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Preparaciéon de sélidos bidimensionales y su

caracterizacién con microscopia de barrido electrénico

Pilar Cea, M* Carmen Lépez y Félix M. Royo

Departamento de Quimica Orgdnica y Quimica Fisica.
Facultad de Ciencias. Universidad de Zaragoza

Premio de la Academia a la investigacién (1998-99)

Resumen:

En este trabajo se presenta un estudio sobre la morfologia de
peliculas de Langmuir-Blodgett (LB) de distintas moléculas
utilizando la microscopia de barrido electrénico (SEM). Esta técnica
nos ha permitido una observacién directa de las peliculas que
aporta una visién gréfica, sencilla e intuitiva de la morfologia de las
mismas. Asi este estudio ha posibilitado la determinacién del grado
de homogeneidad de las peliculas, el cardcter miscible o inmiscible
de peliculas mixtas, la existencia de microdominios y el tamafio de
los mismos, etc. En definitiva, se ha puesto de manifiesto que la
microscopia de barrido electrénico es una valiosa técnica dentro del
conjunto de métodos experimentales para la determinacién del
grado de orden y arquitectura de peliculas ultradelgadas.

Abstract:

In this paper we introduce a scanning electron microscopy
(SEM) study about the morphology of several molecules arranged in
Langmuir-Blodgett films. The SEM technique has allow us a direct
observation of the films obtaining photographs that has made
possible the determination of the homogeneity degree, the miscible
or inmiscible character of mixed films, the presence of
microdomains as well as their size, and so forth. It is remarkable
that the scanning electron microscopy constitutes a valuable
technique in the set of experimental methods to determine the
order degree and the architecture of ultrathin films.




Introduccion

Las propiedades de los iones, los 4tomos o las moléculas ensamblados en un
s6lido perfectamente ordenado pueden ser (y de hecho generalmente lo son),
dristicamente distintas de las que presentan como especies individuales. Podrfamos
comparar este hecho con el comportamiento de los seres humanos como “individuos” y
como miembros de una sociedad, formando parte de actividades tan distintas como una
fiesta en familia, un desfile militar, o una gala benéfica.

Si hay algo en lo que toda la comunidad cientffica estd de acuerdo, es en que
para cualquier sistema ffsico, sus propiedades macroscépicas y su comportamiento
estdn determinados por su estructura y por sus interacciones a un nivel microscopico.
Por ello, si algin dfa somos capaces de controlar la estructura, arquitectura e
interacciones existentes a un nivel molecular también seremos capaces de disefiar y
construir materiales con las propiedades fisicoquimicas deseadas. Este concepto, el de
orden a nivel molecular, ha dado lugar al nacimiento de un nuevo término:
NANOTECNOLOG{A.

Podriamos definir la nanoquimica como la técnica que nos permite la
construccién de edificios moleculares perfectamente ordenados donde los ladrillos son
dtomos, moléculas, o iones. La preparacién de materiales bajo unas estrictas
condiciones de manipulacién “4tomo a 4tomo” o “molécula a molécula” nos puede
permitir la obtencién de sustancias con interesantisimas propiedades debidas al elevado
grado de ordenacién a un nivel microscépico. Entre los potenciales campos de
aplicaci6én de estos nuevos materiales podemos citar la 6ptica no lineal, obtencién de
sistemas fotoconductores y semiconductores, dispositivos electrénicos, sensores
quimicos, almacén y procesamiento de datos, imitacién de membranas celulares, etc.

Con el objeto de construir dichos edificios moleculares se han disefiado diversos
procedimientos en funcién de la naturaleza y propiedades de la sustancia con que se
desea trabajar. Uno de ellos es la técnica de Langmuir-Blodgett (LB) para la obtencién
de pelfculas constituidas por moléculas org4nicas !-7. Una de las principales ventajas de
esta técnica es la obtencién de peliculas con un espesor perfectamente controlado, y del
orden de unos cuantos didmetros moleculares, es decir, peliculas ultradelgadas. El
control del espesor de las peliculas y del orden dentro de cada capa convierte a estos
materiales en nanoestructuras itiles en campos tan diversos como la 6ptica, la
electrénica, o la preparacién de sensores quimicos y bioqufmicos.

En consecuencia, a los quimicos se nos plantea un doble reto. En primer lugar, la
sintesis de nuevos materiales con interesantes propiedades fisicoqufmicas, y en segundo
lugar la organizacién de dichos materiales en nanoestructuras correlacionando la
arquitectura de los mismos con sus propiedades. Solo con un detallado estudio de una




amplfsima gama de materiales, y usando diversas técnicas de caracterizacién de los
s6lidos obtenidos, podremos dirigirnos de forma clara al disefio de estructuras de
interés tecnoldgico.

Objetivos

El primer objetivo que nos fijamos es la eleccién de materiales orgénicos que
exhiban interesantes propiedades Gpticas, eléctricas 0 magnéticas en estado sélido, y
que puedan verse potenciadas mediante su organizacién en pelfculas LB. En principio,
lo ideal es la utilizacién de moléculas anfipdticas o anfifilicas, es decir, moléculas que
contienen un grupo polar que permita el anclaje de estas sustancias sobre la superficie
acuosa, y una parte hidrofébica que les confiera insolubilidad total en el agua. No
obstante también pueden utilizarse moléculas completamente hidrofébicas, siempre que
se mezclen con moléculas anfifflicas de modo que la mezcla forme una monocapa
estable.

En este trabajo presentamos el estudio de varias moléculas (ver tabla I) que
pueden ser clasificadas en dos grandes grupos en funcién de su naturaleza:

1) Derivados del tetratiafulvaleno (TTF).

2) Derivados del fésforo conteniendo uno o dos grupos amino.

El tetratiafulvaleno (TTF) y sus derivados constituyen una de las sustancias mas
ampliamente estudiadas y utilizadas en la quimica de los materiales moderna ®!!, Entre
las propiedades més interesantes que presenta podemos destacar su accesibilidad
sintética, su comportamiento como donor electr6nico, el efecto estabilizante en
radicales y especies cargadas as{ como las fuertes interacciones intermoleculares en
estado sélido debidas al solapamiento m '2. Teniendo en cuenta estas propiedades nos
hemos propuesto el estudio del TTFH con vistas a su posible utilizacién como sensor
molecular, y conductor o semiconductor orgénico en peliculas ultradelgadas.

El segundo grupo de moléculas consideradas, compuestos orgdnicos derivados
del fésforo conteniendo uno o dos grupos amino, son muy interesantes por sus posibles
aplicaciones como cationes de sales de compuestos orgédnicos conductores y
semiconductores (por ejemplo sales de TCNQ, tetracianoquinodimetano) 3-13, y
también pueden ser utilizados como esponjas prot6nicas 6. Debido al comportamiento
de estas sustancias en la superficie acuosa como monocapas ionizadas positivamente, es
posible incluir en la subfase algtin ani6n, con determinadas propiedades objeto de
nuestro interés, y transferirlo como contraién del derivado fosforado para mantener la
electroneutralidad del sistema. De ese modo podrfamos incorporar un anién con




determinadas propiedades de interés en la pelfcula LB, es decir, en una estructura
ordenada donde dichas propiedades se vean potenciadas.

El segundo objetivo es la obtencién de sélidos bidimensionales empleando la
técnica LB. Para ello en primer lugar es necesario preparar una monocapa sobre la
superficie acuosa en las mejores condiciones experimentales para la obtencién de
monocapas con un alto grado de organizacién molecular y de estabilidad. Dichas
condiciones (caracterfsticas del proceso de dispersién, volumen y concentracién de la
disolucién a dispersar, tipo de disolvente, velocidad de barrido, pH de la subfase
acuosa, temperatura de la subfase, temperatura de la habitacién, etc) deben
determinarse experimentalmente para cada molécula. Una vez preparadas las
monocapas en la superficie acuosa, se transfieren sobre sustratos s6lidos obteniendo as{
una multicapa con el nimero de capas y el espesor deseado. Dichas multicapas reciben
el nombre de peliculas de Langmuir-Blodgett.

Finalmente, el tercer objetivo ser4 la caracterizacién de dichas peliculas con el
fin de determinar el grado de orden y estructura de las mismas, correlacionando los tres
puntos claves de nuestra investigacién: condiciones de fabricacién, arquitectura, y
propiedades fisicoqufmicas de las peliculas obtenidas, para dirigirnos de forma
adecuada en la construccién de las multicapas y la bisqueda de sus posibles
aplicaciones. Existe una larga lista de técnicas de caracterizacién (espectroscopia
ultravioleta-visible, de fluorescencia, infrarrojos, RAMAN, espectroscopia Auger,
difraccién de rayos X, resonancia de spin electr6nico, voltametria ciclica, etc) que
deben emplearse simultdneamente para obtener una informacién completa y fiable
sobre la disposicién de las moléculas en las peliculas LB. Entre dichas técnicas de
caracterizacién, se encuentra la microscopfa de barrido electrénico (SEM), que nos
aporta una visién gréfica, sencilla e intuitiva de la morfologfa de las peliculas. En este
trabajo queremos subrayar como esta técnica de caracterizacién nos ha permitido
obtener una valiosa informaci6n sobre el grado de homogeneidad de las pelfculas, que
en cambio ninguna otra técnica de caracterizacién nos proporciona y, asimismo, con la
interpretacién de las im4dgenes obtenidas hemos completado y corroborado hipétesié
planteadas a partir del uso de otras técnicas.



Molécula Nombre Abreviatura

H37 Gis-S s S S-CisH37
e Tetrakis(octadeciltio)
I S>_<Sj( tetratiafulvaleno 1
H37 Gis-S S-CisH37
i Br~
Bromuro de trifenil
Q_ P—NH- C3Hy | (octadecilamino)fosfonio TPOFBr

W

—PENHL Bromuro de difenildi
Eysie e e N Cirly (octadecilamino)fosfonio DPOPBr

O-10

NC CN
Tetracianoquinodimetano TCNQ

@g

NC CN

TABLA I. Moléculas empleadas en la preparacidn de las peliculas LB presentadas en este trabajo.

Dispositivos experimentales

Cuba de Langmuir

La cuba de Langmuir y el software que la controla han sido disefiados y creados
por personal de nuestro grupo de investigacién !7. La cuba se encuentra situada en un
s6tano para minimizar las vibraciones. Asimismo el laboratorio dispone de doble
ventana y doble puerta para evitar la entrada de polvo, y la limpieza de este laboratorio
es realizada periddica, cuidadosa y escrupulosamente por el propio investigador. La
cuba estd introducida en una vitrina con puertas correderas de cristales ahumados, que
la preservan, atin m4s si cabe dadas las condiciones del laboratorio, de la contaminacién
causada por el polvo y la luz. Las dimensiones de la cubeta son 210x460 mm? y est4
formada por un bloque de teflén consolidado por una armadura metdlica. La
profundidad es de 8mm, excepto en el pozo de transferencias donde es de 25mm.




Adem4s de la cubeta dispone de otros accesorios como el medidor de la presién
superficial, que se basa en el método del platillo del Wilhelmy. La barrera mévil que
puede ser controlada desde el ordenador y cuya velocidad puede oscilar entre los 57
mm/min y 0.6 mm/min. El brazo para la transferencia, donde se sujetan los substratos
sobre los que se depositardn las monocapas, cuya velocidad y nimero de ciclos pueden
ser fijados previamente, y modificados durante la transferencia si fuera necesario. La
velocidad puede oscilar entre 1 y 10 mm/min. Todo el dispositivo es controlado por un
ordenador que permite el registro de las isotermas presién-érea, la obtencién de ciclos
de histéresis, la determinaci6n de la estabilidad de las monocapas preparadas sobre la
superficie acuosa, el control automdtico del proceso de deposicién de las monocapas
sobre substratos s6lidos y el célculo de las relaciones de transferencia en cada
experiencia. En la figura 1 se muestran algunas fotografias de esta cuba que se acaba de
describir brevemente, y que se ha utilizado en la realizacién del trabajo experimental
que presentamos.

Microscopio de barrido electronico

En este trabajo se ha utilizado un microscopio de barrido electrénico JEOL JSM
6400. Su resolucién es de 3.5 nm para el méximo nimero de aumentos (300.000),
utilizando un haz de electrones con una energfa mayor a 35 keV y utilizando 8 mm
como distancia del foco de electrones a la muestra. En un microscopio de barrido, un
haz de electrones con una energfa ente 1 y 50 keV y en un vacfo de 107 bar se hace
incidir sobre una muestra gruesa, opaca a los electrones. Este haz electrénico se focaliza
sobre la superficie de la muestra, describiendo un conjunto de lineas paralelas. Como
resultado de la interaccién de los electrones incidentes con la muestra, se producen una
serie de fen6menos, entre los que cabe destacar aquf, la emisi6n de electrones
secundarios con energfas de unas pocas decenas de eV y la reflexién de los electrones
primarios que dan lugar a un haz de electrones retrodispersados de alta energfa. Los
electrones secundarios penetran menos en la muestra, mostrdndonos la morfologfa de su
superficie, mientras que los electrones retrodispersados tienen una mayor capacidad de
penetracion, por lo cual la fotograffa asf obtenida presenta distintos niveles de grises en
funci6n de la composicién quimica de la muestra.

Las peliculas se transfirieron sobre sustratos de vidrio y sobre ellos
posteriormente se vaporiz6 oro formando una capa de 25 nm. Con este recubrimiento se
consigue aumentar la conductividad de la superficie facilitando la circulaci6n de los
electrones y minimizando los problemas asociados a la generacién de carga.




Ultravioleta-visible

Se ha utilizado un espectrofotémetro Uvikon 941 de doble haz. Los espectros de
las peliculas LB depositadas sobre substratos de cuarzo se registraron con un 4ngulo de

incidencia normal de la luz.
Infrarrojos
Se ha empleado un espectrofotémetro Nicolet 550, Magna IR con transformada

de Fourier. Las peliculas se depositaron sobre sustratos de fluoruro de calcio,

transparente a la luz IR.

FIGUR4s 1.c y d. Detalle de la cuba de Langmuir-Blodgett donde pueden observarse las pinzas con los
substratos para la transferencia, la balanza de Wilhelmy y el sistema de termostatizacion.
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Procedimiento experimental

El liquido utilizado como subfase fue siempre agua millipore-Q con una
resistividad de 18.2 mQ cm. Todas las moléculas consideradas en este trabajo son
solubles en cloroformo y se emplearon disoluciones de concentracién 10* M en este
disolvente (Sigma/Aldrich. 99.9%, HPLC) para la dispersién de las moléculas sobre la
superficie acuosa. Para la realizacién de las pesadas se utiliz6 una balanza METLER
ME30 (10-¢ g). El proceso de dispersi6n se realiz6 lenta y cuidadosamente, depositando
cada gota de disolucién muy cerca de la superficie acuosa y dejdndola caer muy
lentamente (figura 2.a). Se permiti6 que la presién superficial retornara a 0 mN/m antes
de depositar la siguiente gota, para permitir as{ la evaporacién del disolvente. Tras el
proceso de dispersién se esperé 15 minutos antes de comenzar el proceso de
compresién para conseguir la total evaporaci6n del cloroformo, en caso de que quedase
algo a pesar del lento proceso de dispersién. Transcurrido este tiempo comienza el
movimiento de la barrera (figura 2.b), a una velocidad de 0.5A%/molécula minuto. El
ordenador obtendr4 un registro de la presién superficial (7) versus el drea por molécula
(A), es decir, una isoterma de compresién. A presiones altas (del orden de 30mN/m) es
de esperar (habrd que comprobarlo en cada caso) que las moléculas se encuentren
altamente ordenadas formando una monocapa estable. Es en ese momento cuando la
monocapa puede ser transferida sobre un sustrato sélido (figura 3), para formar as{ una
pelicula LB o multicapa (figura 4), es decir, un sélido bidimensional.

(a) (b)

Ll
—

N 2 2
7~/+| Disolucién

FIGURA 3. Proceso de transferencia.
(a) substrato hidrofilico; (b) sustrato hidrofdbico

3 ,A(//////I////////§
Pelicula S

Monocapa

o) [

FIGURA 2.a. Proceso de dispersion.

2.b. Proceso de compresion.

FIGURA 4. Pelicula LB.



La naturaleza del substrato depende del tipo de caracterizaci6n fisicoquimica a
que va a ser sometida posteriormente la pelfcula LB. En el caso de estudios con el
microscopio electrénico el substrato empleado ha sido un vidrio desnudo de 15x8mm.
El proceso de limpieza del vidrio es de vital importancia, ya que cualquier impureza 0
defecto del vidrio serd transmitido a la multicapa, logrando asf el efecto contrario al
buscado (multicapa perfectamente ordenada). Los substratos empleados fueron
limpiados con acetona (Lab-Scan. 99,8%, HPLC), etanol (Normasolv, 99,0%, HPLC),
posteriormente se introdujeron en un recipiente con agua (millipore-Q) y se colocaron
en un bafio de ultrasonidos durante quince minutos. Esta operacién se repitié cuatro
veces més y finalmente se secaron.

La velocidad de transferencia fue de 0.2 cm/min y el tiempo transcurrido entre
una deposicién y la siguiente fue al menos de 11 minutos, para permitir un adecuado
secado del sustrato, favorecido ademds por la presencia de una atmdsfera rica en
nitrégeno.

Resultados experimentales

TTFH

Como puede observarse en la tabla I ésta es una molécula completamente
hidrof6bica que contiene el esqueleto del TTF y cuatro largas cadenas de 18 dtomos de
carbono. Este cardcter completamente hidrofébico hace que sea absolutamente
imprescindible la mezcla de esta molécula con otra que tenga cardcter anfifflico y
permita su estabilizacién en la superficie acuosa y por tanto la formacién de verdaderas
peliculas de Langmuir, asf como la posterior transferencia de dichas monocapas sobre
un sustrato sélido para la obtencién de las peliculas LB.

Se ha procedido a la preparacién de monocapas mixtas conteniendo el derivado
del TTF con 4cido behénico (CH3-(CH;)20-COOH) en distintas proporciones. El dcido
behénico (BA) es una sustancia ampliamente estudiada desde los inicios del desarrollo
de esta técnica y se sabe que da lugar a la formacién de monocapas estables que se
pueden transferir a un sustrato s6lido con relaciones de transferencia muy préximas a la
unidad y dando lugar a pelfculas de Langmuir-Blodgett perfectamente homogéneas, con
una arquitectura constante y un alto grado de orden molecular en las cadenas
alquilicas®.

Se ha comprobado que las monocapas mixtas son mucho més estables que las
peliculas de Langmuir obtenidas dispersando dnicamente el derivado del TTF. Esta
estabilidad es tanto mayor al aumentar la proporci6n de 4cido behénico. Las monocapas
mixtas pueden ser transferidas sobre sustratos sélidos obteniéndose una deposicién de
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tipo X con una relacién de transferencia de 0.9 para (TTFH/BA 1:1) y 0.95 para
(TTFH/BA 1:4).

Las pelfculas formadas por dos 0 mas componentes pueden ser clasificadas en
tres tipos : (1) Componentes totalmente miscibles; (2) Componentes totalmente
inmiscibles; (3) Componentes parcialmente miscibles.

Por lo tanto uno de los factores clave para determinar la arquitectura de las
peliculas TTFH+BA es conocer en cual de los tres casos nos encontramos.

Para el estudio termodindmico de peliculas mixtas podemos definir el 4rea
molecular promedio ideal a una determinada presi6n, &, como:

Ajgea = X1A1 + X2A9 €Y

donde A; y A, son las dreas por molécula a la presién © para los componentes puros.

Podremos entonces definir el 4&rea molecular de exceso como:
AE= A real ~ A ideal (2)

El drea de exceso serd igual a cero tanto si los componentes son totalmente
miscibles como si son totalmente inmiscibles. Por lo tanto la medida de las 4reas de
exceso s6lo nos aportard informacién sobre si tenemos: i) monocapas totalmente
miscibles (mezcla ideal) o totalmente inmiscibles; ii) monocapas parcialmente
miscibles.

En el caso de que obtengamos dreas de exceso iguales a cero, para averiguar si
se trata de monocapas totalmente miscibles o totalmente inmiscibles serd necesario
determinar la presién de colapso de las monocapas mixtas. Si las moléculas son
perfectamente miscibles, la presién de colapso de la mezcla estard comprendida entre
las de las monocapas en el estado puro 8. En cambio, si se trata de monocapas
totalmente inmiscibles entre sf, 1a presién de colapso de la mezcla serd igual a la de la
monocapa cuya presién de colapso en el estado puro sea menor .

Sin embargo en el caso de las monocapas mixtas de TTFH+BA no podemos
aplicar este criterio, ya que en primer lugar no podemos determinar con exactitud ni el
drea por molécula ni la presién de colapso para una isoterma de TTFH, puesto que al no
ser una molécula anfifflica no forma verdaderas peliculas de Langmuir sobre la
superficie acuosa. Por otra parte para las isotermas de estas monocapas mixtas no es
posible determinar la presién de colapso ya que a presiones altas e inferiores al colapso
la monocapa se vuelve muy rigida, desplaza el platillo de Wilhelmy y finalmente
desborda (parte de la monocapa y de la subfase se salen de la superficie fisica de la
cuba) antes de colapsar. Ninguna otra de las técnicas de caracterizacién empleadas (Uv-
vis, IR, difraccién de rayos X y voltametrfa ciclica) nos han aportado datos claros sobre
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la miscibilidad de las peliculas. Es aqui donde los estudios de microscopia electronica
jugaran un papel fundamental en la determinacién de la miscibilidad de estas sustancias
en las peliculas mixtas.

En primer lugar debemos realizar un estudio del sustrato desnudo con el
microscopio de barrido electroénico para comprobar la homogeneidad del mismo, y
poder proceder de forma adecuada a la interpretacion de las imagenes obtenidas para el
sustrato cubierto de la pelicula mixta TTFH+BA. En la figura 5 se muestra una
fotografia del vidrio desnudo, a 8000 aumentos con electrones retrodispersados.

Asimismo se obtuvieron fotografias de peliculas de 4cido behénico puro, tal y
como se muestra en las figuras 6 a 8. El BA conduce a peliculas LB relativamente
homogéneas, y con una apariencia muy similar a la observada anteriormente por otros
autores '°. En las figuras 9 a 12 se muestran las fotografias de la superficie de peliculas
mixtas TTFH+BA en la proporcién 1:1.

Como puede observarse en estas fotografias las peliculas mixtas muestran un
aspecto muy diferente al de las que contienen sélo acido behénico, presentando una
matriz uniforme sobre la que se asientan “granos” que podrian interpretarse como
agregados moleculares de TTFH que se situan sobre una superfice homogénea,
probablemente constituida por el acido behénico. Por lo tanto, los estudios de
microscopia electrénica indican que el BA y el TTFH forman una mezcla heterogénea.

FIGURA 5. Fotografia SEM de un vidrio FIGURA 6. Fotografia SEM de una pelicula

desnudo, a 8000 aumentos (retrodispersados). de dcido behénico puro, registrada a 8000

aumentos, con electrones retrodispersados
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Se ha procedido a un dopaje quimico de estas pelfculas con vapores de iodo,
comprobdndose que dicho dopaje es reversible, es decir, en unos pocos minutos se
retorna a la situacién original. No obstante durante el proceso de dopaje se producen
cambios en las propiedades Opticas y eléctricas de la pelfcula por lo que podrian ser
utilizadas como sensores de gases que presenten propiedades redox similares al iodo.
As{ en las figuras 13 y 14 se muestran los espectros Uv-vis e IR que se han registrado
durante el proceso de dopaje. Pueden observarse cambios muy claros en la posicion e
intensidad de las bandas, asf como la aparicién de otras nuevas.

Porcentaje de transmitancia (u.a.)

. . . . : . . .
3600 3300 3000 2700 2400 2100 1800 1500 1200 900 600
Niimero de onda (cm™)

FIGURA 13. Espectro IR de una pelicula LB de TTFH+BA 1:1 con 20 capas.

(a)

antes del dopaje con iodo. (b) - inmediatamente después del dopaje con iodo.

Absorbancia (unidades arbitrarias)

Longitud de onda (nm)

FIGURA 14. Espectro UV-vis de una pelicula de Langmuir-Blodgett constituida por cinco monocapas de
TTFH+BA (1:1). (a) Sin dopgr,' (b) recién sacada del recipiente donde se realizd el dopaje; (c) a (f)

espectros registrados cada 15 minutos.

17




TPOPBr

Esta es una sustancia a priori idénea para la preparacién de monocapas y
peliculas de Langmuir-Blodgett, dado que es una molécula anfifflica, con una cabeza
polar, y una larga cadena hidrocarbonada. En la figura 15 se muestra una isoterma de
esta molécula. Las isotermas son reproducibles, no obstante las monocapas son bastante
inestables. Se han modificado las condiciones experimentales (velocidad de barrido,
temperatura de la subfase, caracterfsticas del proceso de dispersién, presencia de sales
en la subfase, etc) sin lograr mejorar apreciablemente dicha estabilidad. Finalmente se
ha mezclado esta molécula con 4cido behénico, preparando as{ monocapas rﬁixtas, cuya
estabilidad aumenta al aumentar la proporcién del 4cido graso.

FIGURA 15. Isoterma de compresidn de
TPOPBr a 20°C empleando como subfase

wf

agua pura.
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La deposicién de las monocapas de TPOPBr puro sobre sustratos sélidos
muestra una relacién de transferencia muy baja, que sin embargo mejora notablemente
en el caso de monocapas mixtas.

La microscopfa de barrido electrénico se muestra nuevamente como una técnica
clave para determinar la homogeneidad y calidad de las pelfculas obtenidas. En la figura
16 se muestra la fotograffa corresponde a una pelfcula de TPOPBr pura, sin 4cido
behénico. En esta pelfcula se observé la existencia de zonas desnudas y zonas de
acumulacién de materia, donde la alta imperfeccién indica que no estamos ante
verdaderas pelfculas ordenadas de Langmuir-Blodgett. En la figura 17 podemos ver la
fotograffa de una pelicula con 14 capas de TPOPBr + BA (1:1); en ella puede
observarse una matriz bastante homogénea sobre la que destacan unas formas de
aspecto granular, cuya existencia es variable en las distintas zonas de la pelfcula,
especialmente en los extremos del vidrio. La fotograffa 18 corresponde a esta misma
pelicula en una zona de acumulaci6n de estos defectos.




En resumen, el TPOPBr no es una molécula adecuada para la preparacion de
peliculas LB cuando se dispersa sola sobre la superficie acuosa, pero incluso cuando es
mezclada con 4cido behénico puede observarse la existencia de un elevado nimero de
defectos e imperfecciones que nos hacen admitir que la molécula no es apta para
preparar peliculas LB.

FIGURA 16. Fotografia de una pelicula de
TPOPBr pura a 19000 aumentos.

FIGURA 17. Fotografia de una pelicula de
TPOPBr + BA 1:1 a 7000 aumentos.

2488 20KV X%7,000  1va WD20

FIGURA 18. Fotografia de una pelicula de

acumulacion de defectos.

. ¥
%
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DPOPBr

Como en el caso anterior nos encontramos con una molécula anfifilica, que da
lugar a la formacién de monocapas ionizadas positivamente en la superficie acuosa. Sus
isotermas son reproducibles y en la figura 19 se muestra una isoterma del DPOPBr a
20°C y utilizando agua Millipore-Q pura en la subfase.

60 T 0.25
i 4020 FIGURA 19. Isoterma presion
Joas superficial vs drea por molécula a
~ aof 0N
E 20k Jo.10 E 20°C de DPOPBTr en agua pura
Z
hene s % como subfase efectuada a una
5 2 L
oo velocidad de compresion de
e 1.89 A2/molécula minuto, y
4 -0.05
10k compresibilidad vs drea por
4 -0.10
molécula .
0 - : : : -0.15
0 30 60 % 120 150

Area por molécula (A? /molécula)

En la referencia 2° puede encontrarse una detallada discusién sobre la
interpretacién de esta isoterma. Nos interesa sefialar aqui que el “plato” que aparece a
una presién de unos 30mN/m se ha interpretado como debido a la formacién de una
bicapa. Dicha hipétesis ha sido confirmada mediante diversos estudios (Uv-vis,
experimentos de histéresis, etc).

Un experimento méds que puede aportarnos interesante informacién sobre la
estructura y arquitectura de estas peliculas antes y después del plato es un estudio con el
microscopio de barrido electrénico de dichas multicapas. En las figuras 20 a 26
podemos observar las fotograffas tomadas con el SEM en peliculas transferidas a 30 y a
40 mN/m. El aspecto fisico de éstas es diferente. Las peliculas depositadas a una
presi6n de 30 mN/m son bastante homogéneas, aunque aparecen algunos defectos en las
mismas. A 40 mN/m el nimero de defectos es mayor, mostrando ciertas “islas” que
pueden interpretarse como la existencia de cristales en 3D. En otras palabras, antes del
plato las pelfculas son bastante homogéneas, indicando la existencia de monocapas bien
ordenadas que se transfieren con una arquitectura precisa y constante a lo largo de las
distintas capas, mientras que después del plato las peliculas presentan un mayor nimero
de. defectos en su estructura, mostrando la aparicién de algunos nucleos de
cristalizacién. En definitiva los estudios con el SEM, sin contradecir las conclusiones a
las que se ha llegado por otros caminos, que parecen indicar la formacién de una bicapa,
indican ademds que en algunas zonas se ha producido una cristalizacién, que va m4s

alld de la formaci6n de una bicapa, y que probablemente implica una cristalizacién en
3D.
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FIGURA 20: pelicula LB con 15 capas transferidas
a 30 mN/m de DPOPBr a 8000 aumentos con

electrones secundarios

FIGURA 22: pelicula LB con 15 capas transferidas
a 30 mN/m de DPOPBr a 20000 aumentos con

electrones secundarios

FIGURA 24: pelicula LB con 15 capas transferidas
a 40 mN/m de DPOPBr a 8000 aumentos con

electrones secundarios
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FIGURA 21: idem figura 20 con

electrones retrodispersados.

FIGURA 23: idem figura 22 con

electrones retrodispersados.

FIGURA 25: idem figura 24 pero a

20000 aumentos.




FIGURA 26: idem figura 24 pero a 37000

aumentos.

Durante el estudio de esta molécula en monocapas y peliculas de Langmuir hay
un hecho que llamé poderosamente nuestra atencién y para cuya interpretacion los
estudios de microscopia electrénica han resultado muy ttiles. En los siguientes
paragrafos pasamos a detallar este singular fenomeno.

La disolucién de una pelicula LB (transferida a 30 mN/m) en acetonitrilo
conduce a un espectro en el que el maximo de absorcién estd desplazado 5 nm hacia el
rojo, respecto al espectro obtenido a partir de la molécula directamente disuelta en
acetonitrilo (sin preparar la pelicula LB). Este experimento ha sido repetido en cinco
ocasiones, obteniendo resultados idénticos. Para descartar la influencia de la
concentracion se ha preparado una disolucién que de un mismo valor de absorbancia
que el obtenido a partir de la pelicula disuelta, observandose que la longitud de onda a
la que se produce el méximo de absorcién aparece a un valor menor que el
correspondiente a una disolucioén de la molécula sometida a la técnica LB. Aunque esta
situacién es un tanto sorprendente y no se ha localizado ninguna referencia
bibliografica que describa alglin hecho similar, propusimos las siguientes hipdtesis:

i) Hidratacion del DPOP™ o de los contraiones del DPOP”, durante el proceso
de formacién de la pelicula LB. La redisolucién posterior de esta pelicula (con
moléculas de agua hidratando a los iones), podria conducir a un entorno mas polar de la
molécula organica, formacién de enlaces por puente de hidrogeno, o bien inducir la
formacion de agregados en torno a estas moléculas de agua (que estarian favorecidos
por el carcter fuertemente hidrofilico del catién).

ii) Incorporacion de moléculas de agua a la pelicula, debido a un secado
defectuoso de la misma. Este hecho podria ser evitado, o cuando menos, minimizado,
con una atmoésfera muy rica en nitrégeno, que favorezca el secado, o con mayores
tiempos de permanencia del sustrato fuera del agua durante el proceso de transferencia,
permitiendo asi una mejor evaporacién del agua entre dos deposiciones consecutivas.
No obstante ni tiempos muy largos de secado ni la utilizacién de nitrégeno parecen
tener efecto en el desplazamiento hacia el rojo de la pelicula redisuelta. Aunque el
motivo de la incorporacion del agua en la pelicula sea diferente al propuesto en el
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apartado anterior, las consecuencias en el espectro serfan las mismas (al menos
cualitativamente).

Se ha realiz6 una serie consecutiva de espectros en trifluoroetanol como
disolvente, donde se han ido afiadiendo trazas de agua. Al aumentar la cantidad de agua
en la disoluci6n, se produce un claro desplazamiento del espectro hacia el rojo de
varios nanémetros. Debemos enfatizar ademds que se ha comprobado que la
disminucién en la concentracién efectiva de la molécula orgdnica al afadir agua a la
disolucién, no es la responsable del desplazamiento de las bandas, pues se hizo un
experimento paralelo donde se disminufa la concentracién de la molécula en
trifluoroetanol, simplemente afiadiendo este disolvente orgdnico (pero no agua), sin
observar en esta zona ningin desplazamiento del mdximo de absorcién (es decir, se
cumple la ley de Lambert-Beer).

Algunos autores 2! han observado la presencia de agua en las peliculas, que
ademds depende del tipo de iones presentes en la subfase acuosa (contraiones que se
incorporan a la pelicula para mantener la electroneutralidad del sistema), lo cual parece
apoyar la hipétesis anterior.

Para aportar alguna luz a este fenémeno de incorporacién de moléculas de agua
a las peliculas LB se realizé un estudio de las mismas mediante el SEM. Las muestras
una vez preparadas se almacenaron de dos formas distintas, unas se colocaron en
pinzas expuestas al aire, mientras que otras se guardaron inmediatamente en pequefios
frascos herméticos hasta su estudio con el microscopio (el tiempo de permanencia en
dichos recipientes fue de unas doce horas). Se comprobé que en el primer caso las
peliculas presentaban una matriz de apariencia homogénea aunque con algunos
microdominios desorientados con respecto al plano del sustrato, cuyo tamafio es del
orden de 1um. No obstante se observé que si las pelfculas se guardaban en un
recipiente cerrado, las multicapas presentaban un aspecto completamente diferente, con
gotas (presumiblemente de agua) en la superficie que se podfan observar a simple
vista. Las figuras 27 a 29 muestran las fotograffas obtenidas con el microscopio
electrénico en pelfculas guardadas en un recipiente hermético, que presentan un
aspecto completamente distinto a las mostradas en las figuras 20-26 correspondientes a
peliculas guardadas al aire.
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27. SEM de una pelicula LB de 15 capas de DPOPBr con 70 aumentos. Esta pelicula fue guardada

en un recipiente cerrado. Puede observarse un niimero "infinito" de defectos en la estructura de la

pelicula.

FIGURA 28. idem figura 27 pero a 1000 aumentos FIGURA 29 idem figura 27 pero a 2500 aumentos

DPOPBr + TCNQ

Hemos descartado el estudio del TPOPBr en peliculas LB, pero en cambio el
DPOPBEr se ha mostrado como una molécula que da lugar a monocapas extremadamente
estables en la superficie acuosa, transferibles sobre un sustrato sélido, dando lugar a
peliculas LB muy homogeéneas, especialmente si las transferimos antes del plato que
aparece en la isoterma. Como hemos dicho anteriormente el cation DPOP* puede actuar
como contraion en sales de compuestos organicos conductores y semiconductores, por
ejemplo sales de tetracianoquinodimetano (TCNQ). Por ello nos ha parecido muy
interesante el estudio del DPOP™ incorporando TCNQ™ en la subfase para asi preparar
peliculas LB que pudieran presentar propiedades conductoras o semiconductoras.

Se han preparado disoluciones de LiTCNQ, que se han empleado como subfase
acuosa y sobre estas se ha dispersado DPOPBr. Segiin nuestro conocimiento sobre el
tema esta es la primera vez que se intenta preparar una pelicula LB conteniendo TCNQ
incorporandolo directamente de la subfase acuosa en lugar de dispersarlo sobre la
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misma. Este hecho presenta diversas ventajas, entre las que podemos destacar un control
mas exhaustivo de la estequiometria de la nueva sal formada, y la no necesidad de
afiadir al TCNQ largas cadenas hidrocarbonadas que a su vez pueden suponer un
importante impedimento para la conductividad.

Las monocapas obtenidas son muy estables y al transferir sobre sustratos sélidos
incorporan TCNQ™ para mantener la electroneutralidad del sistema. En las figuras 30-
35 se muestran fotografias de peliculas depositadas a distintas presiones de
transferencia.

Teniendo en cuenta la bibliografia publicada sobre el tema, parece ser que para
obtener peliculas LB conteniendo TCNQ que presenten una importante conductividad
eléctrica es necesario: i) Las peliculas estén constituidas por microcristales muy
delgados y con forma de agujas, de modo que la distancia entre estos microcristales a su
vez permita la conduccién; ii) EIl TCNQ se encuentre formando dimeros (TCNQ-), con
sus planos moleculares paralelos al sustrato; iii) El proceso de iodacién induzca una
reorganizacion estructural de modo que los planos de TCNQ se dispongan
practicamente perpendiculares a la superficie.

Para la determinacion del primer punto la microscopia de barrido electrénico se
manifiesta probablemente como la Unica herramienta vélida para confirmar este punto.
Como puede observarse en las fotografias la apariciéon de microcristales esta supeditada
tanto a la concentracion de la subfase como a la presion de transferencia.

FIGURA 30: Fotografia de 20 capas de FIGURA 31: Fotografia de 20 capas de
DPOPTTCNQ - transferidas a 30 mN/m DPOP*TCNQ - transferidas a 20 mN/m
a 9000 aumentos a 9000 aumentos
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FIGURA 32:Fotografia de una pelicula colapsada FIGURA 33: idem figura 32 a 500 aumentos

a 110 aumentos

FIGURA 34: idem figura 32 a 2200 aumentos FIGURA 35: idem figura 32 a 11000 aumentos

Las peliculas LB han sido también estudiadas mediante espectroscopia IR que
muestra la existencia de una banda correspondiente al TCNQ™™ y otra de mucha menor
intensidad correspondiente al TCNQ°. Las peliculas fueron dopadas con iodo
obteniendose un estado de valencia mixta y la aparicién de una banda de transferencia
de carga (ver figura 36). Estas peliculas presentan por lo tanto un comportamiento como
semiconductores orgédnicos por lo que podrian ser utilizadas en dispositivos
electrénicos.



i Banda de transferencia
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FIGURA 36: Espectro IR de una pelicula de DPOPTTCNQ'~ de 25 capas (-

) sin dopar. () 24

horas después del dopaje con iodo.

Conclusiones

En este trabajo se han estudiado diversas moléculas orgénicas que pueden tener
importantes aplicaciones pricticas. Para potenciar sus propiedades deben organizadas
en s6lidos bidimensionales formando edificios moleculares perfectamente ordenados,
para lo cual se ha empleado la técnica de Langmuir-Blodgett.

Se han preparado las monocapas de estas sustancias sobre la superficie acuosa, y
se han transferido sobre sustratos sélidos en las mejores condiciones experimentales
encontradas para ello.

Si bien es necesaria una caracterizacién de dichas pelfculas mediante muchas y
variadas técnicas para lograr un conocimiento exhaustivo de la disposicién molecular en
las mismas, en este trabajo hemos querido plasmar los resultados obtenidos con la
microscopfa de barrido electrénico para mostrar la bondad de esta técnica en la
determinacién de determinados aspectos estructurales en los que otros procedimientos
de caracterizaci6n se han mostrado insuficientes.
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Resumen

Reducir el volumen de un eyaculado o separar los espermatozoides
del plasma seminal es con frecuencia necesario en el trabajo
experimental y en la prédctica de la inseminacién artificial. La muestra
final debe de tener no sélo alta concentracién sino también alta motilidad
y viabilidad espermética. Aunque la centrifugacién es un método
frecuentemente utilizado para la separacién del plasma seminal, resulta
nociva para espermatozoides ovinos dado que produce dafios en la
membrana celular que reducen la motilidad y la viabilidad celular.

El objetivo de este trabajo ha sido la puesta a punto de un nuevo
método, sin centrifugacién, para la separacion del plasma seminal que al
mismo tiempo permita obtener una poblacién enriquecida en esper-
matozoides altamente moétiles y viables. Los resultados obtenidos indican
que la aplicacién de este método de "swim-up"/dextrano a muestras de
semen ovino de la raza Rasa aragonesa permite la obtencién de pobla-
ciones esperméticas altamente enriquecidas en células viables, incre-
mentando la motilidad e integridad de membrana inicialmente presentes
en una muestra de calidad media y baja. Por ello, y dada la dependencia
estacional de la calidad seminal en moruecos, esta técnica pérmitiria una
clara mejora de las dosis de inseminacién artificial en perfodos de calidad
baja. Si el incremento de la calidad "in vitro" se traduce en un aumento
de 1la fertilidad, la aplicacién de este método en perfodos
correspondientes a calidad baja incrementarfa la productividad. As{
mismo, este método permitiria el uso de eyaculados que, alin teniendo un
alto valor genético, serfan normalmente descartados debido a su baja
motilidad inicial, lo que supone un gran avance cientifico y tecnolégico
para la inseminacién artificial en programas de biotecnologia y mejora
ganadera. :
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Abstract

In experimental work and in the application of artificial inse-
mination it is often necessary to reduce the volume of an ejaculate or to
remove the seminal plasma entirely in order to ensure a high sperm
concentration and highly motile spermatozoa. Although washing of sperm
cells by centrifugation is a procedure in widespread use, there have been
indications that centrifugation may be harmful to the cells.

The objective of this study was to develop a modified swim-up
technique, without centrifugation, to get a selection of highly motile and
viable ram spermatozoa free of seminal plasma. Our results indicate that,
by means of this swim-up method, many ram semen samples which
would normally be discarded due to their low initial motility, can yield a
spermatozoa population not only with very high motility but also with
high membrane integrity and surface heterogeneity. Since the well-
known influence of photoperiod on the semen quality, the application of
this method during periods of low quality would allow to significantly
improve the quality of the ejaculates, allowing its use further in artificial
insemination. If the increase of "in vitro" semen quality accounts for
higher fertility rates, this method would increase the productivity and, at
the same time, allow the use of some ejaculates with high genetic value
which would normally be discarded due to their low quality. Its
application would lead to important scientific and technological beneficial
in biotechnology and livestock improvement program.

Introduccion

La inseminacién artificial (IA) usada en combinacién con esquemas
rigurosos de testaje de la descendencia puede aumentar considera-
blemente la mejora genética (Eppleston y Maxwell, 1993). Sin embargo,
la TA en ganado ovino no es un método ampliamente extendido,
posiblemente debido a la baja fertilidad obtenida en inseminacidn
cervical tanto con semen fresco como congelado.

La presencia de plasma seminal y otros elementos del eyaculado
como células muertas y dafiadas resultan nocivos para los esperma-
tozoides reduciendo asi la fertilidad (Lindemann y col.,, 1982; Saacke y
col., 1994; Shanon y Curson, 1972). Por ello, en el trabajo experimental y
en la prictica de la inseminacién artificial es con frecuencia necesario
separar los espermatozoides del plasma seminal o reducir el volumen de
un eyaculado para conseguir una concentracién espermética adecuada.
Muchos métodos de separacién de espermatozoides de mamiferos se
basan en técnicas de centrifugacion. Aunque la sensibilidad de los
espermatozoides a la centrifugacién varia mucho con la especie, se han
descrito efectos nocivos de la centrifugacién sobre espermatozoides de
ovino (Gavella, 1983; Graham, 1994) y humano (Aitken y Clarkson, 1988;
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Mortimer, 1991). Ademds, estos procedimientos no incorporan ningin
elemento de seleccién de la calidad espermaética.

Los espermatozoides tienen tendencia innata de migrar a un medio
depositado sobre la muestra de semen. Este hecho es la base de la técnica
de "swim-up" que permite separar poblaciones de espermatozoides con
diferente motilidad (Berger y col.,, 1985; Lopata y col.,, 1976; Vazquez y
col., 1988). Dado que el método cldsico de "swim-up" utiliza
centrifugacién la cual reduce la motilidad de los espermatozoides, se ha
puesto a punto un método para la separacién de espermatozoides
humanos sin centrifugacién (Alvarez y col.,, 1993). Sin embargo, cuando
aplicamos este método a semen ovino no conseguimos recuperar
espermatozoides con alta viabidad y la mayoria de las células
presentaban el flagelo enroscado como si el medio fuera hipoosmético
(Jeyendran y col., 1992). Ademds, esta pérdida de viabilidad también
podria deberse a la alta dilucién de las células durante el proceso, ya que
se ha descrito que los espermatozoides libres de plasma seminal son muy
sensibles a la alta dilucién en un medio salino simple (Ashworth y col.,
1994).

Aunque la motilidad es uno de los pardmetros mds importantes
para decisiones que afectan al posterior procesamiento del semen, no es
la dnica caracteristica de interés en el control de la calidad seminal.
Algunos resultados han demostrado que espermatozoides con buena
motilidad tienen dafios en su membrana (Valcidrcel y col.,, 1994). La
viabilidad celular (integridad y funcionalidad de la membrana plasma-
tica) es necesaria para el correcto metabolismo celular (Januskauskas y
Rodriguez-Martinez, 1995; Rodriguez-Martinez y col., 1997), y es mejor
indicador de la capacidad fertilizante que la motilidad en semen humano
(Zaneveld y col., 1990), bovino (Correa y Zavos, 1994) y ovino (Vazquez
y col.,, 1988). Asi mismo, la heterogeneidad espermditica de un eyaculado,
es decir, la variabilidad funcional de los espermatozoides, es una carac-
teristica inherente a las células esperméticas (Ollero y col.,, 1994; Watson,
1995) que se plantea como una estrategia evolutiva para maximizar la
probabilidad de que la activacién espermditica se produzca en las
inmediaciones del ovocito (Amann y col., 1993). Es decir, cada esperma-
tozoide o grupo de espermatozoides alcanza la capacitacién en un
momento diferente, asegurando asi el éxito de la fecundacién. Por tanto,
al disefiar procedimientos de seleccién de espermatozoides se debe tener
en cuenta todos estos pardmetros, no Unicamente la motilidad.

Dado que las caracteristicas funcionales de las células espermdticas
se deben reflejar en diferencias en sus propiedades superficiales
(Harrison, 1977), y que la heterogeneidad espermditica se manifiesta,
entre otras caracteristicas, en la diferente composicién y estructura de la
superficie celular, el reparto en sistemas bifdsicos acuosos es una técnica
de gran utilidad para el estudio de las caracteristicas de los




espermatozoides. Esta técnica se basa en la diferente afinidad superficial
de las células por soluciones acuosas de polimeros como dextrano Yy
polietilenglicol (PEG) (Albertsson, 1986; Fisher y Sutherland (eds),1989).
En un sistema bifdsico constituido por dichos polimeros las células
reparten preferentemente en la fase inferior (rica en dextrano) o en la
fase superior (rica en PEG), segin sus caracteristicas superficiales. La
resolucién puede aumentarse realizando - experimentos de miltiple
reparto o distribucién en contracorriente (CCD) que combinados con la
centrifugacién acelera la separacién de las fases y permite reducir
muchisimo la duracién del proceso (CCCD).

Nuestro grupo de investigacién ha confirmado que la CCCD en
sistemas acuosos de bifase es una técnica capaz de revelar la hetero-
geneidad espermitica asociada a diferentes estados de viabilidad celular.
La pérdida de viabilidad conlleva una disminucién de la hidrofobicidad
celular (Ollero y col., 1996b; Ollero y col., 1994; Pascual y col., 1993). Los
espermatozoides no viables presentan mayor afinidad por la fase inferior
rica en dextrano, es decir, se localizan preferentemente a la izquierda del
diagrama de CCCD. Asi mismo, hemos comprobado recientemente que la
pérdida de viabilidad de espermatozoides ovinos asociada al proceso de
congelacién se refleja en una disminucién de la heterogeneidad super-
ficial (Ollero y col., 1997).

El objetivo de este trabajo ha sido la puesta a punto de un nuevo
método, sin centrifugacién, para la separacién del plasma seminal que al
mismo tiempo permita obtener una poblacién enriquecida en esperma-
tozoides altamente moétiles, viables y conservando una alta hetero-
geneidad superficial.

Material y Meétodos

Medios y Reactivos

Se modificé el medio del fluido tubular humano (mHTF) descrito por
Quinn et al. (Quin y col., 1985) para conseguir la viscosidad y osmolaridad
necesarias. Se sustituyé la mayor parte de CINa y CIK por sacarosa
resultando las siguientes concentraciones finales: 50 mM NaCl, 10 mM KCl
y 0,2M sucrose, pH 6,5. La osmolaridad se determiné en un osmdémetro de
presion de vapor (m = 350 mOsm). La solucién de dextrano contenia 30
mg/ml de dextrano (250,000 aver.mol.wt.; Sigma Chemical Co, St. Louis,
MO,USA) en el mHTF modificado.

Recogida de semen

Los experimentos se realizaron con semen ovino fresco procedente
de 3 moruecos de raza Rasa aragonesa de 2,5 a 3 afios de edad, recogido
con vagina artificial. Los sementales se mantuvieron en el Servicio de



Experimentacién Animal de la Facultad de Veterinaria de Zaragoza, en
condiciones uniformes de nutricién y aislados entre si. El estudio se
realizé en un periodo de 14 meses, de Septiembre a Noviembre. Se utilizd
una mezcla del segundo eyaculado de los 3 moruecos, con objeto de
eliminar diferencias individuales (Ollero y col., 1996a).

Evaluaciéon de las muestras de semen

Las muestras de semen se evaluaron antes y después de su
procesado determinando la cocentracién espermdtica, motilidad, respues-
ta al choque hipoténico (HOS-test) y viabilidad. La concentracién
espermdtica se determiné por recuento en cdmara de Neubauer. La
motilidad individual progresiva diluyendo el semen 4-5 veces en
diluyente de citrato-fructosa, mediante estimacién visual con un sistema
de microscopio de contraste de fases mantenido a 37°C acoplado a una
pantalla de televisién. El porcentaje de espermatozoides motiles se estimé
en incrementos de 5-10%. Se definieron tres categorias (< 60%, 60 a 75%,
>75%) para agrupar los datos de acuerdo con los cambios de la calidad
seminal a lo largo del afio.

El test de resistencia hipoosmético (HOS) se usé para evaluar la
actividad funcional de la membrana plasmadtica segin el procedimiento
descrito por Jeyendran y colaboradores (Jeyendran y col., 1992), y
adaptado para semen ovino por Garcia Artiga (Garcia Artiga, 1994).

La viabilidad celular (integridad de la membrana) se valoré
mediante la doble tincién de fluorescencia con diacetato de carboxi-
fluoresceina y ioduro de propidio (Harrison y Vickers, 1990). Se contaron,
como minimo, 200 células en duplicado para cada muestra.

Los resultados obtenidos se expresan como valores medios * SD
del nimero de muestras indicadas en cada caso. El test ANOVA se aplicé
para determinar diferencias significativas entre las muestras de semen

antes y después del "swim-up".

Realizacién del "swim-up"

El esquema general se presenta en la Fig. 1. Se realiz6 un proceso
de cuatro etapas. Se depositaron alicuotas de 0,5 ml de semen fresco en el
fondo de tubos redondeados de 15 mm de didmetro, sobre los que se
afiadié 0,5 ml de la disolucién de dextrano (30 mg/ml) y sobre ella 1,5 ml
de la solucién modificada mHTF conteniendo 5 mg/ml de BSA (mHTFA).
Los tubos se mantuvieron a 37°C durante 15 minutos transcurridos los
cuales se recogieron cuidadosamente 0,75 ml de la capa superior
conteniendo las células. Se afladieron cuidadosamente 0,75 ml de medio
nuevo. La secuencia de incubacién se repitié 3 veces obteniendo asi 4
sobrenadantes. El primero se descarté ya que contenia restos de plasma
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seminal. Los 3 sobrenadantes obtenidos de los 3 dltimos pasos se
mezclaron, resultando 2,25 ml con 1,84 + 0,02 x 109 spermatozoides
(50% recuperacién).

Dextrano
(0.5 ml)

Semen
(0.5 ml)

Fig. 1.- Separacion de espermatozoides ovinos
mediante '"swim-up'/dextrano.

La cantidad de plasma seminal remanente en la muestra final se
estimé determinando dos componentes de plasma seminal, acido citrico y
B-N-acetilglucosaminidasa (NAG) en la muestra inicial, en los 4
sobrenadantes y en la muestra final de "swim-up". El contenido en &cido
citrico se analiz6 con un kit comercial (Mannheim Boehringer, Germany,
Cat. N° 139 076) (Gavella, 1983). B-N-acetylglucosaminidase (NAG) se
determiné como se describe previamente (Maruhn, 1976).

Anilisis mediante CCCD

Las experiencias de distribucién en contracorriente con centri-
fugacién ("centrifugal counter-current distribution" o CCCD) se realizaron
en una unidad construida en nuestro laboratorio en colaboracién con el
Departamento de Tecnologia Mecdnica de la Escuela Técnica Superior de
Ingenieros Industriales y el Servicio de Instrumentacién Cientifica de la
Universidad de Zaragoza, tomando como modelo la unidad creada por
Akerlund (Akerlund, 1984) quien incorporé al método convencional un
campo centrifugo con el fin de reducir el tiempo de separacién. El aparato
consiste en un rotor constituido por dos platos concéntricos en los que se
disponen circularmente 60 cavidades, quedando dividida cada una en
parte superior e inferior, correspondiendo al plato interior y exterior res-
pectivamente. El plato interior es mévil con respecto al exterior, de modo
que al girar el primero sobre el segundo se produce una transferencia de
las fases superiores sobre las correspondientes fases inferiores.

La unidad realiza de forma automdtica ciclos constituidos por tres
pasos: agitacién, centrifugacién y transferencia. Al estar situados los




platos horizontalmente, el plano de las transferencias es vertical. Estas se
realizan durante los ultimos segundos de la centrifugacién. La fuerza
centrifuga empleada fue de 1000 x g. El proceso se controla por una
unidad computerizada construida en el Servicio de Instrumentacién
Cientifica de la Universidad de Zaragoza que permite seleccionar el
tiempo de agitado, de centrifugacién, el nimero de grados de circun-
ferencia que debe girar el plato interior en la transferencia y el nimero
de ciclos a realizar.

El sistema bifdsico utilizado estaba formado por dextrano T500
5,5% (w/w), PEG 6000 2% (w/w), Ficoll 400 10,5% (w/w), sacarosa 0,25
M, EGTA 0,1 mM, fosfato sédico 4 mM pH 7,5, 10% (v/v) de solucién
Hepes 10x (glucosa 50 mM, Hepes 100 mM, KOH 20 mM). En cada
experimento se calculé la relacién de volumen mediante muestras de 5
gramos del sistema. El volumen de sistema cargado en todas las cdmaras
fue la cantidad necesaria para mantener el volumen necesario de la fase
inferior (0,7 ml).

El medio del "swim-up" se eliminé diluyendo dos veces con 5
volimenes del medio de bifase y mediante filtracién a través de filtros
Millipore de 5-um de tamafio de poro. Las muestras con 1 x 108 células
se cargaron en las cdmaras 0 y 30, y se realizaron 29 transferencias, que
conlleva la ventaja de poder analizar dos muestras simultdneamente y en
idénticas condiciones. El tiempo de agitacién y centrifugaciéon fue de 60
segundos. Al terminar el proceso, se diluyé el contenido de las cdmaras
afladiendo el mismo volumen de medio de bifase. Se recogieron las
fracciones y se realizé el recuento celulary la determinacién de Ila
viabilidad.

Los resultados se expresan como el porcentaje de células en cada
cdmara con respecto al valor obtenido en la cdmara que contiene el n°
méximo de células. Como consecuencia del proceso de separacién, las
células con mayor afinidad por la fase inferior rica en dextrano
(principalmente debido a menor hidrofobicidad) se concentrardn en las
primeras cdmaras, es decir, a la izquierda del diagrama. Las células que
reparten por igual entre ambas fases se distribuyen en la parte central, y
las que tienen mds afinidad por la fase superior rica en PEG
(principalmente debido a mayor hidrofobicidad) aparecerdn a la derecha
del diagrama.

Resultados
Dado que la calidad inicial del semen ovino varia con la estacién del

afio, las muestras se clasificaron de acuerdo con 3 categorias de motilidad
individual progresiva: menor de 60%, entre 60 y 75%, y mds de 75%.
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La contaminacién de plasma seminal en la muestra obtenida
realizando el proceso de "swim-up" fue muy baja ya que se encontré un
2% de citrato y un 5% de actividad de NAG. El primer sobranadante
obtenido se descartdé dado que contenia un 13% de citrato y un 17% de
actividad de NAG.

