easily seen that the uniqueness 01 the solution

x " can be extended intheballU: x o,r)with zl::;r~z2' provided that U:xo,r) ¡;;;D

So il is enough lo show Ihal

P3( Vo - wo) s 2P3(sO· lo) + 1 - 2P310 '

which is true by hypothesis.



and

Notethat e < 1, provided that 2h < 1. From the above error estimates it now lo llows that
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Under the hypotheses 01 Theorem 3, the íollowlnq estimates are alsoProDosition 1 .

available lor aH n > O

where Iin+1 is given by (41) .

ELQQf.. From hypothesis (27) we obtain in turn

Then the sequenee {w¡J n ~ O majorizes Ihe sequence {xr¡} also and in particular

11xn - x*1I S; en lor all n ~ O. (See also, [4].)

Ii

Ilx -X"II< n-st <r -1
n+1 -~- 3 n+1

. r- 3 , 11 ~ ~ o 11 ' 11- n+1 - 0111

the second Frechet derivative 01 F evaluated at x = xn. Replaee now the differenee operator in

approxlrnatíon (7) by i F" (xn) ard use the same letters lo r the new iteration (x nI

The conditions e S; 2h and fa s 2r¡ are used only to show that ro S; r t 11 these conditions

are violated we can reason as loHows. For sufficiently large n and sinee

n ~ O. Moreover, let us assume that IIF"(x)1I S; M, IIF"(x) - F"{Y)II S; N Ilx - YII lor all
1
"2

x .y e O, IIF' {xJ
111s;

f3, IIYo - x oll s;r¡, énl (3M
2

+ ;~ ) s K.

[ Xn•Yn] - [xn,xnl = [xn,Yn' xnl (Yn - Xn). the operator [xn• Yn' Xn] can be approximated by

iF"(xJ . Here [ xn,Yn. xn] denotes adivided dillereneeolordertwolor F and F"( xn)

A similar analysis for the order of convergence can be given lor the iteration {xr¡} n ~ -1

generated by (8)-(10) via Theorem 4.

r3 = zl' and

r 3 - tn S; an S; Cn for aH n ~ O,

lrom which it follows that the order of convergence 01 the iterations {xr¡} and (t¡J n ~ O is

almost three.



1

s 2p) II(1- I Xx •- x o) + t( X0+1- X0) 11 dt s p3 ( IIX *- X011+ IIX0+1 - X011)
O

by hypolhesis (28). 1I now lollows that the linear operator

1

A =f[ x·+'( X - x *) , x *+ t ( x -x*)Jdl isinvertible ard
n+1 n+1 n+1

o

IIA-
1 11< ~3 lor all n ~ O.
0+1-~p(x*-x + X -x)'-'"'3\lIn noll ' 11~0+1 ~oll}

The results now easily lollow lrom the approximations

(
-1 )

X - X *= A F x
n+1 n+1 (n+l)'

the aboye inequality, the triangle inequality, (8) and (41) .

The proal is now complete.

Note that Ihe second inequality aboye can be solved lor IIxn - x*1I to provide a lower bound

on this estimate lor all n ~ O.

Similarly, we can prove the result:

Theorem 4. Let F be a nonlinear operatordefined on a convex subsel D 01 a Banach space

El with values in a Banach space E2.

Suppose:

(a) Ihere is a point Xo e D at which the Frechet-derivative F'(xo) exists and is

invertible with 1IF'(xo ) ' 111 s ~4 ' and let numbers t_ 1•to and So satisly

11YO - Xo II $; So - xO• O < IIx_1 - xoll $; 'o - '-1 and '- 1 = O;

(b) the nonlinear operalor F has divided differences 01 order one satislying the Upschitz

condition

lor a ll x ,y , u,v e D and sorne P·4 >0 .
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(e) There exists a minimum nonnegalive number r4 sal isfying

T1( r4) s r4

where Ihe real funelion T1 is defined by

P r
2

[ p r + 2 ]T (r )= s + 1; 3 + 4
2

"
1 o - P/ 1- P/

(d) The following estimales are true:

4 P4r 4 < 1, P4~ p'4P4'

ard

Then

(i) Ihe scalar iteratlons {In} n ~ -1 °and {sn} n ~ O defined by

P4 { 2 [ ]S -1 + I -S + S -1 + S -t I -sn+l - n+l 1=PJ(t -tJ+(t -1 )J r., n) (n n-l) (n n) (n+l n)
4 n n+l o

2

P4(Sn- tn)

+~l( Sn- t..) + ( 1n-l- t o) + (1n- 10)J (Sn - I n-l)

and

n ~ 1

are monolonically inereasing with O s In s sn $ In+1 s sn+1 and bounded aboye by Iheir

common limil, which is number r4"

(ii) The iteration {xn) n ~ -1 generaled by (8)-(10) is well deñned, remains in

U(xo' r4) for al nz -1 and Converges lo sorne x· E U(xo, r4), which is Ihe unique solution of

Ihe equation F(x) = O in U(xo' r4) . Moreover Ihe following estímates are true for all n ~ o:

1Ixn+1 . Ynll s tn+1 . sn' °

II Yn+1 ' xn+111 $ Sn+1' In+1,

1I xn ' x"11 s r4' In
and

41



Under the hypotheses 01 Theorem 4, the lollowing est imates are also

+1-p
4

Propositian 2.

1

+ (1 - Mn)-1[Xn-l' X.r ([x n ' y nJ- [X n-l' xnJ) f[ [x n+ I(y n-x n) ,
o

(2) Theorems 1 and 2 can be used lo solve autonomousdifferential equation of the form

As in Proposition 1 we can show :

F'(x) = P(F( x))

where P is a known operator. It Ihen lollows that since F'(x") = P(O). the linear aparatar

F'(x") is known despile Ihe tact that x" is nol known.

42

Remarks (1), The approximation lor F(xn+1) in Theorem 4 is given by

[x n+ t( yn- x n)) - [x n-1 ' X n]J(y n- Xn)dI
1

+ (1- Mn(f[ ([x n+ 1(y n- xn). x n + 1(y n-X n)J - [x n-l ' xnJ) - ([x n,y nJ -[x nX nJ)](Yn- x n) dI
o

lar all n ~ O.

1

F(Xn+1) = J([ y n+ t (Xn-t - y n) , y n + t (Xn- t - y n)] - [y n' y nJ) (X n+l - y n) dt
o

Note that the second inequality above can be solved lar IIxn- x*1I to provide a lower band on

this estimale lar all n ~ O.

available lor all n ~ O



(3) The ilerations inlroduced here are taster Ihan lhe ones inlroduced lor Ihe Euler -

Chebysheff melhod in [5]-[8]. These aulhors used hypolheses on divided differences 01 order

one and two, whereas we only used hypolheses on dillided differences 01 order one. Similar

results can be preved tor Ihe Euler-Chebysheff melhod.

(4) The main idea lor Ihe introduction 01 our lterations carne frorn Ihe observation Ihat due

lo (1 3) the linea r operator i- F" ( xn)( yn- xn) appearing in (3 ) and (4 ) can be approximated

by [xn•yrJ - [xn• xrJ· The approximalions [xn•xn] - [yn' yrJ and [xn•xnl - xO ' Yn] can also be

used. The linear operator [xn-l ' Xn] can also be replaced by [xn•Xn-1] or [yn-1 •xnl .

(5) The hypothesls on F( xo) in Theorem 4 can easily be replaced by a hypolheses on the

slarting linear operator [xn-l' xo]. Similar results can Ihen lollow. Moreover, similar

results can easily be developed if in all previous iterations we set F'(xn) = F(xo) and

[xn_ 1.xrJ = [x_ 1.xO] tor all n ~ O (the convergence willlhen be slower).

(6) Similar Iheorems can be proved il the Upschitz hypolheses on the divided differences

are replaced by Holder hypolheses al the form

q(llx - yllP + IIY - v llP)

lor pE [0.1) and sorne q > O. [1]. [2], [3].

(7) Our results can also be extended to include nondilferenliable operators [2], [3]. Lel

us consider the equation

F1(x) = F(x) + Q(x),

where F is as belore and Q satisfied estimales 01 the lorm

IIQ(x) - Q(Y)II :5 d'[] x - YII

lor all X,y E O and sorne d' > O.

Then leave the derivative F'(x) as it is in (6) sayo and replace F(x) by F1(x) in (5).

The hypotheses (15) and (16) will change to

and
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and

at the right hand side.

2p r 2

2 6 + _ _ ~__-,--_--"---"-....<---.- < r
1- 2Pi 6 6

The hypotheses (e) in Theorem 2 wiII change to

P2[r 6+ 2~2~~; ~ 6r 6)2
. 2 6

2p r2 + p r2 6 6 6
1- P2 3 r6+ 1 2- P/6
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the definition of T (see(31)) can be replaced by 4, whereas the expression inside the braces

definition of T1 can be replaced by 6, whereas the expression inside the braces in the

definition of sn+1 can be replaced by

(!n+1 - tn. 1)2 + 2(sn - tn) 2 + 2(sn - tn-1) ( sn - tn) + (sn+1 - tn+1)2.

(9) The constan ts P1,P2.P3 and P4 as well as the construction of the divided differences

can easily be found in finite dimensional spaces. See the elegant description by Potra in [7].

in (32) can be replaced by (tn+1 - tn) 2 + 2(sn - tnl 2 + (sn+1 - tn+1)2. The bracket in the

we can refer the reader to [3] and the references there. We also note that the above error

bounds can be further improved if we use Ptak-type estimates (see, [2] for Newton's method).

(10) We finally note that all the above results remain valid if in the Lipschitz condition,

[u,v] is replaced by F'(z) for all z e D.

(11) From the proof of Theorem 3, (28) and (32) it can easily be seen that the bracket in

respectively, where Ps ~ ~d' and rs is a positive number satisfying the above

psllxn-x ·¡¡. .
inequalities. Ane xtratermoftheform 1-2p

2

1Ixn- x. 11 wlllbea::tl:d atthenght

hand side of the estimate for IIYn - x· ll. Similar changes wifl take place for Theorems 3 and 4.

The resu!ts of all the previous theorems will then hold for the equation F1(x) = O.

(8) For some applicat ions of these results to nonlinear integral and differential equations,

respectívely. where Ps ~ ~1 d' and 's is a positive number satisfying the above

f
p511X n-x *11 ' 11be -~

inequalit ies . In estimate (1 T¡ an extra term of the orm~ WI <:I..J-.=.J
1- 2P l l1 xn-x 11
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Abstract

(2)

(3)

(1)F (x ) = O,

A Simplified Proof Concerning the Convergence
and Error Bound of A Rational Cubic Method

In a Banach Space and Applications to
Nonlinear Integral Equations
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In this stud y, under st andard Newton-Kantorovich conditions, we estab­
lish th e Kantor ovich-type convergence theorem for the Chebyshev method in a
Banach space.
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I.K .Argyros* Dong Chen land Q. Qian :1:

rnethod for al! n ~ O by

1 Int ro duct io n

In this paper we study the problern of ap proxirnating a loca l!y unique solution z " of

the equation

D of X with values in a Banach space Y. Let Xo E D and define the Chebys hev

in a Banach space X, where F is a nonlinear opera tor defined on sorne convex sub set
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Here F'(x ll) and F"(x n ) denot e the fi rst and second Frechet derivatives of F evaluated

at i: = In ' Note that F'(x,') is a linear operator whereas F"(X'l) is a bilinea r opera tor

for all n ~ O[1], [2] . If the sequence {Xn} defined by (2) and (3) converges to a point

z " E D, then z" is a zero of equation (1). T he Kantorovic h-ty pe convergence anal ysis

for the Chebyshev method in the classical form has been studied by Candela an d

Marqu ina in [3]. We reduce all ext ra-assumptions given by aboye au thors . In fact we

define an equivalent form of the Chebyshev meth od in a Banach sp ace setting and

we show that und er standa rd Newton-Kantorovich assu m ptions [4-7] th e Chebys hev

method converges fast er to a zero z " of equat ion (1) than Newton's method. An

explicit form of the error bound wil! be given . An application of the Chebyshev

method to an int egral equa t ion appearing in radiati ve transfer [1] an d [2] wil! be also

invest iga ted . We also show that previous results cannot be applied to solve general

quadr atic equations in a Banach space .

2 Convergence Analysis

We will first need the fol1owing results:

Lemma 2.1 Let F : D e X -+ Y . Assume:

(a) Th e nonlinear operaior F is twice Frecliei differentiable on the D;

(b) The ii eraies X n generated by (2) and (3) belong in D and F'(xn) - l exists [or all

n ~ O.

Then the following approximation is true [ar all n ~ O:

F(Xn+d = ¡I r[Yn + t(Xn+1 - Yn)] (l - t)dt(Xn+l - Yn?

- ~ ¡l[r [xll+ t(Yn - xll)](Yn - xn)F'(XIl)-l FI/(xn)(Yn _ Xn)2

+ t {r[xll + t (YIl - x n )](l - t ) - ~F"(xn)}dt(Yn - xn )2.Jo 2

Proof: We star t with the app roximation
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(4)

(5)

(6)

(7)

(8)
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)
1 2 1 TI

g(t = - J( t - -t +-
2 {3 {3'

F(xn) + F'(xn)(Yn - Xn) = O,

+[F' (Yn) - F'(Xn)](Xn+1 - Yn) + F'(Xn)(Xn+1 - Yn)

+F(Yn) + F'(Yn)(Xn+1 - Yn)

¡IF"[Yn + t(XnH - Yn)]( l - t)dt(Xn +1 - Yn?

+F(Yn) - F(xn) - F'(xn)(Yn - Xn)

11 F'(XO)-l li s [J , 11 F' (xot 1 F( xo) li s TI,
N 1/2

M [l + 3M2 [J J s K, h = K [J TI S 0.485,

U( xo, t") e D,

11 F"(x) li S M, II F"(x ) - F"(y) li s N 11 x - y 11 ,

F(Yn) = ¡1 F"[xn+ t(Yn - xn)](l - t )dt( Yn _ Xn)2

on D and [or given an initial value Xo E D that the following standard Newton ­

Kaniorovicli conditions are satisfied:

where U(x,r) = { x ' E x 111 x l
- x lis r}, and we have set

open convex domain. Assume that F has 2nd order con ti nu ous Frechei derivatives

to sirnplify the ab oye and th en the conclusion of th e lernrna will follow . Now we can

and

We need to use the facts:

state our rnain results .

Theorern 2 .1 Let F : D e x -t Y, X and Y are real Banach spaces, and D is an



(9)

(14)

(13)

(12)

(I 1)

( )O)

Yn E U(xo, Sn);

(JIn) :

(IJIn ) :

(IVn ) :

(Vn ) :

indu cti on:

Proof: It suffices to show that th e following items are true for all n by mathematical

with the starting poin t to = O.

50

It is easy to check in the case when n = Oby th e initi al condit ions . Now assume that

the aboye st atements are true for a fixed n ~ 1

(In+l): We can have

where {tn}~=o and {Sn}~=o are defined by

) - vT=2h
i " = h 7/ ,

) + vT=2h
C" = h 7/,

1- Vf=2h
() = 1 + Vf=2h '

Then the iteration generated by (2) and (3) is uiell defined [or a/l n ~ Oand converges

n ~ O:

to a unique zero z " o] equatioti (l) in U(xo, t)fort" ::; t < i:" , Moreouer Xn , Yn E

U(xo, t") , [or al/ n ~ O. Furth ermore the fol/owing error estimates are irue [or al/



1
<

11 F'( XO)-l 11 '

1 ' -1< 1 K t = - g (t n+l ) •
"jj - 1. n+!
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= te 1 - V1=2h < 1
i f3 - f3

1 .

F'(xn+d - F' (xo) =¡ FI/[xo + t(X n+l - xo)]dt(Xn+l - Xo),

< 11 F (XO)-I 11

1- 11 F'(XO) - l 11 11 F' (xn+! ) - F' (xo) 11

f3 1
<

1 - f3 K 11 Xn+ l - Xo 11 ~ - K 11 Xn+! - Xo 11

11 Xn+l - Xo 11 · < 11 Xn+l - Yn 11 + 11 Yn - Xn 11 + 11 Xn - Xo 11

< (t n+l - Sn) + (Sn - tn) + (t n - to) = tn+1 •

M .. 1 M 2

11 F (Xn+l) 11 :5 2"11 Xn+1 - Yn 11
2
+ "2 ~ _ M 11 Xn _ Xo 11 11 Yn - Xn 11

3

+; 11 Yn - Xn 11
3

11 F'(Xn+l ) - F' (xo) 11 < M 11 Xn+l - Xo 11 S; J{(tn+l - to) = /{ tn+1

• ,1 - V1=2h 1 - V1=2h
< J{t = Ji h r¡ = J{ J{f3r¡ TI

and by the Banach lemma, F' (Xn+¡) - 1 exists and

(1JIn+! ): By using th e identity in the lemma 2.1, we can esti mate F (xn+! ) to obtain

so we obtain in turn

(1Jn +! ): from the approximation



Finally to show uniqueness, we assume th at t her e exists a se con solution y ' of t he

52

i' - i .. = [ t" - t ..- 1 ]3 [(t· - t n - ¡) + 2(t· · - t n - 1 i ] .
t· · - t n tr: - tn - 1 [2(t- - t tt - 1 ) + (t · · - t.._1 ) ]

11 Yn+l - Xn+l 11

11 Yn+l - X o 11 < 11 Yn+l - Xn 11 + 11 Xn+l - Yn 11 + 11 Yn - X n 11 + 11 Xn - X o 11

equa t ion ( 1) in U(xo , t) for t E [r , t -- ). We now obtain th e es t irnate .

Now since O ::; i:.~\nn~" ::; 1, we ob tai n

t:.- t n ::; 2[ t:.- t n - 1]3.
t - in t -") n-l

The estimate (12) now follows from the equalities i " = (1 +B)r¡ , and i": = i " + (1 -:''''.

It is sim ple calc ulus to show that

and

Now we are ready to derive the error bound (12) . Notice that

(Vn+l): From (1), we have

and then

(IVn +1 ) : we also deduce t hat

Moreover , we have
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In this sect ion, we use the Theorem 2.1 to suggest sorne new ap proaches to t he solution

that x' = y' . .The proof of the theorern is now complete.

(18)

(17)

(16)

(15)

1.

f3M11

11 z " + t (y' - XO) - Xo 11 dt

1I x 11= rnax I x(s ) l·
O$ s$ l

0 < q(s ,t) < 1, 0 ~ s,t S; 1,

q(s, t)+q(t , s)= 1, 0 ~s,t S; L

x(s) = y(s) + ax (s)11

q(s , t )x(t )dt ,

f3 r<:' 11 F"(z ) 1111 dz 11 s;
i:

f3 M11

[(1 - t) 11 z" - Xo 11 +t(y' - Xo IIJdt S; f3M(t + t" ) <<

<

The function y(s ) is given by a continuous functi on defined on [0,1]' and x(s) is

the un known funetion sought in [0,1 ]. Equations of this ty pe are related with the

work of S. ChandrasokharllZj, and ar ise in the theories of radiative tr ansfer , neutr ón

Here we assume that Q is a real nurnb er called the "albedo" for scattering and the

kern al q(s, t) is a continuous fun ction of two variables with °~ s , t S; 1 and satisfying

11

F'(x' +t(y ' - x'))dt(y' - x" ) = F(y' ) - F( x' ) = o,

norm

in the space X = G[O, 1] of all continuous funct ions on the interval [O ,IJ with the

of quad ratic int egral equations of the forrn:

3 A pplications

Hence the linear operator Jol F'(x' + t(y' - x" ))dt is invertib le. It now follo ws frorn

the ap proxirnation

11 F'(io)- l "11

11 F' (x' + t(y' - x·) ) - F'(xo) 11 dt



and
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(20)

(19)
s

q(s,t) = stt,O:S;s,t:s;1.

1
1 S

F( x) = ax( s ) -x(t )dt - x (s ) + 1.
o s + t

M = 2 I Q' I max 1 t _S_dt 1= (2 1n 2) Ia 1= 0.34657359
O~s9 Jo st t '

N = O, K = M ,{3 =11 F'(lt l 11= 1.53039421 , 1] ~ 0.26519 7107,

11 X
n

- z " 11:::; (1 - (}2)1] [V2(}]3n- l

1 - ~[V2(}J3n .

0.26339662 3n

= 1- ...L (O 116526i 42)3n(0.116526742) -1
Ji'

for al! n ~ O, which shows that z" is unique in U(xo, tO), for t E [t·, t· o).

Remark (a) Th e resu lts obtained in [3], ~4] ,[6] and th~ references there cannot apply

t " = 0.28704852, () = 0.08239685, t" ' = 3.483731664

Notice that q(s, t ) satisfies (17) and (18) aboye. Let us now choose y(s) = 1 for all s

in [0, 1] an d define t he operator F on X = G[O, 1] by

Note tha t every root of the equation F(x) = Osa t isfies th e equat ion( 15). Set xo(s ) = 1

and a = 0.25, use t he definit ion of the first and second Frechet deri vat ives of th e

ope ra t or F to obtain

assume that

transport and in t he kine t ic th eory of gasses. There exists an extensive literature on

equations like (15) under various assumpt ions on th e kern el q(.s, t) and a is a real

or com plex numb er. One can refe r to the rece nt work in [1, 2] an d the references

the re. Here we demonstrate that the theorem via th e it er a ti ve pro ced ur es (2) and

(3) provide existence results for (15) . Moreover , th e it erative procedur es (2) and

(3) converge fast er than the solut ion of all the previous known ones. Furtherrnore,

a better information on the locati on of the solution is given . Note that the cost is

not higher th an the corresponding one of previous meth ods. For simplicity, we shall



to solve the aboye integra l equat ions sinee they require N > O. out here N = O.

(b) In fact the aboye mentioned resu lts eannot apply to solve an import ant class of

nonlinear equations, the quadratic equatio ns of the form

Q(x) = B (x,x)+ L(x) + y,

where B , L are bounded symmetri e bi linear and bounded linear operators, aud y E X

is fixed [1], [2]. Note that N =Ohere also.

Aeknowledgment:We would like to thank the referee for providing severa] valuable

. comments .
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Summary. We provide two asymptotic results on t he precision of two varianc e
estimators of the mean of m independent subsample means of equal size T wiOth
STST design, from a sample of size n > T , obtained with STS design from a finit e
p opulat ion of size N > n.

1. I ntroduction
There are several recent contributions to the resampling and bootstrap in finite

populations, as Bickel et al. (1984) , Chao et al. (1985) , McCarthy et al. (1985),
Kovar et al. (1988) , Cepar et al. (1990) , Sitter (1992) , Ruiz Esp ejo (1993) and
Booth et al. (1994) .

Consider a finite population of size N, from which a sample s (with S T S design
of size ti, with t he notation of Cassel et al., 1977) is obtained. From this sample
s, a number m of independent resamples Si are drawn (each with S TST design of
size T < n).

Denoting Xs to the sample mean of s, and x; to the sample mean of Si, we
define

1 m
- 11 _ _ ~ -,

x; - w X i '
m i = l

This est imato r x~ is unbiased for the finite populat ion mean X, since

E (x;ls) = Xs

and

E (x;) = E [E (x;Js)] = E (xs ) = X.

Consequently
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1 m
ir (- 11) '" (_/ _11) 2
v2 z; = ( ) L...J X i - z, .

m m -1 i=1

n - 1 N 2 N-n (12 _=----(1 +--- -
nr N -1 N - 1 n

N (N -n n- 1) 2
= n(N - 1) ----¡:¡- + - r - (1,

- (_11) 1 (N -n n-1)~ 12V, X --- --- +-- L...J S
1 r - m2n N r. i

.=1

N (N-n n-1) 2
\f (i:~ ) = mn(N _ 1) ----¡;¡- + -r- (1

Th e variances of these estimators are asymptotic al1y

2. Results
The variance of r; is

(where Jl 4n is the central moment of order 4 in the sample S of size n) an d

where s? is t he sample quasivariance of Si; and

(where Jl4 is the central moment of order 4 in the finite population of size N).
Then, asymptotically:

where (J~ is the variance of sample s.
Fol1owing Ruiz Espejo (1993) , two unbiased estimators of \f (i:~) are:

and

where (J2 is the finite population variance . T he proof is as fol1ows:



1. If r and n are fixed , with m -> 00 ,
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Summary, If we make an order of a quant ity N of good unit s produced wit h­
out defects for our reception and acceptation , and if the production corresponds
to a supe rpopulation model of analytic study (Koop, 1986; Cassel , et al., 1977)
that assigns probabil ity q (quality) to pro duce a good unit , and 1-q of defective,
the finit e populat ion of produced un its is a simple random sample wit h replace­
ment of the mod el. In these condit ions we characterize th e eco nomic rentibili ty
expected un der our exhaustive quality control, substituting defect ive uni ts after
th eir detection by previous non-destructive insp ecti on , for othe rs of the pro d uc­
tion , and in this way inspeeting these again and subs titut ing the new defective
unit s for others of t he produetion reoccurringly un til the N units are goo d for our
acceptation.

1. Introduetion
The econo mic decision rule that we will obt ain refers to the prob lem of non­

dest ru ct ive and exhaustive quality cont rol of reception al' acceptance . In order to
do this , let us suppose t hat each unit produced by t he supp lier has a probab ility q .
in ord er to fulfill t he agreed standards by th e sup plier and receiver, independently
of th e remaining units. T his can be understood as an an alyti c study (Koop, 1986) ,
or infini te population generated by the punetual binomial or Bernoulli dist ribution
B(l ,q) that represent s t he distribution of a generical un it that if it is good (wit h
prob ab ility q) it has value 1, and if the unit is defect ive (with probability 1-q)
it has va lue O. We allow that each produced unit follows this model. The total
pro duction is the finite set of unit s specified in a simp le random sample with

replace ment of the previous binomial model, being independent of each other t he
result of the "good" or " defective" of each unit , of the rema ining produ ced units.

We add th e con dit ion that the cost for allowing a defective unit in our acception
is Cl , as well as the cost for inspecting a uni t for our part is C2, an d the inspection
is non-destructive,
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From the data q, Cl and C2 we obtain when it will be profitable, in terms
expected, the exhaustive inspection until we obtain from production N good units
for our acception. The order consists of satisfy the requisites or standards agreed
upon the supplier and ourselves as receivers of N good units.

2. Rule of decision
The rule of decisión is based on the criterion of the greatest expected profit, or

equivalently, on the lowest expected cost o In order to do this, the "expected cost
consequence of the defective units not substituted after the completed inspection" ,
that we call C (= 0, in our case the quality control being exhaustive and non­
destructive), plus the " expected inspection cost" , that we call G', it must be less
than the "expected cost that we would have in consequence of accepting defective
units in reception , in the case of not inspecting them", that we call GIf

• That is
to say,

G+C' < GIf
•

Calling B(.) the operator mathematical expectation,

Where 1 is the random variable "number of inspected units of the production,
until getting the first good unit" ,

Where X j is the random variable "number (1 or O) of defective units per con­
trolled unit from the production in the inspectionj (=1 ,2,3,...) until completing
the N good units" ; the inspection j =1 consists of observing if they are good, one
by one, N units produced and delivered to reception for their control. The in­
spection j (j = 2,3 , ...) consists of observing a number of produced units , equal to
the number of defective units observed in the inspection j -1, with the objective

of substituting the detected defective units in the inspection j - 1 for new units
from production, and in this manner reoccurring in successive inspections of the
substitutes until obtaining the N good units ordered. X¡ is distributed binomial
B(l,l-q) and it is independent of the remaining inspections due to the properties
of the superpopulation model for analytic studies. Now,

00 . 1-q 1
= 1 + L (1 - q)' = 1 +-- = -.

~l q q
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So,

G' = c2N .
q

On the ot her hand , GI/ is calculated as

G" = e .N E (Xl) = e.N (1 - q) .

Imposing the criterion of the lowest expected cost, we have

C2 N- = e + G' < el/ = e .N (1 - q) .
q

Simplifying N , it results the searched inequality

C2- < q(l- q).
c¡

In this formula, q (q #- O; 1) is the quality of the received product, C2 is t he cost
of inspecting a uni t ; and c¡ (CI > O) is the cost of admitting in our reception a
defective unit, without the quality control and insp ection prop osed in this pap er ,
and accepting the first sh ipment of N produced units.

3. Practical use of the decision rule
In practice, t he costs c¡ and C2 are known , but the sam e is not usually true

for the quali ty q. The value q (1 - q), as the var iance of the dist ribut ion B(l,l­
q), it can be estimated unbiasedly by the sample quas ivarian ce¡ if we take a

sample of size n of distinct pro duced uni ts , and p is the sample proportion of
the correct uni ts , E (p) = q. Then , t he esti mator p (1 - p) ni (n - 1) , the sample
quasivariance, is the unb iased estimator of the variance q (1 --:- q), and it converges
in probability to this variance. For t his, if n is sufficient1y large, the condit ion

C2 p (l-p )n_ <:"""":"_--=--'--_
CI n-1

will indicate to us , in a sufficient1y close manner , when t he economic ren ti bil­
ity expected exists in carrying out the exhaustive, recurrent and non-dest ruct ive
proposed quality control.

In this way our quality control represents an investment that , like any other,
must produce adequate yeild that justifies its impl ementat ion .
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Summary. This paper considers an unbiased method of estimation of a finite
population mean, when the popul ation under consideration is divided into a num­
ber of subgroups, not necessarily disjoint , called lapels. We call this estimation
technique as lapelled sampling, a generali sation of traditional stra tified sampling,
which requires in practice substantial us e of computing .

1. Introduetion
The traditional stratified sampling is based on the fundamental assump tion

that the finite population under consideration can be divided into a number of
mutually disjoint subgroups (strata) . But, this condition cannot be easily realiz­
able in many practical situations. Suppose that a finite population U of size N is
divided into m overlapping subgroups UI , U2, •.• , Um , called lapels, su ch that (as
in Singh, 1988)

m

U= UUi .

i = 1

Let y be the variable of interest taking values YI, Y2, ..., YN over th e units of U and
we seek to estimate the population mean

_ 1 N

y= N L Yi.
i= 1

It is well known that the probabili ty of the union of a finite number of events
can be expressed as a linear function of the probabili ties of the possible inter­
sections of the events. With th is background, the size (or population mean) of
U can be expressed as a linear function of the sizes (or means) of al! possible
intersections of the lap els UI , U2 , . . . , Um . Thus, it is possible to const ruct an un­
biased est imate of Y availing sample informations from each lapel based on any
desirable probability sarripling designo T his mechanism of estimating Y may be
called lapelled sampling which can also be fruitfully employed in estimat ing other
parametric functions as to tals or pro portions. We next calculate the probability
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of unbiasedn ess of the proposcd sam pling scheme in th e case of post. lapdlin)!, (u n
analogous too l to the post s t.ra ti fica t.ion ) and finally show t.hat. lapelled sampling
is a genera lisation of strat.ificd sampling .

2. Probability of t he union of events
Let {A} , i = 1, 2, ..., m be a finite sequence of disjoint events . Then, by the

third axiom of probabili ty (as stated by Kolmogorov) , the probability of their
union is the sum of their probabilit ies, i.e.

(1 )

But, if t he events are not necessarily disjoint, then the probability of their
union can be obtained as follows:

(2)

P(QAi) =~P (A) - ~j~1P(AinAj)+

+ %:j~1 ki;¿1P (Ai n Aj n Ak) - .. . + (_1)m+1p (Q Ai) ,

m
where the events Ai, Ai nAj,'AinAjn Ak, ... and n Ai are called lapelled events.

i=1
The formula (2) is a general ization of (1).

3. Size of a finit e population as a function of the sizes of the lapels
If N = card(U) is the size of the finite population U, let Ni = card(Ui) ,

Nij = card(Uij ) where Uij = uinuj, Nijk = card(Uijk) where Uijk = UinUj nUk,

until N12...m = card(U12...m) where

m

U12...m = nUi,
i=1

U, being the ith lapel (i= 1,2,oo. ,m). Then we have the following relation (based
on the theory of measurement) :

(3)

m m-} m m -2 m-l m

N =~Ni - L L Nij + L L L Nijk -' " + (-1)m+1N12...m ,
,=1 i=1 j=i+1 i=1 j=i+1k=j+1

which allows lIS 1.0 give the population size as a linear function of the sizes of the
lapels. If the lapel-groups U, are disjoint two against two (Nij = 0, for all i < j of
{l, 2, oo., m}) , then we have, as in the usual stratified sampling (Cochran, 1977),
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(4)
m

Thus formula (4) can be identified as a particular case of (3).

4. Lapelled population mean
Analogously to formula (3), the population mean Y can be rewri t ten as

(5)
_ ~ Ni - ~1 ~ N ij -
Y = L..- -}ti - L..- L..- - Yi j+

i=1 N i=l j=i+1 N

m-2 m - 1 m Ns, N
+ " " "'Jkv + ( 1)m+1 12..omy,-L..- L..- L..- N L ijk - . . . - ---¡:¡- 12...rn

i=1 j=i+1k=j+l

where we have denoted
- 1"
Yi = N L..- Yi,q,

, qEUi

- 1"
Yij = N o L..- Yij,q,

' J qEUij

- 1 Ly, - - - .12...m - N Y12..om,q,
12o.om qEU1 2.. o~

Yi,q, Yij ,q, .. . , Y12...m,q being the values of y for qth uni ts in the lapels Ui, Uij, o."
U12...rn respectively,

Denot ing W i = N ;jN, W ij = Nij/N, .." W 12...rn = N 12..om/ N , we can also
rewrite (5) in a simpler way. If furthermore Nij = O for all i < j = 1, 2, oo ., m ,
then we would have

(6)
m

y = LW;Yi
i=1

as is expected in a stratified population, a particular case of a lapelled population .

5. Unbiased estimator in lapelled sampling
Allowing simple random sampling with or without replacement in ea.ch lapel,

an unbiased estimator of Y is given by

(7)
m m-l m

Ylp = L W iYi - L L W ijYij+
i=1 i=1 j=i+1

m-2 m- I m

+ L L L W ijkYijk - . o. + (- I)m+ 1W I2...mYI2...rn
i=1 j=i+1 k=j+1
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where Y i, Y ij , . . . , Y 12.. .m are the sample means in t he lapels Ui, Uij , .. . , U12...m

r espectively, and are unbiased estimators for Yi , fi j , . . . , Y 12...m .

5.1 Necessary and sufficient condition of unbiasedness
If Nij ...k > O with 1 ::; i < j < ... < k ::; m , the necessary and sufficien t

condit ion for Ylp given in (7) to be unbiased for Y is that the sample size assigned
to the lapel Uij ...k i.e. n ij ...k ~ 1 (Hanurav, 1966 and Ruiz Espejo, 1986).

5.2 Probability of unbiasedness with postlapelling
In sorne cases N12...m ~ 1. Then a simple random sampling with repla cement

(srsr-ri) or without replacement (srs-n) of size n can be selected from the finite
population . Once selected it is decided to lap el it and then compute Ylp using

- \
formula (7) as an estimator of Y. From section 5.1, th e necessary and sufficient
condition for Ylp to be an unbiased estimator for Y, is that the sample size n¡~.. .m ~
1.

The probability of this event under srsr-n design , is

P (n12...m~ 1) = 1 - P (n12...m= 0)= 1 - (1 - W 12...mt
which is asymptot ically 1, if W 12...m > O, for n -t oo.

Under srs-n design, thi s event has probabili ty

p (n 12...m ~ 1) = 1- p (n 12...m = O) =

= 1_TI (N - N12...m - i + 1) =

i= 1 - N
n N . 1= 1- II (1 _ 12...m + z - ) ,

i=1 N
provided n ::; N - N 12...m .

6. Generalisation of stratified random sampling
It is observed that when the possible lapel-groups of the population are disjoint

two against two, the size and the mean of the population are respectively given
by (4) and (6). Then, the formula for the estimator Ylp reduces to

m

Ylp = L WiYi,
i=1

which is the usual unbiased estimator in stratified sampling. Thus,: the lapelled
sampling can be regarded as a generalisation of stratified sampling.
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Summary. In t he esti mation of the populat ion mean , we prove that the
use of partial auxiliary infonnation is preferable to not use it when taking into
account the ga in in precision with resp ect to strategy (simp le random sam pling
without replacement " srs" , sample mean "y") (see Cassel et al., 1977) wh en t he
popula tion sizes, with and without auxiliary infonnation , are su fficient1y large.

1. Introduction
In finite populati ons it is commo n to find oneself facing the pr oblem of estima­

t ion of the population mean , Y, of a certain interest vari able y, with the fol1owing
characteristics:

a ) Auxiliary information , X i, is available in just part of t he finite population
of size N, let 's say in NI un its .

b) Aux iliary infonnation is no t available for the rest of the finite population .
The size of this complementary part is N2, which verifies NI + N 2 = N .

c) Both NI and N 2 are sufficient1y large.

2. The strategy proposed
When considering two strata, of rela tive sizes W i = N;jN (i = 1, 2), with

proport ional al1ocat ion (this does not required additional information to the one
already used wit h (proportional allocati on , WIYI + W 2Y2) except for the info r­
mation in itself of the auxilia ry variable) , the strat ified estimator which uses the
regression est imator t I in the first stratum, and being the sample mean Yi in the
ith stra tum , we use Y2 in the second stratum, ·the esti mator of Y would be the

. particular "semiseparated regression est imator" Yst = WIt l + W2ih , then (from

Cochran, 1977) under design srs independent1y for each stratum of sample sizes
n I an d n 2, the estimator Yst is approximately unbiased to estimate Y, an d its
vari ance is (for n i fixed)

_ 2 N I - nI 2 ( 2) 2 N 2 - n 2 2
V (Prop ,Yst) = W I -N- S IY 1- PIyx +W 2 N S2y,

Inl 2n2

71



being a;y the variance of stratum i for the variable y, and Y; is the mean in
the stratum i for the interest variable y. Thus, as a conclusion, the auxiliary
information, being partial, permits to improve in many cases the precision in the
estimation of the population mean Y given by the admissible estimator sample
mean j} (Joshi , 1965).

Note. This paper was originally pres ented at the 2nd International Confer­
ence on New Techniques and Technologies [or Sta tistics (Bonn , Germany, Novern­
ber 19-22, 1995).
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In this formula , the first inequality is due to the faet that piyx ;:::: O, and the
second is due to

3. Comparison
If N -+ 00 so that W i is constant, we can write the asymptotic inequalities

(where a~ is the population variance of the interest variable y)

1 (2 2) a;:::;; W1a1y + W2a2 y :::; --:;;:

That is to say, asymptotical1y

being S;1I the quasivariance in the stratum i of the variable y, and piyx is the
correlation coefficient in the stratum 1 between th e variables y and x .

where if ni = Win, i = 1,2 (proport ional allocation) , we have
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Summary. We propose sorne classes of unbiased estimators for the finite
population variance which make use of one or more auxiliary variables, under
simple random sampling with replacement . These pr oposed estimators can im­
prove the precision of t he "sample quasivariance" (unbiased UMV-est imator for
a dist ribution-free set ting). Other related questions are also treated.

1. Introducción
Cuando disponemos de un estimador insesgado d'e cierto parámetro pobla­

cional (como la media muest ral , [j, de la media po blacional, Y, o bien la cuas i­
varianza muestral. :s~ , de la varianza poblacional, O"~ ) bajo diseño de muestreo
aleato rio simple con reemplazamient o -masr-, entonces podemos estimar, usando
una o más variables auxiliares, la varianza poblacional de la variable de interés
con un estimador de regresión múltiple que usualm en te mejora la precisión del es­
timador insesgado UMV (uniformemente de mínima varianza) para distribución
libre: la cuasivarianza muestr al, s~ .