La calidad inicial del semen aumentd tras el proceso de "swim-up"
ya que el procentaje de motilidad, respuesta al HOS-test y viabilidad fue
significativamente mayor en la muestra final de "swim-up", para
cualquiera de las tres categorias definidas. La fig.2 muestra los
porcentajes de incremento de estos parametros en muestras de diferente
calidad inicial. A partir de las muestras con motilidad inicial menor del
60% se consiguié un aumento del 52% en motilidad individual progresiva,
31% en respuesta al HOS y 54% en viabilidad. Se recuperaron 1,4 + 0,02 x
109 espermatozoides, con 74,7% de motilidad, 63% HOS+ y 64% viabilidad
(Tabla 1).

70
60]
50]]
40]]
30]
20]
10]]

0

Porcentaje

Calidad baja Calidad media Calidad alta
Figura 2.- Porcentaje de incremento de motilidad (.), viabilidad (Z)

respuesta al HOS-test () después del "swim-up" en muestras de calidad
inicial baja (a, n=13), media (b, n=12) y alta (¢, n = 10). Las diferencias a

vs b, a vs ¢, b vs ¢ son significativas (P < 0,0 1).

Para las muestras de semen de calidad intermedia (motilidad entre
60 y 75%) los resultados obtenidos se reflejan en la Tabla 2. Aunque los
porcentajes de incremento de motilidad, respuesta al HOS vy viabilidad
fueron menores que para las muestras de calidad inicial baja (Figura 2),
los valores medios de la muestra final fueron muy altos (80% motilidad,
70% HOS+ y 72% viabilidad). La recuperacién celular fue 70% (1,8 *+ 0,24 x
109 células).

Tabla 1.- Porcentajes de motilidad (M), viabilidad (V) y res-
puesta al HOS (H) en la muestra inicial, en los 4 sobrenadantes
del proceso de''swim-up'", y en la muestra final del "swim-up"
obtenida a partir de muestras de semen de calidad baja (n =
1135)%



Inicial Sobrenadantes : Final

1 2 3 4 2+3+4

M 5327+053 54,80+253 683042559 74,50 £2,41¢ 71,30 42,749 74,78 +0,99°
V  3934+086 53,791,599 59,001,599 74,14 +0,702 72,80 +0,752 64,20 +0,62°

H 4303+178 6533+427° 6533 +4,87° 66,33 +1,499 64,33 10,680 63,20 +1,64°

Diferentes superindices en filas indican diferencias significativas. a:
P < 0,001; b: P < 0,005; c: P < 0,01; d: P < 0,05; ¢, f: P<0,1.0

Tabla 2. Porcentajes de motilidad (M), viabilidad (V) vy
respuesta al HOS (H) en la muestra inicial, en los 4
sobrenadantes del proceso de''swim-up'", y en la muestra final
del '"swim-up'" obtenida a partir de muestras de semen de
calidad media (n=12).

Inicial Sobrenadantes Final

1 2 3 4 2+3+4

M  6843+0,27 6325+0,379 6825+0,37f 7825+0,37P 74,250,879 79,92+ 0,840
V  59,35+0,30 60,75+0,90° 67,42 41,609 73,621,202 68,37+1,32P 72,00+ 0,572

H 66,67 +0,00 74,50+0,062 73,40 +0,002 71,33 +0,12% 70,30+0,112 70,97+ 0,172

Diferentes superindices en filas indican diferencias significativas. a:
P< 0,001; b: P < 0,005; c: P < 0,01; d: P < 0,05; e, f: P <0,1.

Los valores medios obtenidos para los 3 pardmetros de calidad
seminal, antes y después del proceso de "swim-up" con muestras
seminales de motilidad individual progresiva mayor del 75% se reflejan
en la Tabla 3. La recuperacién celular fue 69% (2,3 = 0,06 x 109
espermatozoides), siendo aproximadamente un 84% los valores de los tres
pardmetros.

Tabla 3. Porcentajesv de motilidad (M), viabilidad (V) vy

respuesta al HOS (H) en la muestra inicial, en los 4
sobrenadantes del proceso de'swim-up", y en la muestra final
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del "swim-up" obtenida a partir de muestras de semen de
calidad alta (n=10).

Inicial Post-swim-up fractions Pooled

1 2 3 4 2+3+4

M 79,42+030 70,30+0,163 74,67+0,69° 86,33+0,55P 83,67+0,16° 84,50+0,252
V. 7567+0,66 76,002,23F 78,0042,23f §7,3312,189 83,00:1,789 82,830,804

H 79.00+3.00 81,0043,50f 81,00+4,00f 88504575 83,50 +4.75¢ 85,50 +5.25¢

Diferentes superindices en filas indican diferencias significativé_s. a:
P < 0,001; b: P < 0,005; c: P < 0,01; d: P < 0,05; ¢, f: P < 0,1.

Anidlisis por CCCD en un sistema acuoso de bifase de las
caracteristicas superficiales de los espermatozoides de la muestra
obtenida por "swim-up" revelan una gran heterogeneidad superficial asi
como una alta viabilidad tras el proceso de CCCD (Fig. 3). El perfil de
distribucién presentado en esta figura es representativo de tres
experimentos diferentes para una muestra de viabilidad inicial sobre 50%
que aument6 a 72% tras el proceso de "swim-up". Se observa un pico
principal, correspondiente a la subpoblacién mayoritaria, en el centro-
derecha del diagrama, donde se localizan preferentemente las células
viables, y otros picos menores mis a la izquierda del perfil. No se observa .
ningin pico enriquecido en células no viables.

120

100

% max. células

0 5 10 15°"0 20025 -30

n° tubo

Figura 3.- Perfil de. CCCD de una muestra de semen ovino
seleccionada por "swim-up". (O) % de células en cada ciémara
respecto al maximo, (A) % de células viables en cada camara, H
distribucion de las células viables totales.
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Discusion

La mayoria de los métodos de seleccién de espermatozoides
aumentan la proporcién de espermatozoides métiles y reducen, aunque
no pueden eliminar, la proporcién de espermatozoides dafiados. El éxito
de un método preparativo de esperma suele medirse por su rendimiento
en células métiles. Sin embargo, resultados de diferentes estudios
sugieren que la valoracién de la integridad y funcionalidad de la
membrana espermética puede predecir la fertilidad con més exactitud
que la motilidad (Check y Check, 1991; Check y col., 1991; Valcércel y
col.,, 1994). Asi mismo, en los iltimos afios, la heterogeneidad de la
poblacién espermdtica estd siendo considerada una caracteristica de gran
interés para la funcién espermética (Amann y col.,, 1993; Ollero y col.,
1994; Watson, 1995). Por tanto, los protocolos de seleccién de
espermatozoides deben de estar dirigidos a mejorar tanto la calidad de la
membrana como la heterogeneidad espermética. Asi mismo, y dado que
la centrifugacién es nociva para espermatozoides ovinos (Aitken vy
Clarkson, 1988; Graham, 1994; Mortimer, 1994) estas técnicas deberian
evitar el uso de la centrifugacién. El método de "swim-up'"/dextrano
descrito en este trabajo tiene como objetivo eliminar el plasma seminal
del semen sin centrifugacién separando, al mismo tiempo, una sub-
poblacién de espermatozoides con alta motilidad, viabilidad y hetero-
geneidad.

Aplicando a semen ovino el método de "swim-up" descrito por
Alvarez et al. para semen humano (Alvarez y col.,, 1993) la recuperacién
de espermatozoides viables result6 muy baja. Este hecho podria ser
debido a la osmolaridad del medio empleado (280 mOsm/Kg) ya que los
espermatozoides presentaban el flagelo enrollado, o también al efecto
nocivo de la alta dilucién en un medio salino simple sobre los
espermatozoides de ovino libres de plasma, como se ha descrito
anteriormente (Ashworth y col., 1994). Nosotros sustituimos la mayor
parte de CINa y CIK del mHTF por sacarosa aumentando asi la
osmolaridad del medio hasta 350 mOsm/Kg, y al mismo tiempo, la
densidad y viscosidad del medio depositado sobre los espermatozoides.
S6lo los espermatozoides mds métiles, capaces de atravesar ese medio,
podrdan ser recogidos en la parte superior del sobrenadante. Combinando
los tres tltimos sobrenadantes (2, 3 y 4) se obtiene una poblacién de
esper- matozoides de alta calidad que, ademds, no tiene plasma seminal,
el cual resulta nocivo para la supervivencia espermética (Doot y col.,
1979; Schmehl y col., 1986).

Los resultados obtenidos con muestras de motilidad individual baja
indican que el empleo de este método de seleccién permite mejorar
sustancialmente la calidad de la muestra. La motilidad de la muestra final
es semejante a la obtenida para espermatozoides humanos (Bongso y col.,
1989), pero ademds, el uso del HOS-test y de la doble tincién de
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fluorescencia permite una valoracién directa de la funcionalidad e
integridad de membrana (viabilidad) de cada espermatozoide de la
poblacién, mientras que los trabajos anteriores se basaban tnicamente en
la estimacién visual de la motilidad. Es de gran importancia resaltar que
la aplicacién de este método de "swim-up"/dextrano a muestras de
semen ovino que serian normalmente descartadas debido a su baja
motilidad inicial, permite seleccionar una poblacién espermitica no sélo
con alta motilidad sino también con alta integridad y funcionalidad de
membrana.

En el caso de muestras con motilidad inicial media o alta, aunque la
mejora relativa de los pardmetros estudiados no es tan alta como en
muestras con motilidad baja, los valores finales obtenidos son muy
altos (72 y 82% viabilidad, respectivamente), lo que indica que esta
técnica es adecuada para la separacién de una poblacién espermdtica de
alta calidad.

El porcentaje medio de células métiles recuperadas en la muestra
final, para todas las muestras de semen analizadas, fue 75,3 + 1,6,
ligeramente superior al descrito por Alvarez et al. para semen humano
por el método de "swim-up/dextrano" (Alvarez y col., 1993) , y muy
superior al conseguido con el método cldsico de "swim-up" y el de
gradiente de Percoll. El valor obtenido en este trabajo es suficientemente
alto para sugerir que las células seleccionadas corresponden a la mayoria
de las células métiles de la muestra, mds a que a un pequefio conjunto de
la poblacién, obteniendo al mismo tiempo una poblacién enriquecida en
espermatozoides altamente viables.

Los espermatozoides de un ejaculado constituyen una poblacién
muy heterogénea, como han puesto de manifiesto estudios de CCCD
(Ollero y col., 1994). La pérdida de esta heterogeneidad es un efecto bien
conocido del proceso de congelacién (Ollero y col.,, 1997; Ollero y col.,
1996b; Watson, 1995), que reduce drasticamente la capacidad fertilizante
del semen. En este trabajo, el andlisis por CCCD de las caracteristicas
superficiales de los espermatozoides de la muestra obtenida por "swim-
up" revela una gran heterogeneidad superficial asi como una alta
viabilidad celular. Estos resultados indican que la poblacién seleccionada
por el método de "swim-up"/dextrano tiene, no sélo una gran viabilidad y
heterogeneidad en el momento de su obtencién, sino también una gran
capacidad de resistencia ya que conserva una alta integridad de
membrana incluso después del proceso de distribucién en contracorriente
con centrifugacién.

Los resultados de.este estudio constituyen un importante aliciente
para la mejora de los métodos de seleccién de espermatozoides de alta
calidad. Si el incremento de la calidad "in vitro" se traduce en un aumento
de la fertilidad, la aplicacién de este método a muestras de calidad baja




incrementaria la productividad. Asi mismo, permitiria el uso de
eyaculados que, auin teniendo un alto valor genético, serfan normalmente
descartados debido a su baja motilidad inicial, lo que supone un gran
avance cientifico y tecnolégico para la inseminacién artificial en
programas de mejora ganadera.
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INTRODUCCION

La mejora de frutales persigue distintos objetivos, algunos
dirigidos a la obtencién de patrones en los que se busca una alta
compatibilidad de injerto, buen anclaje, carencia de espinas en la zona
del injerto o de corte y recalce, tolerancia a distintos tipos de estrés tales
como la sequia, la salinidad, la deficiencia de nutrientes, buen
comportamiento frente a temperaturas extremas Yy  otros que hacen
relacién a la rentabilidad del 4rbol, como elevada produccién, duracién
del periodo juvenil, vigor, necesidades de frio invernal y época de
floracién, calibre, color y sabor del fruto, época de maduracién, mixima
eficiencia fotosintética, resistencia a enfermedades y pardsitos.

En el género Prunus, los programas convencionales de mejora
genética son muy largos debido a la lenta entrada en el ciclo productivo
de los drboles. Ademds la transmisién de genes entre especies es muy
restringida dada su elevada autoesterilidad e interincompatibilidad. La
utilizacién del cultivo in vitro permite acelerar los programas de mejora
genética y superar los inconvenientes con que se encuentra el inves-
tigador con los métodos convencionales de mejora vegetal al poder
aplicar distintas técnicas como:

-La propagacién masiva y clonal de plantas selectas o plantas
dificiles de propagar por medios convencionales, pudiendo disponer de
un numero elevado de plantas clonales que permiten establecer
ensayos en campo comparativos entre distintos clones obtenidos por
esta técnica.

-Los estudios de compatibilidad entre patrén y variedad in vitro

permiten obtener resultados en cuestién de meses, mientras que
realizados en campo podrian prolongarse durante varios afios.
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-Seleccién sanitaria, regeneracién de plantas a partir de yemas
tratadas con termoterapia o incluso aplicando la termoterapia in-vitro y
propagacién posterior por micropropagacién.

-Seleccién in vitro: El cultivo in vitro ofrece la posibilidad de
seleccionar distintos genotipos frente a diferentes factores bidticos
(resistencia a enfermedades y plagas) y abiéticos (resistencia a
salinidad, a metales pesados, a clorosis férrica, a sequia, etc...). Esta
técnica que se puede realizar en plantas enteras, en brotes, en raices, o
en diferentes tipos de tejidos, e incluso en cultivos de células aisladas,
implica disponer de métodos de regeneracion de plantas seleccionadas in
vitro.

La variacién somaclonal, que se puede obtener mediante la
utilizacién de suspensiones celulares y cultivo de protoplastos (células
vegetales sin pared celular), también permite seleccionar material
vegetal con caracteres interesantes y presenta la ventaja de poder
disponer y estudiar enormes cantidades de individuos, aumentando la
probabilidad de aparicién de mutaciones de interés, espontaneas o
inducidas por el mejorador.

Los protoplastos son células vegetales que han sido separadas de
sus paredes celulares mediante un procedimiento mecédnico (fueron los
primeros desarrollados) o por digestién enzimitica (método mucho més
fiable y usado en la actualidad). Carecen de pared pero conservan todos
los orgidnulos celulares y el nicleo, contenidos sélo por la membrana
celular. De hecho, segin la teorfa de Schwann y Schleiden (1838) sobre
la totipotencia de las células de las plantas superiores, es decir, la
capacidad de producir un organismo altamente diferenciado a partir de
una sé6la célula somdtica, cualquier protoplasto (también Illamados
células desnudas) tiene capacidad de regenerar una planta entera.

El primer aislamiento de protoplastos vivos fue descrito por De
Klerck (1892), quién tuvo éxito al aislar protoplastos de cebolla usando
métodos mecénicos. El primer aislamiento por métodos enzimiticos lo
consiguié Giaja (1919) en células de levadura, utilizando jugo géstrico de
caracol (Helix pomatia); aunque en ese momento no Se conocia el
mecanismo de degradacién enzimdética de la pared celular, las
observaciones de este trabajo fueron muy importantes ya que el método
permitié aislar grandes cantidades de protoplastos.

Cocking (1960) utiliz6 por primera vez sustancias que degradan la
pared celular para aislar protoplastos de plantas superiores; obteniendo
protoplastos de raices de tomate mediante una preparacién de celulasa
cruda del hongo Myrothecium verrucaria (Ochatt y Power, 1992).




Los primeros trabajos con protoplastos de frutales de hueso no
estaban orientados al cultivo de éstos, sino a estudios bisicos. Fue hacia
mediados de los afios 80 cuando se desarrollé la investigacién aplicada a
la propagacién (Ochatt,1993). Para que las técnicas de mejora genética
basadas en la manipulacién de protoplastos sean factibles, es necesario
que los protoplastos, una vez aislados y puestos en cultivo, sean capaces
de regenerar la pared celular y por succesivas divisiones de las células
formar callos, y a partir de éstos, regenerar plantas enteras.

Su cultivo ofrece ademds la posibilidad de obtener hibridos
somaticos mediante la fusién de protoplastos con técnicas de electro-
foresis y aplicacién de PEG 6000 (polietilenglicol) (Ochatt et al, 1988), 6
aplicar técnicas de transferencia de genes (Oliveira et al, 1996). En la
practica nos encontramos con muchos inconvenientes, especialmente con
especies lefiosas, donde las técnicas son dificiles y el nimero de especies
en las que se logra el aislamiento de protoplastos o de células aisladas y
la regeneracién posterior de la planta es todavia escaso.

En frutales se ha conseguido la regeneracién de plantas completas
a partir de protoplastos con Broussonetia kazinoki, Pyrus comunis var
pyraster L, Pyrus comunis var Williams, Prunus avium x pseudocerasus,
Prunus cerasus, Malus x domestica, Actinidia chinensis (Ochatt y Power,
1988,1992; Patat-Ochatt et al, 1988; Huancaruna et al, 1993) Prunus
avium, Prunus cerasifera y Prunus spinosa (Ochatt, 1993; Revilla et al,
1987). Ya que el genotipo parece ser fundamental en la obtencién y
posterior regeneracién de protoplastos (Matsuta, 1992; Ochatt, 1991;
Hidano et al, 1988), en este trabajo se pretende poner a punto la técnica
de obtencién y cultivo de protoplastos de albaricoque, clon A-843,
sometido a diferentes condiciones de cultivo y con diferentes tejidos
vegetales

MATERIAL Y METODOS

El material utilizado corresponde al clon “A 843” de Prunus
armeniaca L., albaricoquero franco de semilla, cultivado in vitro en el
Departamento de Pomologia de la Estacion Experimental de Aula Dei y
que no presenta incompatibilidades con las variedades comerciales de
albaricoquero.

El material de partida fueron brotes micropropagados que se
encontraban en medio de cultivo MS (Murashige-Skoog 1962), y para la
obtencién de protoplastos se ha utilizado meséfilo de hoja, brotes
etiolados y suspensiones celulares.

Para ver la influencia que las condiciones de cultivo tienen sobre
la viabilidad y regeneracién de los protoplastos (Revilla et al 1987), se
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utilizaron dos combinaciones diferentes de reguladores de crecimiento,
IAA y BAP en uno y IBA y Z en otro, con las mismas concentraciones, 0,1
mM para las auxinas y 6,8 mM para las citoquininas. Antes de establecer
los brotes en el medio IZ, estuvieron durante un mes en medio MS sin
reguladores de crecimiento (MSO0). El material se cultivé en dos
condiciones de iluminacién diferentes, fotoperiodo largo con 16 horas de
luz y 8 de oscuridad, y con fotoperiodo corto, 16 horas de oscuridad y 8
de luz. La luz es suministrada por tubos fluorescentes Cool White, cuya

irradiancia es de 35mM/m’s. La temperatura de la cdmara de cultivo es
de 24° C, sin oscilaciones significativas. También se obtuvo material
etiolado  cultivdndolo en condiciones de total oscuridad durante un
periodo de tres meses.

Para la obtencién de callos se escogieron hojas procedentes de
cultivo in vitro de brotes establecidos en los medios MS y MZ, sometidos
a fotoperiodo corto y largo. Las hojas se cortaron transversalmente en
cuatro fragmentos y se colocaron ordenadamente sobre los diferentes
medios en placa. El medio utilizado fue el MS con los reguladores de
crecimiento BAP (3,5mM) y 2,4-D con diferentes concentraciones
(11,2mM, 22,4mM, 33,6mM, 44,8mM) que se citan como MQ4, MQ3, MQ2
y MQI respectivamente. La suspensién celular se obtuvo a partir de una
porciéon de callo, colocdndola en un erlenmeyer con medio liquido, en
agitaciéon a 80 rpm y en penumbra. La curva de crecimiento de la
suspensién celular se realiz6 determinando el Volumen de Células
Empaquetado ( PCV) cada 24 horas y la viabilidad de las células se
calculé con FDA, igual que para los protoplastos de meséfilo Una vez
establecida la suspensién, se subcultivé cada semana sustituyendo
parcialmente el medio de cultivo por medio fresco.

volumen que ocupa la masa celular
PCV = x 100 (%)
volumen total

Para la obtencién de protoplastos de meséfilo de hoja y de material
etiolado, el proceso pasa por una preplasmdlisis, la digestiéon enzimitica,
y posteriormente diferentes lavados para eliminar los restos vegetales
sin digerir y la purificacién de los mismos para obtener protoplastos sin
células vegetales con pared o muertas. Ya que la preplasmdlisis se ha
demostrado eficaz en la obtencién de protoplastos, de acuerdo con lo
descrito por diferentes autores (Power et al.,, 1990; Frearson et al, 1973),
hemos utilizado la soluciéon CPW (Tabla 1) con diferentes concentraciones
de manitol o sacarosa como osmético en todo el proceso de obtencién de
protoplastos. Asi hemos llamado CPW13M a la solucién con un 13% de
manitol, CPWOM a la que tiene un 9% de manitol y CPW21S a la que
tiene un 21% de sacatrosa. Todas ellas se esterilizan por filtracién.



Tabla 1: Composicién de la solucién CPW  (mg/l)

KH,PO4 27,2
CaCly-2H,0 1480
MgS04-7H,0 246

KI 0,16
CuSO4:5H,0 0,025

PVP-10 1% (peso/volumen)
pH 5,8

Para la obtencién de protoplastos de mesdéfilo, las hojas deben ser
de la parte superior del brote y han de estar totalmente expandidas. Se
ha de pesar el material para poder determinar el rendimiento del
proceso. Las hojas se cortan en secciones pequeflas transversalmente al
nervio central para que la solucién enzimadtica penetre con facilidad en
el interior del tejido y se dejan dos horas en la solucion CPW13M en
preplasmélisis. La composicién de las diferentes soluciones enzimdticas
(Tabla 2) se escogieron de entre las descritas en la literatura (Ochatt
1993), o derivadas de resultados de experiencias anteriores (Andreu et
al, 1995). La solucién enzimdtica se dejé actuar durante 18-20 horas en
oscuridad y agitacién suave a 40 rpm.

Para la obtencién de protoplastos de suspensiones celulares, se
utilizaron de 8 ml de la misma y se centrifugaron durante 10 minutos a
50g. Se eliminé el sobrenadante y se afiadieron 2ml. de la solucién
enzimatica elegida. No se hizo preplasmdlisis y la digestién enzimdtica se
realiz6 durante 24 horas, en agitacién a 40 rpm. y con luz difusa. A
partir del primer subcultivo, se seleccionaron las suspensiones celulares
de 2, 3, y 4 dias de cultivo en combinacién con cinco soluciones
enzimditicas diferentes (Tabla 3). Hay que sefialar que la solucién
enzimdtica denominada SE1 es la descrita por Matsuta (1992).

Tabla 2. Composicién de las soluciones enzimadticas para meséfilo de hoja
expresadas en tantos por ciento peso/volumen

A B € D

Celulasa R-10 - 1 2 1
Celulasa Fa 1 - - -
Hemicelulasa 1 1 1 -
Pectolyasa Y-23 0,1 0,1 0,1 0,1
Driselasa - - - 0,5
MES 0,1 0,1 0,1 0,1
Glicina 0,04 0,04 0,04 0,04
PVP-10 0,1 0,1 0,1 0,1
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Una vez finalizada la digestién enzimdtica y para eliminar los
restos de mayor tamafio, se filtra el contenido de la placa a través de
una malla de 50 mm. de didmetro de poro. Los protoplastos sin
impurezas se obtienen en la interfase entre una solucion de CPW 21S y
el CPW13M con los protoplastos, centrifugando durante 10 minutos a
100 g. Una vez eliminada parcialmente la solucién enzimdtica por
centrifugacién, se hacen sucesivos lavados por centrifugacién, bajando
progresivamente el osmético y finalmente los protoplastos se dejan
reposar durante una hora para que se estabilicen en la solucién CPWOM.

Los protoplastos se cuantifican utilizando un hemocitémetro y se
calcula su viabilidad utilizando FDA. El tamafio de los protoplastos se
mide con la ayuda de un micrémetro ocular, eligiendo varios campos al
azar y midiendo al menos 100 protoplastos. Los protoplastos se
cultivaron en perlas de agarosa al 1,2% en medio de cultivo KM (Kao y
Michayluk, 1975), utilizando el mismo medio liquido para evitar la
desecacién de la agarosa. La densidad de los protoplastos en el medio de

cultivo fue 1x105prot/m1 y para evitar contaminaciones bacterianas se
utilizé cefotaxima en concentraciones de 25 o 50 mg/l. Los protoplastos
se cultivaron en oscuridad a 24° C.

Tabla 3. Composicién de las soluciones enzimadticas utilizadas para la
obtencién de protoplastos de suspensiones celulares expresadas en tanto por
ciento peso/volumen

SE1 SE2 SE3 SE4 SES5
Celulasa R-10 2 2 1 1 -
Driselasa 1 1 - 1 2
Pectolyasa Y-23 0,1 0,1 0,1 0,5 0,5
Hemicelulasa - - 1 - -
Macerozyma - - 0,1 - 2
MES 0,1 0,1 0,1 0,1 0,1
PVP-10 0,1 0,1 0,1 0,1 0,1
Glicina 0,04 0,04 0,04 0,04 0,04

El tiempo requerido en la divisién de los protoplastos varia en cada
cultivo, pero en general, la primera divisién de protoplastos aislados de
suspensiones celulares se produce a las 24-72 horas de cultivo, mientras
que los obtenidos a partir de células del mesdfilo se producen a los 2 a 7
dias. Es necesario sustituir el medio liquido afiadiendo medio fresco cada
semana.




En los experimentos se estudiaron los efectos de las combinaciones
de distintos factores que influyen en el proceso de obtencién, aisla-
miento y cultivo de protoplastos.

De los factores que influyen durante el cultivo de los brotes, hemos
estudiado el efecto del medio de cultivo MS con IBA y BAP y medio MS
con zeatina y con AIA (MZ). Asimismo hemos utilizado brotes sometidos
a fotoperiodos diferentes, el llamado fotoperiodo corto, con 8 horas de
luz y 16 horas de oscuridad, y el fotoperiodo largo, con 16 horas de luz y
8 horas de oscuridad.

De los factores que influyen durante el aislamiento de protoplastos,
hemos estudiado diferentes composiciones enzimdaticas (Tablas 2 y 3) y
por ultimo, hemos utilizado diferentes concentraciones del antibi6tico
cefotaxima (0, 0,05 y 0,10 mg/ml) en el medio de cultivo para observar
si tenia alguna influencia tanto en la regeneracién como en el control de
la contaminacién.

Las combinaciones de factores que se estudiaron fueron las
siguientes:

Para la obtencién de protoplastos de meséfilo, se utilizaron hojas
de brotes en medio de cultivo MS, en dos fotoperiodos de luz diferentes,

y diferentes celulasas, la R-10 (I 6 2%) y la Fa y también sin
hemicelulasa.

En la obtencién de protoplastos de tallos etiolados, se evaluaron los
mismos factores que en el caso del mesdfilo de hoja, lo que hace un total
de 32 combinaciones diferentes.

Con las suspensiones celulares, se estudié el efecto del fotoperiodo
y de la zeatina en la obtencién de callo para el posterior establecimiento
de las suspensiones celulares, con las que se probaron 5 soluciones
enziméiticas diferentes, que llamaremos SE1, SE2, SE3, SE4 y SES.

RESULTADOS
Meséfilo de hoja

En la tabla 4 quedan reflejados los resultados de las
combinaciones realizadas en cada experimento. Se observa que se ha
obtenido un mayor rendimiento en las combinaciones que tenfan como
medio de cultivo el MS respecto al MSO+IZ con bastante diferencia.
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Esto mismo se ve de forma mds intuitiva en las grdficasl y 2, don-
de la serie nos indica el medio y fotoperiodo empleados durante el culti-
vo y los nimeros 1,2,3,4 representan las cuatro soluciones enzimiti-
cas: 1 Cel Fa, 2 Cel R-10, 3 Cel R-10 al 2% y 4 sin hemicelulosa (Tabla 2).

Grafica 1: Rendimientos en protoplastos/ml de meséfilo de hoja
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Grafica2: Rendimientos en protoplastos/gramo de meséfilo de hoja
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Aunque los factores que afectan al aislamiento y cultivo de
protoplastos estan interrelacionados, es interesante analizar indivi-
dualmente el efecto de cada uno de ellos. Y este andlisis permite decidir
que condiciones resultaron mds favorables para la obtencién de
protoplastos.

Agrupando los distintos factores que se pueden modificar a lo
largo del proceso observamos que el medio de cultivo que di6 mayor
rendimiento y viabilidad fue el MS y en cuanto a fotoperiodo, el largo
resulté mejor que el corto, las viabilidades difieren en mds del doble
una respecto de la otra. La solucidén -enzimdtica sin hemicelulosa dié los
mayores tantos por cientos de viabilidad y rendimiento. Existe una
mayor variabilidad de resultados si se utilizan soluciones enziméticas
distintas que si se varia el fotoperiodo o el medio de cultivo.

En cuanto a los factores que influyen durante el crecimiento de los
brotes, se observa que hay diferencias mds grandes en funcién de las
condiciones a las que sometamos el material durante el crecimiento que
las enzimas que se utilicen posteriormente. Por tanto se hace necesario
considerar conjuntamente el medio con el fotoperiodo.

Los protoplastos cultivados en medio de agarosa dieron algunas
divisiones que no se mantuvieron. La concentracién de cefotaxima de 25

mg/l de medio y una densidad de protoplastos de1x105pr0toplaslos/ml.

Tallos etiolados

En ninguno de los experimentos realizados (ver anexo 1), se
obtuvieron protoplastos en numero suficiente para cuantificar y medir
su viabilidad.

Suspensiones celulares

Las hojas cultivadas en el medio MQI no dieron callo en ninguna
porciéon de hoja y las cultivadas en el medio MQ2 no dieron callos
suficientes para establecer una suspensién. En la porcién de hoja donde
més rdpidamente se formaron callos fue en los  trozos préximos al
peciolo durante los 45 primeros dias y a partir del dia 50 fueron los
trozos mas alejados del peciolo los que formaron mas callos. En cuanto a
la influencia de las condiciones de cultivo de las hojas seleccionadas se
puede decir que las combinaciones medio MS y fotoperiodo largo result6
la mas favorable.

En las hojas cultivadas en medio MQ3 se observé una mayor

rapidez a la hora de formar callo en los trozos distales de la hoja. En
cuanto a las condiciones de cultivo de las hojas resultaron nuevamente
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las combinaciones MS y fotoperiodo largo o MSO+IZ con fotoperiodo largo
las mds exitosas, pero esta vez la correspondiente al medio MS ocupaba
el segundo lugar.

Las hojas cultivadas en medio MQ4 corresponden a los medios con
las concentraciones mdas bajas de reguladores de crecimiento. Los
fragmentos de hojas mds rdpidos a la hora de formar callo fueron el
intermedio y el distal. Como en el caso anterior las mejores condiciones
de cultivo de las que podian proceder las hojas utilizadas eran por orden
en primer lugar el medio MSO+IZ con fotoperiodo largo, y en segundo el
MS con fotoperiodo largo.

Una vez realizado este estudio todos los callos procedentes de las
placas con medio MQ3 se unieron en una unica suspensién, y se hizo lo
mismo con las de las placas con medio MQ4. Para determinar el
momento en que suspensién era la idénea para aislar protoplastos y se
visualizaron al microscopio. A los quince dfas de haber establecido las
suspensiénes se tomé una muestra de las mismas y se observaron al
microscopio. Los resultados se describen a continuacién.

La suspensién MQ3 presentaba la mayor parte de las células
alargadas, aunque existian también agrupaciones ya sea de células
pequeilas o de células alargadas y en menor cantidad alguna célula
pequefia aislada. Al mirar por el microscopio se obtuvieron los
siguientes tantos por cientos:

Tipos de células % del total Tiio(m)

-Células aisladas:

Pequefias con el citoplasma denso. 5% 95,6-119,5

Largas con el citoplasma denso. 20% 167,3-286,8

Largas sin citoplasma denso. 25% 167,3-239

“Extralargas” sin citoplasma denso. 10% 717-959 x 143 ,4
-Agrupaciones de células:

Largas con citoplasma denso. 15% 478-717 de A

Largas sin citoplasma denso. 15% 717-959 de A

Pequefias con citoplasma denso. 10% 239-358,5 de A

El tamafio de las células estd expresado en micras y se detalla
mediante un intervalo en el cual se encuentran las células encontradas
pertenecientes a cada subdivisién especificada.Las agrupaciones de
células se midieron imaginando un circulo de didmetro comprendido
entre los pardmetros indicados en cada caso.

En la suspensién MQ4 se observé que la mayor parte de las células eran
pequeflas y redondeadas, estaban aisladas y tenian el citoplasma denso.
También se encontraron agrupaciones de células pequefias con
citoplasma denso. Observando con fluorescencia se pudo comprobar una
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mayor viabilidad de esta suspensién con respecto a la MQ3, por lo que se
continuaron los experimentos tnicamente con la suspensién MQ4. Para
conocer cual era el mejor momento de realizar los ensayos se procedié a
la realizacién de una curva de crecimiento. En la suspensién MQ4 se
diferenciaron los siguientes tipos de células:

Tipos de células % del total Tfio(m)

-Células aisladas:

Pequefias con el citoplasma denso. 86 % 95,6-119,5

Grandes vacuoladas. 5% 239-358,5

“Extralargas” sin citoplasma denso. 3% 358,5 -478
-Agrupaciones de células:

Grandes vacuoladas sin citoplasma denso 1% 597,5 x 239

Pequefias con citoplasma denso. 5% 478-597,5 de A

La curva se realizd midiendo el % del volumen de células

empaquetado (%PCV) y la viabilidad con FDA cada tres dfas. La grafica
qued6é de la siguiente forma:

En esta grifica se puede observar como la suspensién celular se
encontraba en el momento idéneo tanto en viabiliad como en la fase de
crecimiento para realizar el primer subcultivo y a partir de ahi los
experimentos.

Los experimentos se realizaron durante tres dias consecutivos y los
resultados se presentan en la tabla 5.

Tabla 5. Resultados de los experimentos con suspensiones celulares

DiA 1 Protop. /ml Viabilidad Prot. Vivos / ml | % células sin dig.
S.E. 3,8 x 10° A% 3,42 x 10° 2%
S.E.2 6,2 x 10° 98% 6,07 x 10° 75%
S.E.3 2,3x 10° 98% 2,25 x 10° 85%
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SE4 1,8 x 10° 89% 1,60 x 10° 70%
S.E.5 6.7 x 10° = 6,16 x 10° 2%
MEDIA 93,6% 3,90 x 10° 72,8%
DiA 2 Protop. /ml Viabilidad Prot. Vivos /ml | % células sin dig.
SEIL 46 x10° 87% 4,00 x 10° 1%
SE2 69 % 10° 90% 6,21 x 10° 87%
SE3 33x10° T1% 2,54 x 10° 8%
S.E.4 2.8 x 105 87% 2,43 x 105 T3%
S.E.5 9.9 x 105 93% 9,20 x 105 60%
MEDIAS 96,8% 487 x 10° 73.8%
DIA 3 r Protop. /ml Viabilidad Prot. Vivos /ml |- % célulés sin dig.

S.E. 4,1x10° 85% 3,48 x 10° 85%
S.E2 6,3 x 10° 87% 5,48 x 10° 88%
SEBJ 29x 10° ¥ 1,88 x 10° 7%
SE4 2,5 x 10° B4 2,10 x 10° 89%
SES5 7.9 x 10° 0% 7,11 x 10° 14%
MEDIAS 82,2% 401 x 10° 84.6%

Considerando los valores medios se observa que la viabilidad va
disminuyendo a lo largo de los dias. El porcentaje de células sin digerir
se incrementa desde el primer dia hasta el tercer dia. Se alcanza el dia
dos un Optimo en cuanto a rendimiento de protoplastos vivos/ml.

La media de protoplastos vivos considerando las soluciones
enzimiticas se presentan en la tabla 6 y se puede observar que la de
mayor rendimiento es la S.E.5 que carecia de Celulasa R-10.

Tabla 6: Valores medios del niimero de protoplastos obtenidos por ml en los
experimentos de suspensiones celulares

SE.I SEZ SE3 SE4 SES
3,63 x 10° 592 x 10° 2,22 x 10° 2,04 x 10° 7,49 x 10°
DISCUSION

Teniendo en cuenta que se ha trabajado con material clonal, que
por tanto todas las células tienen el mismo genotipo, se han conseguido
resultados muy distintos. Incluso trabajando con hojas de un mismo
explanto, y sometidas por separado a idénticos tratamientos, han dado
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explanto, y sometidas por separado a idénticos tratamientos, han dado
resultados muy diferentes entre si (ver anexo 1). Autores de trabajos
realizados con Prunus persica (Mills et al.,1994) y con Prunus sp. (Ochatt
et al.,, 1992) coinciden en la importancia de este factor, y nosotros hemos
intentado, sin éxito, determinar que tipo de hojas dan mejores
resultados. Tan solo se ha observado que las hojas del tercio superior del
brote dan mayores rendimientos (Farre et al, 1996). La presencia de
zeatina en el medio en lugar de BAP, provoca un aumento importante en
el tamafio de las hojas que influye en la obtencién de protoplastos tanto
en el rendimiento como en la viabilidad. En los resultados obtenidos se
aprecia que la media de rendimiento obtenida para el medio de cultivo
MS es superior a la de MSO+IZ (Tabla 4), lo cudl nos indica que a pesar
de la apariencia inicial, la presencia de BAP como citoquinina en el
medio de cultivo es mds eficaz que la zeatina, con la misma
concentraciéon. La viabilidad también es mayor en experimentos en los
que se ha partido de material vegetal cultivado en MS que en los que el
material vegetal habia sido cultivado en MSO+IZ. Hay que tener en
cuenta que la zeatina es una auxina natural y es posible que se
metabolice en los brotes de una manera diferente que el BAP y eso
influya en el aislamiento de protoplastos. En cuanto al régimen de luz, la
media de viabilidad obtenida con fotoperiodo largo fue de 57%, mientras
que con fotoperiodo corto 27,68% y en cuanto al rendimiento, con

fotoperiodo largo se consiguié una media de 12,4x106prot/m] mientras
que con el corto fue de 11,94 x 10° prot/ml.

Aunque para algunas especies del género Prunus se ha
determinado una mezcla de enzimas eficaz para el aislamiento de
protoplastos de meséfilo de hoja (Ochatt, 1990), se hace necesario definir
con mayor precisién la combinacién de enzimas especifica para cada
genotipo. Asi para el clon “A 843” de Prunus armeniaca hemos obtenido
los mejores resultados tanto en viabilidad como en rendimiento con la
solucién enzimitica que no lleva hemicelulasa.

Con las suspensiones celulares se obtuvo menor rendimiento en la
obtencién de protoplastos que con meséfilo de hoja, aunque en la
suspensién una gran parte de las células mantenfan la pared celular
despues de la digestion enzimdtica, por lo que habria que optimizar el
proceso buscando incrementar el rendimiento. En las suspensiones
celulares es importante el proceso de establecimiento de la misma y el
tipo de callo utilizado (Teasdale et al, 1983; Karim et al, 1997). En cuanto
al callo, el que dié mejores resultados es el que se obtuvo con menor
concentracién de auxina, manteniendo la misma concentracién de
citoquinina, cultivados en oscuridad. El momento O6ptimo de Ia
suspension fue el segundo dia después del subcultivo, en el que el
porcentaje de células sin digerir fue de un 73%. La solucién enzimdtica
estaba compuesta por driselasa (2%) y pectoliasa (0,5%) en una solucién
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modificar la solucién CPW (Matsuta, 1986) y probar otras combinaciones
de enzimas que sean capaces de digerir la pared celular, mucho mas
gruesa que en el caso de las células del meséfilo de hoja.

Por lo que se refiere al cultivo de protoplastos, tan solo se
consiguié llegar a obtener crecimiento y divisiones mit6ticas de
protoplastos en aquellos cultivos en los que la concentracién de

cefotaxima fue de 25 mg/ litro y la densidad 1x 10° protoplastos/ml.
Concentraciones mds altas de antibiético resultaron tdéxicas para los
protoplastos y a menor concentracién fueron inefectivas. En este sentido,
se ha de determinar la composicién de los medios de regeneracién con
diferentes de reguladores de crecimiento y otros compuestos- que
permitan mejorar los resultados obtenidos.

La combinacién O6ptima de los factores estudiados, incluyendo el
material donante, es a partir de hojas procedentes de brotes cultivados
en medio de propagacién MS (0,025 mg/l de IBA, 1,5 mg/l de BAP), con
fotoperiodo largo (16 horas de luz y 8 horas de oscuridad) y utilizando
una solucién enzimética sin hemicelulasa, con lo que se han obtenido

28,78 x 10° protoplastos/gr (peso inicial) y hasta un 80% de viabilidad.
En la actualidad, uno de los objetivos planteados es optimizar el
aislamiento de protoplastos a partir de callos y suspensiones celulares
que nos permita establecer un sistema eficaz de regeneracion de
patrones frutales.
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Notice historique de 1I'Académie de Sciences
Exactes, Physiques, Chimiques et Naturelles de Zaragoza.

par
José L. Viviente Maten'
Profesor Emérito
Universidad de Zaragoza

Con este titulo y por invitacién, como Académico correspondiente de 1'Aca-
démie des Sciences. Inscriptions y Belles Lettres de Toulouse, presentamos una
comunicién a "La Conférence Nationale des Academies des Sciences, Lettres et Arts"
que tuvo lugar en Toulouse los dias 14, 15 y 16 de octubre de 1999, dias en que se
desarrollaron los actos que se especifican en el programa adjunto y que precede a la
transcripcién que en esta nota efectuamos de nuestra comunicacion.

Debemos recordar que "La Conférence Nationale des Sciences, Lettres et
Arts”, surgi6 hace unos diez afos en Francia como resultado de la agrupaci6n de las
Academias més antiguas de este pais. La Conferencia se retine (dos representantes
por Académie componente) cada afio, alternativamente en Paris por iniciativa del
"Institut de France”. y en provincias. La tnica ciudad de Francia que posee dos de
tales Academias es Toulouse. Diversas razones, entre otras los trabajos de
restauracion del extraordinario edificio, Hotel d'Assézat, sede de 1'Académie de
Sciences. Inscriptions et Belles Lettres, impidieron que se reuniera en ella la
"Conférence Nationale del Acedémies des Sciences, Lettres et Arts" hasta este afio de
1999. Cumpliendo una tradicién que hoy es norma, a las reuniones de la Conferencia
se suele invitar a las Academias de los paises limitrofes. Al ser el autor el tnico
académico de ciencias de nuestra Academia de Ciencias E. F. Q. y N. de Zaragoza,
que es correspondiente de la "Académie de Sciences, Inscriptions et Belles Lettres de
Toulouse". junto a nuestra amplia relacion de intercambios culturales, docentes y de
investigacion con la U.E.R. de Mathématiques de la Universidad Paul Sabatier de
Toulouse desde 1968 (Profs. Mascart, Crumeirolle, Pradines, etc.), aceptamos con gran
ilusién la invitacion. Permitasenos recordar con sentimiento que en ésta nuestra
primera estancia en Toulouse nos acompaiié el Prof. D. Antonio Plans Sanz de
Bremond. tristemente fallecido hace un afio.

La reunién. rica en intercambios, propicid interesantes encuentros entre
especialistas de campos muy diversos, con resultados muy satisfactorios. Creo que el
mas minimo deber ético nos exige dejar constancia en estas lineas del reconocimiento
de todos los asistentes a la labor de organizacién y desarrollo de la reunién por los
miembros de Toulouse, particularmente la que correspondi6 al Prof. Henri Mascart,
Secréraire Perpétuel de 1'Académie des Sciences, Inscriptions et Belles Lettres de
Toulouse.

1) Al final del texto se incluye el programa de actividades desarrolladas en la Conference
Nationale des Académies des Sciences, Lettres et Arts.

63




Mesdames et Messieurs:

Académicien Numéraire de 'Academia de Ciencias Exactas, Fisico-Quimicas y
Naturales de Zaragoza et membre correspondant de I'Académie des Sciences
Inscriptions et Belles-Lettres de Toulouse depuis longtemps, il est pour moi un grand
honneur et plaisir d'avoir été invité a cette réunion de la "Conférence Nationale des
Académies de Sciences, Lettres et Arts" pour représenter 1'Academia de Zaragoza,
particulierement, parce que cette année 1999 la réunion se tient a Toulouse dans ce
bel Hotel d'Assézat. Ceci nous permet, premicrement, de jouir, une fois de plus, de
l'accueil humain de mon collegue Mr. le Prof. Henri Mascart, Secrétaire Perpetuel de
votre Académie et membre correspondant de I'Académie de Zaragoza depuis 1967, et,
en deuxieme lieu, d'avoir l'occasion de vous présenter un brief rapport des activités
les plus importantes de I'Académie des Sciences Exactes, F. Q. et N. de Zaragoza
depuis sa fondation institutionnelle le 27 Mars 1916, et un résumé des échanges avec
votre Academie de Toulouse.

L'Académie jusqu'en 1963.°

De l'activité scientifique de "I'Academia de Ciencias Exactas, Fisico-Quimicas y
Naturales de Zaragoza" pouvons dire qu'elle commence vers 1886 avec les
propositions sur sa constitution de Mr. le Doyen de la Faculté des Sciences de
Zaragoza. Mr. le Prof. José Muiioz del Castillo, déclarations qui sont considérées
comme la source d'assimilatién et d'impulsion des idées scientifiques dans la societé
d'Aragén. compte tenu de la collaboration des différents Professeurs et enrichi par des
échanges d'informations scientifiques avec diferents membres d'autres Académies
d'Europe. 11 faut pourtant attendre le 17 Avril 1914, pour que la "Junta de la Facultad
de Ciencias de Zaragoza" sous la direction de son Doyen Paulino Saviron Caravantes
et a la demanda des professeurs Garcia de Galdeano et Rius y Casas, accorde sa
fondation et constitue une Comission chargée de son organisation sous la présidence
de Garcia de Galdeano et formée par les professeurs Rius y Casas par la Section de
Sciences Exactes, Rocasolano par celle de Chimie, Martinez Risco par celle de
Phisique et Ferrando Mas par celle de Sciences naturelles.

Une fois realisée la redaction de son réglement (il semble influencé par celui de
la Rovale Académie de Sciences de Barcelona) et nommés 21 académiciens, ceux-ci
tous membres fondateurs, reunis le 27 de mars de 1916, discutent et aprouvent le
Réglement. nomment le Bureau et les Bureaux des trois Sections initiales (Sciences
exactes. physico-chimiques et naturelles) et considerent constituée 1'Académie dont la
siege est fixé dans le batiment de la Faculté des Sciences. La séance inaugurale eut
lieu le 28 mai 1916 et suposa le soutien des forces vives et de la societé d'Aragén. Son
Président Mr. le Prof. Zoel Garcia de Galdeano considére I'Académie, dans son
discours. comme le "le plus haut échelon des sociétés culturelles" et "avec un but
complémentaire de celui des Universités".

2) L'auteur Remercie Elena’ Ausejo Maninezlpo_ur les donées jusqu'a 1936, puisées dans son
travail: " La Academia de Ciencias Exactas, Fisico-Quimicas y Naturales de Zaragoza (1916-
1936)". Cuadernos de historia de la Ciencia. Zaragoza, 1987.
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Les membres fondateurs étaient, a la Section Exactes: Z. Garcfa de Galdeano,
M. Lorenzo Pardo, M. Mantecon, P. Mozota, J. Rius y Casas, A. Ruiz Tapiador et G.
Silvan Gonzélez; a la Section de Physique-Chimie: G. Calamita, H. Gimeno, A. G.
Rocasolano, R. P. Marcolain, M. Martinez Risco, J. M*. Plans y Freire (le premier
espagnol a bien comprendre le Calcul Différentiel Extérieur et a suivre les travaux
d'Einstein) et P. Saviron. Finalement, la Section de Science.s Naturelles était, de
beaucoup, la plus active avec un plus grand nombre de publications. Furent membres
fondateurs les médecins Pedro Ramén y Cajal et Juan Bastero Lerga, Longinos
Navas, Jesiis M* Bellido Golferich, Pedro Ferrando Mé4s (Catedratico especialiste du
microscope polarizante Fedoroff, de mineralogie microscopique et biologiste
enthousiste) et Cayetano Ubeda Sardchaga.

Les Bureaux des trois Sections initiales sont composés au maximun par dix
membres numéraires par section; en outre pouvaient etre nommés dix Académiciens
correspondants nationaux et dix autres Académiciens correspondants étrangers.
Dans le Réglement est fixé le protocole de nomination, les droits et obligations des
membres, la periode d'exercice et le renouvellement des membres des diferents
Bureaux, et un Secrétaire Perpétuel (bien qu'aujourd'hui cette charge ait disparu), etc.
Le financement était irrégulier, tant par des subventions, les suscriptions a la revue de
I'Académie et la vente des publications extraordinaires, qu'a l'aide de subventions
annuelles d'un montant fixe de caractére budgetaire pendant certains périodes. En
dehors des activités, telles que la rédaction des mémoires des séances des assemblées,
conférences et articles de recherche des membres au siege de 1'Académie, les
conférences a 1'étranger et dans des centres culturels ou sociaux d'Aragén, ont doit
considérer une série de "Cursos de Conferencias" developpées entre 1920 et 1931, en
un certain sens, précurseurs des cours d'été de Jaca, et la rédaction ou la composition
de la revue.

Le commencement de la vie académique est profondement marquée par les
mathématiciens. Principalement par l'autorité scientifique du mathématicien Mr. le
Prof. Zoel Garcia de Galdeano y Yanguas, premier Président en activité jusqu'en 1922,
date a laquelle il prend sa retraite. En 1922 le poste de Président est ocupé par le
chimiste Prof. Antonio de Gregorio Rocasolano qui resta jusqu'au 21 décembre 1932;
en 1933 il est remplacé, jusqu'en 1935 inclus, par le Prof. Gonzalo Calamita Alvarez
qui, 2 son tour, est remplacé par le Prof. Paulino Saviron Caravantes qui resta
Président jusqu'en 1940 date a laquelle est nommé le naturaliste Prof. Francisco
Pascual de Quinto (baron de Tamarit) jusqu'a 1967, date ou il est remplacé par le
Physicien Prof. Justiniano Casas Pelaez jusqu'en 1977, date a laquelle est nommé
Président le mathématicien Juan Sancho San Roman jusqu'en 1986; il est remplacé par
le chimiste Prof. Enrique Meléndez Andreu qui resta en poste jusqu'en 1996, date a
laquelle lui succedera le naturaliste Prof. Horacio Marco Moll, actuel Président de
I'Académie. De 1919 a 1935 Ruiz Tapiador sera le trésorier remplagant Mr. le Prof.
Juan Bastero Lerga qui fut le trésorier de 1916 a 1918.

Plus tard deviennent membres de la section des Sciences Exactes: Gonzalo
Gonzilez Saldzar, .Antonio Lasierra Purroy, Pedro Pineda, Teodoro Rius, José
Hernindez Gasque, Francisco Cebrian et Fernidndez Villegas. Dans la période de
Garcia de Galdeano, c'est-a-dire pendant les trois ou quatre premieres années
d'existence de I'Académie, les seules publications sont des articles de mathématiques.
Depuis 1916 sont nommés académiciens correspondants les mathématiciens J. G.
Alvérez Ude, R. Benjumea, R. Gelabert, M. de la Hoz, J. Marvi, J. Rey Pastor, E.
Terradas, L. Torres Quevedo y J. M. de Zafra. Comme academiciens correspondants
étrangers sont nommeés les mathématiciens: en 1923 le professeur Jaques Hadamard
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(dont nous avons eu l'honneur et grand plaissir de rencontrer dans les jardins de la
Cité Universitaire a Paris en 1958), et en 1924 Albert Einstein.

Nommé en 1919 Viceprésident le chimiste Mr. le Prof. Rocasolano, en 1922
devient Président de 1'Académie et restera a ce poste jusqu'a la fin de 1932. IDans cet
intervalle, ou plut6t de 1920 a 1936 il est possible distinguer deux periodes. La
premiere de 1920 a 1927 ou I'Académie, sous le secrétariat de Lorenzo Pardo,
développe une importante activité sociale reconnue comme "le plus grand
mouvement régional de base scientifique" et qu'entre autres effets aboutit a la
construction du barrage de I'Ebre a Reinosa et a la création de la Conféderation
Syndicale Hydrographique del 1'Ebre dont la Direction Technique est occupée en
1927 par Lorenzo Pardo qui démissionne de la charge de Sécretaire de I'Académie. La
deuxieme période, de 1927 a 1936, ou I'Académie se maintient pratiquement grace a la
Section de Sciences Naturelles. Précisément en 1922 est nommé comme Viceprésident
le distingué entomologue Mr. le Prof. Longinos Navas (membre de 24 académies et
sociétés scientifiques, avec la publication de plus de six cents livres et brochures et de
plus d'un millier de rapports et notes, fruit de ses classifications des neuroptéres bien
connu a Paris, Londres, Viena, Berlin, Tokio, Changai et Hong-Kong).

De méme la Section de Physique-Chimie, recoit de nouveaux membres: En
1917 deviennent membres le Prof. Jerénimo Vecino, spécialiste en Géophysique et
Métrologie. décedé en 1928; et 1'Ingénieur Industriel Juan Usandizaga, Directeur
Technique des Societés Electriques de Saragosse et qui en 1916 forma la Commission
des "Etudes Electrosidérurgiques" pour la quitter en 1924. En 1923 rentre a
I'Académie Juan B. Bastero Beguiristain (éleve de Rocasoladno et plus tard
Professeur de Physique-Chimie), ainsi que le mathématicien Santiago Pi y Sunyer. En
1930 l'entrée de Juan Cabrera Felipe, Professeur d'Acoustique et d'optique, avec celle
du Prof. José M? Iiiguez Almech en 1933, Professeur de Mécanique Rationnelle et de
Mathématiques pour de Chimistes, et avec celles de José Pueyo y Luesma, éléve de
Saviron, et de Mariano Velasco, Professeur d' optique et Radiations. En 1936 Juan
Martin Sauras. Professeur de Chimie, marque un certain renouvellement des
générations. qui sera arreté par la guerre civile et ne se poursuivra pas qu'aprés 1943
avec l'entrée de Julidan Bernal Nievas et Mariano Tomeo Lacrué. Ce dernier, en 1960,
organisse le "1°° Congrés National d'Irrigation" dont I'inauguration a lieu le 28
octobre de 1963 et dont les séances auront lieu a Huesca, Lérida, Ejea et Alcaiiz
(cette derniere le 7 juin 1964).

L'activité académique de la Section de Physique-Chimie depuis 1920 est, en
général, d'une participation supérieure que a celle de la Section de Sciences Exactes,
de plus c'est aussi pendant les années 20 que commencent les contacts et échanges
avec d'autres académies et universités européennes. Comme membres correspondants
nationaux nous trouvons Blas Cabrera y Felipe, Rafael Luna y Nogueras, José A.
Perez del Pulgar. Felipe Lavilla (Professeur de Chimie organique de L'Université de
Madrid), José M* Madariaga, électrotechnicien du Corps d'Ingenieurs des Mines,
Eduardo Victoria, Luis Bermejo Vida et Simon Benitez Padilla. Tandis que comme
correspondants étrangers, fruit des contacts de Rocasolano, nous trouvons: les Profs.
Charles Henry (1920), de la Sorbonne, Jean Perrin (1922), Paul Sabatier (1923),
Doyen de la Fac. Sciences de Toulouse, et H. Bechhold (1927), Univ. de Darmstadt.