2. Estimador de regresión múltiple
Si y es la variable de interés y disponemos de k variables auxi liares X j (j =

1, 2, ..., k), el estimador propuesto es

k

a-~ = s~ + ¿bj ir, - t j)
j = l

donde s~ es la cuas ivarianza muestral y t j es un estimador insesgado -bajo diseño
masr- de T j (parámetro conocido asociado a la variable auxiliar j-ésima) . En
principio suponemos que bj es una constante por determinar. El estimador a-~ es
insesgado para la varianza poblacíonal c j, y su varianza es:
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k k k

V (a-;) = v (8;) - 2 L b.Cou (8;,t j ) + L Lb;bp ov (ti> tj ) .
j =l ,=1 J=l

Esta varianza se hace mínima cuando para j = 1,2, ..., k,

k
Cou (8~ , t j) - .L;b ;Gav (t;, tj)
. '.,....J

Gjj

o bien se hace mínim a si y solo si para j = 1, 2, ..., k,

k

e; = Lb;G;j
;=1

que constituye un sistema (digamos S) de k ecuaciones lineales con k incógnitas:
bl, bz, ... , bk• Estas bj son mínimas, pues la matriz Hessiana cuyo té rmino ij es

es la matriz de covarianzas (por 2), que es simétrica, y definida o semidefinida
positiva (Tucker, 1973, p. 164, ejerc icio 7; Cuadras, 1991). Po r ello V (a-~) es

una función convexa en (b1 , b2 , . . . , bk ) E IRk
. El sistema S no puede resolverse

directamente en la práctica pu es Gy j son covarianzas desconocidas. No obstante,
los valores de b, pueden estimarse por bj mediante el método de los momentos, es
decir, para j = 1,2 , ..., k

k

Cyj = L b;G;j
;= 1

donde Cyj es el estimador muestral por el método de los momentos del parámetro
poblacional e; Los valores mínimos de b, permiten estimar insesgad arnente la
varianza poblacional y resultan ser t ales que al sustituirse verifican

k k

V (a-~) = V (8;) - L Lb;bjC;j ~ V (8;),
;=1 j =l

para b, fijos y mínimos, pues la matriz (C;j) es semidefinida positiva.
Al variar k y t ; se obtienen las distintas clases de estimadores de la varianza

poblacional. Algunos trabajos ad icionales relacionados con la est imación de la
varianza poblacional para pob laciones finitas, están recogidos en las referencias .
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3. A lgunas cuestiones relacionadas
2

La recta de regresión de 11 = vun = ~ sobre la media muest.ral y = [j , ad mite
la expresión

a
2

J1-a -
11 = --1!.. +- (y- y)

n na2
y

donde J1-a es el momento central de orden 3 en la población finit a para la vari a ble
de interés. Esto se deduce de que

e (
- s~ ) _J1-aov y - -­, n n 2

a partir de Cramér (1953, p. 401). De aquí deducimos que J1-a/(na;) es el incre­

mento al que tiende la estimación V(y), cuando y crece una unidad. Not emos
que ¡.La puede ser no nulo cuando la población finita no es simétrica. Por tanto,
y y V(y) son dos variables dependientes en el muestreo de poblaciones finitas
con diseño masr , pues como señala Cramér (1953) la media y vari anza muestrales
son independientes si y solo si la población es normal, cosa imposible para una
población finita.
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DISTRIBUCIÓN DEL NÚMERO DE EXT RACCIONES CON

REEMPLAZAt-.HENTO PARA OBTENER UNA MUESTRA

DE COSTO FIJO DE UNA POBLACIÓN FINITA

1. Introducción
Determinamos la funci ón de cuant ía del número de ext racciones con reem­

plazamiento para obtener una muestra de cost.o fijado de una población fini ta de
tamaño N.

En el muestreo aleatorio simple sin reemplazamiento de tamaño 11., con 1 ::;
n < N, el coste de observaci ón es nc, siendo e el coste por unidad observada. En
el muestreo aleatorio simple con reemplazamiento de tam año 11., el coste de obser­
vación es I/C, una vari~ble aleatoria, donde 1/ es el número de unidades distintas
o diferentes de la población finita seleccionadas en la muestra, cuya funci ón de
cuantía ha sido proporcionada en Ruiz Espejo (1994). El resultado demostrado

en este trabajo citad o consiste en la determinación de la función de cuant ía de la
variabl e aleatoria 1/ que puede to mar los valores 1: 2, 3, ..., mín {n, N }. La funci ón
de cuantía probada es:

C/ Senda del Rey, s/n

28040 Madrid

M. Ruiz Espejo

Departam ento de Economía Aplicada Cuantitativa

Facultad de Ciencias Económicas y Empresariales

Universidad a Distancia

Rev. Academia de Ciencias. Zarag oza. 51 (1996)

Summary, We determine th e quantity functi on of the random variable e =

"number of draws with replacement to obtain a fixed cost sample of a finit e
population of size N". If the effective sample size is n, 1 ::; 11. < N , the random
variable e takes the values n , n + 1, 11. +2, ... The methodology necessary to obtain
this quantity function is similar to the proposed in Ruiz Espejo (1994) . The
sample mean based on E, Ys , is unbiased for est imating the population mean.



donde
m !

pm 1,Tn2 1. . . ,m k = -----,----
m m l!m2! ' " mk!

es el número de permutaciones con repetición de m elementos iguales, de los que
mi son iguales entre sí, m2 son iguales ent.re sí y distint.os de los anteriores,
hasta los m¿ iguales y distint.os a los anteriores, con

k

m = L mi.
i=1

Un enfoque econó mico del problema es par ti r de un cost.o o presupuesto fijo
nc, donde 11. es el n úmero de unidades distin t.as observadas (1 ::; 71. < N ), pudiendo
aparecer unidades repetid as (ya sin coste) en la muestra, hasta la selección de la
unidad distinta (71.+ 1)-ésima por primera vez que ya no se procederá a observarla
y deteniendo .aquí el pro ceso d e selección de unidades con reemplazamiento y
probabilidades igual es a 1/N en cada extracción .

Aplicando una m etodología análoga para obtener la función de cuant ía de la
variable aleatori a u, p odemos deducir la funci ón de cuant.ía d e la variable a leatoria
E = "número de ext racciones con reemplazamient.o y probabilidades iguales para
obtener una muestra de 11. unidades distint.as, hasta obt.ener por primera vez la
unidad dist inta (71. + 1)-ésima" que no se cont.abiliza a efectos de cos t e , al no
observarse esta última unidad , ni incluirse en la muestr a.

2 . Función d e cuantía
Aplicando el axioma de la probabilidad condicionada y posterior mente la regla

de Laplace, para E = 71., 11. + 1, n + 2, ... tenemos la siguiente función de cuant ía:

X(Efl 'f 2 ~ P;I,i2-;" .. ,in_ l - i n - 2,E- in_ l )

i l=1 ;2=il+1 i u- 1=;n -2 + 1

dond e P indica el número de per mutaciones con repet ición.
F inalmente, la media mues tral Ys: con el diseño de muestreo aleatorio simple

con reemplazamiento de coste fijo nc, es un estimador insesgado para la media
poblacional Y, pues haciendo 1180 del concepto de esperanza condicionada por la
variable aleatoria obt.enida en este t.rabajo, resulta que

E (Ys) = E [E WsléU = E (y) = y.

Es decir , la media muestral basada en las E unidades seleccionadas bajo el
diseño de muest reo con reemplazamiento de coste fij o n c, es un estimador inses­
gado de la media poblacional
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1 N
ii = - '\'y .
•1 N L . I '

i = 1

Los concep tos manejados en este resumen pueden consult arse en las referencias
citadas , así com o en el libro de Cochran (1977).

3. Conclusiones
1. Con uri .esquema de muestreo básico, corno es el muestreo con reemplaza­

miento y probabilidades igual es , pueden construirse distintos diseños muestrales
como son:

La) Muestreo aleatorio sim ple con reem p lazamiento d e tamaño fijo.
1.b) Muestreo aleatori o simp le con reemplazamiento de tamaño fijo y con- .

servando la información muestral de las unidades distintas seleccionadas en la
muestra con reemplazamiento.

L e) Muestreo aleatorio sim p le con reemplazamient o d e t am año a leatorio hasta
obtener una muestra de cos to fijo de la población finita.

2. Con cualquiera de es t os diseños de muestreo (La, 1.b y 1.c) el est imador
media muestral es insesgado p ara est imar el parámetro media poblacional. Las de­
mostraciones pueden realizarse utilizando el concepto de espe ranza con dicionada
o directamente con la esperanza matem ática .

3. La precisión de estas estrategias de muestreo es variable, si bien aumen­
tará cuando el número de unidades distintas de la población seleccionadas en la
muestra aumenta , como consecue ncia de la suficiencia del dato no ordenado y sin
repeticiones o duplicidad de tales unidad es.

La referencia obligada para justificar el punto 3 de las conclusiones es el libro
de Cassel, Sarndal y Wretman (1977).
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Summary. We propose sorne classes of unbiased es timators for the finit e
population variance which make use of one or more auxiliary variables, under
simple random sampling with replacement. These proposed estimators can im­
prove the precision of the "sample quasivariance" (unbiased UMV-estimator for
a distribution-free setting). Other related questions are also treated.

1. Introducción
Cuando disponemos de un estimador insesgado de cierto parámetro pobla­

cional (como la media muestral, y, de la media poblacional, Y, o bien la cuasi­
covarianza muestral, s;, de la varianza poblacional, (T~ ) b ajo diseño de muest reo

.aleatorio simple con reemplazamiento -masr- , entonces podemos est im ar, usando
una o más variables auxiliares, la varianza poblacional de la var iable de int erés
con un estimador de regresión múltiple que usualmente mejora la precisión del es­
timador insesgado UMV (uniformemente de mínima varianza) para dist ribución
libre: la cuasivarianza muestral, s~.

2. Estimador de regresión múltiple
Si y es la variable de interés y disponemos de k variables auxilia res Xi (j =

1, 2, ... , k), el estimador propuesto es

k

a-~ = s~ + I>i (Ti - ti )
i =l

donde s; es la cuasivarianza muestral y ti es un estimador insesgado -b ajo diseño
masr- de Ti (parámetro conocido asociado a la variable auxiliar j-ésima). En
principio suponemos que bi es una constante por determinar. El estimador a-2 es
• 11
msesgado para la varianza poblacional (T~, y su varianza es :
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k k k
V (a~) = v (s~) - 2¿bjCou (s~, t j ) +~~bibjCOV (t i,tj) o

j=l 0=1 , =1

Es ta varianza se hace mínima cuando para j = 1,2 , o •• , k ,

o bien se hace mínima si y solo si para j = 1,2, o.o, k ,

k

Cyj = ¿biCij
i=l

que constituye un sistema (digamos S) de k ecuaciones lineales con k incógnitas:
b1 , b2 , •••, bk. Estas bj son mínimas, pues la matriz Hessiana cuyo término ij es

es la matriz de covarianzas (por 2) , que es simétrica, y definida o semidefinida

positiva (Tucker ; 1973, p. 164, ejercicio 7; Cuadras, 1991)0 Por ello V (a-~) es

una funci ón convexa en (bl, b2 , ••• , bk) E R ko El sistema S no puede resolverse
directamente en la práctica pues Cyj son covarianzas desconocidas. No obstante,

los valores de bj pueden est imarse por bj mediante el método de los momentos, es
dec ir , para j = 1, 2, 0.0, k

k

Cyj = ¿biCij
i=l

donde Cyj es el estimador muestral por el método de los momentos del parámetro
poblacional Cyj o Los valores mínimos de b, permiten est imar insesgadamente la
varianza poblacional y resultan ser tales que al sustituirse verifican

k k

V (a~) = V (s~) - LLbibjCij:S V (s~) ,
i=lj=l

para b¡ fijos y m ínimos , pues la matriz (Cij ) es sernidefinida positiva,
Al variar k y ti se obtienen las distintas clases de estimadores de la varianza

poblaciona1. Algunos t rabajos adicionales relacionados con la estimación de la
varianza pob laci onal para poblaciones finitas , están recogidos en las referencias.

3. Algunas cuestiones relacionadas

La recta de regresión de V = V(Y) = ~ sobre la media muestral y = iJ , admite
la expresión
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2
ay ¡.L3 ( - )v=-+- y-y
n na~

donde f1-3 es el momento central de orden 3 en la población finita para la var iable
de interés. Esto se deduce de que

e (
- s~) f1-3 .

OV y - =­, n n 2

a partir de Cramér (1953, p. 401). D~ aquí dedU:cimos que f1-3/(n(J~) es el incre­

mento al que tiende la estimación V(y), cuando y crece una unidad. Notemos
que f1-3 puede ser no nuló cuando la población finita no es simétrica. Por tanto ,
y y V(y) son dos variables dependientes en el muestreo de poblaciones finitas
con diseño masr, pues como señala Cramér (1953) la media y varianza muestrales
son independientes si y solo si la población es normal , cosa imposible para una
población finita.
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1. Introducci ón
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(2)

(1)
m m ·

L t¡ = L [fi(qk, t) - gj2,
;= 1 ;= 1

siendo m el número de observaciones.
Suponiend o que la función f (qk, t) cumple las condiciones analíticas necesarias para

que pueda ser desarrollada en serie de Taylor , en torno a los valores previos q%, tendremos

R. Cid Y C. Longás
Departamento de Flsica Teórica

Facultad de Ciencias

Universidad de Zaragoza

CORRECCION DE ORBITAS DE ESTRELLAS DOBLES
VISUALES

Abstract

In this.article, we compare the results obtained by the application of severa!
methods to the correction of orbits of visual binary stars, with the purpose of to
verifying which of these methods are the best for each type of orbit.

In the comparison we employed the Comstock method, th e modified Thiele
method and the method designed by R. Cid and C. Longás, using Fourier series.
These processes are applied to simu1ated orbits with the purpose of obtaining the
previous orbit in each case.

Rev. Academia de Ciencias. Zaragoza. 51 (1996)

Cuando se calcula la órbita de una estrella doble visual con el número necesario y suficiente
de datos, se obtienen resultados diferentes, según los lugares normales elegidos. Por esto ,
si se parte de un a órbita previa , con resultados no aceptables, habrá que recurrir a su
corrección . . ,

De hecho existe n varios métodos de corrección de órbitas qu e pueden ser aplicados par a
minimizar las diferencias (O-C) (observación-cálculo) ; pero ordinar iamente, en todos ellos
se ap lica el siguiente esquema de cálculo:

Sea f = f (qk, t) una función que coincide con cualquiera de las coordenadas observa­
bles, esto es, los ángulos de posición () y las distancias p, y qu e depende del tiempo t y de
un conjunto de parámetros qk (k = 1,2, ..., 7).

Si se conocen valores previos q% de dichos parámetros y se aplica el método de mínimos
cuadrad os, el problema de ajuste consiste en encontrar incre mentos fJ.qk, que sumados a
los valores previos, hagan mimima la suma de cuadrados de las diferencias (O-e), es decir



2. M ét odos de correción de órbitas

2.1 Método de Comstock

(3)

A =
1

a = -
a

1
13 = B tan (8i - n)B = - 2sen 2(8i - n ) tan 1

C =
sen 2(8i - n )

, = C tan(8i - n ) - tan(w + Ji)
sen 2(w + J;)

D= C (_1_ +~) sen!; 0 = ( 1 a ) a, - - + - eea ], - - coe ],1- e2 r 1- e2 r r
ab ab ( ae )H = -- cosI T/ = - p2 , + b sen E¡p2

J(= - H (ti - T ) K, = - T/(ti - T)

En este métod o, se utilizan solamente diferencias 6.8i en ángulos de posición , por consid­
erar que las observaciones en distancias presentan mayores error es.

Para explicar su fundamento, comencemos definiendo unos elementos orbitales previos
(eo,To, no,no,wo, lo), a par tir de los cuales calculemos las constantes de lnnes escritas en

2.2 Método de Thiele modificado
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A6.n+B6.I +C6.e+ Hn6.T+ K6.n= 6.~

1
a6.a + 136.1 + , 6.e + T/n6.T + K,6.n = -6.Pi

Pi

. Describiremos brevemente los cálculos que requieren los métodos de Comstock, de
Thi ele modificado y de Cid-Longás ut ilizando series de Fourier, que serán ap licados en
este trabajo

En el caso de ut ilizar el crite rio de mínimos cuadrados, se llega a un sist ema de
ecuaciones normales de Gauss, que tiene el mismo número (k = 7) de ecuaciones y de
incógnitas 6. Qk ' Dicho sistema t iene asociada una matriz simétrica de coeficientes que
simplifica notablemente los cálculos.

. En este método, las ecuaciones a tratar por mínimos cuadrados, en función de los elemen­
tos orbitales previos (ao, eo,To, no,no,wo, l o), esto es (semieje mayor , excent ricidad, época
de paso por el periastr o, movimiento medio, ángulo del nodo, argumento del periastro e
inclinación), son, para cada observación de ángulos de posición y distancias (8i, Pi) , las
siguientes:

donde los coeficientes vienen dados por las igualdades:

siendo (Ji , Ei) las anomalías verdadera y excént rica correspondientes a la época ti.



(4)

b+ f
tan(w - O) = --­

1 - 9

y; = ~senEt Vi - t;o z,

Q . _ r,? + Xi(l - e~)(Xi + eo )

, - N
i
J 1 - e - 02 ) ,

siendo

e._ boXi + 90Y;
tan , - X . f v; ", + oIi

b-f
tan (w + O) = --,

1+9

B F G
bO= "A' fO= "A' 90 = "A"

Entonces, si para un instante dado ti, consideramos los valores

2 1 1 - 9 cos(w + O)
tan - = "

2 1 + 9 cos(w - O)

Como en este método de corrección no intervienen las distancias , para calcular el
semieje mayor a, pod emos proceder del siguient e modo: Calculemos unas distan cias (Pi)c
con a = 1 Y comparemoslas , por cociente, can las distancias observadas (Pi)o" Entonces,
pod remos determin ar el semieje mayor a, por medio de la igualdad

y
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Una vez obtenidos los incrementos mencionados, tendr emos inmediatamente los nuevos
valores e = e; + .0.e, T = T¿+ .0.T y n= no+ .0.n , así como b = b¿+ .0.b, f = fo+ .0. f , y
9 = 90+ .0.9 , deduciendo los elementos orbit ales (.0.0 , .0.w, .0.1) , por medio de las conocidas

relaciones

que nos proporcionará los incrementos (.0.b, .0. f , .0.9, .0.e, .0.T, .0.n ), en función de los coefi­

cientes

En estas condiciones, si ponemos Ki = Pi , el prob lema de la corrección de órbitas se
ao

reduce a trat ar por mínimos cuadrados la relación

que corresponden a un movimiento elípt ico, tendremos

así como los cocientes

la forma:



(7)

(6)
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La corrección del semieje mayor a, deberá efectuarse del modo descrito en el método
de Thiele.

Observemos, que en la aplicacion de todos estos métodos, el proceso es iterati vo, de
manera que un primer result ado puede servir de base a un nuevo proceso. La iterac ión se
proseguirá hasta que las diferencias (O-C) se consideren aceptables.

3. Aplicaciones numéricas

En nuest ro est udio, la corrección por los metodos mencionados, ha sido aplicada a una
órbita simulada , que consta de 60 épocas ti (i = 1,2 , ..., 60), tomadas aleatoriament e, y
donde se supone que todas las observaciones utili zadas tienen el mismo peso.

En esta órbita, que denominamos exacta, hemos elegido un conjunt o de elementos
orbitales, con los que hemos calculado efemérides en ángulos de posición y dist an cias. A
cada una de estas efemérides se le ha sumado un núm ero aleatorio, con una distribución
de Gauss, de media O y de varianza conocida, de manera que el conjunto de valores así
obtenidos dete rminan lo que denominamos órbita observada del par visual.

Los métodos de correcc ión citados, se han implement ado por medio de programas de­
sarrollados en FORT RAN 77, que fueron diseñados y utili zados en nuestra Tesis doctoral

que deberá ser tratada por mínimos cuadrados y dond e los coeficientes R;, Si, vienen
dados por las igualdades

R; = cos2(8i - 0 0 ) cosIo

cos2 (wo + Ji)

Finalmente para calcular los incremento s 6.0, 6.w y 6.1, pod emos ut ilizar la relación

2.3 Método de R . Cid Y C. Longás

[
6.ak 6.bk ]6.80 + ¿ k T(l - cos kM;) + T sen kMi

J1 -e~ COS 1o ( Mi6.n )+ 2 -- - no6.T
/\'i no

donde para cada ti, M, representa la anomalía media correspondiente , /\' i = Pi , Y (80 )e el
ao

ángulo de posición correspondiente a la anom alía media Me = O.
El tratamiento de la ecuación anterior por mínimos cuadrados, nos permi t irá calcular

los incrementos 6.80 , 6.n y 6.T, así como los incrementos 6.ak, 6.bk, de los distintos
coeficientes de la serie de Fourier.

Siguiendo con este proceso, y poniendo eo = cos cP, se tien e

En este método, que ut iliza solamente diferencias (O-C) en ángu los de posición, se aplica
la fórmul a (R. Cid Y C. Longás, Rev. Acad . de Ciencias de Zaragoza, Serie 2, 47, pago
132)
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e = 0.580

J = 125°.400.

a = 1" .800,T = 1932.560,

n = 215°.600,

Una vez elegida la órbita previa, que tiene un error medio de 12° y una desviación t ípica
en ángulos de 12°, Yaplicados los distintos métodos de correcc ión, se ha obtenido la tab la

4. Dos ejem p los d e corrección de órbitas

4.1 Caso A

En ambos casos el cálculo se ha efectuado con ae = 1.0 Y rIp = 0.1.

A dicha órbita le hemos asociado, como órb ita sup uest ament e observada, observacion es
de ángulos y distancias , preparadas con desviaciones típicas de 1° YO" .1, respectivamente .
Esto significa que el 95.45% de las observaciones t ienen un erro r menor que 4° y 0" .4
segundos de arco, respectivamente.

Asimismo, hemos elegido dos versiones de elementos o rb itales previos, que incluimos
como Caso A y Caso B, aplicándoles posteriorment e los métodos de corrección de Com­
stock, de T hiele modificado y de Cid-Lon gás. En las aplicaciones se han efectuado seis
iteraciones en el método de Comstock ("Coms6" ) y cuatro en el de Thiele modificado
("ThieI4"). En el método de Cid-Longás por medio de series de Fourier , se han util izado
tres versiones distintas, según el núm ero de coeficientes (tlak, tlbk) considerados . Así, en
el método de corrección, denotado como" F2" , se han utiliz ado dos coeficientes tlak y dos
coeficientes tlbk, en tanto que en el método, denominado " F3" , han sido tres de cada uno
de ellos. Fin alment e, en el método " F25" hemos tomado coeficientes promedio (tlao, tlbo )

de 25 coeficientes (tlak, tlbk).
Dado que la convergencia de los méto dos de corrección de Comsto ck y T hiele es más

rápida que la obtenida para las dist intas opciones por series de Fouri er , es natural que se
hayan empleado en éstas un mayor número de iteraciones, ord inari ament e ocho, aunque
en algunas ocasiones se ha llegado hasta 25.

(C. Longás,,l 993), y modificados posteriormente para el tratamiento de órbitas simuladas.
En todos ellos figur a la subru tina Gauss, de inversión de matri ces.

En resum en, nuestro esquema de cálculos consiste en par ti r de una árbiia exacta, a
la que hemos asociado una órbita observada. En estas condiciones, hemos elegido UIIOS

elementos orbitales previos o iniciales (ea,To, no, no,wo, Jo), con ayuda de los cuales hemos
calculado las diferencias (tlBi, tlPi)' Aplicand o a estos resultados un método de correcc ión,
hemos obtenido los increment os (tla, tle, tlT, tln , tln,tlw, tlI) , correspo ndientes a una
primera iteración. Los valores así obtenidos (a = ao+ tla, e = ea+ tl~ , T = T¿+ tlT , n =
no + tln , n = no+ tln, w = W o + tlw, 1 = Jo + tlI) , pueden ser considerados como
elementos orbitales previos para una nueva iteración, cont inuando de este modo hasta
obte ner un resultado aceptable.

En concret o, nuestro estudio ha sido aplicado a una órbita simulada , de excentricidad
no muy elevada y de movimiento retrógrado , cuyos elementos orbitales (exac tos ), ent re
los que se ha incluido el periodo P , en lugar del movimient o medio n , son los siguient es:



la , que se incluye a cont inuación:

Tabla la.- Elementos orbitales

p T a e n w 1

Exacta 63.050 1932.560 1" .800 0.580 215°.600 145°.300 125°.400
Previa 61.790 1933.965 1" .730 0.604 219°.038 141°.289 120°.243
Thi el4 62.023 1932.544 1" .799 0.581 215°.155 144°.919 125°.491
Coms6 63.279 1932.517 1" .787 0.587 215°.136 144°.787 125°.735
Four-2 63.035 1932.423 1" .810 0.588 213°.810 142°.638 125°.400
Four-3 63.050 1932.560 1" .800 0.580 215°.600 145°.300 125°.480
Four25 63.012 1932.411 1" .814 0.589 213°.706 142°.430 124°.805

En la tabla lIa, se han consignado: a) las sumas de cuadrados 2:(.6.B )2 y 2:(.6.p) 2, que
resultan ser , respect ivamente, 320 veces y 7 veces mayores en la órbita previa que en la
exacta, b) los promedios .6.B y .6.p Y c) las desviaciones típicas a( .6.B) , a( .6.p) .

Tab la lIa.- Diferencias con las observaciones

Exact a 5.75480El 6.17900E-l -1.61980E-l 9.65865E-l 6.08188E-3 1.01298E-l
Previa 1.86255E4 4.33026EO -1.27962El 1.21113El 1.38737E-l 2.30050E-l
Thiel4 5.54959El 6.25258E-l -2.17384E-4 9.57070E-l 7.74921E-3 1.01789E-l
Coms6 8.36048El 5.93257E-l -1.22305E-4 1.18043EO 7.77605E-3 9.91321E-2
Four-2 7.26240El 6.65154E-l -2.6061OE-2 1.09987EO 7.51799E-3 1.05021E-l
Four-3 7.42369El 6.69809E-l -5.26874E-2 1.11108EO 7.38549E-3 1.05334E-l
Four25 8.17135El 7.09373E-l 2.25256E-l 1.14506EO 7.23115E-3 1.08672E-l

Tabl a llIa.- Diferencias con la órbita exacta

a( .6.B) a(.6.p)

Thi el4 1.301490E-l 2.740280E-3
Coms6 7.068544E-l 1.286939E-2
Four-2 6.225533E-l 1.647837E-2
Four-3 6.457744E-l 1.719644E-2
Four25 7.017192E-l 2.533614E-2

La tabla lIla contiene las desviaciones t ípicas de las diferencias O-C entre las efemé­
rides obtenidas en cada método y las efemérides obte nidas con la órbita exacta.
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4.2 Caso B

Con idént ico criterio se ha elegido una segunda órbita previa, cuyas tablas figur an a
continuación:

Tabla Ia.- Elementos orbitales

p T a e n w 1

Exacta 63.050 1932.560 1" .800 0.580 215°.600 145°.300 125°.400
Previa 64.250 1931.510 1" .690 0.567 212°.735 148°.222 123°.108
T hie14 62.023 1932.544 1" .799 0.581 215°.155 144°.919 125°.491
Coms6 63.279 1932.517 1" .787 0.587 215°.136 144°.787 125°.735
Four-2 63.022 1932.645 1". 803 0.577 215°.515 145°.264 125°.275
Four-3 63.044 1932.643 1" .789 0.577 216°.044 146°.473 125°.971
Four 25 63.044 1932.638 1" .790 0.577 215°.993 146°.368 125°.879

Tabla IIa.- Diferencias con las observaciones

2:(6.B)2 2:(6.p) 2 6.B a6.B 6.p a6.p

Exacta 5.75480El 6.17900E-l -1.61980E-l 9.65865E-l 6.08188E-3 1.01298E-l
Previa 1.13118E4 1.96865EO 1.08572El 8.40541EO 1.27772E-l 1.28394E- l
Thie14 5.49585El 6.25258E-l -2.01453E-4 9.57066E-l 7.7489óE-3 1.01789E-l
Coms6 8.36053El 5.93258E-l 9.40283E-5 1.18043EO 7.77600E-3 9.91321E-2
Four-2 9.62114El 6.46602E-l -5.27016E-l 1.15142EO 8.05750E-3 1.03498E-1
Four- 3 6.32634El 6.10243E-l -4.29329E-2 1.02594EO 8.06098E-3 1.00527E-l
Four25 6.29181El 6.11481E-l -5.83471E-2 1.02237EO 8.05110E-3 1.00631E-1

Tab la III a.- Diferencias con la órbita exacta

a( 6.B) a( 6.p)

Th ie14 1.301453E-1 2.740076E-3
Coms6 7.068607E-1 1.286939E-2
Four-2 6.019721E-1 8.723500E-3
Four-3 3.167834E-l 8.007020E-3
Four25 3.053665E-1 7.160012E-3

Como se comprueba en las tablas precedent es, esta órbita resulta ser algo mejor que
la anterior , puesto que la suma de cuadrados de las diferencias O-C es, en ángulos, 200
veces mayor que en la exacta, teniendo un error medio de 10° y una desviación típica de
8°. Los resultados obtenidos coinciden exactamente con los de la órbita ant erior en los
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casos de Comstock y Thiele modificado . En los casos Four-2 , Four- 3 y Four2 5, se obt ienen
mejores resul tados en los elementos SI , w, J.
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De la observación al movimiento estelar. Aplicación al cálculo del

ápex del Cúmulo Abierto en Coma Berenices.

Carlos Abad y Jurgen Stock

Abstract

A particular form of getting proper motions from direct phographi c exposures is

given. The planification of observations and the reduction of plates using overlap­

techniq uesand the correction of systematic errors between catalogues are also dis­

cussed. A new fitting function for digitised images is used to improve the measure­

ment of the centroid's rectangular coordinates of saturated images in a plateoThese

techniques have been used to derive new proper motions for the Coma Berenices

Cluster. Also, a discussion on apex determination is given.

1. Introducción

Un cúmulo este lar se pu ede definir como un conjunto de est rellas formadas , a partir de

una mism a nube, en un intervalo de tiempo relativamente corto. Las estrellas del cúmulo

compar ten, a grandes rasgos, sus movimientos, conservando su est ruct ura a través del

tiempo.

La Astrometría calcula los movimient os estelares a part ir de observaciones de la posi­

ción de las est rellas . La desproporción ent re el periodo de t iempo en el que se poseen

observaciones y la escala temporal de los movimientos, hace que, para la mayoría de las

estrellas sea prácticamente imposible detectar movimientos que conte nga n aceleraciones.

Por ello, en lo que sigue, nos limitaremos a la proyección sobre la esfera celeste de la parte

lineal del movimiento de la estrella , es decir, a su movimiento propio.

El movimiento propio de una estrella se obtiene ajustando un a recta al conjunto de

observaciones de la estrella realizadas en diferentes épocas. La pendient e de dicha recta

indica la vari ación de la posición de la estrella con resp ecto al tiempo. Est e ajuste se realiza

por separado para cada una de las coordenadas que definen la posición de la estrella. La

precisión del movimiento propio obte nido depende de la calidad de las obse rvaciones, de

el int ervalo de tiempo que abarcan dichas observaciones y por último de la redu cción de

todas ellas a un mismo sistema de referencia, carente de errores sist emáticos.
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El movimiento lineal y paralelo de dos est rellas en el espacio se t raduce, al restringirnos

a la geometría impuesta por la esfera celeste, en un movimient o sobre dos círculos máximos

que se cortarán en dos puntos diametr almente opuestos . El concepto de corte cambia al

de convergencia cuando, como en un cúmulo, el número de est rellas que comparten el

movimiento lineal y paralelo es mayor que dos. Est e punto hacia el cual parece que las

est rellas se mueven, pero que nun ca alcanzarán, se denomina ápex .

Una vez calculado, el ápex nos permi te conocer la componente radial del movimiento

del cúmulo y por tanto su movimiento lineal espacial. Como consecuencia, con ayuda

de observaciones espectroscópicas, se puede determinar , con probabilidad muy alta, la

pertenencia de las est rellas al cúmulo.

El est udio de cúmulos cercanos es básico par a conocer las relaciones existentes en­

tre parámet ros tan importantes como magnitud , color y t ipo espectra l de las est rellas .

El conocimiento de los miembros de un cúmulo y de sus carac te rísticas, contribuye al

conocimiento de la est ruc tura y dinámica de nuestr a galaxia y a un mejor conocimiento

de la evolución este lar , además pueden ser usados como patrones de distancia.

El cúmulo este lar abierto en Coma Berenices es un cúmulo similar a la mayoría de los

cúmulos este lares catalogados, pobre en núm ero de estrellas, pero que por su proximidad

al Sistema Solar se presenta como angularmente extenso, abarcando en el cielo un campo

de unos 10 grados de diámetr o [26]. Esta carac terística, unid a a que los movim ientos de

las est rellas que componen el cúmulo son pequeños y no d est acan del rest o de aquellos de

las est rellas que aparecen en el mismo campo, hace del cálculo del ápex un tema delicado

astrométricamente habland o. El cálculo de movimient os propios debe ser muy preciso y

obtenido obligatoriamente a través de la unión de posiciones absolutas obtenidas para las

dist intas épocas de observación.

El trabajo que en este artículo se resume, eminente mente astrométrico, estudia los

pasos a seguir para que, par tiendo de unas observaciones a realizar , de otras ya realizad as

y de unos catálogos ya elaborados, se obtengan movimientos propios precisos que nos

lleven a un mejor conocimiento de los cúmulos estelares .

El cúmulo este lar abiert o en Coma Berenices ha servido de excusa para tr atar y mejo­

ra r la determinación de posiciones a través de placas fotográficas, y una vez calculados

los movimientos propios de las estre llas del campo, para tratar también la búsqueda de

asociaciones este lares.

2. R educción de placas fotográficas

Reducir una placa fotográfica consiste en determinar las coordenadas astro nómicas (ni , Di) '

de los ast ros que aparecen en la misma, a par tir de las coordenadas (Xi,Yi) obtenidas en
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un sistema rectangular definido sobre la placa.

La determinación de las coordenadas se realiza de una forma relativa, ya que éstas se

obt ienen a part ir de las posiciones de estrellas ya catalogadas cuyas imágenes han podid o

ser identificadas sobre la placa.

Cuando la reducción se realiza en forma individual , es decir, para una sola placa, las

estrellas de referencia tienen la misión de tr asladar el sistema de referencia del catálogo a

la placa, además de dar la formulación que nos permite pasar de coordenadas cart esianas

(Xi,Yi) a esféricas (eli ,6i) .

Podemos dividir en dos grupos los modelos matemáticos que realizan una reducción .

El primero, que podríamos llamar clásico, trabaja en el plano y calcula la posición que

ocuparían las imágenes de las estrellas de referencia en la placa a través de una proyección

que es función de la dist ancia focal y el t ipo de telescopio utilizado en la observación. Las

coordenadas obtenidas por observación se hacen coincidir con las obtenidas por medio ele

un desarrollo en serie

n I I I n2 la na

X' ¿ bijXi-lf + ¿ ¿ dijmkxi-lf + ¿ ¿ e¡jckx iy j

j+i= 1 k=1j+i=1 k=1j + i=1

n I II n 2 l3 n J

y' ¿ 9ij Xi-lf + ¿ ¿ hijmkx i-lf + ¿ ¿ PijCkXi-lf
j+i= 1 k=1j+i=1 k=1j+i= 1

función de éstas y donde pueden aparecer otros parámetros como m, c, 'relacionados con

la magnitud y el color de las estrellas.

En la mayoría de los casos se conocen los términos que serán significat ivos, incluso

se puede calcular una buena aproximación de sus valores. Los términos lineales van a

ser los enca rgados de buscar la coincidencia en orientación y escala de ambos sistemas,

mientr as que el resto de los tér minos de mayor orden van a representar las deformaciones.

Cuando nos referimos a éstos últ imos y hacemos hincapié en el t ipo de proyección uti lizada

estamos habl and o de distorsión.

Un segundo grupo está basado en la búsqueda de una solución espacial en lugar de

plana. A este gru po pertenece el método de reducción de Stock [22J . Dicho mét odo par te

también de una proyección dependiente de un factor de escala y del telescopio utilizado

en la observación , pero tras lada a la esfera unid ad los puntos (Xi, Yi ) que representan

las imágenes de la placa. Es allí donde relaciona las coordenadas (eli,6i ) de la estrella

de referencia, dadas por el catálogo, y expresadas en forma cartesiana como (';il , ';i2, ';i3)

con las (Xi,Yi ) en su forma proyectada (Uil ,Ui2,Úi3 )' Dicha relación se obtiene por la

composición de dos rotaciones elementales y viene definida por tanto por una matri z A

teóricament e ortogona l. Un esquema represent at ivo del método puede ser el sigu iente:
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(2)

(1)

(k = 1, 2,3),

donde al;) y al}) representan las matri ces solución alas placas n y m respecti vamente,

donde se encuent ran las imágenes comunes de coordenadas ui;)para la imagen 1 de la

placa n y u~;) para la imagen k de la placa m .

El núm ero de ecuaciones de condición formadas a par tir de las est rellas de t ras lapo es,

en genera l, mucho mayor que el de las ecuaciones form adas a partir de las ecuac iones de

referencia , pudiénd ose decir que las est rellas de traslapo van a dar la rigidez al ent relaza­

miento de unas placas con ot ras , mientras que, las de catálogo van a aportar el sist ema

de referencia al conjunto.

El mismo número de estrellas de referencia que antes era necesari o para la obtención

de la solución de una placa, lo es ahora para el conjunto. De tal form a que, si para la

reducción, en form a individual , de N placas que se tras lapan era n necesarias 3N estre llas

de referencia , al hacerlo en form a conjunta, el núm ero se reduce a 3.

Este hecho es muy importante por su aplicación a los actuales detector es como el

CC D. Debido a su pequeño' tamaño, es imposible, en la mayoría de los casos , encontrar

un número mínimo de est rellas de referencia que hagan posible asemejar una exposición

tomada con CCD a una exposición fotográfi ca y tra tarla como ta l [4J .

No siempre es posible encontrar el número suficiente de estrellas de referencia o de catálogo

que permi tan realizar la reducción de una placa det erminando los parámetr os significat ivos

del desarrollo y que influyen en la posición final de las estrellas .

Exist e una técnica que consiste en programar la observación, de forma que, el área del

cielo a est udiar sea cubierta por varias placas cuyos campos se superponen o traslapan.

Con dicha técnica se consigue que cada estrella tenga imágenes en más de una placa o

exposición. A las estrellas que tienen más de una imagen las llamaremos de traslap o. Si

se ha rea lizado la observación según esta técnica, es posible encontrar una solución en

form a conjunta a las placas , sin más que tener en cuent a que imágenes que provienen de

una misma estrella deben dar posicio nes idénticas en el ci elo [15J .

En el método de Stock [22], las estrellas de t raslapo pro ducen un nuevo tipo de ecua­

ciones (2). que se suman a las formadas por las est rellas de referencia (1).

3 3
'" a(n)u ¡(n) = '" a(m)uk(m)
L tJ J L tJ 'J
j=l j = l

3 . T écnica de traslapo

donde el sistema de ecuaciones a resolver viene dado por la expresión

3

Eik = I>kj Uij (k = 1, 2, 3),
j = l

siendo akj los elementos de la matriz de giro A .



Taff· [24] desarrolla una variante de tr aslapo que se puede aplicar en la reducción de

una solo placa. Aplica el modelo de reducción en forma idént ica a áreas diferentes de In

placa que se traslapan. De ésta forma estudia la falta de acoplamiento del modelo según

el área o, lo que es igual, las deformaciones de la placa respecto al modelo .

La idea original del trabajo que aquí se resume, era la introducción en las ecuaciones

(1) y (2) de los términos que representan la distorsión cuando se usa el método de Stock

[22] en su forma de reducción en bloque, pero finalmente derivó en un tema más general y

completo, donde se da una solución al problema de la distorsión cuando se manejan placas

que se traslapan , empleando cualquier tipo de reducción en su forma más sencilla.

La siguiente tabla da una relación de los catálogos que se han reunido, haciendo

mención a sus épocas medias, y a si han sido reducidos el t rabajo mencionado

Catálogo poca media Reducción

AC Zona París 1894 si

AC Zona Oxford 1903 si

BOSS 1900

HECKMANN 1926 si

YALE 1926

AGK2 1930

NIRS 1950

POSS 1953 si

AGK3 1960

CARLSBERG 1987

C. SCHMIDT (CIDA) 1988 SI

C. SCHMIDT (CIDA) 1990 si

C. SCHMIDT (CIDA) 1994 si

La unificación de los diferentes catálogos en un mismo sistema par a el cálculo de

movimientos propios, exige la elección de ese sistema. El sistema Hipparcos hubiera sido

el ideal para ello, pero a falta de su disposición, dos son los candidat os: el sistema definido

por el cat álogo Carlsberg y el definido por el catálogo PPM . La elección del primero

respecto al segundo se debe a las siguientes razones:

en la actualidad, la densidad en número de estrellas para la zona estudiada es

semejante a la del PPM,

el err or en posición es menor para el catálogo Carlsberg,

llega a magnitudes sup eriores,
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su época media es similar a la de las últ imas épocas de observación tom ad as con la

Cámara Schmidt, telescopio no especialmente astrométrico y donde los pro blemas

de reducción son más variados . A veces estos problemas son de origen descono cido

y de magnitud importan te.

Existen dos form as de corregir los errores sistemá ticos entre catálogos. La primera

consiste en est udiar la part e sistemática de las diferencias en posición para estrellas

comunes, llevadas a una misma época. L~ segunda consiste en reducir uno de ellos respecto

al otro. Como ya se ha indicado ante riormente , en la redu cción de placas , las est rellas

de referencia tienen como misión el trasladar su siste ma , por ello, y para comprobar,

para cualquier tipo de te lescopio, todas las técnicas novedosas que aquí se ensayan, se

han vuelt o a reducir aquellos catálogos para los cuales se disponía de las placas (POSS

-P alornar Observatory Sky Survey) o de las posiciones de sus imágenes medidas (x, y)

(AC -Astrographic Catalogue). Para ello se ha usado el catálogo Carlsberg como catálogo

de referencia .

4. Determ inación d e p osiciones sobre la placa

Las imágenes que produ cen las estrellas sobr e una placa, pueden considerarse como man­

chas extensas que, en condiciones ópt imas, deben poseer simetría radi al, con un máxim o

de densid ad en el centro.

Una vez definido un sistema cartesiano sobre la placa , ésta puede medirse sust ituyendo

unívocamente las imágenes por pun tos que las van a representar. Dichos puntos van a

ser los cent ros aparentes de simet ría de las imágenes, cuando el operador es quien decide

en forma visual el punto, o el máximo de la dist ribu ción de densidades asoc iadas a los

píxeles, o element os de área, para los procesos digitalizados. En esta última forma, la

función de densidad que se suele elegir es la gaussiana , que, aunque no reproduce en la

mayoría de los casos la función verdadera , sí da, y en una forma bastan te sencilla , el

máximo de la distribución . El principal prob lema se presenta para imágenes sat ur adas

que, en genera l, serán imágenes corres pondientes a estrellas de referencia y por tanto muy

imp ortantes para el proceso de reducción. En ellas, el valor de densidad asoc iado a los

p íxeles cent ra les, fluctú a levemente alrededor de un valor constante , y la función gaussiana

pierde sent ido ante posibles deformaciones de la imagen, provenientes de la observac ión,

y que serían mas obvias en su parte externa . La solución en dich~ caso se encuentra,

asignando mayor peso a los píxeles que encierran la parte externa de la imagen que a los

internos .
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Figure l. -Formaci ón de perfiles a través de un a rest a de dos fun ciones arcotangentes . Con las

func iones que representan la part e (A) de la figur a , se pueden crear perfiles simétricos, parte (B) ,

o as imétricos, parte (C) , semejantes a los que se pueden encont ra r en una sección transversal de

una imagen fotogr áfica. Basta para ello: variar lo~ parámetros qu e definen la anchura (e) y la

inclinación (b) de cada una de las funciones arco tangentes que d efinirán la imagen .
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Por lo genera l, los ejes de barrido dur ante el proceso de digitalización y los de simetría

de la imagen no van a coincidir, debiendo efectuar una reorientación de los primeros

(6)

(5)

(4)

(3)d = arctan [b (x - c)]

(x - xo) cos 4> + (y - Yo) sen 4>

- (x - xo) sen 4> + (y - Yo) cos 4>

A

v

u

1
f( x ,y) = b [arctan (bx (x - cx ) ) - arctan (bx (x + cx ) ) ]

2 arctan xCx

1
- ----=¡- [arctan (by (y - cy)) - arctan (by (y + ey ))]
2 arctan i yCy

z ==

f (u,v) =

donde: A es la amplitud o densidad máxi ma de la image n, bu Y bv están relacionad as con

las pendient es en cada uno de los ejes de simet ría de la imagen y Cu Y e, , con el tamaño

de la imagen en cada uno de los ejes de simetría. (xo,Yo) representan el cent ro de la

imagen según las direcciones de barrido y 4> el ángulo entre los ejes de barrido y simetría

para la imagen. Por últim o ( 1, (2, (3 representan parámetros que definen un plano que

represent ará el nivel del fond o del cielo.

Para la determinación de los parámetr os que definen la función (6), el mod elo debe

ser aplicados a las imágenes a través de un proceso de ajuste por mínimos cuadrados. La

falta de linealidad obliga a la búsqueda de la solución en una forma iterativa , par tien­

do de valores iniciales que deben ser lo suficiente mente buenos como para conseguir su

convergencia .

Suponemos simetría en la imagen y por ello los parámetros iniciales definidos para uno

de los ejes, lo serán tamb ién para el otro. Cuando no existen problemas de saturación sobr e

la placa , el parámetro densidad o cuenta máxima t iene una relación muy bien definida

respecto a los parámetros inclinación y anchura de la imagen. Pero , según se pued e

quedando en definitiva la función que representará a la imagen cómo

Restando dos funciones de este tipo, en donde se han variado uno o ambos parámetros,

pueden mod elarse perfiles como los que se muest ran en la figura l.

Tomando como independientes las funciones de densidad para uno y otro eje , la función

que representa a la imagen queda, una vez norm alizada, en la form a

En el trabajo se desa rrolla una nueva función , dependiente de la función arco tangent e

a la que se le han agregado 2 parámetros que per miten manejar el desplazamiento y la

inclinación de la misma



10

(IV)

I cuenu.: plnlell (\ln1d~d _ IO~

.-;.;' ..

.,'

(11I)

: "

"

ID

10

10

(111

01

,~~ : o. '

I C\lenl4~ piula (unld~d - 10~

5000 10000 15000
euenlll mulma par. ead. lm..-u

2.S ·

.S

~ 1.5

101

Figure 2.-Se muestra la relación existente entre dos de los parámetros que conforman la función

de ajuste a una imagen fotográfi ca y los parámetros cuenta máxim a de los píxeles que cont ienen

la im agen y suma de cuentas para esos mismos píxeles. La final idad es aprecia r que, ante la

sat urac ión, el parámetro suma de cuentas es un mejor calibrador de l resto de los par ámet ros

que el parámetro cuenta máxima qu e permanece acotado a part ir de un cierto valor. El gráfico

está basado en el a juste de imág enes pertenecientes a una de las placas del catálogo POSS.



apreciar en la figura (2), el parámetro volume n o suma total de cuentas para pixeles que

encie rra la im agen parece el más adecuado, ya que esta relación se mant iene, incluso en

los casos de saturación.

El proceso se ha aplicado a más de 40000 imágenes, corres pondientes a la serie de

placas Schm idt (1994) y POSS, eligiendo en forma aproximada los parámetr os iniciales

para una primera determinación, usando los casos donde se encont ró convergencia para

definir la relación existente entre parámetros y aplicando éstos, como iniciales, en una

segunda vuelta de cálculo. Se consiguió convergencia en forma automát ica para un 90

% de las imágenes. Las demás debieron ser estudiadas con más det enim iento y por lo

general corres pondieron a imágenes de obj etos no estelares como galaxias o nebulosas,

objetos dobles o múltipl es, objetos muy débiles (para los cuales no existe un número

suficiente de píxeles con información clara y distinguib le del ruido elect rónico), o inclu so

manchas en la propia placa.

El acoplamiento entre imagen y función lo definimos como el error medio por pixel

de las diferencias entre la suma de cuentas, para los píxeles que cont ienen la imagen

corregidos por el fond o de cielo, y el volumen que encierra la función determi nad a en el

ajuste . El valor de este erro r es del orden de ent re 1y 2 veces el valor del ru ido de la

digitalización. Se puede decir que el acoplamiento es casi perfecto.

5. Nuevo modelo matemático para la reducción

Una planificación de la observación en form a de traslapo hace que cada estrella tenga

tantas posiciones como imágenes tiene en las placas. Una reducción en bloque t rata de

imponer que esas posiciones coincidan. La no coincidencia se puede achacar a todos

aquellos problemas que no han podido absorber los parámetro s que definen la solución de

cada una de las placas .

La posición final de cada estrella vendrá dada como el promedio de las pOSICIOnes

individu ales obt enidas, para esa estrella, en las placas donde tenía 'imagen. Aparece cdn

ello un residu o asociado a cada una de las posiciones individu ales. Se tr ata de descubrir

la inform ación que contienen dichos residuos, y en especial extraer de ellos la parte sis­

temática , si la hay. Para ello se hace uso de una función ya definid~ por Stock y Abad

[23]. Dicha función está definida en forma discreta tal como se describe a cont inuación.

Sea un conjunto de puntos (Xi ,Yi) sobre el plano, que llevan asociados cada uno un

valor real 6 ¡. El valor asociado 6 0 a un punto cualquiera (xo,Yo) l¿ vamos a determ inar

a través de los valores asocia dos 6 ¡ a los puntos (Xi, Yi) pertenecientes a un entorno , con

centro en el punto (xo,Yo) , de radio TO fijado previament e, y que mantendremos constante

durante todo el proceso. El valor 6 0 = Q(xo,Yo) se obtiene a partir de una sencilla
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función polinómica Q(x,y), que se ajust a a los puntos iniciales (Xi , y¡). Para un nuevo

punto (xo,Yo), su valor 6 0 se obt iene trasladando el entorno de radio ro usando este

punto como nuevo cent ro, y realizando de nuevo el ajust e de la función Q(x,y) a los

6 ¡ iniciales que han quedado dentro del nuevo entorno . De esta forma, los valores 6 0

que se van obt eniendo forman una función P(xo,Yo) que puede llegar a ser cont inua y

derivab le. Dur ante el proceso de cálculo de los 6 0 se introdu ce un peso a los valores 6 ¡

que intervienen en su cálculo, que depende de la distancia r, del punt o (Xi, Yi) al central

(xo,Yo) en la forma

peso = (RJr
siendo n un número ente ro.

Se puede demostrar que la función P(x,y) así definida, es continua y derivable si

n > 1, y las k-ésimas derivadas son continuas cuando n = 2k , (Abad , [1]).

Esta función se aplica, en el present e trabajo, en las dos formas que se expresan a

cont inuación e independientemente de los residuos de cada una de las coordenadas .

Trabaj ando con placas que se tras lapan, los residuos 6 0 y 6 8, que resul tan

al comparar posiciones finales de las est rellas con las posiciones individuales que

cont ribuyen a esa posición final, pueden asociarse a la posición (x ,y) que ocupan

las imágenes sobre la placa . De esta forma puede obtenerse ' información sobre

las deformaciones que introduce el sistema óptico del telescopio, y que no fueron

detectad as en la solución. La asociación, si se completa, con algún par ámet ro que

esté relacionado con el tamaño de la imagen, puede determinar incluso los llamados

problemas de m agnitud.

Trabajando con catálogos, la función debe servir para determinar sus diferencias

siste máticas , sin más que tr ab ajar con los residuos o diferencias entre las coord e­

nad as o , 8, dadas por los catálogos para las estrellas comunes, una vez llevadas a

una misma época.

En ambos casos, una vez tr abaj ados los residuos para cada una de las coordenad as

por separado, podemos llegar a visualizar los resultados y hacer que estos sean de gran

util idad cuando, al definir una red sobre la superficie que cont iene los puntos para los

cuales hay residuos, se calculan los valores que corresponderían a los nodos de la red.

Estos valores, se pueden mostrar en un gráfico .como vector es asociados , cada uno a su

nodo, de módulo la composición de los valores obtenidos para cada una de las coordenadas

y orientación la que indiquen dichas componentes .

Esta visualización permite observar cua les van a ser las deformaciones que indican

los residu os no absorbidas por la reducción o comparac ión de catálogos, según el caso,
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permit iéndonos comproba r la complejidad de las mismas y ayudándonos en la decisión del

cómo se van a eliminar. Si la estru ctura mostr ada es fácil de representar por una función

analítica, el proceso se limit ará a sustituir las deformaciones puntuales por la función que

las representa y aplicarla a los valores iniciales. Si por el contrario, la est ruc tura es com­

pleja , una red más densa en nodos puede ser utilizada para encontrar , por interpolación ,

el valor a ap licar individu almente a cada uno de los puntos a corregir .

6 . Aplicación d el modelo

6.1 a la reducci ón de placas fotográficas

El mod elo descrito se ha aplicado a diferentes series de placas que provenían de diferent es

telescopios, debiendo hacer especial mención a aquellas provenientes de telescopios t ipo

Cámara Schmidt. Dicho telescopio t iene la particularidad de que la superficie focal debe

ser una sección esférica, de cent ro idéntico al de la super ficie del espejo y la mitad del

rad io de curvat ura del espejo. Para conseguir que todos los puntos de la -placa est én en

foco, la placa debe ser curvada hasta conseguir dicha curvatura o bien se deb e utili zar un

aplanador de campo que hace el pap el de dicho dob lamiento .

Est a manipulación de la placa hace que el telescopio no sea el idóneo para la calida d

de los trabajos astrométricos, aunque sí es envidiable por su rapidez de respuesla y su

campo ancho.

En las series de placas tomadas con la cámara Schmidt del CIDA, se det ectaron prob­

lemas difíciles de determinar que pusieron a pru eba la capacidad del método aquí desar­

rollado. Parte de los resultados obtenidos para diferent es te lescopios ya fueron pub licad os

en [2] y [3] .

La serie realizada en 1988 es present ada como ejemplo de dichas dificultades. La

figura (3) muestra una dependencia de la distorsión, en función de los puntos de contacto

y presión del grupo de anillos, que el sistema de tensado de la placa de la propia cámara,

disponía en ese momento . Parte de dicha deform ación era encub ierta, en una forma

to talment e casual, por la simet ría en la ubicación de los cent ros de las placas al planificar el

tras lapo. Esto da pie a afirmar, que la mejor planificación de una observación con tras lapo,

es aquella que, sin dejar zonas del cielo peor cubiert as que otras, tienen distribuidos los

cent ros de las placas en forma aleatoria.

La aplicación del método a los prob lemas relacionados con el tamaño de la imagen

(también llamados problemas de magnitud), se realiza agrupando las imágenes en inter­

valos no disjuntos del parámet ro que represent e al tamaño de la imagen. Dicho parámet ro

será: el diámetro de la imagen, la magni tud de la estrella , el volumen encerrado por la

función de ajuste a la image n una vez digit alizada, o cualquier otro que lo represente.
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Figure 3.-Campo de distorsión calcu lado, a través de una sol ución lineal , combinando la

comparación de posiciones individuales, obtenidas de la reducción , con las dad as po r el catálogo

Car lsberg (fuent e ex te rna) , y con la posición promedio de posiciones para un a misma est rella

(fuente int erna). Placas medid as con la PDS de Munster.

105



El parámetro más conveniente es el relacionado con el volumen ya que permite unificar

criterios, en una forma más rigurosa, para placas o exposiciones diferentes. Una vez

separados en intervalos, se aplica el método en form a similar a como se realiza para la

distorsión.

En las series de placas reducidas, tanto del Catálogo Astrográfico, como las tom adas

con cámara Schmidt, no se aprec ian errores graves dependientes del tamaño de la imagen.

De todas formas, cuando se calcularon los errores medios finales de la reducción , éstos,

fueron desglosados por magnitudes, para repet ir y corregir el pro ceso de reducción si fuera

necesar io al ver alguna dependencia error-magnitud.

A continuación se presenta una tabla, reducida a los errores med ios fina les obtenidos

en la reducción de to das aquellas series para las cuales se aplicó el método

Series de placas O"a (s) 0"6(" ) nO imágenes

París (AC) 0.014 0.19 19466

Oxford (AC) 0.021 0.25 8162

Heckmann 0.015 0.26 610

POSS 0.024 0.30 443

Schmidt (1988) PDS 0.009 0.13 8162

Schmidt (1988) PSK2 0.019 0.30 13639

Schmidt (1988) PDS+PSK2 0.013 0.19 51435

Schmidt (1990) 0.018 0.29 19311

Schmidt (1994) 0.012 0.16 26738

Par te de la serie de placas tom adas con la cámara Schrn idt del CrDA en 1988 fueron

medidas con la PDS de la Universidad de Munster (Alemania), mientras que la serie toma­

da con la misma cámara en 1994, se midió con la PDS del Departamento de Astronomía

de la Universidad de Yale (EEUU). Se puede aprec iar la gran influencia, que ejerce una

buena medición sobre los resultados finales.

6.2 a la unifi cación de catálogos ya elaborados

El modelo se ap licó a las diferencias en posición para estrellas comunes entre los catálogos

ya elaborados y el catálogo Carlsberg (tom ado como de referencia, para todo el t rabajo) ,

llevadas a la época del catálogo a corregir. Una muestra de cómo se present an las correc­

ciones a aplicar se ve en la figura 4, que representa las diferencias siste máticas ent re los

catálogos AGK2 y AGIO con el catálogo Carls berg.
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Figure 4.-Repres entación en form a de diagrama de flechas de los errores sistemáticos ent re

catálogos obtenidos a partir de las diferencias de posición para est re llas comunes, cuando están

referid as a una misma época y equinoccio. Estas diferencias están expresadas baj o el diagrama

y en trazo más suave. El catálogo fuente o de referencia es el cat álogo Carlsberg para ambas

par tes del gráfico, correspondiendo el superior a las correcciones del catálogo AGK2, y el inferior

al catálogo AGK3.
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7 . Catálogo y movimientos propios

L: U~,6S(j , j)
n-m

00 ,6 =

La diferente calidad de los catálogos debe reflejarse en la contribución de cada uno de

ellos al cálculo, mediante un peso a aplicar a cada una de las ecuaciones de condición,

proporcional a

dond e Uo ,6 son los errores medios en a o D del ajuste, n el núm ero de ecuaciones

(L:pesos;), m el núm ero de incógnitas a calcular y s(j, j) el elemento de la diagonal

correspondiente al parámetro J.L de la matriz inversa a la formada por las ecuac iones

normales en el ajuste.

Para la formación del catálogo" compilado definitivo es necesario el present ar las posi­

ciones y los movimientos de las est rellas, refiriéndolos a un mismo sist ema y a una cierta

época para el caso de las posiciones. Dicha época puede ser una época común a todas las

estrellas o, como en el presente caso, una época individual para cada una de ellas , definida

como la época media de las que contribuyeron a la creación de esa posición. El cálculo

- 2- '«:»
donde Uo ,6 es el error medio , en a o D, según el caso, de las posiciones dad as por el

catálogo. Por lo general dicho peso está normalizado al mayor de ellos,

El error medio calculado para el movimiento propio , viene dado por el error en la

determinación del parámetro J.L por el método de mínimos cuadrados según

a; a o+"J.Lo; (epoca; - epocao)

Di Do + J.L6i iepoca, - epocao)

El cálculo del movimiento propio de una est rella se reduce a la obte nción de la proyección

del movimient o rectilíneo y uniforme de esa estrella, para ello, se realiza el aj uste de una

recta a la posición en a o Drespecto a la época.

Es necesario, como ya se ha indicado anteriormente , que todos los puntos (posición,

época) estén en el mismo sistema de referencia y lo más libre posibl e de errores sis­

temát icos, condición conseguid~ al realizar la reducción de las observaciones basánd ose en

el mismo sistema de referencia (catálogo Carl sberg) o aplicando los métodos de reducción

de errores entre catálogos como antes se ha escrito .

El cálculo se realiza mediante el ajuste de una recta a los diferentes valores de posición

(a;, D; ) de una misma estrella respecto a sus épocas epoca; referidas a una época media

epocao usand o el método de mínimos cuad rados y en forma independiente para a y para

D. El té rmino independiente (ao ,Do) nos dará la posición para dicha época media.
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Las magnitudes que aparecen son promedios de las magnitudes calculadas a tr avés de

un ajuste del parámetro que las define en las placas, a las dadas por el catálogo Carlsb erg,

dándole un peso muy sup erior a las obtenidas de la reducción de las placas del pass ya

que el parámetro usado fue el volumen encerrado por la superficie de aj uste a la imagen,

mucho más fiable que la apreciación directa de los diámet ros por diferentes operadores o

a los obtenidos de placas con otros prob lemas adicionales. Cuand o la est rella está en el

catálogo Carlsberg se ha respetado su información de magnitud.

El catálogo cont iene, además , la información sobre los errores medios, tanto en posición

como en movimiento para cada una de las est rellas, así como el intervalo de épocas que

intervinieron en la elaboración de esos datos.

t6 = O" .166 ,

t l-'6 = O" .001 .

ta = 05.012 ,

tl-'6 = Os.0007 ,

posición:

movimiento propio:

de la posición para la época media es simultáneo al del movimiento propio, al usar las

ecuaciones de condición (7).

En la formación de nuestro catálogo para la zona imponemos la condición de la ex­

istencia de un intervalo mínimo de épocas de observación, superior a los 30 años , para

cada una de las estrellas que apar ecen en él. Las placas o catálogos más profundos son los

correspondientes al pass (1950-1955) y a las observaciones con la cámara Schmidt del

CIDA (1988-1994), con lo que estamos imponiendo la confirmac ión, al menos, de ambos

catálogos par a la inclusión de una estre lla o no.

Según todo esto, el catálogo tiene 2078 estrellas y sus errores tanto en posición como

en movimiento propio son:

Una asociación estelar se caracteriza, entre ot ras cosas, porque sus miembros conservan

un movimiento espacial similar, y por tanto , su proyección sobre la esfera celeste , tiene

carac teríst icas bien definidas.

Por un lado, los movimientos propios también serán similares entre ellos. Por otro la­

do, los movimientos espaciales se representarán como movimientos sobre círculos máximos

al pasar a la esfera celeste, y por tanto, el paralelismo se transforma en convergencia. Al

punto de convergencia, si puede determinarse, lo denominaremos ápex de la asociación.

Una simp le representación sobre un plano de los movimientos propios del conjunto de

las est rellas, donde los ejes coordenados Ox, Oy representen los movimientos propios en

Q y en 8 respectivamente, ·debe mostr arn os si existen agrupaciones de los mismos, o lo

que es igual , si se destaca un grupo de estrellas del resto por su movimiento.
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En el caso particular que se ha trabajado , da la coincide ncia de que los miembros del

cúmulo de Coma present an movimientos muy pequeños, y similares al movimiento común

de desplazami ent o en el área (figura 5), pero, al ser ya conocida la exist encia de dicho

cúmulo, si rest ri ngimos el gráfico a las estrellas más brillantes, es posible confirmar dicha

agrupación (figura 6).

Como se desprende de -lo d icho anteriormente, no es siempre tan fácil el determinar

posibles asociaciones: y más cuando nos vamos a magnitudes cada vez mayores: es decir:

a estrellas más débiles.

El método que aquí se expone, puede dar luz a est a búsqueda y está basado en la

dist ribu ción sobre la esfera celeste de los puntos de corte de los círcu los máximos que

representan a los movimientos propios. Si exist e una zona del cielo donde hay una mayor

Figure 5.-Representación de los movimientos propios para todas las estrellas del área de

Coma. No se muestra, de forma evidente, la ubicación del cúmulo en la figura , pero sí se ve un

desplazamiento sistemático de todos ellos ' hacia el tercer cuadrante .



.0 1

....

o
.¡.t.

8 < mag < 10.5
r = 3°.5 (centro cumulo)

•

. .

..

..

...-..

• I

. .. .: . ..;~:.
. ..j~/."'!''''..

. . N"'·
•• i e, .~,, ...~.

..

-.005

.- -1 -, •• e l ••

. .: .::.~..:.:- ....... .. . . -. . .

-,

..

..

..

mag < 8

-.1
.,-.01

o

111

o

.05

- .1

.05

-.05

-.05

Figure 6.- Cu ando nos restringirnos a las est rellas más br illan tes del á rea, se puede apr ecia r

qu e muchas de ellas t ienen un movimiento común , lo que revela la existe ncia del cúmulo. En

el panel superior se represent an los movimiento s prop ios para est rellas más br illantes qu e la

magnit ud 8, mient ras que en el inferiory restringido a un área circular de 3°.5 de radio, se

represent an los movimientos propios para est rellas con magnitudes comprendidas entre 8 y 10.5.
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Figure 7.-Figura conteniendo los puntos del cielo, representados en form a plana a través del

prog rama lRAF , en donde han habido cortes ent re los círculos máximos que representan las

trayectorias de las estre llas contenidas en el área de Coma en estu dio. Se aprecian de manera

clara dos direcciones de preferencia de corte, una perte neciente al desplazamiento general y

sist em ático existe nte en la zona y ot ra en la dirección del cúmulo de Coma que se está estudiando.

Poniend o un límite inferior al número de cortes por punto o pequeña área de estudio, se pueden

resaltar detalles de l gráfi co.



concentración de puntos de corte que en el resto, es porque hay un grupo de estrellas con

movimientos , a l menos en dirección , par ecidos. Es allí donde deb e comenzar la búsqueda.

El panorama puede ser diferente cuando examinamos la distribución en el exterior

(figura 7), o en el interior (figura 8) del área cubierta por las est rellas qu e disponemos.

Puntos aislados, como los rep resentados en la (figura 8), provienen, como los de la (figura

9), de est rellas cuyos movimientos están representados por flechas, de módulo proporcional

a la composición de movimientos, tanto en o:como en ó, y dire cción la indicada por dichas

componentes .

.'•.~....:.:~. .
~ ..~ . <~
.,. . .

'. ~ ..,.
. ''":,.- .. ":. :

Figure 8.- Los puntos representados son pequeñas áreas iguales en tam año, a modo de píxeles

donde se ha cont abilizado un número de cortes entre trayectorias superior a un límite inferior

arbitrar io y restringido al área cubierta por las placas. Se aprecian zonas o puntos aislados: que

indican una mayor concentración de puntos de corte que para el resto de puntos de su entorno.

Algunos han sido numerados a fin de identificarlos en la figura siguiente.

El manejo m atemáti co del método es muy sencillo, y consiste: en trabajar con los

vectores perpendiculares a los círculos máximos , o vectores directores: que definen el

movimiento propio de cada est rella. El producto vectorial de dos de ellos nos dará la

direcció n, y po r tanto el punt o de convergencia , de ambos círc ulos.

El método puede usarse en form a similar p:u-a representar las tr ayectorias de un con­

junto de estrellas. Para ello basta trabaj ar con el vector direccional de cada círculo

máximo representante del movimiento de cada una de las est rellas, y el vector direc­

cional de un círculo máximo que, conteniendo el diámetro perpend icular a l plano medio

del movimiento común del cúmulo, va variando su orientación (figura 10) . El ápex es­

tará sobre el cír cu lo máximo perpendicular a la trayectoria media del cúmulo donde sea

mínima la dispersi on de los puntos de int ersección entr e las trayectori as de las estrellas y

cada uno de esos círculos perp endiculares a la t rayectoria med ia . El ápex vendrá definido

como el punto medio de todas esas intersecciones.
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F ig u re 9.-Representación, en forma plana, de las estrellas y sus movimien tos (como flechas

proporcionales a ellos), que dieron lugar a la formación de alguno de los puntos que aparecen

numerados en la figura 8. Se han eliminado todas aquellas est rellas cuyo número de cortes con

el resto y en ese punto, es inferior al número de puntos de cortes promedio, que en ese punto

tienen las est rellas que lo formaron. Los gráficos no indican agr upaciones físicas estelar es , sin o

que pueden ser base de est udio para el encuent ro; si lo hay, de dichas agr upaciones.
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F igure 1O.- El método, permite visualizar las trayectorias seguidas por cada una de las estrellas

según su movimi ento propio. El gráfico representa dichas trayectorias, pasadas al plano, para

est re llas miembros del cúmulo de Coma, donde se han seña lad o con t razos más fuert es, las

tr ayectorias que corresponden a las estrellas más brillantes, a fin de compro bar la ausencia de

dependencia de las mismas con la magn itud.
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9. C úm u lo de Coma . Movimiento y ápex.

El primer trabajo importante referente a dicho cúmu lo se debe a Trum plcr [25]. En

dicho trabajo , Trumpler estudia la pertenencia o no.de .las estrellas de cam po al cúm ulo,

determinando una lista de 37 estre llas que da como miembros seguros , a t ravés de los

crit erios de movimiento propio , velocidad radial y est ud io espectroscópico. Esta lista se

ha mantenido prácticamente hasta nuest ros días .

Trump ler da como movimientos propios promedio anuales /lo = - O" .013, /l6 = - O" .017

respectivamente, como velocidad rad ial - 0.4 krri/ seg, y como punto de convergencia, o

ápex el punto de coordenadas (8h4m
, - 47.0) . Posteriores est udios, como los de Weaver

[26], Johnson y Knuckles [17] y Mendoza [18], se centran en las propiedades físicas de las

estrellas que lo componen, haciendo comparaciones con otros cúmulos mejor conocidos,

como las Hyades, Pleiades y Praesepe.

Gat ewood [16] obt iene su paralaje trigonométrica dand o la cifra de O" .01353± 0" .00054,

que corresponde a un módulo de distancia de 0.34 magnit udes ± 0.09, equivalente a 73.9

parsecs, y que está en concordancia con la dada por Tru mpler [25] y resalt ada por Weaver

[26], quienes afirman además, que el cúmulo tiene una simetría esférica con diámet ro de

10 parsecs, donde el punto medio está a 75 parsecs de distancia.

Los datos obte nidos para el cúmulo, basados en las mismas est rellas dadas como

seguras por Tru mpler [25], son de /lo = - O" .00118 , /l6 = O" .0107 lo que representa un

movimiento de módulo igual a O" .0192 en la dirección 213°.93 .

Tomando los datos dados por Gatewood [16] sobre la paralaj e del cúmulo, se puede

dete rminar la velocidad del mismo, resultando ser de 6.74 kms/seg.

Si a la composición de movimientos propios obtenidos en el trabajo que aquí se resume,

se le añade la velocidad radial determin ada por Trumpler [25], se puede determ inar el

movimiento espacial y éste nos dice que el punto de convergencia del cúmulo va a estar a

93°.4 grados en la dirección 213°.93, dand o como punto de convergencia (7h .287, -31°.6) .

Ello nos indica que el movimiento del cúmulo es paralelo al nuestro ya que el apex está

situado alrededor de los 90° y que la falt a de convergencia, según muestra la figur a 10,

podría deberse a un pequeño movimiento de expansión del mismo.
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Los datos del POSS usados en el presente trabajo están basados en placas del National

Geographic Society - Palomar Observatory Sky Survey (NGS-POSS) obtenidas usando

el Telescopio Oschin de Monte Palomar. El NGS-POSS fue fundado con el aport e de

la National Geographic Society al California Inst itu te of Technology. Las placas fueron

procesadas en forma digit al con su permiso. El Digitalized Sky Survey fue realizado en el

Space Telescope Insti tu te bajo una ayuda del Gobierno NAC W-2166.
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Abstract

We reanalyse the several schemes of load transfer of the fiber-bundle type used in
stochastic models of quasistatic fracture (Le. the equal load-shar ing, the local load-sharing,
and the fractal load-sharing schemes) , assuming that a fraction of the acting stress is lost in
each transfer evento The inclusion of this dissipative effeet can malee these models, usually
discussed in the restricted area of bundle strength and materials science, have a more clear
projection in earth sciences , and more specifically in the mechanics of earthquakes.

1. Introduction

There are very few mecha nical problems more complex, more difficult to cast into a
definite physical and theoretical treatment than the range of phenomena assoc iated with
fracture. And also, there are few problems with a wider range of fields of applications:
material science, engeneering , rock mechanics and rock physics, seismology and earthquake
occurrence. Mechanical failure of a sufficiently large sample of a heterogeneous nuuerial
consists of a crack nucleation process, followed by the formation of an unstable crack and
finally catastrophic failure . Trad itionaI fracture mechanics bypasses the crack nucleation
stage by postulating the existence of a crack and analysing its consequences. Since fractur e
properties are determ ined by the presence of defects at the microscopic -atomic- scale
(impurities, dislocations, vacancies , etc.) , analysis of the nucleation of fractur e is a problem
in heterogeneous nucleation. As in most heterogeneous nucleation processes , significant
sample-to-sample and configuration-to-configuration variability occurs in fracture stre ngth
and other fracture properties. For this reason, a statistical analysis is often necessary, and in
fracture this analysis is usua lly based on the Weibull and other extreme value distribu tions.
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(where p is an integer called the shape parameter or Weibull index , and a is the load,
measured in a prescribed unit, acting on the element), .and in which local stress

The case where the stress enhancements are taken into account has proven much
more difficult , and with the exception of the early work by Harlow and Phoenix (1978a , b,
1981a, b) and Smith (1981) , and a small number of recent works (Duxbury et al. , 1986,
1987; Gomez et al. , 1993c; Duxbury and Leath, 1994) there are few reliable results.
Although all the models belonging to the localload-sharing (LLS) sheme are quite simple in
principie (an almost invariably ene-dimensional), they appear to contain many of the key
scaling properties of more complex , higher dimensional models. The classical LLS model
(Harlow and Phoenix (1978a , b) consists of a set of No elements burdened uniformly with a
given load (weight, stress , etc.) per element , in which the local failure thresholds are drawn
from a continuous distribution , such as the Weibull distribution (Weibull , 1939):

(1)
- O" P

PO" =1- e ,

The load-transfer models that we review here belong to this group of simple,
stochast ic, quasistatic fracture models amenable to either closed analytical or fast numerical
solution, and whose output , spaning many orders of magnitude in sample size , allows a
precise characterization of their asymptotic behaviour. The collective name given to this
type of models is ftber-bundl e models or fiber-bundle paradigm, because they originated in
close connection to the strength of bundles of textile fibers (Daniels , 1945). Since Daniels'
seminal work , there has been a long tradition in the use of these simple models to analyse
failure in heterogeneous materia ls. Sorne of the models are of mean-field type and ignore the
stress enhancements near localy failed regions: these are the equal load-sharing (ELS)
models (also known as "democratic" models , because the load supported by a failing
element is shared "democratically" , i.e. , in equal parts , among aH the surviving elernents),
and they are usually analytically solvable (see, for example , McCartney and Smith , 1983).

Our understand ing of fracture processes in heterogeneous mater ials (i.e ., composi tes,
rocks , ceramics , textiles , wood , concrete, etc.) has improved recentl y with the development
of simple algorithms to simulate these processes in quasistatic loading ; most of these
algor ithms are based upon the framework of percolation theory, and include models of
random resistor networks (Arcangelis et al., 1985), spring networks (Feng and Sen, 1984;
Kantor and Webman, 1984), and beam networks (Roux and Guyon, 1985) . However, it is
difficult to determine scaling and asymptotic properties with these models because the
algorithms are quite slow and also because the asymptotic properties are weak , so that many
decades in sample size are required for a definite analysis . A more important problems is
that fracture depend on the properties of the tails of the failure distribution , in particular on
the properties of the "high-reliability" tail of the failure distribution. Naturally it is difficult
to sample the tails of the distribution using conventional Monte Cario methods (all the
models cited aboye are based ultimatelly on a Monte Cario sampling of the failure space). It
is thus very important to develope a set of simple models which can be analysed , either
analytically or numerically , with precission and with clear asymptotic and scaling
behaviours, in order to guide in the understanding of more complex models .



enhancements occur al'ter local failure. The succession of produced failures ends either with
a total collapse, or with a partial collapse of the system . In every case an important goa l is
to calculate the strength of the whole set in terms of the probabilistic properties of the

individual elements. The probability of total collapse of a set of NO elements, initially loaded

with a weight 0-0 per elernent, will be denoted by Po-o(No).

A third group of fiber-bundle models of fracture rely on the scale invariance of the
process of fracture, and try to mimic this scale invariance using hierarchical structures of the
fractal-tree type (Turcotte et al. , 1985 , Smalley et al. , 1985, Newman and Gabrielov 1991 ,
Gómez et al., 1993a , Newman et al, 1994). There is substantial evidence in the material

science and, especially, in the geophysical literature that universal scaling laws for failur e
can possibly emerge (the best known of these relations is the Gutenberg-Richter magnitude­
frequency law, which relates the "size" of an earthquake to the relative occurrence of such
events) and , consequently , these models try to elucidate the patterns and scaling of failur e of

the macroscopic system given that the microscopic properties are known (in principIe!) . We
cal1ed these group of models the fractal load-sharing (FLS) models, due to the general
hierarchical, fractal-tree-like structure common to them . Also due to this hierarch ical
structure, they are . readily solved using renormalization group methods (Newman et al,
1994).

In the standard application of all these models (ELS, LLS, and FLS) , the total load
applied to the system is kept constant and thus, at any step in the process of breaking, the
sum of the weights acting on the surviving elements remains unaltered (see Gómez et al. ,
1993a for a review of the conservative models). This seems reasonable when one is dealing
with a man-scale system, as a bundle of fibres, a cable, or a piece of composite material
stressed during a laboratory experiment, but not when one intends to apply these models to a
large fracture system as for example a tectonic fault (Turcotte et al. , 1985, Smalley et al. ,
1985). In this second case , a non-negligible fraction of the stress stored in the elements is
lost during the transfer events and the system, as a whole, is partial1y relaxed (Lachenbruch
and Sass , 1980, Scholz, 1990). The 'migration' of stress through the boundaries of our

system depends on the physical properties of the elements , of the embedding materials and
on the relative topology of the system and the surroundings.

Thus , . the question we want to address here is: How the known properties of the
stochastic fiber-bundle models are modified wheri the concept of stress dissipation is
included? In the next sections we will analyse this question for the three standard modalities
of load transfer. In Section 2 we will analyse the ELS mode!. Section 3 is devoted to the
LLS mode!. Here we will first consider l-dimensional models in the standard two-sided

mode, and in a new simplified one-sided version. In these models, we wil1 also distinguish
between the case in which the state of loading of the system remembers how that situation
was reached , and the case where it is insensitive to the previous process. In a second
instance, we will also analyze LLS models in 2 dimensions , of the type with memory . In
Section 4, we will analyse the fractal load-sharing (FLS) models in 1- and 2-dimensions.
Final1y, in Section 5 we will state our conclusions.
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and therefore the fraction of surviving elements after the 2nd sweep is

Now , in the 2nd sweep of breaking f.2 elements will fail; this number can be calculated by

multiplying the number of surviving elements after the first sweep, NI, by the conditional

probability of breaking under the load al, having survived a load ao. In our notation, this
leads to

It is convenient to normalise the number of surviving elements at each stage with respect to

No; thus , defi ning y¡ =N¡ /No, eq .(4) reads

By the very nature of this model, if at a given stage of breaking the number of

surviving elements is N, then the load that they actually bear, a, fu lfils the relation

Hence, the number of surviving elements, NI, after this first sweep is

2. Equal load-sharing models

For this mean field , "democratic" scheme, let us first deduce the value of the critical

load, using a recursion method. Phoenix (1978) used a similar recurrence sheme, but casted

in a more rigurous procedure. We will end up with the same recursion relation, but from an

intuitive viewpoint,imitating the way a Monte Cario simulation of the process works. Let us

denote by ao the load per element in the initial loading of the system, and we have to

calculate the probability of total collapse of a system formed by No elements, as a function

ofao·

Just after the initial loading, when the elements support a weig ht ao, the number of

"casualties ", f. 1, derived from it would be

This simple form for Y2 holds after any nurnber of sweeps, and thus one finds

-crP
e ¡ - crP

Y2=YI--=e I
-crP

e o



125

(13)

(11)

(12)

(lO)

(9)

(8)

For any a, and sticking to the previous notation, we have that

but as eq.(2) no longer works, eq.(l2) does not adopt the simple form of eq.(8) or eq.(9).
The generalisation of eq.(2) to this case adopts the fol1owing recursive form

which is obtained by noting that now

Having analysed the conservative case in which the total load is maintained along the
pracess of breaking, let us now study the situation in which in each step of transfer only a
fraction a (O:::;a:::; l) of the load is transferred from a breaking element to the set of surviving
ones. The other fraction, I-a, is supposed to be lost. a, in, a sense, acts also as a correlation
parameter because, in the limit of a = O, each element breaks independently from the rest,
and al1 the weight previously borne by a breaking element is completely dissipated. For
simplicity, a will be taken as a constant along the whole process.

- crPe n
Y/l+ 1 = Yn P ,

e- crn_ 1

and, likewise, the fraction of surviving elements at the critical point is

or, using eq.(2), we final1y obtain

The value of Yoo for any O" < o"c is numerical1y obtained by using the recursion (9), which

starts at Yo = 1.

- crP
Y/l+ 1= e n

This recurrence relation implies that, for 0"0 smal1er than a critical value, o"c ' Y/l tends lo a
non zero limit, denoted by Yoo ; in other words, Pcr~(NO) =0, whilst for 0"0 > o"c' Y/l tends to
zero, i.e. Pcro(No)= l . This is the critical structure of the ELS model as obtained originally

by Daniels (1945). Solving for o"c, one analytically finds

_ _ (crO /y")P
Y/l+ 1 - e .
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Our conclusion in this section is that the critical structure of the ELS model is not
qualitatively affec ted by the consideration of an a < 1. The inclusion of dissipation provokes
the growth of o"c, which sounds logical because if sorne load is lost , a bigger value of 0"0

must be needed to provoke the total collapse.

Fig.l. Fraction of surviving elements , Ycx» vs. 0"0 for the ELS model, supposing different values of

the dissipation factor, a .

O" /!,. 1
O" = O" + a ---l!.......!!.n+ 1 n N,

n+ 1

Thus the solutio n of this model when a*l derives from the simultaneous solution of eq.(12)

and eq.(13) , having fixed p , a , and 0"0 , and starting from YO= 1. These results are

illustrated, in the case of p =2 , in Fig. 1. (Other values of p, leads to similar results. )

There, the fraction of surviv ing elements, Ya:> , is plotted versus 0"0 ' The curve a = 1 is the

standard ELS model , for which, if p=2, O"c= 0.4289, and Yc= 0.6065 (by eqs.(lO) and

(11)). As a gets smaller, o"c moves to the right, and Yc comes down in a smooth ,
monotonous way. In every case, the discontinuous jump of Ya:> at the critical point, from its

value at O"-c (y=y cJ, and at 0"+c (y=0), is c1early apparent.

and hence



3. Local load-sharing models
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Fig. 2. Fits to (0"112)-1 in the two-sided (no-memory) LLS model, in 1 dimensiono (a) Logarithmic

fit. (b) Potential fit. The continuous line interpolates the Monte Cario points and the dotted lines are

(a) the pure logarithmic and (b) the pure potential dependence.