La Section de Sciences Naturelles était, de beaucoup, la plus active avec un
plus grand nombre de publications. Nous avons cité les membres fondateurs. En 1917
I'Ingénieur des Mines Angel Gimeno Cunchillos nommé Académicien développe une
grande activité jusqu'en 1926. En 1919 entrent les ingénieurs: Agricole José Cruz




Lazaparan, et des Monts (Bois et Forets) Nicolas R. Garcia Cafiada, qui disparait en
1933. De 1921 a 1929 deviennent Académicien Mr. I'Abbé de San Miguel de los
Navarros, Vicente Bardaviu, amateur de 1'archéologie, collaborateur de P. Paris et R.
Thouvenot de I'Ecole des Hautes Etudes de Bordeaux. Autres membres de I'Académie
sont: depuis 1924 Andrés Giménez Soler, 1930 Pascual de Quinto et Alfonso Osorio-
Rebellén, 1934 Emiliano Ladrero Ramén, et en 1936 Rafael Ibarra Méndez. Les
conférences sont nombreuses, principalement sur des questions en rapport avec les
Pyrenées, comme celle du glacierologue francgais Abate Gaurier ou celles de Gaussen
ou de José Miguel Barandiaran.

Pendant les trois années de la guerre civile et jusqu'en janvier 1963, I'activité
de I'Academie est relentie; faute de moyens les publications sont presque inexistantes
et la seule activité se réduit aux quelques réunions pour la nomination de nouveaux
académiciens et la publication de leurs discours d'entrée ainsi que des discours de
début des cours. Méme, on trouve des périodes comme celle du 1* décembre 1957 au
15 janvier 1963 ou il n'existe rien de consigné. Pourtant la revue de 1'Académie,
quoique de facon trés iréguliere, était publiée. Signalons que, dans la periode de 1940
a 1963, sont nommés membres: a la Section d'Exactes le Prof. Rafael Rodriguez Vidal
électif en 1954 et numéraire en 1959, le Prof. Antonio Plans Sanz de Bremond électif
en 1955 (numéraire en 1969), et le Prof. Rafael Cid Palacios nommé électif en 1957
(numéraire en 1979); a la Secction de Physiue-Chimie est nommé en 1943 Vicente
Gomez Aranda, Professeur de Chimie organique; et a la Section de Sciences
Naturelles en 1945 Agustin Alfaro Moreno, Ingénieur Agronome, spécialiste en
Fitopatologie et Entomologie, Directeur du Centre de Patologie Végétal de Zaragoza.

L'Académie de 1964 a nos jours

Cette année 1964, avec le meme Président, marque un certain point d'inflexion
dans la vie de 1'Académie a cause d'une relative renaissance de ses activités,
dédoublement effective de la Section de Physique-Chimie en deux Sections
autonomes: une de Physique et une autre de Chimie, ainsi qu'un progressif
rajeunissement des postes de responsabilité, particulierement de celui chargé des
éditions de 1'Académie qui doit actualiser sa revue et renouveler les échanges avec
d'attres académies et universités malgré la manque de moyens financiers.

En 1966 1'Académie de Sciences Exactes, Physiques, Chimiques et Naturelles
de Zaragoza fete le 50° aniversaire de sa fondation avec de nombreuses
manifestations culturelles toutes presidées par son Président Excmo. Sr. D. Pascual de
Quinto, baron de Tamarit, qui prend sa retraite en 1975. En 1966 devient Academicien
Numéraire de la Section de Physique le Prof. Justiniano Casas Pelaez, Catedratico de
optica, qui en 1967, par élection, est nommé nouveau Président de 1'Académie. Le
Prof. Justiniano Casas Pelaez, bien consideré par le Ministere et le C.S.I.C. a Madrid,
réussit 2 obtenir que I'Académie soit prise en charge par le budget annuel du C.S.I.C.
et qu'ainsi I'Académie puisse couvrir les dépenses de la publicatién de sa revue et de
ses monographies, et cherche a régulariser ses nombreux échanges.

L'Académie au début de cette période se renouvelle trés lentement malgré
l'existence de nombreuses vacances. En 1964 est nommé Académicien Numéraire: par
la Section de Chimie Celso Gutiérrez Losa, Professeur de Physico-Chimie. En 1966 la
Section de Sciences Exactes nomme Académicen Numéraire Juan Sancho San
Romén, Professeur de Mathématiques et la Section de Chimie Rafael Uson Lacal,
Professeur de Chimie Inorganique; et la Section de Sciences Exactes, en 1969,

67




Antonio Plans Sanz de Bremond Professeur de Mathématiques, mais il faut attendre
1979 pour trouver deux nouveaux académiciens numéraires, a la Section de Sciences
Exactes avec le Prof. d'Astronomie Rafael Cid Palacios, et a la Section de Physique
avec le Prof. de Radiologie de la Faculté de Médecine Francisco Marin Gorriz. Deux
ans plus tard, en 1981, devient Académicien Numéraire pour la Section de Chimie le
Prof. Luis Antonio oro Guiral, et dans la méme Section le Prof. Enrique Meléndez
Andreu, Professeur de Chimie organique, en 1982. La Section de Sciences Naturelles
nomma, en 1983, Académicien Numéraire le Prof. Horacio Marco Moll, Professeur de
Biologie et en 1984 la Section de Sciences Exactes regoit comme Académicien
Numéraire José L. Viviente Mateu, Professeur de Mathematiques et en 1988 devienne
Académicien Numéraire Mariano Gasca Gonzalez, qu'a I'époque, en 1967, ont été
designés correspondants étrangers le Prof. Claus Miller de la Tecnische Hochschule
de Aachen: Helmut H. Schefer du Mathematische Institut Univ. Tubingen; et Henri
Mascart de 1'Université Paul Sabatier de Toulouse. De méme, depuis 1968, Alberto
Galindo, Clemente Saenz, Eusebio Bernabeu, Baltasar Rodriguez Salinas y Javier
Etayo Miqueo, sont académiciens correspondants nationaux.

En 1968. sur invitation du Prof. Plans, le Prof H. Mascart, nommé Académicien
correspondant en 1967, visite le Département de Géometrie et Topologie de
'Université de Saragosse et donne l'ocassion d'établir des rapports avec ]'Université
de Toulouse et son Académie de Sciences que se sont prolongé jusqu'en 1986, avec
le devellopement d'une serie d'activités: comme differents cours de "Collaboration a
niveau du 3™ Cycle" entre le U.E.R. de Maths. de Toulouse III et le Département de
Geométrie et Topologie de 1'Université de Saragosse sous la responsabilité des Profs.
A. Crumevrolle et José L. Viviente. Patronné par I'Ambassade de France en Espagne
et I'Université de Saragosse a l'aide du programme de recherches du Professeur José
L. Viviente Mateu jusqu'en 1982 ou nous avons participé aux Journées Fermat. La
collaboratién se prolongea jusqu'en 1989 avec les Professeurs H. Mascart et J.
Pradines. mais a un niveau personnel, on doit signaler notre communication sur
l'enseignement de la Géometrie a 'Université aux ..3 “ Rencontres Européennes de
'Enseignement Supérieur” & I'Université de Toulouse II, du 16 au 18 Février 1989.
Dans cette collaboratién, en plus de quelques €leéves du Prof. Plans, ont participé nos
éleves de I'époque. en particulier, les actuels Professeurs Mme. Maite Lozano Imizcoz.
Eladio Dominguez Murillo et José F. Saenz Lorenzo. Nos conférences ont traité sur la
structure homotopique des variétés (homologie et cohomologie, suites spectrales.
théorie K et cobordisme, et applications a I'étude du structure quotient des
feuilletages).

Pourtant de 1983 a 1996 il n'existe pas d'autre activité enregistrée que celle
de la nomination et réception des nouveaux académiciens avec la publicatién de la
revue et des monographies. Aucune autre activité de ses membres n'est enregistrée
par 'Académie. du fait qu'il n'y a pas d'organisme qui la subventionne.

En 1977 le Prof. Casas démissionne de la Présidence de 1'Académie et est
nommé Président le Prof. Juan Sancho San Roman qui le resta jusqu'en 1986. on
réussit a obtenir une mise a jour de la publication de la revue et des monographies
publiées par I'Académie. Il faut savoir qu'aujourd'hui les échanges avec d'autres
Académies. Societés scientifiques, etc., absorbe 44 exemplaires en Espagne et 127 a
I'Etranger. Les échanges culturels, d'enseignement ou de recherche de ses membres
sont couverts par d'autres moyens specifiques comme les programmes de recherche
ou d'enseignerment au niveau du troisieme Cvcle cités précédement. De ce type sont
principalement les échanges entre les Universités de Toulouse et Saragosse.
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De 1986 a 1996 le poste de Président est assuré par 1'Académicien Prof.
Enrique Meléndez, qui en général suit une action analogue a celle du Prof. Sancho
bien qu'il devra faire face 2 quelques problemes de caractére social. Les Académiciens
correspondants nationaux a cette époque étaient: En plus de ceux nommés en 1968,
on trouve depuis 1989 José Barluenga, et depuis 1992 José Antonio Madariaga,
Oriol Riba Arderiu, José M* Montesinos, et Nacere Hayeck Kalik.

En 1996 est nommé Président de 1'Académie le Prof. Horacio Marco Moll,
Professeur de Biologie, qui a pris en charge l'actualisation du nombre d'académiciens
de chaque Section, et d'organiser différents cours ou cycles de conférences: un sur la
Paléontologie Aragonese en 1997; un autre en 1998 intitulé "Nuevas tendencias en
Paleoboténica" avec la participation de professeurs étrangers, qui a eté publié dans la
monographie n° 13 de I'Académie. on a restauré aussi la mise au concours des Prix de
Recherche pour des étudiants terminant leur licence.

Pour finir signalons que, comme fruit de l'actualisation du nombre de membres
de chacune des sections de 1'Académie, ont été regus Académiciens Numeéraires
depuis 1989 les personnes suivantes: A la Section de Sciences Exactes, les
Professeurs de Mathématiques:

En 1988 Mariano Gasca Gonzilez;

En 1998 José Garay de Pablo, Manuel Calvo Pinilla, et M". Teresa Lozano
Imizcoz;

En 1999 Eladio Dominguez Murillo.

Récemment ont été nommés "Académiciens Electifs" le Professeur d'Analyse
Jestis Bastero Eleizalde et celui d'Astronomie Antonio Elipe Sénchez, on attend, donc,
la lecture de leurs discours d'entrée a I'Académie pour devenir Numeéraires et, a ce
moment-la, la Section de Sciences Exactes sera complete et tres rajeunie.

A la Section de Sciences Physiques, les Professeurs de Physique:
En 1996 Luis Boya Balet;

En 1997 Rafael Nunez-Lagos Rogli;
En 1999 Javier Sesma Bienzobas.

Restent encore cing siéges a pourvoir, bien que soient deja électifs trois autres
candidats.

A la Section de Sciences Chimiques, le Professeur de Chimie:

En 1997 José S. Urieta Navarro.

Restent encore six siéges a pourvoir, bien qu'il y ait deja deux autres électifs.
A la Section de Sciences Naturelles, ont été nommés Académiciens Numéraires:
En 1993 le Prof. Joaquin Villena Morales;

En 1997 le Chercheur Juan Marin Vazquez;

En 1998 le Prof. Eladio Lifian Guijarro et le Prof. Mateo Gutierrez Elorza;

En 1999 le Prof. Carlos Gomez - Moreno, (a rentrer le 21 octobre 1999).

Restent encore quatre sieéges a pourvoir, bien qu'il y ait deja deux autres
€lectifs.
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Voila donc, en bref, I'état actuel de notre Académie. En méme temps j'ai
I'honneur de vous transmettre le voeu de ses membres d'établir une plus étroite
collaboration entre nos deux Académies.

José L. Viviente Mateu
Profesor Emérito
Facultad de Ciencias
Universidad de Zaragoza
e-mail: viviente @ posta. unizar. es
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I.’Académie des Jeux Floraux
L’Académie des Sciences, Inscriptions et Belles Lettres de Toulouse

Regoivent

La CONFERENCE NATIONALE

DES ACADEMIES DES SCIENCES, LETTRES ET ARTS

TOULOUSE : OCTOBRE 1999

JEUDI 14 OCTOBRE 1999
HOTEL D’ASSEZAT (Palais des Académies)

14 h 30 Accueil des congressistes.

16h 15

16 h 30

17h 15

17h 45

Allocution de bienvenue

par Monsieur Lucien REMPLON,

membre d’honneur de I’ Académie des Sciences,
Inscriptions et Belles Lettres,

président de 1’Union des Académies et Sociétés Savantes.

« Les grandes heures de Toulouse, ville des Lettres, Arts et
Sciences »

par Monsieur Guy LAZORTHES,

membre de I’Institut « Académie des Sciences »,

censeur de I’ Académie des Jeux Floraux,

président honoraire de I’Académie des Sciences,
Inscription et Belles Lettres.

Présentation de la Conférence Nationale
par Monsieur Patrice BONNEFOUS,
président de la Conférence Nationale des Académies.

Adresses des membres étrangers au nom
des Académies représentées

Monsieur José-Luis VIVIENTE MATEU
Académie des Sciences exactes, physico-chimiques
et naturelles de Saragosse

S.E. Antonio SERRANO de HARO, Ambassadeur d’Espagne
Correspondant de I’ Académie de I’Histoire, Madrid,
Maitre es Jeux Floraux.

Monsieur Jean SCHOOS

Institut Grand-Ducal de Luxembourg,
Académie de Wiesbaden

Maitre es Jeux Floraux.

18 h 30 Réception Salle des Illustres de "HOTEL DE VILLE

par Monsieur Dominique BAUDIS, Député-Maire.

10h 30 Diner dans la Salle des Colonnes

T

de ’HOTEL-DIEU SAINT-JACQUES.
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9h

9h 30

10h 15

11 h

20 h Concert

20h 45

Diner de Gala.

VENDREDI 15 OCTOBRE 1999
HOTEL D’ASSEZAT (Palais des Académies)

“DU PASTEL A L'ESPACE™

“Du pastel de la Renaissance a la renaissance du pastel”
par Monsieur Paul REY,

président honoraire de I’Académie des Sciences,
Inscriptions et Belles Lettres.

“Le siecle d’or toulousain : point de vue de ['Histoire”
par Monsieur Bartolomé BENNASSAR,

mainteneur de I’ Académie des Jeux Floraux,

membre correspondant de 1’ Académie des Sciences,
Inscriptions et Belles Lettres.

“Le siecle d’or toulousain : point de vue des Arts ™
par Monsieur Guy AHLSELL de TOULZA,
membre correspondant de I’ Académie des Sciences,
Inscriptions et Belles Lettres.

“Toulouse et la conquéte de ['Air et de I'Espace ™
par Monsieur André TURCAT,
mainteneur de I’ Académie des Jeux Floraux.

12 h Départ pour la CITE DE L’ESPACE.
13 h Déjeuner, puis visite de la Cité de I'Espace.

18 h 30 Réception a 'HOTEL DU CONSEIL GENERAL,

par Monsieur Pierre IZARD,
président.

CHAPELLE DES AUGUSTINS

(ancien couvent, actuellement Musée Municipal).

d’Orgues par Willem JANSEN



PROGRAMME DES ACCOMPAGNANTS

VENDREDI 15 OCTOBRE 1999
9 h 30 Réunion, devant I’'horloge de la Mairie, Place du Capitole.

Premiére visite accompagnée par les guides-conlérenciers
de I’ Association Toulousaine d'Histoire de 'Art (ATHA).
Les grands monuments de Toulouse

Le Capitole, Saint-Sernin, Les Jucobins,

['Hdtel de Bernuy, 1'Hotel d’Assézat.

SAMEDI 16 OCTOBRE 1999

9 h 30 Réunion, devant I'horloge de la Mairie, Place du Capitole.
Deuxiéme visite accompagnée
par les guides-conférenciers de 'ATHA.
Les demeures du quartier Saint-Rome.

Les quais de la Garonne et le Bazacle.

Durée des visites, environ deux heures.

REMERCIEMENTS A

Mairie DE ToUuLOUSE, CONSEIL REGIONAL, CONSEIL (GENERAL,
AMIS ASSEZAT, FrAM, EDF/GDF, CAISSE DES DEPOTS ET CONSIGNATIONS
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SAMEDI 16 OCTOBRE 1999
ANCIENS MOULINS DU BAZACLE

9h Assemblée Générale Annuelle de la Conférence.
Les membres de la Conférence sont priés de faire connaitre
les questions qu’ils souhaiteraient voir aborder.

Il h Visite de I'exposition organisée par
I'Académie des Sciences, Inscriptions et Belles Lettres,
“Images des sciences et science de 'image
présentée par Monsieur Paul REY.

13 h Buftet.

14h 30 Reprise de I'Assemblée Générale Annuelle.
16 h 30 Fin des travaux de la Contérence.

thesksk ok ok

ASSEMBLEE GENERALE ANNUELLE

de 1a CONFERENCE NATIONALE
DES ACADEMIES DES SCIENCES, LETTRES ET ARTS

9h-11h
14 h 30 - 16 h30

1) Rapport moral du Président.
2) Rapport du Secrétaire Général.
3) Rapport du Trésorier :
Précédent exercice,
prochain exercice,
‘cotisation annuelle.
4) La Conférence Nationale de I'an 2000.
S) La vie de I’ Association :
- la révision des statuts
- la liaison permanente entre les Académies
- le bulletin périodique Akademos
- les relations avec I' Académie de la-Méditerranée
- les archives de la Conférence
- les subventions
- les frais postaux pour I'envoi des mémoires.
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Rev. Academia de Ciecias. Zaragoza 54 (1999)

ENSENANZAS DE LA ACADEMLA DE MATEMATICAS DE
MADRID (CREADA PoR FELIPE II)

Por
Concepcién Romo Santos.
Catedratica de Algebra.
Universidad Complutense de Madrid.

Introduccién.

Juan de Herrera nacié en Mobelldn, estudié en la Universidad de
Valladolid y siguiendo a Carlos I recorrié Flandes e Italia. En 1.556 volvi6 a
Espafla acompaiiando a Carlos I en su retiro de Yuste, hasta su muerte en
1.558. En este momento Juan de Herrera se incorpora a la corte de Felipe II y
es enviado a Alcald de Henares para disefiar las figuras geométricas del Libro
de Saberes, de Alfonso X el Sabio.

En 1.562 entra al servicio de Juan Bautista de Toledo, director de la
construccién del Monasterio de E1 Escorial.

En 1.567 muere Juan Bautista de Toledo y en virtud de la fama adquirida
como hombre esmerado en la realizacién de figuras geométricas, se le encarga
la direccion en la continuaciéon de las obras de E1 Escorial. Los des-
cubrimientos de Juan de Herrera de maquinas y gruas, suponen una ayuda
inestimable para la construccién de tan impresionante obra.

Otro de los grandes logros matemdticos de Juan de Herrera fué la
creacion de la Academia de Matemadticas en Madrid. Es de sobra conocido que
Felipe II fué un personaje abierto a todo el sabor cientifico y un gran defensor
del estudio de las Matemadticas. Convencido el rey de que la carencia de
artilleros (era necesario contratar artilleros italianos para los ejércitos del
imperio), y de que la profusién de errores en la confeccién de las cartas de
navegar, se debian a una falta de formacién matematica, Felipe II, a instancias
de Juan de Herrera, decidi6 instituir una Academia de Matematicas en Madrid.

La creacién de la Academia se realiza en Lisboa, el 2S de diciembre de
1.S82, durante el viaje de Felipe II, con motivo de la anexién de Portugal al
Imperio.

El objetivo de este trabajo es el conocimiento del plan de estudios de la
Academia de Matemadticas de Madrid creada por Felipe II.
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1.- LOS PRoFESORES DE LA ACADEMIA DE MATEMATICAS

El once de febrero de 1.583 salieron de Lisboa Felipe II y sus
acompaiiantes rumbo a Madrid, donde Herrera se ocup6é de poner en practica
lo acordado, buscando primero una casa en las cercanias del Real Alcdzar y
poniéndola en condiciones para que comenzasen en ella las clases el primero de
octubre, dias después de llaber asistido en El Escorial a la colocacién de la
ultima piedra del Monasterio.

Se ignora cuales fueron las enseflanzas impartidas en este primer
momento, pero si no hubo otros nombramientos posteriores a los conocidos de
Lisboa habria que suponer que sélo Labafia con el auxilio de onderiz comenzé
la ensefianza de las Matematicas, lo que explicaria que Herrera al dar la noticia
en primero de enero de 1.584 hablase de una cétedra y no de una academia.

Mais tarde se incorporarian mdas profesores y de los datos conocidos
podemos deducir que las materias explicadas y los profesores que las tuvieron a

su cargo fueron:

-Matemiéticas: (Labaiia, Onderiz, Andrés Garcia de Céspedes, Juan Cedillo
Diaz, Julio César, Julidn Firrufino y Luis Carduchi).

-Naiitica: (Labafia y Juan Cedillo Diaz).

-Arte Militar: (Pedro Rodriguez Muiiz, Julidn Firrufino y Cristébal de Rojas).
-Cosmografia o Esfera: (Rocamora y Torrano, Julidn Firrufino).

-Astrologia: (Labaiia).

-Mecdnica: (Juan Angel).

2.- LoS ALUMNOS DE LA ACADEMIA DE MATEMATICAS

Los alumnos eran cortesanos distinguidos debido a la influencia ejercida
en todos los tiempos por la conducta de los monarcas. Lo mismo que las damas
de la Reina Catdlica afios antes estudiaban latin como ella, ahora las aficciones
de Felipe II y su evidente interés por esta Academia, instalada junto al Real
Alcézar, originaba esas aficiones desinteresadas.

No hay,en cambio, el menor indicio de que acudiesen hombres que
aspirasen a tener como medio de vida uno de los quince caminos sefialados por
Herrera, y la presencia de Lope de Vega en las aulas no es achacable a ello, sino




a la atraccién que sobre su espiritu inquieto y fantdstico provocaba en especial
la Astrologia.

Lope de Vega habla de su profesor Labafia en su obra. Como ejemplo
veremos el siguiente parrafo de La Dorotea:

"Esto estudié en mi tierna edad del doctisimo portugués Juan Bautista
Labaiia y sélo tal vez juzgo por curiosidad ".

3.- ENSENANZAS DE LA ACADEMIA DE MATEMATICAS

En la gran Bibliotheque Mazarine de Paris y con la signatura 30.383, se
conserva un volumen que contiene dos obras de Juan de Herrera: "Sumario y
breve declaracié de los disefios y estampas de la Fabrica de San Lorencio el
Real del Escurial", e "Institucién de la Academia Real Mathematica, en
Castellano, que la Magestad del Rey Don Phelippe II N.S. mando fundar en su
Corte".

Juan de Herrera hace unas consideraciones previas sobre el pésimo estado
del conocimiento de las ciencias matemadticas en Espafia, una disertacién
doctrinal sobre la importancia de las mismas, una enumeracién de las quince
especialidades que se cursarian y unas peticiones finales al Rey sobre la validez
de estos estudios.

Lo que podia considerarse plan de estudios pretende abarcar la formacién
profesional de lo que hoy se consideraria quince carreras tan diferentes entre si
que van desde arquitectos e ingenieros hasta misicos y pintores. Seguin se
afirma en el documento serian las siguientes:

Aritméticos tedricos y précticos, para que puedan determinar las dubdas y
questiones escondidas que se offrecen en todas las sciencias y artes.

Gedémetras diestros en el medir todo género de supefficies, cuerpos, campos y
tierras.

Misicos expertos en aritmética, sin la qual desconocerdn las consonancias
musicales y la Ritmica.

Cosmégrafos encargados de situar las tierras y descrivir las provincias y
regiones.

Pilotos diestros y cursados en navegaciones que sepan guiar con seguridad las
flotas y poderosas armadas.
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Arquitectos y fortificadores para que con fabricas magnificas, y edificios
publicos y particulares ennoblezcan las ciudades, y las fortifiquen y defiendan
de los enemigos.

Ingenieros y maquinistas, entendidos en el arte de los pesos y en todo género de
Machinas.

Artilleros y maestros de instrumentos y aparatos bélicos.
Fontaneros y niveladores de las aguas para los aguaductos y regadios.

Horologiégrafos que tratan de relojes solares.

Perspectivos que sean afamados y con fundamentos para doctrinar a pintores y
escultores.

Juan de Herrera estimd, como Sdcrates, que los Mathemaéticos son aptos
para todas las otras sciencias y artes.

Juan de Herrera estableci6 los libros que deberian conocerse o leerse paa
cada uno de los especialistas, libros que expondremos en el parrafo siguiente.

Ademds de las clases tedricas, en diversas ramas (Mecédnica, Cosmografia,
etc.) se indica que habrian de manejarse diversos aparatos y maquinas y ello
concuerda con las actividades de Herrera, Labafia y otros como inventores de
instrumentos cientificos. La descripcién de los laboratorios y talleres de la
Academia, debido a Carduchi, acredita hasta qué punto se valoraron estas
ensefianzas practicas. Por fortuna, lo tinico que ha llegado a nuestros dias es
una serie de valiosos aparatos de esta coleccién, que pasaron a los Reales
Estudios y por las sucesivas transformaciones de sus locales llegaron a ser
propiedad del Instituto de San Isidro, que en fecha reciente ha tenido que
entregarlos al Ministerio de Educacién para que se exhiban en el Museo de la
Ciencia.

4.- ESPECIALISTAS DE LA ACADEMIA
Aritméticos
Aconsejaba a los que quisieran saber esta disciplina conocer los primeros

nueve libros de Euclides. También el estudio de Elementa Arithmética de
Jordano Memorario, la Aritmética de Boecio y la Aritmética de Frater Lucas.




Y para los que quieran estudiar Algebra deben conocer el Décimo libro de
Euclides, el de Algebra en Arithmética del Doctor Pedro Niifiez, la Aritmética
integra de Stifelio y el Algebram de Peletier.

Gedmetras y mensuradores

El1 Geometra ha de saber: "Los esféricos" de Teodosio, "Las Secciones
cOnicas" de Apolonio Pergeo, la obra de "De sphaera et cilindro" de
Arquimedes. Para ejercitar su oficio deberd leer los seis primeros libros de
Euclides y para la estereotomia el undécimo y duodécimo.

Mecdnicos

Segin Juan de Herrera el que quiera estudiar Mecdnica, madre y maestra
de la vida, por los muchos provechos que de ella resultan, deberia saber los
siete primeros libros de Euclides y el séptimo, undécimo y duodécimo del
mismo autor. También los siguientes: Equiponderantes de Arquimedes, Centro
gravitatis de Comandino, Liber de Ponderibus de Jordano Nemorario y las
Mecanicas de Aristételes.

Astrélogos

La inquietud intelectual de Juan de Herrera le condujo a concebir una
vision renacentista del mundo, en el que ésta era para €l a la vez mégico y
cientifico. En aquel mundo la astrologia y la astronomia todavia permanecian
unidas.

Herrera aconseja a los astr6logos las siguientes obras: los quince libros de
Euclides y su Perspectiva y Especularia, este dltimo en la traduccién, entonces
manuscrita, de onderiz, donde presenta la proyeccién cénica y la reflexion en
los espejos planos y esféricos; los Tridngulos planos y esféricos de Monteregio
y los de Menelao traducidos por Maurolico; el Almagesto de Tolomeo, las
Tablas astronémicas del rey Alfonso el Sabio y también las de Abraham Zacuto,
contenidas en su Almanach perpetuum, y finalmente aconseja usar los
instrumentos astronémicos.

Horologiégrafos o Gnoménicos

Consideré Juan de Herrera que quien pretendiera saber la Gnoménica o
Horologiografia, deberd entender los seis primeros libros de Euclides y el
undécimo y duodécimo, ademds de los Esféricos de Teodosio, las Cénicas de
Apolonio, la Gnoménica de Cristobal Clavio, que es el mds completo texto
publicado sobre la construccién de relojes astrondrnicos, la Analemmate de
Tolomeo comentado por Comandino, en cuyo segundo libro ensefia la
construccién de relojes solares y la traduccién por Maurolico de los Esféricos
de Teodosio, ademds de entender muy bien la perspectiva.
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Cosmégrafos

El1 Cosmégrafo, segiin Herrera, deberd entender de la Esfera, de la
Tedrica de planetas y de Eclipses. Por eso manejard la Geografia de Tolomeo.

Pilotos

Juan de Herrera habia inventado un instrumento para determinar las
longitudes en las navegaciones de Este a Oeste que mereci6 el privilegio
concedido por Felipe II. Juan de Herrera escribié: "el perfecto piloto deue
de saber la sphera, entender la carta de marear y saber en ella situar y
poner la tierra ". En atencién a ello dispuso que se estudiaran la Geografia de
Tolomeo.

Perspectivistas

En opinién de Juan de Herrera los que qisieren ser perfectos en esta
facultad entenderdn los seis primeros libros de Euclides ademads del undécimo y
duodécimo; la Perspectiva de Tolomeo y la Perspectiva préictica de Barbaro.

Miisicos

Los estudiantes deberian conocer lo que hay escrito de miisica por los
autores y obras siguientes: de Aristoxeno, Harmonicas; de Euclides, Miisica; de
Tolomeo, Harmonicarum; de Boecio, De Musica; de Jordano, Elementa
Musicalia y de Zarlino, Institutione Harmoniche.

Por otra parte con el conocimiento de estos textos confixmaba Herrera la
importancia de las matematicas en la composicién musical, concepto importante
en su época. Asi Boecio expone los fundamentos matemadticos de la misica con
doctrinas pitagéricas y el cdlculo matemdtico de los intervalos y las
proporciones.

Arquitectos

Especifica Juan de Herrera "el que quisiere merecer el nombre de
Architecto deberd entender el tratado De Architectura compuesto por Vitruvio,
y los Dieci libri de I ' Architectura de Leon Battista Alberti"

Estima Herrera que el que quisiere gozar del nombre de Pintor " debera
ser expertisimo en el Disefio y en el Colorido. En cuanto a sus conocimientos,
tanto tedricos como practicos, ha menester de las Matematicas, Anatomia y
Perspectiva.



Fortificadores

Para Herrera la fortificacién es un arte. Por eso dice que: el arte de
fortificar fue antiguamente profesion propia de los Alarifes, para quienes todo
su intento es defender y asegurar las fuerzas y ciudades del impetu del enemigo

Los fortificadores estaban obligados a saber Arquitectura, ademds de
conocer todo lo referente a las médquinas bélicas y a la artilleria.

Niveladores

Juan de Herrera considera oficio el de Nivelador que se ocupa de nivelar
las aguas, encafiar las fuentes, construir acequias y conductos de aguas.

Los Niveladores deberdn conocer los seis primeros libros de Euclides y el
séptimo, asi como el tratado "De iis quae vehuntur in aqua", de Arquimedes, asi
como el tratado "De iis quae vehuntur in aqua", de Arquimedes, los Hidrailicos
de Herén Alejandrino y el octavo libro de Vitruvio.

Herrera dominaba este oficio, pues rectificé la nivelaciéon de la famosa
acequia de Colmenar de oreja.

Milleros

Piensa Herrera que los artilleros tienen que estudiar la misma teoria que
los mecdnicos,mientras que para la practica deben saber de fundiciones y
mezclas de metales, de medidas. También sabran hacer pélvora, salitre y fuegos
artificiales.

Para leer en la Academia aconseja Herrera: el tratado Inventione de
Tartaglia, que desarrolla el movimiento y la caida de los cuerpos, el décimo
libro de Vitruvio, y algunas cosas de Ateneo que suponemos pudieran
encontrarse en Las Mdquinas de guerra, tratado atribuido a €l.

Ateneo, contémporéneo de Arquimedes, fue un tratadista militar y
matematico, griego de la escuela de Platén.
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Accessibility of solutions of equations on Banach spaces

by a Newton-like methods and applications

Toannis K. Argyros
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Abstract

We. provide sufficient conditions for the convergence of Newton-like methods to
a locally unique solution of an equation on a Banach space. We use the concept
of the degree of logarithmic convexity in connection with the fixed point theorem
to extend the region of convergence given so far for these methods. In the case of
quadratic equations we find a ring that contains accessibility points for Newton’s
method lying outside the sphere of convergence given by the Newton-Kantorovich
Theorem. Our results extend the region of accessibility of solutions by Newton’s

method for some quadratic integral equations appearing in radiative transfer [1],

5], [9]-
1. Introduction

In this study we are concerned with the problem of approximating a locally unique z* of
the equation

F(z)=0 1)

where F' is an operator defined on a closed convex domain D of a Banach space E; with

values in a Banach space F;. We use Newton-like methods of the form
Tnyl = Ty — A(zn)_lF(zn): (TL > 0)(20 € D) (2)

to generate an iteration {z,}(n > 0) converging to z*. Here A(z) € L(E1, Es)(z € D)
which is the space of bounded linear operators from E; into E,. For A(z) = F'(z)(z € D)
we obtain Newton’s method [3], [4], [8]. Several other choices for A are also possible [4],
[8]. We define the operator P : D C E; — E; by

P(z) =z — A(z)"'F(z), (3)
in which case (2) can also be written as

Tns1 = P(z,) (n > 0)(zo € D). (4)
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Sufficient conditions for convergence of iteration {z,}(n > 0) to z* have been given
by several authors (see, for example, [4], [8] and the references there).

A solution z* of equation (1) is said to be accessible from zy by Newton-like method
(2) if

z" = lim z, = lim P™(zp). (5)

The region of accessibility of z* by method (2) is defined to be the set of all zo such
that (5) is true.
Let us define operator Lr € L(Ey, L,) by

Lr(z) = P'(z) (z € D). (6)

This operator is the degree of logarithmic convexity of F' in z and is a measure of
convexity of the function. It was used in [6], [7] in the special case when A(z) = F'(z)(z €
D). These convergence results were used to find starting points zo lying outside previously
found convergence regions, for which (2) converges to z* in this case. However this was
done only for scalar as well as systems of equations when E; = E; = R. This is because
for convergence we need to show ||Lr(z)|| < ¢ < 1, and this is a very difficult problem in
general.

Here we provide sufficient convergent conditions for our method (2) to a locally unique
solution z* of equation (1). Our results reduce to the corresponding ones in [6]. Moreover
we show how to compute c for quadratic equations on E;. We also suggest how to compute
¢ for polynomial equations on E; of degree k € N.

Finally we show how to apply our results to solve quadratic integral equations appear-
ing in radiative transfer [1], [3], [4], [5], [8], [9]-

2. Convergence Analysis

Using contraction mapping techniques we obtain the semilocal convergence results:
Theorem 1. Let F': D C E; — E, be Fréchet-differentiable on a closed convex domain
D, A(z) € L(Ey, E,) for all z € D. Assume:

(a) linear operator T' = A(z) ™! exists and is differentiable for all z € D;

(b) linear operator Lp(z) exists on D and
|ILr(z)|| <c< 1 for all z'e D; (7)

(c) for zg € D, r* > 12=P@N | 17(50 *) = {z € Ey|||& — zo|| < r*} C D.
Then Newton-like iteration {z,}(n > 0) generates by (2) is well defined, remains in

U(zo, 7*) for all n > 0 and converges to a fixed point z* of P in U(zq,*) which is unique




in D. Moreover the following error bounds are true for all n > 0
lzn — z*|| < c"r. (8)

Proof. Newton-like iteration {z,}(n > 0) is well defined on D for all 2 € D since linear

operator A(z) is invertible on D. Using induction on n > 0 we can show
z, € U(zo, ") and |zn — 2ol < (1= c™)r* < ™. 9)

For n = 1 and hypothesis (c) we have ||z; — zo|| < (1 — ¢)r* < r*, which shows (9) in
this case. Assume that (9) is true for all positive integers smaller or equal o n. Then we

must show
Tup1 € Ulzo,r™) and  ||zas — 20| € (1 = ™) < 7%
By hypothesis (b) and (4) we get

Znt1 = 2all = [|P(zn) = P(zn-1)ll < SUPz¢(zp-1,2q] I1P'(2)[l|zn — Tn-1ll

(10)
< cllzn = Tn-1]| £ oo < Y|z = T0|| = (1 =)

)

and
|Zns1 — Toll € |Tas1 = Zall + 2o — 2ol S QA =)+ (L= M)r* = (1 = ")r* < 17,
which completes the induction. Moreover by (10) we obtain, for n,m € N

|Zntm — Zall < (1= c™)c"r" (11)

Estimate (11) shows that {z,}(n > 0) is a Cauchy sequence in a Banach space E, and
as such it converges to a limit z* € U(zo,7*), since U(z=,7*) is a closed set. By taking
the limit as n — oo is (4) and using the continuity of F' and A(z) we deduce P(z*) = z".
To show uniqueness, let ¥* € D with P(y*) = y*. Then we can get

lz* =yl = |1P(z*) = P )| < sup [IP'(2)llllz* —y*|| < cllz® = ']
z€fz"y*)
which implies that z* = y* (since ¢ € [0,1)). Finally, letting n — oo in (11) we obtain
(8), that completes the proof of the Theorem.

Following [4], [6], [7], the region of accessibility to z* is extended to a closed ball
around zy as the following result indicates:

Theorem 2. Consider the iteration yn+1 = P(yn) for yo € U(zo,7*) under the hypotheses
of Theorem 1. Then iteration {y,}(n > 0) is well defined remains in U(zy,7*) and
converges to a unique fixed point z* of P in U(zg,7*). Moreover the following error

bounds are true for alln > 0:

* Cn * n *
lvn —2*ll < T lt1 = %ol and [l = 2°|| < €"[|2" ~oll.
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Proof. The result follows immediately by the contraction mapping principle [4], [§],
provided we show that operator P maps U(zo,7*) into inself. Indeed let z € U(wzo,r*),

then we obtain
llz1 — P(z)ll = [|P(z0) — P(z)]| < cllzo — z|| < e,

that completes the proof of the Theorem.
Corollary. If ||vg — zo|| < 79 — r* under the hypotheses of Theorem 2, Newton-like
iteration {z,}(n > 0) converges to z* for any starting point in U(zo, )

In terms of the degree of logarithmic convexity we have the following result concerning
the convergence of Newton-like method (2).
Theorem 3. Assume that hypothesis (b) of Theorem 1 holds on D = U(vg, 7). If
I|A(vo) = F (wo)|| £ (1 —¢)ro, Newton-like method {xz,}(n > 0) generated by (2) converges
to the unique solution z* of equation F(z) =0 in D for any zo € D.
Proof. We note that a fixed point P is a solution of equation F(z) = 0. The result now
follows immediately from the proofs of the previous Theorems.
Remark. For A(z) = F'(z)(z inD) Theorem 1, 2, Corollary, Theorem 3 reduce respec-
tively to Theorems 2.1, 2.2, Corollary, Theorem 2.4 in [6].

3. Applications to Quadratic Equations

The verification of condition (b) of Theorem 1 is a very hard problem in general. In [6],
[7] and the references there the authors verified this condition for scalar as well as systems
of real or complex equations. Here we suggest a possible extension of our results in the

case of quadratic equations of the form
F(z)=y+B(z,z) —z (12)

where B is a bounded symmetric bilinear operator on D C E; and y € E; is fixed. Hence
in the case of F' given by (12) we obtain from (6) for A(z) = F'(z)(z € D)

Le(2)(2) = 2B(2)BB(a)(2)[~z +y + B(z,3)) (13)

where B(z) = (2B(z) — I) and B(z)™! = [(2B(z) — I)]™*
Let 2o € D be such that [F'(zo)]™" = B(zo)~! exists and set b > ||B(z¢)~'B|| # 0.
Let r € [0, :_,’—b), and assume U(zg,7) C D. Then for z € U(zg, ) we have

B(z)] = B(zo)[I + 2B(z0) ™ B(z — z0)), (14)

and

12B(z0) "' B(z — z0)|| < 2/|B(z0) ' Bl|||z — zo|| < 2br < 1. (15)
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It follows from the Banach Lemma on invertible operators [4], [8] that F'(z) = B(x)

is invertible on U(zo,r) and
1B(z)"*Blzo)]ll < (1 - 2br)™". (16)
Moreover we have by (12)

B(zo) ' F(z) = B(zo) Y[(zo — z) + (y — z0) + B{(z — z0) + Zo, (& — To) + To}]
= B(z0)™'B(z0)(z — o) + [B(zo) ™' B](z — z0, 2 — o)
+ B(zo) !y — 7o + B(zo, o))

By taking norms, using the triangle inequality and (4) we get

1B(z0) ' F(2)]| < llz— ol +1B(z0) " Blll|z = @o]|* + |0 = P(o)l| < 7 +br?+ ||z~ P(z0)|

17
It follows from (13), (16) and (17) that e
IZe@l <cr), e o), (19)
where
olr) = g+ o+, 62 s Plao)l (19)
Define the scalar function A on [0, +00) by
h(r) =cir®+cor+c3 (20)  where ¢ = —2b% ¢y = 6br, c3 = 2b6 — 1.

It is simple algebra to show that ¢(r) € [0,1) if

h(r) <0 and TrE€ [O, %) (21)

It can easily be seen that (21) is true if

3—VT+2q

g=2b5<g<1, (22) and r€[0,a), where a= oF

(23)

Note that estimate (22) is the Newton-Kantorovich hypothesis for equation (12) and
a is the smallest zero of the scalar equation h(r) = 0 where h is given by (20) [4], [8].
Hence we arrive at:
Theorem 4. Let F : U%(zo,a) C E; — E, be given by (12), and A(z) = F'(z)(z € D) in
(2). Assume that the Newton-Kantorovich hypothesis (22) is true for some zo € U°(z, a)
at which F'(z,) is invertible. Then (7) is true for all 7 € [0,a). Moreover if there exists a

minimum nonnegative number 7* € [0, a) satisfying the inequality

>

~1—c(r) @t
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then the conclusions of Theorem 1 for equation (12) and iteration (2) are true.
Proof. It follows immediately from the above discussion, the proof of Theorem 1 and the
observation that (24) is true if g(r*) > 0 where g is a function defined on [0, +00) given
by

g(r) = 2b*r* — 263+ q)r? + (1 + ¢)r — 6, (25)
Remark 2. Descarte’s rule of signs the equation g(r) = 0 has three positive zeros or one.
Let s denote the smallest such zero in either case. We note that equation (25) can have
zeros in [0,a) even if g(a) < 0. However it is simple algebra to check that g(a) < 0. Hence
we can set 7* = s in this case.
Remark 3. Another approach will be to define the function g; on [0, +0c0) by gi(r) =
—2b(3 + q)r* + (1 4 g)r — 6. We note that by (25) gi(r) > 0 for all 7 € [0,400). The
discriminant of this quadratic polynomial is nonnegative if q € [0, @] Let t; < ty be
the real zeros of the equation g;(r) = 0. Then we easily deduce t; < a. Hence in this case
set 7* = t; in Theorem 4.
Te Newton-Kantorovich Theorem [4], [8] for equation (12) asserts that if hypothesis

(22) is satisfied then z* € U(zo, i) where 1, = l"vbl"’. We easily show:

(i)ifge [0, @ﬁ) then i, < a;
(i) if g € [0, 2—@] then 7 > q;

(iii) g(rx) < 0 and g(rx) = 0if ¢ =0 (rx = 0 in this case).

At the end of this study we provide an example where z* € U(z,7%) C U(zo, ty).
Remark 4. Theorem 4 is a crude application of Theorem 1. In practice one hopes that
(7) will be satisfied in cases that do not imply the Newton-Kantorovich hypothesis (22).
Examples where Newton’s method converges but (22) is violated were given in [6], (7] for
scalar or systems of real equations and in [1], [3], [4] for quadratic integral equations on
various Banach spaces. See also the example that follows.

Remark 5. Concluding we note that both Newton-Kantorovich and Theorem 4 apply if
condition (22) id satisfied. However the balls centered at the same point z, that contain
the solution z* are not of the same radius.

Let us consider the ring U = U(zg,7*)—U(zo, 1) # 0 then there exists a starting point
wo & U(zo, x) such that Newton’s method converges. However the Newton-Kantorovich
Theorem [4], [8] does not guarantee convergence in this case. Hence there exists a region
of accessibility for the convergence of Newton’s method that is missed by the Newton-

Kantorovich Theorem [1], [3], [4], [5], [8], [9], [10]. We confront such a case in the example
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that follows.

Example. Special cases of (12) are quadratic integral equations of the form
1
F(z)(s) = y(s) + /\a:(s)/0 k(s,t)z(t)dt — z(s) =0 (26)
in the space Ey = E; = C|0, 1] of all functions continuous on the interval [0,1] with norm

Izl = max la(s)].

Here we assume that A is a number called the ”albedo” for scattering and the kernel

k(s,t) is a continuous function of two variables s,t € [0, 1] satisfying
0<k(st) <1, k(0,0)=1 and k(s,t)+k(t,s)=1, s,t€(o1]

The function y(s) is a given continuous function defined on [0,1], and z(s) is the
unknown function sought in [0,1].

Equations of this type are closely related with the works of S. Chandrasekhar [5], (No-
bel prize of Physics 1983), and arise in the theories of radiative transfer, neutron transport
and in the kinetic theory of gases in connection with the problem of determination of the
angular distribution of the radiant flux emerging from a plane radiation field [1], [3], (4],
(5], [9]-

To apply Theorem 4 we need to compute b and § initially, For example choose K (s, t) =

J K(0,0) =1, s,t€(0,1], and define

s+t
S
s+t

Blay) = %A [z(s) / : —y(e)dt +y(s) / : m(t)dt].

Then B is a symmetric, bounded, bilinear operator on E; with

l s
t—3 ‘)
B(z,z)(s) = Az(s) /0 ——a(t)dt (27)
and
Bli= e /1 g dtl—|/\|ln2 (28)
1Bl = | st lJo s+t | : =

Note that the choice of B given by (27) is indeed a special case of equation (12).
The values of b, 8 for various choices of A have been given in (1], [3], [4], [5], [9] and the
references there.

Choose as an example zo(s) = y(s) = 1 for all s € [0,1], A = 2, then from (22), (23),
Remark 3, (30), we obtain

|F'(1)7Y|| < 1.3836213, a=.8513131, b=6 < .1918106,

q=.0735826, 7 =.1954752, t;=.242025=171" and c(r")= .2074761.

89




All hypotheses of Theorem 4 are satisfied for 7* = ¢; and U(zo,7x) C U(zo,t1) (also
see Remark 5).
Finally the results of Theorem 4 can be extended to include polunomial operator

equatiohs,of degree k € N given by
F(z) = My + M;(z) + Ma(z,z) + ... + My(z,z,..2) —z =0,

where M; is a bounded, symmetric i-linear operator (i = 1,2,...,.k) and M, € F, is fixed
(1], [2], [4], [8], [9]- For the computational details in deriving the crucial functions c(r)

and h(r) in this case we refer the reader especially to [2].

Conclusion

We provide sufficient conditions for the convergence of Newton-like methods to a
locally unique solution of an equation on a Banach space. We use the concept of the
degree of logarithmic convexity in connection with the fixed point theorem to extend the
region of convergence given so far for these methods. In the case of quadratic equations
we find a ring that contains accessibility points foe Newton’s method lying outside the
sphere of convergence given by the Newton-Kantorovich Theorem. Some applications of
our results to the solution of quadratic integral equations appearing in radiative transfer
in connection with the problem of determination of angular distribution of the radiant
flux emering from a plane radiation field are given. Relevant work can be found especially
in [1], [, (8], [9], [10].
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Accessibility of solutions of equations on Banach spaces

by a Stirling-like method

Ioannis K. Argyros

Department of Mathematics. Cameron University. Lawton, OK. 73505, U.S.A.

Abstract

In this study we use a Stirling-like method to approximate a locally unique fixed
point of a nonlinear equation on a Banach space. We use the concept of logarithmic
convexity to find a ball containing the solution. We show that our ball includes
convergence balls found in earlier results. Consequently, there exist infinitely many

new starting points from which the fixed point can be accessed.

1. Introductién

In this study we are concerned with the problem of approximating a locally unique fixed
point z* of the nonlinear equation
Fz) =z (1)

where F' is a nonlinear operator defined on a closed convex subset D of a Banach space
E with values on itself.
We define the functions

p(z) = [I - F'{P(z)}] ", v(z) =z - F(z),
and we propose the Stirling-like method
Tnt1 = Tn — plea)(@) (02 0). (2)

Here P : D C E — E is a continuous operator and F'(z) denotes the Fréchet-
derivative of operator F' [3], [5]. Special cases of (2), namely Newton’s method {P(z,) =
z, (n > 0)}, the modified form of Newton’s method {P(z,) = zo (n > 0)} the ordinary
Stirling method { P(z,) = F(z,) (n = 0)}, have been studied extensively [1]-[6]. Stirling’s
method can be viewed as a combination of the method of successive substitutiones and
Newton’s method. In terms of the computational effort, Stirling and Newton’s method

require the same computational cost.
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In this study we provide sufficient conditions for the convergence of method (2) to

*

z*. Moreover we find a ball centered at a certain point zo € D including same center
convergence balls found in earlier works (see 2], (3], [6], and the reference there). Conse-
quently, we fins a ring containing infinitely many new starting points from which z* can
be accessed via method (2).

To achieve this goal we define the operator G : D — E by
G(z) = z — p(z)v(z). @)

We then use the degree of logarithmic convexity of G which is defined to be Fréchet-
derivative G’ of G, (3], [4], [5].
Finally, we complete our study with an example where our results compare favorably

with earlier ones.

2. Convergence Analysis
Let a € [0,1),b > 0, and zo € D be given. Define the real function g on [0, +0c0), by
9(r) =b(1 + a)r® — [(1 — a)® = bl|v(zo)lr + 1 = a)[lw(z)ll,  (4)

and set
c=bllv(zo)|  (5)

It can easily be seen, that if

c<[ya2+(1-a)2-a]*=d, (6)

then equation g(r) = 0 has two nonnegative zeros denoted by r;, and ry, with r; < 7.

Define also a |
S ab(1+a;/ - (7

Finally, set:
I =[ry,T3). (8)
We now state and prove the main semilocal convergence theorem for method (2).
Theorem 1. Let F,P, be continuous operators defined on a closed conver subset D
of a Banach space E with values on itself. For a € [0,1),b > 0, and zp € D be fized,
assume:

(a) F is twice continuously Fréchei-differentiable on D, and

IF (@) - F@l<blz-yl, (9 IF(@I<a<l, (10) for all z,y € D.




(b) U(zo,7) = {z € E\|||z — zo|| < 7} € D for any r € I, where I is given by (8).
(¢c) ¢ < d, where c,d are given by (5), and (6), respectively.
(d) P is continuously Fréchet-differentiable on D, and

IP'(2)l <a,  (11) P(z) € U(zo,7),  (12)
lz — P(z)| < |lv(=)l], (13) for all z € U(o,r).
Then, the following hold:
()
IG' ()]l < = ) —= vl <h(r) <1,  (14)
where

Ch(r) = [(1 +a)r + |[v(zo)|l] (15) for all r € I.

b
(1-a)
(ii) Iteration {z,}(n > 0), generated by (2) is well defined, remains in U(zo,)(r € I) for
alln > 0 and converges to a fized point z* of G in U(zo, 1) which is unique in U(zo, 1),
where 74 € [r1,75) and 15 = min{ry, 73}

Moreover, the following estimates hold for alln < 0:

|lzn — z*|| < h™(r)r, r€I (16)

b(1 + 2a)

=gy Izl (1)

. b .
|zns1 =2*|| £ 7=lllen = Pl@n)ll + 1P (za) — 2 [llllzn — 2| <

Proof:
(i) By differentiating (3), we obtain in turn for z € D

G'(z)

I - (z)v(z) — (@) (@) = I + p(z) F"{P(z)}P'(@)pv(z) — p(z)[l - F'(z)]
w(@) [ (z) + F'{P(2)} P'(z)u(z)v(z) - I + F'(z)] (18)
w2)[F'(z) — F'{P(2)} + F"{P(2)} P'(z)u(z)v(2)]

Il

Using (9)-(13) and the Banach lemma on invertible operators [5] we obtain from (18)

IG' (@)l < Aoy —z (@)l (19)

= )
In particular for z € U(zo, ), (19), the choice of 7 € I, and the estimate

lv(@)l| = ll(z — z0) + ¥(20) + [F(z0) = F(@)]| < 7+ [lv(zo) | + ar,

we obtain (14).
(ii) It follows from (4) that

lizo — G(zo)|l
E =
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Hence we can get

ey —zoll =1 - h(r)lr <7, rel

which shows z;, € U(zo,7) and (16) for n = 1. Assume that, for k = 1,2...,n, we have
zx € U(zo,T) Iz — zol| < [L = RE(r)]r < . rel (21)
Using (2) and part (i), we obtain in turn

Zns1 — znll = IG(20) — G(zam1)l| £ SUPy¢(zp-1,2n] IG"W)lllzn — Tn|
< h(r)l|zn = zn-als (22)
lzne1 = zall < A()lIZn = Zacall < .. < RP()||210 = 20| = [1 = B(r)]A"(r)r,

and for r € [
lZns1=2oll < llEns1=2all+l|zn—2oll < [1=R(r)]A"(r)r+[1=A"(r)]r = [1-A"(r)]r <7,
That is, we showed (16) for all k£ € N. Moreover by (22), we have for n,m € N
[Zntm — Zall < [1 = A™(r)]A"(r)r. (23)

Estimate (23) shows that {z,}(n > 0) is a Cauchy sequence in a Banach space E, and
as such it converges to some z* € U(zo,7) (since U(zo, ) is a closed set). Because of the
continuity of F, F', P and (2), we obtain P(z*) = z*, G(z*) = z* and F(z*) = z*.

To show uniqueness, let y* be a fixed point of G in U(zg,74). Then using (14) we get

lz* = ¥"ll = IG(=") - G¥)Il < S IG'@ll=z* - v*ll < h(r)llz" — v°||

which shows z* = y*.

Furthermore by letting m — oo in (23) we obtain (16). Finally by (2) we obtain for
aln>0

Tnyl — T = In — Tt — ,u(a:n)v(:z:n] = [.L(IH)E,M_I(I")(:ER = I*) = U(mnn

#(zn)[F(zn) = F(z") = F'{P(zn)}(zn — )] (24)

But we can also have by (11) and (23) that for all n > 0
22 = P(a)ll = llza — =" + P(z”) — P(za)|| < (1 + a)||zn — 27| (25)

1P(za) — 2" = || P(zs) — P(z")]| < allzn — =7 (26)

Estimate (17) now follows from (24), (25), (26) and the approximation

F(za)—F(z")—F'{P(z:) Hzn—T") = -/(;I[F‘I(frn+TI')--Fl{tP(In)‘:—TP(In)H(I”—l")dt
(27)

96




where 7 =1—1¢.

We now state the following theorem for comparison (see (2], [3], [6] and the references
there for a proof).
Theorem 2. Let F' be Frchet differentiable on D C E. Assume:

(a1) Condition (a) holds;

(b1)
P(z) = F(z); (z € D) (28)
(ex) 2(1 —a)
c<do where dp = ST (29)
(d1) ;
U(zo,70) C D, where To = b(l_—c-a)’ for b#0. (30)

Then Stirling’s iteration {z,}(n > 0) converges to the unique fized point z* of F in
U(zo,0) at the rate given by (17).
Remark 1. Favorable comparisons of Stirling’s over Newton’s method have been made
in [2], [3], [6] and the references there.

Proposition. Under the hypotheses of Theorems 1 and 2, assume:

(1= a)iei
Ci<s W = dl. (31)
Then the following hold:
T < 19 < T3, (32) U(zo,10) C U(z0o,73). (33)

Proof. Estimates (32) and (33) follow immediately by the definition of 1, 79, 73 and (31).
Remark 2. Let d = min{d;,d,dp}, under the hypotheses of Theorems 1 and 2. Then
the conclusions of the proposition hold. This observation justifies the claim made at the
introduction.

We complete this study with an example.
Example. Let E= R, D = [‘T", %], P(z) = F(z) = ;sinz.

For zo = 0.1396263 = 8°, we obtain d = 3=2Y2 = (.0428932, do = § = 0.5, d, = & =
0.0357143, a = b = 1, v(zo) = [|wo — F(z0)|| = 0.0700397, ¢ = 0.0350199, o = 0.2801592
and r3 = 0.2866401. With the above values the hypotheses of Theorem 1,2 and the

Poposition are satisfied. Hence we get
0 = z* € U(zo, 7o) = [—0.1405329, 0.4197855] C (—0.1470138, 0.4262664) = U°(z0, T3).

That is there are infinitely many new starting points in U°(z, 73) — U (0, 70) for which
iteration (2) converges to z* but Theorem 2 does not guarantee that, whereas Theorem

1 does.
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Error bounds for the Halley-Werner method in Banach spaces

Ioannis K. Argyros

Department of Mathematics. Cameron University. Lawton, OK. 73505, U.S.A.

Abstract

We approximate zeros of nonlinear operator equations in a Banach space setting
using Newton-Kantorovich assumptions and the majorant theory for the Halley-
Werner method. Error bounds are improved over earlier ones under weaker as-

sumptions.

1. Introductién

Let E;, E,, be Banach spaces and let U(zo, R) denote the closed ball with center = € E;
and of radius R > 0 in F;. Suppose that the nonlinear operator F' defined on some convex
subset D of E) containing U(zo, R), with values in Es, is twice Fréchet-differentiable at

every interior point of U(zo, R) and satisfies the conditions

|F'(z + k) — F'(z)[| < A(n |IR]l), (1) IF” @) < M, (2)
|F”(z + ) — F”(z)|| < B(r, ||Al]), @)
forallz € U(zp,R), 0<T< R, 0L ||h|<R-r
Here A, B, are nonnegative and continuous functions such that if one of the variables
is fixed, then they are nondecreasing functions of the other on the interval [0,R].

Moreover we assume that aAé?‘t) is positive, continuous and nondecreasing on [0, R-r],

with A(0,0) = 0.
Note that by setting for all r, |||, A(r, ||h]]) = c||k|| for some ¢ > 0, we obtain the
usual Lipschitz conditions on F” (see [4], [9]), whereas for A(r, ||h||) = e(r)||h|| we obtain

some generalized conditions considered also in [9], but for Newton’s method. Conditions
of the form (1) we also considered in [22], for Newton’s method.

We denote by F'(z,) and F”(z,) the first and second Fréchet-derivatives of F' eva-
luated at z = z,. Note that F'(z,) is a linear operator, whereas F”(z,) is a bilinear
operator for all n > 0, (2], [3].

Let zg € E; be arbitrary and define the Halley-Werner method on E; for all n > 0 by

Yn = Tn — F’(:z;n)_lF(:z:n), (4) H(zq,yn) = "F,(In)_lF”(In)(yn —z,), (5)
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Tyt = t0 = 3 @) 1= FH@n1m)| F (@) tn — )" (©

Halley method has a very long history. One can refer to [5], [6], [9], [12], [14], [15],
[17], [20], [21], and the references there for some background.
In this study we are concerned with the problem of approximating a locally unique

zero z* of the equation
F(z)=0 (7)

Using the majorant theory, we will show that under certain Newton-Kantorovich as-
sumptions on the part (F,zo) the Halley-Werner method converges to a locally unique
zero z* of the equation (7). Wew also provide upper bounds on the distances ||z, — z*||

and ||y, —z*|| for all n > 0. Finally, we show that our results improve earlier ones [11]-[22].

2. Convergence Analysis

It is convenient to introduce the constants

N> |lyo—Zoll, B=|F'(z0)™s t0=0, so>n, t>s= o= N (8)
the scalar iterations for all n > 0
Snt1 = tnp1 + D((tn+1)P(tm Sn)s 9)
1
thi2 = Sny1 + ED((th)C((th)M(an — tn1)? (10)
where 5
1
D(ts) = Cl) = (11)
1 — BA(0,t, Mla
ﬂ ( ) 5= —QLI'D(tn)(Sn = tn)
and
P(tn, 5n) = [+ A(5n, t)dt + A(tn, Sp — tn) (tns+1 — Sn)
+1C(tn) D(tn) M (sn — tn) [ A(tn, t)dt (12)
+%C(tn) o B(tn, t)dt(sn — tn)>.

Furthermore, we define the function T on [0,R] by

T(r) =t; + D(r) [for A(r,t)dt + A(r,t)r + 3C(r)D(r)Mr [§ A(r, t)dt

1 20(r) 3 B(r,t)dt + %C(T)M , (13)

where

(14)

We can now prove the main result:




Theorem 1.-Let F': D C E; — E, be a nonlinear operator defined on some convex
subset D of a Banach space EF; with values in Es.

Assume:
(a) F is twice Fréchet-differentiable on U(zo,R) C D for some Xy € d, R > 0, and
satisfies conditions (1)-(3).
(b) the inverse of the linear operator F'(zo) exists.

(c) there exists a minimum nonnegative number R;, with
T(R:) £ Ry, (15) Ri< R. (16)

(d) the following estimates are also true:

: M a|BR;
/BA(O)RI) < 17 (17) 2[1+!ﬂ(01Rl)] < 1) (18)
and if R # R, is 5 %

Then
(i) the scalar sequence {t,} (n > 0) defined by (9)-(10) is monotonically increasing and
bounded above by its limit R; for all n > 0.
(i) the Halley-Werner method {z,} (n > 0) generated by (4)-(6) is well defined, remains
in U(zo, Ry) for all n > 0 and converges to a unique zero z* of equation F(z) = 0 in
U(zo, R).

Moreover, for all n > 0, the following estimates are true:
|zn —2%|| < Ry —ta, (20) lgn — 2]l < Ry — 55, (21)

Proof.- (i) We will show that sequence {t,} (n > 0) is monotonically increasing and
bounded above by R; and as such it converges to R; (by (c) and (15)). From (8)-(10)
and (16) tg < sp < t; < 81 < to. By assuming ¢ < s < tga, k =0, 1, 2,..., n, we obtain
tht1 < Sk1 < tryo from (9), (10) and the hypotheses on A and B. Hence, {t,} (n > 0)
is monotonically increasing. From (8) and (16) ¢y < ¢; < R;, and from (10) for n = 0,
to < T(R;) < R;. Let us assume that ¢y < R; for k =0, 1, 2,...,n+1. Then from (9)-(10)

we get in turn

1
thie = tat1+ D(tanr [P(tm 5n) + Ec(tnﬂM((an 7 tn+1)2] =

1
) [P(tn,sn) + 5C(R)M (541 - tn+1)2] 2
L 1
S t1 + D R1 [Z/ A(S,,t)dt + A RI,RI Z(t"'*'] ) + §C(R])D(R1)MR1
i=0 v Si
+ DRI Bt,,tdt+ |c RIMZ s,+1—t,+1)] <T(R)) <R,
i=0 Jti i=0
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Hence, {t,} (n > 0) is bounded above R;. Moreover t; < s; < tgy1 < Ry forall & > 0.
That completes the proof of part (i) (ii) Wew will show that if

[9n = Zall S sn—ta (n20), (22) [|F(za)ll £ P(ta-1,8n1) (n21), (23)

I Gaia) S Do) (2 1), (24
b o)l < A D) 0~ 1) < 1. 5)

then, for alln > 0

I|In+1 T yn” S tn+1 — Sny (26) ”F(zn+l“ S P(tm STL)! (27)

”yn+1 = $n+1”5n+1 — o1 (28)

From (2), (6), (23) and (24), we obtain

A

1E7 () | F(n)

C(tn)P(tn_l,Sn) = tn+1 — Sp.

1 = 1 42
lones = tall < SIF @) |1 = 5H @, 0m) ™
BM

S A= BAQ L]

Hence, (21) is true.
Putting itn = Zpt1 — Yny 20 = Yn — T, from (1)-(6), (8)-(12), (22)-(24) and the
approximation

R(Zn41) = fol[F,(yn + tﬁ‘n) = F’(yn)]ﬂndt + (F'(yn) — FI(In))ﬂn
+2[1 = Hzn] P/ (20) " F” (20) 20 JA[F' (20 + t20) — F'(z)lzadt  (20)

+Tl = gH(xn,yn)_l] [P (2n + tz) = F” (z))(1 — t)23dt.

we obtain by using the triangle inequality in turn

tnil |a| Sn
IF(zns)]l < / Alsny) + (tny 50— ta) + 21C(tn) Dltn) M (s = tn) /t Altn, t)dt

+%C(tn) /s" B(tn, )dt(sn — tn)? = P(tn, sn).

12

We have also used the estimates

Zn+1 = Zoll < [|1Zn+1 = voll + llvo — Zoll < Zn+1 = vall + l[un — %ol + llvo — ol

30
S S (tn+l_Sn)+(sn_50)+30=tn+1 SRI: ( )

lyn+1 = zoll < [IYn+1 — Boll + lvo = Zoll < [[Yn+1 = Tnsall + |Zas1 — Yall + 190 — oll
+llyo — zoll < ... < (Sn41 — tat1) + (a1 — $a) + (Sn — S0) < Sn41 < R
(31)
Hence, (27) is true.

From (4), (22) and (27)

1 = Znsall < 1F'(@ne1) Tl - [ F(@ns1)|P(Ens $n) = Sns1 = tosa-
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Hence, (28) is also true.
Moreover, from (1), (8), (17), (30) and the estimate

[ (z0) =1l - [ F(zn) — F'(zo)l| < BA(0,ta) < BA(0, Ry) < 1

it follows from the Banach lemma on invertible operators [13] that F'(z,)~! exists and
foralln>1

1 ]|F’(x0)—1||
| TP T 1P = P = 20

Furthermore, from (2), (18), (22), (24) and the estimate

”F/(In)—

a a ’ e 5
L) 1, )1l < 1 ) @)l < D) 500) < MD(RRy < 1,

it follows that 1 — %H(xn, Yn) is invertible, and for all n > 0 we obtain

H@—%Hum%04 < C(ta).

Hence, the iterates generated by (4)-(6) are well defined for all n > 0. Also, by (26),
(28) and for all n > 0, we obtain

”In+1 = zn“ < tht1— ta, ||yn+l = yn” < Spil—Sn: (32)

It now follows from (32) and (i) that the sequence z,(n > 0 is Cauchy in a Banach
space, and as such it converges to some z* € U(zo, R;), which by taking the limit as
n — oo in (4) becomes a zero of F, since F(z*) = 0. Moreover, by (30) and (31)
T, Yn € U(zo, Ry) for all n > 0. The estimates (20) and (21) now follow from (32).

Finally to show uniqueness, we assume there exists another zero y* of equation (7) in
U(zo, R). Then from (1) and (24), we obtain by (19)

17/ (@) [ I+ t(a* = 97)) — F(zo) ldt
< [ AO,0 =t~ gl + tlz — a7l ds < 1
It now follows from the above inequality that the linear operator
| P+t -y
is invertible, and with the help of the approximation
F@) - Fy) = [ P+~ )6 - )i

it follows that z* = y*, that completes the proof of the theorem.
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Remarks.- (a) From the estimates

lzn — %oll < lZn — Yall + llyn — voll < (tn —5a) + (Sn—50) <ta—n < R1 —17

l¥n+1 = voll < Yn+1 — Tosall +llzn + 1 = Yl + llyn — woll

< (Sn+1—tnt1) + (tas1 — Sn) + (50— 50) S Spp1 =N < Ry — 1

it follows that zn,y, € U(yo, R1 — 1) for all n > 0. Note also that R, is the unique
nonnegative zero of T'(r) —r = 0 in [0, R;] by (15). (b) We can use the Halley-Werner
method to approximate nonlinear equations with nondifferentiable operators. Indeed
consider the equation

Fi(z) = F(z) + Q(z) = 0, (33)

with F' as before and @ satisfying an estimate of the form
1Q(z +h) — Q)| < E(r, ||kll), z€U(zo,R), 0<r<R, OL|h|<R-r

where E is a nonnegative and continuous function of two variables such that if one of the
variables is fixed, then E is a non-decreasing function of the other on the interval [0,R].
Note that the differentiability of @ is not assumed here. Replace F' in (2) by F} and leave
the Fréchet-derivatives as they are. Define the sequences {¢,} and {5,} (n > 0) as the
corresponding {t,} and {s,} (n > 0) given (9) and (10) repectively. The change will be
and extra term of the form E(t,, s, —t,) added in the definition of P(t,,s,). Define T}
by T in (13) the insert inside the bracket the term E(r,r). Then following the proof of
the above theorem step by step we can show a similar theorem with identical hypotheses
and conclusions, but holding for equation (33). (See also [4], [9], [22]) (c) Following the
proof of the theorem, we can show the result (see also [9]):

Theorem 2.- Let F.D C E, — Es, E, E, be real Banach spaces, and D be an open
convex domain. Assume that F' has 2nd order continuous Fréchet derivatives on D and

that, for z,y € D and U(yo, 1 — 1) C D, the following conditions are satisfied:
|F'(z) = ')l < allz —yll, [|F"(@@)| <M, [F(z)-F @) < N|z-yl,

2 2 1/2
(2+a)M? 2N .
T 3O=750)

=5, o] = [

0.485... if 0<a<l1
h=Kpn < i
0.5 if 1<a<?

Moreover, we define

1 1 = /I=Dh 2 e
g(t) = =Kt* — —t + E, T = 1—1—17, 0= Iovicah Qh,
2 g B h 1++/1—-2h

]
&
E |
x



where r; is the smallest zero of the equation g(¢) = 0. Then the Halley-Werner method
(4)-(6) is convergent. Also Zn,yn € U(yo,m1 —n), for all n € Ny. The limit 2* is the
unique zero of the equation F(z) = 0 in U(zo,75), 71 < 7h <1y if a = K; or M = K and
rh=rgifa< K,or M < K.

Moreover, we have the following error estimates and optimal error constants for all
n > 0:

(1 i 02)7703"—1

”‘TTL—:L"” Srl_t‘rlﬂ ”yn_z‘” ST,II—SI, Tl—trll = 1_6311 )

where

t5=0, hltn sn)=—9g'(tn)g” (tn)(sn — tp),
and for alln >0 Wl 3
L) gl
=l ol g IR
9(th) = Shith, )
(d) Several sufficient conditions can be given to show that under the hypotheses of The-

orems 1 and 2, is s, — t, < s} —tL for all n > 0. One such condition can be

D(r) [ /0 " A(r,t)dt + A(r, t)r + L;'C(T)D(T)]\lr / " A(rt)dt

ss}—t{, or < —
0

for all 7 € [0, min{ry, R1}], although the details are left to the motivated reader.

(e) By Theorems 1 and 2, we conclude that under the order of convergence for the Halley-
Werner method is three, whereas for Newton’s method is only two, [4], [13].

(f) Similar theorems can be proved if ||k|| in (1) and (3) is replaced by a Hlder condition
of the form ||k||P for some p € [0, 1], [9].

(g) The function A, for z,y € U(zo,r) and ||h|| < R —, can be chosen as

Tl
A(r, ||Rll) =sup |F'(z +h) = F'(z)ll, or  A(n|Al) = / q(t)dt

where ¢, for z,y € U(zo,), is a nondecreasing function on the interval [0,R], satisfying

the condition
|F'(z) = F'(y)l| < q(r)llz = yl|.

Similarly, the function B, for z,y € U(zo,7) and ||h|| £ R — 7, can be given by
B(r,||h]l) = sup | F” (z + h) — F"(z)].

Other choises are to be equal to the usual Lipschitz or Pték-like conditions usually
imposed on F (see, e.g. [4], [9], 22]). Other choises are also possible.
One can refer to [9] for some possible applications of these ideas to the solution of

integral equations.
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(h) Finally, if the right hand sides of conditions (1) and (3) change to, and B(r,r + ||h]|)
a new theorem similar to Theorem 1 can then follow immediately. Remarks similar to
(a)-(g) above for the new condition can then follow also.

(i) Using the estimate
IF” @) < I (2) = F” (o)l + I F™ (moll < B(R10) + | F” (zo)l| = M-,
we see that hypotheses (2) can be replaced by the weaker one, given by
I1E” (@)l < M™.

(j) The Lipschitz condition (3) can be dropped, but the order of convergence will be slower,
(see also [5], [9]).

3. Applications

In this section we will give an example for Theorem 2, when a = 1 (similarly we can work
for Theorem 1). We first note that by eliminating y,(n > 0) from approximations (2)-(4)
we can obtain the method of tangent hyperbolas (or Chebysheff-Halley) which has been
extensively studied in (1], [5], [6], [9], [12], [14], [15], [17], [18], [20], [21]. In all but our
references it is assumed that N > 0, which means that their results cannot apply to solve

quadratic operator equations of the form
P(z) = B(z,z) + L(z) + z, (34)

where B, L, are bounded quadratic and linear operators respectively with z fixed in R;.
We then have that P'(z) = 2B(z) + L and P”(z) = 2Q. Hence we get M = 2||B||
and N = 0. Integral equations that can be formulated in the form P(z) = 0, have very
important applications in radiative transfer, [2], [3], [9], [10].

As a spedific example, let us consider the solution of quadratic integral equations of
the form

2(s) = y(s) +2a(s) [ als, a(e)at (35)

in the space E); = C|0, 1] of all continuous functions on the interval [0,1], with norm

llzll = max [z(s)].

Here we assume that A is a real number called "albedo” for scattering and the kernel

q(s,t) is a continuous function of two variables, with 0 < s,# < 1, and satisfying the

conditions:

(1) 0<q(s,t) <1, 0<s,t<1, g¢(0,0)=1;
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(1) q(s,t)+q(t,s)=1, 0<st<1.

The function y(s) is a given continuous function defined on [0,1], and finally z(s) is
the unknown function sought in [0,1].

Equations of this type are closely related with the work of S. Chandrasekhar [10]
(Nobel prize of physics 1983), and arise in the theories of radiative transfer, neutron
transport and the kinetic theory of gasses, [2], [3], [9], [10].

There exists an extensive literature on equations like (36) under various assumptions
on the kernel ¢(s,t) and A is a real or complex number. One can refer to the recent work
in [2], [3], [9], and the reference there. Here we demonstrate that te theorem via the
iterative procedure (4)-(6) provides existence results for (35).

For simplicity (without loss of generality) we will assume that, for all 0 < s, t < 1,
9(0,0) = 1,

s

t) =
a(s:t) s+t

Note that q(s,t) so defined satisfies (i) and (ii) above.

Let us now choose A = 0.25, y(s) = 1 for all s € [0,1]; and define the operator P on
El by

Rl /01 ~

+t
Note that every zero of the equation P(z) = 1 satisfies the equation (35).

x(t)dt — z(s) + 1.

Set zo(s) = 1, use the definition of the first and second Frechet-deivatives of the
operato P to obtain using and the theorem,

N=0, a=M =2|\ max

0<s<1

1
/ _s_‘ = 2/A|In2 = 0.34657359,
0o s+1

K = M+/3 =0.600283066, A =|P'(1)7}| = 1.53039421,
n > ||P'(1)"*P(1)|| > fAIn2 = 0.265197107, h = 0.243628554 < 0.5,
r1 = 0.3090766, T, = 1.867984353, 6 = 0.16549951.

(For detalled computations, see also [2], [8], and [10]).

Therefore according to Theorem 2 equation (35) has a solution z* and the two-point
method (4)-(6) converges to z*. Note that the results obtained in [1], [12], [14], [15], [17],
(18], [20], [21], cannot apply here, since N = 0. For Theorem 1 we can take A(r,t) = at
and B(r,t) = 0 for all r € [0, R]. The computational details for this case are left to the

motivated reader.
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Abstract

Ptak error estimates are obtained for a two point Newton method of order four

in Banach spaces using the majorant method.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique zero
z* of the equation
F(z) =0. (1)

in a Banach space E;, where F' is a nonlinear operator defined on some convex subset D
of E;, with values in a Banach space E,.

Ptak, Potra [7], Zabrejko, Nguen [8], Argyros [1], [2], [3], and others have used the
method of ”continuous induction” to find error estimates for single-step Newton’s as
well as Newton-like methods under various Newton-Kantorovich-like assumptions. This
method is based on a special variant of Banach’s closed graph theorem.

The convergence analysis for multistep methods is less developed, although the funda-
mental theory was introduced several years ago (see [5], [6], and the references there). The
reason. is that the expresion F(z) cannot easily be dominated (in norm) by a real scalar
function. It is well known, from the eﬁiciency index point of view [6], that multipoint
methods are faster than single-step methods.

In particular, in this study we consider a two-step Newton method of the form
Yn = Tn — F,(In)_lF(mn)’ (2) Intl = Yn — F’(yn)—lF(yn)a (3)

for some arbitrary zo € D and for all n > 0. The linear operator F’(z,) is the Fréchet-
derivative of F evaluated at z = z,.
Using the majorant method we will show that under certain assumptions of the pair

(F,zo) the point Newton method defined by (2)-(3) converges to a locally zero z* of
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equation (1). We also provide Pték error estimates on the distances ||z, — z*|| and for
all n > 0, which are better than the ones obtained if standard Newton-Kantorovich

assumptions are required. The order of convergence is four in this case.

Finally, we study the problem when F is not Fréchet-differentiable.

2. Convergence Analysis

Let F : D C E; — E,, where D is a convex domain and zo € D. We assume that the

Fréchet derivative of F' satisfies the condition

[1F(z1) = F'(z2)ll < q(r)l|lz1 — 2|l (4)

for all z;,z9 € U(zo,7), 0 <7 < R, and where g is a nondecreasing function on [0,R], for
some R > 0 with
U(zo, R) = {z € Bi|lz — zoll < R} € D.

Note that by setting g(r) = c for all 7 € [0, R], one can obtain the usual Lipschitz
conditions on F’ considered in [5], [6].

it Bonrias
1 - fu(z)

12> lvo—zoll, B=F(zo)'ll, to=0, so=m, t1=so+s; s1>ti+sy (5)

It is convenient to introduce the function Q(z) = and the constans

where

5= Us0)Blw,to,s0), w(r) = [ q®)dt, 51 =At)Aw o, 50t)  (6)
the scalar iterations
Snt1 =tnp1 + Q(th)A(w, tn, Smtn+l)v (7) tny1 = Snt+ Q(sn)B(w,tn, Sn), (8)

where, for all n > 0,
tnt
A(w tny Snyt n+1 / ( )(tn+1 o sn); (9)

B(w, tn, 85) = w (tn)(Sn = tn), (10)

tn

and the function T on [0,R] by

T(r) = so+ Qr) /Orw(t)dt. (11)

We can now prove the main result:

Theorem 1.-Let F : D C E; — E, be a nonlinear operator defined on some convex

subset D of a Banach space E; with values in a Banach space F;. Assume:




(a) F is Fréchet-differentiable on U(zo, R) € D, zo € D, R > 0, and satisfies (4).
(b) the inverse of the linear operator F'(zp) exists.

(c) there exists a minimum positive number R;, with

and R, also satisfies the condition w(R) <
Then:

(14)

@] -

(i) The sequences {t,}, {sa} (n > 0), defined by (7)-(8), respectively are monotoni-

cally increasing and bounded above by their common limit R, = R, for all n > 0;

(ii) The two-point step Newton method generated by (2)-(3) is well defined, remains
in U(zg, R;) for all n > 0, and converges to a unique zero z* of equation F(z) = 0 in
U(.’Eo, R)

Moreover, for all n > 0, the following estimates are true:
lzn —z*| < Ri—tn, (1) lyn —2*| S Ri—sn.  (16)

Proof.

(i) It is enough to show that the sequence {s,}(n > 0) is monotonically increasing
and bounded above by R; with Ry = R;. From (5),-(8) to < so < t1 < 5;. By assuming
te < sk < tigr < Skse1, (K =0,1,...,n) we obtain from (7) and (8) that the sequences {t.}
and {s,} are monotonically increasing. From (5), (7), (8), for n = 0, (12) and (13) we
get tg < so < t1 < 81 < T(Ry) < Ry. Let us assume that s < Ry, (k=0,1,...,n).

Introducing the notations
tkt1
I(z) = / w(t)dt, W(z) = w(z)(tk+1 — )

from (7) we obtain in turn

tier + Qtks1)[1(sk) = W(sk)] < e + QR (5k) — W (si)] (17)
s+ QR1)[I(t) — W (sk) — w(te)(se — te)] < sk + QR I (t) — W(ti)]
< e <50+ QR (to) = W(to)] S T(R1) < Ri by (13).

Sk+1

IA

Hence. the sequences {t,}, {sn}(n > 0) are bounded above by R;, that completes the
proof of part (i).
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(ii). We will show that if
lve — zell < se — bk, (18)  [|F(ze)ll < A(w, o1, S6-1,8%), (k=1)  (19)

IF@ll < B(w,tk, ), (20) 1P (ziall < Qtear),  (21)
IF'(g)7H | < Q(se), forall (0<k<n) (22)

then

lzrsr — vell < teta — tis (23) 1F (@)l < Aw, Bk, 5y tt1) (24)

and
lWe+1 = Trsall < Sk41 — tiqafor all (K >0)  (25)
From (3) (for n = 0), (20), (2) (for n = 0) and the result of the first Lemma in [9] we
obtain, with 7=1—1¢

lzy —woll < I1F (w0) I F @)l < 17 (wo) ~ Il F(wo) — F(zo) — F'(z0) (30 — zo)|

< 1P o) | f 1 0+ (00 — 20)) ~ Pzl (v0 ~ )
= 'Q(sq) /0 it tao) — U )] o)L
S Q(So) [/: U)(t)dt = ’w(to)(So = to)] = B(’U),to, So) = tl =S50

that (23) is true for £k = 0. Moreover from the identity

F(y) = F(y) — F(zx) — F'(ze) (yx — k) = /Ol[F' (zx + tlye — zx)) — F'(zx)) (yk — zx)dt,

the condition (4) and the induction hypotheses we obtain

Il /OI[FI(Ik + t(yk — zk)) — F' (k)] (ve — zx)dt||
/ e e

/ ™ w(t)dt = w(te) (5 — ) = B(w, te, 51).

t

1 (o)l

IN

Therefore by (3) and the above

ks = yill < I1F (i) " IE @il < Qse) Bw, e, sk) = tesr — sk,

which shows (23).

Similarly from the approximation

Forn) = [ IF e+ 8o — 0e) = F @l — welet,
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we get

1 E(ze4a)

Il

Il /ol[Fl(yk + t(Ths1 — Yx)) — Fl(yk)](xk+l — yx)dt||

IA

/Ol[w('rsk + ttk+l) = w(sk)](tk-f-l = Sk)dt

Il

tkt1 R
| wtdt = (o) tess — 1) = Alw, b, st i),

Sk

where we have also used the estimates

Izes1 = Zoll < llzk4r — %ol + 190 — Zoll < lZrs1 = vkl + [lyx — vol| + |lyo — ol
SRS (tlc+1 — Sk) + (Sk - So) + 5o < tky1 < Ry, (26)
lve+1 — zoll < < ||Yk+1 = Trtrll + | Zrtr — veell + 1y — voll + |lvo — zol|

< oo < (Skg1 — 1) + (k41 — Sk) + (Sk — So) + S0 < Sky1 < Ry (27)

Hence, (24) is true.
From (2), (21) and (24)

lyesr = Tetrll < NF' (@ka) T IF (@ ll < k1) A(w, e, Sk biegr) = kb1 — tens

from which (25) now follows.
Moreover, from (4), (5), (14) and the estimate

I (o) I F (k1 — F' (o)l < Bw(tesr) < Bw(Ry) <1, (28)

it follows from the Banach lemma on invertible operators that F'(zx41)~! exists, and

/ i | E" (o)l
|1F (zes) | < T 17 o) @re) = F (o] < Qtk+1)- (29)
Similarly, we can show 1F"(ye) M| < Qsk) (30)

Furthermore we can obtain the estimates
lyn+1 — Unll < 1Wnt1 = Tnsall + |Znt1 = Ynll < Sng1 = tngr + tagt — S = Sn1 — Say (31)

”Tn+1 = -Tn” < “zn+1 = ynll o+ “yn = In” Silng1 — Sn+8n —tnh = thyr — . (32)

It now follows from the above that the sequence {z,}(n > 0) is a Cauchy sequence
in a Banach space and as such it converges to some z* € U(zo, R;), which by taking the
limit as n — oo in (2) becomes a zero of F' since F(z*) = 0.

Moreover by (26) and (27) zn,yn € U(zo, R1). The estimates (15) and (16) now follow
easily from (31) and (32).
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Finally to show uniqueness, we assume that there exists another zero y* of the equation
(1) in U(zo, R). Then from (4), (29) and the estimate

(17 (o)~ /01 |F[” +t(y" — 2°)] = F'(=o)lldt < PBuw(rllzo — yl| + tllzo — z*[))
< Pw(tR+tR,) < fw(R) <1

by (14).
It now follows from the above inequality that the linear operator [y F'[z*+t(y*—z*)]dt

is invertible. From this fact and the approximation
1
Fly) - F@) = [ Fle" +ty" - =)' ~2")d,

it follows that =* = y*, that completes the proof of the theorem.
Remarks.

(a) From the estimates

2 = %oll < l|Zn = ¥all + llva — voll < (tn = 5n) + 50 — 50) St —n < Ry =,

lgnsr = %oll < ll¥n+1 — Tnsall + IZnt1 — Vall + [[%n — woll
< (Sn+1—tn1 t+ (tn+1 = 8n) + (8n — 80) < Sns1 — N < By — 1,
it follows that ,,yn € U(yo, R1 —7) for all n > 0.
(b) We can use the two-point step Newton method generated b (2)-(3) to an appro-

ximate locally unique zero of nonlinear equations with nondifferentiable operators.Indeed

consider the equation
Fi(z)=F(z)+Q(z) =0 (33)
with F' as before and @ satisfying an estimate of the form

1Q(z1) — Qz2)|| £ a(r)||lz1 — 2| for all z,z5 € U(zo, R), (34)

and where q; is a nondecreasing function on [0,R]. Note that the differentiability of @ is
not assumed here. Let us define wy, for all (0 < r < R), by

1
wi = [ gt (35)

Replace F in (2) and (3) by F; and leave the Fréchet derivatives as they are. Define
new sequences {t,},{sn}(n > 0) as the corresponding ones given by (7) and (8). The

only change will be an extra term of the form w;(s,) — wy(t,) inserted in the brackets
appearing in (7) and (8) (also added in (7)). Define also 7} as T in (11) but add an extra

form Bw,(r) at the numerator of the expression appearing at the right hand side of (11).
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Then following the proof of the above theorem step we can show a similar theorem with
identical hypotheses and conclusions, but holding for equation (33) (see, also (1], [2], (4],
(8], [9]-
(c) If in addition to the hypotheses of the theorem we assume that 26w(R;) < 1, then
for (0 < o, <1)and (0< B, <1)
tot1 — Sn < n(sn—tn),  (36)  Sni1—tn41 < Pu(tatr—sa),  (37)

where

an = Qsp)[w(dn) — w(ta)], (38) Br = Qtns1)[w(en) — w(sa)l, (39)
for all n > 0 and (t, < dn < sp < en < tnta)-
Indeed, from (8), for all n > 0, and for some t, < d, < s;,

sn) [ [ wB)dt = w(ta) (on = ta)
Q(sn)[w(dn) o w(tn)](sn ™ tn) < an(sn = tn)~

tn+l — Sn

Similarly, we show (37).

(d) Similar theorems can easily be proved if the term ||z; — z,|| in (4) (or (39)) is
replaced by Holder estimate of the form |lz; — z2|[? for some p € [0, 1) The details are
omitted (see, also [1], [2]).

(e) If assume that ||[F'(z) — F'(y)|| < kllz — y|| and set

1-v1-2h _1+VI-2h
e

T = - Mo T2

1
1, h = Knﬁ S Ey
as in [3] we can show that

“In+1—yn“ < trll.+1_5111 < Tl—'szu (40) ”yn+l_xn+1” < 3111+1“t111+1 < Tl—trllﬂy (41)

where for all n > 0 and s} = so, tcl, =ty = 0, we have

t) g(sn)
o GRS R 43
Sn n g, (t}l) ( ) n+1 sn g’(srll)’ ( )
with
Kool n (1 —6%)ne*" 1 1
=ite il —ty=—— 0=— > 0.
9(t) = 5t @t+ Fubnaill tn T x forall n>0 (44)

However, 1f we assume that
Q(r) [ / w(t)dt +w(r)r| <st -, (45) Q) [ /0 " w(t)dt + w(’r)r] <tl—sh (46)
for all 7 € [0.R], then it can easily be seen by (7), (8), (42), (43), (45), (46), that
55— by <UL = (A7) 5t =B Stpi=isy 2 (48)
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The above estimates and (44) show that the order of convergence of our iterations is
at least four. Indeed, if we set w(r) = k for all r € [0, R] in (4), then our results can be
reduced to the ones given by (40) and (41). All the above show that our results are better
than the ones already in the literature for Newton and Newton-like methods [1]-[9].
Furthermore, as in Theorem 1 we can show the following extension:
Theorem 2. Let F': D C E; — E, be a nonlinear operator defined on some convex
subset D of a Banach space E; with values in a Banach space E,. Assume:
(a) F is Fréchet differentiable on U(zo, R) C D for some z, € D, (R < 0) and satisfies

the condition
|F'(z+ h) — F'(z)|| < D(r,||hll), z€U(zo,7), 0S<r<R, |[A|<R-7,  (49)

where D is a nonnegative and continuous function of two variables such that if one of the
variables is fixed then D is a nondecreasing function of the other on the interval [0,R]. We
will further assume that for a fixed 7 € [0, R], D can be extended such that [|h]| € [0,].
Moreover the function %‘M
D(0,0) = 0.

(b) The inverse of the linear operator F'(z) exists.

is positive, continuous and nondecreasing on [0,R-r] with

(c) There exists a minimum positive number 7, with r; < R, G(r;) < r; which also

satisfies the conditions D(0,7;) < 1, and
R

Qo('rl)/ D(Tl,t)dt & 1,
T1

where the function Qy(z) is defined by the equality

)

%) =T"5p02)

hence
G(r) = sp +Qo(r)/0 D(r,t)dt on [0,R).
(d) The hypotheses of Theorem 1 are satisfied.
(c) The following conditions are true
D(0,t) < w(t) and D(ry,t) <w(t) forall te€(0,R]
(i) The sequences {vi}, {wi}(k > 0) given by

=0, wo=2mn vI>wotwy w >v+w,

wo

ws = Qo(wo) / D(uo,t)dt,  w} = Qo(vy) / " D(wo, t)dt,

Vo Wo

v

and for alln >0

Wn

Unis1 = Wn + Qo(wn) / D(vp, t)dt,  Wny1 = Upys + Qo(Uns1) / ' D{w, t)dt,

Un
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are monotonically increasing and bounded above by their common limit r, < 7, for all
n > 0.

(i) The two-point step Newton method generated by (2)-(3) is well defined, remains
in U(zo,71) for all n > 0, and converges to a unique zero z* of equation F(z) = 0 in
U(zo, R).

Moreover the following estimates are true:

lzn —2*| S T2 —vay, * |lga—2°|| S 72— 55,
Unt1 — Wn < g1 — S, Wnt1 = Unt1 < Sptl — o,
Untl — Un < tny1 — tny Wn41 — Wp < Spt1 — Sp,
|41 = Ynll < Vpg1 — wn, lYn+1 — Zas1ll £ Wn41 — Vnygr for all n > 0.

Remarks 2.

(a) Under the hypotheses of Theorems 1 and 2 the error estimates obtained in Theorem
2 are better than the ones obtained in Theorem 1.

(b) By setting D(r,t) = w(r)[tler D(r,t) = k|t|, £ > 0, r,t € [0, R] we can obtained
the results in Theorem 1 and the ones in Remark (e) above respectively (see, also [2]).

(c) Under condition (49) results similar to the ones obtained in Remark 1 (a)-(e) can
now easily follow. ‘

(d) Note that 7, is the unique positive zero of G{r) —r = 0 int [0, ). Hence, 7 = .

(e) A choice for D(r, ||h||) can be given by

D(r,|lhll) = sup [|[F'(z +h) - F'(z)|.

z,yeU(zo,7)

We will then have

r+[|Al|

F'(z+h) — F'(z)|| < D(r,||R]]) < / q(t)dt for all z,y € U(zo,7).

(f) Another choice for D(r, ||h||) can be given by

: T+
D(r, bl = [ attyat.
(g) If instead of condition (49) the following are satisfied
| (o) ! [F'(z + k) = F'(=)]ll < D(r, |IAl])

then all the results for Theorem 2, will still follow by just dropping g.
(h) The conditions (e) for Theorem 2 can be replaced by the weaker

Qo(r) /0 " D(r, t)dt < Q(r) / w(t)dt

0
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for all r € [0, max{ry, Ri}].
(i) A choice for the function g can be given by
F'(z,) - F'
glr)= sup I1E'(21) = F(za)]|
z1,22€U(z0,7) |1 — To|
we will then have ¢(r) < K for all € [0, R] as well as ||F'(z1) — F'(z2)|| < g(r)l|lz1 — 22|
for all 7 € [0, R], and z1,z2 € U(zo, R)-
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Estudio comparativo de familias de polinomios
ortogonales relativas a la circunferencia unidad
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Abstract

A comparative study of several families of orthogonal polynomials on the unit
circle is presented. We establish some relations between their corresponding or-

thogonality measures, between their Carathéodory functions and also between their
Szeg6 functions.

1. Introduccién

Consideremos una medida p de Borel finita positiva con soporte infinito en [0, 2). In-

troducimos un producto escalar en el espacio vectorial P de los polinomios con coeficientes
complejos, en la forma:

0.0 =5 [ P Nd(0)

Para cada k € Z, definimos los momentos
2T 2
ci= / e~ *0du()
0

Sin pérdida de generalidad, podemos tomar cy = 1, es decir, 4 es una medida de
probabilidad en [0, 2).

Denotaremos mediante M la matriz de momentos relativa a p:




Obsérvese que M es hermitiana y de Toeplitz.

Indicaremos A, =det M,, donde M, es la matriz menor principal de M de orden
n+ 1. Como la medida y es positiva, M es una matriz definida positiva y por tanto, se
tiene A, > 0 para todo n.

Aplicando el procedimiento de ortonormalizacién de Gram-Schmidt sobre la sucesion
{2"} se obtiene una tinica sucesién de polinomios ortonormales (¢n)32, con ¢n(2) = Knz"+

términos de grado menor.

Si se designa por ®,(z) = &, ¢, (2) la correspondiente sucesién de polinomios ménicos,
se introduce asf una sucesién de polinomios ortogonales ménicos (SPOM), (®,)32, asoci-

ada a la medida p. Es inmediato que x2 =< ®,, ®, >~}
Es bien conocido (ver [7]) que los polinomios @, satisfacen la relacién de recurrencia
@, (2) = 28,-1(2) + @5 (0),_,(2), =1, 23

con ®y(z) = 1, donde ®%(2) = 2"®,(z7!) es el denominado polinomio reciproco de ®,.

Ademss, si @,(0) # 0, también se cumple la relacién de recurrencia a tres términos

20(0)®ns1(2) = (2(0)2+ 2n41(0)) Bn(2) — 20t (0) (1 - [@4(0)[?) 280-s(2) (1)

Los valores de los polinomios en el origen ®,(0) se denominan parametros de Schur o

coeficientes de reflexién.

Un sencillo célculo (ver, por ejemplo, [5]) proporciona

A71A~11—2
AT (2)

1-[2,(0))* =

¥, como consecuencia, |®,(0)| < 1. También se sigue de aqui que

A" == A"—l H(l = ](DJ(O)lz) Yy que k, = (An—l/An)1/2~

Jj=1
Reciprocamente, dada una sucesién de ntimeros complejos, (an)>>, con |a,| < 1,
n = 1,2,..., existe una tnica medida p, de forma que a, = 9,,(0), siendo (®,)oe, la

SPOM respecto de p. Con esto, cualquier sucesién (a,)>, C D = {z € C; |z| < 1} es una
sucesion de parametros de Schur.

Por otra parte, si se considera la ecuacién en diferencias

anyn+1(z) = (a-nz ar an+1)yn(z) — Qn41 (1 = |an|2) Zyn—l(z)
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el conjunto de soluciones es un espacio vectorial de dimensién dos. Una de las soluciones es
(®,). Una segunda soluci6n linealmente independiente ({2,) aparece cuando se consideran

las condiciones iniciales:

Yo(2) = 1
niz = z—-q
Esto significa que Q,(0) = —an y, como consecuencia, (,)ne, es una SPOM respecto de

una cierta medida v. Tal sucesién se denomina SPOM de segunda especie respecto de p

y viene dada explicitamente en la forma (ver [2] y [6]).

1 e 42
%/o ef —z
1

Qn(2)
Qo(2)

[®n(e”) = @n(2)]du(6)

Asociada a la medida p puede definirse una funcién F, analitica en D con ReF(z) > 0

1 2me 42
F@) = o [ S5 du(6)

z

para z € D, de modo que

Puede comprobarse que
(o<}
F(z)=1+2) &:2", 2€D
n=1

En la literatura, F' es conocida como funcién de Carathéodory o C-funcion.

Sefialemos que se dice que la medida p pertenece a la clase de Szegg si su parte absolu-
tamente continua g cumple que log 4’ € L'[0, 27), lo que equivale a que (P,(0))n—, € l2,
(ver [5]). En este caso puede definirse la funcién de Szegé como

: IS i) cprge=Y o
D(Z, p) = exp {Z‘TF/O mlog,u (9)d9} . z € D.
Ademds se tiene, uniformemente en D

D(z;p) = h,ﬁnm (3)

Finalmente, recordemos que asociado a una SPOM puede definirse el n-nicleo como

el polinomio en dos variables

m@@=§@@@@@.




El niicleo est4 relacionado con los polinomios ortogonales mediante: Kn(z,0) = #325(2)-

Estamos interesados en el estudio de relaciones entre familias de polinomios ortogo-
nales, obtenidas unas de otras mediante ciertas modificaciones de los parametros de Schur.
Nos ocuparemos, asi mismo de las relaciones existentes entre las correspondientes fun-
ciones de Carathéodory y de Szegé. Para ello, partiremos de una sucesién de pardmetros
de Schur (@,(0))72, y consideraremos las sucesiones (—®,(0))2,, (e¥®,(0))2, y
(—e**®,(0))2,, que también son sucesiones de pardmetros de Schur. Denotaremos los
correspondientes polinomios ortogonales, sus nicleos y las medidas de ortogonalidad en

la forma

Pardmetros | Polinomios Nicleos | Medidas
2,(0) Pn(2) = Pa(2,0) Kn(z,y) W
—®,(0) Qn(2) = Dy (2, ) L.(z,y) v
e¥®n(0) | Rn(2) = Pn(2,¢0) Ma(2,9) | py
—€%®,(0) | Sa(2) = @n(z, 0 +7) | Nu(2,9) Ve

y realizaremos un estudio comparativo entre las mencionadas familias de polinomios or-

togonales, extendiendo resultados obtenidos en [1] y [3].

2. Relaciones entre las sucesiones de polinomios ortogonales

Como [®,(0)| = | — @,(0)| = |e¥®,(0)| = | — €®,(0)|, por (2), los determinantes de
la matriz de momentos y los coeficientes conductores de los correspondientes polinomios

ortonormales son los mismos para las cuatro sucesiones de polinomios ortogonales.

En [4] se han obtenido relaciones entre las SPOM (®,) y (Q,) (Proposicién 4.2) y asi
mismo entre las sucesiones (®,) y (R,) (Proposicién 4.1). Siguiendo un procedimiento

anglogo para (®,) y (S,), aplicando las férmulas (3) y (4) de [4], resulta facilmente
K1 [Sn(2)@n-1(2) = @n(2)Sn-1(2)] = ~@n(0) [£°@n_1(2) Nao1(2,0) + Snci(2) Kna(2,0)]
3L

Sn(2)Kn-1(2,0) + €9 ®n(2) Na-1(2,0) = 2 [Sn_1(2) Kn-1(2,0) + €¥®p_ (2) No_s (2, 0)] .-

Ademss se verifica la siguiente proposicién:




p——

2.1 Proposicién Los polinomios (®,) y (S,) satisfacen las igualdades:
(i) €*®,(2)Nn(z,0)+Sn(2)Kn(2,0) = €¥®,(2) Np—1(2,0)4Sn(2) Kn-1(2,0) = (e'°+1)2"
(i) Sn-1(2)@n(2) = Pn-1(2)Sn(2) = K72, Pu(0)(e™ + 1)2" 7
(il) €%Sn—1(2)Kn(2,0) + ®n-1(2)Nn(2,0) = k72 k2(e™ + 1)z}

(iv) Kn-1(2,0)Np(2,0) = Np—1(2,0)K(2,0) = 628,(0) (e +1)z"

Demostracién.  Aniloga a la demostracién de la Proposicién 4.1 en [4]. oo

Asi quedan completadas las férmulas que relacionan la SMOP (®,)2-, con las suce-
siones (R)ory, (Bn)oeo ¥ (Sn)aeo-

Nuestro propdsito es, ahora, obtener relaciones entre las cuatro sucesiones de poli-
nomios ortogonales con vistas a deducir alguna informacién acerca de la medida de or-
togonalidad p, relativa a (Rn)ne,, & partir de la medida p asociada a la SPOM (®,)q>

n=0"
2.2 Proposicién

Las sucesiones de polinomios ortogonales (®n);>, (Qn)negr (Bn)meo ¥ (Sn)peq Satis-

facen la ecuacién en diferencias finitas

an¥Yn+1(2) — (anz + An+1)Yn(2) + anpa (1 - |a,,|2)zy,1_1(z) =0

Demostracién. Basta tener en cuenta que la ecuacién anterior no varia si se multiplican
los pardmetros a,,, ¥n € N por una constante de médulo uno y que la sucesién ()5, €s

solucién ya que verifica la férmula de recurrencia (1). oo

Asi, las cuatro sucesiones de polinomios ortogonales verifican la misma férmula de

recurrencia a tres términos (1), variando las condiciones iniciales.

Nota. Obsérvese que si para algin valor de n, se tiene ®,(0) = 0, entonces la
ecuacién en diferencias anterior se convierte en 0 = an41(Yn(2) — 2yn—1(2)], lo que corre-

sponde a que en ese caso, @,(z) = z®,_1(2).

Como ®, y 2, son solucién de una ecuacién en diferencias de segundo orden y co-

eficientes no constantes y los polinomios R, son solucién de la misma ecuacién, éstos
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deberén ser combinacién lineal de aquéllos:
Rn(z) = a®p(2) + b (2).
Comparando los coeficientes conductores y los términos independientes, se tiene

a+b
a—2b

1

el
de esta forma
R,(z) = €'% {cos %@n(z) —isen —(gﬂn(z)} :
Pasando a polinomios reciprocos en la ecuac,ién anterior, resulta para los ntcleos:
M, (2,0) = e™*% {cos %Kn(z, 0) +isen %Ln(z, 0)} :

Podemos proceder andlogamente con la sucesién S, que también verifica:

Sn(2) = a1®n(2) + b1 (2)

Comparando, de nuevo, los coeficientes conductores y los términos independientes:

g +b =1
ag— b = —e*
de donde
Sn(2) = €'% {—2’ sen g@n(z) + cos %Qn(z)}
Y

No(2,0) = e7% {z sen %Kn(z, 0) + cos %Ln(z, 0)} :

De (4) y (6), se tiene
Ra(2) + Sp(2) = ®p(2) + Qu(2)

|Bn(2)* + [Sa(2)* = |a(2)]* + |2(2)[.
Por otra parte, de (5) y (7), se sigue

Mn(2,0) + Nq(z,0) = Ku(z,0) + Ly(2,0)

|Mn(2,0)[* + [Na(2,0)* = | Ka(2,0)[2 + | La(2, 0) 2.
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3. Medidas de Ortogonalidad. Funciones de Carathéodory y de Szegd.

A partir de las relaciones anteriores, vamos a tratar de obtener informacién sobre la medida
de ortogonalidad p, asociada a la SPOM (R,).o, a partir de la medida y, asi como de
la correspondiente funcién F, en relacién con F', donde mediante F' y F,, denotamos las

funciones de Carathéodory correspondientes a la medidas p y mu,,, respectivamente.

Comenzaremos exponiendo algunos resultados que necesitaremos mds adelante y que
pueden verse en (3] y [5].
Para cada n € N, se define la medida de probabilidad en [0, 27):

n0) = S Ba (e ~ 20K, O

Se demuestra que la sucesién de medidas p, converge débilmente a .

Por otra parte, si denotamos con F;,, la funcién de Carathéodory asociada a p,, resulta
n(2,0

Kn(2,0)’
sobre compactos de D y ReF,, posee extensién radial a casi todo punto de T, que viene
dada por

que F,(2) = z € D. Ademss, la sucesién (F,) converge a F', uniformemente

1
 2mK2| D, (e)]2”

Asi, se tiene que y,, (8) = ReF,(e'), en casi todo punto de T.

ReFy,(e?) = 111{1_ ReFy(re®)

3.1 Proposicién.

La parte absolutamente continua de la medida (l‘w); estd relacionada con la corre-

spondiente a ,, mediante
. . 2 ’
1 (6) = cosg +isen§Fn(e'9) () (6),
siendo vélida la igualdad en casi todo punto de [0, 27).

Demostracion

Segiin los resultados anteriores y (5), se verifica

(o). (6) = 5210 (2, 0)|2 = K'—?'|oos£K (€,0) +isen 2 L, (e,0)|~2 =
I‘l'ip n = 27T n ] 27|' 2 n ) 2 n )

K2 i ¢ 0\ |— - 4 i0y(—2,,’
= ﬁlK,,(e‘o, 0)|7? cosg +isen —‘g—Fn(e“’)I = lcosg +isen ?Z-Fn(e %)%, (8),

de donde se sigue el enunciado. ¢o




Ademss, si en (9) tomamos z = pe’ y hacemos p — 1, teniendo presente los resul-
tados antes citados, deducimos que las medidas de ortogonalidad (y)n, (Vp)n, tn ¥ Vn
estdn relacionadas mediante
1 - 1 £ 1 1
(e)n (6) (%), (6)  #al6) ~ vi(6)
para casi todo 6 € [0, 2m).

Como (S, )5, es la sucesién de polinomios ortogonales de segunda especie con respecto
a (Rn)ae,, utilizando los resultados anteriores podemos establecer la siguiente relacién

entre F, y F:

3.2 Proposicién

Las funciones F,, son transformaciones lineales de F', dependientes de . Més precisa-

mente,
__ cos$F(z)+isen¥

Fo(z) = isen £F(z) 4+ cos £

z €D.

Demostracién

Si designamos por (F,), la funcién de Carathéodory correspondiente a (,,),,, sabemos

que se verifica

(Pl = 0

De donde, teniendo en cuenta (5) y (7)

Nn(z,0) e 'd {COS £Ln(2,0) +isen:“23Kn(z,O)} _ cos£Fn(z) +isen§
Mu(2,0) ei% {cos 2Kn(2,0) +isen£Ly,(2, 0)} isen £ Fy,(2) +cos §’

(Fw)n(z) =

Obsérvese que el denominador de esta expresién no se anula en D, ya que ReF(z) > 0 en D.

Ahora basta recordar que (F,)» y F convergen, respectivamente a F,, y F' uniformemente

en compactos de D. oo

A partir de este resultado, se puede extender el obtenido en la Proposicién 3.1. Para

ello, basta tener en cuenta que x'(6) = ReF(e'), en casi todo punto de [0, 27), por lo que
se cumple

3.3 Proposicién

La parte absolutamente continua de la medida u;, estd relacionada con la correspon-
diente a p, mediante

’ o 2 !’
w(6) = cos%+isen§F(e‘9) 1, (6),
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siendo vélida la igualdad en casi todo punto de [0, 27).

Finalmente obtendremos relaciones entre las correspondientes funciones de Carathéodory

y de Szegé.

3.4 Proposicion

P Las funciones de Szeg6 asociadas a las medidas u, v, u, y v, verifican las expresiones:
; -1
(i) D(z;m,) =€ {cos gD(z;u)‘1 + isen gD(z; u)”‘}

=1

(i) D(z;v,) = €' isen 2 D(z; )~ + cos 2 D(z; v)~!
2 2 2

En particular,

1 1 1

(el _w, 4
Dz isp)-. D(zvp). Diz;p). - D(z;v).

Demostracién. (i) y (ii) son consecuencia inmediata de (3), (5) y (7), mientras que

(iii) se sigue de (i) y (ii). oo
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Abstract

In this paper we treate the deep conexion between fractional calculus and integrated
semigroup. We expose some recent results in the theory for integrated semigroups and
its relactionship with fraccional calculus, differential equations, funtional calculus, Smooth

Distribution Semigroup and Fractional Powers of its Infinitesimal Generator.

1. Introduccién: el Problema de la Isocrona y el Cédlculo Fraccionario

1.1 El Problema de la Isocrona

En 1823, el matemdtico Niels Henrik Abel aplicando técnicas de integracién fraccionaria con-
siguié resolver de una forma sencilla y elegante el problema conocido como el problema de la curva
isocrona o tautocrona. Este problema ya habia sido tratado y resuelto por varios matematicos
anteriores a Abel, entre ellos Huygens que cien afios antes de Abel, usé la curva isocrona para

construir un péndulo cicloidal.

La formulacién de este problema es la siguiente: encontrar en el plano vertical una trayectoria
de modo que toda particula que se deslice por esta trayectoria sin rozamiento y bajo la accion de

la gravedad tarde un tiempo prefijado T independientemente de la altura del punto de partida.

Este problema no hay que confundirlo con el famoso problema de la braguistocronea, que
ya fue planteado por Galileo en 1630. Este segundo problema trata de encontrar la curva o
trayectoria entre dos puntos P y @ situados en un plano vertical tal que el tiempo de descenso
de una particula bajo la accién de la gravedad entre estos dos puntos sea minimo. Fue uno de los
Bernouilli, exactamente Johann Bernouilli, quien en 1696 formulé y resolvié el problema siendo

la solucién una cicloide.

Pero volvamos al problema de la isocrona y busquemos su formulacién matematica. Fijemos

el punto del origen O como punto final de la trayectoria. Consideremos dos puntos P(z),Q(¥)
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de alturas verticales z,y con = > y y que pertenezcan a la curva. Sila particula es soltada en
P, al llegar a Q, su velocidad, al igualar energfas, es v = /2g(z — 7). Si denotamos por s(z) la
longitud de arco de la curva entre el punto P y O entonces

()

P ——dy=(\/@)‘1/x3' y)(z — y)"/?dy.
=) | SW)(=-19)
Asi considerado, resolver el problema de la isocrona es resolver una ecuacion integral. En el

siguiente punto desarrollaremos dos de las distintas integrales fraccionarias.

1.2 Integracién y Derivacion Fraccionaria de Weyl y de Riemann-Liouville

Denotaremos por Dy el conjunto de funciones de soporte compacto en [0,0) e indefinidamente
derivable, D; = C2°([0,0)).

DEFINICION 1.1. Dada F' € D, se define la integral fraccionaria de Weyl de F de orden
a > 0 por

W F(u) = ﬁ / (¢ - w1 R ()t

con @ >0y u > 0. Este operador W™ : D — D es inyectivo y suprayectivo. Su inversa, W<,

es llamada la derivada fraccionaria de Weyl (de F) of order «, véase [8], [18].

Algunas propiedades del operador integral/derivacién de Weyl se citan en la siguiente proposi-
cién [8], [13].

PROPOSICION 1.2. Dada F,G € D4+
— sia € N entonces W f = (—1)°'f(ﬂ)_

— Woth = WeWP con o, € R y si @ = 0 entonces WO = Id, el operador identidad.

— T(a)WO(F *G)(s) = /0 " weg(r) :_r(t + 17— 821 We F(t)dtdr
= /,w WeG(r) /aoo(t + 1 — ) YW F(t)dtdr.
Si denotamos por AC()(e“t) con w > 0 la clausura de Dy en la norma
1Pllags = [ eiweF()a

por la Proposicién 1.2.(iii) AC(®)(e“?) es una dlgebra de Banach cuyo producto es la convolucién.

REMARK. W? con a € R se extiende a S, W® : S — S, donde S es el conjunto de C(®)-

funciones en [0,00) que cumplen

Pma(f) = s
t

dﬂ
up [t"—f(1)| < >
E[O,Ic:o)| din K )‘
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para todo m,n € N U {0}. Ademds {e.}n.50 C S donde e,(t) = e~ {Pmn}mmneNu(o} €8
una familia contable de seminormas y (S, {pmn}) es un espacio de Frechét. Su dual, S, es el

conjunto de las distributiciones temperadas en [0, o).

DEFINICION 1.3. Dada F € Dy se define la integral fraccionaria de Riemman-Liouville de

orden a > 0 .
1
- t) := Y- L3 §
D°F(1) T(a),/o (t = 5)*~1F(s)ds.
con ¢t > 0, [15], [18]. Si a = 7 la derivada de Riemann-Liouville de orden n, D", es la derivada

clésica. Si @ € RT\N se define la derivada fraccionaria de Riemman-Liouville de orden a como

3 d[a]+l ~
D°F(t) := W(D ([a]+1—a)p)( )

Algunas propiedades de la derivada/integral de Riemann-Liouville son enunciadas en la siguiente

proposicién [5], [15].
PROPOSICION 1.4. Sea F € D, entonces

— D=*D~PF(t)= D-(+A F(t) parat >0 y @, > 0.

- lilg+ D~%F(t) = F(t), para t > 0.

NoTa. En general, es falso D*DPF(t) = D*tPF(t) con o, € R pero en particular si
FU)(0) =0 con j € {0,1,...[a]} entonces D-*D*F(t) = F(t) para t > 0.