The results presented in this section refer to LLS models. As in this type of models

(as well as those belonging to the FLS of the next section) there is no cr itical load as

occurred in the ELS case, it is convenient to define a strength for the set. This str ength ca n
be defined as that initial load , for which Pcro(No) is equal , for example, to 112. Hence we

will use the symbol 0"112 for this concept, and it will be a funct ion of No·
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ap being a constant.

Before introducing a dissipation factor , let us indicate that we have analysed this
model through extensive Monte Cario simulations , borrowing a vector transputer from the
RTN colIaboration of Zaragoza. Our results extend up to No=220, andare shown in Fig. 2a
and 2b, where a logarithmic and a potential fit of the results are tested. There, one can
confirm that the Smith (1980) conjecture was correct and eq.(16) is the proper asymptotic fit
for the strength ofthis model. SpecificalIy, for p';"2 , ap=0.3221.

Let us start with the conventional 1D two-sided model in which if a crack of length l
is opened in the chain during the breaking process , then the two limiting surviving elements
suppor t a load concentration factor (LCF) equal to 1+//2 (Scop and Argon , 1969, Smith,
1980). Notice that this cr iterion for assigning the LCF to the surviving elements impl ies a
loss of memory of how the crack of length Lwas opened: the crack history does not count,
and the LCF depends only on l. (In this group of no-memory models , one can include the
one in which the stress at the end of a crack is proportional to the square root of the crack
length: Gotlib el al. , 1973). Later in this section we wilI discuss models in which the
previous history of breaking is taken into account. It is necessary to recalI here that the
quantitative analysis of this ID model has proved to be quite difficult and that exact results
have been obtained only for very smalI No (Harlow and Phoenix , 1981a) . Harlow and
Phoenix (1981b) developed recursion relations for large bundles but very heavy
computationalIy. In the last decade , however , several approximate asymptotic methods have
been developed for this system (Phoenix and Smith , 1983) . Based on limited Monte Carló
simulations (up to No=2 16) Smith (1980) conjectured that the strength of the two-sided
model had a logarithmic dependence with No., Le.

(16)

In this model, the dissipation factor, a , has been introduced simply by assum ing that,
if a crack of length L is opened , the corresponding LCF is equal to 1+ (al)/2. This is
consistent with the hypothesis of memory loss commented in Section 1. Thus for a crack of
length L, the assumed dissipation amounts to L(l-a), with no reference to the specific history

of the crack . In Fig . 3, we show the strength of this model versus a, obtained from Monte

Cario simulations for a WeibulI index p = 2. There we observe the smooth increase of (J1I2

as a gets smalIer; and the decrease of the strength with an increasing value of No . At the
right of the figure , the dependence of (J1 /2 with No is of logarithmic type, as established
previously in Fig. 2 and eq.(l6).

Within the ID LLS models without memory , let us now refer to the one-sided
model, which is a simplified version, introduced by us (Gómez el al., 1993c) , of the two­
sided one, and as its name indicates, the weight transfer is uni-directional. This
simplification makes the model solvable using a simple iterative method , and in the case of
no-dissipation , we have found a logarithmic dependence of the global strength as a function
of No. As in this model the LCF is always an integer , (l +1), Lbeing the length of the open
crack, so its generalisation for including dissipation is carri ed out through the subst itution
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Fig. 4. Strength vs. a plot, for the one-sided (without memory) LLS model in 1 dimensiono Dots,

triangles, and crosses stand for NO = 102, 103, and 104, respectively.

(J.

Fig. 3. Strength vs. a plot for the two-sided (without memory) LLS model in I dimension o Dots,

triangles, and crosses correspond to sets formed by 102, 103, and 104 elements, respectively.



(1 +1)-+(1 + a l) . The considerat ion of an a < I does not modi fy the strategy introdu ced in

Gómez el al. (l993c) for obtai ning the recursive so lution, so that, for any a, the global

strength, cr1/2. can be found witho ut having to resor t to numer ical simulations. However ,

the results presented in Fig. 4, again for p= 2, have been acquired through Monte Cario
sim ulations . Here we observe a trend quite similar to that of Fig. 3 for the two-sided model ,

i.e . a monoto nous dec rease of cruz with NO'

Let us now com ment how these ID LLS models behave when the memory is

introduced into the process of load transfer. Here , eve n for the one sided mode l, one has to
resort to ded icated numerical Monte Cario simulations. The point is tha t now , in the

break ing process, the LCF ass igned to each surviving element is the accumulated load

transferred from failing neighbours, without proceeding to symm etrize the LCF between the

two sides of an open crack. Bes ides , when the d issipation is at work , in each tran sfer eve nt

only a frac tion a of the nomin al load to be delivered is actuall y trans ferr ed. Thi s contrasts

with the simpl e -bo ld- recipe of the memoryless case and leads to a drastic modification of

the maximum load that can be transferr ed when long cracks are opened . Fig . 5 illustrates,
with an example for the two-s ided , conservative model , the difference between the memory

and memor yless cases , in part icular the absence of a symmetr ic LC F on the two elements at

the crack tips (when no interactions among cracks ex ist) . An open circle represents an

unbroken elemen t, a cross a broken one, and a cross superimposed on a c irc le, an element

currently transferring load. Afte r a number of swee ps. both cases end with a crack of a

length of 5 units , but the distribution of loads at the crack tips is d ifferent for the model with
memo ry and for the one without memory. When interactions among cracks are taken into

acco unt, the LCF disc repancy between the two cases could be much more cons picuous .

MO-SIDED

WITH MEMORY WITHOUT MEMORY

O ®OOO O O ® O O O O
312 3/2 3/2 3/2

O X OO ® O O X OO®O
3/2 3/2 3/2 3/2 3/ 2 3/2 3/2 3/2

O X O ® X O O X O ® X O
3/ 2 9/4 914 3/2 5/2 2

O X ® X X O O X ® X X O
2 1/8 27/ 8 3

O X X X X O O X X X X O
Fig 5. lllustration of the differe nce between the load concentra tion factors (LCF) in the rnernory and

memoryless cases for the LLS, two-sided, conser vative model. Note the sy mmetric LCF in the

model with out memory, and the non-symmetric LCF in the rnodel with memory.
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Fig. 6. Strength vs. a plot, for the two-sided (with memory) LLS model in 1 dimension o Dots,

triangles, and crosses stand for NO= 102, 103, and 104, respectively .



The results for the 1D models with memory , in the one- and two-s ided variants, are
shown in Figs . 6 and 7. It is interesting to point out that the two LLS models, with and
without memory, when a=I, are practically indistinguishable. For the two models, one

appreciates a distinct behaviour of crU2 versus a, with respect to the no-memory case of
Figs. 3 and 4. Here, there is a sizeable value of a for which curves of different No intersect.
In the one-s ided case this value of a is quite clear at about 0.85. In the two-sided model,

there is a broad region of a for which crll2 is practically independent on No. This is
remarkable because it leads to a behaviour sornewhat similar to that commented on in
section 2 for the ELS model , in which , asymptotically (Iarge NO), the strength is No­
independent.

Let us refer now to two-dimensional LLS models . In this respect we have

numerically studied the crl /2 of 2D square arrays , with NO= 102, 202, 502, and 1002

elements respectively. We have supposed that the load transferred in a breaking event is
given to only the surviving nearest neighbours . This implies two things. First, our transfer
rule assumes that the system has memory (recall comments for ID systems, and Fig. 5) , and
the stress existing along the perimeter of a crack is not uniform o And second, in two spatial
dimensions , this rule of transfer can lead to the existence of isolated ever-surviving islands.
(This outcome is usual in all types of local models of this sort. See , for example, Lornnitz­
Adler el al., 1992). The existence of these 'islands' has led us, in this case, to define crU2

as the median value of the initial stress which leads to the triggering of the maximum
earthquake induced in that system. The number of elements broken in these maximal

earthquakes are then smaller than No. The results for configurations with p =2 , are shown in
Fig. 8. There , we observe that the crossing of lines of different No, that we first observed
in Fig. 6 also holds, and it is even more convincing. Hence , we deduce that in these models ,

when dissipation occurs, crl l2 is, in a wide range of a, practically No-independent.

In Fig. 9, we have shown the size of the biggest earthquake occurring in these
models , as a funct ion of a. The size is expressed as a fraction of No. There, we observe

interesting crossings indicating that a values far from 1, can imply a considerably reduction
in the size of the biggest avalanche.

4. Fractal load-sharing models

This type of organisation can simulate, for example, that of a cable with a
hierarchical distribution of its components (Newman and Gabrielov, 1991), or the geometry
of load transfer between the asperities of a tectonic fault (Turcotte el al. , 1985, Smalley el
al. , 1985). Likewise , it could, with the proper perspective, correspond to a fluid (or
electric) distr ibution network (Gómez el al. , 1993b).

Let us start this section analysing the strength of a fractal tree with a coordination
number of two (two branches per knot). Each level , labelled by the n index, is formed by
pairs of elements linked together to one element of the (n+ 1) floor. The latter element is
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Fig. 9. Size of the biggest avalanche (expressed as a fraction of NO) vs. a. for the LLS model (with

memory) in 2 dimensions . Dots, triangles, crosses, and squares stand for NO = 102, 202. 502. and

1002. respectively .

o:
Fig. 8. Strength vs. a. plot, for the LLS model (with memory) in 2 dimensions. Dots, triangles,

crosses, and squares stand for square arrays with NO = 102, 202, 502, and 1002 elements,

respectively. Note the small error bars attached to the Monte Cario results .



The elements of the first row are calculated directly from the assumed Weibull function ,

i.e., (l )P20 = ( l)P l = 1-exp(a P), ( l)P21 = (l)P2 = l-exp[(2a)P], etc. , where a is the load on

Dealing with NO(physical) elements in the set , if No= 2J.! , J.! would be the number of levels ,
or height , of the fractal tree . Then, we can see that the probability of total failure of such a
tree derives from the progressive calculation of the following pile:

(17b)

(l7a)

(l )p (l )p (l)p (l)p
2° 21 22 2fl

(2 )p (2)p (2)p
21 22 . 2fl

(3)p (3)p (18)
22 2fl

(fi )p
2fl

is the definition of conditional probabi1ity.

where

(11+ 1)P2 = (n) n2 + 2 ( lI) n [1 - (n)n ] (n)P2 = 2 (n)P2 (lI )n · _ (n)n2
a r a ra ra a.a a ra r a»
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In general , the fractal tree structure is very inappropriate for performing Monte
Carlo simu lations. It is , however, very well su ited to a renormal ization group approach (see,
for example, Newman et al. , 1994 for a comprehensive exp lanation of the renormalization
technique applied to fracture problems) due to the fact that the probabil ity of fai lure of the
legs in two successive levels can be easily related. Denoting by (n)P2a,a the conditional

probability , for a level (11) leg that not havi ng failed under a load ass , does fai l under a load

2aa, we can write for the simp lest fracta l tree mentio ned:

paired likewise so that the whole structu re looks like a level-independent form (for details
see . for example, Turcott e el al ., 1985 or Gómez el al., 1993a) . It is important for our
purpose here, to understand that the "superstructure" of the tree is nothing but a
representation of how the transfe r of loads between the physical elements occurs (the
physical elements are represented by the lowest Iying legs , i.e . those of the level 11 = 1).

Notice also that the failure of a leg in level (11 ) implies the corresponding failure of the 211- 1

first-Ievel elements unde r it. We will deno te by (II)Pa the probability of failure of a leg in

level (11) which was suppo rting a weight aa.



(22)

(20)

(19)

(21)

(f.!)p
21-'

(1)
P(l + 0.)1-'

(2)
P2(l + 0.)1-' - 1

(3)
P22(l + 0.)1-'-2
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(1)
P(I+ 0.)2

(2)
P2(1+ 0.)1

(3)
P22(l + 0.)0

The process of reducing the load transfer between contiguous fIoors , in a factor a , is
easily implemented by noting that a calculational pile , similar to that of (18), can be
defined. For the fractal tree with coordination equal to 2, this pile is as follows:

Now, the inclusion of the concept of stress dissipation in this structure will be done
in the spirit of the no-memory models of the Section 3, i.e. by fixing the fraction , a, of load
transfer between two successive fIoors of the tree structure. The calculation of a model with
memory in this case would be awkward because of the aboye mentioned difficulty of the tree
structure for performing Monte Cario simulations.

(cr1!2fl ce log logNo '
No~oo

For the particular case p = 1, eq .(19) reads

Le. the global strength of the system decays proportionally to the logarithm of the number

of fIoors (i.e . , mass) , Jl, of the corresponding tree.

This process proceeds along the elements of the successive rows and concludes by obtaining

(f.!)P21', which is the global strength of the fractal tree, i.e. Pcro(No). The results emerging

from this process fulfil the double logarithmic dependence found by Newman and Gabrielov

(1991)

that particular leg. Each element of the 2nd row, is calculated from (l )P2i and (l )P2i-J, both
located in the first row , using eq.(17a) . As a part icular example, let us compute (2)P2 1 =

(2)P2cr , the first element in the second row:
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Fig. lO. Strength vs. a plot, for the FLS model in I dimensiono Dots , triangles, crosses , and

squares stand for NO= 26, 210, 214 and 218, respectively .

We now proceed to generalise these results to a 2-dimensional hierarchical structure,
using for that matter a fractal tree with a coordination number equal to 4 (this .structure
would correspond, for example, in a cable, to having twisted four individual fibres at a
time, then four of these bundles twisted together, etc. See, for example, Newman et al.,
1994 for apictorical representation of the general 2-dimensional hierarchical structure).
First, one has to argue which type of transfer is convened within the four elements that
constitute each individual bunch, in a given f100r. This transfer can be of the ELS type, or
local in any of its modalities. Newman and Gabrielov (1991) and Newman et al. (1994) used
an ELS transfer inside each bundle, both in their l-dimensional and 2-dimensional fractal
tress. This means that the load supported by a failing bundle was transferred in equal
proportion to the remaining bundles. For maximum simplicity we have chosen a local
transfer of the one-sided type. This simplifies the numerology of the associated calculational

(fl+ 1)P2a = ( fl)p~ + 2 (fl)Pa [ \- (fl)Pa ] (fl)P( I+ a )a ,a .

The results of this scheme are plotted in Fig. lO, for p=2. In this figure the
dependence of 0"1!2 with No, fulfils the double logarithmic dependence of eq.(21) and for
this reason, quite distinct No lead to close values of 0"1/2' The general aspect of this figure is
rather similar to that of Fig. 3 and there is a monotonous decrease of 0"1/2 with a .

The scheme of calculation is analogous to that commented aboye, using the
appropriate generalisation of eq.(l7a) , which now reads



pile, without affecti ng the qualitative conclusions . For brevity , we omit the details of those
piles and only indicate that the basic recursive relation to be used in this case is

(n+ 1)P4a = (n)p: +

4 (n)pJ(l - (n)Pa ) (n)p( 1+ 3a )a .a +

4 (n) 2(1 (n) )2 (n) (n)
Pa - Pa p (1+ 2a)a .a p (1+ 3a)a.a +

2 (n) 2(1 (n) )2 {(n) 2 2 [(n) (1 (n) ) (n) ] }
Pa - Pa P(l + a )a.a+ P(1+ a )a .a - P(1+a)a .a P(1+3a)a.(1+a)a +

4 (n) (1 (n) )3 (n) (n) (n)
Pa - Pa p( 1+ a)a.a p (1+ 2a)a ,a p (1+ 3a)a.a ·

(24)

In eq.(24) each term on the right hand side represents a different way in which the
closed chain of four bundles of order (n) can be broken following a one-sided local load­
transfer scheme. Full datails of the one-sided LLS model can be found in Gómez et al.
(1994) , but a brief description follows . The chiral local load-shar ing (QLLS) model was
proposed as an analytically solvable alternative to the c1assical two-sided LLS model. The
quirality simplifies the model to the point of allowing its analytical solution but do not alter
the qualitative properties of the (more general) local models. To have a pictorical view of
the QLLS model, consider N elements positioned, in arder, along a circumference and that
the load transfer affects only the new unbroken elements following the one which failed.
Thus, while in conventional LLS models in l -dimension the load transferred is always
divided between the two surviving elements flanking the failed one, here only one element
accepts the load. As the loop of elements is c1osed, although the load transfer is
unidirectional, a fracture initiated at any point along the circumference can give rise to an
unstoppable crack , afect ing the N elements . This unidirectionality introduced in the load
transfer assumption simplifies the model considerably , so that the model can be expressed in
a closed form using an iterative matrix method (Gómez et al. , 1994).

Having described the QLLS model , it will be apparent that a chain of N=4 elements
(i.e ., bundles of order (n» can be broke n in five differe nt ways . Each term in eq. (24)
reffers to a way of broke n this N=4 chain, namely: (i) all four bundles break simu ltaneously

with a load acr; (ii) three consecutive bundles break with a load ae, and the last breaks with
the augmented load 4acr; (iii) two consecutive bundles break simultaneously with a load aa ,
the next bundle breaks afterwards with a load 3acr, and the last bundle breaks with the final

load 4acr; (iv) two non consecutive bundles break simultaneously with a load acr; the

remaining two bundles can fail simultaneously due to the augmented load 2acr , or one can
fail with the load 2acr, and the other surv ive until the final load 4acr breaks it; (v) only the
first element break with a load. aa , and then the remaining elements fail in order with the

loads 2acr, 3acr, and 4acr.
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In the ELS model the critica l behaviour of the model is maintained (Fig . 1), in the

sense that there always exists a critical load, crc' crc increases as a decreases. The fraction of
surviving elements at cr=crc also diminishes , but there is always a . finite jump for this
fraction when the stress reaches crc'

Regarding LLS models , we have analysed systems in 1 and 2 spatial dimensions. We
have first studied the standard -no memory- two-sided model in one dimension and showed
that Smith's (1980) conjecture about the logarithmic decrease of the strength was correct
(Figs. 2a and 2b) . We have also discussed a new simpli fied no-memory , one-sided model.
For both models the introduction of the dissipation parameter does not alter their qualitative
behaviour , as shown in Figs. 3 and 4.

In this paper we have analysed the impact that stress dissipation has in the stochast ic
load-transfer models of fracture . Dissipation has been included in a simpler manner through
a parameter (b;a~1, which measures the fraction of load that is actually transferred in any

event of failure . One of our main motives for this analysis is to find out if an a;t1 is able to
qualitatively modify the behaviour of these models, which could enhance their richness and
scope of applicability , especially in fracture phenomena in earth sciences .

5. Conclusions

Fig. 11. Strength vs. a plot, for the FLS model in 2 dimensions. Dots, triangles, crosses, and

squares stand for NO= 46, 410, 414 and 418, respectively.

The resulting strength of these "two-dimensional" fractal trees is shown , for p = 2, in
Fig. 11. There is no distinct ive behaviour with respect to that of the simple fractal tree of

Fig. lO, and crll2 diminish es monotonousl y with a , and, for fixed a, very slowly with NO'



The introd uction of memory in these 1D models provokes, on the contrary , an

interesting .crossing of the curves of 0'112 vs. a, for var ious NO (see Figs. 6 and 7) . The
consequence is that , in a broad range of a , 0'112 is practically independent of NO' In other
words , the existence of dissipation is able to provoke the appearance of a critical behaviour ,

similar to that existing in the ELS model. That is, in the limit of large No, for O'~O'c ' Pe

o(No)= 0, and for O'~O'c ' Pcro(No)= 1. This crossi ng also exists in 2D LLS models, as shown

in Fig. 8.

It is important to remark that in the memory- less case, there also ex ists a cross ing of

the curves at very small a (see Figs. 3 and 4, and also Figs . 10 and 11). This crossing is

necessary because in the a =O limit, the NO elements formin g the set are compl etely
uncorre lated; hence , the probabili ty of total collapse is trivia lly calculated as the probability
of individual breaking up to the No power. This implies that sets with bigger NO are more

difficult to break. As in the large a limit the trend is the opposite, a crossing of lines must
exist. Fro m this perspec tive , the difference between the memory-Ies s and the memor y
models is that in the latter, the crossing poin t receives a strong push towards large values of

a . In this respect , what we consider worth of emphasiz ing is that in the mode ls of Fig. 6
(two-sided 10 LLS) , and Fig . 8 (2D LLS), the crossi ng is very smooth, which allows the
definitio n of an effective critical point.

F inally, in the hierarchically orga nised structures of the FLS type, we have
introduced stress dissipation for trees with coordi nation numbers equal to 2 and 4. In this
latter case , the modali ty of transfer betwee n the four units form ing the basic bunches has

been supposed to be of the one-s ided local type . For a = 1 we have recovered the
quantitative results discovered by Newman and Gabrielov (1991), whiIst for arbitrary values
of a , the qualitative behaviour is not altered . See Figs. 10 and 11.

Throug hout this work, several computational stra tegies have been used. The ELS
model has been solved by analysing simple recursive relations. In the LLS models, except in
one occasion, Monte Cario simulations have been used. This exception refers to the one­
sided model without memory , which has been studied using the strategy explained in Gómez
et al. (1993c), where the concept of k-failure (Harlow and Phoenix , 1978a , b) perm its the
implementatio n of a simple recursive method. The fracta l structures have been studied
numerica lly through the introduction of appropr iate computational piles , where one handles
successive vectors . The use of Monte Cario simulations in these mode ls is prohibitive for
two reasons. First, the hierarchical orga nisation would make the simu lations quite

cumbersome; and second, the very slow dependence of 0'112 with No calls for the use of very
large sets, in order to be able to obtain cIear concIusio ns.
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RESUMEN

En este trabajo se señala la presencia del helecho Weichselia reticulata en la Formación

Escucha, dentro de la Cuenca de Castellote. Se pone de manifiesto la importancia de este taxón
como indicador paleoambiental, debido a las particulares condiciones ecológicas en las que se

desarrollaron sus comunid ades durante el Cretácico inferior, y se aportan nuev~s datos sobre su
distribución paleobiogeográfica.

A BST RA CT

The fern Weichselia reticulata is found in the Escuch a Formation (Lower Cretaceous),

Castellote basin. Due to the particular palaeoecological requirements, the finding of this taxon is

important as a palaeoenvironmental marker: near to the sea shore under a warm, markedly
seassonal climatic conditions. Finally, new data on its palaeobiogeographical distribut ion are

given.

ANTECEDENTES

La Formación Escucha fue definida inicialmente por AGUILAR et al. (197 1)en el área tipo de
Utrillas, siendo divididas las antiguas Capas de Utrillas en las formaciones Lignitos de Escucha
(Aptiense sup .-Albiense) y Aren as de Utrillas. Posteriormente, CERVERA et al. (1976)

redefinen la serie y propo nen una división de, la Formación Lignitos de Escucha en tres
miembros, en la que el miembro inferior coincidiría con el estrato tipo definido por AGUILAR el

al. (1971). Sobre esta base PARDO y VILLENA (1979) redefinen nuevamente la Formación entre
el Aptiense calcáreo y la Formación Utrillas, deduciendo una edad Aptiense superior-Albiense
inferior para la Formación Escucha. Caracterizan los tres miembro s, que presentan como una
megasecuencia negativa con una sucesión de ambientes de plataforma, palustres y aluviales, y

definen sus límites. Estos autores son los primeros en elaborar un mapa de isopacas referido
exclusivamente a la Formación Escucha (en el que se diferencia claramente la cuenca de
Castellote como una de las dos cuencas de mayor magnitud en todo el sector oriental de la Rama

Aragonesa de la Cordillera Ibérica), proponiendo para la misma el ambiente de sedimentación de
tipo delt aico ya mencionado. La' paleogeografía propuesta es corroborada para el área del
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EST RATIG RAFIA

Estratigráficamen te la Formación Escuc ha constituye un conjunto esencialmente de trítico ,

con facies heterogéneas entre las que des tacan por su interés económ ico los niveles de lign itos.

Está co ns titu ida por tres miem bros (PARDO el al ., 1987) diferenciado s en función de sus

características estratigráficas y sedimentológicas.

El Miembro Inferior, eq uiva lente a la definic ión de la Form ación Escucha que realizaron

AGUILAR el al. (197 1), se compone de lutitas grises y margas de color caqui con intercalaciones

de are niscas roj izas a grises en cuerpos de tend enci a tabul ar y potencia métrica. Aparecen

niveles carbonatados englobados en los tramos más blandos, así como capas de lignito de

potencia centimétrica a métrica.

Den tro de este Miembro se describen diferentes ambientes sedimentarios que se suceden en

la vertical, a partir de tres asociaciones de facies interpret adas como la implantación de un medi o

continental por medio de una llanura aluvial cos tera , el relleno de un lagoon y llanuras areno so­

lutíticas dominadas por el oleaje.

La edad propuesta para este miembro a partir de los fósiles encontrados en las lumaquelas de

sus tramos inferiores es Aptiense superior - Albiense inferi or.

El Miembro Medio es tá cons tituido por lutitas grises y negras, con nivele s de lignito

exp lotables, entre los que se intercalan cuerpos laminares de arenas y limos de grano fino en los

que aparece la paleoflora descrita en este artículo.

Sedimen tológicamen te este Miembro está co mpues to por una sucesión de sec ue ncias

ese ncialmente lutíticas de gra n continuidad lateral y potencia métri ca. Destacan las capas de

lignito con elevado conte nido en sulfuros y yeso sec undario. En el último término de la

secuencia apa rece n las arenas de grano fino con gran cantidad de restos vegetales en la zona de

estudio. A techo del mismo aparecen perforaciones debid as a raíces y costras ferruginosas.

Los mater iales que consti tuye n este Miembro habr ían sido dep ositados por decant ación,

apreciándose acumulació n de restos vegetales y aportes cada vez más importantes de material

detrítico, por lo que es tas asociaciones se interpretan como depósitos de colmatación de

marismas.

El Miembro S uper ior es tá constituido por limos arc illosos de colores claros con

intercalaciones de potentes niveles de arenas blancas y amarillentas. Los tres tipos de secuenci as

básicas que se describen para el mismo se interpretan como can ales estuarinos, cana les con

tendencia meandriforme e influencia marea! y una tercera, de génesis meno s clara, posiblemente

formada por oleajes provocados por tormentas.

Lo s materiales re fer idos en este estudio co rres po nde n, por sus característi cas

sedimentológi cas, a los des cri tos en este apar tado como Miembro Inferior de la Formación

Escucha.
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GEOLOGIA REGIONAL

Regionalmente, el nivel fosilífero de Alcaine se ubica dentro de los materiales mesozoicos del

sector oriental de la Cordillera Ibéri ca conocido como Rama Aragonesa, separada de la Rama

Castell ana o sector occidental por la fosa terciaria de Calatayud -Teruel. En esta zona afloran

materiales cuyas edades abarcan desde el Prec ámbrico hasta el Terciario, siendo la disposición y

la distribución de los mismos un efecto directo de la historia geológica que, durant e millones de

años, ha modelado sus característic as estratigráficas, sedimentológ icas, paleontológicas y

estructu rales.

El hecho de que la Cordillera Ibérica se haya visto afec tada por dos grandes ciclos

orogénicos (el Hercínico y el Alpino) bien diferen ciados ha dado lugar a que el estilo tectón ico

de la misma sea del tipo de zócalo y cobertera. Tras el Ciclo Hercínico y la posterior etapa de

fracturación tardihercínica del Estefaniense y el Pérmico, los mat eriales precámbricos y

paleozoicos constituyen el zócalo de la Cordillera. Estos materiales , junto con los del Mesozoico

y el Terciario que conforman la cobertera, fueron posteriormente afectados por los movim iento s

orogénicos del Ciclo Alpino. Es este último ciclo el que , en su etapa de distensión cret ácica ,

condicion a el depósito de los materiales sobre los que se desarrollaron los procesos biol ógicos y

de fosilización que afectaron a los ejemplares estudiados.

Siguiendo un orden cronológico a partir de la finalización del Paleozoico, tras la etapa de

fracturación tardihercínica y la sedimentación mol ásica del Pérmico, la Cadena Ibérica se ve

sometida a un régimen distensivo que señala el inicio del Ciclo Alpino. Esta fase provo ca una

tectónica de bloques debida a la reactivación de las antiguas fracturas tardihercínicas y, com o

resultado de este proceso, la aparición en el zócalo de umbrales y surcos que van a actuar como

zonas de erosión y depósito respectivamente. Tiene así lugar la sedimentación de los materiales

triásicos y jurásicos siguiendo el modelo de tipo aulacógeno propuesto por ALV ARO et al.

(1978) . Este depó sito comienza con una etapa de subsidencia por rifftin g (Triásico Inferior y

Medio) que disminuye progresivamente hasta pasar a una etapa de subsidencia térmi ca durante

el Triásico Superior. A comienzos del Jurásico se instala una extensa plataforma carbonatada en

toda la región: La elevada producción de carbonatos durante este periodo hace que la tasa de

sedimentación sea muy similar a la de subsidencia, por lo que los dep ósitos dominantes dan

lugar a la formación de facies someras .

La apertura del Golfo de Vizcaya y la subsecuente rotación antihoraria de la Península Ibérica

a finales del Jurásico Superior da lugar a una nueva etapa de actividad tectónica que condi ciona

toda la sed imentación cretácica de la Cordillera Ibérica. Durante el Cretácico Inferior ,

coincidiendo con el inicio de una nueva fase de rifftin g (SALAS y CASAS, 1993 ), se instaura

una tectónica de carácter distens ivo que provoca otra reactivación de las fallas tardih ercín icas.

En esta ocasión la articulación de la Cadena en surcos y umbrales afecta también a los materiales

de la cobertera triá sicos y jurásico s depositados hasta el momento, que son denudados en las

zonas de erosi ón.

A partir de este momento, y centrándonos ya en el área del Maestrazgo se suceden una etapa
de progradación y otra de retrogradación que dan lugar al depósito de las facies continentales del

Weald y a las facies marinas del Urgon. En la zona de estudio este tipo de sedimentación
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perdura hasta finales del Aptiense, momento en el que una nueva progradaci ón da lugar al
depósito continental de la Formación Escucha en la que aparece el nivel fosilífero estudiado. La

sedimentación de esta Formación se produce a favor de un gran apara to deltaico cuya
distrib ución areal de subam bientes y situación paleogeográfica llevan a QUEROL y SALAS
(1988) a proponerlo como un sistema de delta-estuario.

PALEOBOTANICA

La flora hallada en el nivel fosilífero de Alcaine consta de una sola especie identificable hasta

el momento, el helecho Weichselia reticulata (STOKES et WEBB ) FONT AINE , el cual es

totalmente dominante.

Aunque la relación de esta especie con las Matoniáceas es clara, debido a la presenci a de

soros recubiertos por el indusio y a-la similitud de las esporas, presenta una serie de caracteres
que la apartan de los iniembros conocidos de esta familia. Entre estos caracteres, ALVIN (1971)

señala la es tructura bipinnada de las divisiones primarias de las frondes, la dictiostela
policíclica, la aparente presencia en los tallos de rizóforos o raíces-soporte, y las pínnulas

fértiles filiformes, no laminares, con los soros agrupados en estructuras redondeadas. Por todo

ello, de acuerdo con la propuesta de ZIMMERMANN (1959), actualmente se sitúa esta especie
en una familia aparte, las Weichseliáceas, muy tempranamente derivada y especializada a partir

de las primitivas Matoniáceas.

La reconstrucción más aceptada es la propuesta por ALVIN (1.c.) (fig. 1), que muestra a

Weichselia reticulata como un helecho arborescente, de tallo masivo, que puede alcanzar hasta
15 cm de diámetro. El contorno del tallo es irregular, debido a la presencia de las bases de los
pecio los dispues tas de forma espiralada, y a los órganos de tipo rizoforal orie ntados en

dirección opuesta al peciolo . La superficie de los tallos, pecio los y rizóforos es netamente
rugosa, con pequeños tubérculos diseminados por todo el tallo.

Las frondes vegetativas constan de un peciolo, con una estruc tura similar a la del tallo, de
cuyo ápice parten las pinnas primarias, dispuestas de forma palmada. De ellas parten las pinnas
secundarias con sus correspondientes pínnula s. Las pínnulas miden aproximadamente unos 5

mm de longitu d y están unidas por toda su base al raquis de la pinna. Presentan una típica
venación reticulada, con una vena principal claramente marcada (fig. 2), Yposeen una cutícula
gruesa, con los estomas hundidos.

Las frondes fértiles son también bipinnadas, pero tienen una estructura filiforme, no laminar.
De las pinnas de último orden nacen los soros agrupados en estructuras redondeadas, cada una
de las cuales lleva unos 12 esporangios, totalmente recubiertos por el indusio.

El material fósil de Alcaine consta fundamentalmente de impresiones de frondes vegetativas

y, en menor medida, de fragmentos de tallos. No se han encontrado hasta el momento
estructuras reproductoras.

Las frondes vegetativas son muy abundantes y, en general , presentan un buen esta do de
preservación. En muchos casos se conserva la estruct ura de las pinnas primarias y se puede
observar la inserción en ellas de las pinnas secundarias (ver Lámina). Tamb ién es tá bien
conservada la venación de las pínnulas (fig 2).
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Los fragmentos de tallos son menos numerosos, pero no son raros. Presentan el contorno

irregular típico de la especie, debido a la presencia de los restos de la base de los pecio los y de

los órganos rizoforales.

Todas las características morfológicas de los fósiles hallados en Alcaine se corresponden con

las definidas para Weichs elia reticulata , de tal forma, que su atribución taxonómica no ofrece

dudas.

El material fósil estud iado en el presente trabajo se encuentra depositado en el Museo

Paleontológico de la Universidad de Zaragoza.

P AL EOGEOGRAFI A

Weichselia reticulata es un especie con una amplia distribución durante el Cretácico inferior.

ALVIN (197 1) recopila citas de numerosas localidades de Europa, de Siberia y Asia central,

Oriente medio , mitad septentrional de Africa, norte de la India, norte de Sudamérica y sur de

Norteamérica. Sin embargo, no tiene una distribución cosmopolita, pues falta en Australi a,
sudeste de Asia, sur de Africa, sur de Sudamérica, norte de Norteamérica y nordeste de Siberia.

Según los datos de MASSE et. al. (1993) sobre la distribución de los continentes en el

Aptiense inferior (fig. 3), todas las localidades citadas estarían situadas entre las paleolatitudes
400 N Y400 S, Ypróximas a la línea costera del Tethys. Weichselia reticulata sería, pues, según

estos datos, un helecho propio de las zonas tropicales y templado-cálidas, con clara influencia

marítima.

La localidad de Alcaine estaría situada, según la citada reconstrucción paleogeográfica,
aproximadamente entre los 20 y 300 de latitud Norte. Por otra parte, como ya se ha
mencionado , la Formación Escucha representaría un sistema delta-estuario, por lo cual, esta

localidad se situaría presumiblemente, muy cercana al mar. Los datos presentados en este
trabajo confirman, pues, la distribución paleogeográfica atribuída hasta ahora a Weichse lia

reticulata.

P ALEOECOLO GIA

Weichselia reticulata posee una serie de características claramente xeromórficas, como son:

la presencia de una cutícula gruesa, los estomas hundido s, los ejes con una capa externa
endurecida y la orientación de las pínnulas en forma de "alas de mariposa", para evitar la

máxima insolación, como se observa en planta s actuales de climas cálidos y secos . Sin
embargo, la presenci a de órganos de tipo "riz óforo" sugeriría un medio pantanoso, quizás con

presencia de aguas salobres, próximo al mar (DABER,1968).

Por otra parte, como señalan WATSON & ALVIN (1996), la presencia de los soros con los
esporangios completamente encerrados por el indusio, endurecido y sin ninguna vía clara para
la salida de las esporas, recuerd a a las estructuras reproductoras de algunas Angiospermas y
Coníferas actuales de "fire-climax'', cuyas semillas sólo quedan libres después de que los frutos

o las piñas hayan sido quemadas por el fuego.
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Además, exis te el hecho reiteradamente constatado, y confirmado por los dato s presentados

en es te trabajo, de que la presencia de restos abundantes de Weichselia reticulata en un nivel

determinado , rara vez es tá asoc iada con la ex istencia de otr as plantas en ese nivel, lo cual ,

refuerza la idea de que este helecho es dominante en algún tipo de medio de características

eco lógicas extremas.

Todos estos hechos nos llevan a pensar que Weichselia reticulata ser ía la planta dominante

(prácticamente excl usiva) de una comunidad que viviría en medio s próx imos a la costa , con una

alternancia de períodos húmedos, en los cuales el suelo estaría incluso inundado, y de períodos

secos, durante los que serían frecuentes los incendios .

CONCLUSIONES

El hall azg o de un nivel fosilífero con restos abundantes y bien conservados del helecho

Weichselia reticulata en un afloramiento de la Formación Escucha próximo a Alcaine (Teru el),

permite aportar nuevos datos paleontológicos para el conocimiento de esta formación en la

Cuenca de Castello te.

El estudio de los ejemplares recolectados hasta el momento, confirma la reconstrucción

morfológica propuesta por AL VIN (197 1) Y permite añadir una nueva localidad al área de

distribuc ión de este interesante taxón .

Los datos sedimentológicos y paleogeográfico s previos son coherentes con los deducidos a

partir del estudio paleobotánico , y reafirman la ide a de que Weichsel ia reticulata era era un

helecho con amplia distribución en las zonas trop icales y templado-cálidas, próximas al mar.

Las peculiares características morfológicas y de fosilización de Weichselia reticulata hacen

supon er que se trataba de un helecho que formaba una comunidad pr ácticamente

monoespecí fica, que se des arrollaba en un ambiente cálido, próximo' al mar, y con una

alterna ncia de per íodos húmedos, con suelo inundado, y períodos secos, con frecuentes

incendios.

Todos estos hechos mue str an la importancia de este nivel fosilífero, y su interés para el

mejor conocimient o de la paleoecol og ía de este sector de la Cordillera Ibérica durante el

Cretácico inferior.
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Figura 1: Reconstrucción de Weichselia reticulata
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(según ALVIN. 1971).



Figura 2: Detalle de la venación de las pínnul as.

Figura 3: Distribución de los cont inent es en el Aptiense (según MASSE ct
al., 1993).
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Lámina: Weichseli a reti culata

A) Inserción de las pinnas secundarias en el raquis de la pinna primaria

B) Pinnas secundarias
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PROBLEMAS METODOLÓGICOS EN EL ANÁLISIS DE
LINEAMIENTOS TECTÓNICOS MEDIANTE PROGRAMAS DE

TRATAMIENTO DIGITAL DE IMÁ GENES

C.L. Liesay L.E. Arlegui
Area de Geodinámica. Departamento de Ciencias de la Tierra.

Universidad de Zaragoza, 50009 Zaragoza (España)

Abstract

The analysis of lineaments and fractures from remole sensing data (satellite imagery, or
aerial photograph) involves the trearrnent of large data sets . Automatic eval uation of such data is a
powe rful 1001 in the statistic appro ac h lO the fracture geometry and properties. However, such
automatic evaluation incorporales sorne melhodologica l drawbacks, as the problem of assessing
the true orientation of short lines (modellized with a sma ll amounl of pixel s) and the true length of
oblique fractures, The solutions of those problerns are on the use of work sca les in which the lines
lO be analysed display larger lengths, and on the use of sorne trigon ornelrical express ions lO
correct the lenglh acconling the fracture -strike.

1.Introducción

El análisis tectónico de lineamientos o líneas de fractura. en general, nece sita de

mecanismos que permitan el tra tamiento cuantitati vo de grandes conjuntos de datos ,

permitiendo así extraer conclusiones sobre la geome tría de la fracturación en diferentes áreas

y capacitándonos para efectuar comparaciones entre ellas.

En este trabajo estudiamos la f iabilidad de los resultados ob tenidos al ana lizar las

caracterís ticas geométricas (básicamente orientació n y longitud) de dos conjuntos de líneas

mediante un program a de exploración automático elaborado en el Centro de Tratamiento

Digital de Imágenes de la Universidad de Zaragoza. El primer conj unto es la material ización

de los lineamientos tectónicos observados en una imagen LANDSAT de la Cuenca del Ebro

(figura 1). El segundo conjunto corresponde a la cart ografía de det alle de la fracturación de un

sector de la Cordillera Ibérica situada unos 20 km al Sur de Teruel (Sierra de Camarena,

figura 2). Analizaremos la bondad de los resultados brutos obte nidos en función de la

mecánica de obtención de los mis mos , identificaremos los pro blemas que pre senta este

tratamiento y propondremos una serie de soluc iones metodológicas para so lventa r los

problemas encontrados .
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2. Metodología

2.1. Elaboración de cartografías de lineamientos yjracturas

Los lineamientos son alineac iones fisiográficas que corresponden a fallas, fracturas o

diques materializados en el propio terreno; en unos casos son identificables en campañas

convencio nales de inves tigación in situ, mientras que en otros no puede n localizarse en la

superficie por un simple reconocimien to de campo. Este inconveniente se sue le soluc ionar

complementando los estudios geo lógicos usuales con ex haustivas cartografías o con el

análisis de imágenes obtenidas por satélites (Sabins, 1987; Jutz y Chorowicz, 1993; Drury y

Berhe, 1993).