Una relacién interesante entre la derivada fraccionaria de Weyl de orden « y la integracién
fraccionaria de Riemann-Liouville del mismo orden viene expresada a través de la transformada

de Laplace: sea F' € D entonces

L(F)(z) /0 % e~ F(t)dt = F(la_) /O et /t (s = )W F(s)dsdt

/000 WEF(s) I‘(la) /:(.9 —t)*le*dtds = /ooo WeF(s)D™%e,(s)ds.

1.8  Resolucion del Problema de la Isocrona

Volvamos al problema de la ecuacién de la isocrona

{ T= 2" [ @)=,
s(0) = 0.

para z > 0. Planteada en términos de integral fraccionaria de Riemann-Liouville se obtiene
T = (v/29)"'T(1/2)D~'/?(s')(z) para todo z > 0 y por tanto

D~YX(T)(z) = (v/29)"'T(1/2)D(s')(z) = (v/29)"'T(1/2)s(z)
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y por tanto s(z) = 2T'7'/2gz.

Ademds, se puede determinar las ecuaciones paramétricas de la curva isocrona (ver [15]):

z = a(f + sin6),
y = a(l — cos @),

con a = gT?/n? que geométricamente representa la trayectoria de un punto de una circunferencia

de radio a y centro (0,a) y que gira sin deslizar sobre la recta horizontal y = a.

2. El Problema Abstracto de Cauchy

Es bien conocido en Anélisis Funcional ( ver, por ejemplo, [16],{19]) que una familia de acotados
operadores {T(t)}:>0 sobre un espacio de Banach X es un Co-semigrupo o un semigrupo de
operadores fuertemente continuos generado por (A4, D(A4)) si

T(t+ s)z = T(t)T(s)z para todo z € X y t,s > 0.

T(0)z = = para todo z € X.

t — T(t)z es continua para todo z € X y para todo ¢ > 0.

= : e Tz s Tz
D(A) = {z € X existe ¢1_1.I(§1+ - }y A(z) = :1-1.%1\* R

El operador (A4, D(A)) se llama generador infintesimal del semigrupo {T(t)}+>0. Algunas propie-
dades de Co-semigrupos son enunciadas en la siguiente proposicién [16], [19]:

PROPOSICION 2.1. Sea {T'(t)}t>0 C L(X) un Co-semigrupo y (A, D(A)) su generador in-
finitesimal entonces

— (A,D(A)) es un operador cerrado y densamente definido.

— existe M,w > 0 tal que ||T(¢)|| < Me“* parat > 0.

- (A=-A)z= / e"MT(t)zdt. para todo A € C con R\ > w.
0

La teoria de semigrupo de operadores se encuentra intimamente ligada al Problema Abstracto
de Cauchy. Pasemos a enunciar este problema.

PROBLEMA ABSTRACTO DE CAUCHY. Sea X un espacio de Banach y (4, D(A)) un operador

cerrado y densamente definido. Hallar la solucién del problema de valor inicial
u'(t) = A(u(t)), t>0,
u(0) = z,

conz € X




Por solucién en el Problema Abstracto de Cauchy se entiende una funcién u : [0,00) — X

continua para t > 0 y diferenciable para ¢ > 0.

El Teorema de Hille-Yosida (1948) caracteriza a aquellos Problemas Abstractos de Cauchy

(claro estd, en términos del operador (4, D(A))) para los cuales el problema estd “bien plantea-

do”, esto es, existe solucién [16],[19].

TEOREMA DE HILLE-YosiDA. El Problema Abstracto de Cauchy

{u’(t) = A(u(t)), t>0,
u(0) = z,

estd bien planteado si y solamente si A genera un Co-semigrupo {T'()}¢>0 C £(X) y ademds la
tinica solucién estd dada por u(t) = T(t)z para todo z € X.

tA

Este resultado muestra que T'(t)z = e*“z. De hecho, esta expresién tiene sentido si A es

4 9 . tnA'\
un nimero o si A es un operador acotado entendiendo por et4z = Y%, —n,-(22 Para un

operador no acotado A densamente definido esta serie converge en X para todo z € D(A%) =
o2 D(A™).

n=1

Es natural preguntarse por la solucién de otras ecuaciones diferenciales abstractas y si la
teoria de semigrupos puede ser aplicada para obtener esta solucién; solucién que tal vez se

pueda expresar en una serie de potencias.

Incluso en el sencillo Problema Abstracto de Cauchy, operadores cldsicos no definen Co-
semigrupos en los espacios de Banach considerados. Asi, Hérmander [11] en 1960, probé que
iA es el generador infinitesimal de un Co-semigrupo de operadores en LP(R) si y solamente si

p = 2, donde A representa al Laplaciano de R.

A pesar de que el operador A en el espacio de Banach X no sea el generador infinitesimal
de un Cp-semigrupo de operadores, podemos interesarmos para qué elementos z € X existe

solucién al problema de valor inicial

{u’(t) = A(u(t)), t>0,
u(0) = .

Los semigrupos integrados definidos en el siguiente parrafo dardn solucién a este punto.

3. Semigrupos Integrados

Sea {To(t)}t>0 C £(X) un Cp semigrupos de operadores y para todo o > 0 se definen la familia
de operadores acotados {T«(t)}:>0 mediante

To(t) = F(la—) /0 (1 = )*=1T(s)ds.
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{T&(t)}s0 verifica las siguientes propiedades
(I1) T.(0) = 0.

t+s s

(I12)Ta(t)Ta(s) = f(la_)(/ (t+s— 1) To(r)dr — ‘/; (t+ s — 7)* 1 T4(r)dr) con t,s > 0.
t

(I3) t — T,(t)z es continua para todo z € X y t 2 0.

(14) ||Ta(t)|| £ Me** para todo t > 0.

Estas cuatro propiedades son las que se utilizan para definir un semigrupo de operadores a-
veces integrado. Asi, {Sa(t)}t>0 C L£(X) es un semigrupo a-veces integrado de tipo exponencial

w si satisface (I1), (12), (I3), e (I4) (ver por ejemplo (9], [14]). La condicién (I2) es equivalente
(utilizando transformada de Laplace) a que

R()) =A@ / TS, RA>w
0

es una pseudoresolvent, es decir, R(A) — R(p) = (g — A)R(A)R(r) con R\, Ru > w, [9], [14]. El
operador A definido a través de la anterior pseudoresolvente se llama el generador infinitesimal

del semigrupo {Sx(t)}t>o0-

Una comprobacién inmediata es probar que si {S4(t)}:>0 es un semigrupo a-veces integrado
entonces

t
.= D-(v=a) = S I / _gpma-l
Su(t):=D (Sa)(@) e (t—29) Sa(s)ds
es un semigrupo v-veces integrado con v > a. Algunas propiedades ya conocidas de un semigrupo

a-veces integrado son enunciadas en la siguiente proposicién [14].

PROPOSICION 3.1. Sea A el generador de un semigrupo a-veces integrado {Sa(t)}s>0 en-
tonces

o

t t
— paratodoz € X yt >0, / Sa(s)zds € D(A) y A/ Sa(s)zds = Sa(t)z —
0 0

i
T(a+ l)z'

— Saf+)z es derivable con ¢ > 0 si y solamente si S(t)z € D(A) y en este caso

T
dt= S S I'(a 3
Utilizando los dos apartados de la proposicién anterior se puede probar que u(t) = Sa(t)z

con z € D(A?) satisface la ecuacién abstracta, ver por ejemplo [20],
tu(t) — (@ — 1+ tA)u'(2) + (e — 1)Au(t) = 0.

Si A es un nimero, la ecuacién anterior se reduce a tu”(t) + (c — tb)u/(t) + au(t) = 0 ecuacién

hypergeométrica confluyente cuya solucién es expresable mediante las series hypergeométricas
confluyentes.




De vuelta al Problema Abstracto de Cauchy, Arent [1] probé que si A genera un k-veces
semigrupo integrado {$(t):>o0} para algin k& € N U {0}, entonces el Problema Abstracto de
Cauchy admite solucién para todo z € D(A**!). Para a-veces semigrupos integrados Hieber [9)]

obtuvo el siguiente resultado.

TEOREMA 3.2. Sea a > 0, ¢ > 0 y supongamos que el operador A genera un semigrupo
{S(t)t>0} a-veces integrado en un espacio de Banach cumpliendo ||S(¢)|| < Mt*e“* para algin
M,w > 0y para todo ¢ > 0. Entonces existe una unica solucién clasica del Problema Abstracto
de Cauchy para todo z € D(A%+et?).

En [14] se prueba que el operador de Schrérdinger, iA genera un semigrupo a-veces integrado
con a € (1/2,1] en LP(R) con 1 < p < co.

4. Caélculo Funcional para Semigrupos a-veces Integrados

Anteriormente ya hemos comentado que dada F' € D y L(F) su transformada de Laplace,

entonces es inmediata la siguiente igualdad
L(F)(2) = / W F(t)D™%(e,)(t)dt
0

donde e,(t) = e~** with #z > 0. Un semigrupo a-veces integrado es una familia de operadores
acotados y fuertemente continuos sobre un espacio de Banach y que tiene un comportamiento
similar a D~%(e;)(t). La igualdad anterior es la llave para definir un célculo funcional basado en
{Sa(t)}t>0 [12], [13]. Denotaremos por (—A) el generador infinitesimal del semigrupo integrado
{Sa(t)}t>0 donde el signo menos es introducido al trabajar mds adelante con las potencias

fraccionarias del generador.

TEOREMA 4.1. Sea {Sq(t)}:t>0 un semigrupo a-veces integrado de tipo ezponencial w con
w > 0 de operadores acotados sobre un espacio de Banach X y su generador infintesimal
((—A),D(—A)) entonces eziste un homomorfismo algebraico continuo © : AC(®)(e“t) — B(X)
such that
O(F)z = /D = WeF(t)Sa(t)zdt

para todo = € X y para todo F € D. Ademds,
(o] (o o]
= G ihen / W (t)Sa(t)zdt = / W F(8)S,(t)zdt para todo F € D y S,(t)z =
() 0
D-(=2)(S,)(t)z.
— para todo F € D, O(F)z € D(A) conz € X y AO(F)z = O(F')z + F(0)z.

— si Sy(+)z derivable para todo t > 0 (por ejemplo, si x € D(A)), y F € D entonces

/0 5 W“F(t)%sa(t)xdt s /0 = W F(1)Sa(t)dt.
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NoTa 4.2. El célculo funcional anterior tiene propiedades comunes con la Transformada de

Laplace. Si {S()}:>0 es un Co-semigrupo, (esto es un semigrupo 0-veces integrado) el Célculo
Funcional anterior es llamado el cdlculo funcional de Hille-Phillips [10].

Dos aplicaciones de este calculo funcional son comentadas en las siguientes subsecciones.

4.1  Semigrupo de Distribuciones Suaves y Semigrupos a-veces Integrados Temperados

El concepto de Semigrupo de Distribuciones Suaves, $.D.S., fue introducido por Peetre [17].
Balabane y Emamirad [2] definieron su andlogo, Grupo de Distribuciones Suaves, y lo aplicaron
a la ecuacién de Schrodinger en LP(R™) con 1 < p < oo. Mi4s tarde, Balabane, Emamirad
y Jazar [3] probaron un teorema de equivalencia entre grupos k-veces integrados y grupos de
distribuciones suaves of grado k con k € N. En [13] se extiende este resultado (en el caso de

semigrupos) a cualquier orden a € R*.

Variantes de estas definiciones, proposiciones y teoremas pueden ser encontradas en las re-

ferencias citadas, no obstante, se incluyen aqui para dar una idea completa del contexto de
trabajo.

DEFINICION 4.1.1. Sea S el espacio de Schwartz en [0,00) considerado ya anteriormente en
el parrafo 1, un Semigrupo de Distribuciones Suaves , S.D.S.,G : § — B(X), es un homomorfimo
continuo de S a B(X) que cumple

- G(9*p) = G(8)G(9)-

— existe un subconjunto denso, D C X, tal que para todo z € D, existe una tnica aplicacién
continua G ® z = fz(-):[0,00) — X tal que f(0) ==z y

G(¢)z = /0 % o) fa(t)dt
conzeDyd€eD.

Un S.D.S. puede ser extendido al conjunto de las distribuciones de soporte compacto, £, de
la siguiente forma: sea ¢ € Dy por [5° ¢(t)dt = 1. Se define ¢ € Dy con @,(t) = s~1d(s71t) y
s> 0. Para todo T' € £ , (G(T'), D(G(T)) es un operador acotado definido por

— D(G(T)) := {z € X tal que G(T  ¢,)z converge en X cuando s — 0}.

— para z € D(G(T)), G(T)z := lim,o G(T * ¢,)z.

Es facil probar que la definicién anterior es independiente de la funcién ¢, (G(T'), D(G(T))
es un operador cerrable y densamente definido con G(p)z € D(G(T)) para todo ¢ € Dy y

z € X. La primera consecuencia de esta extensién es poder definir el generador infinitesimal de
un S.D.S.




DEFINICION 4.1.2. Sea 6o la distribucién delta de Dirac entonces (_}'(—6((,1)) es el generador
infinitesimal de G.

Si para todo ¢ € S+ y G: S — B(X) un S.D.S. cumple

IG(8)l < /0 t*[We()(@)ldt = ||l
con o € RT entonces se dice que G es un S.D.S. de grado a. La compleccién de S en esta norma

se denota por AC(®)(t®). Ademis AC((t%) — ACW)(t#) para 0 < f < a.

TEOREMA 4.1.3. Sea ((—A),D(—A)) un operador densamente definido y cerrado y o > 0.
Entonces lo siguiente es equivalente

— ((=A), D(—A)) es el generador infinitesimal de un semigrupo a-veces integrado, {S«(t)}t>o0,
tal que ||So(2)|| < Ct* witht > 0 (semigrupo temperado).

— ((=A),D(—A4)) es el generador infintesimal de un S.D.S. de grado a.

Si ||Sa(t)|| £ Ct™ para todo t > 0 entonces o(—A) C (—o0,0]. Para v,e > 0, consideramos

la funcién

tu—l —et

feo@k= —ﬁX(o,m)(t)-

Entonces f,, € AC(™)(t") para todo n € N U {0} y por tanto f., € AC(*)(t*) para todo a > 0
y g(fz,u) =(e+ A)‘u € B(X)

4.2 Potencias Fraccionarias del Generador Infinitesimal

En esta tltima subseccién seguiremos considerando {S4(t)}:>0 un semigrupo a-veces integrado
> P
y temperado. Denotaremos © el homomorfismo considerado en la seccién anterior y asociado a

{Sa(t)}t>0 entonces

— O(¢) € B(X) paratodo g €Sy

— O(T) es un operador cerrado y densamente definido con T € £.
Ahora estamos interesado en definir ©(T') con T perteneciendo a un conjunto de distribuciones
m3as amplio que el conjunto de las distribuciones de soporte compacto pero usando el mismo

método. Queremos que este conjunto incluya a la distribucién temperada 6‘()") con ¥ € R ya que

su transformada de Laplace es z* y formalmente [12]
L) = 0(8) = 4.

Notar que en general si se convoluciona un distribucién temperada con una funcién de soporte
compacto no se obtiene una funcién de la clase de Schwartz. Por ello se hace necesaria la

siguiente definicion.
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DEFINICION 4.2.1. Sea T € S}, se dice T es AC(®)(t%)-sumable si T + ¢ € AC®)(t*) para
todo ¢ € D; en el caso a = 0, se llama R*-sumable [12].

DEFINICION 4.2.2. Se denota por 63") la distribucién temperada cuya tansformada de Laplace

es z¥ con v € R.
La siguiente proposicién enuncia algunas propiedades de esta distribucién [7].

PROPOSICION 4.2.3. Sea 6((,") con v € R la distribucion temperada definida anteriormente

entonces

() -6 = ﬁX[o 0)(t) para v < 0.
IN(EZ) M

sin(mv) - X[o,00)(t)
T p p o)

- 6[(,") =-T(wv+1) para v € RT\N.

- 68”) para n € N U {0}.

(ii) dkﬁéu) = 63"_") con k € N, donde “d” es la derivacion en el sentido de distribuciones.

(iii) 6§ % 6 = 6¢*) con v,p € R.

En [13] es probado que 6(()") con v > 0es AC(®)(¢*)-sumable con a > 0. Para toda distribucién
T que sea AC(®)(t*)-sumable se puede decir O(T) utilizando la construcién que se realizaba en

la subseccién anterior para las distribuciones de soporte compacto.

En este punto se nos ofrece dos posibilidades para definir A con v € R. La primera es
utilizar ©(6§")) para v > 0 y la segunda, ms cldsica, utilizar (e+ A)~” también v > 0. Sigamos

este segundo camino y probemos después la equivalencia con el primer planteamiento.

Recordar, f,, € AC(®)(2%) con

tu—le-—:t

feu(t) = Ty Xoe)?)
conv,e >0, >0y G(few)=0O(fen) = (e+A)™" € B(X). Es ficil probar Ker(e + 4)~¥ = {0}

para todo ¢,v > 0.

DEFINICION 4.2.4. Sea ((—A), D(—A)) el generador infinitesimal de un semigrupo a-veces
integrado, {S4(t)}s>0 temperado se define

— (e+ A)Y por (e + A)” := ((e + A)™)~L.
— (A”,D(A")) con v > 0 por
D(A): = {z € [)D((e+A))]| t.q. existe 11'_13)(5 + A)’z },

>0
Az : lin(1](5 + A)’z,
P
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con z € D(AY), ademds D((e + A)”) = D(AY) con v,e > 0.
- (A7Y,D(A™Y)) with v > 0 by
D(A™): = {z€ X | t. q. existe y_I}‘(l)(E +A) Yz },
AmeTi l.i_lf(l)(E + A) "z,
con z € D(A™Y).
TEOREMA 4.2.5. Sea {S4(t)}t>0 un semigrupo a-veces integrado tal que ||Sq(t)]| < Ct*

cont>0ya>0, ((—A),D(-A)) su generador infinitesimal y 6((,”) la distribucion temperada
definida anteriormente, entonces

— O(e~ct68)) = (e + A)” cone,v > 0.

- 0(6(()")) =AY conv > 0.

— Si A es inyectivo entonces A= = (A*)™! con v > 0.

Debido a la pé,rte tercera de este iiltimo teorema y recordando que 6((,") * ’":l =dpconv >0

)
entonces puede ser definido g(%) =: A™". Algunas propiedades de A” son ahora consecuencias
inmediatas de propiedades de 6((,"), como por ejemplo, AYA* = AY** con v,u € R.

Si 0 € p(A), esta definicén de potencias fraccionarias de un operador cerrado coincide con la
definicién de Balakrishnan [4]:

1 o
A= M/ A~Y(A+ A)~1dA.
™ Jo
con 0 < v < 1. Para ver mds detalles, [13].
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Abstract

In this paper we are concerned with certain concepts related with representations ¢ :
A — L(X), i.e., algebra homomorphisms from a regular semisimple Banach algebra to
continuous linear operators over a Banach space X. A particular case of these representations
is considered by Colojoara and Foias in [5] where A is an admissible algebra of functions
over an open set @ C C and the mapping ¢ is called as an A-spectral function. Another
example was treated by Maeda in [18] where A is a basic algebra and ¢ is a continuous
homomorphism called .A-spectral representation.

1. Introduction

In this paper we are concerned with certain concepts related with representations ¢ : A — L(X),
i.e., algebra homomorphisms from a regular semisimple Banach algebra to continuous linear
operators over a Banach space X. A particular case of these representations is considered by
Colojoara and Foias in [5] where A is an admissible algebra (see Definition 3.1.2.) of functions
over an open set  C C and the mapping ¢ is called as an A-spectral function. Another example
was treated by Maeda in [18] where A is a basic algebra, Definition 1.1, and ¢ is a continuous

homomorphism called A-spectral representation.

In general terms, almost every functional calculi can be consider as examples of this situation.
Functional calculi for hermitian elements [K] and for elements with growth of degree « [4] are
direct applications. But the more important example is the Banach algebra L!(G) (3], where G is
a locally compact abelian group (see last section). If U is a suitably continuous representation of
G by means of isometries on a Banach space X, it can be defined U(u) € £(X) with p € M(G).
In this case, Arvenson [3] defined the concepts of spectrum of U, local spectra and maximal
spectral subspaces. For certain p € M(G) [6] showed that o(U(x)) = a(sp(U)). This fact is
similar to a well-known result of basic theory of Banach algebras [L] for any Banach algebra A

without identity: o(a) = a(Sp(A)) U {0} = a(Sp(A)) with @ € A. Now in the general context,
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an interesting open question is the following: which conditions a multiplier T € M (A) satisfies
T(Sp(A)) = op(a)(T), i- e., T has natural spectrum under 6], [8] ?.

Properties of ¢(a) are related with the “good quality” of @ over Sp(.A). This quality may
depend on A. If A is regular and semisimple then ¢(a) is always a decomposable operator
over X in the sense of Foias [LN]. If ¢ admits an extension ® : M(A) — L(X), it is natural
to ask ourselves about the properties that ®(T') satisfies as operator on X, for example if it is
decomposable or if it depends on T' as operator over A [12]. This knowledge about the properties
of ®(T) can be applied to harmonic analysis [19], automatic continuity theory [LN], or spectral
independence [1].

In the first section, some basic definitions and propositions about representations for Banach
algebras are introduced and it is proved an Abstract Wiener Tauberian Theorem. In the second
section, the local spectrum of the representation is treated. Some of these results were proved

by Neumann [19] under other conditions.

Another concept used in spectral theory [2], spectral capacity, is defined in a general frame-
work and its relationship with spectrum and local spectrum of the representation are studied in
the third section. The representations are extended to the algebra of multipliers of A and &(T')
is a closed operator in the forth section.

2. Spectrum of Representations

Let :A— AC Co(Sp(A)) be the Gelfand transformation. It is known (see [13]) that

— if A has an identity, then Sp(A) is a compact Hausdorff topological space with the Gelfand
topology.

— if A is without identity, then Sp(A) is a locally compact Hausdorff topological space with

the Gelfand topology and Sp(A @ Ce) = Sp(A) U {7o} where A @ Ce is the unititation of
A.

If E C Sp(A) then the kernel of E, k(E), is defined as k(E) = ,cgker(r) if E # 0 and
k(@) = A. f I C Als an ideal the hull of I, h([), is defined as h(I) = {r € Sp(A) | I C ker(7)}.
Given E C Sp(A), it is defined the Kuratowski closure by the operation cl(E) = h(k(E)). This
family {cl(E) |E C Sp(A)} defines a topology in Sp(A) as closed sets of this topology. It is

known as the hull-kernel topology and in general is cloaser than the Gelfand topology; but in
our case, as A is regular, both topologies coincide.

ProPOSITION 2.1 ([13]). Let A be a semisimple regular commutative Banach algebra and
I C A a closed ideal, then

J(h(I)) C I C k(h(I))
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where j(h(I)) = {a € A | @ € Cc(Sp(A)),a = 0 in a neighbourhood of h(I)}.

DEFINITION 2.2. Let X be a Banach space and A a semisimple regular commutative Banach
algebra. A representation of A on X is an algebra homomorphism ¢ from A into £(X). Note ¢
is not necessarily continuous.

A representation is called non degenerate if {z € X | ¢(a)z = 0 for all a € A} = {0} and
strongly non degenerate if {z € X | ¢(a)z = 0 for all @ € A with @ € C.(Sp(A))} = {0}. If A
is a Tauberian algebra, i.e., {a|a € A,a € Cc(Sp(A))} is norm dense in A, and ¢ is continuous,

both concepts are equivalent.

It is defined the spectrum of the representation as the hull of the kernel of ¢, which is the
closed ideal: Sp(¢) := h(ker(¢)) = {7 € Sp(A) | @(r) = 0 for any a € ker(¢)}.

By the Proposition 2.1 it follows immediately the following corollary.

COROLLARY 2.3. Let X be a Banach space, A a semisimple regular commutative Banach
algebra and ¢ : A — L(X) a representation. If @ = 0 in a neighbourhood of Sp(¢) and a is
compactly supported then a € ker(®).

If Sp(A) is noncompact and A satisfies the Ditkin’s condition at infinity, i.e., for any a € A
there exists a sequence (a,) C A such that aa, — a and @, € C.(Sp(A)) with » = 1,2,3, ..., the

last corollary can be improved:

COROLLARY 2.4. Let X be a Banach space, A a semisimple regular commutative Banach
algebra which satisfies the Ditkin’s condition at infinity, and ¢ : A — L(X) a continuous repre-
sentation of A on X . If supp(a) N Sp(®) = 0, then a € ker(¢).

If ¢ is a strongly non degenerate representation, it can be shown the following Corollary.

COROLLARY 2.5. Let X be a Banach space, A a semisimple regular commutative Banach
algebra and ¢ : A — L(X) a strongly non degenerate representation of A on X. If supp(a) N
Sp(¢) = 0, then a € ker(9).

Proof: Take a € A such that supp(a) N Sp(¢) = 0, then for b € A with b compactly supported,
supp(ab) N Sp(¢) = 0 holds. ab is compactly supported and by the Corollary 2.3, it gets
#(ab)z = ¢(b)p(a)z = 0 for all z € X. Then ¢(a)z =0 for all z € X and a € ker(¢). i

If Sp(¢) is a set of spectral synthesis, i.e, ker(¢)=k(h(ker(¢))), then if @ = 0 in Sp(¢) then
a € ker(¢).

COROLLARY 2.6. Let X be a Banach space, A a Tauberian semisimple regular commutative
Banach algebra and ¢ : A — L(X) a representation of A on X such that ¢(A)X is norm dense
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in X. Then, Sp(¢) = 0 if and only if X = {0}.

Proof: A is Tauberian if and only if § is a set of spectral synthesis, i.e., k(§) = A. Then
ker(¢)=k(Spg) = k(@) = A; as ¢(A)X is dense in X, then X = {0}. The converse implication
is immediate. §

COROLLARY 2.7. Let X be a Banach space, A a semisimple regular commutative Banach
algebra and ¢ : A — L(X) a representation of A on X. Then,

— (i) if A is a Tauberian algebra and ¢ is non degenerate, Sp(¢) = 0 if and only if X = {0}.

— (ii) if ¢ is strongly non degenerate, Sp(¢) = 0 if and only if X = {0}.

Proof: (i) is proved just as Corollary 2.6. (ii) is immediate by Corollary 2.5. &

Let Y be a closed subspace of X, and ¢ : A — L(X) a representation of A on X. It is
said that Y is invariant for ¢ if ¢(a)Y C Y for any a € A. For any Y invariant subspace two
associated representations can be defined: ¢y : A — L(Y) a restrictive representation; and
/Y : A — L(X/Y) a quotient representation of ¢. It is easy to show that Sp(¢y)USp(¢/Y) =

Sp(¢). Using these representations, it can be proved the following Abstract Wiener Tauberian
Theorem.

THEOREM 2.8. Let X be a Banach space, A a semisimple regular commutative Banach
algebra and ¢ : A — L(X) a representation of A on X. Take a € A such that @ has no zeros
on Sp(¢).

— (i) If A is a Tauberian algebra and ¢ is non degenerate; or if ¢ is strongly non degenerate,
then ¢(a) has trivial kernel.

— (ii) If A is a Tauberian algebra and ¢(A)X is dense in X, then ¢(a)X is dense in X.

Proof: First take Y = ker(¢(a)) and consider ¢y the non-degenerate subrepresentation of A on

Y. It is clear that ¢y(a) = 0 and that @ has no zeros on Sp(¢y). Then by the Corollary 2.7
Y = {0}.

Now take Y = ¢(a)X and consider ¢/Y the quotient representation. (¢/Y)(a) = 0 and &

has no zeros on Sp(¢/Y), so Sp(¢/Y) = 0. (¢/Y)(A)X/Y is dense in X/Y and by Corollary
2.6, X/Y = {0} and X = $(a)X. B

REMARK. One of the versions of classical Wiener Tauberian Theorem can be found in [17

p.148]: let G be a locally compact Abelian group. If f € L!(G) is such that f never vanishes,
then the translates of f generate L!(G).




3. Local Spectrum of Representations

Let X be a Banach space, A a semisimple regular commutative Banach algebra and ¢ : A —

L(X) a representation of A on X. Given z € X it is defined the closed ideal I, as
I, :={a € A| ¢(a)z = 0}.
¢ is non-degenerate and I is a proper ideal for all z # 0 are equivalent.
DEFINITION 3.1. Given z € X and ¢ : A — L(X) a representation, the hull of the ideal I,
is called the local spectrum of z with regard to ¢, i.e.,

spg(z) := h(Iz) = {T € Sp(A) | a(r) =0for all a € I,.}.

Some propérties of spy(z) are joined in the following proposition.

ProposITION 3.2. Let X be a Banach space, z,y € X, A a semisimple regular commutative
Banach algebra and ¢ : A — L(X) a representation of A on X. Then

(i) sp4(2) is a closed set in Sp(A) and spy(z) C Sp(¢).
(i) If z = 0 then spy(z) = 0.

(iii) spy(z) = spg(Az) with A € C\0.

(iv) spg(z + y) = spy(2) U spy(y)-

(v) spg(d(a)z) C spy(z) N supp(a) with a € A.

Proof: (i), (ii) and (iii) are immediate by the definition of sp4(z). For (iv), let 7 & spy(z)Uspy(¥),
then there exist a,b € A such that ¢(a)z = ¢(b)y = 0 and a(r) # 0 # b(r). If we consider ab
then
#(ab)(z + y) = ¢(a)d(b)(= + ) = ¢(a)(¢(b)z) = ¢(b)(¢(a)z) =0

and EE(T) = a(7)b(t) # 0, then T ¢ spy(z + y). For (v) it is easy to prove that spg(¢p(a)z) C
spg(z). Take T ¢ supp(a), then there exists an open set U with 7 € U and U C Sp(A) such that
U N supp(a) = 0. As Sp(A) is a locally compact space there exists a compact set K such that
T € K, K CU. As A is a regular Banach algebra, it is normal and there exists b € A such that
b(p) = 1if p € K and b(p) = 0 if € supp(b). So ab=0and as A is semisimple, ab = 0. Then
#(b)p(a)z = 0 and T ¢ spy(4(a)z) because b(r)y=1.1

DEFINITION 3.3. Let X be a Banach space, ¢ € X, A a semisimple regular commutative
Banach algebra and ¢ : A — £(X) a non degenerate representation of A on X. Then we define
the closed subspace Y (z) by

Y(z) :={¢(a)z | a € A}.
Y (z) is an invariant subspace by ¢ and Y (z) = {0} if and only if z = 0.
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PROPOSITION 3.4. In the same conditions of Definition 3.3, it holds sp(dy (z)) C sps(z).

Proof: Take T € sp(¢y(z)) and a € A such that ¢(a)z = 0. We prove first that ¢(a)y(s) = 0: let
y € Y(z), then there exists (a,) C A such that ¢(a,)z — y; now ¢(a)y = limp_..c $(a)d(an)z =
0, and so ¢(a)y(z) =0 and a(r) = 0. 1

THEOREM 3.5. Let X be a Banach space, = € X, A a semisimple, regular, commutative
Banach algebra, ¢ : A — L(X) a strongly non degenerate representation of A on X anda € A
such that supp(a) N spy(z) = 0. Then ¢(a)z = 0.

Proof: Take Y = Y (z) as in the Definition 3.3 By Proposition 3.4 @ = 0 in a neighbourhood of
sp(¢y). By Corollary 2.5 it is got that ¢(a)y = 0. In particular ¢(a)p(b)z = ¢(b)(¢(a)z) = 0
for all b € A and z € X. As ¢ is strongly non-degenerate, ¢(a)z = 0. I

COROLLARY 3.6. In the same conditions of Theorem 3.5 consider z € X and a,b € A such
that & = b in a neighbourhood of spy(z). Then ¢(a)z = ¢(b)z.

ProrosITION 3.7. Let X be a Banach space, z € X, A semisimple regular commutative
Banach algebra, K C Sp(A) a compact set, a € A such that & = 1 in a neighbourhood of K

and ¢ : A — L(X) a strongly non degenerate representation of A on X. Then ¢(a)z = z for all
z € X such that spy(z) C K.

Proof: Take Y(z) the subspace defined above. For any b € A it holds that ab and b are equal
in a neighbourhood of spy(z) and by Corollary 3.6 ¢(ab)z = ¢(b)z. Then ¢(b)(¢(a)z — z) = 0.
Using ¢ is strongly non-degenerate it is got that ¢(a)z = z. I

CoRrOLLARY 3.8. Let X be a Banach space, z € X, A semisimple regular commutative
Banach algebra and ¢ : A — L(X) a representation of A on X.

— (i) If A is a Tauberian algebra and ¢ is a non degenerate representation, then spy(z) =0
if and only if z = 0.

— (ii) If ¢ is a strongly non degenerate representation, then spy(z) = 0 if and only if z = 0.

Proof: (i) @ is a set of spectral synthesis. Then § = spy(z) = h(I;) = h(A) and A = I,. As ¢ is
non degenerate, z = 0. (ii) can be found in [19]. &

THEOREM 3.9. Let X be a Banach space, A a semisimple, regular, commutative Banach
algebra and ¢ : A — L(X) a non degenerate representation of A on X. Then

Sp(¢) = U spy(z).

z€X




Proof: It is clear that m C sp(¢). For the other embbending, take T ¢ m,
then there exist U,V open sets such that 7 € U, U_,m CVandUNV = 0. Now it
can be taken K C U with 7 € K. Now, in addition now there exists an open set W such that
T €W CW C K. As Sp(A) is locally compact, it can be found a compact set K such that
T € K C W. Using that A is a normal Banach algebra and K N W¢ = 0, we have that there
exists a € A with a(p) = 1 for all ¢ € K and a(g) = 0 for all ¢ € W¢. Then supp(a) C W
and a is compactly supported. By the Theorem 3.5, ¢(a)z = 0 for all z € X, then ¢(a) = 0 and
a(t) = 1. It is shown 7 ¢ Sp(¢).

REMARK. In [19], it is proved the Theorem 3.9 under the condition of ¢ being a strongly

non degenerate representation.

4. Maximal Spectral Subspaces for Representations

All along this paragraph, we will consider ¢ : A — L£(X) a strongly non degenerate representa-

tion, where again A is a regular semisimple Banach algebra

DEFINITION 4.1. Let Y be a closed subspace of X, Y is said to be a mazimal spectral
subspace of ¢ if

— (i) Y is invariant by ¢, i.e.,, ¢(a)y €Y forallac Aand y €Y,

— (ii) for any closed subspace Z invariant by ¢, such that sp(¢z) C sp(¢y) it happens that
Z CA

Given F C Sp(A) a closed subset in the hull-kernel topology, it is defined
Xy4(F):={z € X | spg(z) C F}.

We are interested on proving that X(F') is a maximal spectral subspace of ¢. For this, we have
to show the following lemma.

LEMMA 4.2. Let F' be a closed set in the hull-kernel topology of Sp(A), ¢ : A — L(X) a

strongly non degenerate representation and J.(F) := {a € A | supp(a) = 0 in a neighbourhood of F}.

Then X4(F)= () ker(¢(a)).
a€J:(F)

Proof: 1t is clear, by Theorem 3.5 that if ¢ € X4(F) then ¢(a)z = 0 for all a € J.(F).

Take z € Naes,(F) ker(¢4(a)) and suppose spy(z) ¢ F. Then there exists 7 € spy(z) with
T & F. Take U, V open sets in hull-kerne] topology such that UNV =0, 7€ U and FCV. A
compact neighbourhood of 7, K, and an open set W such that 7 € W C W c K C U can be
found. Now let L be a compact neighbourhood of 7 such that L C W and E = Sp(A)\W. As E
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is a closed set and L a compact set such that LN E = (), there exists a € A such that a(r) =1
for all 7 € L and @(7) = 0 for all 7 € E. Besides, supp(@) C E°=W and F C V C E. Then
a € J(F) and ¢(a)z = 0. As T € spy(z), a(t) = 0, but this is not possible. §

THEOREM 4.3. Given a closed set F' C Sp(A), X4(F) is a mazimal spectral subspace of ¢.
Moreover if M is a mazimal spectral subspace of ¢, then M = X4(Sp(dn))-

Proof: Let us denote Y = Xy4(F'). By the Lemma 4.2, Y is a closed subspace of X and invariant
by ¢ (Proposition 3.2 (v)). Besides, as spy, (z) = spy(z) for all z € Y, it is clear by the Theorem
3.9, Sp(¢y) C F.

Let Z be a closed subspace invariant by ¢ and Sp(¢z) C Sp(¢y). Given z € Z then, again

by Theorem 3.9 applied to Z, spg(z) = spy,(z) C Sp(¢z) C Sp(¢y) C F and this proves that
Z CY and so Y is a maximal spectral subspace of ¢.

Now let M be a maximal spectral subspace of ¢ and denote by ¥ = X4(Sp(¢ar)). We know
that Sp(dy) C Sp(¢a), and as M is a maximal spectral subspace, Y C M. Take z € M. Then
spg(z) = spy,,(¢) C Sp(pm) and z €Y,ie, M CY andso Y = M. §

REMARK. Given a closed set F' C Sp(A), it is clear that X4(F) = X4(F N Sp(¢)).

In the context of Banach algebras, we use the following concepts, which were introduced by
Apostol in [2]. ‘

DEFINITION 4.4. Given (£, 7) a topological space and X a Banach space, a spectral capacity,
£, is a map from closed sets of Q, Clos(f), to the set of closed subspaces of X, Lat(X), such

that,
— (1) £(0) = {0} and £(Q) = X.
= (2) &(NZ  Fr) = N2, E(Fy) for all closed set Fy, C Q.
— (3)if UL int Fy, = Q then 37, E(F}) = X.

The support of the spectral capacity £ is the set supp(€) := Ng(r)=x F. Besides, given z € X,
the set 0g(z) = Ngeg(r)F is called the spectrum of ¢ with regard to €.

THEOREM 4.5. Let A be a semisimple, regular Banach algebra and ¢ : A — L(X) a strongly
non degenerate representation of A in a Banach space X. Then € : F — X4(F N Sp(A)), for
every closed set F' C Sp(A @ Ce), is a spectral capacity from Sp(A @ Ce) to X such that

— (a) supp(E)\{7e0} = Sp(9).
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= (b) 9£(2)\{Teo} = 5Py(2)-

Proof: If F is a closed set in Sp(.A @ Ce), F NSp(A) is a closed set Sp(A). Now we are going to
check the three conditions of a spectral capacity.

(i) Take F = 0 and z € X4(0). If spy(z) = 0, =z = 0 (by Corollary 3.8.). It is clear that
X4(Sp(A)) = X because spy(z) C Sp(A).

(i) It is direct to show that X4((NSL,Fy) N Sp(A)) = NS, X4(Fn N Sp(A)).

(iii) Let us consider the canonical extension ¢ : A ® Ce — L(X). A @ C is a semisimple,
regular Banach algebra whose spectrum is compact and Sp(A@Ce) = Sp(A)U{7s }. In addition,
we are going to show that spy(z) C sp(z) C spg(z) U {70 }-

Take T € spy(z) and @ € A@C such that #(@)(z) = 0. We consider b € A such that b(t) # 0.
Then @b € A and ¢(ab)z = ¢(b)$(@)z = 0. As T € sp,(z), 0 = ab(r) = a(r)b(r) and so 0 = a(r)
and 7 € spy(z). Finally it is direct to prove spz(z) C spy(z) U {7e}.

Now, let {F;}7_; be a family of closed sets of Sp(A & Ce) which satisfies U?_,int F; =
Sp(A @ Ce). As Sp(A ® Ce) is a compact set, there exist {@;}?_, which verify supp(i';) C F;
with j € {1,...,2} and 37, acj(r) = 1for all 7 € Sp(A @ Ce). As A @ Ce is a semisimple

algebra, e = °7_; @; and for all z € X it can be written

oS o)

=1
and sp¢(q-5(?i;):z:) C spé(z;?&(fi}')z) @ supp(fi\;) C Fj with 1 < j < n. So it holds that sp¢(¢~>(&"})z) (S
F;0Sp(A), $(@5)z € E(F;) and X = E(Fy) + E(F2) + ... E(Fn).

To prove (a), it is clear supp(£)\{7eo} C Sp(¢). Take a closed set F C Sp(A & Ce) such that
E(F) = X4(FNSp(A)) = X. Then, forall z € X

sP4(z) C sp(Bx,(Fnsp(4)) C F'NSp(A)
holds. By Corollary 3.9, Sp(¢) C F N Sp(A) and Sp(¢) C supp(E)\{7eo}-

To check (b) it is direct to show that og(z)\{7eo} C 5p4(). Take a closed set F' C Sp(A@®Ce)
such that z € £(F) = X¢(F N Sp(A)). Then, it holds that

sP4(2) C sp(Bx,(Fnsp(4)) C F N Sp(A)

and spy(z) C og(2)\{7eo}- B
5. Extension of Representations to M(A4)

Let A be a Banach algebra. A mapping T : A — A is called a multiplier on A if the identity
aT(b) = T(a)b holds for all a,b € A. If A is an algebra without order (i.e. ifab=0forallb e A
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then a = 0), then A may be regarded as a subset of M(A) and M(A) is an unitary, closed,
commutative subalgebra of £(A) [14]. If A is a semisimple algebra, M(A) is also semisimple
(see Larsen), but in the general case the regularity of .A does not make M(A) to be regular [14].

The spectrum, Sp(M(A)), of the multiplier algebra can be represented [14] as the disjoint
union of Sp(.A) and H(A), where Sp(A) is canonically embedded in Sp(M(A)), and H(A) is the
hull of A in Sp(M(A)). The hull-kernel topology and the Gelfand topology of Sp(.A) coincide
with the relative hull-kernel topology and the Gelfand topology induced by Sp(M(A)), and
Sp(A) is hull-kernel and Gelfand open in Sp(M(A)). Besides it is defined

Mo(A) :={T € M(A) | TSp(A) = 0 at infinity in the Gelfand topology of Sp(.A)}.

Given ¢ : A — L(X) a strongly continuous representation and T' € M(.A), we are interested
on studying the action of T over X. We will denote this new operator by ®(T") and will say
z € D(®(T)) if there exists y € X such that

$(T(a))z = ¢(a)y

for all @ € A and &(z) =y [9]. ®(T) : D(®(T)) — X is a closed linear operator and it is direct
to show the following properties.

ProOPOSITION 5.1. Given ¢ : A — L(X) a strongly continuous representation, T, S € M(A)
and (D(2(T)), ®(T)), (D(®(S)), ®(S)) defined as above, then

— (i) (A)X C D(®(T)), ®(T)¢(a)z = ¢(T(a))z for alla € A and z € X, and $(T(a))z =
#(a)®(T)z = for all a € A and z € D(®(T)).

— (i) D(3(S)) N D(&(T)) C D(3(S + T)) and &(S)z + &(T)z = &(S + T)z for all z €
D(2(5)) N D(2(T)).

— (iii) D(®(ST)) = D(®(TS)) and &(ST)z = &(TS)z for all z € D(B(ST)).

— (iv) D(®(T)®(S)) C D(®(ST)) and ¥(T)®(S)z = &(T'S)z for all = € D(B(T)®(S)).
Then, if ¢ : A — L(X) is a strongly continuous representation, ¢ induces a new representation
®: M(A) — C(X). If A has a bounded approximate identity (e))rea for which @(e))z — = for

each z € X, by the Cohen factorization theorem we get that & : M(A) — L£(X) (see [12]). But
all along, we will not suppose that A has a bounded approximate identity.

DEFINITION 5.2. Let A be a semisimple, regular Banach algebra and ¢ : A — L(X) a
strongly continuous representation, ® : M(A) — C(X) defined as above and z € X. Then

(a) Sp(®) := h(ker(®)) = {p € Sp(M(A)) | T(¢) = 0 for any T € ker(®)}.

(b) spa(z) := h(ker(I2)) = {¢ € Sp(M(A)) | T(¢) = 0 with z € D(®(T)) and &(T)z = 0}.
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An immediate question is to know which is the relationship between sp,(z) and spg(z) with

z € X. For doing this, we will use the following lemma.

LEMMA 5.3. Ifz € X, T € M(A) and ¢$(T(a))z = 0 for all a € A ( where A and ¢ are
defined above), then z € D(®(T')) and &(T)z = 0.

Proof: Take the definition of ®(T)z with y = 0. As ¢(T(a))z = ¢(a)y = 0 the lemma is
proved. §

THEOREM 5.4. Let A be a semisimple, regular Banach algebra, ¢ : A — L(X) a strongly
continuous representation, ® : M(A) — C(X) defined as above and = € X. Then

— (a) spy(z) = spg(2) N Sp(A).

= (b) spg(z) C Sp(®).

— (c) Sp(¢) = Sp(@) N Sp(A).

Proof: (a) It is direct to prove that spg(z) N Sp(A) C spy(z). Now take T € Spy(z) and
T € M(A) such that z € D(®(T)) and &(T)z = 0. Then ¢(T(a))z = 0 for all a € A, and as
T € spy(z) we have that 0 = TT(:)(T) = T'(r)a(r) for all a € A. So T(r) = 0 and 7 € spg(z).

(b) Take T € spg(z) and T € M(A) such that ®(T) = 0. Then for all a € A ¢(T(a))z = 0.
By Lemma 5.3, z € D(®(T)) and &(T)z = 0. As 7 € spg(z), T(r) = 0 and 7 € Sp(d).

(c) It is clear that Sp(®) N Sp(A) C Sp(¢). Now, the Corollary 3.9 and (b) we have that

Sp(¢) = | spg(z) € | spa(z) C Sp(®).

zeX zeX

Using this theorem, some properties which are well-known in the case we take A with a
bounded approximate identity can be proved [19].

ProPOSITION 5.5. Let A, ¢: A — L(X) and ® : M(A) — C(X) be defined as above, z € X,
and T € M(A). Then

— (a)spg(z) =0 if and only if z = 0.
— (b)sps(B(T)z) C spy(z) N supp(T) for all z € D((T)).
— (c¢) if z € D(®(T)), and T = 0 in a neighbourhood of spy(z), then ®(T)z = 0.

— (d) if T =0 in a neighbourhood of Sp(®), then ®(T) = 0.
Proof: (a) It is direct to prove it from' Theorem 5.4.(a) and Corollary 3.8.
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(b) It is easy to show that sp4(®(T)z) C spg(z). Now take T € Sp(A)\supp(T). supp(T’) is
a closed set of Sp(M(A)) and supp(7") N Sp(A) is a closed in Sp(A). As A is a regular Banach
algebra, there exists a € A such that () = 1 and & = 0 in supp(7") N Sp(A). Now we consider
T(a). For any ¢ € Sp(A), it holds that

@(T(a)) = T(a)() = T(p)a(p) = 0.

Then (A is a semisimple algebra), T(a) = 0 and ¢(a)®(T)z = ¢(T(a))z = 0 with a(r) = 1 and
then 7 ¢ spy(@(T)z).

(c) It is directly got from (b) and Corollary 3.8.
(d) It is a consequence of Theorem 5.4.(c), sps(z) C Sp(¢) and (c). B

The remainder of this section will be devoted to some properties of the operator ®(T"). These
questions have been studied in several papers before, see for instance [10], [12]. Now we will

remind some basic definitions and facts in spectral theory of operators.

A linear operator (5, D(S)) over a complex Banach space X has the single valued eztension
property, SVEP, if for any open set U C C the only function f : U — D(S) such that
(§ = A)f(A) =0 for all A € U is the constant function f = 0.

For an operator (5, D(S)) which satisfies the property SV EP, it is defined the local resolvent
of S at z € X, ps(z), as the set of all A € CU {oo} := C for which there exits an analytic
function f: U — X on some open neighbourhood U of A, so that (S — ) f(z) = = holds for all
g € U. The complement og(z) := C\ps(z) is called the local spectrum of S at z € X.

An operator § € C(X) is said to have Dunford’s property (C) if the subspace Xg(F) :=
{z € X | os(z) C F} is closed for every closed F' C C. Moreover S is called quasi-decomposable
if Xs(F) is closed for each closed ' C C and for every finite open covering {Us,...U,} of T,
the sum Xs(U1) + ...+ Xs(Un) is dense in X. S is called decomposable if for every finite open
covering {Uy,...Un} of C, there exits S-invariant closed linear subspaces Yj,...,Y; such that
Yi+...4Y, =X and o(Ty;) C U; for j = 1,...,n [10].

§ € C(X) is decomposable if and only if there exists a spectral capacity for S, £ : Clos(C) —
Inv(S) such that o(Tg(r)) C F for all closed set F' C C. Besides, it can be shown that if § is
decomposable, then £(F) = X5(F) for all F' € Clos(C) [20].

The particular case X = A has been deeply studied. In this situation ¢ : A — L£(A) and
#(a) = L, where Lq(b) = ab for all b € A, spy(a) = supp(a), for all a € A agd Sp(¢) = Sp(A).

It is immediate to prove that ® : M(A) — L(A) is the canonical continuous inclusion. For
T € M(A) it is said that

— (a) T has natural local spectra if'spr(a) = T(supp(&)) for all a € A.
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— (b) T has natural spectrum if opr(4)(T) = T(Sp(A)).

It is known that every multiplier with natural local spectra has natural spectrum. For T €

Mpy(.A), some equivalent statements to having natural local spectra have been proved [10]. We
remark the following one.

THEOREM 5.6 ([10]). Let A be a regular semisimple Banach algebra and T € Mo(A). Then
T has natural local spectra if and only if T is decomposable.

In the general case, ¢ : A — L(X) is a strongly non degenerate representation with A a
regular, semisimple Banach algebra. Two definitions have been introduced [19] to replace the
properties of having natural local spectra and natural spectrum. It is said that a multiplier
T € M(A) with &(T) € SVEP

— (a) has the property (L) if spg(r)(z) = T(spd,(z)) forall z € X.

— (b) has the property (G) if o¢(x)(T) = T(Sp(9)).

If  : M(A) — L(X) then for any multiplier T € M(A) verifying property (L) verifyes
property (G). Even more Neumman has proved the following theorem.

THEOREM 5.7 ([Ne]). Suppose A is a regular semisimple Tauberian Banach algebra with a
bounded approzimate identity (e)) and ¢ : A — L(X) a continuous algebra homomorphism with
the property that ¢(ex)z — z. Then

— (i) ¢ is strongly non degenerate and has an unique eztension to a continuous unital algebra
homomorphism & : M(A) — L(X).

— (ii) if the multiplier T € M(A) is decomposable on A then ®(T) is decomposable and
verifies properties (L) and (G).

We are ready to show the last two theorems of this section. The first one is an extension of

one part of the Theorem 5.7.

THEOREM 5.8. Suppose A is a regular semisimple Banach algebra, ¢ : A — L(X) a strongly
non degenerate representation and T € Mo(A) such that has the property (L), and ®(T) has
SVEP. Then ®(T) is descomposable.

Proof: If T has the property (L), then we claim Xg(7)(F) = X4(T~Y(F)) for all F € Clos(C).
Take z € Xg(7)(F). Then spy(z) C T-1(T(spg(z))) C T~1(F). Conversely, if z € X4(T~'(F)),
then spg(7)(z) = T(spd,(:c)) = T(T-1(F)) C F as we want.
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Therefore we have to prove that Clos(C) — Inv(T'), and that F +— X4(T~1(F)) is a spectral
capacity for T. Conditions (1), (2) of Definition 4.4 are easy to check. We have that

U(‘I’(T)xé(i'-l (F))) = U spa(T)(%) = U T(spg(z)) C F

z€Xy(T-1(F)) z€Xy(T-1(F))
by Proposition 3.7 of [7]. The Proposition 5.5.(ii) that implies X4(T~1(F)) is invariant by ®(T).
So, we just have to prove condition (3) of the Definition 4.4. It is enough to prove it with {U,V'}
an open covering of C. Suppose 0 € U. As T € Mpo(A) and T is hull-kernel continuous on Sp(A),
T-1(U) is an open neighbourhood of oo, T-1(C\U) is a compact set on Sp(.A) and T-}(C\V)
is a closed set which is disjont with 7=1(C\U). Then (A is regular) there exists a € A such that
@=1onT-}(C\U) and & = 0 on T-1(C\V). This implies that supp(a) C T~*(T) and that
supp(1 — &) C T~Y(V) and for all z € X we have the decomposition z = ¢(a)z + z — ¢(a)z =
#(a)z + &(I — a)z with ¢(a)z C supp(a) C T-(T) and z — ¢(a)z C supp(1 — a) C T-(V) as
we claimed. 1

THEOREM 5.9. Suppose A is a regular, semisimple, Banach algebra, ¢ : A — L(X) a repre-
sentation strongly non-degenerate such that ¢(A)X is dense in X , T € M(A) a decomposable
multiplier with natural local spectra and the property (L). Then ®(T) is quasi-descomposable.

Proof: As T has the property (L) following the proof of Theorem 5.8, it can be also proved that
Xo(r)(F) = Xo(T~1(F)) and that Xg(r)(F) is closed.

Let {U;1,U3,...,Un} be an open covering of C. As T is a decomposable multiplier on A
there exists maximal spectral subspaces for T, {Ar(Th), Ar(72),. .. Ar(U,)} and A = Ar(Th)+
Ar(T2) + ... + Ar(Us) where Ar(T;) = {a € A | spr(a;) C T;} with j € {1,2,...n}. Then

$(A)X S(AT(T0)X + (AT(T2))X + ...+ ¢(Ar(Tn))X
X7(Th) + X7(02) + ... + X2(T)

due to spg(r)(4(aj)z) = T(sp¢(¢(aj)z) C T(supp(@;)) = spr(a;) C Tj, because T has natural
local spectra. As ¢(A)X is dense in X, X7(TU1) + X1(U2) + ...+ X1(T,) is dense in X. 1

8. Two Classical Examples

In this section we will comment two examples which have been considered in several papers. The
first one is related with functional calculus defined for hermitian elements on a Banach algebra
[4], [11). The second one is the most important case of representation of the Banach algebra,
A = L}(G) where G is a locally compact abelian group [6], [9].




6.1 Hermitian elements and elements with growth of degree o

Let A be a complex Banach algebra with unit element e. An element a € A is said to be
hermitian if ||| = 1 for all ¢ € R. We will say that a is an element with growth of degree a
with @ > 0if ||e*2|| < ¢(1+|¢|)* for all ¢ € R. The spectrum of hermitian elements and elements
with growth of degree a is a subset of R.

For these classes of elements Baillet proved the following theorem.

THEOREM 6.1. Let A be a Banach algebra with unity e, a € A an element with growth of
degree o and . C R an open neighbourhood of o(a). Then there ezits an unique homomorphism
®: f > &(f), from C*)(Q) (with k = [a + 3\2]) to A which satisfies the following properties:

(i) @ is continuous.
(1)) ®(t — 1) = e and ¥(t — t) = a.
(iii) if f is null over a neighbourhood of o(a) then ®(f) = 0.

(iv) o(2(f)) = f(o(a))-

Ifa=T e L(X), then & : C*¥)(Q) — L(X) and &(f) is decomposable for all f € C*)(Q),

and in particular T is decomposable.

6.2 The Banach algebra L'(G)

Let G be a locally compact abelian group, L}(G) the space of complex valued functions on
G with regard to the Haar measure and M(G) the Banach algebra of regular complex Borel
measures on G. A strongly continuous representation of G by means of isometries on a Banach
space X, is a map U : G — L(X) which satisfies

— (i) U(s+1t)=U(s)U(t) for all s,t € G, U(0) = I.

— (ii) ||[U(s)z|| = ||z|| for s € G and z € X.

— (iii) G — X , s — U(s)z is continuous for each z € X.

It is known that under these conditions (G a locally compact abelian group, and U a strongly

continuous representation of G), there exists a continuous algebra homomorphism

U:M@G) - L(X)
B U= [ U
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with |U|| = 1. In particular, if f € L!(G), then U(f) = [ f(s)U(s)ds. For the representation
U, Arvenson [3] introduced the concepts of spectrum, local spectra, and spectral subspaces
which are equal to the analogous concepts of U taken in L!(G).

As application for all this, take X = L?(G) with 1 < p < co. Then for all f € L(G),
Up(f) € L(LP(G)) and Up(f)(g) = f g for all g € LP(G). Then Up(f) is a decomposable
operator for f € L}(G) and 1 < p < 0. Besides U,(f)(g) = Uy(f)(g) for all g € LP(G) N L(G)
( Up(f) and U,(f) are consistent) and by a result of Albrecht [1, Corollary 2.6.]

aczr@))(Un(f)) = or(ze(a)) (Ug(f))

with 1 < p,q < oo.
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Abstract

We introduce a class of estimators linear combination of the classic ratio and
product estimators, and calculate its bias and mean square error. With:an adecuate
choice of parameter k, the proposed estimator is approximately of minimum mean
square error in the class, and is more precise than the classic estimators-on which
it is based. In practice, it is useful for its administrative simplicity, additional ease
use and robustness for interest and auxiliary variates very positive or negai:\iiiely

correlated.