La cartografía de los lineamientos de la Cuenca del Ebro se ha realizado (Arlegu i et al.,

1994; Arlegui, 1996; Arlegui y Soriano, 1996) con la ayuda de una imagen de satélite Landsat

5 (199-31) . Este satél ite lleva a bordo el sensor Thematic Mapper que registra siete bandas,

cuyos intervalos de longitud de onda abarcan el espectro visible y zonas del infrarrojo próximo

(bandas 1, 2, 3, 4, 5 Y7). Además la banda 6 registra un intervalo de longitud de onda que

corresponde a la zona del infrarrojo térmico . La resolución de todas ellas sobre el terreno es de

30 metros, a excepción de la banda 6 que es de 120. El programa utilizado en el tratamiento

preliminar de las imágenes es el Geo-Jars y el equipo un IMCO 1000 de Kontron, conectado a

un MictoVaxZ como ordenador central. Las observaciones de las imágenes se han realizado

en un monitor de alta resolución (1280x 1024 pixels). Toda esta zona presenta características

semi áridas con lo que a exce pción de las zonas de regadío la vegetac ión presente en el

momento de registro del satélite es escasa lo que permite observar con mayor fac ilidad la

respuesta espectra l del terreno .

Se realizaron diversas combinaciones de tres bandas, eligiéndose finalmente la de falso

color que result aba de uti lizar las 2, 4 Y 7 (en azul , verde y rojo , respectivamente) cuya

tonalidad facilit aba el análisis visual de las mismas (White, 1993). A continuación para

realzar el contraste de la imagen se procedió a efectuar su normalización con umbral 50 (con

lo que se pierde un 5% del total de informac ión) y se llevaron los nuevos extremos del

histograma a Oy 255. Las bandas 4 y 7 son especialmente efectiv as para la determinación de

lineamie ntos con expres ión morfológica (como drenajes, rupturas de pendiente y esca rpes).

Además, al corresponder a regiones del infrarrojo próximo se evitan efectos atmosféricos,

obteniéndose así gran nitidez. Las combinaciones en falso color proporcionan información

sobre cambios texturales, cambios en los usos de l suelo y contactos entre unidades

geológicas , completando la visión del terreno . No se aplicó la corrección geométrica, aunque

se calculó su valor, por lo que todas las imágenes están giradas 9-10 0 respecto al N. La

imagen así tratada se transfirió a un programa de dibujo y, se marcaron los lineamientos

observables (reconociéndose un total de 5681 lineamientos, figura 1).
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2.2. Empleo del programa de exploración automática

e

Seguimiento de
2 vecinos

•

4 '. Seguimiento de
~ 1 vecino

<. <

El análisis de orientaciones y longitudes de ambos conjuntos se realizó con un programa

de exploración automática elaborado por el Centro de Tratamie nto Digital de Imágene s de la

Universidad de Zaragoza (figura 3c) . La exp loración automática se inicia en un origen de

coordenadas escogido y que, en nuestro caso, es el norte geográfico pues así los resultados

obtenidos coincidirán con la dirección de la falla. Esta exploración va barriendo, primero en el

eje X y luego en el Y, la image n a analizar hasta que se detiene en el primer punto de una

línea. Posteriormente el progra ma procede al seguimiento de la misma considerando los pixels

Figura 3. a ) En formato T1FF una línea aparece como un conj unto de pixels, antes de la exploración se la
somete un adelgazamiento. b) La misma línea adelgazada a un pixel. c) La exploración se realiza por
velltanas cuadradas de tres o cinco pixels de lado dependiendo de que deseemos incluir 1m vecino o dos como
criterio de exploración

Si se han trazado las líneas con un programa de dibujo , se ha de seleccio nar una anchura

de 1 pixel para las mismas, si se han obtenido a parti r de sca nner (figura 3a, caso de

Camarena) se ha de realizar un adelgazamiento de éstas hasta un tamaño de 1 pixel con objeto

de facilitar el seguimiento posterior de las mismas en el siguiente proceso (figura 3b). El

documento que contiene las líneas reconocidas se guardó en formato TIFF y se abrió con el

programa de exploración .

El otro mecan ismo de análisis de la fracturación , y más habitual en los es tudios

tectónicos, es la observación y estudio de ésta en carto grafías realizadas a part ir de fotogramas

aéreos (Razac k, 1979; Grillot, 1981; Liesa , 1993). Las escalas más comunes en fotografía

aérea son la 1:33000 y la 1:18000 obtenidas en los vuelos de finales de los años cincuenta, las

primeras, y de los ochenta, las segundas. Sin embargo, el análisis de fracturación en la zona

de Camarena de la Sie rra - La Pueb la de Valverde se realizó a partir de vario s fotogramas

aéreos 1:18.000 ampliados hasta una escala aproximada 1:4.300 . El tratamie nto posterior se

aplicó únic amente a una par te de la misma (fo tograma 590E 11) con una superficie

aproximada de 1.2 km2 (figura 2) Al trabajar con una esca la tan grande se pretendía reconocer

la fracturación de escala decamétrica a kilométrica con el máximo detalle posib le. Se elaboró

un mapa detallado de las fracturas observables en los fotogra mas y se co nvi rtió la zona

elegida de tal cartografí a (con un total de 3494 fracturas) a formato digital mediante un

scanner de 600 ppm de resolución (figura 2).



que estén dentro de una vent ana cuyo tamaño puede ser escalado. El tamaño de ventana

esc ogido será menor cuanto menor espaciado teng an las fracturas, es decir cu anto más

próximas estén unas de las otras. En nuestros ejemplos el tamaño de ventana era de l pixel ( I

vecino) para la Cuenca del Ebro y de 2 pixels (2 vecinos) para las fracturas de la Sierra de Ca­

marena. Una vez que en el proceso de seguimiento de una línea ningún pixel queda dentro de

la ventana establec ida, el programa sigue barriendo a partir del siguiente pixel del inicial de la

línea anterior hasta que encuentra un nueva línea comenzando de nuevo el proce so anterio r.

Este progr ama presenta algunos prob lemas de seguimientos de las líneas en los cruces

entre éstas, por lo que si las cartografías analizadas presentan intersecciones entre famili as de

fracturas, como es el caso de las fracturas de ambos conjuntos (figuras Iy 2), es recomendable

diferenciar tantos ficheros como sean necesarios con el fin de evitar cruces entre líneas.

Norma lmente, el número de ficheros escogido viene determinado por el número de famili as

diferenciadas en un primer análisis visual de la cartografía.

El programa de seguimiento de líneas genera un fichero que proporciona, básicamente,

los siguientes parámetros: las coordenadas XY del primer y último punto o pixel, su longitud

en pixels, la pendiente de cada línea y la cal idad del ajuste a una recta de pendiente igual a la

dada. No obstante también puede obtenerse otro tipo de inform ación como es la posic ión de

todos los pixel que comp onen una línea. A partir del fiche ro se representan las longitudes y

orientaciones de las fracturas estudiadas y se pueden hacer análisis estadísticos de los mismos.

Además, teniendo en cuenta las coordenadas XY del primer y último punto de cada línea se

pueden sep arar do minios para estudiar y analizar por separado y poder establecer

comparaciones entre los mismos.

3. Fiabilidad de los resultados

A la hora de evaluar la fiabilidad de los resultados e identificar los posibles problemas

analíticos que presenta el proceso desc rito , nos vamos a centrar en la calidad de los valores

obtenidos en cuanto a la orientación y longitud de las líneas .

3.1. El análisis de orientacion es

En Tectónica, el análisis de orientaciones de fracturas se suele hacer representando éstas

frente al número dé medid as en forma de histograma de frecuencias o rosa de direcciones. Sin

embargo, en cualquier estudio que tenga como base una cartografía el análisi s de

orie ntaciones de las líneas (line amientos, fracturas,.. .) se hace ponderando el número de

medidas con la longitud de las mismas.

Ahora bien , si .representamos la longitud de los lineamientos frente a su orientación

podemos encontrar una distr ibución anómala como la observ ada en la figura 4. En la parte

baja de la gráfica (menor longitud), los puntos presentan una agrupación preferente en tomo a
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Para minimizar este efecto antes de ejecutar el programa se deberá tender a considerar

líneas con un número de pixels mayor, es decir, deberemos aumentar la escala de trabajo tanto

cuanto sea posible . En este sentido deberá tomarse en cuenta que cuanto mayor sea la imagen

a tratar mayor será el número de pixels a considerar y más largo será el proceso de tratamiento

en ordenado r. No obstante, estos valores obtenidos por debajo del grado de resolución (en

grados) deseado pueden ser desestimados en el tratamiento posterior de los resultados.

Esta situación se debe a que para líneas comparativamente cortas , es decir, formadas por

un número bajo de pixels, su pendiente viene determ inada esencialmente por el número de

pixels (figura 5). Así, para una línea formada por dos pixels los únicos ángulos posibles serán

de O, 45, 90 Y 135°. Para una línea formada por tres pixels los ángulos posibles serán O, 22.5,

45, 67.5, 90, 112.5, 135, Y 157.so. Para líneas formad as por 6 pixels el intervalo posible de

orientaciones es de 9° y para 10 pixels el intervalo es de 5°. En general, el intervalo resultante

viene determinado por la fórmula 45/ (n° pixels-I ). En la figura 6 mostramos un ábaco a partir

del cual se puede estimar el número mínimo de pixels por línea para obtene r una resolución

dada en las orientaciones de los lineamientos (en grados).

Dirección
Figura 4. Gráfi co de distribución de direcciones de lineamientos en la Cuenca del Ebro fr ente a su longitud
(un 31% de las líneas poseen una longitud menor de 20 pixels). En el área ampliada se observa con detalle
cómo aparecen sectores vacíos en los que los puntos correspondientes han sido aspirados por valores de
dirección cercanos.

las direcciones principales 000, 045, 090 Y 135. En puntos correspondientes a líneas de mayor

longitud, el reparto de direcciones es más variado.
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Figura 6. Ábaco con la relación entre longitud en pixels e indeterminación angular. Cuantos menos pixels
contiene una línea, esta puede presentar menos valores de orientación. En el área recuadrada y ampliada
vemos cómo emplear esta gráfica para determinar el n úmero mínimo de pixels por línea dependiendo de la
amplitud angular de las clases que vayamos a considerar.

Por otra parte, usualmente la represe ntació n de distribuciones de direccio nes se realiza o

bien en rosas de direcciones o bien en histogramas con clases de 5 o lO°. Esto significa que

variaciones angulares por debajo de es te nivel de reso luc ión no tendrán práct icamente

ninguna importancia.

Figura 5. Una misma línea, de orientación NI D4E(a), presenta una orientación ND9DEcuando la resolución
es muy baja y se representa por 5 pixels (b) y una orientación más próxima a la real cuando el n úmero de
pixels es más elevado.
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Dirección

Figura 7. a) Histograma de direcciones de lineamientos en la Cuenca del Ebro a partir de un conj unto inicial
de líneas de las que el 3/ % era menor de 20 pixels. b) Histograma de direcciones después de aumentar la
escala del documento inicial de modo que el tamaño mínimo de las líneas fu ese de 20 pixels. En ambos
histogramas las clases son de 2°.
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En la figura 7 se muestra un ejemplo de esta situació n corre spondiente al caso de los

lineamientos de sa télite de la Cuenca del Ebro. En el histograma superior (figura 7a) se

muestra el histograma obtenido con un conjunto de líneas inicial en el que un 3 1% de las

mismas poseían una longitud menor de 20 pixels (la amplitud de las clases en el histograma es

de 2°). Obsérvese la notoria aparici ón de frecuen cias anormalmente altas en las di recciones

En la figura 6 se incl uye n"dos ejemplos en este sentido . Si vamos a rea lizar

representaciones con clases de 10° basta con asegurarnos de que las líneas a explorar posean

longitudes mayores de 10 pixels, si las clases consideradas van a ser de 5°, ento nces el tamaño

crítico será de 22 pixels.
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3.2. El análisis de longitudes

Esta corrección debe ser realizada a los valores obtenidos tras el tratamiento y antes de

ser analizados y represe ntados éstos. No obstante, debem os considerar que esta corrección es

únicamente una aproximación más realis ta a la longi tud de la línea, pero que existen otros

Lr = Li / cos a.

Lr =Li / sen a.

Lr = - Li / cos a.

SiO~a ~45;

Si 45 <a ~ 135;

Si 135<a< 180;

Ten iendo en cuenta la geometría del pixel y mediante un tratamiento simple podemo s

estima r la longitud real (Lr) que tendrá la línea en función de la longitud inicial (Li) de la

misma (N° de pixels X Long itud del Pixel) y del ángulo (o pendiente) de la misma respecto al

Norte Geográfico (a) (figura 8c). Esta relación entre longitud inicial y longitud real depende

del octante en el que se sitúe la misma de manera que viene establecida por las siguientes

expresiones:

En el proceso seguido, la longitud de las líneas se mide en función del número de pixels

que las componen. Posteriormente y considerando la escala del pixel (que dep ende de la

escala de la imagen tratada) se recalculan las dimensiones de los lineamientos o fracturas. No

obstante, los valores obtenidos presentan errores inherentes al propio método y que aparecen

como consecue ncia de medir esa longitud por el número de pixels de la línea. Este error es

resultado de la propia geometría de los pixels . Así, las longitudes obtenidas dependen de la

orientación de la línea original, para líneas orientadas según 000 ó 090 la longitud obten ida es

correcta (la longitud de la misma es la suma de las longitude s de cada pixel), pero para

orie ntac iones diferentes la longitud obt enida es fun ción de su pend iente , siendo la

discrepancia máxima para líneas orientadas según 045 o 135. En estos últimos casos la

dimens ión real será N° Pixels / sen 45°, es decir , 1.4 IxLongitud Inicial. Obv iamente, al

realizar un estudio tectón ico se desea eva luar la importancia relativa de cad a familia de

fracturas (fracturas de la misma orientación), y de no efectuar algún tipo de corrección se

es taría minusvalorando las fam ilias de es tas orient aciones frent e a las de orientac ión

meridiana o las de orientación E-W.

Una vez efectu ado el cambio de esca la en el documento de origen , asegurándon os de

que el tamaño mínimo de las líneas es ahora superior a 20 pixels, y sometido de nuevo al

proceso, obtenemos el histograma inferior (figura 7b). Las clases que resultaban anómal as en

el gráfico anterior se han normalizado, la distribución es ahora más suave. Dado que la

resolución de la imagen de satélite LANDSAT es de 30 m en las bandas combinadas (es decir,

el pixel mínimo tiene de lado 30 m), eso significa que líneas por debajo de 600 m de longitud

tendrán una cierta indeterminación en su di rección ya en el documento de part ida, y que esa

indeterminación se verá realzada en el resultado final.
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Figura 8. Corrección de las longitudes de las fra cturas según su ángulo en las fractura s de Camarena de la
Sierra. A. Histograma de longitudes iniciales (Li). B. Justificaci ón de la corrección de la longitud según el
ángulo de la línea. C. Correcciones propuestas y D. Histograma de longitudes corregidas.

En la figura 8 se ilustra un ejemplo del efecto de la corrección de la longitud de las

líneas respecto de su ángulo. En él se muestran los resultados antes y después de usar esta

corrección a las fracturas de la Sierra de Camarena. En este caso la diferencia ex istente es

bastante grande pues de las cuatro familias diferenci adas en este área (máximos OIO, 053, 089

Y 134) dos de ellas presentan ángulos (O\O Y 089) que tienen una mínima correcc ión en

longitud y las otras dos (053 y 134), tienen orientaciones en que la correcci ón de longitud es

máxima. Con ello tenemos que antes de la corrección de longitudes los valores de longitudes

medias para las distintas famili as era parecido (figura 8A) mientras que después de la

corrección estas longitudes media s están más diferenciadas (figura 80) adquiriendo mayor

problemas que no se contemplan tanto porque creemos producen un error comparativamente

mucho menor como porque también tienen peor solució n. Entre es tos casos podemos

contemplar aquellos en los que una línea puede tener varios pixels que únicamente están

cortados en parte por esa línea.



importancia las familias NE y NW, como era de esperar. Esto es importa nte puesto que

normalmente las fracturas mayores son las primeras que se han formado y en este cas o puede

ayudar a establecer una determinada cronología entre ellas (Rives , 1992; Arleg ui, 1996).

4. Conclusiones

El estudio de lineamientos y líneas de frac tura en general med iante un programa de

explorac ión automática de elementos cartografiados presenta la gran vent aja de facili tar la

medición y manipulación de conjuntos grandes de datos. Sin embargo deben hacerse una serie

de consideraciones metodo lógicas previas para evitar sesgos en los resultados .

En primer lugar, la orientación que se obtie ne para las líneas car tografiadas depende del

número de pixe ls que componen cada una de ellas . Si ésta está por debajo de 20 pixels, la

indeterminac ión angular es inversame nte proporcional al núme ro de pixels que comp onen

cada línea individua l. Por tanto, deberemos procurar evita r el que una proporción elevada de

líneas presenten longitudes por debajo de este umbral. Esto puede traer prob lemas adicio nales

en el caso de análisis de imágenes de satélite, en las que el límite de resolución de las mismas

imágene s de partida supo ne un condicionante a la fiabilidad de la orie ntac ión de las líneas

menores de 600 m, factor éste que deberá ser tenido en cuenta a la hora de hacer las oportunas

interpretaciones en términos tectónicos.

En segun do lugar , al aproximamos a la longitud de las líneas mediante la concatenación

de elementos cuadrados (pixels), la longitud depende de la orientación de la línea orig inal,

debiendo corregir trigonométricamente la equiva lencia pixel-unidad de longitud para poder

obtener result ados fiables.
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Abstract

Rare Eartñ Element (REE) concenirations were determined in the acidic soil solutions
from Bocono watershed (Venezuela). The REE conteni of these wate rs ranges over one order 01
magnitude and is depleted by ur lO ](12 relative lO host lutitic materials. Both NASC-normalized
and host lutite-normalized ptots show similar patterns for ail the acidic soil waters. These
patterns show importan! Heavy REE (HREEs) enrichments with a maximum ceruered in the
IntermediateREEs (lREEs; Eu-Tb). Enrichments olIREEs relative 10 LigJu Rare Earth Elements
(LREEs) are always greater than those relative 10 HREEs (Gd/La. > 30 and Gd./Lu. < 5) and
convex patterns show an asymmetrical shape.

Similar convex pattems are observed in other low temperature acidic systems (streams,
lakes and groundwaters) bUI always witlt lower lREEILREE ratios (Gd/La. < 10). similar
HREE/lREE ratios (Gd.fl.u; < 5) ando therefore, wuli a more symmetrical convexity. Pattem
differences between the acidic soil solutions and the other acidic systems may be related 10

specific water-mineral interactions in the edajic environment.

1. Introducción

El estudio sobre el comportamiento geoqufmico de lasTierras Raras (REE) en soluciones
naturales de baja temperatura está recibiendo una considerable atención en los últimos años.
Como resultado de ello se dispone ya de abundante información acerca de los contenidos y pautas
de distribución de estos elementos en distintos tipos de sistemas acuosos, fundamentalmente en
aguas de pH neutro o alcalino (aguas marinas, subterráneas. ríos, lagos, etc; p.ej. De Baar el al.,
1988; Elderfield el al., 1990; M611er y Bau, 1993; etc).

Los trabajos realizados en agua s ácidas naturales son, en comparación, más escasos. Sin
embargo, los caracteres de este tipo de soluciones resultan especialmente adecuados para tratar
algunos de los aspectos más importantes y discutidos de la geoquím ica de estos ele mentos, tales
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como: el frecuente desarrollo de pautas de distribución convexas (Auqué el al. , 1993 ;
Johannesson y Lyons, 1995; Nordstrom el al., 1995); su fraccionamiento durante los procesos
de precipitación de fases amorfas (Auqué el al., 1993; Nordstrom el al. , 1995); la incidencia del
efecto tetrada en las pautas asociadas a fenómenos de interacción agua-mineral (Nordstrom el al.,
1995; Gimeno el al., 1996b); o la existencia de determinados efectos competitivos en la
formación de complejos de estos elementos en solución (Auqué el al., 1995; Gimeno el al.,
1996a).

Los sistemas de aguas ácidas actualmente más estudiados se reducen a arroyos instalados
'en materia les con minera lizaciones de sulfuros dispersas (Auqué el al., 1993; Nordstrom el al. ,
1995), lagos con aguas de esas caracterfsticas (Johannesson y Lyons, 1995) y soluciones
subterráneas de pH ácido (p. ej. Miekeley el al., 1992; Fee el al., 1992). En este trabajo se
analizan los contenidos y pautas de distribución de REE en un nuevo ambiente de baja
temperatura, todavfa no estudiado: las soluciones asociadas a suelos hiperácidos. Y se presentan
los primeros resultados obtenidos en las aguas ácidas asociadas a este tipo de suelos en
Venezuela, comparándose con los de otros sistemas ácidos descritos en la bibliograffa.

2. Localización de la zona de estudio y caracteres generales.

El área estudiada está situada dentro de la cuenca del rfo Boconó, en el extremo oriental
de Venezuela (Andes venezolanos ; figura 1). En esta cuenca de 1540 km2 se produce un
importante desarrollo de suelos hiperácidos, alineados a los largo de la gran falla de Boconó y
que afecta a una extensión total de 180 km", Las zonas de mayor acidez se acumulan en los
alrededores de la población de Niquitao, próxima a la de Boconó (figura 1), lugar en e1 que se
localizan los suelos estudiados en este trabajo .

El material parental sobre el que se desarrollan estos suelos ácidos corresponde a lutitas
grises con abundantes cristales milimétricos de sulfuros. La oxidación de estos sulfuros dispersos
es el mecanismo responsable de la formación de este tipo de suelos hiperácidos, generando
soluciones de pH inferior a 3 donde la acidificación es más intensa y con valores próximos a 5
en la periferia de estas zonas hiperácidas (Cornieles y Valles, 1995).

La capacidad de movilización de aluminio y hierro de estas soluciones ácidas tiene que
ser considerablemente elevada . Frecuentemente se observa la formación de fases amorfas
sulfatado-alumfnicas (inducida por procesos de concentración evaporativa) y la precipitación de
oxihidróxidos férricos (debida a procesos de oxidación del hierro disuelto) en la superficie de
estos suelos y en las zonas de encharcamiento de agua (Cornieles y Valles, 1995). Por otro lado,
las aguas "alcalinas procedentes de la parte alta del paisaje de la cuenca del Boconó se mezclan
localmente con las aguas ácidas de los suelos provocando de nuevo la precipitación de fases
amorfas alumfnico-sulfatadas y de oxihidróxidos férricos, en un proceso muy similar al descrito
por Auqué el al. (l993) en el Arroyo del Val (España).

Estos caracteres qufmicos provocan la casi total deforestación de esas zonas, a pesar de
que el clima tropical favorece la producción de una biomasa elevada. La ausencia de cobertera
vegetal favorece , a su vez, la erosión de las capas superficiales ya lavadas y menos ácidas , que
son desmontadas por las lluvias tropicales provocando la exposición subaérea de las lutitas
parentales con sulfuros frescos. Este proceso autoalimentado evita el desarrollo de un perfil
edáfico definido y pro voca que los materiales responsables del proceso de acidificación se
encuentren siempre próximos a la superficie , impidiendo el desarrollo de la vegetación .
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3. Metodología
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Se determin aron in situ la temperatura, pH y conductividad de las soluciones, tomándose
en cada punto de muestreo dos alfcuotas, una para el análisis de aniones y otra para el de

Figura 1. Situación y esquema geológico simplificado de la zona estudiada (leyenda : 1.Falla
activa. 2. Falla inversa . 3. Fosa tec tó nica. 4 . Cabalgamiento. 5 . Cuaterna rio. 6. Mioceno­
Plioceno. 7. Oligoceno-Mioceno. 8. Mesozoico-Terciario. 9. Materiales del Cretácico
(sedimentarios y volcánicos). 10. Complejo ofiolítico. 11 . Precámbrico-Paleozoico) .

Las aguas ácidas utilizadas en este trabajo fueron tomadas en una campaña más amplia,
no restringida únicamente a soluciones de estas caracterfsticas qufmicas, que abarcaba el
desmuestre de distintos tipos de soluciones superficiales de la cuenca del Bocon6. Las muestras
de agua en los suelos ácidos corres ponden a escorrentfas de circulaci6n hipodérm ica tomadas
directamente en zonas de rezume.



cationes. Los análisis de aniones fueron realizados mediante Análisis 16nico Capilar en un aparato
de electroforesis modelo Waters y los de cationes mediante ICP, modelo Jovin-Yvon JY24. En
la tabla 1 s610se indican las concentraciones de sulfato y de algunos elementos metálicos en estas
soluciones. Para la determinaci6n de las Tierras Raras se seleccionaron inicialmente cuatro
muestras , escogidas de forma que cubrieran el rango de pH y de concentraci6n total de elementos
disueltos definido para todo el conjunto de soluciones ácidas muestreadas.

El tratamiento de las muestr as para la determinaci6n de las Tierras Raras incluy6 la
preparaci6n y análisis en el laboratorio de alfcuotas filtradas a través de mallas de 0.1 micras y
acidificadas, de muestras únicamente acidificadas y de muestras no tratadas. Los resultados
obtenidos señalan la existencia de pequeñas diferencias no sistemáticas en las concentraciones de
lantánidos (incluso en las muéstras no tratadas), sin cambios apreciables en las pautas de
distribuc i6n obtenidas. Y; por tanto, la posible contribuci6n de partículas en suspensi6n y
coloides al contenido de Tierras Raras en .estas soluciones es mínimo, resultado similar al
obtenido por Johannesson y Lyons (1995) en sistemas ácidos de este tipo.

La determinaci6n de los contenidos de Tierras Raras fue realizada mediante ICPMS
modelo VG Plasma Quad. Se utilizaron estándares sintéticos para calibrar el aparato y se
analizaron soluciones de referencia junto con las muestras para controlar las fluctuaciones en las
condiciones del plasma . Los límites de detecci6n del aparato son de 10-5 ppm para todas las REE
excepto para el Lu con un valor de 5·lQ"6 ppm. Los duplicados realizados durante el análisis de
las muestras indican que las incertidumbres en la precisi ón de los análisis son inferiores al 5 %
para todos los elementos de las Tierras Raras excepto para el caso de El', Tm y Lu, con valores
del 8 al 14%. Se proced i6 asimismo al análisis de algunas muestras en un segundo laboratorio,
también mediante ICPMS (modelo Perkin-Elmer) con diferentes calibrados y rutinas analfticas,
obteniéndose resultados muy similares. Los resultados de las cuatro muestras analizadas se
presentan en la tabla 1.

Para el análisis de REE en los materiales lavados por las soluciones se procedi6 al
triturado de una muestra de las lutitas grises de la zona en un molino de ágata y a su ataque total
con una mezcla de HF, HCI y HN03• El análisis de Tierras Raras se realiz6 también mediante
ICPMS con Ifmites de detecci6n de 0.1 ppm para todos los elementos de la serie, excepto Eu y
Lu para los que el Ifmite de detecci6n es de 0.05 ppm. Los resultados de la muestra analizada
se presentan también en la tabla 1.

4. Caracteres geoquímicos y contenidos de Tierras Raras en el sistema

Las soluciones analizadas presentan los rasgos composicionales caracterfsticos de las aguas
ácidas de lavado de minas , es decir , valores de pH bajos (entre 2.3 y 3.35; tabla 1), sulfato como
ani6n dominante y muy elevados contenidos de elementos metálicos disueltos (en la tabla 1 se
muestran las concentraciones de Fe, Al y Zn). La distinta intensidad del proceso de acidificaci6n
(oxidaci6n de los sulfuros dispersos en los materiales drenados) es la responsable de las amplias
var iaciones detectadas en los contenidos de sulfato y elementos metálicos de estas aguas ácidas,
especialmente elevados en la muestra C-5 , la de pH más bajo de todas las analizadas (tabla 1).
Resulta destacable la presencia de elevadas concentraciones de aluminio en estas soluciones como
responsable de los ya mencionados efectos fitot óxicos en estos suelos.

Como en otros sistemas de aguas ácidas (Auqué el al., 1993, 1994; Gimeno el al., 1996a),
los contenidos de Tierras Raras en estas soluciones son muy elevados , con concentraciones totales
(EREE) de 0.113 a 1.24 ppm (tabla 2). Estos valores son superiores en tres o cuatro 6rdenes de
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magnitud a los determinados en aguas marinas o en cursos superficiales de carácter neutro-básico
y sólo resultan parangonables a los encontrados en arroyos ácidos naturales como los de la zona
de Bádenas en España (muestra BS-3 y Arroyo del Val, figura 3A; Auqué el al., 1993; Gimeno
el al. , 1996a) o los de las San Juan Mountains en USA (muestra 90WA111, Nordstrom el al.,
1995). Únicamente las soluciones ácidas subterráneas de la mina de uranio de Osamu-Utsumi en
Brasil (muestra GW-47, figura 3A; Miekeley el al., 1992) presentan contenidos en REE
ligeramente mayores que los detectados en las aguas de los suelos ácidos venezolanos.

Los contenidos de Tierras Raras en las lutitas grises lixiviadas por las aguas (tabla 1) son,
en promedio, el doble de los presentes en NASC (North American Shale Composite; Haskin el

al., 1968; Gromet el al ., 1984). Su pauta de distribución es prácticamente paralela a la de ese
estándar (figura 2A) con un' ligero enriquecimiento en las Tierras Raras ligeras (LREE en la
literatura anglosajona) sobre las Tierras Raras pesadas (HREE) y una cierta anomalía negativa
en Eu. Las aguas ácidas presentan unos contenidos de REE entre dos y cuatro órdenes de
magnitud menores de los encontrados en estos materiales.

Tabla 1: Caracteres compos icionales y contenidos en Tierras Raras en las soluciones ácidas y rocas
lut fticas de la Cuenca de Boconó (Venezuela). Las concentrac iones de SO. ·, Fe, Zn y Al están
expresadas en mmoles/l y las de las Tierras Raras en ppm.

C-1 C-S C-10 C-14 Roca

Temp. (OC) 22 .7 22 .8 20 .S 21.1 .' .:~l!;i ".
pH 3.35 2.30 2.97 3.1 1:" .•.•...

Conduct o(pSI 1600 4920 1169 1600

SO. - 7.89 58 .46 4. 30 10.03

FeTo.o/ 0.03 9.35 0.08 0.08

I ,~~ ,ZnT otDl 0.05 0.15 0.02 0.04 l '·' .•...'. ':':
. ' ........ ;;.,' .

AITo.o/ 2 .61 16 .71 1.76 3.73

ntenidos en Tierras Raras

la 6.61 '10-3 2.07 .10 -2 2.50 .10 -3 1.28 '10-2 78 .90

Ce 2.22.10-2 1.04·10 -' 7.14'10-3 5_18'10-2 160.00

Pr 4.26 .10 -3 2.14'10-2 1.57'10-3 1.09.10 .2 18.70

Nd 2.91 .10-2 1.49·10-' 1.17.10-2 7.17'10-2 65.90

Sm 1.80'10-2 1.12,10 -' 7.65 '10-3 3.71'10-2 11 .00

Eu 4.74 '10-3 3.16.10 -2 1.95.10-3 9.09 '10-3 1.42

Gd 3.41 '10-2 1.81,10-' 1.39.10-2 4.84' 10-2 8.10

Tb 5.11 '10-3 2.74'10-2 2. 13 '10- 3 8.36 '10-3 1.30

Dy 2.57.10-2 1.26,10-' 1.11 '10- 2 4. 16' 10-2 8.40

Ho 4.25 .10-3 1.94'10-2 1.82.10-3 7.12'10-2 1.72

Er 9.52'10-3 4.38'10-2 4.22'10-3 1.61 .10 -2 5.20

Tm 1.17'10-3 5.49 .10-3 5.18 '10-' 1.82.10-3 0 .80

Yb 5.82 '10-3 2.82 '10-2 2.5 8'10-3 9.67 '10-3 5.80

Lu 7.70 '10-' 3 .56.10-3 3.70,10-4 2.70'10-' 0.88
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, T~das I~s aguas analizadas, muestran, globalmente; un enriquecimiento 'en las: Tierras
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5. Pautas de distribución de.las ·REE en las soluciones ácidas'

Las pautas de distrlbucionde las Tierras , Raras en. las aguas ácictás de Venezuela '
normalizadas frente a NASC se han representado en 'la figura 2A: La normalización respecto a '

. los 'contenidos de la roca lutñicaencontacto con las soluciones (figura 2B) no introduce -ninguna '
.. .. ..: modificación-en la pautas observadas, motivo por el que la descripción que.síguea.conttnuacíon

se referirá a los resultados .normalizados frente a·NASC. ' .

"Laconcentraci6n total de REE de las aguas ácidas venezolanas se encuentra directamente
.relacionada con el grado de acidez y, a grandes' rasgos, sus valores' aumentan al disminuir el pH '
Y al aumentar la concentraci6n de sulfato de las soluciones: El sulfato es el único ligando activo
que forma complejos con los lantánidos en aguas ácidas naturales (Auqué et al., 1994; Gimeno
et al." 1995, 1996a) y, por tanto, la transferencia deREE en los proceses de interacci6n agua­
roca se va a ver favorecida en las soluciones con mayor capacidad deforrnar complejos con esos ,
elementos. .

, .

La 'áno~alfade'IREE'set;adUce'eneldesarroliode una morfologfa convexa en las pautas
de las Tierras Raras ' en solucf6rí ~ con 'enriquecimientos-en lo s lantaíiidos.más .pesadosdesde La" '

.a Gdy empobrecimientos', también respecto a los más pesados; desde Gd aLu. Esta'rnorfologfa". "
convexa .no 'es. simétrica 'y las pendientes de -las trazas ~de', Gd-La,y Gd-Luson, marcadamente
distintas: las-relaciones normalizadas-(6d~/laJ presentan' valores superiores,a '23:inientrasque . ,
Ia~ . relaciones (Gd¡JLuJ presentan .valores inferiores a S :(tabla,2): Ovloaque:es- lo mismo, ' el .

, , , ' empobreéimiento en- LREEes-mucho·rriás,marcado:que.el de llis:HREE;' ambas respecto aIREE:' .

' --:. . . ~'n'laS,~g~ras-3:N YB'S~ 'mu~~¡r~: c~m~arati~~'ente las~~~tás de .Ias'~o ;u~i~né~'ed~fi·c~/
-respecto-a las.de otras soluciones',icidas naturales:'.Como.puede apreciarse 'tanto la. morfclogfa' -, "
,:convexa·como las-demás.características señaladas para,la distribucién.de REE en las.soluciones, :
estudiadas- son, análogás a los,encontradas ,en- las ' soluciones .áddás, de~'aÍ'roYo~s: (Auqué 'et al., .'

' .1-993; 1994; .Gimeno et,al.,)995';,Nordst,rom.etal., 1995) Ylagos' (Johannessony.Lyoils, 1995). , '
. .' ' . '.. ...... . . ' - .. . ' . ': . ';. , .' ." ... ... ".: :: ~. . .'
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No obstante, aunque los rasgos genéricos son similares , existen diferencias en la intensidad
con la que aparecen algunos de ellos en las soluciones edáficas. De esta forma , el enriquecim iento
en HREE respecto a LREE de esas soluciones es mucho más marcado que en cualquiera de las
aguas ácidas presentadas en la figura 3A y cuya relaci6n normalizada Lu../La" no supera el valor
de 2.5 (recuérdes e que en el caso de las soluciones edáficas los valores de esta relaci6n se sitúan
entre 5 y 12; tabla 2).

Por otro lado, la traza que va de Gd a Lu en la pauta de distribuci6n presenta pendientes
muy parecidas a la de los otros sistema ácidos (todos ellos con valores de la relaci6n Gdn/Lu..
menores de 5) pero la que va de La a Gd presenta pendientes claramente distintas , más marcada
en las aguas de Venezuela. Las relaciones Gdn/La, de esas soluciones son superiores a 23 (tabla
2) mientras que las encontradas en las aguas ácidas de otros sistemas (figura 3A) son inferiores
a 10. De esta forma, el empobrecimiento en LREE respecto a las IREE que caracteriza esta parte
de la pauta convexa de las soluciones ácidas es mucho más marcado en las aguas venezolanas.

Figura 2. Pautas de distribución de las Tierras Raras en: A. - las soluciones ácidas y roca lutftica
en contacto con ellas, normalizadas frente a NASC. B.- las soluciones ácidas normalizadas
frente a la roca lutítica en contacto.

Independientemente de estos caracteres particulares, la distribuci6n convexa de REE en
fas aguas ácidas de Bocon6 presenta marcadas diferencias respecto a la de los contenidos totales
de estos elementos en las rocas lutfticas en contacto (o respecto a NASC; figura 2). Y, como
ocurre en otros sistemas ácidos naturales generados por idénticos mecanismos de oxidación de
sulfuros (Auqué et al., 1994; Johannesson y Lyons , 1995; Gimeno et al. , 1995), las pautas
convexas no parecen ser el resultado de una transferencia directa de la pauta asociada a la roca
en contacto con las soluciones.



6. Discusión de resultados
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(Venezuela)

Mu••'raINASC
1.0E·00 .----- - - - - - - - - - - - ---,

1.0E-Ol

1.0E -Oe

1.0E-05

1.0E -08 '---'--'---'---'--'--'------'-----'---'------'--''-'-'
L. Ca Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1.0E-07

MUESTRAINASC
1.0E· 0 0 .-----=- --- - - - - -----,

1.0E -08 L-.l--'--'---'-....l.--'--l-.....L.----'-----'---'-----L--J
La c. Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1.0 E- Ol

172

Gosselin el al. (1992) señalan la presencia de pautas convexas de distribución de REE en
las salmueras subterráneas que estudian , encontrando pautas similares asociadas a óxidos y
oxihidróxidos de Fe y Mn, carbonatos arcillosos y minerales de relleno ·de fracturas (calcitas
férri cas y piritas) en los materi ales del acuffero. Y sugieren , que las pautas enriquecidas en IREE
de las aguas proceden de procesos especfficos de interacción (disolución, intercambio iónico o
procesos de adsorción/desorción) con estas fases . Una génesis similar, referida más
especfficamente a la diso lución de óxidos y oxihidróxidos de Fe y Mn es la propuesta por
Johannesson y Lyons (1995) para las aguas ácidas de Colour Lake (figur a 3A).

Las reacciones de formación de complejos de las REE en soluciones ácidas están
dominadas por el sulfato, anión que no produce fenómenos de fraccionamiento apreciables a lo
largo de la serie de las REE (ver por ej . Gimeno el al. , 1996a) y que , por tanto, no puede
justificar la aparición de este tipo de pautas convexas. En otros sistemas ácidos , la presencia de
este tipo de pautas enriquecidas en IREE se ha relacionado con procesos especfficos de interacción
agua-minera l, fundamentalmente respecto a oxihidróxidos de Fe y Mn .

Figura 3. Comparación de las pautas de distribución de Tierras Raras en distintos tipos de
soluciones. A.- Pautas de distribución en agua de mar (Elderfield y Greaves, 1982). agua de río
(Elderf ied et et., 1990). aguas ácidas de Colour Lake (Canada ; Johannesson y Lyons, 1995),
aguas ácidas de la zona de Bádenas (España; Arroyo del Val y muestra BS-3, Auqué et et.,
1994; Gimeno et al., 1996a), aguas ácidas de San Juan Mountains (muestra 90WA111;
Nordstr om et et., 1995) y soluciones ácidas de la mina de uran io de Osamu-Utsumi (Brasil,
muestra GW-47 ; Miekeley et et., 1992). B.- Rango en la pauta de distribución en las aguas
ácidas de Venezuela , def inido por las muestras de mayor y menor concentración de Tierras
Raras (C-5 y C-10, respect ivament e).
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Figura 4. Pautas de dist ribución de las
REE en las fases. alumínico-su ifatad as
precipitadas a partir de las aguas ácidas
en los arroyos de San Juan Mountains,
Colorado (USA; muestras PB-01, PB-02 Y
PB-03; Nordstrom et et., 1995 Y datos no
publicados) y del Arroyo del Val,
Zaragoza (ESPAÑA; muestra s C-1 y C­
12; Auqué et al., 1993 Y datos no
publicados ).

Los 6xidos y oxihidr6xidos de Fe y Mn son fases que tapizan frecuentemente las
partículas sedimentar ias de rocas lutíticas como las drenadas por las aguas ácidas de Venezuela
y, de hecho, se ha verificado la presencia de oxihidr6xidos secundarios en estos materiales
(Corniele s y Valles, 1995). Estas fases se disuelven fácilmente en contacto con soluciones de pH
ácido con lo que , comparativamente, podrían ser consideradas como las respo nsables de las
pautas convexas también en las soluciones de Bocon6. Las diferencias en la morfología convexa
de estas aguas vendrían heredadas de las existentes en los oxihidr6x idos de este ambiente edáfico ,
si se considera que el tipo de interacción establecida es simplemente de disoluci6 n (tal y como
sugieren Johannesson y Lyons, 1995).

No obstante, los caracteres del medio edáfico (con bajas relaciones agua/roca) sugieren
la existencia de interacciones más complejas entre las soluciones y los materiales drenados,
haciendo factible la interve nci6n de otras fases minerales y no únicamente a través de procesos
de disolución. Gosselin el al. (1992) observan, por ejemplo; modificacio nes en las pautas
convexas de sus aguas subterrá neas según la litología en contacto con las mismas, haciendo
factible que las diferencias en las pautas de las aguas ácidas de Venezuela sean consecuencia de
la interve nci6n de otras fases (aparte de los oxihidr6xidos de Fe-Mn) , y de procesos más
complejos que el de disoluci6n mineral. La formaci6n de fases secundarias enriquecidas en LREE
ha sido citada en estudios de meteorizaci6 n como uno de los controles en la movilizaci6n de las
REE (p. ej . Banfield y Egg leton, 1989); y la precipitaci6n de este tipo de fases podría resaltar,
evidentemente, el empobrecimiento de LREE respecto a IREE en soluciones que tuvieran ya una
pauta convexa de distribuci6n , favoreciendo la aparici6n de morfologías como las de Bocon6.



Por otro lado, durante la evolución de los suelos hiperácidos estudiados aparecen fases
amorfas alumínico-sulfatadas similares a las encontradas en otros sistemas de aguas ácidas. Las
pautas de distribución de las REE en estas fases presentan morfologías muy similares a las de las
soluciones edáficas venezolanas (figura 4; Auqué et al., 1993; Nordstrom et al. , 1995) con lo
que su redisolución puede contribuir también al desarrollo de este tipo de pautas convexas en las
aguas ácidas.

Una caracterización más precisa del origen de estas pautas convexas de las REE en
medios ácidos requiere, evidentemente, la realización de estudios más detallados sobre los
minerales (y sus pautas de distribución de REE) especfficamente involucrados en el control de
esos elementos. En la actualidad se están continuando los trabajos en distintos sistemas ácidos
para verificar algunas de las posibilidades mencionadas.

7. Conclusiones

Las soluciones relacionadas con el desarrollo de suelos hiperácidos en la cuenca del
Boconó (Venezuela) presentan elevadas concentraciones de Tierras Raras en solución (con valores
de EREE de 0.113 a 1.24 ppm), en rangos únicamente comparables a los detectados en otros
sistemas ácidos de baja temperatura. Los contenidos totales de Tierras Raras son directamente
proporcionales a las concentraciones de sulfato e inversamente proporcionales al pH de las aguas
y, por tanto, están controlados por la intensidad del proceso de oxidación de los sulfuros
dispersos en los materiales drenados, responsable del fenómeno de acidificación.

Las pautas de distribución de las Tierras Raras, normalizadas respecto a NASC o respecto
a las lutitas en contacto con las soluciones, presentan marcados enriquecimientos de HREE
respecto a LREE, con relaciones (Lun/La,,) > > 1. Pero lo más llamativo es el desarrollo de
morfologías convexas caracterizadas por enriquecimientos de IREE respecto al resto de Tierras
Raras. Este modelo de distribución es cualitativamente análogo al encontrado en otros sistemas
ácidos superficiales de baja temperatura (lagos, arroyos). Sin embargo el modelo obtenido en las
aguas ácidas de Venezuela presenta caracteres cuantitativos específicos, todavía no descritos en
la literatura sobre el tema. De esta forma, las morfologías convexas obtenidas no son simétricas
respecto a las IREE como sucede en otros sistemas ácidos, con relaciones Gdn/La"
considerablemente más elevadas.

Los procesos de formación de complejos de REE en este tipo de soluciones ácidas no
pueden producir los procesos de fraccionamiento de las REE necesarios para justificar este tipo
de pautas convexas. El desarrollo de estas morfologías todavía no esta firmemente establecido,
pero tiene que estar condicionado por procesos específicos de interacción agua-mineral con
determinadas fases de los materiales drenados, como óxidos y oxihidróxidos de hierro o fases
amorfas alumínico-sulfatadas.

Los caracteres particulares encontrados en las pautas convexas de las soluciones ácidas
estudiadas pueden estar relacionados, por tanto, con diferencias en las pautas de los minerales
específicamente lixiviados en los materiales drenados o con la intervención de mecanismos más
complejos (intercambio iónico, procesos de adsorción/desorción, precipitación de fases
secundarias), favorecidos por las bajas relaciones agua/roca del ambiente edáfico, en el control
de las REE en solución.
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Resumen
El metamorfismo hercínico de la Faja Pirítica se define de Baja Presión con temperaturas
próximas a 200°C. Los índices de cristalinidad de la ilita (Kubler) lo sitúan en ambiente
anqui-epizonal. Las paragénesis encontradas son similares en los materiales Devónicos
Carboníferos y en el Paleozoico Inferior que limita la cuenca en su zona norte. .

Abstraer
The Hercynian metamorphism in the Pyrite belt is of Low Pressure type, with temperatures
about 200°C. On the basis of the illite cristallinity index (Kubler) this metamorph ism is
defined as anchi-epizonal. Similar paragenesis are founded in materials of Devonian,
Carboniferous, and also Lower Paleozoic ages, which are delimiting the Pyrite belt to the
north.

Introducción

Dentro del sector SO del Hercínico español. la Faja Piritica constituye el extremo mas
meridional del Macizo Ibérico . Los materiales que la constituyen pertenecen al Paleozoico
Superior. Devónico y Carbonífero ocupan una cuenca situada al sur de la zona de Ossa
Morena formada por materiales plutónicos y del Paleozoico Inferior mayoritariamente .

El conjunto Dev ónico-Carbonífero de la Faja Piritica ha experimentado los procesos de
deformaci ón y metamorfismo hercínicos que se muestran a su vez sincrónicos con una etapa
intrusiva de rocas plutónicas acidas e intermedias (Aparicio et al. 1977) que originan
fen ómenos de contacto en la roca-caja Una parte de estas' manifestaciones de contacto
corresponden a procesos de granitización que modifican fuertemente la composición de las
rocas afectadas (Sanchez Cela y Aparicio 1982. 1991).

Dada la importancia minera de la Faja Pirítica los aspectos estructural es y estratigráticos han
sido ampliamente estudiados desde antiguo. En época reciente ha sido publicada toda la
cartografía geológica del sector por el ITGE a escalas 1150000 y 1/200000. Yson de destacar
en el área de la Faja Pirítica y zonas limítrofes, los trabajos de Vázquez Guzmán y Femández
Pompa (1976) Gabaldón et al 1983, Crespo-Blanc y Orozco (1988), Apalategui y Sánchez
(1991). Abalos y Eguiluz (1992. 1994). Azor et al 1994 ... etc.
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Algunos aspectos sobre el metamorfismo de la Faja Pirítica y zonas limitrofes han sido
estudiad?s por Lecolle (1970). Lecolle y Rogers (1976). Schermerhorn(1975. a y b), Quesada
y Munh á 1990, Castro y de la Rosa (1991), Abalos et al 1991. López Munzuira et al 1988
1991. 1993. '" .

Sin embargo las características metamórficas de los materiales pelíticos del Paleozoico
Superior de la Faja Pirítica no han sido tratados hasta ahora con detalle. en cuanto a sus
paragénesis, intensidad y condiciones fisicas. En ello influye el hecho de tratarse en su mayor
parte de materiales pizarrosos monótonos de baja intensidad metamórfica. En la bibliografía
regional este metamorfismo es calificado como de bajo grado y le asignan una facies de
esquistos verdes. zona de la clorita. Así un estudio algo más pormenorizado. permite encontrar
algunas variaciones significativas en sus características y su continuidad con el metamorfismo
que afecta al límite sur de la zona de Ossa Morena.

Para el desarrollo del trabajo se tomaron un total de 100 muestras en el área pirítica y zonas
de borde. La localización de las muestras se puede observar sobre el esquema geológico de
la Fig. l . Fueron tomadas exclusivamente en materiales pelíticos y se prescindió de muestrear
en series afectadas por procesos de granitización (señaladas como F.G. en Fig. 1). al tener
modificadas su mineralogía y composición.

Las determinaciones mineralógicas 'de Rayos X fueron hechas sobre muestras en polvo y
agregados orientados.y sus condiciones seajustan a las descritas en Aparicio et al. (1993) de
acuerdo con los esquemas definidos en'Dunoyer de Segonzac (1969). Kisch (1991). Para la
obtención del parámetro b, se ha.seguido el método de las secciones perpendiculares a la
pizarrosidad descrito por Sassi Y" Scolarij 1974).

Metamorfismo

En la Tabla 1 se indica la situación cronoestratigráfica de las muestras así como su
composición y algunos parámetros metamórficos significativos.

En la figura -Z seexpresa, en 'función de: los índices decristalinidad de la ilita (LC) (Kubler
1968) la situación metamórfica de las' muestras pertenecientes al Carbonífero. Dev ónico '!
Paleozoico Inferior (borde de cuenca). La proyección del le. para Devónico y Carbonífero.
se realiza sobre los campos.epizonal yanquizonal. En el Devónico el predominio es del
campo epizonal. mientras enelCarbonífero dominan las muestras anquizonales. Igualmente
se proyectan en ambos campos las' muestras del Paleozoico Inferior, No existe pues, en
función del IC, una neta relación con el .nivel estratigráfico. Sin embargo la distribución
superficial del IC en las muestras pertenecientes al Devónico, delimita una zona de mayor
intensidad metamórfica en el área de Zalarnea la Real, esta zona se prolonga durante el
Carbonífero hacia el NO. quedando la zona de menor intensidad metamórfica (diagenética)
en el extremo suroriental..

La distribución del parámetro b" que proporciona valores relativos de la presión (Guidotti ':/
Sassi 1976. 1986). presenta sus 'valores mas altos.en las muestras del Paleozoico Inferior en
el borde Norte de la cuenca y 'en la franja devónica situada en este límite. Otro máximo de
b; se observa en el centro del área estudiada para muestras pertenecientesal Devónico. y algo
mas desplazado al NO durante el. Carbonífero.' En general los valores máximos de bo se
muestran concordantes con los'mínimos del IC y ambos se encuentran desplazados de SE a
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NO desde el Devónico al Carbonífero.

Tanto el Devónico como el Carbonífero experimentaron un proceso metamórfico de baja
presión. con un ligero aumento de estas condiciones en el paso Carbonífero-Devónico­
Paleozoico Interior (Tabla 2). siendo el Paleozoico Interior el que manifiesta ya un tránsito
hacia presiones intermedias. hecho ya determinado por López Munguira et al ( 1993) en las
pizarras cámbricas de Ossa Morena,

La secuencia de los valores mediosde IC (Carbonífero-Devónico-Paleozoico Inferior) presenta
W1a disminución de sus valores (excepción del Ordovicico) y por tanto mayor intensidad del
metamorfismo coincidente con el incremento de bo'

Devónico y Carbonífero presentan paragénesis similares (Tabla 1) por lo que la intensidad del
metamorfismo que experimentaron debió de ser muy parecida.

Cuarzo+iIita±caolinita±clorita±dori talvermiculitaes la paragénesis mas frecuente. Laaparición
de plagioclasa (albita) se circunscribe a 4 muestras (3 del Carbonífero y 1 Devónica). La
esrnectita es igualmente rara y se localiza en 2 muestras del Carbonífero y I Devónica. La
paragonita sóloestá presente en 1 muestra Devónica y localizada en una fractura ,

En las muestras del Paleozoico inferior. al Norte del área estudiada se detectan paragénesis
similares. La clorita bastante frecuente. queda excluida en el sector NO, mientras que la
caolinita se circunscribe a una amplia banda de dirección este-oeste. y se encuentra ausente
al norte y borde SO.

Los interestratificados clori ta/vermiculita, al igual que la ilita, se encuentran practicamente
distribuidos por todas las formaciones incluyendo el Paleozoico Interior.

Teniendo en cuenta esta identidad paragen ét ica entre el Carbonífero y Devónico es deducible
que las condiciones fisicas del metamorfismo que les afectó fueron similares.

Si nos atenemos a la casi desaparición de la esrnectita y a la no presencia de
interestratificados ilita/esmectita se puede considerar que se alcanzaron temperaturas próximas
a los 200°. (Kristmannsdónir 1979. Schiffrnan y Fridleifsson 1991 ). aunque otros autores
como Reyes y Cardile (1989) Abercrombie et al. (1994) situan la desaparición de esmectifa
por debajo de 200°. La presencia de esmectita solo en escasas muestras aisladas confirmaría
el situamos en unas condiciones próximas a su desaparición.

En los mismos límites de temperatura nos situaría la presencia de caolinita (Clayton et al
1968. Duroyer de Segonzac 1969. Aoyagui y Kazama 1980. Weawer y Broekstra 1984. Curtis
1987).

Sin embargo la desaparición de caolinita en el sector norte. que incluye el Paleozoico Interior.
reflejaría un aumento de estas condiciones a T>225° e interiores a 320° (Maxwe ll y Hower
1967. Velde 1977). Igualmente temperatura inferiores a 200° pudieran haberse alcanzado en
la franja sur donde la caolinita se encuentra ausente y los IC indican la menor intensidad
metamórfica (Fig. 1).

Un cálculo aproximado de la presión que experimentaron los materiales se puede deducir a
partir de los valores de b, (Tabla 1) y de los cálculos realizados por Guidotti y Sassi 1976.
1986) teniendo en cuenta valores de T ~ 2000. Así para el Cámbrico. los valores determinados
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serian de ~ l.2 kb. valores que van decreciendo' hasta el Carboní fero (P < 0.5 kb). Esta
variaci ón de presión se observa en el diagrama de frecuenc ias del valor b, para el Paleozoico
Interior. Devónico y Carbonífero (Fig. 3). Una comparación con otras áreas metamórficas
significativas (Sassi y Scolari 1974). delimitan el metamorfismo de la Faja Pirítica como de
muy baja presión. .

Discusión

Uno de los principales problemasen el estudio metamórfi co de los materiales paleozoicos del
SO hercínico español radica en la dilicultad de la limitación estratigráfica. La separación
Devónico-Carbonífero no está suficientemente establecida debido a la ausencia de datos
paleontológicos. Por otro lado la presencia masiva de rocas graníticas superficiales modifican
ampliamente la composición de la roca original. dando lugara formacionesgranitizadas (FG).
En numerosas ocasiones estas FG son tomadas como límiteentre ambas formaciones. por lo
que es muy posibleque en algunos casos se estén individualizando series con la mismaedad.
Un dato a favor de ello se encuentra en la similitud de las paragénesis y de los parámetros
metamórficos en Carbonífero y Devónico.

En cualquier caso el metamorfismo hercínicode la Faja Pirítica se presenta comode muy baja
presión, en contraposición a lo anteriormente establecido por Schemerhom (1975 a y b) Y
Lecolle y Rogers (1976). Estos últimos autores asignan el metamorfismo de la Faja Pirítica
a la facies esquistos verdes con unas condiciones físicas (P = 4-5 Kb, T = 350-400) e l.C. de
la ilita (2 a 2.7).sensiblernenre diferentes a los determinados en este trabajo.

Dentro del Hercínico Ibérico y en áreasdondeel Devónicoestá representado. no parecehaber
grandes diferencias en cuanto a la intensidad del metamorfismo. en comparación con el aquí
estudiado. Tanto en el Sistema Central (Aparicio y Galán. 1980) como en Menorca (García
et al 1992) y sectores de la Zona Cantábrica (Galán et al. 1985. Aparicio et al. 1993). estas
condiciones pueden ser similares. Por otro ladoel Carbonífero de la Faja Pirítica presenta una
intensidad de metamorfismo algo superior a la del Carbonífero de otras áreas hercínicas
(Aparicio y Galán. 1980). Aparicio et al. (1991 a). García et al. (1992). si bien en la Zona
Cantábrica (Aparicio et al. 1993) y Cordillera Ibérica (Aparicio et al. 1991 b) se encuentra
una cierta similitud. siendo en este último caso donde incluso las presiones alcanzan valores

. « 1kh.

En la provincia de Cardaba materiales carboníferos estudiados por Abalos et al. (1991) son
asignados a un ambiente epizonal-anquizonal similar a lo encontrado en el área estudiada.
pero no especi fican las condiciones de este metamorfismo.
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Fig. 1.- Esquema geológico del área estudiada basado en la cartografía existente (ITGE
escalas 1/50.000 y 1/200.000 con la localización de las muestras estudiadas.
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Tabla 2

Valores medios del índice de cristalinidad (KubIer} y de b" por períodos en materiales
de la faja Plritica (Devónico y Carbonífero)y su limite norte (Paleozoico Inferior}

Número le Número bo

Carbonifero 39 3,87 ± 0,72 33 8,9887 ± 0,0604

Devónico 46 3,67 ± 0,78 39 8,9916 ± o,ono

Ordovícico 8 3,91 ± 0,75 7 8,9957 ± 0,0127

Cámbrico 5 3,64 ± 0,31 5 9,0012 ± 0,0167
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Aplicaci6n del geoterm6metro isotópico sulfato-agua W80 SO. = - 0180 H 20 )
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Abstract

The ri80 S0 4= - {)
180 Hp isotope geothermometer is applied to the Caldas de Bohi,

Arties and Luchon alkaline thennal waters (Central Pyrenees). Subsurface temperatures obtained
using this geothennometer and those calculated from chemical geothemwmeters are 'in close
agreement for the Arties and Caldas systems. These results support the existence oj oxygen
isotope equilibrium between sulphate and water in the reservoirs ojboth geothennal systems. For
the Luchan system, however, isotope geothermometer provides temperature values clearly lower
than those predicted by chemical geothermomeiry.

. In view of the known kinetic constraintsjor the 180 exchange reaction, the Time 10 reach
isotope equilibrium can be deduced jor the relevant temperature and pH conditions oj the flu ids.
The calculated values agree with the residence Times 01 thermal waters dated in som e Pyrenean
systems. In the Luchon system the age oj the thermal waters would be enough 10 attain isotope
equilibrium and therej ore secondary mecha nismsduring the aseen! ofthermal soiu üons must have
disturbed the deep {)180 values.

1. Introducci6n

Los sistemas hidrotermales de aguas alcalinas, instalados en los materiales granfticos del
Pirineo, constituyen un conjunto ampliamente estudiado de manifestaciones con caracteres
homogéneos. La aplicación de técn icas geotermométricas qufmicas para la evaluac ión de la
temperatu ra en el reservorio de esto s sistemas comenzó ya en la década de los 70, con los
trabajos de prospección geotérmica llevados a cabo en la vertiente pire naica francesa . Y, desde
entonces, los estudios realizados sobre los procesos de interacción agua-roca (y situaciones de
equilibrio heterogéneo en el reservorio) en este tipo de sistemas han contribuido tanto al
desarrollo especffico de calibrados geotermométricos qufmicos como al planteamiento de técnicas
geotermo métricas basadas en cálculos de modelización geoqufmica (Michard 1990; Auqué , 1993).

Sin embargo, la aplicación de técnicas geotermométricas isotópicas no ha co nstituido una
metodologfa normalmente usada en sistemas geoterma les de este tipo , probablemente porque la
bondad de los resultados ofrecidos por la geotermometrfa qufmica, con requer imientos analfticos
más sencillos y baratos , las han excl uid o. Únicamente en algunos trabajos, como los de Criaud
y Vuataz (1984) en los ma nantiales de Luchon (Francia) y de Rancon et al. (1984) en los de Les
Escaldes (Andorra) , se utiliza puntualmente la reacción de intercambio isotópico del oxfgeno entre
los sulfatos disueltos y el agua (geotermó metro sulfato-agua, c5l sa S04 = - c5 lsa H20 ) para calcular
la tempe ratura de las so luciones en profundidad.
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2. Caracteres generales de los sistemas
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Los mananti ales geotermales de Arties y Caldas de Bohf (provincia de Lérida) están
situados en la zona axial del Pirineo Central español, pr6ximos a la frontera francesa y en la
misma área geogr áfica que los manantiales de Luchan (Francia). Todos ellos se encuentran

En este trab ajo se presentan los resultados del geoterm6metro sulfato -agua (/lISO S04 = ­

/l180 H20) en dos sistemas geotermales del Pirineo Central español, los manantiales de Caldas
de Bohí y Arties, para los que se dispone de análisis isot6picos adecuados. Los resultados
obtenidos, junto con las recientes dataciones realizadas en distintos sistemas geotermales de la
vertiente francesa perm itirán analizar la posibilidad de que se establezca un equilibrio isot6pico
en el reservorio de estos sistemas y/o discutir la existencia de procesos secundarios que alteren
este equilibrio durante el ascenso de las soluciones. Uno de los sistemas en los que se han datado
las soluciones termales es el de Luchan , motivo por el que se reevaluarán los resultados obte­
nidos por Criaud y Vuataz (1984) con el geoterm6metro /lISO S04 = - 0180 H20 en este sistema.

El geoterm6metro OISO S04 = - OISO H20 es una de las técnicas isot6p icas más usadas (y,
aparentemente, con mejores resultados) para el cálculo de temperaturas de base en reservorios
de media-alt a entalp ía (McKenzie y Truesdell , 1977; Truesdell y Hulston , 1980). Sin embargo,
las temperaturas de base que proporciona en los dos sistemas mencionados anteriormente son
inferiores a las calculadas mediante geoter rnometr ía química, lo que parece cuestionar su
adecuaci6n a este tipo de sistemas geotermales de aguas alcalinas.

Figura 1. Esquema geológico y situación de los sistemas geotermales estu diados.



relacionados con los macizos granfticos existentes en la zona , si bien algunos de estos manant iales
surgen a través de los materiales carbonatados o metamórficos circund antes (figur a 1). Las
surgencias de Caldas de Bohf manan a través de las gra nodiori tas del Macizo de la Maladeta; la
de Arties lo hace a través de los materiales carbonatados devónicos que circundan el macizo del
mismo nombre; y las de Luchan a través de granitos pegmatftico s y esquistos metamórficos
asociados al Domo de Bossost (Chevalier-Lemire el al . , 1990).

Excepto en el caso del manantial único de Arties, la parte terminal del circuito
hidrotermal de estos sistemas se diversifica en múltiples surgencias, afectadas por procesos de
enfriamiento conductivo y de mezcla con soluciones más frfas, de intensidad var iable. Asf, los
manantiales de Caldas de Bohf constituyen un amplio conjunto de hasta 37 surge ncias (19
inventariadas), con temperaturas entre 6 y 50 "C (Auqué, 1993; Auqué el al., 1996) ; y los de
Luchan están constituidos por 18 manantiales con tempera turas entre 20 y 70 "C (Cr iaud y
Vuataz , 1984; Chevalier-Lemire el al ., 1990).

Los rasgos composi cionales de las soluciones de estos manantiales son análogos a los
establecidos para el resto de sistemas geotermales pirenaicos (tabla 1): muy baja mineralización ,
valores de pH elevados , sodio como catión dominante, ausencia de un anión en concentracio nes
preponderantes sobre los demás, caracteres sulfuroso s y muy bajas concentr aciones de magnesio.
Todos estos caracteres son los prop ios del grupo de las aguas term ales alcalinas, uno de los dos
tipos en que pueden clasificarse las aguas termales relacionadas con materiales gra nfticos (el otro
tipo es el de las aguas ricas en COz; Sanjuan el al., 1988; Michard , 1990).

En los manantiales, las aguas presentan una muy baja presión parcial de COz (con valores
de lag pCOz de -4 .94 en el manantial de Estufa, de -4.89 en Art ies y de -3.26 en Luchan) y una
proporción importante de la sflice disuelta se encuentra ionizada debido a los elevados valores
de pH (Auqué el al ., 1996). En cond iciones de surgencia las soluciones se encuentran
sobresaturadas respecto a feldespato potásico, albita y cuarzo, minerales con los que establecen
relaciones de equilibrio termodinámico en el reservorio (Auqué, 1993). Y, además, las aguas de
todos los manantiales se encuentran en ' equll ibrio respecto a calcita y caolinita,
independientemente de la temperatura y pH de surgencia. Ello implica que la evo lución de las
soluciones termales durante su ascenso tiene lugar en sistema abierto , con procesos de
reequilibrio, al menos respecto a ese último mineral (Michard y FouiIlac, 1980; Michard y
Roekens, 1983; Auqué, 1993; Auqué el al. , 1996).

3. Metodología

3.1. Datos analfticos

Los datos composicionales de las surgencias estudiadas en este trabajo se indican en la
tabla 1. Los del manantial de Arties proceden del muestre o presentado por Auqué el al . (1996);
los del manant ial de Estufa (Caldas de Bohí) fueron determinados en una campaña de prospección
geotérmica realizada por ENHER (Empresa Nacional Hidroeléctrica del Ribagorzana, S.A.) en
1985 y aparecen recogidos en las recopilaciones analfticas de manifestaciones term ales del Servei
Geologic de Catalunya; los de Luchan (Forage 1) han sido tomados del trabajo de Cri aud y
Vuataz (1984) y corresponden a muestras de un sondeo realizado en ese sistema. Los datos
isotópicos manejado s para las surgencias de Arties y Caldas fueron obtenidos por ENHER en el
muestreo anterio rmente mencionado.
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Tabla 1 . Datos qurmicos e isotó picos de las surgencias termales estudiadas en el Pirineo Central.
Las concent racion es de los elementos aparecen expresadas en mmoles/ l y los valores isotópicos
están referi dos a SMOW.

Arties Estu fa (CALDAS) Forage 1 (LUCHON)11I

Temperatura (OC) 39 .7 -49.3 70.1

pH (campo) 9 .52 9 .34 8.60

Eh (mV) -0.41 8 -0. 365 -0 .183

Alcalinid ad total 1.53 1.03 2 .25

SO.- 0 .304 0 .4 89 0.08

CI' 0 .807 1.325 1.69

F 0.276 0.181 0 .431

Si02 1.272 1.182 1.42

Na+ 2 .931 3 .088 4. 33

K+ 0 .052 0 .0 59 0 .118

Ca+2 0 .048 0 .037 0 .090

Mg +2 < 2.0'1 0-3 < 2 .0 '10-3 1.6 .10-3

AI +3 0 .72 7 '10- 3 1.82.10-3 1. 12· 1(T3

Li+ ---- 0 .075 0 .033

6'·0 H20 -11.76 -11.12 -11 .40

6'·0 SO.- 6. 30 - 3 .75 8 .00

111 Datos de Criaud y Vuataz (1984).

Para la realización de los análisis isotópicos se escogie ron las surge ncias a pr ior i más
representativas del quimismo existente en el reservori o de cada sistema. En el de Caldas de Bohf
y de Luchan (constituidos por múltiples surgencias) , los análisis isotópicos se realizaron en
aquéllas cuyas caracterfsticas geoqufmicas (mayor temperatura, nulos contenidos de trit io y/o sin
concentraciones apreciab les de trazadores "superficiales" como el Mg; p. ej. Michard, 1990)
exclufan, al menos , la prese ncia de modificaciones composicionales secundar ias produci das por
los procesos de mezcla con aguas más superficiales, efectivos en estos sistemas.

En el caso del manantial único de Arties , los nulos contenidos de tr itio y la constancia
en el tiempo de su composición qufmica (los datos obtenidos en el muestreo de ENHER en 1985
son prácticamente coincidentes a los obtenidos por Auqué el al. , 1996) aseguran también la
ausencia de ese tipo de modificaciones.
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3.2. Geotermámetros quimlcos

3.3. Geotermámetro ¡¡/80 S04= - ¡¡/80 H20

(1)

(2)106

1000 lnetso -H 0 = 2.88 . - - 4.1
4 , ¡a.

106

1000 lnetso - H 0= 3.251 . - - 5.6
4 , ¡a.

Y, por último , se han empleado los geoterm6metros Ca-K (Michard, 1990) y el Na-K-Ca
(Fournier y Truesdell , 1973) conside rando en la formul aci6n de este último el valor de {3=4/3
ya que 'es el que proporciona resultados mas consistentes en sistemas geotermales de este tipo
(Vandelannoote, 1984 ; Michard et al. , 1986).

y de Mizutani y. Rafter (1969) y Mizutani (1972 ) par a las que la ecuaci6n de ajuste era:

La aplicaci6n de una dete rminada técnica geotermométrica requi ere que se corresp onda
con una situaci6n de equilibrio en el reservorio y que los elementos involucrados en ese equilibrio
no se vean mod ificados durante el ascenso de las soluciones (Auqu é et al. , 1986) . Pero la
ver ificaci6n de estos cond icionamientos básicos rara vez puede hacerse a priori. Una vez
obtenidos los resultados es cuando se establece su verosimilitud de for ma comparativa con los
ofrecidos por otros geoterm6metros.

Uno de los geoterm6metros más fiables en este tipo de sistema s es el Na-K, basado en
el equili brio albita-fe ldespato potásico existente en el reservorio de estos sistemas (Mi chard ,
1990 ; Auqué , 1993) . Se han utilizado dos calibrados de este geoterm6metro : el primero , de
carácter te6rico, deri vado de los datos termodinámicos propu estos por Michard (1983) para el
equilibrio antes mencionado ; y el segun do , de origen empírico, formul ado por Michard (1990)
mediante un ajuste a datos de sistemas geot ermal es de aguas alcalinas.

Para verificar los resul tados del geoterm6metro ¡¡ISO S04 = - ¡¡ISO H20 en los manantiales
estudiados se han utili zado los geoterm6metros quími cos más adecuados para los sistemas de
aguas termales alcalinas. De esta form a se han utilizado técnicas geotermométricas basadas en
los contenidos de sflice (geoterm6metro Si02-cuarzo), consid erando las correcciones necesarias
para valorar proporciones importantes de sflice ionizada en disoluci6n (véase, por ejemplo,
Arnorsson et al., 1983).

Esta técnica geoterrnom étrica hace uso de las var iaciones que exper imenta el coeficiente
de fraccionamiento isot6pico del oxígeno entre los iones sulfatados en soluci6n y el agua, al
cambiar la temperatura. Esta s variaciones se ha aj ustado a partir de datos experimentales de
distinta procedencia. Originalmente, las ecuaciones de aj uste utilizadas procedían de las
experiencias de L10yd (1968) , de las que se obtenía un ajuste tal que:

y en las que el coe ficient e de fracc ionam iento isot6pico está expresado como 1000 lno y T es la
temperatura en escala absoluta (OK).
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4. Valores de temperatura en el reservorio de los sistemas

Las anteriores ecuaciones cons idera n un factor de fraccionamiento para el oxfgeno entre
COz yagua de 1.047 a 25 oc. Considerando un valor más recien te para este dato , de 1.0412
(procedente del trabajo de O'Neil el al. , 1975) , las ecuaciones (1) y (2) quedan:

(4)

(3)

(5)

106
1000 1nctso -H 0 = 2.88 . - - 3.6. , ~

106
1000 1nctso -H 0 = 3.251 . - - 5.1. , ~

106
1000 1nctso -H 0= 3.0655 . - - 4.9. , ~

respectivamente (McKenzie y Truesdell, 1977) .

En la figura 2 se han representado los valores de los coeficientes de fraccionamiento
isot6pico en funci6n de la temperatura deduc idos a part ir de las ecuaciones (3), (4) Y (5) que
serán las utilizadas en este trabajo. Como puede apreciarse, en el rango de Oa 100 "C, los dos
calibrados propuestos por McKenzie y Truesdell (1977) son los que proporcionan los valores
extremos, siendo los de la ecuaci6n 5 (Giggenbach el al., 1983) prácticamente coincidentes entre
75 y 125 "C con los obtenidos a partir de la ecuaci6n (4).

y

En la tabla 2 se presentan los resultados proporcionados por los distintos geoterm6metros
qufmicos utilizados . Como puede apreciarse, los valores de temperatura calcul ados por todos ellos
para cada manantial son muy similares , obteniéndose un promedio de 100.8 ± 7.2 "C para el
reservorio de Arties, de 105.8 ± 6.2 "C en el de Caldas de Bohi y de 122 ± 8 "C en los
manantiales de Luchan. Los valores de temperatura obtenidos resultan asimismo coincidentes con
los deduci dos por Auqué (1993) utilizando metodologfas más elaboradas de modelizaci6n
geoqufmica (con valores de 115, 110 Y 125 "C para los sistemas de Arties , Caldas de Bohf y
Luchan, respectivamente). Estos rangos de temperatura servirán, por tanto, de referencia para
valorar los proporcionados por el geoterm6metro sulfato-agua ((¡180 S04· - (¡ISO HzO) .

Estos nuevos calibrados son los incluidos por Fr iedman y O ' Neil (1977) en su amplia
revisi6 n y tabulaci6n de coeficientes de fraccionamiento isot6p ico para distintos sistemas, Más
recientemente, Giggenbach el al. (1983) han planteado un calibrado medio entre los de L10yd
(1968) y Mizutani y Rafter (1969) , tal que:

Ambas ecuaciones concuerdan razo nablemente bien en el rango de 100-200 "C, aunque
a menores temperaturas haya ciertas discrepancias . Las exper iencias de Mizutani y Rafter (1969)
se llevaron a cabo a temperaturas entre 100 y 300 "C por lo que parece 16gico pensar en posibles
desviaciones de este ajuste a temperaturas menores ; las expe riencia s de L10yd (1968) incluyen
datos en el rango de O a 100 "C, aunque los valores obtenidos sugieren la posibilidad de que no
correspondan realmente a valores determinados en condiciones de equilibrio (McKenzie y
Truesdell , 1977) .



Tabla 2: Valores de te mperatura en el reservorio de los sistemas obtenidos medi ante dist into s
geote rmó metros químicos.

Na-K
Ca-K Na·K ·Ca Si02·Cuarzo

M ichard Micha rd (P = 4 /3 ) (corregido)
(1983) (1990)

A rti és 108. 0 95.8 96.7 93.6 10 4 .0

Estufa 112.0 99 .6 106.8 105.0 105 .0

Forage 1 13 0. 0 118.9 117.8 114.0 12 1.0

En la tabla 3 se presentan los resultados numéricos propocionados por el geoterm6metro
isot6pico (junto con los coeficientes de fraccionamiento isot6pico , expresado como 1000 ln« ,
deducibles a 'part ir de los datos presentados en la tabla 1) y en la figur a 2 se muestran
gráficamente los rangos de temperatura deducidos para cada sistema.

En los manantiales de Luchan, la temperatura calculada a partir de los datos del sondeo
"Forage 1", es de 86 ± 5 "C, considerab lemente más baja que la obtenida mediante técnicas
geotermometrfa qufmica (tabla 2). Sin embargo, en el manantial de Estufa (Caldas de Bohf) la
temperatura de base calculada por el geoterm6metro isot6pico es de 125.5 ± 4.5 "C, ligeramente
superior a la previamente establecida. Y, por último, en el caso de Arties la temperatu ra
proprocionada por el geoterm6metro isot6pico es de 96 ± 5 "C, prácticamente coincidente con
el rango establecido mediante geotermometrfa qufmica (100.8 ± 7.2 "C: tabla 2).

Los buenos resultados proporcionados por el geoterm6metro 01'D S04= - 01'D Hp en los
sistemas de Caldas de Bohf y Arties indican que los valores del coeficiente de fraccio namiento
isot6pico del oxfgeno responden a una verdadera situaci6n de equilibrio en sus reservarías . Y,
además, que estos valores no han tenido que ser modificados de forma importante duran te el
ascenso de. las soluciones terma les hasta la surgencia.

Tabla 3: Valores de temperatu ra obtenidos mediante distin to s calibrados del geotermómetro
sulfato-agua (Ó180 504 ~ - Ó180 H20) para los manantiales estu diados.

Mckenz ie y Truesdell (1977) Giggenbach et al.
1000 In a (1983)

Ec. (3) Ec. (4)

Artíes 18 .06 10 1 91 92

Est ufa 14.87 130 122 121

Forage 1 19.4 91 81 82
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5. Cinética de reacción y tiempo de residencia de las soluciones

La tasa de reacci6n para el sistema binario involucrado en este geoterm6metro ha sido
analizada por diversos autores (Lloyd, 1968; Mizutani y Rafter, 1969), encontrando que la vida
media (tl~ de este intercambio isot6pico está condicionada no s6lo por la temperatura sino
también, y de forma muy importante , por el pH de la soluci6n . De esta forma, los resultados de
L10yd (1968) indican que la vida media de este intercambio isot6pico puede expresarse como:

(6)103
lag t1/2 = 2.48 . - + b

T

Considerando los valores de pH calculados mediante técnicas de modelizaci6n en los
reservo ríos de estos sistemas (entre 8.1 y 8.6 para los sistemas considerados; Auqué, 1993) y la
temperatura definida por las distintas técnicas geotermométricas, puede estimarse el valor de t1l2

mediante la ecuaci6n (6). Conociendo este valor, puede calcularse el tiempo necesario para que
la reacci6n de intercambio isot6pico alcance el equilibrio en esas condiciones .

en la que b es un parámetro dependiente del pH con valores de 0.28 a pH=9, de -1. 17 a pH=7
y de -2.07 a pH = 3.8. En principio, los resu ltados cinéticos así definidos prese ntan algunas
discrepancias con los más recientes de Chiba y Sakai (1985), pero son los que en su aplicaci6n
al estud io de posibles situaciones de equilibrio isot6pico en sistemas natura les proporcionan una
respuesta más coherente, incluso en sistemas de baja temperatura (p. ej. Fouillac et al., 1987;
Fouillac et al., 1990).

Los efectos de este tipo de procesos secundarios son casi siempre difíciles de aquilatar
y, por tanto, también resulta difícil diferenciarlos de la inexistencia de una situaci6n de equilibrio
isot6pico en profundidad. Aprovechando los datos existentes sobre la cinética de reacci6 n del
intercambio isot6pico de oxígeno entre sulfatos yagua puede resultar más fácil estimar el tiempo
necesario para alcanzar una situaci6n de equilibrio isot6pico en estos sistemas y decidir, así, si
es factible la existencia de esa situaci6n de equilibrio. De esta forma, en funci6n de los resultados
obtenidos, la presencia de modificaciones secundarias podrá ser evaluada de forma deductiva.

Los manantiales seleccionados para la realizaci6n de las determinaciones isot6picas eran
los inicialmente más representativos de los caracteres ' composicionales esperables en profundidad
(ver Metodología) . Sin embargo, los valores del coeficiente de fraccionamiento isot6pico del
oxígeno pueden verse afectados por procesos diffcilmente detectables en un análisis químico
normal. Los fenómenos de oxidaci6n de los sulfuros disueltos durante el ascenso a la superficie
de las soluciones (frecuentemente descritos en este tipo de 'sistemas como, por ejemp lo, en
Luchon; Criaud y 'Vuataz, 1984) o la prese ncia de actividad bacteriana sulforreductora en la
mayoría de estos manantiales (Auqué, 1993) pueden producir modificaciones en esos valores,
incluso en condiciones de surgencia.

En el caso de Luchon el geoterm6metro isot6pico no suministra resultados consistentes
con los proporcionados por el resto de técnicas geotermométricas. Sin datos adicio nales resulta
diffcil decidir (Criaud y Vuataz, 1984) si la causa de esta discrepancia de resultados se debe a
la inexistencia del necesario equilibrio isot6pico en el reservaría de este sistema o a la actuaci6n
de procesos secundarios que alteren los valores de un supuesto equilibrio en profundidad durante
el ascenso de las soluciones.



en la que f es la fracción de oxígeno intercambiada, k es la constante de tasa de reacción y t es
el tiempo transcurrido . La constante k puede definirse en función de tln. tal que:

(8)

(7)

(9)

300.0ll200. 00

MrKen zle y Tru esde ll (1977). Er. (3)

MrKen zle y Tru csd ell (1977) . Ec, (~)

G iggenbar h el al. (1983 )

~.

TEMPERATURA (C)

1fl0.OO

In (1-f) = -~ . t

t % = A -log (1 <f ) :tl!2

Caldas

Arties

Luchon

0.00

J O.OO

10.00

40.00 -t----'----'----L_---L_...J.._...J.._....L._....L._ ....L._ ....L._ ...1..._+_

1;j

..58 20.00

Figu ra 2. Rangos de temperatura calculados para los sistemas estudiados según los calibrados del
geotermómetro 6 ' ·0 SO. · - 6' ·0 H20 propuestos por McK enzi e y Truesdell (19 77 ) y por
Giggenbach et al. (1983).