1. Introduccién

Consideremos una poblacién finita de tamano N, con unidades numeradas de 1 a N para
su identificacién. Disponemos de una variable auxiliar z, conocida para todas las unidades
de la poblacién. Sea y la variable de interés, observable en las n (0 < n < N) unidades de
la muestra obtenida por muestreo aleatorio simple sin reemplazamiento de la poblacién.
Sean X e Y las medias poblacionales de las variables z e y, respectivamente, asi como &
e 7 las respectivas medias muestrales.

La clase de estimadores propuesta serd la familia de combinaciones lineales de los

estimadores ususales de razén tg, y producto tp. Asi tenemos

tRP=ktR+(1—k)tP=ﬂ[k§+(1—k)£] (1)

donde k es un pardmetro de la recta real por determinar.
El tipo de estimadores (1) fueron originados a partir de trabajos pioneros como el
de Olkin (1958), recientemente sumarizados por Rao (1988); su propésito es estimar la

funcién paramétrica media poblacional Y. La ventaja de los estimadores propuestos se
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basa en su simplicidad ya que sélo requiere una variable auxiliar z, con su consecuente
simplicidad administrativa en la practica, como opuesto al caso multivariante. La ventaja
comin es su eficiencia con respecto a los estimadores clésicos elementales con los cuales

se construye.

2. Sesgo de tgp

Denotando por B(.) al sesgo,
B(trp) = E(trp) — Y = kB(tg) + (1 — k) B(tp),

y sustituyendo los sesgos B(tg) y B(tp) dados por Grosbras (1987, pags. 132 y 149) bajo
muestreo aleatorio simple sin reemplazamiento, tenemos

. N-n[ (Y RS S :
B(trp) = —5— [k ("5-(—25:2 = )_{y) + 7-(2] (2)

donde S? es la cuasivarianza poblacional de la variable z y S;, la cuasicovarianza de las

variables z e y.

Igualando B(tgp) a 0, el estimador trp es aproximadamente insesgado si

S
SGeE 7 e ®)

k

3%
X

Con (3), el valor de k proporciona estimadores con sesgo aproximadamente nulo, pero

siendo R = % la razén poblacional.
en cualquier caso y para k arbitrario, el sesgo de tgp dado en (2) es asintéticamente nulo

cuando el tamafio muestral n crece.

3. Error cuadratico medio de tzp

Denotando por ECM(.) el error cuadratico medio, tenemos

ECM(tre) = Bltre—¥)* = Elk(ta = ¥) + (1 - k)(tp — V)2

= K2ECM(tr) + (1 — k)2 ECM(tp) + 2k(1 — k)E[(tr — ¥)(tp — V)]
: (4)
Sustituyendo ECM (tg) y ECM (tp) dados aproximadamente en Grosbras y teniendo

en cuenta que
E((tr=Y)(tp — Y) = E(trtp) — Y[E(tr) + E(tp)] + V2 (5)

como los sesgos son conocidos aproximadamente (Grosbras, 1987) y ademds tztp = 72,

obtenemos de (5) que
N-n

E(tr-Y)(tp-Y) = N (S2 - R?S2) (6)
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Usando (6), la férmula (4) es aproximadamente
3 N-—-n 252 a2
ECM(tgrp) = N LSy + (1 — 2k)2RS;, + (2k — 1)*R*S2).

La férmula (7) se minimiza eligiendo un valor adecuado de k en la recta real,

d[ECM(tgp)] N-—n i wik 202] _
T =S [-4RS;y +4(2k — 1)R*S;] =0

_pel, Su
Gl 2RS?

Obviamente, k' es el minimo de (7), ya que

P[ECM(tre)] _ N =n
Nn

— 8R?S2 > 0.

Sustituyendo &’ en (2) y (7), obtenemos el sesgo y el error cuadrético medio aproxi-

mados

N-nf1 252
! S 2 S Y
Blthe) = 5" g (RS2 + - 13

N — 2 o
BOM(thp) =~ {Sy = (25 R2>]
Comparando la precisién de thp frente al estimador de regresién lineal usual tgrg
(Cochran, 1977), tendremos

N -

o — =521 - o) 2 ECM(thnp)

V(tre) =

si y sélo si S2R? > 1. Esta iltima condicién nos indica en que casos el estimador t}p es
mas deseable que el estimador de regresién tpe.

También se deduce que tgp, con k’ dada en (8), mejora uniformemente los estimadores
bésicos tgp y tp (obtenidos respectivamente para k = 1 y k = 0). Asi, tgp con k' es un
estimador eficiente cuando las variables de interés y auxiliar estdn muy correlacionadas.
Estimando adecuadamente k& mediante una muestra piloto o con datos de la muestra
(ver Ruiz, 1988) y considerando k como una constante fijada en la recta real, trp es un
estimador aproximadamente de error cuadratico medio minimo uniformemente en la clase,
por lo que resulta mas preciso que los estimadores de razén y producto, en los que esta
basado.

El estimador propuesto tgp con k' se manifiesta muy robusto bajo la hipétesis general
de que las variables z e y estdn fuertemente correlacionadas, obteniéndose estimadores
trp més eficientes que tgr y tp, respectivamente, en los casos en que éstos son deseables. Si
ambas variables estdn positivamente correlacionadas, el estimador ¢ es muy apropiado;

si estuvieran negativamente correlacionadas, el estimador tp es mas deseable (Murthy,
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1964). Para una u otra posibilidad, tgp es mejor que ambos estimadores con una ade-
cuada eleccién del pardmetro k (segin el criterio del error cuadrético medio minimo
uniformemente aproximado). De este modo queda garantizada la robustez que no poseian
individualmente los estimadores de razén y producto, frente a posibles cambios en el signo
del coeficiente de correlacién entre las variables de interés y auxiliar muy correlacionadas.

Conviene anadir que el estimador trp puede tener una precision similar a la media
muestral , cuando p = 0, pues sustituyendo el valor de k' dado en (8), en la férmula (7),
si Sz = 0 (y por tanto k¥’ =3) entonces ECM(trp) = V(), aun en el caso en que las
variables z e y sean aproximadamente incorrelacionadas, que es el caso mas desfavorable
para usar una variable auxiliar en la estimacion de una funcién paramétrica que depende

exclusivamente de la variable de interés y, como en nuestro caso es la media poblacional

Y
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‘Abstract

The concept of equilibrium for random variables is reviewed as developed in Ruiz
Espejo (1990, 1992a, 1992b, 1993, 1995, 1997). In particular, its role in the estima-
tion of population mean and population variance, and two of its characterisations,

one algebraic and other geometric, are described.

1. Introduction

The concept of equilibrium for a random variable was introduced by Ruiz Espejo (1990,
p. 56) in the following terms:

Definition 1. Let X be a random variable with E(X) = p. For given p € [0,1) we say
that (z,y) € R? is equilibrated of order p for X if and only if

Prz<X<y)=1-p, (1) EX(zy)=p  (2)

where X (z,y) denotes the random variable X truncated to the interval (z,y). We shall
refer to equations (1)-(2) as the system of equilibrium equations of order p for X.

For the following spacial class of random variables, we can establish interesting results
on existence and uniqueness of (z,y) that are equilibrated of order p. Throughout the

paper we giveno proofs of results which can be found in the respective article(s).

2. Usual random variables

Definition 2. Let X be a continuous random variable on the interval (a,b) wirh distribu-
tion function F. We say that X is a usual random variable if and only if F is differentiable
in (a,b) with f(z) = dF(z)/dz > 0 for z € (a,b).
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Theorem 1. Let X be a usual random variable on (a,b) with E(X) = p. For every
p € [0,1) there exists a unique pair (z,y) that is equilibrated of order p for X.
Theorem 2. The system of equilibrium equations (1)-(2) has linearly invariant solutions,
i.e. if (x1,z9) is equilibrated of order p for X and (y1,v2) Is equilibrated of order p for
Y=AX+B,A>0, theny; = Az; + B, i =1, 2.

This means that the equilibrated pair associated with population X is also valid for all
location-scale transformations of the population. One consequence of this is that estimates
of the population mean p derived from (1)-(2) are linearly invariant; Ruiz Espejo (1990,
p. 63) derives a modification of the ususal sample mean that satisfies this property.
Applications to robust estimation, according Andrews et al. (1972) are also shown.

In the rest of this paper we shall consider only the usual random variables.

3. Optimality criteria

We discuss optimality of the solution (1)-(2) for usual random variables. We use two
criteria: the minimal mean absolute error criterion and the minimal mean square error

criterion.

3.1 Minimal mean absolute error criterion (Ruiz Espejo, 1992a)

Definition 3. Let F' be a distribution function. Let A, B € B be Borel sets with B denoting
the Borel o-algebra. We say that A = B a.e. with respect to F' if and only if

: /AAB dF(s) = 0,

where AAB = (AU B) — (AN B) is the symmetric difference of A and B.

Theorem 3. Let X be a usual random variable with distribution function F', E(X) =
and let

]-'={A€B:/AdF(s)=1—p and /Ade(s)=(1—p)u}

be a family of Borel sets, p € [0,1). Then (z,y), the solution of (1)-(2), is an element of
F and it satisfies

y
[ ls = uldF(s) < [ Is - wlaF(s)
for all A € F with equality holding if and only if (z,y) = A a.e. with respect to F.
Hence we say that the (z,y) solution of equilibrium equations of order p is optimal

among all Borel sets with the same relative weight 1 — p in the sense of minimal mean

absolute error.

3.2 Minimal mean square error criterion (Ruiz Espejo, 19992a)




Consider the system of equations

/:f(s)ds‘:l—p, T+y =24 3)

We say that (z,y) is optimal in the sense of optimal mean squared error if it is the
solution of (3). The solution (z,y) is optimal in the sense of both minimal mean absolute
error and minimal mean squared error if f is symmetric.

The solutions of (z,y) based on both Theorem 3 and equation (3) are linearly invariant.
Hence subsequent estimates of, say, the mean of the population X, are both optimal (in
the sense of minimal mean absolute error or minimal mean square error criterion) and

linearly invariant.

4. Extension of invariance

In Theorem 2 we showed that the equilibrium equations for usual random variables have
linearly invariant solutions. Here we seek conditions for invariance under a wider class of
transformations (Ruiz Espejo, 1995).

Theorem 4. Let y = ¢(z), = € (a,b) be a strictly monotone and differentiable (with
non-zero derivative) transformation. For a usual random variable X, the solution of the

system of equilibrium equations (1)-(2) is invariant under ® if and only if
{E(X)} = E{2(X)}.

Corollary 1. In Theorem 4: (a) p = E(X) is an inflexion point of ®; (b) If ®(z) =
Az + B, A # 0 then E{®(X)} = ®{E(X)}; (c) If ®(z) = Az + B, A > 0, we have
Theorem 2.

Ruiz Espejo (1995) gives a construction where ®{E(X)} = E{®(X)} holds for a non-
linear transformation ® ans usual random variable X. In brief he shows that ®{E(X)} =
E{®(X)} =0, when ® = arctanz and E(X) = 0 with a bounded symmetric density f.

Non-linear invariance may be a desirable property under special circumstances, but
the following theorem shows that its applicability could be limited.

Theorem 5. Let X be a usual random variable and suppose that . = E(X) is unknown.
If ®(p) = E{®(X)} for p € (a,b), then p is an inflexion point of ® and, for all z € (a, b),
®(z) = Az + B, A#0.

5. Equilibrated stratification

Ruiz Espejo et al. (1992b) introduce the concept of equilibrated stratification for estima-

tion of population variance.




Definition 4. Let (z4,24), h = 1,2,...L — 1 be the pair of real values equilibrated of order
py for the population X where 0 < p; < ... <pr_1 <1. For h=1,2,..L — 1 we define
equilibrated stratum h” to be the set (Zp—1,Zh) U (2n, 2h-1), which is a union of two
disjoint intervals, and “equilibrated stratum L” is defined to be the set (xp_1,21-1). So
we have the population values classified into L strata.

Under equilibrated stratification the unbiased estimator for the population variance is

it

o= W,S;

h=1

where W, is the relative weight of stratum h and S? is the sample variance for stratum

h. Under optimal allocation the sample size of stratum h is

nWM/ThA == O'ﬁ

=7 4
Pkl Wk\/’rk,4 = 0

s

where 7, 4 and o} are respectively the fourth and the second central moments for stratum
handn=n; +ny+ .. +ng.

Let S2, 74 and ¢ be the analogues of S?. 7,4 and oy, for simple random sampling (srs)
of size n. We have the following theorem.
Theorem 6. Consider a equilibrated stratification with optimum allocation. Take n

sufficiently large that

1
th(gzt) & WhV Tha — Uﬂ Vsrs(SZ) = _(T4 = U4)~

h=1
Then we have Vo (02) < Virs(S?). :

Hence the precision of the unbiased estimator o2, for sufficiently large sample size
is at least as small as that of the classical minimum variance unbiased estimator for
distribution-free setting. For further details including a discussion on optimality of equi-
librated stratification see Ruiz Espejo et al. (1992b).

6. Two characterisations

We provide two characterisations: thw first one charactwrises equilibrium for usual ran-
dom variables in terms of a system of non-linear differential equations. This algebraic
characterisation allows one to cdmpute the equilibrated pair (z,y) by application of nu-
merical analysis techniques as Henrici (1964) indicates (see Ruiz Espejo (1995) for a
discussion of this); the second characterisation provides a visual interpretation of usual
random variables by means of a three-dimensional curve with certain properties. It is a

geometric characterisation of usual random variables.




6.1 Algebraic characterisation (Ruiz Espejo, 1995)

Theorem 7. Let X be a usual random variable with E(X) = p. Considering p as an
independent variable on [0,1), define the bivariate function p — (z(p),y(p)) = (z,y) is
the equilibrated pair of order p for X. Then z(p) and y(p) are differentiable (with respect
to p) and satisfy

dz(p) _ y(p) —u ) dy(p) _ z(p) — p (5)
dp {y(p) — z(p)}f{z(p)} dp {y(p) — =(p)} f{u(p)}
with z(p) < p < y(p) for all p € (0,1), z(0) = a, y(0) =b and lim,.; z(p) =
lim,1 y(p) = p.
Corollary 2. In Theorem 7, by setting z(1) = y(1) = p, we can make both z(p) and
y(p) continuous on [0,1]. and by taking p — 1, we have z'(1) = —y/(1) = 1/[2f(u)].
Theorem 8. The solutions for (z,y) under the two systems (1)-(2) and (4)-(5), are

equivalent.

6.2 Geometric characterisation (Ruiz Espejo, 1997)

Definition 5. A ”equilibrium curve” is the curve {(p,z(p),y(®) : p € (0,1]}, in R® with
z'(p) > 0, ¥'(p) < 0 for all p € (0,1], /(1) = —=y'(1) = 1/[2f(n)] and a = z(0) < z(1) =
r=y(1) <y(0)=b.
Theorem 9. Given a equilibrium curve, the continuous positive function f determined
by the equations

v(p) y(p)

1-p= [ f(s)ds (-pu= [ sf(s)ds

z(p) z(p)
is the density function of a unique usual random variable X on (a,b) with E(X) = pu
(except in cases where the expectation is not finite).
Corollary 3. A usual random variable can be defined by a equilibrium curve and con-
versely a curve that satisfies the conditions in Definition 5 determines a usual random

variable.

For further equivalent conditions involving equilibrium curves see Ruiz Espejo (1997).
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Resumen

El bootstrap es un método de remuestreo en estadistica que tiene una amplia gama de
aplicaciones, especialmente en situaciones en que el tama no muestral es peque no y no se
pueden emplear, con confianza, resultados asintéticos. Destaca también su gran simplicidad
conceptual y la sencillez de programacién en ordenadores. El tiempo de computcién es ele-
vado, especialmente en métodos de tipo bootstrap iterado que, con el fin de reducir sesgos,
emplean varios niveles de muestreo. En este trabajo se revisan dos métodos eficientes boot-
strap (método centrado y de aproximacion lineal), donde se indica como tomar una muestra
aleatoria bootstrap por simulacién para realizar el menor nimero de célculos posibles, sin
perder precisién. En general, se trata de reducir el tamafio muestral, a cambio de modificar
el esquema de muestreo de forma que los estimadores sean tan fiables como si el tamaifio

muestral bootstrap fuera mayor.

1. Meétodo de los desarrollos lineales

La idea es hacer un desarrollo de Taylor de un funcional cuya esperanza se desea estimar. Para
dar una idea del método, supongamos que estamos estimando el sesgo, es decir, U = 6-6 y
que el estimador del pardmetro 6 es 6= 9(X), que es una funcién que depende de la media de
las variables p-dimensionales X;. Sera U* = §* — § = g(X*) — g(X), siendo X* la media de
las remuestras. Con objeto de abreviar la formulacién, en ocasiones utilizaremos las notaciones
AX = (X* - X) y AX, = (X — X). Podremos pues realizar un desarrollo en serie de Taylor
de esta expresién y quedara:
P P P
U* =Y AXUWgi(X)+ > Y AXDAX W g (X) + ... (1)
j=1 j=lk=1
donde el superindice (j) indica el j-ésimo elemento del vector p-dimensional al que se aplica
9i(z) = dg(z)/dzD y gj..;.(z) = d"g(z)/dz(51)...dz(jr).
Ademsés

Var(U*/X) = Var {iA)_((j)gj()_()/X} +0(n2) =n"162 +0(n"2),
=1

2
o?=in=t 5% {i(xi - X)U’gj(ff)} — o= {Z(X,- - #)U)gj(#)} L

i=1 | j=1 j=1
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cuando n — o0, siendo p = E(X) la media poblacional. Hemos visto en (2) que la varianza de
U* estd determinada, asintticamente, por la varianza del primer término de la derecha de (1).

Por otra parte, se tiene

{ZAX(J o x>/x} > {E@BX)9/x} (%) =0 3)

Jj=1 J=1

de manera que la componente lineal del desarrollo (1) no influye en E(U*/X), puesto que tiene
esperanza nula. De acuerdo con (3), la idea central del método de remuestreo por desarro-
llos lineales consiste en quitar la parte lineal de (1), pasdndola al término del lado izquierdo,
remuestreando de la expresién asi resultante. Al hacer esto, la varianza de la expresién que
remuestreamos tiene un orden de magnitud B~'n~2, con lo que habremos mejorado en un orden

de magnitud. En concreto, se define el funcional V' en la forma
p - -
= AXUg(X). (4)
=1
Lo que haremos serd remuestrear de V*, utilizando remuestreo uniforme, en vez de hacerlo
de U*. Con esto, la aproximacién bootstrap que se define para V* seguird siendo insesgada, de

manera que no se elimina la parte de la varianza de U* asociada al término lineal que se resta

en (4). La aproximacién bootstrap a V*, serd

B
p=B"'Y W, (5)
b=1

P . % - =
Vy = U = Y AXg5(X) = 9(X3) - 9(X) - z AXDgi( (©)

para b = 1,..., B, siendo )_(,; la media de la remuestra XZ, remuestra idéntica a la que em-
pleariamos por remuestreo uniforme. Es decir, remuestreamos como siempre de U*, calculando
por (6) las remuestras de V*. La expresién (5) nos da la aproximacién bootstrap por remuestreo
de aproximacion lineal a /1 y converge a dicho valor con probabilidad 1, condicionada a X cuando

B — 0. Se sabe por (3) que:
E(V*/X)=EU*/X) =

es decir que v} es aproximadamente insesgada de p. Por otra parte, tendremos:

Var(9g/X) B~WVar(V*/X) = B~ Var {% zpj ij AXDAX® g\ (X) /X} +0(n~%)
j=lk=1

B~ln723+0(n73), (7

donde 3 es una expresién que no depende de B ni de n y comprobando asi que se ha reducido
en un orden de n la varianza del remuestreo. Es importante sefialar que métodos de este tipo
se han aplicado en Oldford (1985) y Davidson et al (1986).
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2. Meétodo Centrado

Este método es original de Efron (1990). Recordemos que el método de aproximacién lineal

nos daba las aproximaciones (5) y (6):

B B { i P o A p Lo Al
OO BEiNT Ve Bl {g(xg) -9X)-> AX,E”gj(X)} =a; - AXPg;(X), (8)
b=1 b=1 j=1 j=1

siendo 7 la aproximacién de remuestreo uniforme a 4 y

la media de las B remuestras. Desarrollando por Taylor g(z), se tiene:
p -_f - - -
Y AXUg;(X) 2 9(X*) — g(X).
j=1

Ahora, por (8) y (10), se tiene
- - B —_ - - -
ap — g(X*) — g(X) = B7' Y _g(X) — 9(X)[9(X™) — 9(X)]
b=1
B
B™'Y ga(Xp) — g(X*) = &5, (11)
b=1

siendo esta expresién la aproximacién a 4 por el método centrado. En (11) se ha empleado la

definicién de 4. Debe notarse que 4% puede escribirse también como:

B
ap=B"") 9(X3) - 9(X"), (12)
b=1

con lo cual, segin (11) y (12), queda claro que la diferencia entre el método de aproximacién
lineal y de centrado consiste en que, este iltimo, g()_(f;) tiene su media centrada en torno a
g(X*) en lugar de en torno a g(X) como en el método de aproximacién lineal.

En los casos que hemos desarrollado sobre ambos métodos, consistentes en la estimacién de
un sesgo, estd demostrado (Hall, 1989) que los dos métodos son asintéticamente equivalentes.
Cabe pues esperar que en la estimacién de un sesgo para n y B grandes, los experimentos de
simulacién proporcionen resultados parecidos.

Notemos que se trabaja con un funcional de la media de las remuestras, tratando de obligar
a que, al realizar el muestreo bootstrap, coincidan la media de las remuestras y la media de
la muestra original, es decir, X* = X. La forma de conseguir ésto en la practica consiste en
obtener las B remuestras de forma que, en su unién, cada X; aparezca exactamente B veces.

En el caso @ = E[g(X*)/X], se tiene

B
ap=B"') g(Xs)
b=1

y se cumple que 4g — @ cuando B — oo (con probabilidad 1 condicionada a X).
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Ademas,

Var(ip/X) = B~'n~2+0(B~2n~2 + B~3n %) Var(X3/X)

E(ip/X) —u=—-B 'n"Ya+ 0B 'n7%) = E(X3/X).

Es necesario subrayar que esta idltima técnica se puede aplicar a problemas de estimacién
bootstrap cualesquiera, mientras que con los métodos de aproximacién lineal y centrado no
es facil, ya que es necesario adaptarlos a cada problema particular, relizando muchos célculos

teoricos.
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Abstract

A simple stochastic model inspired by the spatial spreading of a plant community
is presented. Each number of the group is able to generate new individuals around
it within a given finite distance. As the local density of individuals is considered
constant, only those individuals near the border are able to actually produce a
growth of the group and therefore to modify the form of the boundaries. The bulk
size is studied as a function of time. Likewise the self-affine fractal properties of the

external border are analysed and the critical exponents calculated.

1. Introduction

In past decades, due to its importance in many natural and technological fields, the
investigation of the properties of rough surfaces or interfaces has drawn much attention
and considerable progress has been made in its understanding (see Ref. [1] and references
therein). Despite the diversity of phenomena leading to rough surfaces or interfaces, these
can usually be described in terms of the simple concepts of fractal geometry and most of
them appear to exhibit self-affine scaling over a wide range of length scales [2], [3]. In this
paper where we study a stochastic model which is inspired by the spatial spreading of a
plant community, an interesting rough border will emerge, which will also be characterized
in terms of fractal geometry.

Here the plant community, trees to be specific, is represented as a compact set of
occupied sites on a regular two-dimensional lattice. That is, we assume that the spatial
density in the population is constant. In order to describe the growth process, the event
in which one of the trees produces seeds, wich are dispersed around the parent-tree in a
circle of a maximum radius [,, will be referred to as a “shot”. Expressed in units of the
elementary lattice length, this maximum radius, /,, is an integer. Thus, I, plays the role
of a mesoscopic length scale. In each specific shot, the actual radius of seed-dispersion

l, is chosen at random among any integer from 1 to l,. Shots occur one at a time (this
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assumption can be modified), and each member of the population has equal probability of
shooting. Whenever a shot is such that a part of the sites reached are beyond the border
of the population, this implies the growth of the cluster by the addition of the newly
touched sites and, in consequence, the borderline of the population is modified. Seeds
falling onto already occupied sites are wasted. As in other schemes devised to simulate
various phenomena, we can start by nucleating around a single individual or by filling a
strip geometry [4]. In the analysis of the surface properties, we will choose this second
option because it is more convenient to draw the critical exponents of the model and
hence to find out the universality class to which it belongs.

In Section 2., we will give some technical details of the model and will analyse the
dependence of the bulk size of the systems with time. In Section 3., we will concentrate on
the study of the surface properties, and the critical exponents will be calculated. Finally,

in Section 4. we state our conclusions.

2. The model

As stated in Section 1., any tree belonging to the community can be a source of growth.

The algorithm to follow is expressed in four rules:

1. One chooses, with equal probability one point (tree) belonging to the already formed
group (community).

. One chooses, with equal probability, a length [, 1 <1 < lo. Thus [, is a prescribed
length which will be called the maximum shooting length. In terms of the basic

lattice unit (or microscopic scale), I and I, are integer numbers.
. One draws a circle of radius / around the point chosen in step (1).

. In the case that the circle formed in (3) has points lying outside the already existing
cluster, these points are added to the cluster, leading to an increase of the volume
and a modification of the border. Thus, a growth pulse occurs. If the location of
the point chosen in (1) and the [ chosen in (2) are such that all the points in the
circle belong to the pre-existing group, then in this shot there is no increase in the

volume of the community, and the border is not modified.

Let us analyse the bulk properties of a cluster.

The total mean-volume reached by a community (number of points of the lattice belonging

to the cluster, V) is easilyv related to the total number of shots n. Let us start with the

growth nucleated around a point. For maximum simplicity, we consider first the rate of




growth of a straight segment of length [, if any point of it, chosen at random, can shoot

rightwards at a maximum distance l,. The mean length incorporated to /; after 1 shot is:

_ flidz [lody
a= [T [T vta-1-0w+a-1) M

See Fig. la.

The z coordinate runs along the existing length, I;, (source of shots); the y coordinate

Fig. 1b.

runs along the possible shooting length, I,, and (y + = — ;) represents the length added
by a successful shot. The Heaviside step function assures that this is something positive.

Thus one has to compute the shaded area of Fig. 1b which is

102
e @)

Thus in the shot n, the segment grows according to

25
o=l =2
e ®)
At the asymptotic limit of n — co , Eq. 3 can be cast in the differential form

e fl’-‘ (4)

and after integrating, we obtain
e

SRR

, (henceforth, c will always represent a constant), i. e.
1= c(n)H? (5)

This result can be understood intuitively. The probability of choosing a point on ! which
can actually be a source of growth is ~ [,/I; and as in these cases the average increase is
of the order of /,, hence

CoeaiC
Alw 2 lp=7




which leads to the behaviour expressed in Eq. 5; | o n'/2. Using this qualitative argument
we obtain similar expressions for the growth of clusters in 2 or 3 dimensional systems.
In 2 dimensions, having a cluster of radius R, the probability of choosing a point apt to
make successful shots is of the order of
47R* — 47 (R—1,)% R, Lo
4#152 o = R

Hence, in any shot, the typical increase of area will be

L
Asz—47rl§o<—c—

R R

That is R ds = c dn, or, s'/? ds = c dn, and integrating we have s3/2 = ¢ n, i.e.
s 2% cn?3 (6)

Analogously, if we grow a 3-dimensional cluster following the 4 rules mentioned earlier,
we find that the probability of choosing a good shooting emplacement is ¢/R, R being
the mean radius of the already existing cluster (R > [,). The average growth produced

by 1 shot is again a constant and hence the integration, for large values of n, leads to
v =% cn®/t (7

Finally, if the growth proceeds by filling a 2-dimensional strip which has already attained
a mean height h(h > [,), departing from a segment of fixed length L, the probability of
choosing a useful shooting site is &~ c¢/h. The increase of surface produced in a shot is

again = c/h, so that ds=ch dn,sds=c L dn,s*=c L n,i.e.

S o0
= =i

(8)

The asymptotic relations (5), (6), (7) and (8) are easily checked by numerical simula-
tions.

3. Surface Properties

The behaviours obtained in Section 2. refer to the bulk properties of the clusters, whose
fractal dimension is the Euclidean dimension of the underlying lattice. In Fig. 2, we show
an example of a cluster grown in a 2-dimensional square lattice, I, = 10 and n = 105.
Here, one can appreciate the roughness of the border, which behaves as a self-affine fractal.
To study the peripheric properties of the clusters, we will choose a strip of length L, and
mean height A.

To obtain the exponents of the surface, one has to go to simulations of very big clusters,

i.e. very high values of L and h. In addition, this model is seen as highly fluctuating which
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Figure 2.—Cluster grown in a 2-dimensional square lattice with /, = 10 and n = 10°

implies that obtaining safe means requires the averaging over large numbers of simulations.
Applying the above mentioned four rules, in general, overhangs appear on the growing

surface profiles. This fact, which breaks the one to one correspondence between the ¢

(1 <7 < L) discrete coordinate on the basis of the strip and its corresponding height z;,

induces a considerable complication in the handling of data, and hence considerable CPU
time spent. This fact can also be appreciated in Fig. 2, where, sometimes, for a fixed
polar angle, several values of r at the border will correspond. Thus the acquisition of
good statistics, when overhangs are considered, is almost prohibitive because of the great
deal of information one has to store and handle at any step of the calculation. Therefore,
in practice, we will modify rule (4) in order to avoid the overhangs. This modification
does not alter the conceptual core of the model but allows us to obtain reliable results
much more easily. Focusing our attention on the growth of the surface only and in order
to speed up the process of building the strip, one observes that the position of the site for
a new shot (rule (1) ) can be fixed by considering only the occupied points lying under
the existing surface and above z; (minimum) — [,, because the points lying under this
level have no chance of shooting and modifying the surface. Now we pass to the trick for
avoiding overhangs. Having fixed the coordinates (2, z,) for a new shot, and having fixed
l, we consider only the upper half external border of the circle formed in that shot. The
new shot can affect the surface, in principle, from ¢, — [ to i, + [ ; whenever one of these
1 coordinates has a z value lower than that of the corresponding one in the semicircle,
it is updated and adopts the new higher value; if, on the contrary, the z value of one
of the ¢ coordinates affected is equal to or higher than that of the semicircle, its z value

remains the same. Working with these new simple rules the model continues to be highly
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fluctuating, but as the information one has to handle at each step is merely the set of L z;

values, excellent averages can be obtained for the surface roughness width. This is given

by :
= {E;Lﬂ(? —h)? }5 ©)

e o
= _Z.-? & (10)

is the mean height reached in the strip. From this point on, we will no longer refer to n

where

(or time), but simply to o as a function of L and , for a given value of L.

All the results commented below have been calculated by performing numerical simu-
lations of the model without overhangs as explained above. To reduce boundary effects,
we have imposed periodic conditions to the simulations. Fig. 3 is a log-log plot of o vs
h, for I, = 5 (L = 1000) and I, = 50 (L = 5000). We can observe the three stages of
the curves: an initial transient, the zone of rectification (with slope ~ 0.33 ) and finally

the stage of saturation in which, for sufficiently high h, o is a constant. These curves

T T

* (=50, L=5000)

Figure 3.—Log-log plot of ¢ vs h. The dashed straight lines correspond to a slope of 0.33 .

have been calculated with high precision: each point is the result of averaging one thou-
sand simulations. The qualitative behaviour observed in this figure is the standard one
expected in these models [5] and puts in evidence the so called growth exponent, 8, which
is near 0.33 independent of L and of [,.

Fig. 4 shows a log-log plot of ¢ vs L for sufficiently high k, in order for o to have
reached saturation [5]. Curves for [, = 5 and [, = 50 are drawn. Here there are only two

behaviours: the initial one, for small L, and the asymptotic one in which the slope, a,




Figure 4.—Log-log plot of o vs L. The dashed straight lines correspond to a slope of 0.5

is constant and has a value of 0.5 in good approximation. To obtain these results it is
necessary to build up strips of very high h, and averaging o only when one is certain that
saturation has been reached: we have taken simulations with & from 10 x L to 15 x L and
averaged at least the results of 10 strips for each point of the graph.

Note that with the method used to obtain the graphics of Fig. 4; i.e. to average o values
over many simulations with L and [, fixed, makes no sense to explore L values equal to or
less than /,. In an extreme example of say [, = 10, L = 2, the result of a successful shot
could induce, due to the periodic boundary conditions, the superposition of the new added
points on to themselves in five successive sweeps. We avoid this pathology by considering
IES

As is well known, however, the roughness exponent o can alternatively be obtained

by the so called windows method [6]. One grows a strip of large length, L,, up to a very

large h, in order to reach saturation for the full length of the strip. Then, one analyses
and averages the behaviour of the border, looking at it at progressively longer window
lengths, L. This method produces graphics identical to those of Fig. 4, and therefore
a = 0.5, but in this case it is possible to explore lengths L < [, without pathologies,

because now the strip size, L,, is much bigger than [,.

4. Conclusions

We have presented a simpleé stochastic model of growth, with an explicit mesoscopic length,
inspired by the way a plant community spreads. The bulk and the surface properties have

been analysed. From the results of Fig. 3 and Fig. 4, we deduce that the values of the
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exponents, @ &~ 0.5 and f = 0.33, are independent of the value chosen for /,. In other
words, the mesoscopic length scale existing in the model plays no role when one deals
with big strips, L, h > [l,. This is intuitively clear; for big clusters, the system forgets the
mesoscopic details.

The exponents a and J obtained are in agreement with the prediction of the Kardar-
Parisi-Zhang theory (KPZ) [7]. KPZ is an equation to describe the dynamics of growing
surfaces; in addition to the linear term and the noise term considered in the Edward-
Wilkinson linear equation, in KPZ, a non-linear term is added. This non linearity breaks
the up-down symmetry by selecting a particular growth direction for the interface. The
critical exponents in the KPZ theory can be obtained exactly for strips like ours. These
exponents are a = 1/2 and f =1/3.

Perhaps the simplest cluster growth model was that introduced by Eden (8] to simulate
the growth of tumors or bacterial colonies. When growing an Eden particle cluster, on
a lattice, the only rule to follow is to choose at random one of the empty sites next to
the cluster, and fill it with a particle. This is reiterated and the cluster grows by the
successive addition of particles. Thus it is clear that our model converts into Eden’s,
assuming [, = 1 because in this case the only appropriate sites for shooting are those in
the same border. In other words Eden’s is a particular case of our model when [, = 1, i.e.
when the mesoscopic length disappears. In fact Eden’s model also belongs to the KPZ
universality class [9].

Let us conclude by pointing out that there can be a problem when one analyses the

experimental profile of a phenomenon in which there exists an underlying [, length and

the samples analysed are too small. Suppose that such a profile has been digitized as in

Fig. 5 and analysed by means of the windows method.

Figure 5.—Surface profile obtained with [, = 50, L = 1000 and k = 800 .




Figure 6.—Attempt to determine a scaling exponent from the profile shown in Fig. 5. The

dashed straight line corresponds to a slope of 0.81 .

The result obtained is graphed in Fig. 6. From, say, L = 30 to L = 100 the figure
looks straight and one would be tempted.to draw a value of a equal to that slope ~ 0.8.
In fact these data have been obtained with our model from a strip with L, = 1000, and
l, = 50. All the way up to L ~ 100 is saturated (A = 800), and the final plateau is
due to the limited height of the strip compared to L,. But this result overestimates o
because this rectification is only a mirage. The study of strips with higher values of h
would dissipate the plateau and would put in evidence that the true zone of scaling had
not yet been reached . The existence of [, provokes a crossover and is responsible for the

great delay in the appearance of the real scaling.
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RESOLUCION DE PROBLEMAS ASTRONOMICOS
POR MEDIO DEL ENTORNO MATLAB.

Concepcién Longds Monguilod

Depart® de Matematicas. Univ. Complutense. Madrid

Resumen

En este articulo se expone la resolucién de dos problemas astronémicos
utilizando ‘el entorno MATLAB (Laboratorio de Matrices). Dichos problemas son los
siguientes:

(a) Cdlculo de 6rbitas de estrellas dobles por el método de R. Cid.

(b) Integracién de la ecuacién diferencial que aparece en la formulacién
regularizada y universal del movimiento kepleriano.

1.- Introduccion

En consonancia con el gran avance de la informadtica en velocidad de
calculo, capacidad de almacenaje, utilidades disponibles, potencia de
aplicacién, etc. la empresa Math. Inc. ha creado el entorno MATHLAB,
que en principio ha sido utilizado en problemas de Algebra lineal, Teoria

de Matrices y Andlisis numérico y que nosotros aplicaremos a la
resolucién de problemas de Astronomia.

En la actualidad su campo de aplicaciones es muy diverso, pudiendo
citar, entre otras, ademds de las citadas, las siguientes:

a) Procesamiento de Seiiales Digitales
b) Teoria de Control
c) Seiiales y Sistemas

Como era de esperar, a lo largo del tiempo se han ido utilizando
diferentes versiones de MATHLAB, que mejoraban las anteriores, si bien
la dltima version existente es la 5. 3.0, del afio 1999.

MATLAB dispone de TOOLBOX, que son colecciones especializadas
que sirven para trabajar en la actualidad en problemas de: 1. Sistemas
de Control, 2. Anilisis de Espectros de Alto Orden, 3. Procesamiento de
Imédgenes, 4. Optimizacién, 5. Splines, 6. Estadisticos e 7. Identificaci6n
de Sistemas.

Cada uno de ellos, escrito en cdédigo Matlab, estd disefiado con
Métodos Numeéricos potentes y se pueden utilizar como plantillas cuando
se crean nuevas funciones.




Entre sus posibilidades figura un apartado de Cdlculo Simbdlico, que
es un conjunto de herramientas basadas en Maple V, para cilculo
simbdlico y aritmético, con precisién variable, que hemos utilizado en el
disefio de nuestros programas.

2.- Método de R. Cid.

En el célculo de orbitas de estrellas dobles son utilizadas las
observaciones (p,6), de la drbita aparente, que representan las distancias
y los angulos de posicion medidos en cada época t Utilizando estas
observaciones deben calcularse los elementos orbitales (a = semieje
mayor, P = periodo, T = época de paso por el periastro, e = excentricidad,
Q = édngulo del nodo, ® = anomalia o angulo medido desde el nodo al
periastro e I = inclinacién) de la érbita relativa.

Por tanto, son necesarias siete ecuaciones del tipo

P, =P, (a, P, T, e, o, Q,I,E) Gi =6i (a, P, T, e o Q, I,E)

para determinar los elementos orbitales.

En el método de R. Cid son utilizados tres lugares normales (p,,0,,t,)

(i = 2,3,4) y una observacién incompleta (el,tl) para la determinacién

de los elementos orbitales por medio de las ecuaciones de Thiele
Ay
n(t -t) - = -E) - sen(E -E) (1)

donde E representa una anomalia excéntrica, n = 2II/P el movimiento

medio, K = alel-e cos I,y finalmente, A =pp,sen(d -6).

Aplicando la ecuacién (1) a las épocas (tl-tZ)’ (tl-t3), (tj-t4), (tz'tz)’
(t,-t,), (4-t,), y eliminando las incognitas n, K, p,, entre las ecuaciones
resultantes, obtenemos un sistema de tres ecuaciones

F(V-U) - pF(V) +qF(U) = 0
hF(W-V) - kF(W-U) + F(W) =0

¥ =@VU) - (1-N)®(WU) + (1-Q@(WV) =0




con las incégnitas U =E -E ,V=E -E ,W=E -E, donde las
funciones F(X), ®(XY), estdn definidas por las igualdades
F(X) = X - sen X, P(XY) =-sen X + sen Y + sen(X-Y)

y las cantidades N, Q, R, S, p, q, h, k, se calculan por las expresiones

pzsen(ez—el) p3sen(63—91) pasen(63—62) pzsen(e3—92)
N = ,,Q= , R= , S = 5
p4sen(e4—el) p4sen(64—61) p4scn(e4—-91) p4sen(94—93)

Rt23'RS‘24 R53'RS'24 tla'QtM tl2_N[14
p o 3 q = e 5 h b—4 5 k —3
th4 2 554 th4 = St34 Qtl2 B Nt13 QL|2 4 NtlB

con =4 -1

La resolucién del sistema (2) se efectia dando valores a V vy
obteniendo los correspondientes de U por medio de la primera ecuacién.
Para cada par de valores (U,V), la segunda ecuacién proporciona dos
valores de W, con los cuales se obtiene el valor correspondiente de W en
la tercera ecuacién. Las soluciones del sistema se encuentran entre los
posibles valores de V para los cuales ¥ cambia de signo.

Una vez obtenida la posible solucién (U,V,W), se pueden calcular los
valores de N, Q, R, S, por ejemplo N = ASIIATS De esta forma, la anomalia

media n resulta por cualquiera de las ecuaciones de Thiele, por ejemplo
n = [F(W-V) - NE(W)I/[t, - Nt,]

En general suele hacerse un promedio de los cdlculos obtenidos para

n por medio de las cantidades N, Q, R, S. Conocido el valor de n,

obtenemos facilmente el Periodo P = 2II/n

Asimismo, el valor de K puede ser calculado por la ecuacién de
Thiele para las combinaciones de tiempos 23, 24 y 34. Por ejemplo:

K=4,/nt, - FV)]

Las igualdades




_Rsen(V-U) -RSsen U Z _RScosU+Rcos(V-U) - S
e sen E = RS +R-S » ecosE = RS+ R - S

sirven para calcular la excentricidad e y la anomalia excéntrica E,, asf
como las anomalias E =E - (W-U), E = E3 -(V-U), E = E +U.

En estas condiciones, la época de paso por el periastro T, viene
determinada por la ecuacién de Kepler n(t-T) = E - e sen E para cual-

quiera de los tiempos t i=1,23,4).

Para la determinacién de los elementos Q, o, I, se pueden utilizar las
constantes de Innes A, B, F, G, mediante las férmulas

B-F

B+F B+F)sen(w+Q
ta(o + Q) = ) B

) t = Q =y

Bars ae (B-F)sen(w-Q)

Para ello, podemos derminar previamente las anomalias verdaderas
fi @i = 1,2,3,4) con ayuda de la ecuacién

tg(f /2) = \/ = tg(E /2)

y dichas constantes por medio de cuatro ecuaciones del tipo

¢ 6_B+Gtgf
ST

3.- Aplicaciéon del método al par ADS 8148.

De acuerdo con la lista de observaciones, hemos elegido para (t, 6,
p), los siguientes lugares normales

t 0
1842.29 87°.0
1897.30 56°.6
1939.26 337723
1979.77 148°.1

que nos han permitido obtener los valores

-1.2138366225938 P
-0.6093907393617 q
-0.5570047896713 h
=-12.9063769323435 k

-0.6596646314503

-2.3787346866380
2.14709277338732
2.635779864535

con ayuda de los cuales, para valores de 15 en 15 grados, comprobamos
que existe una solucién entre 211° y 226° llevada més tarde, de grado
en grado al intervalo (217° - 218°).




El célculo de la solucién del sistema fundamental, se ha realizado de
forma directa por medio de las érdenes de Matlab

segundo 1 = (1-p) =D + p * sin(V)

syms U

f=(1-q) U + q * sin(U) +sin(U-U) - segundos

U = solve (f,U)

u = numeric (U)

segundo 2 = N * sin(u) - Q * sin(D) + sin(D-U)

syms W

g = (N-0Q) * sin(W) + (1-N) * sin(W-U) - (1-Q)+sin(lW-V) - segundo 2
W = solve (g,W)

w = numeric (W)

obteniendo los valores

v 2:1%7.2 218°
U 128°.1092830713732 128°.557352817650
W 291°.8054197767604 291°.358185902107

Finalmente, por interpolacién lineal y resolucién simbdlica se han
obtenido, respectivamente, los resultados siguientes:

Vv 217°8943063925845 v 217°8943063925845
U 128°.509947097925 U = 128°5100750822306
A\ 291°.2997620562626 W = 291°.29983961066

con residuos finales para las tres ecuaciones fundamentales

H =0 H, = 0.1488492337 107 H, =-1.7763 107"°

Los elementos orbitales que han resultado después de haber efec-
tuado el célculo simbdlico, son los siguientes:

= 1".926986176845 P = 182" .84002831407

a

T = 1948.4753629338 e 0.5348113049649
o = 322°.78052864066 Q = 233°.14810497555
I = 127°.48640234415

Con estos elementos orbitales, hemos pasado al cdlculo de
diferencias observacién-cdlculo A®©, Ap, para las observaciones
disponibles, dadas en el orden usual t, 6, p, que incluimos a continuacién
en la siguiente secuencia (t, 6, p, A8, Ap)




t

1827.82
1:829:3:7
1831,88
1833.51
1835.85
1841.06
1842.29
1844.05
1847.20
1850.60
1853.22
1854.53
1857.00
1861.37
1863.99
1865.89
1867.50
1872.60
1875.64
1877.33
1878.70
1881.77
1883.82
1887.45
1891.28
1893.21
1894.97
1899.30
1900.42
1902.84
1905.81
1907.74
1909.50
1911.86
1913.67
1914.24
1.915.53
1916.91
1918.26
1£9:1.9.:31
1920.36
1921.35
1922.28
1892 31527




1924.28
1192529
1926.41
1927.46
1929.97
1931.26
1932.38
1933.24
1934.74
1936.37
11937732
1938.36
1939.26
1940.33
1941.23
1942.35
1943.26
1944.97
1946.38
1947.27
1948.48
1949.21
1950.34
1951.34
11952236
1953.34
11955203
1956.31
1957.43
1958,37
1959.98
1961.16
1962.16
1963.21
1964.41
1965.30
1966.33
1967.65
1970.21
11973-35
1974.48
1977.14
AT (1
1982.24
1984.61
1985.31

1.
15
113
I
e
16
I
11
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0

0

0.
0.
0.
1%
113
1.
I
115
113
1k
113
0.
1.
1.
I
1F:
e
1§
15
I
I
1
15

0.191
-0.470
0.400
-1.082
-0.610
-0.092
-0.801
0.311
0.811
-1.521
-2.048
-1.046
0.000
2395
-1.508
-3.051
-0.985
0.165
-0.860
2.618
0.171
2.442
1.077
0.533
0.616
1.838
2.166
1.595
3.091
2.470
2.078
2.657
3.003
0.399
0.177
1.118
0.108
-0.070
-0.498
0728
-0.956
1.666
0.000
-1.295
-3.301
-3.666

0.030
0.026
0.020
-0.078
0.005
-0.034
-0.044
0.021
0.024
-0.010
-0.028
-0.048
0.000
-0.005
-0.026
0.004
-0.021
-0.035
-0.091
-0.067
-0.027
-0.087
-0.072
0.012
-0.021
-0.019
0.023
-0.019
-0.003
-0.002
-0.003
-0.008
-0.031
0.006
-0.076
0.012
-0.010
0.007
0.025
0.061
0.099
0.014
0.000
0.102
0.090
0.044




1987.33 129.9 1.28 -0.736 -0.086

4.- Aplicacion del método al par ADS 13169.

Siguiendo el mismo esquema del caso anterior, hemos elegido los

siguientes lugares normales

t 0
1918.6 155°.3
1944. 248°.2
1969. 294°.4
1995 326°.6

que nos han permitido obtener los valores

-0.01276651179404
-0.98658046544215
2.64996637066096
2.85137194076961

4.7345694341517 P
4.750853294994 q
0.8086932172204 h
0.97124777084622 k

La resolucién del sistema fundamental, aplicando la interpolacién

lineal y el cdlculo simbélico, ha dado, finalmente, los siguientes

resultados:
118°.3276387856569

V=
U = 60°197156572921
W = 191°.303094062322

con los residuos finales

H\S( ;1) = -8.3266728 10\S(-17;) H\S( ;2) = 0.85681457 10\S(-4;) H\S(
:3) = -1.7763568 10717
Con estos resultados, los elementos orbitales obtenidos fueron los

siguientes:
a = 0".38103020470012 P = 128" .707269854584

T = 1905.513475886528 e = 0.5348113049649
o= 336°.7089542818111 Q= 130°9560629580809
I

= 49°.96084241957239

que hemos utilizado para la obtencién de las diferencias observacién-
cdlculo en 4ngulos y distancias, cuyos resultados se incluyen en el
siguiente cuadro de valores:




t

1903.51
1915.15
1918.60
1921.08
1923.64
1924.67
1939.94
1943.77
1944.36
1948.66
1948.71
1950.64
1951.76
1952.66
1953.70
1956.78
1957.48
1961.57
1962.49
1962.62
1972.71
1962.80
1965.75
1966.72
1969.73
1969.75
1974.53
1974.72
1975.66
1978.61
1978.62
1980.73
1981.63
1982.72
1984.58
1984.63
1986.80
1987.75
1988.74
1988.74
1989.63
1989.63
1989.65
1990.55




1990.55
1994.77
1997.62
1999.50
1999.50

5.- Integracion de la ecuacion diferencial en una formulaciéon
regularizada y universal del movimiento kepleriano.

La ecuacién diferencial que rige el movimiento kepleriano de una
masa puntual r = r(t), con respecto a un centro de fuerzas 0, viene
dado, con p constante, por la igualdad

2
dr
2

=-%r

dt T

La solucién general de esta ecuacién contiene seis constantes de
integracién, de las cuales son conocidas, tres del momento angular Cy
una de la energia h. En estas condiciones, la bisqueda de las dos
integrales que se necesitan para resolver el problema en una
formulacién regularizada y universal, ha sido desarrollado por J.M.
Correas en su articuloSistematizacion del cdlculo de dJrbitas (1974),
introduciendo los cambios de variables dt = rds y ds = rde. En lo

sucesivo, las derivadas primera y segunda de r con respecto a la
variable s, serdn escritas en la forma r' y r".

En todo caso, designando por u el vestor unitario que define la
direccién de r, la resolucién queda reducida a las ecuaciones

" d 1
- 2hri=g, = =C my, r2+C2:2r(u+hr).
do
A continuacién vamos a calcular la integral de la primera ecuacién
diferencial, que es de segundo orden, utilizando el célculo simbdlico. Asi,
aplicando la instruccién

r = dsolve ('D, - 2+h*r = @', 's')
obtenemos la solucién general de la ecuacién homogénea

r = G+ exp(sy2h) + C* exp(-s2h)




como combinacién lineal de las dos soluciones, aunque por ser igual a 1
el valor de ambas soluciones, para h =0, no forman, por tanto, un
sistema fundamental.

No obstante, si tenemos dos soluciones de una ecuacion diferencial,
cualquier combinacién lineal de ellas es también solucién. En particular,
tomando

x(s,h) = IE[caxp(S\/ﬁ) + exp(-sy2h)]

y(s,h) = ——[exp(sVZh) + exp(-sVZh)]
2+2h

las funciones x(s,h), y(s,h), son soluciones de la ecuacién diferencial, para
h # 0, en tanto que, para h = 0, por no estar bien definida la funcién
y(s,h), podemos tomar (para h — 0)

y(s,h) = lim y(s,h) = s
puesto que el wronskiano W de estas soluciones verifica la condicién
W(s,h) = det[x y; diff(x,'s") diff(y,'s")] = 1

Esta eleccién de las soluciones particulares permite obtener la
solucién general de la ecuacién homogénea

r=Q +G=*s
para h — 0, como un caso particular de la ecuacién
r=G*x(s,h) + G*y(s,h)
Para integrar la ecuacién r" - 2hr = 1, utilizamos el comando
r, = dsolve ['DZr- 2*h*r-1=20,"'s"

que proporciona la solucién

r + C *exrp(sy2h) + C*exrp(-s\2h

1 =" 2«h

singular para h =0. Por tanto, si tomamos la igualdad

__1 _ exrp(sy2h) + enp(-sy2h
2+h 4h




verificando, para h — 0, la condicién

lim r = lim x_(% =(s72)

obtenemos como solucién general de la ecuacién, la expresién
x(s,h) - 1
1(5,h,C,G) = G e x(s.h) + G, + y(s,h) + p XED =L
que es vilido para cualquier valor de h.
Cuando es h=0, tenemos
1(5,0,C,G)=CG + G *s+ (s72)
y si en la expresién general sustituimos la variable s por 0, resulta
r,=subs (rs,0) = Q
Analogamente, haciendo lo mismo con la derivada respecto a s, es
I"0 =subs (r's,0) = C2
siendo r' = diff (r,'s').
De esta forma la solucién general de la ecuacién diferencial, serd
' s,h) - 1
r(s,h) = ot X(s,h) + Is y(s,h) + 1 %
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Abstract:

A study of analytical comparison methods for the determination of
some anions (fluoride and chloride) in wine samples has been realized.
The results with the alternative analytical method proposed are com-
parable to the obtained by the reference official method, for 50 samples
of Spanish wines.

1.- Introduccion.

En un reciente trabajo se han determinado la acidez y varios
cationes que son mayoritarios en las uvas (sodio, potasio y calcio) o
influyen en la estabilidad de los vinos (hierro y cobre), en 50 muestras
de vinos espaiioles (1). De ellas, 27 son de denominacién de origen y 23
son vinos de mesa. Predominan los tintos (25) sobre los rosados (16) y
blancos (9). Entre las denominaciones de origen aparecen vinos de la
Ribera del Duero, Ribera del Arlanza, Rioja, La Mancha, Valencia,
Lanzarote, Penedés, Rueda, Somontano, Carifiena y Jumilla. Para com-
pletar el estudio se han determinado posteriormente fluoruro y cloruro
en estas mismas muestras por dos métodos analiticos diferentes, com-
parando los resultados obtenidos con los que sefiala la legislaciéon de
calidad de vinos. El fluoruro se incorpora al vino a través de la adicién
de compuestos fluorados como insecticidas o antifermentos. El limite
méximo permitido por la Organizacion Internacional del Vino es de 1
mg.l ~'. Con respecto al cloruro, se presenta en el vino en forma de
cloruro sédico. A elevadas concentraciones indica la existencia de préc-
ticas fraudulentas no autorizadas (2,3). Comparando los resultados
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obtenidos en las determinaciones de sodio y cloruro se ha observado que
las muestras con mayor contenido en sodio son las que presentan los
valores mds elevados para el cloruro.

2.- Parte experimental.

2.1. Aparatos.

Para la determinacién por electrodos selectivos-se ha utilizado un
medidor de pH/mV Orion 920 A. Los electrodos selectivos son Orion 94-
09 (fluoruro) y 94-17 B (cloruro). Como electrodos de referencia se han
usado el de Ag/AgCl, KCI sat.,, de unién simple, Orion 90-01, para el
fluoruro y de Ag/AgCl, KCl sat., de doble unién, Orion 90-02, con KNO; al

10 % (m/v) como disolucién de relleno de la cdmara exterior, para el
cloruro (4).

2.2. Reactivos.

Los reactivos son de calidad analitica Merck y Orion.
2.3. Procedimientos.

2.3.1 Toma de muestra.

Las muestras se han guardado en frascos de vidrio, preservado
de la luz solar y mantenidos a temperatura ambiente. La referencia
completa de cada muestra aparece en la publicacién del ya citado
anterior trabajo sobre determinacién de algunos cationes relacionados
con la calidad de los vinos (1).

3.- Resultados y discusian.

3.1. Determinacion de fluorure.

Los valores que se han obtenido se muestran en la Tabla [ y se
expresan en mg.ml ° i

TABLA I

a) Concentracién | b) Concentracién | c¢) Concentracion | d) Concentracion
de fluoruro de fluoruro de cloruro de cloruro.
0,18 0,18 50,9 51,6
0,23 0,20 32,8 343
0,22 0,20 62,9 67,9
0,15 0,15 36,7 373
0,12 0,11 82,9 83,9
0,23 0,23 56,0 50,7
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0,19 0,18 229 233

2

0,16 0,16 32,1 30,3

0,24 0,22 76,1 70,4

0,15 0,13 66,0 64,2
0,17 0,16 52,2 48,1
0,28 0,26 50,1 48,6
0,27 0,25 86,2 79,4
0,13 0,12 32,3 30,8
0,29 0,27 34,0 29,6
0,17 0,16 50,1 493
0,15 0,13 32,2 28,5
0,16 0,14 46,9 51,3
0,17 0,14 34,8 35,9
0,46 0,43 136,1 130,7
0,53 0,49 52,7 51,4
0,17 0,15 54,9 55,7
0,20 0,18 52,6 51,9
0,19 0,17 50,8 55,1
0,19° 0,17 70,9 73,8
0,11 0,09 34,6 35,6
02708 0,25 82,8 84,8
0,19 0,19 75,0 72,4
0,18 0,16 130,8 132,0
0,17 0,15 98,9 103,0
0,18 0,17 74,5 79,7
0,36 0,33 90,7 94,3
0,20 0,19 90,4 94,3
0,16 0,14 36,0 36,8
0,19 0,17 51,9 54,8
0,21 0,19 41,0 40,5
0,29 0,27 43,9 50,4
0,27 0,24 58,8 61,7
0,23 0,20 50,1 498
0,18 0,18 v 54,5 54,6
0,19 0,17 34,7 38,9
0,24 0,23 68,1 66,4
0,32 0,30 72,8 75,9
0,21 0,21 60,8 67,5
0,19 0,18 38,9 40,1
0,29 0,27 72,1 70,3

0,21 0,20 50,9 54,3
0,24 0,21 66,0 64,6

0,17 0,17 72,2 71,5
0,31 0,28 90,9 98,0

Tabla 1.- Valores de fluoruro y cloruro obtenidos en las muestras de
vino analizadas. a) Valores obtenidos por adicién estandar simple con
electrodo de fluoruro (5,6). b) Valores obtenidos por adicién estandar
miltiple con electrodo de fluoruro (5,6). «c¢) Valores obtenidos por
valoracién potenciométrica (6). d) Valores obtenidos por el método de
Volhard (7,8)
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3.2. Determinacion de cloruro.