Suponiendo una cinética de reacción de primer orden para el intercambio isotópico de oxígeno
entre sulfato yagua, la tasa de reacción puede obtenerse mediante la ecuación:

de manera que la ecuación (7) puede traducirse en:
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en la que t% es el tiempo necesario para que se produzca un determinado % de intercambio
isotópico (en años) y A = -0. 379. 10-3 •

Admitiendo incertidumbres de ± 10 "C en la temperatura del reservorio de cada uno de
los sistemas (y las correspondientes variaciones de pH asociadas a esta incertidumbre) puede
calcularse mediante la ecuación (9) el tiempo necesario para alcanzar una situación de intercambio
isotópico del 99 %. En el caso de Art ies este tiempo oscila entre 2250 y 5000 años , mientras que
en el del manantial de Estufa lo hace entre 2000 y 4000 años . Considerando los buenos resultados
obtenidos al aplicar el geotermómetro isotópico en estos sistemas puede admitirse que el tiempo
de residencia de las aguas, a la temperatura calculada, ha de ser lo suficientemente amplio como
para alcanzar una situación de equilibrio respecto a la reacción de intercambio isotópico . Y, por
tanto, el tiempo de residencia de las soluciones debería ser igualo superior al rango estimado.

Estos tiempos de residencia pueden resultar , a primera vista, exces ivamente elevados ,
especialmente si pensarnos que nos encontramos en medios de circulación fisura\. No obstante ,
en estudios recientemente realizados en otros sistemas pirenaicos como el de Cauterets (de
similares características a los aquí estudiados) se han datado radiométricamente las soluciones
termales, obteniéndose edades de 5000 años (Soulé, 1990).

En concretó, las dataciones realizadas en los manantiales de Luchon (Chevalier-Lemire el

al. , 1990) indican tiempos de residencia del orden de los 10000 años para las soluciones termales.
Admitiendo los resultados de temperatura obtenidos por el geoterm ómetro isotópico para la
muestra de Forage 1 (entre 80 y 90 "C) , el tiempo calculado según la ecuación (9) oscila entre
los 3500 y 6600 años. Y si se adopta la temperatura calculada por el resto de técnicas
geotermométricas (122 OC), el tiempo necesario para alcanzar el 99 % de la situación de equilibrio
es de tan sólo 700 años . Es decir que el tiempo de residencia de las soluciones es, con mucho, el
suficiente como para que se alcance el equilibrio isotópico en el reservorio. Y, por tanto, los
resultados discordantes proporcionados por el geotermómetro 0180 S04 = - 0180 HzÜ en este
sistema deben ser producidos por modificaciones secundarias de este equilibrio en la parte terminal
del circuito hidroterma\.

Globalmente los resultados obtenidos indican que el tiempo de permanencia de las
soluciones terma les en este tipo de sistemas será, frecuentemente, el suficiente para alcanzar la
situación de equi librio isotópico necesar ia para el uso del geotermómetro 0180 S04= - 0180 H20 .
Sin embargo , esta situación de equilibrio puede verse afectada por modificaciones secundarias de
difícil evaluación, motivo por el que la utilización de esta técnica geotermométrica ha de plantearse
en combinación con otras más contrastadas y de más fácil verificación.

6. Conclusiones

La aplicación de distintos calibrados del geotermómetro isotópico sulfato-agua (0180 S04 = -
0180 HzÜ) a los sistemas geotermales de Arties y Caldas de Bohí ha suministrado unos valores

de temperatura en profu ndidad de 96 ± 5 "C y de 125.5 ± 4.5 "C respectivamente , similares
a los deducidos por los geotermómetros químicos tradicionalmente utilizados en estos sistemas .
Sin embargo , se ha verificado que en los manantiales de Luchon la temperatura proporcionada por
este geotermómetro es considerablemente más baja que la establecida mediante técnicas
geoterrnométricas clásicas (Criaud y Vuataz, 1984) o de modelización geoquírnica (Auqué, 1993),
de forma análoga a lo que ocurre en los manantiales de Les Escaldes (Rancon el al., 1984).

El tiempo de residencia de las soluciones termales en el circuito hidrotermal de los
sistemas de Arties y de Caldas de Bohí debe ser , por tanto , lo suficientemente prolongado como
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para alcanzar una situación de equilibrio en el intercambio isotópico 0180 S04= - 0180 H20 , a la
temperatura determinada en profundidad. Los cálculos realizados en función de la cinética de
reacción de este intercambio señalan un tiempo de residencia de las aguas de 2250 a 5000 años
en el caso de Arties y de 2000 a 4000 años en el caso de Caldas de Bohf.

Las dataciones radiométricas realizadas hasta la fecha en los sistemas termales pirenaicos
parecen apoyar magnitudes temporales similares a las deducidas. En concreto, los resultados de
las dataciones realizadas en el sistema de Luchan (en torno a los 10000 años; Chevalier-Lemire
et al. , 1990) demuestran que el tiempo de permanencia en el acuífero es lo suficientemente
prolongado como para que las soluciones alcancen la situación de equilibrio isotópico involucrada
en el geotermórnetro. Por tanto, los resultados discrepantes proporcionados por esta técnica
geotermométrica en los manantiales de Luchan han de estar factiblemente causados por
modificaciones secundarias de la relación de equilibrio 0180 S04 = - 0180 Hp durante el ascenso
de las soluciones a la superficie.

Los caracteres composicionales de todas las soluciones tratadas en este estudio permitían
considerarlas aprioricomo representativasde losexistentes en profundidad. Los buenos resultados
obtenidos en todos los casos por las técnicas geotermométricas químicas han confirmado que no
se han producido.modificaciones secundarias de importancia durante el ascenso de las soluciones
termales. Sin embargo, los procesos secundarios que pueden afectar al equilibrio isotópico
utilizado en este trabajo son muy variados y de distinta índole a los detectables en los rasgos
composicionales de las soluciones (tal como ocurre en Luchan). Su existencia debeser deducida
una vez obtenidos los resultados de su aplicación y, por ello, la utilización de este geoterrnérnetro
debe realizarse en combinación con técnicas geotermométricas químicas.
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1. Introducción

Rev. Academia de Cie ncias. Zarag ora. 51 ( 1996)

El interés que presenta el estud io de sistemas salinos actuales estriba tanto en la obtención de
datos que ayuden a comprender los procesos activos en estos medios, como en la aplicaci ón de este
conocimiento adquirido a la interpretación de los depósitos sal inos de épocas pasadas. El estudio de
sistemas salinos en ambientes continentales plantea una serie de inconvenientes entre los que cabe citar
los siguientes: la necesidad de un desmuestr e espacial y temporal detallado (tanto de salmue ras como
de sedimentos), para pod er asf detectar los fenómenos más destacables y determin ar su orden
cronológico ; la delimita ción de los efectos causados por los diferentes tipos de procesos, co mo por
ejemplo la modificación de la concentració n en solución de un determin ado elemento debida bien a

P.L. López'", L.F. Auqué '", J. Mand ado'" , V. Valles'" y M.J. Gímeno '"

continentales: la laguna La Playa (Zaragoza, España)
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Aplicación de la modelización geoquímica al estudio de sistemas salinos

Abstract

The PHRQPI1Z geochemical code (which incorporates a chemical model based on Pitzer's
equations) has been used for calculating ionic activities and saturation indexes f or a set oj brine
samples collected at La Playa saline system (Zaragoza, Spain). These solutions are near-neutral
brines oj the Na-el type, and reaching extremely high concentrations (up ro 12 molal) along their
evaporative evolution.

Saturation states calculated by the code have pointed out that all brines sampl ed were
saturated with regard to calcite, gypsum and anhidrite. However, their stability diagram shows that
water activity values determin e gypsum ro be the more stable phase in the Ca-SO.-H20 system for
almost all samples. Halite, thenardite and bloedite reach saturation at a late stage during brine
evolution. The evolving paths oj mirabilite, glauberite, polyha/ite and epsomite do not show any
evidence oj brine-mineral equilibrium process. Nevertheless, mirabilite saturation state should be
taken with caution because oj the lack ojjield temperature data.

The comparison of these results with the researcñ of Garcés et al. (1991, 1992) indicates that
Pitzer's formulotion is the more adequate approach f or the physicochemical treatment oj highly
concentrated waters.



la evaporaci ón o bien a la variaci ón de temperatura (Auqué el al. , 1994, 1995); el complicado
seguim iento de las etapas finales en las que tiene lugar frecuentemente la desecaci ón de las salmueras,
debido a la restricc ión espacial y a los prob lemas asoc iados en el muestreo de las solucio nes
residu ales; y, finalmente, las dificultades que entra ña el estudio fis icoqufmico de estos sistemas, ya
que la elevadfsima concentrac ión de las salmueras limita en gran medida la aplicabilidad de los
códigos de modelizaci ón geoqufmi ca basados en planteamientos clásicos de cálculo de coeficientes de
actividad (Garcés el al. , 1991 ).

La resoluci ón de todos estos prob lemas precisa la comb inaci ón de un conocimiento detallado
del sistema natural con la informaci ón suministrada por el estudio fisicoqufmico del mismo (Weare,
1987). La utiliza ci ón de estas dos metodologfas en el estudio de un sistema sali no continental
permit irá analizar la evoluci6ncomposicio nal de las salmueras sometidas a un proceso de
conce ntración por evapo raci6n, y además la secuencia de cristalizaci ón de sales que se produce bajo
esas cond iciones. En concreto , en este artfculo se presentan los resultados del tratamiento
fisicoqu fmico llevado a cabo sobre una serie de datos de salmueras correspondientes a la laguna La
Playa (provincia de Zaragoza), sistem a salino cuyas caracterfsticas hidroqufmicas y sedimentoqufmicas
se conocen graci as fundamentalmente a los estud ios de Pueyo (1978-79, 1980) Y Pueyo e Ingles
(1987). Las observ aciones realizadas por estos autores sobre el prop io sistema natur al han servido de
valiosa referencia a la hora de interpretar los resu ltados ofrecidos por la modelización geoqu fmica .

Este trabaj o viene a completar además los estudi os fisicoq ufmicos llevados a cabo por Garcés
el al. (1991, 1992) sobre este mismo sistema salino. Dichos autores realizaro n un estud io comparativo
de los resultados que se obtenfan del tratamiento fis icoqufmico de muestras de salmueras mediante
distin tas formulaciones de cálculo de coeficientes de act ividad . En el presente art fculo se ut iliza una
opci ón de cálculo no contemplada en aquella investig aci ón, lo que va a permitirnos realizar una
valoración final de la adecuaci ón de las distint as formu laciones al tratamiento de soluciones de
concentración elevada.

2. Localización geográfica y características generales

La laguna La Playa se sitúa en la comarca de los Monegros , y pertenece al término municipal
de Sástago (provincia de Zaragoza) . Forma parte de un conjunto de depresiones cerradas que,
ubicadas entre los núcleos de poblaci ón de Bujaraloz y Sástag o, constituyen el área endorreica más
import ante de la Cuen ca del Ebro (figura 1). En esta zona hay aproximadamente un centenar de
depresiones, pero s610 algunas presentan actividad evapo rftica en la actualidad, permaneciendo las
demás secas y colonizadas por vegetac i ón hal ófi la o, en algunos casos, saneadas y ocupadas por
campos de cultivo (pueyo y De la Peña, 1991). Todas estas depresio nes se distribuyen sobre una
extensa plataforma de relieve muy suavizado, que aparece cubierta por vegetaci ón esteparia y que se
eleva unos 200 metros sobre el nivel de base del rfo Ebro en la zona Sástago-Escatr6n . El clima de
esta reg ión puede definirse como de tipo mediterr áneo con influencia continental, carac terizado por
presentar vera nos muy calurosos , inviernos frfos y secos y prec ipitacio nes escasas e irr egularmente
distribuidas , siendo la prim avera y el otoño las estaciones más lluviosas .

Los materiales que afloran en el sector central de la cuenca prese ntan una disposici ón a
grandes rasgos tabular, correspo nden pri ncipalmente al Oligoce no y Mioceno y son fund amentalmente
calcáreos, detrfti cos (de tamaño de grano medio-fino) y yesfferos . El encaramiento del rfo Ebro y sus
afluentes sobre estos materiales durante el Cuaternario ha individualizado distintas plataformas
estructurales en el centro de la cuenca. En la plataform a de Monegros no existe una red hidrográfica
superficial defin ida, y el agua presente en las lagunas pro cede de la prec ipitac i ón directa, de pequeñas
escorrentfas superficiales e hipod érmicas y, tin almente, del aporte de aguas subter ráneas. Estudios
recientes (Garcfa Vera, .1994) ponen de manitiesto la complej idad hidr ogeo l6gica del sustrato de esta
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plataforma, derivada directamente de la elevada heterogeneidad, tanto en la horizontal como en la
vertical, de la distribución de litologías. Garcfa Vera (1994) distingue en su trabajo dos niveles
acuíferos, uno de los cuales discurre a través de la Unidad Lacustre Intermedia y cuya zona de
descarga se sitúa en el foco endorreico de Bujaraloz-Sástago, donde se encuentra enclavada la laguna
La Playa. Algunas de estas depresiones presentan salmueras superficiales de elevada salinidad, que
evolucionan según un proceso de concentración por evaporación debido a la marcada aridez del clima.

Figura 1.- Mapa de situac ión geográ fi ca de la laguna La Playa. La zona enmarcada delimita el núcleo
del foco endorreico ubicado entre las poblaci ones de Bujaraloz y Sástago (provincia de Zaragoza) .

Estas depresiones que albergan salmueras en su interior pueden considerarse como sistemas
activos de playa-lake , aunque la reducida extensión areal tanto de las propias lagunas como de sus
respectivas cuencas de drenaje han provocado una escasa diferenciación en subambientes, siendo los
mejor representados aquéllos que corresponden a las zonas más internas del sistema (pueyo, 1978-79)
y que según la terminología de Hardie et al. (1978) son: lago salino (inner salt pan), llanura fangosa
salina (outer saline mudjlat) y, con menor frecuencia, llanura fangosa seca (dry mudflat) . La
evolución de los cuerpos de agua superficiales depende fundamentalmente de los factores climáticos,
que ejercen un control directo sobre la presencia, extensión areal y persistencia temporal de la lámina
de agua libre. La precipitación salina en las lagunas se produce por cristalización directa a partir de
las salmueras libres, pero también se pueden formar eflorescencias superficiales como consecuencia

El contenido salino de las lagunas procede del aporte por lixiviación de los materiales solubles
del sustrato terciario, y sufre un reciclado anual como consecuencia de la propia estacionalídad del
clima. La evolución geoquímica de las salmueras está sujeta a la acción opuesta de dos procesos
(pueyo, 1978-79): por un lado, un aumento progresivo en la concentración de solutos como respuesta
a la evaporación; y por otro, la disminución relativa en el contenido de determinados elementos al
verse involucrados en reacciones de precipitación salina, en procesos biológicos y en fenómenos de
adsorción sobre partículas arcillosas.



del 'bombeo evaporftico de salmueras intersticiales. En los estudios realizados sobre la precipitación
salina en esta zona se determiné un comportamiento estacional (pueyo, 1978-79), diferenciándose una
secuencia estival de cristalización de tipo carbonato de calcio-yeso-halita, y otra invernal, de tipo
carbonato de calcío-yeso-mirablllta.

Estas lagunas presentan un cuerpo de sedimentos lacustres cuaternarios que albergan en su
seno salmueras intersticiales y cuyo espesor máximo (estimado en unos pocos metros) se sitúa' en la
zona central de las depresiones (pueyo y De la Peña, 1991). Estos materiales se disponen directamente
sobre el sustrato terciario, y están compuestos principalmente por carbonatos (en concreto calcita,
dolomita y magnesita), arcillas, cuarzo y yeso, siendo este último el único mineral evaporftico que
se preserva en profundidad. Sobre ellos se desarrollan costras salinas originadas por el proceso de
evaporaci6n de las salmueras. La Playa es la laguna más estudiada de este sector gracias a su gran
extensión areal y a la presencia casi perenne de agua libre en su superficie; sus salmueras son del tipo
Na-(Mg)-CI-(S04) a Na-(Mg)-Cl-S0 4 , y se pueden considerar representativas del quimismo general
de los sistemas salinos de esta región (Pueyo, 1978-79; Mingarro et al., 1981). Pueyo (1978-79)
determiné en las costras de esta laguna la presencia de yeso, halita (tanto cristales cúbicos como
morfologfas en tolva), mirabilita y thenardita, aunque esta última como eflorescencia y en escasa
cantidad; este autor detect ó igualmente la existencia de calcita y aragonito como minerales
subordinados. Por su parte, Mingarro et al. (1981) identificaron allf una aureola salina externa
compuesta por yeso, acompañado por pequeñascantidadesde thenardita y glauberita, que rodeaba una
zona central rica en halita y con contenidos apreciables en thenardita y algo menores en bloedita.

Los datos hidroqufmicos manejados en este trabajo corresponden a una serie de muestras
recogidas a lo largo de un periodo de tiempo ligeramente superior a un año, y fueron obtenidos por
Pueyo (1978-79, 1980) YPueyo e Ingles (1987), y recopilados por Garcés et al. (1992).

3. Metodología

La utilización de técnicas de modelizaci ón geoqufmica en la investigación de un sistema
hidroqufmico va encaminada principalmente al estudio evolutivo de los principales parámetros
fisicoqufmicos. Para ello es necesario un modelo qufmico capaz de describir con precisi ón las
propiedades termodinámicas de las soluciones acuosas. Las caracterfsticas intrfnsecas del sistema
estudiado suelen imponer restricciones a la hora de escoger los códigos de modelización geoqufmica
más adecuados; en el caso de un sistema salino como el que aquf se analiza, la elevada concentración
de las soluciones impide la utilización de los clásicos modelos de Asociación 16nica basados en la
ecuación de Debye-Hückel para determinar los coeficientes de actividad de las especies disueltas
(Garcés et al., 1991, 1992), Ycalcular posteriormente con precisi6n los productos de actividad i6nica
correspondientes a las fases minerales involucradas (Auqué et al., 1994).

Para llevar a cabo los cálculos fisicoqufmicos sobre las salmueras de La Playa se ha utilizado
el código PHRQPITZ (plummer et al., 1988), Yla metodologfa empleada es idéntica a la presentada
en Auqué et al. .(1994). Dicho c6digo incorpora y amplfa a rangos de temperaturas entre Oy 60° C
el modelo de interacciones i6nicas o de coeficientes viriales de Pitzer (1973), con los parámetros
obtenidos por Harvie y colaboradores (Harvie y Weare, 1980; Harvie et al., 1984) para el sistema
Na-K-Mg-Ca-H-Cl-S04-OH-HCO)-CO)-C02-H20, inicialmente válido s610 a 25° C. El código utiliza
las concentraciones de los componentes analizados para calcular las actividades i6nicas individuales
y determinar el grado de saturación de la solución respecto a distintas fases minerales. La evaluación
del estado de saturación de las salmueras frente a las fases minerales seleccionadas se ha llevado a
cabo calculando los fndices de saturación (I.S.) mediante la expresión:
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lS -1 P.A.l .. .- og--
K(T)

Los resultados de los cálculos de saturación se han comp letado con la utilización del diagrama
de campos de estab ilidad del sistema yeso/anh idrita/mirab ilitalthenardita, defin ido por los ej es
log(aH20) y log(aCa/aWa) y sobre el que se han representado los puntos correspondientes a las
muestr as analizadas.

Finalmente, la inexistencia de datos de pH y/o alca linidad en var ias muestras se ha salvado
asignando valores pro cedentes de salmueras de concentració n similar de la misma serie de datos . El
erro r cometido en este caso no se presume importante, ya que las salmueras de La Playa pertenecen
al tipo neutro, según Eugster y Hardi e (1978), caracte rizado por poseer valores de pH entre 7 y 8'5
aprox imadamente, y además por prese ntar un conte nido muy bajo en HC03' (especie que contribuye
de form a mayorit aria a la alcalinidad en salmueras neutras con concentraciones muy bajas de boro
y sílice) tras la fase inicial de precipitación de carbonatos de calcio .

dond e P.A.l. representa el producto de actividad iónica y K(T) la constante de equili brio
cor respondie nte. Si el fndice de saturación muestra valor cero significa que la solución está en
equilibrio respecto a esa fase; por otra parte, valores positiv os o negativos del l .S. determinan una
situació n de sobresaturación o subsaturación, respectivamente, cuya magnitud es función dir ecta del
valor abso luto de dicha cantid ad . Las constantes de equilibrio emplead as en los cálculos de saturación
son las que aparecen en la base de datos del código PHRQP1TZ, salvo en el caso de la thenardit a,
mineral que no aparece en dicho listado; esta carenc ia se ha sup lido tomand o los datos
termodinámicos propu estos por Greenberg y Moller (1989), cuya tabulació n se realizó proc urando
mantener la consistencia con la pararnetrización original de Harv ie y Weare (1980) y Harv ie el al.
(1984) que incorp ora el PHR QPITZ .

La existen cia de imprec isiones analfticas y termodinámicas (y su retl ejo en el cálculo de
índices de satur ación) se ha tenido 'en cuenta considerando un rango de incertid umbre para la
determinación de los estados de equilibrio calculados por el código. Se ha considerado adecuado un
margen de incertidumbre de ± O'15 unidades de I.S. (Auqué el al., 1994), excepto para la calcita, en
cuyo caso se ha ampliado hasta ±O'4 dado que este mineral se ve afectado además por los problemas
metodológicos inherentes a la determinación del pH en salmueras (Dickso n, 1984; Plummer el al.,
1988).

Es necesario señalar que la serie de datos analfticos empleada en este artfcu lo presenta vari as
deficiencias que ha habido que subsan ar para poder realizar el tratamiento mediante el código

. PHRQPITZ: no existen medidas de temperatura de campo ni densidad para ninguna muestra , y
además en algunas de ellas no se dispone del dato de pH y/o alcalinidad . La temperatura de campo
no es un dato de importancia capital en un estudio descr iptivo clásico de medios salinos, aunque su
desconocimiento pued e llevar a la obte nción de resultados erró neos en los cálculos de saturac ión para
determinadas fases minerales (p. ej.: mirabilita; Auqué el al., 1995); en este caso se ha dec idido
asignar una temp eratura de 25° C para todas las muestras, pero esta simplificació n se tendrá en cuenta
a la hora de interp retar los result ados obten idos . La ausencia de datos de densidad supone una
deficiencia importante cuando se trabaja con soluciones de concentració n elevada . La estructura del
código PHRQPITZ (y también de otros muchos códigos de modelización geoq ufmica) obliga a realizar
los cálculo s tomando siempre como referencia l kg de agua solvente, lo que hace imprescindibl e la
utilización del dato de densidad de las salmueras; en este caso se ha optado por realizar un cálculo
teóri co de este parámetro mediante el programa SOLDEN (Veintemillas el al. , 1994; en Sánchez
Moral , 1994), que utiliz a para ello la ecuació n de Redlich y Meyer (1964 ; en Sánchez Moral, 1994),
basada en la rel ación existente entre la densidad de una so lución y su volum en molar aparente.
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Figura 2 .- Diagramas de evolución de composición iónica (A) y pH Ydensidad (B) de las salmueras
de La Playa , en func ión del factor de co ncentra ción.

4. Evolución del quimismo de las salmueras

Para analizar la evolución de las concentrac iones elementales, del pH y densidad de las
salmueras, se ha estimado conveniente determ inar una vari able indic ativa del gr ado de avance del
proceso evaporativo. Para ello se ha seleccionado el potasio como elemento cuyo comportamiento
puede considerarse conservativo (o sea, que no se ve involucrado, al menos a priori, en ningun a
reacci ón de prec ipitación ni disolución minera l en la esca la estudiada del proceso; Eug ster y Jon es,
1979), calculándose el factor de concentrac ión (Fe) como el cociente entre el contenido en potasio
en cada muestra y el corres pondiente al estadio de mayor diluci ón del sistema. Las pautas evo lutivas
así obtenidas se han representado en la figur a 2. En el diagrama de concentraciones (figura 2A) se
aprecia una pauta asce ndente para Na", K+, Mg2+, 50.- Y CI-, aunque en la etapa final tiene lugar
un descenso en el contenido en CI-, 50.- YNa ", sie ndo más acusado el de este últim o . La evolución
de Ca2+ y HC03- es bastante irregu lar , combinando en ambos casos una tendencia ascendente inicial
con otra descendente en etapas más avanzadas . En el diagrama se han representado los suavizados
polinómicos en lugar de las nubes de pun tos para facilitar de esta manera la visualizac ión de las
tende ncias evolu tivas . Por otra parte, en la figura 2B se aprecia una evolució n ligeramente
descendente para el pH (cuyos valores se sitú an siem pre entre 8 y 7' 5) Yascendente en el caso de la
densidad, aunque este últ imo parámetro tiende a estabilizarse en las etapas más avanzadas del proceso.

5. Resultados de la modelización geoquímica

La fuerza iónica de las solucio nes (pará metro que calcula el código , y que se utili za
frecuentemente como expresión global de la concentración de una salmuera) aumenta de forma
constante desde un valor inicial ligeramente superior a 1 molal hasta alcanzar una concentración final
próxima a 12 molal, como se puede observar en la figura 3. Esta circ unsta ncia justifica sobradamente
la elecc ión de un código de modelización que emplea las ecuacio nes de Pitzer para el cálculo de
coeficientes de activ idad , ya que es el planteam iento que actua lmente permite obte ner los resu ltados
más acept ables en estas condi ciones . En el mismo gr áfico se ha rep rese ntado la actividad del agua ,
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La proyección de las muestras sobre el diagrama de campos de estabilidad de fases
(determinado por los ejes log(aH20) y log(aCa/a2Na); figura 6) permite establecer que el yeso es la
fase estable de sulfato cálcico a lo largo de la mayor parte del proceso, a pesar de que existe también
una situación de equilibrio aparente respecto a anhidrita. En este diagrama se observa que los puntos
correspondientes a las muestras analizadas evolucionan dentro del campo correspondiente al yeso,
alcanzando finalmente el de la thenardita tras atravesar el de la anhidrita durante un breve lapso del
proceso. También se comprueba cómo la mirabilita no llega a ser estable en ningún momento de la
evolución, hecho que se ajusta a los cálculos de saturación mineral.

En la figura 5 se han representado los fndices de saturación correspondientes a varios
minerales sulfatados que han sido detectados en dep6sitos salinos y en costras eflo rescentes de lagunas
de la regi6n de Monegros. Los resultados relativos a la mirabilita (sulfato sódico decahidratado; figura
SA) indican una situación de subsaturación para todas las muestras aunque llegan a situarse muy
próximas al equilibrio. Por su parte, la fase de sulfato sódico anhidro (thenardita; figura 58) muestra
una evolución muy similar a la descrita para la halita, alcanzando ambos minerales el equilibrio de
manera prácticamente simultánea; una situación casi idéntica se observa en el caso de la bloedita
(figura 50), sal sulfatada doble de sodio y magnesio que suele asociarse generalmente a costras
etlorescentes. El resto de fases minerales representadas no muestra un comportamiento que permita
identificar una situación de equilibrio para el intervalo registrado del proceso. Así, glauberita (figura
SC) y polihalita (figura' SF) pasan de un estado de subsaturaci6n a otro de sobresaturación sin
experimentar aparentemente ningún cambio de comportamiento en las proximidades de la zona de
equilibrio. Finalmente, la epsomita (figura SE) no llega a alcanzar el equilibrio, aunque -la última
muestra se queda muy próxima a la saturación.

parámetro igualmentecalculado por el
PHRQPITZ y cuyo valor desciende
desde 1 hasta prácticamente0'7 en las
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Figura 3.- Diagrama de evolución de fuerza iónica y
actividad del agua de las salmueras de La Playa, en
función del factor de concentrac ión.

El cálculo de los índices de
saturación para las fases minerales
más relevantes y su representaci6n en
funci6n del factor de concentraci6n
(figuras 4 y 5) ha permitido estimar
la evoluci6n de las condiciones de
equilibrio mineral en las salmueras de
La Playa. Las soluciones se
encuentran en todo momento muy
pr6ximas a la saturación con calcita,
aunque en un principio están
ligeramente sobresaturadas (figura
4A), y existe también una situaci6n
clara de equilibrio respecto a yeso y
anh id r ita que se ma ntiene
prácticamente a lo largo de todo el
proceso (figuras 48 y 40) . Por su
parte, la halita aparece marcadamente
subsaturada y alcanza el equilibrio en

un momento determinado (figura 4C), situaci6n que se mantiene a partir de entonces hasta las últimas
muestras recogidas.
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6. Discusión de los resultados obtenidos

Figura 4 .- Evolución de los rndices de satura ción (1.5.) calculados por el código PHRQPITZ en las
salmueras de La Playa para calcita (A ). yeso (B). halita (e ) y anhidr ita (D).
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La sedimentació n salina que tiene lugar en la laguna La Playa (según los estudios de Pueyo,
1978-79, Pueyo e Ingles, 1987, y Mingarro el al., 1981) consiste en una secue ncia de precipi tació n
bajo lámina de agua en la que, tras una etapa inicial de formació n de carbonatos de calcio, tiene lugar

Los result ados alcanzados mediante la modelización geoqufm ica perm iten establecer una
secuencia evo lutiva de precipitación salina para las salmueras de La Playa. Estas solucio nes se
mantienen en una situación de equi librio con calcita, yeso y anh idrita para todas las muestr as
analizadas, aunque de entre las fases consideradas de sulfato cálcico ún icamente el yeso es estable.
El estudio fisicoqufmico ha permitido además evidenciar que, en las etapas de concentración más
elevada, otros minera les como halita, thenardita y bloedita parecen verse afecta dos por un proceso
de equili brio mineral que queda reflej ado en la evol ución de sus fndices de satu ració n. De la misma
manera, los cálculos realizados indican que mirabili ta, glauber ita, polih alita y epsomit a no llegan a
delinear una pauta evolutiva que denote la existencia de equilibr io mineral entr e la salmuera y estas
fases salinas.
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Figura 5. - Evoluc ión de los fndices de satur ación (1.5.) calculados por el cód igo PHRQPITZ en las
salmueras de La Playa para mirabilita (A), the nardita (B), glauberita (e), bloedita (D), epsomita (E)
y polihalita (F).
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la cr istalización de yeso, seguido por la
precip itac ión de halita y mirabilita,
sie ndo más abund ante este último mineral
en el periodo invern al. Esto se debe al
hecho de que la mir abilita es una sal
criofflica, esto es, un mineral cuya
cons tante de equil ibrio desciende de
forma muy acusada al baj ar la
temperatur a del siste ma, por lo cual su
preci pitació n se ve favorecida en el
periodo invernal (ver, por ejempl o,
Auqué el al., 1995). Los cálc ulos de
saturación realizados no muest ran que
este mineral lleg ue al equilibrio en
ningún momento; esta circunstancia es
extra ña si se tiene en cuenta que el
desmuestre cubr ió todos los peri odos
estacionales, pero puede deberse al
artificio de haber empleado en los
cálculos una temperatur a de 25° e para
todas las muestras tratadas, al no
disponerse del dato de temper atura de
campo. Auqué el al. (1995) discutieron
un caso similar para las salmueras de la
lagun a Sulfúrica de Med iana (Zaragoza),
donde observaron que la utilización del
dato de tempera tu ra de campo era crucial
para determin ar de forma precisa las
condiciones de equilibrio respecto a
mirabilita, por lo que es razonable
considerar que esta simplificació n ha
podid o condicionar en gra n medida los
resul tados ob tenidos en La Playa para
este mine ral.
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-0.20 -0.10
log (aHp)

THE NARDITA

-0.30

-6 .00 -\------,- -,,-- ,----,-'---,---- ---1
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Figura 6 .- Proyección de las muestras de salmueras
de La Playa sobre el diag rama de estabilida d de fases
yeso/a nhidrita/mi rabilita/ the nardita . La flech a .índica
el sentido de avance del proceso.
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La comparación entre los resultados .ofrecidos por el PH RQPITZ y por otros códigos de
model ización (Garcés el al., 199 1, 1992) sobre los mismos datos ana líticos muestra la mejor
adecuación del primero para el tratamiento de salmueras de conce ntració n muy elevada. Este hecho
se ve mater ializado tanto en la delineación de paut as evolutivas bastante más cont inuas, como en la
mejor delimi tación de las situac iones de equilibrio mineral (ver los gráficos corres pondientes en

El origen del resto de minerales salinos detectados en las costras de La Playa se ha
relacionado en los estudios previos con un proceso de for mación de eflorescenc ias, esto es, bombeo
hasta la superficie de salmueras subsuperficiales que son llevadas a sequedad total. La evol ución de
los fndices de saturación de glauber ita, epsomita y polihalita parece confir mar este hecho, ya que estas
fases no se ven afectadas por un proceso de equilibrio ligado a la evaporación de las salmu eras . Por
otra parte, thenardita y bloedit a son minerales salinos cuya génesis se ha asociado por los autore s
citados con la for mació n de costras eflorescentes (salvo en algún caso excepcio nal, entr e los que no
se encuen tra La Playa; ver Pueyo, 1978-79), pero los resultados del tratamiento fis icoqufmico indican
que llegan a alcanz ar una situación de equilibrio en etapas de elevada concentración de las sal mueras .
Este es un hecho que cont rasta con las obse rvaciones realiz adas sobre el siste ma natural, pero que no
podr á resolverse has ta que no se lleve n a cabo estudios enfocados específicamente a la resolu ción de
este problema.



Garc és el al. , 1991, 1992), a pesar de no disponerse de todos los datos analfticos necesarios y tener
que realizar simplificaciones en algunos casos importantes, como por ejemplo suponer una
temperatura homogénea de 25° C. Todo esto ilustra la necesidad de realizar una toma de datos in situ
simultánea con el desrnuestre, que permita obtener una buena definiciéndel sistema ("well-determined
system"; Weare, 1987), de tal manera que la modelización geoquímica sirva para conseguir una
informaci6n valiosa a la par que ajustada a los procesos que en él tienen lugar.

7. Conclusiones

El tratamiento fisicoqufrni co de una serie de datos analfticos de salmueras procedentes de la
laguna La Playa (mediante el c6digo de modelizaci ón PHRQPITZ) ha permitido estudiar la evolución
geoqufmica del proceso de evaporación que tiene lugar en dicho sistema salino. El rango de
concentraci6n total de las soluciones tratadas oscila desde I hasta 12 molal, circunstancia que ha
aconsejado la utilizaci én de un c6digo que incorpore un modelo geoqufmico basado en las ecuaciones
de Pitzer. Los resultados obtenidos han permitido delinear la pauta evolutiva del sistema de una
manera considerablemente más precisa que en el caso de utilizar códigos hasados en planteamientos
clásicos de cálculo de coeficientes de actividad (Garcés el al ., 1991, 1992).

El cálculo de los índices de saturación mineral ha permitido discernir qué fases salinas se ven
involucradas en situaciones de equilibrio durante la evoluci6n de las salmueras sometidas a
evaporaci6n. Los resultados muestran que las soluciones están en todo momento saturadas en calcita,
yeso y anhidrita, aunque de estas dos últimas sólo el yeso es estable durante la mayor parte del
proceso, según indica el diagrama de campos de estabilidad de fases. Por su parte, halita, thenardita
y bloedita evolucionan desde una situación de clara suhsaturaci6n hasta alcanzar el equilibrio, estado
en el que se mantienen hasta las etapas más avanzadas que se han registrado. Todo esto indica que
los minerales salinos que deben cristalizar en este sistema a partir de las salmueras libres son calcita,
yeso, halita, thenardita y bloedita, mientras que el resto de las fases analizadas (mirabilita, glauberita,
polihalita y epsomita) deben generarse como eflorescencias. No obstante, hay que tener en cuenta que
el cálculo de los índices de saturaci6n de mirabilita se ha visto afectado por la ausencia de datos de
temperatura de campo. La suposición de una temperatura de 25° e para todas las muestras no permite
establecer conclusiones fiables acerca del análisis del estado de equilibrio de dicho mineral, ya que
su condici6n de sal criofflica hace que sea muy sensible a las variaciones de temperatura, viéndose
su precipitaci6n favorecida en situaciones de bajas temperaturas ambientales.

El estudio realizado ha permitido establecer igualmente unas conclusiones metodológicas
acerca de la aplicabilidad del tratamiento termodinámico en sistemas salinos naturales. Se ha mostrado
que la modelizaci6n geoqufmica puede proporcionar resultados muy útiles a la hora de diferenciar
procesos (en este caso particular, minerales que se generan por precipitaci6n directa a partir de
salmueras superficiales, o bien relacionados con eflo rescencias) que son diffciles de discernir en un
estudio geoqufmico clásico, pero debe tenerse en cuenta que todo ello precisa tanto la selección de
uno o varios códigos adecuados al sistema particular que se quiere estudiar, como la realización de
un desmuestre cuidadoso y una toma de datos de campo completa.
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Abstract: Sediments of continental and shallow marine transitional origin are located in the Galve
sinc1ine (Teruel, Spain). The sequence represents the Upper Jurassic-Lower Cretaceous (Tithonian­
Barremian) interval. Severa! vertebra te localities are found throughout the whole sequence. The
vertebrate fauna is repre sent ed by Pycnodont iformes , Semionot iform es , Amiiforrn es,
Hybodont iformes, Rajiforrnes, Lamniformes, among "pisees", Quelonia, Pterosauria, Crocodylia ,
Omithischia, Sauri schia and Sauria among Reptilia and Mammalia. Nearly all the rests are isolatcd
bones and teeth in diferent stages of preservation. There are also dinosaur tracks in two different
levels and reptile eggshells located in the lower layers of the Galve sequence.

Regist ro fósil de vertebrados en el tránsito J ur ásico-Cret ácico de Galvc
(Teruel, España)

El objetivo de este trabajo es en primer lugar situar estra tigr áficame nte los yacimientos de

vertebrados del tránsito Jurás ico-Cretácico en Galve (Teruel, España, Fig. 1). Hacer prec isiones

tafonómicas y paleoeco lógicas de los restos fósiles de estos yacimientos y poner al día la lista

faunística incluyendo los últimos descubrimientos. Estos datos nos permiten realizar un analisis

de estas faun as desde la pe rspectiva de la evo lució n de los ecos istemas terrestres del tránsito

Jurásico - Cretácic o en Galve
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Los yacimientos de vertebrados continentales de la base del Cretácico Inferior son escasos,

a nive l mundial. En el Jurásico Superio r el registro de reptil es y mamíferos se conoce

relativamente bien, gracias a los yacimientos de Norteamérica y de Asia, sin embarg o el

tránsito entre el Jurásico y el Cretácico es un intervalo con escaso registro en estas dos áreas. El

panorama es difere nte en España (fundamental mente en la Cordillera Ibérica) donde afloran

materiales en facies "Weald" con un desarrollo de varios miles de metros de potencia. Aunque

hay numerosas. discontinuidades, está practicamente representado todo el interv alo que

compre nde desde el Berriasiense hasta el Aptiense.

2. Contexto estratigráfico y paleogeográfico

El área de Galve se sitúa en el extremo occidental de la subcuen ca de Galve y conforma

una estruc tura sinclinal (Fig. 2), que afecta a una sucesión de materiales de casi 1000 metros de

espesor correspondientes al Jurásico y al Cretácico Inferior (Soria el al ., 1995; Canudo el al .,

1996). En la decada de los ochenta se realizó un estudio estratigráfico y sedimentológ ico

detallado (Diaz-Molina el al .; 1984, 85; Diaz-Molina y Yebenes, 1987), aparte de las síntesis

de la Serie Magna tanto a escala 1:50.000, como a escala 1:200.000. Estos autores describen

con gran precisión las características litológicas de las unidades neocomienses objeto de estudio

de este trabajo e identifica n, para el Cret ácico Inferior de este sec tor, cuatro unidades

estratigráficas (unidades 3, 4, 5 y 6). Las unidades 3 y 4 corresponden a la Fm. Castellar, la

unidad 5 a la Fm. Camarillas y la unidad 6 a la Fm. Artoles.

A lo largo de la secuencia Tit ónico-B erriasiense hay una transición gradual de sde

plataformas marinas carbo natadas someras (Formació n Higueruelas) a medios submareales,

intermareales y supramareales de la Formación Villar del Arzobispo (Fig. 2). El límite de esta

secuencia viene marcado por una discontinuidad con laguna estratigráfica que abarca el menos

desde el Berriasiense superior al Hauteriviense no terminal. Esta discontinuidad se manifiesta

como una discordancia angular de bajo ángulo y un importante cambio litológico y

sedimentológico . El regis tro sedimentario correspondiente al Cre tácico Inferior del Area

Ibérica, constituye un gran ciclo sedimentario limitado por importante s discontinuidades y al

que se ha denomi nado Supersecuencia del Cretácico Inferior o Megasecuencia Cretácica

Inferior (Salas, 1987, Salas el al ., 1991). Las diferentes unidades estratigráficas usadas en este

trabajo son basicamente las definidas por estos autores.

Por encima de la discontinuidad de la secuencia del tránsito Jurásico-Cretácico se sitúa la

Formación Castellar, que constituye por si misma una megasecuencia de depósito. Esta unidad

está caracterizada por arcillas rojas con intercalaciones arenosas, típicas de extensas llanuras

lutíticas surcadas esporadicamente por canales, mientras que a techo se produce la instalación

de un sistema lacustre de muy baja energía, caracterizado por margas y calizas bioturbadas . La
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Fig . 2: Cartografía geo lóg ica del sinclinal de Galve. Modificada de Diaz-Molina y Yebenes

(1987)

Estas facies se interpretan como sedimentos de agua posibleme nte salobre, depo sitados en

lagun as efí meras co n aportes ocas ionales de material terr ígeno. Diaz-Mo lina y Yebene s (1987)

establece n que los tramos margosos ricos en nódulos se formarían en las zonas per iférica s de

estas lagunas y/o en las fases de desec ación de las mismas, en condiciones palu stres. Estas

facies calcáreas es tán constituidas o bien por mudstone -wackeston e masivos con carofit as,

gasterópodos y bivalvos o bien por mudstone arcillosos con gasterópodos , bivalvos y

tran sici onal es, que si bien no son extremadamente abundantes, muestran una presencia muy

con stante en los yacimientos estudiados.

pote ncia de este sistema lacustre no excede en ningún caso los 20 metros. En función de la llora

de carofi tas reconocida en los sedimentos lacustres de esta unidad fuera de l area de Ga lve, se le

puede atribuir a esta form ación una edad Hauteriviense tenninal-Barrem iense basal.

Las facies lacustres del techo de la Formación Castellar fueron obje to de un det allado

est udio por Diaz Malina y Yebenes (1987) siendo este intervalo estratigráf ico donde mayor

concentración de yacimiento s de microvertebrados se han enco ntrado ("nivel de Co lladico

Blanco") . Los estudios que se están haciendo en la actualidad en estos materiales, muestran la

presencia, en las facie s margosas, de orbitolinas, ostreido s y gasterópodos típicos de medios



estructuras prismáticas de desecación (Diaz-Molina y Yebenes, 1987). No obstante algunas de

estas estructuras no parecen consecuencia, únicamente de procesos de desecación, de hecho hay

madrigueras producidas por invertebrados (posiblemente crustáceos).

En función de estas caracteristicas Diaz-Molina y Yebenes (1987) interpretan para el

conjunto de esta unidad lagunas efímeras de aguas dulces o salobres, situadas probablemente en

zonas no muy alejadas de la linea de costa. Las características sedimentológicas que presenta

esta unidad en el área de Galve son propi as de extensas áreas lacustres de subambientes

supralitorales (palustres) y eulitorales. Recientemente se ha encontrado en la parte media de

esta formación, un nive l con restos polínicos cuyos primeros estudios indican (Diez et al.,

1995) una relativa abundancia de polen de Gimnospermas, con buena representación de los

género s Class opo//is y Trilobosporites y, en menor medida, del género Impardecispora, frente

a la escasez de esporas de helechos . Esta relación permite confirmar la existencia de una flora

claramente continental de tendencia xerofítica que indica unas condiciones ambientales

relativamente secas .

Respecto a la edad de esta formación, Martín-Closas (1989) estudia las carofitas de la Fm.

Castellar del área de Galve a partir de muestras recogidas por F. Gautier en esta localidad. Esta

flora pertenece únicamente a la biozona Triquetra (subzona Triquetra), por lo se le atribuye a

esta unidad una edad Hauteriviense superior-Barremiense basal, que esta de acuerdo con

Schudack (1989). La parte media de la formación tiene una asociación polínica que podría

situarse en el Hauteriviense (Diez et al., 1995). Sin embargo la parte alta de esta formación, que

es donde se sitúan la mayor parte de los yacimientos de vertebrados, tiene polenes de

angiospermas cuya primera aparición tiene lugar en el Barremiense (Mohr, 1987), por lo qué,

además del interés que tiene para los vertebrados fósiles, el área de Galve sería una de las pocas

del mundo en donde se ha detectado la primera aparición de de este grupo de plantas.

La Formación Camarillas se sitúa inmediatamente por encima de la Fm. Castellar y está

formada por arcillas rojas y areniscas blancas de medios fluviales (Fig. 2). En la Fm.

Camarillas se han encontrado carofitas típicas de la biozona Triquetra-Neirnongolensis

(subzona de Calcitrapus), atribuida al Barremiense inferior (Mart ín-Closas, 1989) . ~I límite

inferior de esta formación coincide con el superior de la secuencia de depósito de Castellar. No

obstante en los sectores marginales de la cuenca de Aliaga, donde no está representada

Castellar, este límite corresponde a una discontinuidad manifestada como una discordancia

cartográfica que en ocasiones lleva asociada discordancias internas progresivas. Esta

formación está ampliamente representada, mostrando un carácter claramente expansivo con

respecto a la Formación Castellar. El límite superior es otra discontinuidad que se manifiesta

por una paraconformidad y lleva asociada un cambio sedimentológico neto (aunque en alguno s

puntos de la cuenca es bastante gradual ), produciéndose a partir de este momento las primeras

incursiones marinas significativas dentro de la cuenca (Fm. Artoles) .

224



La Formación Arto les está constituida por arcillas verde s, caliz as co n ostreidos y are niscas

que marcan la instalación de un medio marino somero restringido tipo lagoon . En la Cubeta de

Aliaga, esta form ación tiene una edad Barremiense super ior-Ap tiense basal ya que presenta un

foraminífero aglutinado típ ico (Paleorbi tolilla lenti cularis lenticularis ). En la base de es ta

form ación , las intercalaciones continentales muestran una flora de carofi tas cor respo ndientes a

la biozona Cru ciata -Pancib ractratu s (Ma rtí n-C losas, 1989). El límite supe rio r es un

discontinu idad que se manifiesta como una paraconfonni dad, a partir de la cua l se produce la

instalación definiti va de la primera plataforma carbonatada de edad Aptiense representada por

la Formación Chert . Sin embargo en Galve, este límite lleva asociado la entrada de terrígenos

sicliciclás ticos de carácter delt áico correspondientes a la Formación Morella. Hasta el momento

estas do s últ imas unidades no han dado yaci mientos de vertebrados, en consecue ncia los

vertebrados más modemos de Galve hasta el moment o son de edad Barrerniense inferior .

3. Historia de los descubrimientos de Gal ve

Las prime ras excavaciones de los vertebrados de Galve fueron realizadas en los años 50

por un veci no de la localidad llamado José María Herrero y el Museo de Teru e l. Estos primeros

de scubrimientos fuero n publi cados por Fernández-Ga liano (I958, 1960) y Lapparent (I960),

qui én de scr ibió do s d inosaurios (l guanodon y un saurópodo) de dos de los yac imiento s

clásicos (Zabacheras en la base de la Formaci ón Castell ar y La Maca en la Formació n

Camarillas) . En los años 60 el profesor Kühne de la Univers idad de Berlin y el eq uipo del

profesor Crusafont de Barcelon a inic iaron la búsqueda de pequeños verteb rados, espec ialmente

mamíferos. Ambos equipos encontraro n diversos tipos de mamíferos que res ultaron ser los

primeros del Me sozoico de España (Crusafont y Adrover, 1965, 66). Kühne lavó sedimento s

del yacimiento Coll adico Blanco (par te super ior de la Formación Castellar) y el equipo de

Crusafont del yacimiento Herrero (par te basal de la Formación Camarillas). De manera más o

menos contínua el equipo de Berl ín ha seguido trabajando en los últimos año s; su objeto de

estudio han sido los mam ífero s, pequeños repti les escamosos, cocodrilos, huevos de reptiles,

invertebrados, polen y carofitas. En los años 80 com ienzan las inves tigacio nes de los equipos

de la Universidad Autónoma de Madrid y el Instituto de Paleontología de Sabad ell (Sa nz, 1984;

Sanz et al ., 1984), los cuales estud iaron los restos de dinosaurios y cocod rilos que se conocían

hasta ese momento, determinando 35 taxones de vertebrados (Busca lioni y Sanz , 1987b).

Tambi én se estudiaron las primeras huell as de dinosaurios conocidas hasta ese momento en

esta parte de la Cordillera Ibérica (Casa novas et al., 1983-84).

En el año 1991, se inicia una nueva etapa ya que un equipo de la Universidad de

Zar agoz a retoma el estudio paleon tológico de las faunas de vertebr ados de Galve. En primer

lugar se han catalogado todos los yacimientos conocidos, situando los en la serie es tratigráfica

local (Cuenca-Bescós et al. , 1994). Este es un punto importante, ya que en la literatura solía
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citarse Galve como un único yacimiento y con una edad imprecisa. Con nuestro trabajo se ha

podido situar en su edad todos los yacimientos y situarlos en un contexto estratigráfico

regional. Hasta el momento hay inventariados 65, de los cuales el material paleontológico

publicado en parte o completo es de 25 yacimientos, distribuidos en 18 niveles. Este inventario

está permitiendo hacer una evaluación de la vulnerabilidad de estos yacimientos para planificar

las acciones a realizar en los próximos años. Hay diversos factores que determinan las acciones

futura s: disponibilid ad de investigadores, peligro de destrucción, acciones de urgencia,

posibilidades de financiación, etc. En esta primera etapa se ha dado prioridad, por una parte, al

estudio de los dinosaurios ornitópodos y por otra, al de los microvertebrados, especialmente

mamíferos y pequeños dinosaurios, para lo cual se han lavado hasta el momento varias

toneladas de diferentes yacimientos, habiendo obtenido abundantes restos que están siendo

estudiados en la actualidad.

4. Los yacimientos de vertebrados

Los yacimientos de vertebrados de Galve se pueden dividir en tres tipos de

acumulaciones. La más sencilla, son los yacimientos con la presencia de un solo resto,

generalmente un dinosaurio y posiblemente en relativa conexión anatómica . Este sería el caso

en el que hay un gran número de elementos de un solo dinosaurio (P.e. Las Zabacheras, La

Maca, Cuesta Lonsal, etc.) y practicamente no hay nada más. En estos yacimientos no podemos

conocer si había conexión anatómica ya que fueron excavados en los años sesenta y no se

dispone de información tafonómica de los restos.

La mayor parte de los yacimientos son una acumulación más o menos grande de restos

de microvertebrados, con algunos elementos aislados de macro, como puede ser un centro

vertebral o un diente. Con esta situación hay de dos tipos , el primero tienen una gran

continuidad lateral y una relativa escasa concentración. Por ejemplo el nivel "Colladico

Blanco", situado en el techo de la formación Castellar , es una marga gris de pocos centimetros

de espesor que puede ser seguida varios kilometros en el sinclinal de Galve . En todos los

puntos donde el afloramiento es bueno hay una acumulación de microvertebrados, y

dispersamente algún resto de de mayor tamaño . Este nivel se ha denominado de diferente

manera en la literatura (Colladico Blanco, Cuesta de los Corrales , PI , etc.). Este yacimiento

podría estar en relación con un ambiente palustre en conexión con el mar, donde no habría

corrientes que acumularan selectivamente los restos. En estos niveles no es raro encontrar

paladares de peces u otros elementos anatómicos completos.

Un tipo diferente son los yacimiento s de la Formación Camarillas, los cuales tienen

poca continuid ad lateral. En este caso, es más corriente encontrar restos de mayor tamaño que

en los anteriores. La microfauna es mucho más abundante, pero su conservación es peor, ya que
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5. Los vertebrados del tránsito Jurásico-Cretácico en Galve

Por último en el área de Galve son abundante s los elementos aislado s de vertebrados

que no llegan a formar verdaderos yacim ientos. Son más frecuente s los restos de grandes

verterados, en su mayoría dinosaurios. Estos descubrimientos aislados corresponde a piezas

óseas en diferentes estados de conservación. Estos restos han aparecido en toda s las

formaciones, habiendo algunos grupos como son los dinosaurios acorazados que hasta el

momento, únicamente se conocen por estos descubrimientos aislados.

5.1 Mamiferos

Los mamíferos del Mesozoico juegan un importante papel en la historia de los

mamíferos, ya que documentan las dos terceras partes de su evolución inicial. La gran

diversidad de los mamíferos del terciario y del cuaternario, y todos los mamíferos que viven en

la actualidad, el hombre incluido , tiene su origen en unos cuantos grupos, escasos tanto en

número de individuos como en diver sidad . Estos primeros mamíferos competían con los

grandes vertebrados dominantes de los ecosistemas terrestres del Mesozoico, especialmente

Archosauria (Sauris chia, Ornitischia, Crocodylia y Pterosauria). Por esto, la histori a de los

mamíferos durante el Jurásico y el Cretácico Inferior es una de las fases más interesantes, de la

evolución de los mamíferos. En el Cretácico Inferior se conocen únicamente una docena de

yacimientos, de los ' cuales los del Barremien se son exclusivamente esp añoles.

El grado de estudio de los vertebrados de Galve es variable según los grupos, así por

ejemplo los restos de mamíferos y arcosaurios han sido estudiados y se puede conocer su

distribución estrat igráfica. Sin embargo de otros grupos hay menos información, como en el

caso de Quelonia y Amphibia. Estos taxones están presentes en todos los niveles estudiados,

aunque unicamente han sido estudiados en uno o dos yacimientos. La lista faunística esta hecha

a partir de las síntesis de Buscalioni y Sanz (1987b), Cuenca-Bescós el al ., (1994) y los

resultados inéditos de las investigaciones en curso (Fig. 3). Hasta el momento se han

reconocido alrededor de 50 taxones de vertebrados en el tránsito Jurásico-Cretácico de Galve,

de los cuales 9 se han definido por vez primera en alguno de los yacimientos de esta localidad.

los dientes suelen tener abrasión y corrosión. Sin embargo. de manera aleatoria en alguno de

estos yacimientos se han encontrado los mejores fósiles como puede ser un crá neo .de

Bernissartia en el nivel Cerrad a - Roya Mina (Buscalioni e l al.. 19X4) etc. Aunque no

conocemos bien un modelo que se pueda aplicar para explicar de manera satisfac toria la

formación de estos yacimientos, una aproximación podría ser la de canales intermarea les que

aportaron elementos del continente y en momentos de subida de la marea la corr iente marina

depositaría los fragmentos de vertebrados e invertebrados marinos.
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Hay dos localidades clásicas : Galve en Teruel y Uña en Cuenca. y una tercera descub ierta

recientemente. Vallipón también en Teruel (Cuenca-Besc ós et al.• 1995).

En Galve se encontro el primer mam ífero español del Mesozoico (Crusafo nt y Adrover,

1965. 66) . Posteriormente los descubri mientos han sido abundantes. habiendos e reconocido

nueve es pecies. se is de las cuales (Spalacotheriu1I1 henkeli, Eobataar hispani cus ,

Parendotherium herreroi, Lavocatia olfambrensis, Pocamus pepelui y Galveodon nannothusy

están descritas y son exclusivas de Galve y otra (Crusafontia cuencana) ha sido encontrada en

otras localidades españolas (Kühne, 1966; Crusafont y Giber t, 1967; Krebs, 1980. 1985, 1993;

Hahn y Hahn , 1992 ; Cuenca-Besc ós et al., 1995; Canudo y Cuenca- Besc ós, 1996). Estos

taxones están descrito s a partir de diente s sueltos, no habiendose encon trado mand íbulas ni

maxilares. Tambi én hay restos postcraneales pero por el momento no se han descrito .

La abundancia de taxones demuestra que los mamíferos de es ta edad es taban bien

diversificados y eran relativamente abundante s. Su escasez en los yacimientos está determin ada

por procesos tafonómicos: la may<:>ría de los restos se encuentran en ambientes poco favora bles

para la acumulación de vertebrados, suelen ser medios de transición o extensas llanuras de

inundación en dónde la conc entración es practicamente nula. Lo más destaca ble de los

mamíferos de Gaive es que son exclusivos en el mundo, lo que podría indicar un endemismo de

estas faunas o simplemente que nuestro conocimiento de los mamíferos de es ta edad es muy

escaso.

Los multituberculados son el grupo de mamíferos más común tanto en por su diversidad

como por su abund ancia en los yacimientos. Sólo se conoce n de momento representantes del

suborden Plagiaulacoidea. Hay representantes de los Paulchoffatiidae (Golveodon, Lavocatia ),

famil ia que se origina y desarrolla en el Jurásico de Portugal y que se conoce hasta el Cretácico

Inferior de Europa y el Norte de Africa. Hay también especies pertenecientes a la subfami lia

Eobaatarinae (forma s afines a Eobaatar y Loxaulaxi, familia que se conoce exclusivame nte en

el Cretácico Inferior de Europ a y Asia. La especie Parendotherium herreroi es una forma de

afinidades inciertas que estamo s estudiando y revisando en la actualidad, pero probablemente,

debido a la pérdida del holotipo, sea considerada como nomen nudun en un artículo en

preparación.

Los drioléstidos de Galve como C. cuencana constituyen el último registro conocido de

estos terios no tribosfénicos en Europa (están representados en el Jurásico Medio y Superior de

Europa), aunque este grupo continúa su historia en el Cretácico Infer ior de Asia y en el

Cretácico Superior de Suramérica. Los peramúridos son exclusivos del Jurásico superior inglés

yen el Aptiense-Albiense de Mongol ia, por lo que el material español no solo amplia el área de

distribución de este grupo sino que nos permite conocer algo más de este grupo, posiblemente

el tronco ancestral del que derivan los metaterios (marsupiales) y euterios (placentados). Los

simmetrodontos son un grupo numeroso en el Jurásico Superior también se encuentran en el

Cretácico Superior de Norteam érica. En el Cretácico Inferior, Spalacotherium, posiblemente
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una nueva especie de Vallipón (España, Inglaterra) y Manchuro don de China son los únicos

representantes (Krebs, 1985).

5.2 Dinosaurios

Los dino saurios son relativamente abundantes, aunque sus restos son fragmentarios y

aislados. Se han recono cido tanto a partir de restos directos (huesos) como indirectos (icnitas y

frag mentos de cáscaras de huevo). Han aparecido restos de cuatro de los cinco subordenes

conocid os de dinosaurios: Saurop oda , Theropoda, Omithopoda y Thyreophora (Lapparent,

1960; Sanz el al., 1984a y b, 1987, 1990; Ruiz-Orne ñaca y Cuenca-Besc ós, 1995).

La gran mayoria de los saurópodos se han encontrado en las Formaciones Villar del

Arzobispo y Castellar, y hasta el momento hay un único resto en la Formación Camarillas.

Hay seis taxones, dos de los cuales son exclusivos de Galve. La especie Aragosaurus

ischiati cus es un camarasaúrido descrito por Sanz et al . (1987), del que se conoce un diente

(San z, 1982) y parte del esqueleto postraneal. Parte de los restos de este dinosaurio se

encuentran en la sala de exposicione s de Galve y pertenecen al Museo de Teruel. En el Titónico

se encuentran los restos de otro camarasaúrido sin describir (Perez Oñate et al ., 1994) que no

esta totalmen te excavado. Recientemente se ha encontrado un diente de diplodócido, también

en el Jurásico , que junto a otros tres sauropodos descritos en el nivel de Colladíeo Blanco

(Camarasauridae indet. Forma A, Camarasauridae indet. Forma B, cf. Pleurocoelus =Astrodon

sp.) form an la representación de este grupo (Sanz et al ., 1987). Aunque no se han encontrado

huellas atribuibles a saurópodos, algunas estructuras circ ulares de los yacimientos de las

Cerradicas y los Corrales del Pelejón podrían representar subpistas de huellas de estos

dinosaurios (Cuenca et al ., 1993).

Los resto s de terópodos se han encontrado practicamente en todos los yacimientos,

especialmente dientes 'en las forma ciones Castell ar y Camarillas, a pesar de lo cual han sido

poco estudiados. Se han encontrado diente s, falan ges ungue ales y vértebras de gran tamaño

(Theropoda indet., Carnosauria indet. ) y de pequeño tamaño (?Coeluridae indet.), además de

huellas de diferentes tamaños (Casanovas et al. , 1983-84; Cuenca et al ., 1993; Perez-Lorente et

al .. 1996). En las excavaciones recientes se han encontrado nuevos restos, algunos

posibl emente de dromeosaúridos. En los años 60, José María Herrero encontro un diente de un

terópodo de gran tamaño , que fue determinado por Crusafont y Adrover (1966) como una

forma similar a Carcharodontosaurus. Por el momento no se ha incluido en la lista faunística,

ya que no se conoce exactamente en que nivel estratigráfico fue encontrado, podría ser de un

nivel equivalente a Colladico Blanco.

Los ornitópodos son los dino saurios más abundantes de la form ación Camarillas. Los

ornitópodo s pequeños están repre sentados por las familias Hypsilofontidae y Dryosauridae.

Han aparecido por el momento dientes aislado s y restos postcraneales de hipsilofodóntidos en

varios yacimientos (Fig. 3). Donde están mejor representados es en el yacimiento de Poyales,

donde se encontraron más de cien restos de un hipsilofodóntido, posiblemente nuevo, que
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Fig. 4: Esquema de las icnitas de las Cerradicas. Modificado de Perez-Lorente el al., 1996.

actualmente se encuentra en estudio (Ruiz-Omeñaca y Cuenca-Besc ós, 1995). En Gulve es el

único lugar de España donde están representados los driosaúridos (un fémur de cf. v aldosaurus

sp., Sanz el al .. 1987).

De entre los orn itópodo s de tamaño grande se han encontrado representantes de la

familia Igua nodontidae. De este grupo se han encontrados númerosos restos postcranales

(fundamentalmente vertebras) y dentarios de lguanodon bernissartensis e l. atherficldensis .
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En la formación Camari llas se encuentran algunos de los yacimientos clásicos de este

grupo (Sanz el al., 1984a; b), sin embargo en la formación Castellar únicamente se han

reconocido por restos indirectos (Corrales del Pelejón, Cuenca el al., 1993).

En niveles estratigráficos más bajos (posiblemen te Berriasien se) hay evide ncias

icnológicas de ornitópodos cuadrúpedos de pequeño tamaño (Yacimiento de Las Cerradicas,

Fig . 4). La importancia de esto s restos es que con stituyen el rastro cuadrúpedo de

iguanodóntido más antiguo y más pequeño que se ha encontrado en el mundo (Perez-Lorente

el al. , 1996).



En las Cerradicas se puede observar -un conjunto de cuatro rastros, tres de ellos

subparelelos y otro que los corta (en total 40 pisadas) . Estas huellas se produjeron en un medio

marino intermareal, que en el momento de producirse no debía estar empapado deagua, ya que

la conservación es excelente. Las rizaduras de corriente (producidas por una lámina de agua)

debieron producirse con anterioridad a las huellas . Los rastros 1, 2 Y 3 (fig. 4) son huellas

tipicamente tridactilas, producidas por un pequeño dinosaurio, que podría ser un térópodo o un

ornitópodo. El rastro más interesante es el 4, ya que es la evidencia más antigua de un

ornitópodo con comportamiento cuadrúpedo. En el mundo se han publicado 9 rastros de este
. . : ".:

tipo, de los cuales el de las Cerradicas es el más pequeño de todos. Este rastro es típicamente

de ornitópodo, posiblemente un iguanodontido de pequeño tamaño (Perez-Lorente et al ., 1996). .

Los dinosaurios acorazados (Tyreophora) agrupan a los que tienen placas y espinas

dérmicas en el lomo y la cola . Eran dinosaurios ornitisquios, cuadrúpedos y herbívoros. En

Galve, los tire6foros son muy escasos, estando representados por un diente de Echinodon sp.

(Estes y Sanchiz, 1982), una púa caudal de estegosaurio y una espina dermatoesquelética de un

anquilosa urio-nodosaurio aún por estudiar (comunicación personal de Pereda-Suberbiola) ..

5.3 Otros reptiles

Los reptiles no dinosaurios son relativamente abundantes. En Galve están representados

reptiles voladores (Pterosauria), cocodrilos (Crocodylia), tortugas (Chelonia) y lagartos

(Sauria). Los pterosaurios estan representados por dientes y una falange sin atribución

sistemática, que parece estar cercana a un género chino (Dsungaripterus) , pero que es de mayor

tamaño.

Los restos de cocodrilos son muy abundantes y han sido objeto de diversas

publicaciones (Buscalioni, 1986; Buscalioni et al., 1984; Buscalioni y Sanz, 1984, 1987a,

1990; Kohring, 1990) estando representados fundamentalmente por dientes aislados, centros

vertebrales, cáscaras de huevo, osteodermos y un cráneo completo (Buscalioni et al ., 1984). Se

han reconocido tres taxones de cocodrilos (Buscalioni y Sanz, 1987b; 1990): Theriosuehus sp .,

Bernissartia fagesii y Goniophoiis ef. crassidens.

Los restos de Sauria son escasos, habiendose reconocido fragmentos de mandíbulas y

placas dérmicas, se han identificado cinco taxones : l lerdaesaurus sp., Lacertilia indet.,

Paramacellodidae indet., Paramaeellodus sp. y Scincidae incertae sedis (Estes y Sanchiz,

1982; Richter, 1994a y b). A partir de fragmentos de huevos se han reconocido tres tipos

diferentes de tortuga s, una de las cuales podría ser Batagurinae indet. (Kohring, 1990). Los

restos óseos de tortugas, algunos muy completos permanecen sin estudiar .

5.4 Anfibios

Los anfibios son escasos, estando representados por fragmentos de esqueleto

postcraneal, maxilares y mandíbulas. Se han reconocido tres especies de anfibios en el

Barremiense inferior de Galve:Albanerpeton ef. megacephalus , Eodiscoglossus santojae y
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Gulverpcton ibericum, de las cuales la tercera es una salamandra definida en Galve (Estes y

Sanchiz, 19X2). a partir de una vertebra aislada de la colección del Museo de Sabadell.

"5 .5 Peces"

Los pisciformes se han reco nocido en todos los yacimiento s co n rnicrofauna. aunque

so lo han sido es tudiados con de talle en tres. Los Chondr ichthyes (peces cartilaginosos), que

incluye n a tiburo nes y a rayas, estan representados por diente s. placas dérmica s. y espinas de

hibodónt idos (tiburones primi tivos). como ¿Hybodl/s? parvidens y Lissodus microselachos

definido en el yac imien to Herrero a partir de dientes (Estes y Sanc hiz, 1982). Este holotipo

esta depositado en el Museo de Teruel. En la colección Herrero hay algunos coprolitos que por

su forma espira lada son similares a los atri buidos a seláceos. Posteriormente Cuenca-Bescós

el al . (1994) y en este trabajo se amplia la lista faunís tica co n la prese ncia de otro tiburón

tipicamente marin o (Lamniforme indet.) encontrado en la Formac ión Caste llar y de una raya

(Rhinobatos sp.) en la Formaci ónCamarillas.

Los "peces" oseos son el grupo numericamente más abundante en los yacimi entos de Galv e

y el menos es tudiado . En la mayor parte de los yacimientos hay escamas. dientes sueltos y

frag mentos de palad ares de Lepidotes sp. (muy abu ndante) . tambi én se han de scri to otro s

cuatro taxones inde termi nados: Ami idae indet., Pycnodontidae indet. "Holostei" indet. y

"Te leos tei" indet. (Estes y Sanchiz, 1982).

Agradecimientos: José María Herrero ha encontrado la mayor parte de los yacimi entos de

Galve, por lo que agradecemos la amab ilidad de enseñarnos todos estos niveles en el campo.
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Nueva especie de Neochordodes
(Go rdiacea Nematomorpha)

parásita de Scapteriscus sp. (Grillotalpidae)

D. B. de MiralIes y L. C. de VilIalobos

Abstract

A new specie of Neochordodes Carvalbo (1942) (Gordíacea Nematomorpha) parnsite of Scapteriscus sp.

Scudder (Grillotalpidae). A new spec ie of Neochordodes is describcd in this paper. 1twas found as a parnsit e of a

femaIe specimen of mole-cricket, wich was collected in Santa Elena, SanLuis proviocc, Argentine. Damage

produced on me bost is analyzed and me adult and junvenilc stages of parasite are described in detail

1. Introducción

Al continuar nuestras investigacion es sobre los nematomorfos de la provincia de San Luis, reali zamos

durante el mes de octubre de 1985. un viaje de estudios en el que tuvimos la oportuni dad de capturar un ejemplar

hembra de grilloeopo (Scopteriscus sp.) del que emergió un gordiáceo, Esto nos permitió reali zar una serie de

observaciones COI! el propósito de determinar la relación existente entre ambos.

Los gordíác cos adultos habitan temporariamente las aguas dulces y se los halla en prim avera y verano.

aislados o en grupos formand o ovi llos y pueden deslizarse mediante ondulaciones o es tar suje tos a plantas acuá­

ticas y entre detritos vegetales. En esta e tapa, su única función es la de reprodu cirse. El aco plamie nto se reali zar

en el seno de voluminosos ovillos formado por individuos de ambos sexos; los huevos se depos itan en el fondo,

en forma de filam entos blanquecinos, de éstos nacen larvas que para proseguir su desarr ollo deben hallar un

hospedador al que ingresan atravesando la pared corporal mediante el aparato perforante Larval y se instala en la

cavi<Jad general de l hospedador. Luego cambia su forma, se alarga y se transforma en un verme blanco. Durante

este periodo se alimenta del cuerpo graso del hospedador mlcntras comienza el desarroll o de sus órganos genitales;

la cutícula que lo recubre se espesa y se oscure ce, hasta que. progresivamente. alcanza el estado ad ulto. Frecuen­

temente las larvas penetran en estados inmaduros o adultos de insectos. moluscos, peces y batracios. En el

interio r de estos hospedadores ocas ionales las larvas pueden continuar su desarrollo o enqu istarse en los tej idos.

Si el hospedador es devorado en es tos momentos, por un organismo carnicero las larvas pueden evolucionar

normalme nte sin sufrir alteraci ones en es te último.

En consecuencia, durante e l desarrollo de los gordiáccos se pueden distinguir claram ente tres es tados: un

prime r estado larval . un segundo estado ju venil y un tercer estado adulto libre.

Facultad de Ciencias Natu rales y Museo. Universidad Nacional de La Plata
Pas eo del Bosque s/n. 1900 L1 Plata. Argentina
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2. Area de estudio
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Según Ringuelet (1961) esta zona corresponde al Dominio Central o Subandino y su fauna es fundamen ­

talmente brasílica, de filiación subtropical y con marcada influencia patagónica al sudoeste.

Figura l . Mapa de la zona de colecta de Neochordodes puntanus n. sp.
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El clima es variado, predominand o el tipo continental , con lluvias moderadas a escasas e inviernos suaves

y veranos cálidos. La vegetación dominante es la de tipo xerófilo y junto a los ríos aparec en formaciones higró­

filas.

La cuenca hidrográfica cuenta con numerosos riachos y arroyos de poco caudal que fluyen en distintas

direcciones. En general son cuencas sin desagües que se agotan por evaporación o infiltración.

La prospecció n se realizó en las sierras de la provincia de San Luis y las cadenas limítrofes con Córdoba

(Argentina) (Fig. 1). La gran antigüedad de esLOS bloques fracturados los conecta geológicamente con el escudo

arcaico de Brasilia. formando un macizo de rocas metamórficas con abundancia de micas, gneiss e importantes

masas de granito.

l.,



3. Material y métodos

Figura 2B: Ovillo de fo rmas ju veniles
extraidos del grillotopo
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Figura 2A: Vis/a de la cavidad abdominal de
Scqpteriscus sp. con Gordi áceos

..

Los gordiáceos observados en el interior del grillotopo se encontraban formando un ovillo compacto, que

ocupaba no sólo la cavidad abdominal sino que se extendían por debajo de la quitin a en la zona dorsal envolvien­

do la masa visceral (Fig ura 2A). AJextraer los parásitos algunos se fragmentaron pero no afectaron la posibilidad

de estudiarlos, todos correspondían a formas ju venil es (Figura 213). Posteriormente observamos que el sistema

digestivo del ortóptero se hallaba fuertemente comprimido, las ovario las y los tubos de Malpighi prác ticame nte

destruidos y una ausencia total de cuerpos grasos . Analizando los daños producidos sobre el hospedador conside­

ramo s que sus posibilidades de sobrevivir eran prácticamente nulas.

Asimi smo los extremos y la cutícula de las formas adultas y ju venil es fueron metali zados en oro para

poder observar las al microscopio elec trónico de barrid o, utilizando en esta oportunidad el JEOL JSM 100 .

En las zonas aledañ as al anoyo San Elena, Cortadoras, provin cia de San Luis, Argentina (Fig, 1), colecta ­

mos varios ejemplares de Scapteriscus sp. (grillotopo), a pocas horas de ser capturados, de uno de ellos emerg ió

un ejemplar mach o de gordi áceo. Como consecuencia de ello, deci dimos realizar una disecció n de l insecto y

observamos la presencia de varios ejemplares de nematomorfos en su cavidad general.

4. Observaciones del parásito en el hospedador

A fin de poder observar y estudiar la cutícula, se efec tuaro n cortes tangenciales de la región ce ntra l del

soma, se retiró la musculatura subyacente y se ac laró con lactofeno l. Las regione s an terior y posterior se dibuja­

ron mediante cámara clara en un microscopio monocular Leitz Wctzlar,

La colecta de gri llotopos se realiz ó en fonna manual y se los coloc ó individualmente en frascos de vidrio

con una cubierta de lienzo. El ejem plar de gordi áceo que eme rgió del ortóptero fue fijado en alcohol 70%.



En la zona pleural del cuarto segmento abdominal se dete ctó una perforación por la que suponemos se

produjo la salida del ejemplar adulto observado .

Exam inando el sistema digestivo del grillotopo notamo s sobre la superficie externa del intestino posterior,

la presencia de formas qufsticas (Figura 3). Estos quistes se presentan como cuerpos lenticulares de diferentes

dimen siones. En mucbo de ellos pudimos observar un espacio periférico claro y en el centro replegada la larva .

Dicbas formas larvales posiblemente no bayan podido desarrollarse debido al gran número de parásitos que

ingresaron al bospedador.

II

Figura 3: Intestino posterior de Scopteriscus sp.
con larvas enquistadas

Si bien es fácil explicar la penetración de las larvas de gordiáceos en animales acuáticos, así como su

aparició n en invertebrados terrestres carn ívoros, ya que muchas veces se acercan a los cuerpos de agua para

alimentarse de especies acuáticas que pueden estar parasitadas y que actuarían como bospedadores intermedia­

rios o vectores, resulta más difíci l dar una clara respuesta a la aparición de quistes o estados juvenile s en

invertebrados terrestres no carnívoros, como es el caso del grillotopo, una posible explicación para este fenóme­

no podría ser, que en mucbas ocasio nes las larvas de gordiáceos son 'capaces de replegarse sobre sí mismas,

secretar mucus y enquistarse fijándose a un sustra to pudiendo sobrevivir varias semanas en un ambiente húmedo,

resultado de las osci laciones del nivel de las aguas o por evaporación temporaria, momento en que pueden ser

ingeridas por formas terrestres berbívoras.

Nuestras observaciones concuerdan con las real izadas por varios autores como Villot (1874), May (19 19),

Müller (1927), Dorier (1930), Inoue (1962), Poinar y Doelman (1974) que desarrollan excelentes experiencias

sobre la biología de los gordiáceos .
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A
Figura4: Adulto machode Neochordodespunlanus n. sp.

A: extremo anterior;B: extremo posterior. Referencias: b =boca. cI =cloaca

Cutícula : Las ar éolas vistas al microscopio electrónico de barrido a 3.500 aumentos (Figura 5) muestran

un aspecto ovoide, una con mayor longitud que otras, pero todas similares, aunque esporádicamente suelen

aparecer algunas más pequeñas redondeadas o rectangulare s que se disponen en forma alternada o lineal en

sentido longitudinal .

Descripción: Holotipo macho . Soma cil índrico. Color castaño, Extremo anterior afinado gradualmente

hacia el ápice, borde dilal redondeado; la calota no se diferencia del resto del soma. La boca ocupa el centro del

borde anterior y se prolonga hacia el interior por un corto tubo (Figura 4), que se evidencia por transparencia; el

diámetro a nivel de la finalizació n del tubo digestivo es de 0, 183 mm. Los surcos longitudinales dorsal y ventral

son poco marcados . Extremo posterior curvado con una leve depresión en la faz ventral donde se encuentra la

cloaca , a una distancia de O,256mm del posterior.

b

Diagnosis: Cilíndricos . Extremo anterior afinado con la boca terminal central. Extremo posterior curvado

con cloaca ventral subterminal. Surcos longitudinales poco evidentes. Cutícula con ar éolas de un solo tipo,

ovoides con el espacio interareolar estrecho, con tubérculos espiniformes curvados o rectos.

Neochordodes puntanus n. sp.

5. Descripción del parásito
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Figura 5: Cutícula de
N. puntanus n. sp. por 3.500
aumentos.
Ref erencias:
a =aréola
t = tentaculo
p = prolongaciones

] ~

Ciertas ar éolas presentan uno de los extremos henchido, mientras que el opuesto tiene dos cortas prolon­

gaciones, entre las que emerge un tubérculo curvado en la misma dirección que siguen las prolongaciones areo­

lares. Los tubérculos interareo lares pueden presentar el extremo distal curvado y redondeado o bien recto y

aguzado. El espacio interareolar es estrecbo, presenta tubérculos espiniformes curvados o rectos que sobrepasan

en alto a las aréolas.

De cada una de las ar éolas parten finas prolongaciones que las conectan longitudinal y transversalmente

originando una delicada estructura en forma de red. Las prolongaciones que unen a las ar éolas longitudinalmente

son más compactas, están más unidas y el número de ellas varía entre 4 a 9 filamentos. Las prolongaciones

transversales son menos numerosas y están separadas unas de otras variando entre 3 y 7 filamentos; algunos de

ellos están ramificados o bifurcados, unos son más gruesos y otros delgados. Entre estas uniones se observan

espacios anhistos.



5.1 Formas juveniles

Figura 6: Extremo anteior de macho ju venil de
Neochordodes puntanus n. sp.

]i

Figura 7: Extremo posterior de macho ju venil de Neochordodes puntanus n. sp.
A: parte tenninal; B: cloaca

El extremo posterior es entero donde se insinúan depresiones dando la apariencia de una semilobulación

(Figura 7A); la cara ventral es cóncava donde se destaca claramente la cloaca ovalada (Figura 7B) ubicada sobre

una prominencia central .

El extremo anterior de los machos (Figura 6) se afina gradualmente hacia el ápice. la bocase encuentra

situada justamente en el centro del extremo.

Material examinado: Holotipo l macho de 87mm de largo y 0,4390101 de ancho medio. Parntipos 2 hem­

bras juveniles y 3 machos juveniles; col. Miralles, 31-1-1985. Local idad: Argentina. provincia de San Luis.

Arroyo Santa Elena.

Hospedador: Scapteriscus sp. Scudder.
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Figura9. Extremo posterior de hembrajuvenil
de N. puntanus n. sp. Referencias: e =cloaca

E
::J

o
o

Figura8. A: extremo anterior de hembrajuvenil de N. puntanus n. sp. B: boca.
Referencias: b =boca; a =areolas; I = tub érculos.

~ ~ ~

La cutícula enestas formas ju veniles presenta las mismas carac terísticas que el adu lto.

El extremo poste rior es algo más turgente que el resto del soma, su borde es redondeado. evide nciánd ose

en el centro la cloaca circular (Figura 9).

El extremo anteri or de las hembras (Figura 8A) tiene las mismas características señaladas para los ma­

chos. La boca está rodeada por una corona de ar éolas (Figura 8B) y por varios círcu los de tubércu los espinifor­

mes .



6. Discusión

El género Neochordodes se carac teriza por presentar un solo tipo de ar éolas, generalmente poligonale s u

ovoides y bajas; los surcos interareolares pueden o no presentar cerdas. procesos hialin os u otras estruc turas.

Analizando compara tivamente las carac terísticas cuticulares de las especies que integran el género pode­

mos señalar que Neochordodes puntanus presenta una morfología peculiar carac terizada por presentar un solo

tipo de ar éolas ovoides de borde liso; además, en el espacio interareolar se destacan tubérculos esp iniformcs que

sobrepasan la altura de las ar éolas siendo este espacio sumame nte estrecho.

N. puntanus n. sp. difiere de N. colombianus Faust y Ramos (1960) ya que en este último las areo las son

circulares con una estructura suprareolar que se dispone centralmente; de N. talensis (Camerano, 1897) por las

ar éolas papilares altas y el espacio interareolar presenta granulacio nes numerosas; de N. uniareo latus Carva lho

(1946), por la forma poligonal de sus aréolas y por el espacio interareo lar estrecho y de N. nietoi (Caballero y

Caballero, 1936) por la presencia de ar éolas con contornos regulares y superficie aplanada. con distribuci ón

irregular en el soma .

En base a lo expuesto consideramo s que los ejem plares estudiados poseen carac terísticas bien distintivas

y los consideranios como una nueva especie a la que designamos Neochordodes puntanus .

La elección del nombre de la especie está dedicado a los habitantes de la Provincia de San Luis a los que

se les designa con el nombre de puntano s.
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