Como método alternativo al de referencia se propone la valoracién
potenciométrica con nitrato de plata, usando un electrodo selectivo de
cloruro para seguir la valoracién. Se sumerge el electrodo y se valora
agitando, hasta la obtencién del potencial del punto de equivalencia. Con
los datos, como los obtenidos en la Tabla II, se representan las curvas
de valoracién potenciométricas que aparecen en las Figuras 1-3 (v es el
volumen, en ml, de nitrato de plata afiadido).

TABLA II

Volumen Potencial 12 D4d
AgNO; E (mV) Derivada  Derivada
(ml) (DEDv) (D*E/Dv3
0 191,4
193,8
196,9
200,9
205,4
211,5
219,9
243,3
275,8
329,2
ggzg de plata.
384,3
389,7
396,1
399,8
402,2
406,1
409.4

-

-

Tabla II.- Datos ob-
tenidos en la valora-

-
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Fig. 1.- Varia-
ciéon del poten-
cial con el volu-
men de nitrato

de plata afiadij-
do.

4.8

vol. AgNO3




vol. AQNO,

Fig. 2.- AE/Av frente al volumen de nitrato de plata afiadido.

vol. AGNO»

Fig. 3.- A?E/Av* frente al volumen de nitrato de plata afiadido.

Tras las determinaciones por valoracién potenciométrica, los
resultados obtenidos en la determinacién de cloruro se muestran en la
Tabla I.

4.- Conclusiones.

Por consideraciones de tipo estadistico se concluye que los resul-
tados obtenidos son similares para la determinaciéon de fluoruro vy
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cloruro en vinos por dos métodos diferentes (9,10), para un nivel de
confianza del 95 %. Con respecto al fluoruro, el mayor valor se encuentra
en una muestra de vino dulce de Zuera y, en relacién al cloruro, en un
vino casero de Albelda. Los vinos dulces y caseros suelen ser los que
presentan mayores contenidos en estos aniones. Respecto a la relacién
de los valores encontrados con la calidad de los vinos, prédcticamente
todas las denominaciones de origen cumplen con los permitidos por la
legislacién.
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Resumen.

En esté trabajo se han decrito, determinado el drea de distribucién y
realizado Andlisis Factorial en Modo-Q de los foraminiferos bentdnicos
recientes de las Superfamilias Discorbacea y Rotaliacea existentes en los
sedimentos superficiales de la costa y plataforma continental del margen
septentrional del Golfo de Cédiz.

De la Superfamilia Discorbacea, que presenta una taxonomia
compleja, se han obtenido 6 especies distintas, mostrando las tana-
tofacies una distribucién irregular, en contraposicién con la Superfamilia
Rotaliacea de la que se han obtenido 7 especies con la tanatofacies
claramente relacionada con la cufla sedimentaria progradante proce-
dente de la desembocadura del rio Guadalquivir.

Abstract.

A descriptive study, distribution area and Factor Analisys of the
recent benthic foraminifera of the Superfamilies Discorbaceae and
Rotaliaceae from surface sediments of the NE Gulf of Cadiz have been
accomplished

The taxonomy of the Superfamily Discorbacea is complex and six
different species have been obtained out of it, its thanatofacies present
an irregular distribution in contrast with the Superfamily Rotaliacea
from which seven species have been obtained, being its thanatofacies
related to the mud prodeltaic deposits that are prograding to sand
transgressive preceding.

Introduccién.

Debido fundamentalmente a su extraordinaria variabilidad y plas-
ticidad morfolégica, son quizds los foraminiferos, los organismos marinos
que presentan mayor dificuitad taxondémica estando las diversas
clasificaciones existentes sujetas a modificaciones constantes, bien por
aparicién de nuevos taxones o por reubicacién de algunos ya existentes
conforme se va incrementando el conocimiento de los mismos. Se han
considerado tradicionalmente como el principal Orden de la Clase
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Granuloreticulosa del Subfilo Sarcodina ordenacién mantenida en la
clasificacién de Loeblich y Tappan (1988), aunque otras clasificaciones
los consideran dentro del Reino Proctotista como Clase Foraminifera,
elevando las categorias de numerosos taxones (Lee, 1989).Se encuentran
en casi todos los medios marinos y son de los pocos protozoos que
biomineralizan la superficie celular con una permanente concha, lo que
ha permitido su conservacién como fésiles desde el Cdmbrico. En la
actualidad se conocen mds de cuatro mil especies que viven en los
distintos mares y océanos, su distribucién geogrdfica y batimétrica es
muy amplia y desde el punto de vista ecoldgico constituyen series
dindmicas de poblaciones que estin en adaptacién constante siendo de
gran interés su estudio, fundamentalmente en temas (paleo)ecolégicos vy
oceanograficos. Aunque existen muchas especies plancténicas, desde el
punto de vista cuantitativo la mayor parte son benténicas, en uno de
cuyos grandes Subordenes (Rotaliina) se encuentran integrados los
Discorbaceos y los Rotaliaceos, moderadamente abundantes en medios
litorales y de constitucién morfolégica muy compleja. La primera
referencia de ellos se encuentra ya en los pioneros trabajos de Lamarck
(1804) que en la descripcién de un importante nimero de especies
fésiles de las proximidades de Paris crea los géneros predecesores
Discorbis y Rotalia, algunas clasificaciones realizadas el siglo pasado
incluyen a la Familia Rotaliidae apareciendo posteriormente la
Discorbidae. Loeblich y Tappan (1988) los describen en base a los
siguientes caracteres con la categoria taxondémica de Superfamilias:

Superfamilia DISCORBACEA Ehrenberg, 1838: "Concha multilocular
trocospiralada baja, pared calcdrea radial e hialina, perforada, abertura
interiomarginal en la cara umbilical, rodeada por un drea no perforada o
por un labio".

Superfamilia ROTALIACEA Ehrenberg, 1839: "Concha multilocular
trocospiralada o planispiralada, involuta o evoluta, pared calcdrea,
hialina, perforada, abertura primaria simple o multiple a lo largo de las
suturas, las placas septales pueden cerrar las aberturas, los canales
radiales y las cavidades umbilicales"

En este trabajo, que forma parte de un estudio mds amplio
(Villanueva Guimerans, 1994), se pretende profundizar en el cono-
cimiento de las especies recientes, pertenecientes a estas Superfamilias,
existentes en los sedimentos superficiales de una amplia zona Atldntica
Ibérica localizada entre la desembocadura del rio Guadalquivir y el Cabo
Trafalgar (Fig. 1) en cuanto a la taxonomia y la relacién de cada una de
ellas con las caracteristicas batimétricas y granulométricas (autoeco-
logia) del medio. En el litoral ibérico, como antecedentes existen varios
trabajos foraminiferolégicos marinos, tales como los de: Galhano, 1963;




Mateu, 1970; Colom, 1974; Ubaldo y Palmeiro, 1978; Sdnchez Ariza,
1979; Pascual, 1984; Cearreta, 1989; Lévy et al., 1995 y Schonfeld, 1997.

Nota: Las figuras, laminas y tablas se incluyen al final del texto.

Caracteristicas oceanograficas y granulométricas.

El intercambio de agua entre el Atlintico y el Mediterrdneo es el
proceso determinante en la hidrodindmica del Golfo de Cadiz, en
superficie la corriente circula anticiclonicamente por el margen conti-
nental ibérico entre el Cabo de San Vicente y Tarifa con direccién O-E,
en el margen africano la circulacién se efectia en sentido N-S para
reunirse posteriormente con la corriente general atlidntica hacia el SSO.
Las corrientes litorales siguen la orientacién de la costa afectadas por el
régimen de mareas. En la plataforma continental préxima a Céidiz, se ha
encontrado Agua Superficial Atldntica hasta unos 140 metros, a mayor
profundidad se detecta Agua Central Noratldntica, solamente a profun-
didades superiores a los 200 metros se nota una leve influencia del flujo
mediterrdneo de salida, siendo mds nitido a partir de 500 metros
(Villanueva Guimerans y Gutiérrez, 1994).

Los materiales sedimentarios que ocupan esta parte de la
plataforma continental y Bahia de Cddiz, son de naturaleza detritica, con
predominio de las ficies arenoso-cuarciticas y fangosas (Segado et al.,
1984). Su distribucién, bajo un punto de vista granulométrico, presenta
una orientacién general paralela a la linea de costa y a la direccién de las
isébatas, sobre todo en el sector Norte de la zona alternindose forma-
ciones arenosas con otras de predominio limoso y arcilloso, esta distribu-
cién parece indicar la existencia, de una dindmica sedimentaria
progradante (Gutiérrez et al., 1993) (Fig. 2).

Material y métodos.

Se han analizado un total de 50 muestras superficiales (Fig.1)
obtenidas con cuchara tipo Shipek. La extraccién de los organismos de
cada muestra se realizé a partir del cuarteado de la fraccién mayor a
125 micras obteniéndose en cada caso un minimo de 300 ejemplares
(Buzas, 1990). La determinacién taxondémica se hizo con lupa binocular y
con el Microscopio Electrénico de Barrido, en la clasificacién supra-
especifica se siguié fielmente el Tratado de Loeblich y Tappan (1988),
para la especie se utiliz6 un amplio catdlogo de libros, revistas, guias, etc,
aunque en las sinonimias, con el objetivo de acortar y simplificar el
trabajo, s6lo aparecen la cita original y la iltima consultada. Los valores
correspondientes a la frecuencia en la distribucién de las distintas
especies se refieren al total de los foraminiferos bentdnicos encontrados
en la zona (Villanueva Guimerans, 1994) y en cada género las distintas




especies se encuentran ordenadas en orden decreciente segin la
frecuencia relativa de cada una de ellas. El Andlisis Multivariante se
realiz6 mediante el programa B.M.D.P. utilizando en este caso la
frecuencia relativa de cada una de las especies dentro de las
Superfamilias. Los andlisis granulométricos se hicieron por tamizacién
siguiendo la escala de intervalos de tamafio propuesta por Whentworth
(1922), la determinacién de los carbonatos con el calcimetro de Bernard
y la materia orgdnica por el método de Gaudette et al., (1974).

Resultados.

Se han obtenido un total de 14 especies distintas cuya clasificacidn,
descripcion y distribucién resultd ser la siguiente:

Superfamilia Familia Genero Especie

DISCORBACEA BAGGINIDAE Cancris Cancris auriculatus

Valvulineri Valvulineria bradyana

EPONINIDAE Eponides Eponides concameratus

ROSALINIDAE Gavelinopsis Gavelinopsis praegeri
Rosali Rosalina globularis

SPHAEROIDIN- Sphaeroidin Sphaeroidina bulloides
IDAE

ROTALIACIA ROTALIIDAE Ammonia Ammonia becarii

Ammonia becarii in-
flata

ELPHIDIIDAE Criboelphi- Criboelphidium vades-
dium cens
Criboelphidium cu-
villieri

Elphidium Elphidium advenum
Elphidium macellum
Elphidium crispum
Elphidium coplanatum

Superfamilia DISCORBACEA Ehrenberg, 1838. Familia BAGGINIDAE
Cushman, 1927. Género Cancris de Monfort, 1808. Cancris auri-
culus (Fichtel y Moll). Lamina I, Figs. la-1b-lc.

1798 Nautilus auricula Fichtel y Moll:108, lam. 20, fig. a-c.

1996 Cancris auriculus (Fichtel y Moll) -Revets: 76, lam. 10, figs. 5-8.




Descripcion: Concha de contorno ovalado-auriculado, lenticular en
seccién transversal, mds convexa en la cara umbilical, periferia
redondeada y carenada. Cdamaras lobuladas que se incrementan
rdpidamente de tamafio, de 8 a 10, la dltima ocupa casi la mitad de la
concha. Suturas hundidas y curvadas, casi radiales alrededor de la
abertura umbilical, poco marcadas en la cara opuesta, abertura en forma
semicircular, con una placa abertural gruesa que se proyecta desde la
base de la dltima cdmara sobre el ombligo. Pared con poros circulares de
unas 1,5 micras, con un d4rea no perforada cercana a la abertura,
superficie lisa. Tamafio.- Largo: Sobre 1 mm; Ancho: 0,60 mm.

Distribucion: Especie de temperaturas templadas y cdlidas (Murray,
1973), en el litoral ibérico ha sido hallada en las costas cantdbricas y
gallegas (Colom, 1974), en las de Motril-Nerja (Sdnchez-Ariza, 1979) vy
en la plataforma continental interna portuguesa (Lévy et al., 1995). En la
zona de estudio (Fig. 3) se encuentra en el sector Sur entre los 20 y los
500 metros de profundidad en substratos principalmente arenosos con
bajos contenidos de materia orgénica.

Género Valvulineria Cushman,1926. Valvulineria bradyana
(Fornasini). Lamina I, Figs. 2a-2b.

1900 Discorbina bradyana Fornasini: 393, fig. 43.

1991 Valvulineria bradyana (Fornasini, Cimerman y Langer: 64, ldm.
67, figs. 8-10.

Descripcion: Concha ligeramente més larga que ancha, contorno
redondeado. Cédmaras pseudotriangulares, incrementan regularmente de
tamafio desde el proléculo hasta la mds externa, en total de 10 a 12,
lobuladas. Cara espiral con aspecto de aplanado a moderadamente
convexo, cara umbilical muy convexa con el ombligo central hundido.
Suturas intercamerales rectas, gruesas, radiales y deprimidas en la cara
umbilical y ligeramente curvadas en la espiral. Pared perforada con
gruesos poros (2-4 micras) que se disponen por toda la concha. Abertura
en forma de arco umbilical-extraumbilical con placa abertural que se
proyecta sobre el ombligo llegando a cubrir las primeras camaras.
Tamafio.- Largo: De 0,40 a 0,50 mm; Ancho: De 0,35 a 0,45 mm.

Distribucién: Especie frecuente en los fondos fangosos catalanes
(Mateu, 1970), en las costas gallegas y cantdbricas (Colom, 1974) y en el
litoral Motril-Nerja (Sdnchez-Ariza, 1979). En la zona de estudio muy
abundante (Fig. 4), se encuentra fundamentalmente en los substratos
fangosos de alto contenido en materia orgdnica existentes en una amplia
drea que comprende practicamente todo el sector Norte, desde el
paralelo de Chipiona hasta el de San Fernando, entre los 20 y los 200
metros de profundidad. También se han obtenido ejemplares hacia el
Sur, entre los 100 y 200 metros en fondos fango-arenosos.




Familia EPONIDIDAE Hofker, 1951. Género Eponides de Montfort,
1808. Eponides concameratus (Williamson). Ldmina I, Figs. 3a-3b.
1858 Rotalina concamerata Williamson: 52, lam. 67, figs. 101-102.

1991 Eponides concameratus (Williamson) -Cimerman y Langer: 64,
lam. 67, figs. 11-14.

Descripcion: Concha robusta, de planoconvexa a ligeramente biconvexa,
periferia provista de una gruesa carena, cara dorsal evoluta, algo
redondeada. Cdmaras que incrementan en tamafio dando unas 2,5 a 3
vueltas, las dos ultimas visibles en la cara dorsal y con unas seis
visibles en la cara umbilical involuta y convexa. Suturas intercamerales
en la cara dorsal curvadas y gruesas, en la umbilical algo deprimidas y
radiales. Pared ornamentada en la cara dorsal con gruesas pustulas, mds
suaves en la cara umbilical perforada con poros redondos de unas 2
micras. Abertura de unas 200 micras en la base interiomarginal de la
tltima cdmara, arqueada, extendiéndose desde el ombligo hasta la
periferia bordeada por un estrecho labio. Tamafio.-Largo: De 0,8 a 1 mm;
Ancho: Sobre 0,65 mm.

Distribucién: En el litoral ibérico, rara en las costas del Algarve
(Galhano, 1963), comin en los fondos fangosos catalanes (Mateu, 1970)
y en la costa S-SO de Portugal (Ubaldo y Otero, 1978). En la zona de
estudio (Fig. 5) se ha localizado en dos dreas, una situada en la Bahia
externa y la plataforma continental préxima, a partir de los 18 metros
en substratos areno-fangosos y la otra situada en el sector Sureste, en
substratos arenosos.

Familia ROSALINIDAE Reiss, 1963. Género Gavelinopsis Hofker, 1951
Gavelinopsis praegeri (Heron-Allen y Earland). Ldamina I, Figs. 4a-4b.
1913 Discorbina praegeri Heron-Allen y Earland: 122, 14m.10, figs. 8-10.
1993 Gavelinopsis praegeri (Heron-Allen y Earland) -Sgarrella vy
Monchermont-Zei: 218, lam. 17, figs 1-2.

Descripcién: Concha cénica o planoconvexa ligeramente lobulada, peri-
feria aguda provista de una pequefia carena. Cdmaras en 2 o 3 vueltas,
de 6 a 7 en la vuelta final. Suturas intercamerales hundidas, de curvadas
a radiales, bordeadas por pequefios grdanulos, se alargan hasta el
ombligo. Desde el margen umbilical de cada cdmara se extiende sobre la
regién umbilical una proyeccién calcirea formando una pequefia quilla,
las proyecciones de todas las cdmaras umbilicales se pueden fusionar en
la regién central. Pared perforada con poros gruesos en los margenes
suturales y finos en el resto, superficie algo rugosa. Abertura baja,
internomarginal en forma de arco extraumbilical recubierta por una
expansion de la dltima cdmara. Tamaiio: De 0,25 a 0,35 mm de didmetro.




Distribucion: En las costas ibéricas ha sido encontrada a lo largo de
toda la plataforma continental portuguesa, especialmente bien
representada en la regién Sur-Suroeste y en el Algarve (Lévy et al.,
1995): En la zona de estudio (Fig. 6) se ha localizado en tres dreas
distintas, una ocupa toda la Bahia externa y la plataforma continental
préxima desde los 8 a los 75 metros de profundidad, en substratos
detriticos  constituidos mayoritariamente por arenas de tamafo medio a
grueso y localmente grava, otra, en la plataforma continental media,
entre los paralelos de Rota y San Fernando, de los 100 a los 200 metros
de profundidad, en sedimentos de naturaleza areno-fangosa y la
tercera, en el sector Sureste, entre los 280 y los 600 metros de
profundidad, en substratos arenosos.

Género Rosalina d’Orbigny, 1826. Rosalina globularis d Orbigny
Lamina I, Figs. 5a-5b.

1826 Rosalina globularis d’Orbigny: 271, lam. 13, figs. 1-4.

1993 Rosalina globularis d’Orbigny -Sgarrella y Monchermont-Zei: 218,
lam 17, figs. 7-8.

Descripciéon: Concha planoconvexa de forma irregular, cara dorsal
convexa evoluta y umbilical involuta. Cdmaras que incrementan rapi-
damente de tamafio, 10 visibles en la cara dorsal donde presentan
suturas hundidas y oblicuas que se curvan hacia la periferia, en la cara
umbilical son subtriangulares, 5 visibles ocupando la 1iltima aproxi-
madamente 1/3 de la concha. Ombligo abierto. Pared perforada por
gruesos poros. Abertura en la cara umbilical en forma de un arco bajo
interiomarginal con un estrecho labio que la bordea. Tamafio: De 0,60 a
0,70 mm.

Distribucién: En las costas ibéricas, frecuente en el litoral Motril-Nerja
(Sdnchez-Ariza, 1979), y rara en la plataforma continental portuguesa
(Lévy et al.,, 1995). En la zona de estudio: (Fig. 7) se halla distribuida
por toda la Bahia Externa y la plataforma continental préxima, desde los
8 a los 50 metros de profundidad en sedimentos detriticos constituidos
mayoritariamente por arenas de tamafio medio a grueso.

Familia SPHAEROIDINIDAE Cushman, 1927. Género Sphaeroidina
d’Orbigny, 1826. Sphaeroidina bulloides d’Orbigny. Lamina I, Fig. 6.
1826 Sphaeroidina bulloides d’Orbigny: 267.

1988 Sphaeroidina bulloides d’Orbigny -Loeblich y Tappan: 564, ldam.
617, figs 1-6.

Descripcién: Concha subglobular hialina y transparente de pequeifio
tamafio con las cdmaras hemisféricas que se disponen en un enro-
llamiento variable de tal modo que la periferia la ocupan tres cubriendo
la dltima a las dos precedentes, dando el aspecto de tres esferas unidas,




suturas intercamerales nitidamente marcadas. Abertura en forma de
arco abierto situada en la base de la udltima camara, encima de la
interseccion de las suturas correspondientes a las ultimas tres cdmaras,
bordeada por un grueso labio y con una placa arqueada en el margen
inferior. Pared lisa y finamente perforada. Tamafio: De 0,35 a 0,45 mm.

Distribucién: En el litoral ibérico ha sido hallada en las costas de Galicia
(Colom, 1974), en los fondos fangosos catalanes (Mateu, 1970) y a lo
largo de las costas portuguesas, en la plataforma media y externa (Lévy
et al., 1995), en la zona de estudio (Fig. 8) se ha localizado en el sector
Oeste a profundidades superiores a 100 metros en substratos
mayoritariamente areno-fangosos con tendencia a incrementar su
frecuencia con la batimetria.

Superfamilia ROTALIACEA Ehrenberg, 1839. Familia ROTALIIDAE
Ehrenberg, 1839. Género Ammonia Briinnich, 177 Ammonia beccarii
Linneo. Lamina II, Figs. la-1b.

1758 Ammonia beccarii Linneo: 710.

1996 Ammonia beccarii Linneo -Villanueva-Guimerans y Sdanchez-
Ariza:23, fig. 6 (la-1b).

Descripcion: Concha ligeramente biconvexa, circular y perifericamente
redondeada. Cdmaras en trocospira baja, unas 3,5 a 4 vueltas visibles en
la cara espiral evoluta, la cara umbilical involuta. De 10 a 12 cédmaras
cuadrangulares en la tltima vuelta espiral de crecimiento regular con las
suturas intercamerales gruesas e imperforadas, algo curvadas y a veces
mds o menos limbadas. En la cara umbilical las cdmaras, de 7 a 10, se
presentan ligeramente infladas, terminan en una expansién umbilical a
modo de placa, en el centro presenta un botén calizo y las suturas llegan
a abrirse formando profundas hendiduras. Abertura, larga y estrecha, en
la porcién inferior frontal de la udltima cdmara dirigida hacia la regién
umbilical. Tamafio. Muy variable, desde 0,35 a Imm,

Distribucion: Especie cosmopolita, de amplia distribucién (Villanueva-
Guimerans y Sdanchez-Ariza, 1996). Se encuentra distribuida por -casi
toda la zona de estudio (Fig. 9) con tendencia de situarse principalmente
en facies fangosas, Unicamente en las estaciones mds distales situadas en
el sector central no se han encontrado ningin ejemplar, la frecuencia es
muy variable situdndose las mayores concentraciones en el dominio
infralitoral y en el interior de la Bahia, disminuyendo con la profundidad
y distancia a la costa, los contenidos mds altos se han encontrado en el
Sector NE entre los 20 y 40 metros y los méds bajos a nivel de la
plataforma externa del sector Norte.

Ammonia beccarii inflata (Seguenza) Lamina II, Fig. 2.
1862 Rosalina inflata Seguenza: 106, lam. 1, fig. 6.




1996 Ammonia beccarii inflata (Seguenza) -Villanueva-Guimerans y
Sanchez-Ariza:23, fig. 6 (2a-b).

Descripcion: Concha méis globosa que la forma tipica, las cdmaras mds
estrechas y enrolladas en trocospira alta, unas 4,5-5 vueltas visibles en
la cara espiral, también presenta una serie de suturas pustulosas, cortas,
irregulares que cubren casi toda la porcién central de la cara umbilical.
Tamano: de 0,6 a 1,5 mm.

Distribucién: En la zona de estudio se localiza en un d4rea més
restringida y en menor concentracién que A. beccarii s.s situdndose
preferentemente en la Bahia y en el dominio infralitoral y plataforma
interna del sector Norte, también se han encontrado ejemplares a 360
metros de profundidad mostrando una clara tendencia a disminuir el
contenido con la distancia a la costa.

Familia ELPHIDIIDAE Galloway, 1933. Genero Criboelphidium
Cushman y Bronnimann, 1948. Criboelphidium vadescens (Cushman
y Bronnimann). Ldamina II, Fig. 3.

1948 Cribononion vadescens Cushman y Bronnimann:18.

1988 Criboelphidium vadescens (Cushman y Bronnimann) -Loeblich y
Tappan:673, 1lam. 784, figs. 1-14.

Descripcion: Concha con enrollamiento planispiralado involuto de
contorno circular y periferia redondeada. De 8 a 12 cdmaras ligeramente
infladas en la vuelta final. Suturas intercamerales radiales algo hundidas

con gran cantidad de fosas circulares que se extienden desde la periferia
hasta el ombligo ligeramente hundido. Pared perforada por gruesos
poros en toda la superficie. Abertura interiomarginal en la base de la
dltima cdmara, pueden aparecer aberturas secundarias. Tamafio: De 0,35
a 0,45 de radio.

Distribucién: Especie propia de aguas poco profundas, en el litoral
Motril-Nerja es de las mads abundantes (Sdnchez-Ariza, 1979). En la zona
de estudio (Fig. 10) ocupa principalmente una é4rea desde el dominio
infralitoral hasta los 100 metros de profundidad, encontrdndose las
mayores concentraciones en el interior de la Bahfa disminuyendo con la
profundidad, también se han encontrado algunos ejemplares en dreas
aisladas de la plataforma externa.

Criboelphidium cuvillieri (Lévy). Lamina II, Fig. 4a-4b.

1966 Elphidium cuvillieri Lévy: 5, lam. 1, fig. 6.

1973 Elphidium cuvillieri Lévy -Haynes: 197, lam. 24, figs. 17-18, lam.
26, fig. 12.




Descripcion: Concha planispiralada involuta, de contorno circular con la
periferia redondeada en las primeras cdmaras de la ultima vuelta y
lobulada en las tltimas. Unas 10 cdmaras ligeramente infladas en la
vuelta final, suturas intercamerales radiales. Pared perforada por
gruesos poros de hasta 2 micras de didmetro en toda la superficie
excepto en el darea umbilical y en la cara apertural que es lisa. Abertura
interiomarginal en la base de la ultima cdmara.-Tamafio:Didmetro. De
0,35 a 0,45 mm.

Distribucién: En el litoral ibérico ha sido localizada en la plataforma
continental portuguesa (Lévy et al., 1995), en la zona de estudio (Fig. 11)
al igual que Criboelphidium vadescens ocupa principalmente un drea
adyacente a la Bahia externa y el dominio infralitoral préximo, hasta los
75 metros de profundidad, también se han encontrado algunos
ejemplares en dreas aisladas de la plataforma media y externa.

Género Elphidium de Monfort, 1808. Elphidium advenum (Cushman)
Lamina II, Fig. 5.

1922 Polystomella advena Cushman: 56, ldm. 9, figs. 11-12.

1980 Elphidium advenum (Cushman) -Boltovskoy et al.,: 29, lim. 12,
figs. 16-18.

Descripcién: Concha planispiralada involuta y lenticular con el margen
periférico redondeado. Camaras ligeramente infladas, de 10 a 12 en la
vuelta final que incrementan de tamaflo. Suturas hundidas, marcadas
por los procesos rectales que en esta especie son cortos. Abertura
formada por una serie de pequefios poros redondos en la base de la cara
abertural. Pared lisa, translicida, finamente perforada con la zona
umbilical algo deprimida con 1-5 pequefias fosetas.-Tamafio: De 0,35 a
0,45 mm.

Distribucién: En el litoral ibérico ha sido hallada en las costas catalanas
(Mateu, 1970) y en la plataforma continental portuguesa (Lévy et al.,
1995), en la zona de estudio (Fig. 12) se encuentra localizada en una
amplia drea que comprende practicamente todo el sector Norte, desde el
paralelo de Chipiona hasta el paralelo de Cabo Roche, entre los 20 a los
200 metros de profundidad, también se han obtenido ejemplares en el

SO en el talud, los substratos en que se encuentra son mayoritariamente
fangosos.

Elphidium macellum (Fichtel y Moll). Lamina II, Fig. 6.
1798 Nautilus macellus var, beta Fichtel y Moll: 66, lam. 10, figs. h-k.

1991 Elphidium macellum  (Fichtel y Moll) -Cimerman y Langer: 78,
lam. 89, fig. 9.




Descripcién: Concha lenticular-biconvexa planispiralada involuta con el
margen periférico subagudo con una gruesa quilla, en algunos
ejemplares el borde de las primeras cdmaras espinoso. Posee de 15 a 18
cdmaras alargadas y estrechas en la vuelta final que presentan procesos
de rectacion del tamafio del ancho de la cdmara y ocupan las 2/3 partes
de cada una. Suturas intercamerales muy curvadas sobresaliendo los
puentes rectales entre ellas. Regién umbilical con un saliente umbonal
irregular formado por pequeflas pustulas y nddulos. Abertura situada a
lo largo de la base de la iultima cdmara con aberturas suplementarias
interiomarginales. Tamafio. De 0,45 a 1,70 mm. Se diferencia de
Elphidium crispum por su menor tamafio y por la distinta configuracién
de la regién umbonal existiendo formas de transicién entre ambas.

Distribucién: En el litoral ibérico se ha localizado en la plataforma
continental portuguesa (Lévy et al., 1995), en la zona de estudio (Fig. 13)
se localiza en tres dreas, una ocupa la Bahfa externa y la plataforma
interna y media préxima, hasta los 75 metros, otra al SO en
profundidades superiores a los 500 metros, ambas en substratos
arenosos y la tercera en la plataforma media entre los 100 y 200 metros
en substratos fangosos y areno-fangosos.

Elphidium crispum (Linneo). Ldmina II, Fig. 7a-7b.

1758 Nautilus crispum Linneo: 709.

1991 Elphidium crispum (Linneo) -Cimerman y Langer: 77, lam. 90,
figs. 1-4.

Descripcion: Concha grande para su género, lenticular-biconvexa,
planispiralada involuta y biumbonada, con el margen  periférico de
angular a subagudo y con una gruesa quilla. De 22-25 camaras
alargadas y estrechas en la vuelta final que presentan procesos de
rectacion hasta las 2/3 partes de cada cdmara. Suturas intercamerales
curvadas, conectadas por gruesos puentes ddndole a la concha un
aspecto de roseta. Pared finamente granular excepto en la regién central
circular, umbonada, prominente, con la superficie lisa provista de 10 a
12 pequeiios hoyuelos. Abertura a lo largo de la base de la ultima
cdmara, también poseen aberturas que forman series de poros
interiomarginales.-Tamafio: De 0,8 a 1,8 mm.

Distribucién: En el litoral ibérico abunda en dreas litorales de las
costas gallegas (Colom, 1974), entre Motril y Nerja (Sdnchez-Ariza, 1979)
y en la plataforma continental interna portuguesa (Lévy et al, 1995). En
la zona de estudio (Fig. 14) se ha localizado en varias dreas situadas
preferentemente en el sector Sur, una ocupa casi toda la Bahia externa y
la plataforma interna proxima hasta los 30 metros, otra al SE desde los
20 a los 100 metros, la tercera en el centro, sobre el veril de los 100
metros. El 4drea de mayor concentracién se encuentra al SO en




profundidades superiores a los 500 metros, en todos los casos en
substratos fundamentalmente arenosos.

Elphidium coplanatum (d’Orbigny). Léamina II, Fig. 8a-8b.

1839 Polystomella coplanata d’Orbigny: 129, lam. 2, figs. 35-36.

1993 Elphidium coplanatum  (d’Orbigny) -Sgarrella y Montcharmont-
Zei: 228, lam. 20, figs. 9-10.

Descripcién: Concha plana con las cdmaras dispuestas en una espiral
muy desenvuelta y el margen periférico con una estrecha quilla. De 13 a
15 camaras alargadas y estrechas en la vuelta final que incrementan
regularmente de tamafio, presentan procesos de rectacién del tamafio
del ancho de la cdmara que ocupan la totalidad de cada una. Suturas
intercamerales muy curvadas con puentes retrales entre ellas. Tamafo:
De 0,30 a 0,85 mm.

Distribuciéon: En el litoral ibérico ha sido citada en las costas gallegas
(Colom, 1974) y en el litoral Motril-Nerja (Sdnchez-Ariza, 1979), en la
zona de estudio (Fig. 15) se halla distribuida principalmente por un
amplia drea que se extiende por todo el sector Sur y por el dominio
infralitoral hasta el Norte aunque también se han encontrado ejemplares
sobre el veril de los 100 metros en el centro y en el interior de la Bahia
en substratos de distinta naturaleza.

Analisis y discusién.

De las 170 especies de foraminiferos benténicos recientes encon-
trados en la zona de estudio (Villanueva Guimerans, 1994) solamente 6
corresponden a la Superfamilia Discorbacea y 7 a Rotaliacea. En la
Superfamilia Discorbacea estas 6 especies representan
cuantitativamente el 6,4% de la totalidad de los foraminiferos benténicos
de la zona. Cancris auriculatus al igual que en otras zonas atldnticas, es
una especie de plataforma asociada a sedimentos de tamafio de grano
medio, Valvulineria bradyana es de las mds abundantes en
profundidades menores a 200 metros y se asociada a sedimentos de
tamafio fino coincidiendo con distribuciones de otras zonas similares,
tanto atldnticas como mediterrdneas, Eponides concameratus es aqui
esencialmente infralitoral y de plataforma interna asociada a substratos
finos en profundidades ligeramente inferiores a otras zonas atldnticas,
Gavelinopsis praegeri se asocia a sedimentos de tamafio de grano medio
alto con el 6ptimo en el dominio infralitoral, Rosalina globularis presenta
una distribucién similar a la encontrada en -las costas portuguesas, de
aguas someras en substratos arenosos Yy Sphaeroidina bulloides se
encuentra preferentemente en dreas profundas en sedimentos de
tamafio de grano medio-fino al igual que en otras zonas tanto atldnticas
como mediterrdneas.




En la Superfamilia Rotaliacea, las 7 especies encontradas repre-
sentan cuantitativamente el 21,5% del total de los foraminiferos
benténicos de la zona, Ammonia beccarii y en menor medida la var.
inflata, son abundantes fundamentalmente en el dominio infralitoral y
plataforma interna en substratos fangosos ricos en materia organica,
Criboelphidium vadescens y Criboelphidium cuvilleri se encuentran
también preferentemente en el dominio infralitoral y de plataforma
interna, Elphidium crispum y Elphidium macellum presentan amplios
margenes batimétricos fundamentalmente en substratos de tamafo de
grano medio, Elphidium coplanatum en dreas fangosas y Elphidium
advenum en sedimentos de pequefio tamafio de grano del dominio
infralitoral y plataforma interna.

Como se indicé anteriormente, se ha seguido de forma estricta la
clasificacién genérica de Loeblich y Tappan (1988), utilizada de forma
generalizada en la mayoria de los estudios de foraminiferos, debe
resaltarse sin embargo, que los criterios adoptados en esta obra para la
separacién de algunos taxones son de dudosa fiabilidad, sobre todo los
referentes a aquellos grupos que presentan gran similitud morfoldgica y
por lo tanto dificil caracterizacién taxondmica entre las que se
encuentran estas dos Superfamilias.

En la citada clasificacién, los Discorbaceos aparecen como un grupo
excesivamente heterogéneo a los que se asignan entre otras, las Familias
Rosalinidae que posee el ombligo abierto y Eponidae con el ombligo
cerrado ya que en los criterios seguidos para la similitud vy
discriminacién de caracteres, la disposicién umbilical tienen menor peso
que la porosidad de la pared. En una interpretacion mds amplia Hansen
y Revets (1992) elevan a esta ultima a la categoria de Superfamilia
(Eponidacea) en base a la ausencia de estructuras internas, incluyendo
en ella no solo la Familia Eponidae sino también la Rosalinidae, aunque
en el mismo trabajo ponen de manifiesto la posibilidad de que la
determinacién de esta Superfamilia sea incorrecta debido al descu-
brimiento posterior por parte de Hottinger et al (1991) de estructuras
internas en las especies del genero Eponides. El criterio de la porosidad
de la pared se sigue también para separar a la Familia Bagginidae,
considerarla sinénima de Cancrisidae y Valvulinidae y reunir en ella a
los géneros Valvulinaria, Baggina y Cancris que presentan sin embargo
diferentes caracteristicas umbilicales, aunque en este trabajo no se
encontré ningin ejemplar del género Baggina, pareceria mds légico
asignar al género Cancris a la Familia Cancrisidae independiente de
Bagginidae ya que el ombligo de Cancris es primariamente abierto pero
se obstruye secundariamente por el desarrollo de las expansiones
umbilicales que se extienden sobre el ombligo sin cierre umbilical ya
que se puede acceder a las primeras camaras por las aberturas
umbilicales relicticas.

Hopker (1956) en la creacién de la Familia Gavellinidae incluye
entre sus géneros a Gavelinopsis, segin Hensen y Revets (op. cit) un




Rosalinido sin relacién con los Gavellinidos, y los relacionada con el
género Valvulineria aunque siguiendo a Brotzen (1942) lo clasifica
dentro de la Familia Valvulineriidae, sin embargo recientemente Revets
(1996) reclasifica mds coherentemente a Valvulineria segin la presencia
de placas y aberturas umbilicales relicticas como un Cancrisido.

Lévy et al., (1984) en un estudio morfoestructural de los géneros
Discorbis, Ammonia, Rotalia y Pseudoeponides considerando como
caracteres morfolégicos los pares préximos, el folium y la longitud foliar
los agrupan en la Familia Rotaliidae cuestionando la existencia de la
Superfamilia Discorbacea, posteriormente Lévy et al.; (1986) devuelven
al género Rotalia a los Discorbaceos puesto que en la Familia Rotaliidae
los l6bulos umbilicales coalescen con una placa umbilical que los cubren
similar que en el género Discorbis, aunque en el adulto esta cubierta se
rompe por el crecimiento y se abren canales suturales por reabsorcién lo
que no ocurre en Discorbis. El género Ammonia es més complejo en
organizacién que Rotalia y Discorbis es desde el punto de vista
estructural intermedio entre ambos, Hansen y Revets (op. cit) proponen
una terminologia nueva para estos grupos segun la cual la especie tipo
de Discorbis es transferida de nuevo a Rotaliidae causando sinonimias
entre Discorbidae y Rotaliidae.

Otro género muy problemadtico, asignado en la mayoria de las
clasificaciones a la Superfamilia Buliminacea, pero que en la clasificacién
de Loeblich y Tappan (op. cit.) aparece en la Discorbaceae es
Sphaeriodina, originario del Eoceno probablemente por evolucuén del
género plancténico Pulleina, al afiadirse las tltimas cdmaras en principio
con enrollamiento planispiralado y que posteriormente por cambio de
los ejes se hace mds irregular y se comprime, la situacién de la apertura
en relacién con las primeras cdmaras y las suturas son variables vy
aunque pueden cambiar la apariencia del individuo, no tienen realmente
importancia taxondémica, el hecho de que solo en algunos casos la
abertura se encuentre cerca de las primeras cdmaras los ha situado
cerca de los Rotaliformes y de los Bagginidos, no obstante, la gran
variabilidad que presenta, hace necesaria una revision profunda de
holotipos y paratipos para encuadrarlo convenientemente.

También se incluye en la Superfamilia Rotaliacea a Elphidae, un
grupo primariamente planispiralado, quizds habria que contemplar la
posibilidad de  situarlo de forma méds apropiada en Nonionacea,
concretamente como formas gradacionales hacia Nonionidae teniendo en
cuenta la estructura y morfologia de la pared y los canales rectales.

En general, aunque entre otros, con los matices anteriormente
expuestos, puede decirse que la taxonomia de los Rotaliaceos esta bien
definida y la mayoria de los géneros que la componen bien situados a
diferencia de lo que ocurre con los Discorbaceos que se presentan como
excesivamente heterogeneos en el que no estan bien representados por
la especie tipo algunos taxones y algunos de sus géneros probablemente
erroneamente asignados, sin embargo aunque su filiacién no esta muy




clara, para la estabilidad taxondémica parece justificado retener entre
otros en su seno a la problemdtica Familia Rotaliidae porque una nueva
reubicacién podria causar incluso la desaparicién del Suborden Rotaliina
en favor de Discorbina.

En el concepto filogenético de "especie" en foraminiferos se utilizan
como criterios diferenciales, la adaptacién selectiva a unas condiciones
ambientales en este caso fundalmentalmente las caracteristicas oceano-
graficas y fisico-quimicas del sedimento, la constitucién morfolégica de
los ejemplares 'y la relacién espacio-temporal de los mismos, consi-
derdndose que el colectivo polimérfico que producird una adaptacién
selectiva constituye un "spectrum" (Mateu, 1981) con connotaciones en
las biofacies y tanatofdcies. A pesar de las implicaciones ecoldgicas de
estos critérios, en muchos casos la informacién obtenida a partir de la
simple distribucién de especies es muy limitada, siendo necesaria la
aplicacién de métodos de Andlisis Multivariante al tratamiento de datos
que produzca una descripcién cuantitativa de la fauna, resuelva
problemas como la clasificacién y agrupamiento de las muestras y ayude
a conocer la estructura interna de los grupos (Ujiie y Kusukawa, 1969;
Joreskog et al.,, 1976) este tipo de andlisis es sensible a las condiciones
medioambientales y se utiliza asiduamente en trabajos foraminife-
rolégicos para la determinacién de las tanatofacies y tanatocenocis
(Buzas, 1969). :

A partir de la frecuencia relativa de cada especie en cada una de
estas dos Superfamilias se procedié por separado al andlisis por
Componentes Principales en Modo-Q (Factorial inverso) con rotacién
Varimax para delimitar las tanatofacies de cada una de ellas con los
Factors Loadings superiores a 0.75 (Williamson et al., 1984).

Para la determinacién de las tanatofacies de los Discorbaceos se han
seleccionado los Factor Loadings que justificasen en total sobre el 70 %
de la varianza explicada, concretamente en este caso Fl+ F2 justifican el
74 % de la misma (Tabla 1A), En la figura 16 se observa la distribucién
irregular de esta tanatofacies, encontrdndose dispersa en tres dreas, dos
situadas en la plataforma interna en substratos de distinta naturaleza y
la tercera en la plataforma externa y talud en substratos arenosos y
fangosos, las especies determinantes de las asociaciones F1 y F2 son
Valvulinaria bradyana y Gavelinopsis praegeri (Tabla 1 B). Aunque el
resultado de estos andlisis no es directamente extrapolable, se observa
en este caso una cierta heterogenidad en el grupo en consonancia con la
taxonomia de los mismos.

A diferencia de la anterior, la tanatofdcies correspondiente a los
Rotaliaceos presenta una distribuciéon regular y homogénea (Fig. 17) en
consonancia en cierto modo con su integridad taxonémica. La F1
determina la principal asociacién (Tabla 2 A) que justifica por si misma
mds del 70 % de la varianza explicada (73 %) siendo la especie
determinante de esta asociacién Ammonia beccarii asociada positi-
vamente Elphidium advenum y negativamente las demds (Tabla 2 B),




que se considera tipica de 4reas litorales, generalizada tanto en el
Atldntico como en el Mediterrdneo (Murray, 1991), la distribucién de los
Factor Loadings de la F1 (Fig. 17) muestra la relacién de esta asociacién
con substratos fangosos claramente coincidentes con la cuifia sedimen-
taria progradante de materiales finos proveniente fundamentalmente de
la desembocadura del Guadalquivir, desviados debido a la accién de la
corriente de Agua Central Noratlantica que cubre los depdsitos arenosos
del intervalo transgresivo previo (Fig. 2).
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LAMINA 1I: Fig. la-b-c.Cancris auriculus (Fitchtel y Moll) 2
ejemplares y abertura. Fig. 2a-b.Valvulineria bradyana (Forna-
sini) cara umbilical y dorsal. Fig. 3a-b. Eponides concameratus
(Williamson), cara umbilical y dorsal. Fig. 4 a-b. Gavelinopsis
praegeri (Heron-Allen y Earland)cara dorsal y umbilical. Fig. 5a-
b. Rosalina globularis (d°Orbigny) cara dorsal y umbilical. Fig. 6.
Sphaeroidina bulloides d’Orbigny.
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LAMINA II: Fig. la-b. Ammonia beccarii Linneo, cara umbilical
y dorsal. Fig. 2. Ammonia beccarii inflata (Seguenza). Fig. 3.
Criboelphidium vadescnes (Cushman y Bronnimann). Fig. 4a-b.
Criboelphidium cuvillieri (Lévy) 2 ejemplares. Fig. 5. Elphidium
advenum (Cushman). Fig. 6. Elphidium macellum (Fitchel y Moll).
Fig. 7a-b. Elphidium crispum (Linneo) ejemplar y abertura. Fig.
8a-b. Elphidium coplanatum (d’Orbigny), 2 ejemplares.
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F1 F2 EST. F1 B2

2 0,949 -0,092 30 0,543 0,821
4 0,965 -0,082 31 0,961 0,238
7 0,978 0,057 33 -0,098 0,763
15 0,977 0,015 34 0,919 0,156
16 0,910 0,220 19 0,969 -0,069
24 0,969  -0,078 38 0,309 0,866
28  -0,053 0,943 44 -0,197 0,837

Tabla 1A. Matriz Varimax de los Factor Loadings (Fly F2)
obtenida en la Superfamilia Discorbacea con valores supe-
riores a 0,75 en las distintas estaciones (EST.).

ESPECIE

Cancris auriculus 3,5 -0,831 -0,037
Valvulineria bradyana 69,0 1,975 -0,161
Eponides concameratus 4,6 -0,316 -0,737
Gavelinopsis praegeri 13,7 -0,107 1,925
Rosalina globularis 5,1 -0,220 -0,836
Sphaeroidina bulloides 4,2 -0,500 -0,155

Tabla 1B. Valores de los Factor Scores en cada Factor
Loading (F1 y F2) de las distintas especies (ESP) y la
frecuencia relativa de cada una (%) en su grupo.
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Tabla 2A. Matriz Varimax de los Factor Loadings (F.1
y F.2) obtenida en la Superfamilia Rotaliacea con valo-
res superiores a 0,75 en las distintas estaciones (EST.).

ESPECIE % F1 F2

Ammonia beccarii 56 291 0,673
Ammonia beccarii inflata 9,4 -0,796 2,058
Criboelphidium vadescens 13,1 -0,068 -0,005
Criboelphidium cuvillieri 3,1 -0,422 -0,060
Elphidium advenum 7,3 0,340 -1,173
Elphidium macellum 4.4 -0,070 -0,854
Elphidium crispum 4,0 -0,624 -0,308
Elphidium coplanatum 2:1 -0,651 -0,332

Tabla 2B. Valores de los Factor Scores en cada Fac-
tor Loading (F1 y F2) de las distintas especies (ESP.)
y la frecuencia relativa de cada una (%) en su grupo.
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ANOMALIAS GEOQUIMICAS DE Pb Y Cu EN LA CABECERA DEL RiO
HUERVA: IMPLICACIONES MEDIOAMBIENTALES

P. Acero Salazar, J. Mandado Collado, F. J. Sanz Morales y F. J. Torrijo Echarri.*

* Area de Petrologia y Geoquimica. Departamento de Geologia. Universidad de Zaragoza.

C/ Pedro Cerbuna 12, 50009 ZARAGOZA.

Abstract

Basic concepts and methodology of geochemical prospecting were applied to the study of
the degradation of Huerva river (Iberian Range, Zaragoza, Spain).

In this work, 77 samples of fine river sediments were collected along the river and its
tributaire channels, and its contents in Lead and Copper were analyzed and statisticaly
interpreted to select the “probably anomalous samples” and to provide basic information

about the impact of these heavy metals on the environment.

1. INTRODUCCION

En los dltimos afios, el interés por la problematica medioambiental ha experimentado un
extraordinario auge y, con ello, todas las ramas cientificas han ampliado sus aplicaciones al

estudio, caracterizacion y gestion del patrimonio natural.

La prospeccion geoquimica no es ajena a este crecimiento; aunque tradicionalmente su uso
se ha reducido a la localizacién de acumulaciones metalicas y de hidrocarburos de interés

econdémico, sus principios generales constituyen una poderosisima herramienta para los
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estudios de tipo medioambiental. Este estudio pretende aplicar estos principios generales al
estudio del nivel de degradacion de un curso fluvial, caracterizando la extension y causas de

esta degradacion.

2. CARACTERISTICAS GEOLOGICO-GEOGRAFICAS DE LA ZONA DE ESTUDIO

Este trabajo se ha realizado en la cuenca del rio Huerva (Zaragoza, Espafia). El rio Huerva
constituye una fuente hidrologica de primer orden en Aragon, ya que abastece directa o
indirectamente a un gran numero de poblaciones para su consumo y regadio. La cuenca ha sido
escasamente estudiada desde el punto de vista hidrologico y geoquimico. Tan solo cabe
resefiar los trabajos de Sanchez-Navarro (1985), que realiza una aproximacion hidroeconémica
a la zona de estudio, Garcia (1986) y los trabajos del 1. T.G.E., tanto en informes propios como

en la Memoria del Mapa Hidrolégico n° 40 “Daroca” a escala 1:200.000.

El rio Huerva en la zona de estudio presenta una longitud total de unos 40 Km y, junto con
su red de tributarios, drena una superficie total de casi 500 Km®. Atraviesa las poblaciones de
Fonfria, Bea, Lagueruela, Ferreruela de Huerva, Badules, Villadoz, Villahermosa del Campo,
Mainar, Villarreal de Huerva, Cerveruela y Vistabella. Se trata de poblaciones de pequefio
tamafio (menos de 200 habitantes) cuyas actividades fundamentales son la agricultura y la

ganaderia, sin que apenas exista desarrollo industrial.

El clima de la zona es de tipo montafioso interior de caracter mediterraneo. Los veranos son
cortos y frescos, y los inviernos largos y frios, con frecuentes heladas. La temperatura media
no sobrepasa los 12°C. Las precipitaciones varian entre 20-30 mm en Julio y Agosto y 480-550

mm en primavera, aunque siempre con importantes variaciones interanuales, lo que provoca

una elevada variabilidad en la escorrentia eficaz, que ronda los 100-125 mm/afio (Ascaso y
Cuadrat, 1981).

La via de acceso mas sencilla es por la N-330 hasta Mainar, nicleo de comunicaciones a
partir del cual se accede a la red de carreteras locales y comarcales, asi como a caminos

vecinales, en general bien conservados, que permiten un buen acceso al cauce en todo el tramo

estudiado.




La zona se integra parcialmente dentro de la Rama Aragonesa o Externa de la Cordillera
Ibérica, que forma una alineacién montafiosa en direccion NO-SE (Ibérica). Esta unidad
estructural presenta un nicleo de materiales paleozoicos rodeados de materiales mesozoicos y
cenozoicos. Esta constituida en el area de estudio por las sierras de Oriche, Cucaldn, del Peco,
de Herrera, de Vicort y de Algairen, que delimitan la cuenca del Huerva, y a las que
pertenecen la mayor parte de los materiales drenados por el rio y su red de canales tributarios.
En los afloramientos paleozoicos de la zona existe un gran nimero de mineralizaciones de
caracter disperso y escasa entidad. En su mayoria se trata de sulfuros de Cu, Fe; Pb, Zn y Ba,

dispuestos en filones de caracter masivo o diseminado.

La serie estratigrafica aflorante abarca desd; el Cambrico hasta el Cuaternario. En la zona
concurren dos unidades estructurales paleozoicas separadas, segun Carls (1983), por la falla de
Datos; se trata de las unidades de Badules y de Herrera. Sobre este basamento hercinico
aparece un tegumento del Buntsandstein, al que puede asociarse localmente el nivel inferior del

Muschelkalk, dotado generalmente de una tectonica de revestimiento.

En cuanto a los caracteres hidrologicos de la cuenca, se pueden distinguir dos familias de

afluentes:

- Afluentes circulantes por materiales paleozoicos, cuyo caudal es muy irregular, de forma
que su actividad es casi exclusivamente primaveral.

- Afluentes circulantes por los materiales mesozoicos y cenozoicos de la cuenca de
Calatayud-Montalban, cuyo caudal es bastante constante, y que constituyen los aportes

fundamentales en los meses estivales.
3. METODOLOGIA

La campafia de campo se llevo a cabo entre los meses de Octubre de 1998 y Febrero de
1999. Durante la misma se tomaron 77 muestras de sedimentos finos en el lecho del cauce
principal y sus tributarios, manteniendo un espaciado entre muestras en torno a 1 Km, como
muestra la figura 1. Estos materiales son ampliamente utilizados en estudios geoquimicos, y su

empleo ha resultado ser especialmente eficaz en el estudio de la dispersion de elementos
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inmoviles y semimoéviles (Rose ef al., 1979), aunque se ha utilizado también para el estudio de

algunos elementos moviles (por ejemplo, el Mo).

Para este estudio se opto por realizar analisis de la fraccion fina separada por tamizado. El
empleo de esta fraccion para campafias geoquimicas es un procedimiento muy contrastado y
avalado por numerosos casos bibliograficos. Los estudios realizados por Gibbs (1977) sobre
diferentes fracciones de sedimentos aluviales sefialan un aumento considerable en la proporcion
de iones metalicos en aquellas de granulometria mas fina. Beeson (1984) sefiala la enorme
utilidad de los materiales finos para realzar las anomalias en la concentracion de elementos
metalicos y disminuir los limites de deteccion efectivos. Segun este autor, este hecho debe
fundamentalmente a la mayor presencia en esta fraccion de particulas arcillosas capaces de
adsorber gran nimero de iones. Por otra parte, el menor tamafio de grano proporciona
muestras mas representativas y una mayor homogeneidad en la distribucién de valores. Los
estudios realizados por Withney (1975) sobre diferentes fracciones granulométricas arrojan

resultados similares.

Para el caso que nos ocupa, las determinaciones analiticas se han realizado sobre la fraccion

inferior a 0.16 mm, separada por tamizado.

La recogida de las muestras se realizo con la ayuda de palas de acero inoxidable. En cada
estacion de muestreo se tomaron aproximadamente 2 Kg de sedimento himedo, aunque este

peso vari6 en funcion del grado de humedad y tamafio de grano estimado.

4. TRATAMIENTO DE LAS MUESTRAS

En primer lugar se procedi6 al secado a 50°C de las muestras de campo en estufa.

Posteriormente se realiz6 un tamizado para obtener la fraccion inferior a Imm, desechandose el
resto. Seguidamente, se realiz un nuevo secado en estufa a 100° C durante 24 horas de la
fraccién seleccionada, y se aplicé a las muestras un tamizado posterior para obtener la fraccién

inferior a 0.16 mm, a la que se realizaron los analisis.
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Figura 1: Esquema hidroldgico de la cuenca y situacion de las muestras.

Las muestras fueron sometidas a una extraccion total con HNOs 1N, a 50°C, durante 1
hora. La disolucion resultante fué posteriormente filtrada, retirando el residuo sélido. Sobre el
extracto acido se realizaron determinaciones analiticas de los contenidos en Fe, Mn Cu y Pb.
La eleccion del Cu se justifica por ser el mas movil de los metales existentes en las
mineralizaciones del area, y el que mas probabilidades tiene de hallarse en elevada

concentracion en los sedimentos fluviales. El Pb se ha escogido por su elevada toxicidad y su




caracter de indicador medioambiental. El Fe y el Mn han sido analizados por su capacidad para

formar 6xidos e hidroxidos responsables de la captacion de elementos metalicos (Forstner y

Miiller, 1973; Chao y Theobald, 1976); su presencia es ttil para explicar el comportamiento de

Cuy Pb.

Los analisis fueron realizados mediante espectrometro de absorcion atomica con un equipo
PERKIN-ELMER 2380, con llama de acetileno, en atmosfera de aire. Para minimizar la
variabilidad analitica, los analisis de contenidos de cada elemento fueron realizados se

determinaron para la totalidad de las muestras en una unica sesion de trabajo.

5. TRATAMIENTO DE LOS RESULTADOS

La realizacion de los analisis gener6 un elevado nimero de datos (ver tabla 1) a los que se

aplico un tratamiento informatico y estadistico.

Tabla 1: Siglado de las muestras recogidas en la campafia global estratégica, acompafiadas de su
localizacion y resultados analiticos (en ppm de muestra sélida) obtenidos por espectrometria de

absorcion atémica para los elementos estudiados.
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1°- Se representaron graficamente las relaciones entre los contenidos hallados para cada
elemento frente a todos los demés, y se calcularon los indices de correlacion lineal

correspondientes a cada pareja de resultados analiticos, considerados independientes del resto.

Esta operacién permite un acercamiento inicial a la caracterizacion de las muestras y aumenta

la fiabilidad de las pruebas estadisticas realizadas posteriormente, al permitir adaptarlas a
nuestro caso concreto. Los resultados de estos calculos y representaciones aparecen en la

figura 2

r=0.103 r=0.153 r=0.42

Figura 2: Indices de correlacion entre parejas de resultados analiticos, y grdficos de dispersién

correspondientes.

El andlisis de estos calculos y representaciones permite extraer dos conclusiones

fundamentales:




- Los contenidos hallados para Cu presentan una notable correlacion positiva con los
contenidos de Fe, lo que puede estar relacionado, al menos en parte, con la presencia de

oxihidréxidos de hierro, con elevada capacidad de adsorcion de este elemento.

- Los contenidos en Pb no presentan correlacion lineal con los datos analiticos de hierro y
manganeso. No es descabellado suponer que la presencia de Pb en las muestras estd mas

relacionada con la adsorcidn a minerales arcillosos y a la materia organica.

Tras esta primera interpretacion de los resultados analiticos, se puede realizar una primera
estandarizacion de los mismos. Chao y Theobald (1976), Tessier ef al (1982) y otros autores

recomiendan aplicar a los resultados analiticos de sedimentos de suelos y arroyos la
transformacion

Me/Fe + Mn

donde Me es la concentracion determinada analiticamente para cada elemento y Fe y Mn son

las concentraciones halladas de hierro y manganeso, respectivamente, para la misma muestra.

El empleo de esta transformacion para la estandarizacion de medidas analiticas en amplias

tandas de muestras minimiza el efecto atrapador de metales por parte de los oxihidroxidos de

hierro y manganeso, y evita el realce de “falsas anomalias” que produce la presencia en

sedimentos de elevadas cantidades de estos compuestos.

Como ya se ha discutido anteriormente, en nuestro problema concreto esta estandarizacion
se puede aplicar inicamente (y con matices) a la transformacion de los resultados analiticos

obtenidos para el Cu. La transformacion mas efectiva a aplicar debe ser

Me/Fe

ya que los contenidos en Mn no presentan correlacion lineal con los resultados analiticos de
Cu.




Para el caso del Pb, no es conveniente aplicar ninguna correlacién que implique a hierro y
manganeso, por lo que, en lo sucesivo y a efectos estadisticos, se consideraran inicamente sus

resultados analiticos directos.

2°- Se calcularon los parametros estadisticos basicos para cada elemento (tabla 2), con el fin

de realizar una aproximacion general a la caracterizacion de las poblaciones tratadas.

Tabla 2: Pardmetros estadisticos considerados en la interpretacion de los datos.

VARIABLE Cu | Pb | Fe Mn
N° OBSERVACIONES 77
MEDIA 9,3 2107,6 197 1
VARIANZA 5,3 982265,8 | 18066,6
DESV.TIPICA 3,9 9911 134 .4
VALOR MAX. 5422,8 1180,9
VALOR MIN. 3,0 8,4 411,9 53,6
RANGO 5834,7 12345
COEF. VARIACION 0,4 0,1 0,5 0,7
CUARTIL INF. 2 152 1217,0 134,9
CUARTIL SUP. 1,6 2685,0 2247
RANGO INTERCUARTILES 3,3 0,6 1468,0 89,8
MEDIANA 8,4 1,3 1781,0 159,9

3°- Los resultados analiticos fueron estandarizados y en las poblaciones resultantes se

ensay® el test Chi® para conocer la bondad de ajuste de la muestra a la normalidad y

lognormalidad. Este ajuste debe ser tedricamente perfecto en muestras estadisticas
seleccionadas de forma aleatoria si el nimero de individuos que componen la muestra es

suficientemente amplio (mayor de 30), como ocurre en nuestro caso (Davis, 1986).

Aunque existen variaciones y desviaciones de esta tendencia a la (log)normalidad, esta
distribucion parece ser una buena aproximacion a los valores de fondo en la mayoria de
estudios geoquimicos (Rose, 1972). Cuando dicho ajuste se produce, es usual en este tipo de
estudios establecer un umbral de anomalias a 2 desviaciones tipicas de la media. (Hawkes y
Webb, 1962; Lepeltier, 1969). En este estudio se ha optado por considerar posiblemente
andmalas las muestras cuyos contenidos en Cu o Pb superen el valor de la media poblacional
mas 1.5 desviaciones tipicas. Este umbral, menos restrictivo, es tambien mas adecuado para
campafias de aproximacion, en las que se desconoce el sistema a estudiar y garantiza la

deteccion de todas las anomalias presentes en el area de estudio.




6. DISCUSION DE LOS RESULTADOS

Los resultados obtenidos aparecen detallados a continuacion. Las curvas estandarizadas

corresponden a las distribuciones de datos con mejores valores de ajuste.

- Cu: Se han obtenido buenos resultados para la distribucion lognormal de los datos Cu/Fe
(ver tabla 3). La curva estandarizada para estos datos (figura 3) presenta sesgo negativo. Para
el resto de las distribuciones, los valores de ajuste a la (log)normalidad son excesivamente

altos, y no deben ser considerados en la interpretacion.

Distribucién de datos log(Cu/Fe)

Tabla 3: Resultados del test ChI>.En negrita

se muestra el mejor ajuste obtenido.

Resultados del test CHI-2
Cu_ | Log(Cu) | CuFe | Log(Cu/Fe)
2131 [ 1456 [ 3871 | 9,88

N°observaclones por clase

CLASES

Figura 3: Distribucion de frecuencias log(Cu/Fe).

- Pb: El mejor ajuste corresponde a los resultados analiticos directos, sin transformaciones
(tabla 4). La curva estandarizada correspodiente, aunque presenta sesgo negativo (figura 4),

presenta una gradacion bastante continua entre los valores superiores a la media (a los que

corresponde una forma normal estandar de signo positivo), que es en los que se centra este

estudio de anomalias.

Disiibucion/de datos s Bb Tabla 4: Resultados del test Chi’. En negrita se

muestra el mejor ajuste obtenido

Resultados del test CHI-2
Pb | Log(Pb)
6,25 | 12,74

CLASES

Figura.4: Distribucion de frecuencias de Pb.




Tabla 5: Resultados analiticos obtenidos para Cu y Pb y los correspondientes valores estandarizados
(F.N.STD) para la distribucion de resultados analiticos de Pb y para la transformacién
log(Cu/Fe).Las muestras “posiblemente anémalas” deducidas por la aplicacion de umbral 1.5

desviaciones tipicas a partir de la media aparecen marcadas en negrita.
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7. CONCLUSIONES

1 - En los sedimentos estudiados parece existir un bajo grado de correlacion entre los
contenidos de Pb y la presencia de Fe y Mn, lo que sugiere que la acumulacion del Pb en los
materiales finos debe estar mas relacionada con la adsorcion a minerales arcillosos y con la
presencia de materia orgénica. La elevada capacidad de ésta ultima para formar complejos de

Pb es bien conocida, y sefialada por muchos autores (Rose et al., 1979).

Los contenidos hallados de Cu, por el contrario, pueden ser explicados, al menos en parte,

por la adsorcién a compuestos de hierro, principalmente 0xidos y oxihidroxidos, pero no de
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Mn, del que parecen ser estadisticamente independientes.

2 - Las poblaciones estandarizadas para ambos elementos presentan sesgo negativo, es
decir, una desviacién hacia los valores altos. Esta tendencia puede expresar la presencia
dispersa en la zona de diversos focos contaminantes, ya que la gradacion de clases es bastante

continua, especialmente en el caso del Cu.

3 - En la poblaciéon de contenidos de Pb, aunque sélo dos muestras superan el umbral de
anomalia propuesto (1.5 desviaciones tipicas a partir de la media) el contenido medio en Pb
hallado para los sedimentos del rio Huerva supera ampliamente el contenido medio estimado
para sedimentos fluviales (17 ppm, segiin Rose e al., 1979) y se aproxima al contenido medio
estimado para cenizas de plantas (30 ppm), lo que da una idea del notable nivel de degradacion

existente en el cauce.

4 - En el caso del Cu tinicamente 2 muestras superan el umbral propuesto de anomalia. Los
contenidos analizados para este metal se encuentran en rangos normales estimados para

sedimentos fluviales, que se sitian en 15 ppm de Cu en promedio, segun Rose et al.(1979).
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Abstract

Carbonate nodules of the Turmiel Formation (Ricla-Zaragoza) were studied. The
nodules are included in limestones and mudstones, and contain calcite, detrital particles of
host, organic matter, and mould of fossils. The cement is microsparitic calcite.

Content in authigenic cement decreases outwards the nodules related to the ground
waters and the organic matter descomposition for bacterian action. A sincompactacional

model, and a displacive growth are proposed.

1. INTRODUCCION

Son numerosos los autores que a lo largo de la historia han estudiado diferentes aspectos de
los materiales toarcienses del area comprendida entre las localidades de Ricla y La Almunia de
Dofia Godina, aunque es destacable que ninguno haga referencia a la existencia de nodulos
carbonatados. Incluso Martinez (1986), que realiza un estudio muy detallado de los

ammonoideos en este area, no indica su existencia.
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Este trabajo se centra en el estudio petrografico, geoquimico y mineralégico de los mismos,
que aportan datos que permiten discernir el origen de los nodulos, proporcionando un modelo

genético para ellos, que se basa en el modelo de clasificacion propuesta por Torrijo ef al. (1997).

2. LOCALIZACION GEOGRAFICA Y MARCO GEOLOGICO

2.1. Localizacion geogrdfica

La situacion del punto de estudio se localiza al este de Zaragoza, en el extremo NO
de la Rama Aragonesa de la Cordillera Ibérica. La Region se sittia en la zona NO de la hoja

de La Almunia de Dofia Godina (410) del Mapa Topografico Nacional a escala 1:50.000.

El perfil se sitia en una trinchera, en el p.k. 266+500, del ferrocarril Madrid-
Zaragoza, al oeste del rio Jalon y al SO de Ricla. Este perfil fué publicado por Goy et al.
(1988), aunque fue realizado anteriormente por Martinez (1986) en su Tesis de

Licenciatura.

2.2. Marco Geoldgico

El punto de estudio esta limitado por dos conjuntos claramente diferenciables; el
primero (al NO, O y S) esta compuesto por los materiales paleozoicos de la Sierra del
Moncayo y sus prolongaciones de la Sierra de la Virgen y de Vicort; estos macizos estan
rodeados por materiales tridsicos y jurasicos y algunos afloramientos puntuales cretacicos.
En general los afloramientos mesozoicos tienen caracter discontinuo y estan bastante

tectonizados (figura 1).

El segundo conjunto (al N y E) corresponde a los materiales terciarios y

cuaternarios de la Depresion del Ebro.

Los materiales en los que se ha centrado el estudio pertenecen al Jurasico inferior

(Lias).




Los afloramientos jurasicos referentes a este sector de la Rama Aragonesa
comprenden los alrededores de la Sierra del Tablado, Tabuenca, Morata, Herrera y Ricla.

Los materiales donde se ubican los nodulos pertenecen al Piso Toarciense, el cual
esta constituido por calizas y margas con un acusado caracter ritmico y se podrian incluir,
mas concretamente, en la Formacion Alternancia de margas y calizas de Turmiel (Goy ef
al., 1976).

Entre las calizas que constituyen los ritmos, dominan en general de forma muy neta
los calcimudstones grumelares con muy escaso contenido en fragmentos de conchas;
ocasionalmente, sobre todo en la parte inferior, se encuentran wackestones de bioclastos
con lamelibranquios, gasteropodos, braquidpodos y foraminiferos fundamentalmente. De
forma excepcional, se observan packstones en algunos niveles muy concretos, relacionados
con pequeiias discontinuidades. Entre los macrofosiles dominan los ammonites y belemnites,
siendo escasos, menos en las primeras capas, los organismos de vida bentonica como
lamelibranquios, braquiépodos, equinodermos, briozoos, esponjas, corales, etc.

Estos materiales corresponden a una plataforma carbonatada externa, relativamente
bien oxigenada durante parte del Toarciense inferior, lo que permite el desarrollo de fauna
bentonica abundante y diversificada. Posteriormente, y casi durante todo el resto del
Toarciense, se produce un empobrecimiento de la oxigenacion del fondo, lo que dificulta el
desarrollo de organismos benténicos (Goy ef al., 1988).

Martinez (1986), basandose en faunas de ammonites, argumenta que, durante el
Toarciense, este sector de la Cordillera Ibérica estaria situado dentro de un dominio
subboreal, con algunos momentos de marcada influencia mediterranea dentro del dominio

del Tethys.

3. METODOLOGIA

Se muestrearon nueve nddulos separandolos de la roca encajante de manera manual y

retirando posteriormente del mismo modo las superficies de alteracion. A continuacidn se
subseccionaron cada uno de los nédulos, seleccionando de cada subseccion una muestra
para su estudio en lamina delgada y otra para su trituracion y posterior analisis quimico, tal

y como propone Raiswell (1971).




Glacis

Coluvién E==) Pliensbechiense

Cono aluvial @ Hetiangiense

Sinemuriense

Aluvién ~—— Trifsico

Llanura de inundacién

Figura 1. Situacion geoldgica de la columna levantada en el Toarciense al SO de Ricla
(Torrijo, 1999).

La trituracion se realizo mediante trituradora de mandibulas y molienda de la fraccion
extraida con molino de aros, hasta un tamafio de grano inferior a 60 pm. Para ello se usaron
los equipos del Servicio de Preparacion de Rocas y Materiales Duros de los Servicios de

Apoyo a la Investigacion de la Universidad de Zaragoza.

El analisis quimico de las muestras se realizaron en el Laboratorio “Juan Tena” del Area
de Petrologia y Geoquimica del Departamento de Ciencias de la Tierra de la Universidad de

Zaragoza, y en el Laboratorio de Analisis Quimico de la empresa Laboratorios Proyex, S.A.

262




3.1. Disgregacion de las muestras

La disgregacion de las muestras carbonatadas es un problema analitico sencillo que
requiere pocas modificaciones en funcién de las caracteristicas de la misma. El principal
problema radica en la presencia de fases no carbonatadas que puedan ser afectadas por el
tratamiento quimico y que, al liberar sus elementos a la solucion, dificultarian el analisis
geoquimico de los resultados. Por ello, se ha seleccionado una sistematica de extraccion
estandar, de acuerdo con la metodologia de Brand y Veizer (1980), que consiste en realizar
un ataque de 250 mg de muestra con HCI al 3% (aproximadamente 0.8N) durante dos
horas, con agitacion intermitente y calentamiento a unos 50°C. Mediante este tipo de
extraccion, se disuelven, ademas de los carbonatos, otros componentes tales como
oxihidroxidos de hierro y manganeso, sulfuros ferrosos y otros minerales solubles que
pudieran estar presentes en la muestra; pero no se destruye la red de los filosilicatos, aunque
si afecta a la capa de cambio de los mismos. Un tratamiento quimico menos agresivo no

llegaria a solubilizar totalmente a la dolomita que pudiera estar presente en la muestra.

3.2. Residuo insoluble

La valoracién gravimétrica del residuo insoluble al ataque acido, expresada en %
respecto al peso inicial de muestra, se expresa como R.L; que corresponde al contenido de
la fraccion de minerales arcillosos, cuarzo y otros silicatos detriticos de la roca, no disueltos
durante el ataque.

3.3. Contenido en carbonato

La determinacion del contenido en carbonato se ha realizado mediante el calculo de la

pérdida el peso por ignicion (Dean, 1974). Se basa en la interpretaciéon de que las pérdidas

de peso tras calentamientos escalonados a 200, 500 y 900°C corresponden a los contenidos

de agua, materia organica y CO, respectivamente.




3.4. Elementos mayores

El anélisis de cationes, excepto el estroncio, se efectud por espectrometria de absorcion
atémica, con un equipo PERKIN-ELMER 2380 con llama de acetileno en atmosfera de

aire, en las siguientes condiciones:
- El Ca y el Mg por absorci6n y en presencia de 0.1% de La*". En base a las
condiciones analiticas, proporcion muestra-soluto en el analito y grados de dilucion, los

limites de deteccion en roca se establecen en 1000 ppm para el Ca y 20 ppm para el Mg.

- El Fe y Mn por medida directa de la absorcion, con un limite de deteccion de

100 ppm para el Fe y de 6.5 ppm para el Mn.

- Na y K por emisién, el primero en presencia de 0.15% de KCI. El limite de

deteccion es de 10 ppm para el sodio y 50 ppm para el potasio.

Tan sélo se realizaron diluciones al 10% para la determinacion de Ca** y Mg®, ya que el

resto de los cationes se presentan en baja concentracion.
El estroncio se determind también por espectrometria de absorcion atéomica, con un
equipo PERKIN-ELMER 3030 con llama de 6xido nitroso en atmosfera de aire. Los limites

de deteccion se establecen en 5 ppm.

3.5. Mineralogia

A partir de las muestras se realizaron secciones pulidas y laminas delgadas en el Servicio

de Preparacion de Rocas y Materiales Duros de la Universidad de Zaragoza. Antes del

recubrimiento de estas ultimas, se hizo la observacion de las propiedades luminiscentes de
los cristales que componen las muestras carbonatadas. Mediante esta técnica se intentd
identificar si la incorporacion de elementos tales como Fe y Mn en la red del carbonato era
o no significativa. Para ello se utilizo el equipo de catodoluminiscencia del Departamento de

Geologia, modelo 8200 MK II de TECHNOSYN. Los resultados de esta técnica
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demostraron el caracter no luminiscente de practicamente la totalidad de las muestras

analizadas.

El estudio petrografico convencional permite identificar la distribucion textural y
estructural de los componentes, asi como una semicuantificacién de los mismos, facilitando
la identificacion de subestructuras y variaciones composicionales en el interior de los

noédulos.
4. RESULTADOS
4.1. Distribucidn y geometria
Los nodulos se disponen paralelos a la estratificacion existente en la roca encajante.
Se ubican en niveles bien definidos, presentando una correlacion a gran escala dentro del
afloramiento.
La laminacién alrededor de los nodulos esta deformada y envolviendo a éstos; sin
observarse laminas que los corten. Esto representa una clara evidencia de desplazamiento de

la roca encajante durante el crecimiento del nddulo.

El limite entre éstos y la roca encajante es muy nitido, ya que los materiales

encajantes presentan una laminacion bastante marcada. Ademas presentan una fina coraza

de naturaleza carbonatada enriquecida con respecto a la roca encajante, excepto en la

muestra Rn-01, aunque empobrecida respecto a los nodulos.

En los nodulos se observan fracturas con continuidad dentro de la roca que los
rodea. Estas fracturas se presentan perpendiculares a la estratificacion y parecen estar
asociadas a una etapa distensiva que afecté a estos materiales después de la finalizacion del

crecimiento de los nddulos, ya que cortan por igual a éstos y a la roca encajante.




Tanto en la roca encajante como en los nodulos se ha constatado la presencia de

restos fosiles (ammonoideos, gasteropodos, crinoides,...).
In situ, los nodulos son de color gris oscuro, presentan una forma ovoide y se
presentan paralelos al plano de estratificacion. Sus diametros mayores varian de 9,1 a 24,3

cm (tabla 1).

TABLA 1. Parametros morfoldgicos y caracteristicas de situacion de los noédulos estudiados.

Muestra Forma | Didmetro Diametro Didmetro | Material | Localizacién
mayor* intermedio* menor* encajante
Rn-01 Esferoide 243 19.7 4.5 Marga Ricla (capa
oblato- 253)
ovoide
Esferoide ; : . Marga Ricla (capa
oblato- 253)
ovoide
Ovoide : : : Marga Ricla (capa
253)
Ovoide- : Marga Ricla (capa
cacahuete 253)
Esferoide : : Lutita Ricla (capa
oblato- margosa 255)
ovoide
Ovoide A : X Lutita Ricla (capa
margosa 255)
Ovoide : ’ i Lutita Ricla (capa
margosa 255)
Ovoide 3 : ; Marga Ricla (capa
295)
Esferoide ! Marga Ricla (capa
oblato- 295)
ovoide
* Los didmetros estan establecidos en cm.

Algunos nédulos presentan formas maés esferoidales, lo que podria deberse a la

coalescencia de dos o mas nodulos carbonatados.

Su superficie viene caracterizada por la presencia de una fina coraza carbonatada

que los separa de la roca encajante.




4.2. Caracteristicas microscdpicas

Los nodulos estan constituidos por calcita microesparitica (<25 pum), con abundante

contenido en materia orgénica, restos de la roca encajante, numerosos restos fosiles y pirita.

La roca encajante englobada se caracteriza por poseer un color marrén anaranjado,
es de naturaleza margosa, y presenta berthierina, fragmentos de micas, cuarzos
monocristalinos y abundantes 6xidos de hierro. La mayor parte de estos restos de roca se
sitGan en la parte exterior de los nodulos, aunque puntualmente se observan pequefios

restos berthierinizados en el interior de algin nodulo.

El contenido fosilifero dentro de los nodulos es bastante inferior al encontrado en la
roca encajante y se compone de numerosos moldes de moluscos (gasteropodos,
bivalvos,...), braquidpodos, ammonoideos y restos de equinodermos. Los moldes estan
constituidos por un cemento de calcita esparitica, que puntualmente se encuentra
reemplazado por pirita framboidal. Los restos de equinodermos son fundamentalmente
placas de crinoide, compuestas de un monocristal de calcita con abundante contenido en

oxidos de hierro, aunque también se encuentra algun fragmento de tallo.

La pirita se presenta como pequefios agregados subesféricos (pirita framboidal). En

muchas ocasiones se presenta reemplazando a la calcita esparitica que constituye los moldes

fosiles, llegando, en algunos casos, a reemplazarla por completo.

Presentan una red de fracturas perpendiculares a la direccion de estratificacion de la
roca encajante, rellenas de calcita esparitica en mosaico drisico y, puntualmente, cemento
ferruginoso. Estas fracturas son posteriores a la formacién de los nodulos y estan
relacionadas con una etapa distensiva que actué sobre los materiales en los que se

encuentran englobados.

Por ultimo, es importante destacar que no se observa ningtn indicio de laminacion
dentro de los noédulos, lo que podria ser coherente con un emplazamiento del ndédulo

desplazando a la roca encajante.




4.3. Caracteristicas mineralogicas y geoquimicas

Las tendencias de evolucién geoquimica se pueden explicar mineralogicamente. Si
expresamos los contenidos de los elementos diagenéticos mas significativos en un diagrama
triangular en el que se representen los contenidos de Ca - Mg - FetMn (figura 2) podemos
observar que todas las muestras se sitian en el dominio de los carbonatos puros y, ademas, las
muestras de las distintas partes de los nodulos son de calcita con bajo contenido en magnesio
(menor del 4% de MgCOs en solucion solida en la calcita); asi pues, la Unica fase responsable del

desarrollo de los nodulos parece ser calcita con bajo contenido en magnesio (tipo LMC).

(FetMn)

|

Figura 2. Variabilidad
composicional de las
muestras estudiadas,
expresada en forma de
diagrama triangular,
utilizando como polos del
mismo los datos
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Los nodulos estan constituidos casi exclusivamente por calcita de textura

microesparitica, y por pirita de tipo framboidal. La tendencia general en el interior de los
nodulos es de una paulatina disminucion del contenido en calcita de centro a borde y en el

contenido de residuo insoluble hacia el exterior (figura 3).

Figura 3. Porcentaje medio de
variacion, en el interior de los nodulos,
del contenido en carbonato, calcio y
residuo insoluble.

-10
Interior Medio

Partes del nédulo




La grafica que permite visualizar de una forma rapida el proceso de crecimiento de los
nodulos es la relacion existente entre el parametro Ca+Mg y el parametro carbonato (figura
4). Estos parametros geoquimicos presentan una relacion inversa, de tal modo que se
observa como el ndédulo se va empobreciendo en carbonato, calcio y magnesio hacia la

periferia.

Por ultimo, el parametro Mn/Fe (figura 5), presenta una tendencia negativa desde el

interior de los n6dulos hasta la roca encajante.

9.0

8.0 Figura 4. Grafico de

70 B <l correlacién entre el
K parametro CatMg y el
6.0 Yy 1 parametro carbonato para
0 cada una de las muestras
3 estudiadas.

4.0

3.0

Figura 5. Variacion media del
parametro geoquimico Mn/Fe en las
diferentes zonas de los nddulos y en la
roca encajante.

Roca Coraza Exterior Intermedic Centro

5. DISCUSION Y CONCLUSIONES

La distribucion de nédulos carbonatados en las calizas y margas de la Formacion Turmiel
en la zona de Ricla esta controlada por dos factores: las aguas intergranulares atrapadas en
los sedimentos, que poseian un alto contenido en carbonato, y el producto de la

descomposicion de la materia organica por la accion bacteriana.




Este ultimo aporte se adecta a la utilizacion por parte de las bacterias del azufre
existente en el medio, ya que el azufre, que forma parte de la cisteina, adenosinas, 4acido
lipbico, varias enzimas y otros componentes organicos vitales, suministra a las bacterias
energia y oxigeno a partir de sus compuestos oxidados. La reduccion de sulfatos a sulfuros
esta estrechamente ligada con la descomposicion de la materia orgénica, que actia como
agente reductor real, produciendo CO, o HCOs'. El principal tipo de bacterias canalizadoras
del proceso son las Desulfovibrio, cuyas condiciones de desarrollo mas favorables, en
cuanto a Eh y pH, se corresponden con las del campo de la pirita (existente en las muestras

estudiadas). Las reacciones que se producen pueden asimilarse, de forma generalizada con:

2CH,0+ SO, e — 2HCO; o + H,S,,

2CH,0+ 50, 2 —> HCO; ag + HS " ag +CO.

2aq s H2 an
Los aspectos mas relevantes a tener en cuenta a la hora de establecer un modelo genético

son:

- La desviacion de las laminas alrededor de los nddulos, envolviéndolos, sin
observarse laminas que los corten. Esto representa una clara evidencia de desplazamiento de
la roca encajante durante el crecimiento de los nédulos. Esta deformacion de la laminacidn
podria haber ocurrido, en parte, con un alto grado de compactaciéon del sedimento
englobante, pero antes de que quedara completamente rigido (Sélles-Martinez, 1996); es

decir, con suficiente plasticidad para permitir su deformacion.

- El aumento sistematico en la cantidad de material detritico desde el centro al
exterior sugiere que el grado de compactacion experimentado previo a la cementacién fué

menor en el centro que en los bordes (Raiswell, 1971; Criss e al., 1988; entre otros).

- La idea de un aumento en el enterramiento durante el crecimiento de los nodulos
estd apoyada por la tendencia negativa de la relacién Mn/Fe (figura 5), la cual decrece con

el enterramiento (Curtis ef al., 1986a y b).




- Los nodulos presentan un contenido en carbonato y en calcio mas elevado en el
centro y va disminuyendo progresivamente hacia la periferia. Esta tendencia negativa hacia
el exterior de las concreciones refleja una reduccion progresiva de la porosidad (Gautier,

1982a y b; Mozley y Burns, 1993a y b; entre otros).

- Los nodulos no presentan ningun tipo de zonacion interna, como es caracteristico
en este tipo de estructuras diagenéticas. Lo unico que se observa es el aumento sistematico
de la cantidad de material detritico hacia la periferia de los nodulos, como resultado del

desplazamiento de la roca encajante durante su crecimiento.

A la vista de estas evidencias podemos concluir diciendo que el génesis de los nodulos se
adapta claramente a un modelo sincompactacional, con un crecimiento desplazante y
caracterizado por un crecimiento concéntrico convencional (Torrijo ef al., 1997; Torrijo,

1999).
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CONTROL DE LA CALIDAD DE DATOS GEOQUIMICOS.
APLICACION A LA RED DE DRENAJE DE LA CUENCA ALTA DEL RiO
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Abstract:

Analysis of variance is a rapid and simple method in the quality control of large ammounts
of geochemical data.

In this paper we explain and apply the methodology of a three-level analysis of variance
and some related statistical parameters to the quality control of geochemical data of Cd, Cu,

Pb and Zn in the fine river sediments of Huerva river (Iberian Range, Spain).
1. INTRODUCCION

El analisis de toda muestra geoldgica proporciona unos datos numéricos sobre el contenido
de determinados elementos en las muestras. La precision y exactitud de los analisis son
parametros imprescindibles a conocer para poder valorar la fiabilidad de los resultados. Solo
un buen ajuste a la realidad de los datos obtenidos analiticamente puede proporcionar claves

vélidas para la elaboracion de conclusiones.

En geoquimica ambiental el control de calidad es especialmente necesario por dos razones.

En primer lugar, el método analitico empleado es elegido y llevado a cabo en virtud de una
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relacion coste/efectividad, lo que implica generalmente el empleo de “atajos” y aproximaciones
que restan gran parte de sus refinamientos potenciales, acercandose a un limite inferior de
tolerabilidad sin arriesgar los resultados (Thomson, 1983). En segundo lugar, se requiere
disponer de unos limites de confianza en los que enmarcar los resultados, valorandolos en su

justa medida como criterio para extraer y evaluar las conclusiones pertinentes.

En este trabajo se aplicara el control de calidad a los datos analiticos de Cd, Cu, Pb y Zn en
los sedimentos fluviales finos en la cabecera de la red de drenaje del rio Huerva (Cordillera

Ibérica, Espaiia).
2.-ANALISIS DE VARIANZA

Desde'un punto de vista practico, para conocer la precision de un sistema analitico se debe
evaluar la varianza global de los datos obtenidos en el laboratorio. El analisis de varianza
ocupa un lugar destacado en los estudios geoquimicos, ya que permite diferenciar diversas
fuentes de error segun el programa de muestreo llevado a cabo. Para cubrir los objetivos de
este estudio, hemos enfocado este tipo de analisis en la distincion entre variabilidad analitica y

de muestreo (Michie, 1973; Garret, 1969, 1973, 1983; Miesch, 1976; Dijkstra, 1976).

Para pequefios conjuntos de datos, el control de la calidad de los datos se realiza mediante

duplicacion de las observaciones. En grupos de observaciones de gran tamafio, en los cuales un

replicado total de las observaciones suele ser inviable por razones presupuestarias, la

metodologia habitual consiste en extraer de forma aleatoria un subconjunto de observaciones

de la muestra a analizar y trabajar sobre el mismo.

Para disefios sencillos con duplicados de observaciones, Garret (1983) propone un analisis

de varianza jerarquico con 3 niveles, en el cual se asume un modelo del tipo

Xi=p+ai+e




siendo Xi el resultado analitico obtenido para una observacion i dada, ai representa la
variabilidad regional, | la media regional y € el conjunto de errores introducidos en el

tratamiento y recogida de observaciones.

Este modelo (sintetizado en la tabla 1) supone que la concentraciéon de un constituyente
quimico en la muestra es funciéon de la concentracion media en toda el area, mas una
desviacion determinada por el punto donde la observacion fué tomada, mas un error aleatorio

introducido por el sistema analitico. Los componentes de varianza se denotan entonces como

sz = Sa.2 L SEZ

donde S.” es la componente de varianza debida a variabilidad regional y S.* la componente

debida a diversas fuentes de error. Puesto que este ultimo término representa la imprecision

analitica, su magnitud con respecto a la variabilidad regional, Sal constituye un indicador

sencillo de la calidad de los datos.

El principal requisito de aplicabilidad de este modelo es la homogeneidad de las varianzas
(Miesch, 1976; Garret, 1983). Cuando dicha homogeneidad no se produce, se puede recurrir a
transformaciones de los datos que proporcionen distribuciones simétricas con respecto a la
media (no sesgadas), como las transformaciones logaritmicas o el empleo de factores

correctores.
3. DISENO DEL SISTEMA DE CONTROL DE CALIDAD

Para este estudio se dispone de resultados analiticos de Cu, Cd, Zn y Pb en los sedimentos
fluviales finos del cauce alto del rio Huerva (Cordillera Ibérica, Espaiia). La muestra estadistica
esta constituida por 134 observaciones (o sucesos), consistente cada uno de ellos en unos 2 Kg

de sedimento hiimedo por cada punto de muestreo.




Tabla 1: Andlisis de varianza jerdrquico en tres niveles para disefios sencillos de replicados (tomado de

Garret, 1983).

GRADOS
FUENTE SUMA DE CUADRADOS DE
LIBERTAD
Total SS;=¥X*-T 2N-1

Yy

Regional $S, =X (EXp)¥2-T N-1
icj
Analitica y de S, =¥X;i* - T (ZXy)/ 2

muestreo 5 Hhd

T’ = (Xij)2/ 2N

N = n°de observaciones replicadas

Xij son los resultados de andlisis individuales (o sus valores
transformados).

i varia entre 1 y N, j varia entre 1y 2 (n° de andlisis realizados).

SUMADE GRADOSDE VARIANZA  COMPONENTE DE
CUADRADOS LIBERTAD VARIANZA
SS, N-1 MS, =SSi/(N-1) S, 2= (MS1-MS,)/2
SS, N MS; =SS/ N S=MS,

En el caso de Cu, Pb y Zn los mejores niveles de ajuste a la normalidad en el test Chi® se
producen para las poblaciones resultantes de la transformacion logaritmica de los resultados
analiticos. Para el Cd, se obtiene un buen nivel de ajuste para la poblaciéon de resultados

analiticos directos, por lo que, para este elemento, no se empleara ninguna transformacion de

los datos (ver tabla 2, donde ademas se muestran los parametros estadisticos basicos para cada

elemento).




Los resultados analiticos para ambos subconjuntos y para las muestras correspondientes de

la poblacion original, una vez convertidos a ppm de muestra solida, aparecen detallados en la
tabla 3.

Tabla 3: Resultados anallticos (en ppm de muestra sélida) para la poblacion original y los subconjuntos de

control empleados en el andlisis de varianza.
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4, PARAMETROS INDICATIVOS DE LA CALIDAD DE LOS DATOS

Para estimar la calidad de los datos se han calculado los siguientes parametros, a partir de

las poblaciones con mejores ajustes a la normalidad o lognormalidad:

- Componentes de varianza, segln se expone en la tabla 1.

- Relaciones Fisher entre la varianza de la muestra y la del subconjunto A de replicados

para cada elemento analizado. La relacion F de Fisher constituye un buen indicador de la

representatividad del subconjunto de replicados, mayor cuanto mas proximo a 1 es el cociente

entre varianzas.

- Coeficiente de variacion (C = S / X) en el que S es la desviacion estandar del
subconjunto B de replicados y X su media aritmética, como indicador de la precision analitica,

que es mayor cuanto mas proximo a cero sea el valor de C.




- Relacién “v” de Miesch (1976), que permite evaluar la veracidad de cualquier tipo de
representacion grafica derivada de un conjunto de datos numéricos. Dicha relacion viene dada

por

v=_S8.4S.2

Segiin Miesch (1976), dicha relacion debe superar la unidad para que las relaciones
indiquen, al menos de forma aproximada, el modelo de tendencias regionales y considera que
valores superiores a 6 conducen a mapas muy satisfactorios, con alta resolucion de

variabilidades regionales.
5. RESULTADOS

Los resultados obtenidos para Cu, Cd, Zn'y Pb (tablas 4 y 5) son bastante satisfactorios; el
error total introducido en los datos se encuentra en torno al 15% (algo mayor para el Pb) con
coeficientes de variacion asociados siempre inferiores al 11%, que indican una buena precision
analitica. Las altas relaciones Fisher halladas para Cu y Pb son consecuencia de una escasa
representatividad de las poblaciones de duplicados escogidas, cuyos contenidos para estos
elementos son, en general, sensiblemente mayores que en el conjunto original, hecho que

introduce un sesgo en los subconjuntos de control.

Tabla 4: Relaciones estadisticas para la evaluacién de la calidad de los datos log(Cu), Cd, log(Zn) y
log(Pb).

Elemento Cu Cd Zn Pb
v de Miesch 5,359 | 5,483 | 4,474 | 3,768
Relacién Fisher 24 1,16 | 1,314 | 1,68
Coef.de variacion 0,022 | 0,108 | 0,001 | 0,026

Por otra parte, una baja representatividad causada por contenidos mas altos en las muestras
de control para estos elementos no invalida los resultados obtenidos en el analisis de error.

Miesch (1976) sefiala que el error tiende a ser aritméticamente proporcional a la cantidad de

constituyente presente en las muestras, cuando éstas se analizan mediante métodos




espectrométricos. No es descabellado suponer que un subconjunto de control no sesgado y con
contenidos menores pero mas representativos arrojaria en todo caso menores porcentajes de

error que los obtenidos.

En cuanto a la veracidad de las representaciones graficas que se realicen para Cu, Zn, Cd, y
Pb, los coeficientes v de Miesch son lo suficientemente altos como para asegurar una buena
resolucion en los mapas de variabilidad regional que se deriven de los resultados analiticos para

estos elementos.

6. CONCLUSIONES

1- El analisis de varianza constituye una herramienta rapida y sencilla para el control de
calidad de datos geoquimicos en amplias tandas de muestras, en las que el empleo de una
duplicacion total de las muestras suele ser inviable, bien por razones presupuestarias, bien por

la propia naturaleza de las muestras.

2- El empleo de un analisis de varianza de tipo jerarquico presenta la ventaja adicional de
permitir localizar las fuentes de error o, al menos, identificar la etapa del proceso de
preparacion y anélisis de las muestras en la que los errores se dan en mayor medida. Esta
autoobservacion critica resulta imprescindible en campafias geoquimicas por tres razones

fundamentales:

- La necesidad de disponer de unos rangos de fiabilidad que permitan evaluar los datos
geoquimicos en su justa medida antes de realizar cualquier otra operacion estadistica que
pueda enmascarar la presencia de errores sistematicos y, por supuesto, antes de la

interpretacion de los resultados.

- Los procedimientos de muestreo y preparacién de las muestras de campo deben ser

diferentes en funcion de la naturaleza del medio estudiado, los materiales empleados para el

estudio y el tipo de elementos analizados, por lo que cualquier disefio metodologico requiere

una puesta a punto para optimizar los resultados.




Tabla 5: Resultados del andlisis de varianza para los datos log(Cu), log(Cd), log(Zn) y log(Pb).

log(Cu) VARIANZA grados libertad | compon.varianza %
REGIONAL 0,024519494 12 0,011213517 84,274284
ANAL+MUESTREO 0,00209246 13 0,00209246 16,726716

log(Cu) VARIANZA grados libertad | %v.anal.+muestreo %var. total
ANALITICA 0,000467439 13 22,3392182 3,513002093
MUESTREO(deducida) 0,001625021 13 77,6607818 12,21271427

ERROR TOTAL 15,726716

log(Cd) VARIANZA |grados libertad | compon.varianza %
REGIONAL 0,681572137 12 0,312305386 84,57448668
ANAL+MUESTREO | 0,056961366 13 0,056961366 16,42653332

log(Cd) VARIANZA | grados libertad | %v.anal.+muestreo %var. total
ANALITICA 0,10281846 13 69,15626491 10,66772269
MUESTREO(deducida) | 0,045857034 13 30,84373509 4,757810635
ERROR TOTAL 15,42553332

log(Zn) VARIANZA grados libertad | compon.varianza %
REGIONAL 0,083469881 12 0,037539861 81,732735
ANAL+MUESTREO 0,008390159 13 0,008390159 18,267266

log(Zn) VARIANZA grados libertad | %v.anal.+muestreo %var. total
ANALITICA 0,001326761 13 15,81330099 2,888657673
MUESTREO(deducida) | 0,007063398 13 84,18669901 15,37860781

ERROR TOTAL 18,267265

log(Pb) VARIANZA grados libertad | compon.varianza %
REGIONAL 0,010650707 12 0,004701407 79,024539
ANAL+MUESTREO 0,001247893 13 0,001247893 20,976461

log(Pb) VARIANZA grados libertad | %v.anal.+muestreo %var. total
ANALITICA 0,000887009 13 71,08050431 14,9094632
MUESTREO(deducida) 0,000360884 13 28,91949569 6,065997434

ERROR TOTAL 20,975481




- El analisis de varianza jerarquico proporciona datos sobre la magnitud de las distintas
componentes de varianza, imprescindibles para el célculo de otros indices y parametros
indicativos de la calidad de los resultados. Como se ha mostrado en este trabajo, en la mayoria
de los casos el calculo de uUnicamente tres de estos parametros (coeficiente de variacion,
relacion Fisher y v de Miesch) es suficiente para caracterizar amplias tandas de datos

geoquimicos
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Abstract:

This study presents a basic revision of two of the most common methods of selection of
background and threshold values in exploration geochemistry; by means of “two standard
deviation method” and by using logaritmic-probability graphs.

The second of these methods has been succesfully applied to the determination of
background and threshold for the populations of Cd, Cu, Pb and Zn in the fine river

sediments of Huerva river (Iberian Range, Spain).
1. INTRODUCCION

Una cuestion clave en la interpretacion de datos geoquimicos es la eleccion de umbrales
para discernir entre fondo geoquimico, entendido como el contenido medio de un elemento en
un material geoldgico, y anomalia geoquimica positiva, como un valor anormalmente alto para

ese elemento en ese contexto regional.

La principal dificultad que se plantea en la eleccion de este tipo de umbrales es la notable

variabilidad de fondos geoquimicos existente entre areas incluso petrologicamente proximas,
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por lo que, en términos estadisticos, es méas adecuado establecer un rango de fluctuacion para

los valores de fondo y establecer como umbral su limite superior.

En este estudio se resefiaran dos de los métodos mas usuales para el establecimiento de los
valores de fondo y umbral de anomalia en campafias geoquimicas y se aplicara uno de ellos al
estudio de un area concreta.

2. METODOS DE SELECCION DE VALORES DE FONDO Y UMBRAL

2.1. Método del umbral 2c

Una forma habitual de proceder en estudios geoquimicos es tomar como umbral de
anomalia geoquimica positiva el contenido medio en un elemento dado mas dos desviaciones
estandar. Este método, rapido y sencillo, tiene la ventaja de que su unico requisito de
aplicabilidad es la existencia de poblaciones de datos distribuidas normalmente o que, al
menos, no presenten sesgo. No obstante, como ya apunté Sinclair (1973), la eleccion de este
umbral de anomalia es totalmente arbitraria, ya que no existe ninguna razén natural que indique
que el conjunto de valores anomalos de una muestra geoquimica cualquiera represente el 2,3%

de los valores altos.

2.2. Graficos logaritmico-probabilisticos

Desde otro enfoque, la eleccion de umbrales puede llevarse a cabo con ayuda de graficos
logaritmico-probabilisticos (Tennant y White, 1959; Sinclair, 1973; Parslow, 1974). Este
método se basa en la premisa de que las distribuciones sesgadas representan el solapamiento de
dos o mas poblaciones normales, que pueden ser discriminadas en funcion de algin tipo de
medida de dispersion o centralizacién que las describa. La construccién del grafico sigue los

siguientes pasos:

1°- Transformacion logaritmica de los datos y representacién frente a una escala

probabilistica de frecuencia acumulada. En estas condiciones toda poblacién (log)normal

genera una recta sobre la que se puede leer directamente en el grafico la media geométrica




(valor en el percentil 50). Las desviaciones de una linea recta indican la mezcla de dos o mas

poblaciones en funcion de los puntos de inflexion observados.

2°- Examen de la distribucion de los datos: En este punto se puede considerar a las regiones
rectas del grafico como poblaciones (log)normales independientes, mientras que las regiones
curvas representan las zonas de mezcla entre poblaciones solapadas o, en otras palabras, el

rango de fluctuacion del umbral que separa ambas poblaciones.

Este método unicamente es fiable para poblaciones constituidas por mas de 100
observaciones. En los casos en que estas condiciones no se cumplen resulta preferible el
empleo de otro tipo de métodos de selleccion de anomalias, como el método del umbral 2o

explicado anteriormente.

3. APLICACION AL ESTUDIO DE LA CUENCA ALTA DEL RIO HUERVA

Para este trabajo se dispone de resultados analiticos de Cu, Cd, Pb y Zn procedentes de la
extraccion con HNOs en 134 muestras de sedimentos fluviales finos de la red de drenaje del rio

Huerva (Cordillera Ibérica, Espaiia).

En este caso se dispone de un elevado nimero de muestras (mayor que 100), por lo cual,
como ya se explicd anteriormente, es preferible realizar la seleccion de los valores de fondo y

umbral de anomalia mediante la interpretacion de graficos logaritmico-probabilisticos.

Las representaciones realizadas para cada elemento estudiado, asi como las interpretaciones

derivadas de las mismas aparecen detallados a continuacion:

- Para el cadmio (figura 1), el grado de solapamiento entre poblaciones es tan elevado que

la representacion de Sinclair para este elemento forma una curva précticamente continua entre

los valores extremos, por lo que resulta muy dificil diferenciar puntos de inflexion. Unicamente

se diferencia un tramo recto (valores superiores a 3.2 ppm), en lo que interpretamos como

poblacién posiblemente anémala.




Hemos situado dos puntos de inflexién, que marcan los limites entre tres poblaciones, a las
que llamaremos A, B y C, cuyos limites, porcentajes del total y denominaciones aparecen
expresados en la tabla 1. La diferenciacion y limites entre las poblaciones A y B no es clara,
por lo que el valor escogido como umbral entre ambas no debe ser tomado como un valor

estricto.

Tabla 1: Definicién y nomenclatura de las poblaciones diferenciadas para el cadmio.

POBLACION LIMITES %

FONDO REGIONAL < 1,8 ppm 7,46
MEZCLA A+C entre 1,8y 3,2 ppm | 73,14

POSIBLE ANOMALIA > 3,2 ppm 17,16
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Figura 1: Representacién de Sinclair para la distribucién de valores de cadmio. Los puntos de inflexion,

correspondientes a los limites entre poblaciones distintas aparecen marcados con flechas.

- Para el cobre y el zinc, las representaciones de Sinclair forman lineas muy complejas, que
indican la existencia de un alto grado de mezcla entre poblaciones, posiblemente como

consecuencia de un gran namero de fuentes de aporte diferenciadas.




Para el cobre, las caracteristicas de la curva (figura 2) nos obligan a diferenciar al menos
cuatro poblaciones complejas (tabla 2), constituidas a su vez por varias subpoblaciones
indiferenciables a esta escala, y muy solapadas entre si. El umbral de posible anomalia positiva

queda situado en 16 ppm.

En el caso del zinc (figura 3) unicamente hemos diferenciado tres poblaciones (tabla 3) que,
al igual que ocurria con el cobre, estan formadas por subpoblaciones indiferenciableé, con alto
grado de solapamiento. El limite inferior de la poblacion C, que marca el umbral de posible

anomalia, se sitiia en 59 ppm.

Tabla 2: Definicion y nomenclatura de las poblaciones diferenciadas para el cobre.

POBLACION LIMITES %
A FONDO REGIONAL < 8 ppm 43,93
A’ ALTO FONDO REGIONAL| entre 8y 12 ppm [ 47,02
B
C

MEZCLA A'+C entre 12y 16 ppm | 5,22
POSIBLE ANOMALIA >16 ppm 3,73
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Figura 2: Representacién de Sinclair para la distribucién de valores de cobre. Los puntos de inflexion,

correspondientes a los limites entre poblaciones distintas aparecen marcados con flechas.




Tabla 3: Definicién y nomenclatura de las poblaciones diferenciadas para el zinc.

POBLACION LIMITES %

FONDO REGIONAL < 20 ppm
MEZCLA A+C entre 20 y 59 ppm

POSIBLE ANOMALIA > 59 ppm
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Figura 3: Representacion de Sinclair para la distribucion de valores de zinc. Los puntos de inflexion,

correspondientes a los limites entre poblaciones distintas aparecen marcados con flechas.

- Para el plomo (figura 4), al contrario que para el resto de los elementos tratados, la
representacion obtenida muestra dos truncaduras bastante netas, que permiten situar con
bastante precision los limites entre tres poblaciones bien diferenciadas; poblacién A de fondo

regional, poblacion C de muestras posiblemente anémalas y poblacién B de mezcla o

290




solapamiento entre las dos anteriores. El umbral de posible anomalia positiva (ver tabla 4),

marcado por el limite inferior de la poblacion C, queda situado en 29 ppm.

Tabla 4: Definicién y nomenclatura de las poblaciones diferenciadas para el plomo.

POBLACION LIMITES %

FONDO REGIONAL < 14 ppm
MEZCLA A+C entre 14 y 29 ppm

POSIBLE ANOMALIA > 29 ppm
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Figura 4: Representacién de Sinclair para la distribucion de valores de plomo. Los puntos de inflexién,

correspondientes a los limites entre poblaciones distintas aparecen marcados con flechas.




3. CONCLUSIONES

El establecimiento de los valores de fondo y umbral de anomalia en campaiias geoquimicas

se puede llevar a cabo, al menos, por dos métodos sencillos:

- Método de umbral 2o, cuando se dispone de pequeiias tandas de datos distribuido segin

pautas (log)normales o ligeramente sesgadas.

- Gréficos logaritmico-probabilisticos, preferibles al método anterior siempre que se
disponga de poblaciones de mas de 100 datos, ya que, con este método, se obtienen valores de
fondo y umbral de anomalia geoquimica derivados de la distribucion real de los datos y, por

tanto, independientes del observador.

- El empleo de graficos logaritmico-probabilisticos para el estudio de las poblaciones de
datos de Cd, Cu, Pb y Zn en los sedimentos fluviales de la red de drenaje del rio Huerva arroja
excelentes resultados, no solo en la diferenciacion entre valores de fondo regional y valores

an6malos, sino que también permite una aproximacion inicial a la caracterizacion de las

distribuciones de datos, su complejidad, el grado de solapamiento entre poblaciones distintas y

el origen mono o poligenético de los diferentes metales en los materiales estudiados.
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Notas necrolodgicas

El dia 28 de agosto de 1998 fallecia en Zaragoza nuestro querido
compafiero D. Antonio Plans Sanz de Bremon a los 76 afios de edad. D.
Antonio habfa nacido en Madrid el 12 de enero de 1922. Su padre D.
Antonio Plans y Freyre, catedritico de Mecdnica, que fue de esta
Universidad, era uno de los Académicos fundadores de esta ‘Academia en
el afio 1916.

En esta breve nota necrolégica procuraremos exponer dos facetas
que adornaron al Dr. Plans a lo largo de su vida: la humana y la
cientifica.

La humana puede ser apreciada en la lectura de su discurso de
ingreso en esta Academia el afio 1969, donde hace mencién a la
memoria de su padre, afirmando lo mucho que a él le debe por su
ejemplo, sobre todo en lo que concierne a laboriosidad y servicio por los
demds, y que recuerda con emocién en aquella sesién de ingreso a sus
47 afios.

Digno ejemplo de amor y respeto a su progenitor, basado en sus
profundas creencias cristianas, que le acompaifiaron a lo largo de toda su
vida, determinando un lema de conducta, que podemos resumir con las
siguientes palabras: humildad, sencillez y bondad.

Como profesor era un ejemplo de competencia y humildad,
suprimiendo distancias, aunque manteniendo el debido respeto y
consideracién mutuos. Tal fue su conducta moral, procurando pasar
discretamente, sin molestar a nadie en lo posible, y que podemos
recordar en una conocida frase de San Agustin: La fe no es virtud de los
soberbios, sino de los humildes.

Con respecto a su quehacer cientifico, procuraremos exponer
brevemente su evolucién:

Cuando ingresé en la Facultad de Ciencias de Zaragoza, en el afio
1957, como catedrdtico de Geometria Analitica y Topologia, la rama de
Topologia era relativamente nueva, por lo que se dedicé intensamente a
su desarrollo, manteniendo numerosos contactos con las Universidades
de Heidelberg y Maguncia en Alemania.

Mids tarde orient6 sus investigaciones al campo de los espacios de
Hilberg, donde la autoridad alcanzada por el Dr. Plans en esta
especialidad, quedé no solamente confirmada por sus numerosos
trabajos, sino por las muchas invitaciones recibidas desde Alemania para
exponer los resultados de sus investigaciones, que tuvieron gran
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difusién en otros paises europeos. A este respecto recordemos que su
discurso de ingreso en nuestra Academia se titulaba: El espacio de
Hilberg.

A partir del afio 1980 orienté sus investigaciones hacia el campo de
los espacios de Banach, en los cuales trabajaba al producirse su
fallecimiento.

Son incontables los trabajos publicados en revistas nacionales y
extranjeras, asi como el nimero de tesis doctorales dirigidas, de cuyos
discipulos han surgido Catedrédticos y Profesores Titulares de
Universidad.

Deseamos que con esta exposicién recordatoria, hayamos podido
plasmar sus virtudes humanas y su dedicacién cientifica, que cumplian,
repetimos, las directrices santificantes, rectoras en su vida de
apostolado. Descanse en la paz del Sefior nuestro bien querido
compaifero.

El dia 14 de diciembre de 1998, fallecia en Zaragoza nuestro querido
compaiiero D. Justiniano Casas Pelaez, a los 83 afios de edad.

D. Justiniano habia nacido en el pueblo de Granucillo de Vidriales,

de la provincia de Zamora, el dia 25 de febrero de 1915.

En principio fue Maestro Nacional, ejerciendo en diversos pueblos
de Palencia, al tiempo que simultaneaba sus estudios de Licenciatura en
Ciencias Exactas, que terminé el afio 1946. M4és tarde se incorporé a la
Facultad de Ciencias de Madrid como Profesor Ayudante, doctorandose
posteriormente en la Seccién de Fisicas el afio 1951.

Sus primeras investigaciones se efectuaron en el Consejo Superior
de Investigaciones Cientificas, como Investigador del Instituto de Optica
Daza Valdes, donde se formé en esta rama, por lo que mds tarde gana en
1954 la plaza de Catedrdtico de Optica, vacante en la Facultad de
Ciencias de Zaragoza.

Su incorporacién di6 como resultado, un resurgir de la Seccién de
Fisicas de nuestra Universidad, que por diversas causas se encontraba
en un estado inoperante.

Su gran vitalidad determiné la construccién de un Espectrémetro de
Masas y la creacién de un grupo de Separacién de isGtopos, asi como el
gran impulso que dié a los estudios de O6ptica, con la direccién de




numerosas tesis doctorales y la publicacién de méds de un centenar de
trabajos cientificos.

Ingres6 en la Academia de Ciencias el 6 de febrero de 1966, siendo
su discurso de ingreso: Formacién y valoracién de la imagen optica, que
fue contestado por el Excmo. Sr. D. Juan Cabrera y Felipe.

Era de caridcter abierto, en el que se mezclaba la tierra zamorana de
su nacimiento, a la que acudia todos los afios, con el cardcter que le
inculcé Aragén durante su dilatada estancia en Zaragoza. Esta afabilidad
no estaba refiida con la energia que mostré a lo largo de los afios, por lo
que fue elegido Decano y Rector de nuestra Universidad entre los afios
1968-72. Durante su mandato tuvo que afrontar con energia los
problemas escolares que por entonces reinaban en las universidades
espafiolas. Por su gestién logré de Madrid que se construyera el edificio
Interfacultades, el del Rectorado y el del Colegio Mayor Santa Isabel,
consiguiendo el dinero necesario para la construccién de la Facultad de
Medicina y la del nuevo Hospital clinico.

Mids tarde fue nombrado Presidente del Consejo Superior de
Investigaciones Cientificas y, finalmente, desde los afios de 1975 a i984
ostenté la Presidencia de nuestra Academia, logrando, con su
intervencién y sus conocimientos en Madrid, una potenciacién econémica
de esta Institucién.

Tras su jubilacién fue nombrado Profesor Emérito, desarrollando
una gran actividad, en la redaccién de su Tratado de Optica, direccién de
Tesis doctorales, conferencias, etc.

Son muchos los nombramientos y las distinciones recibidas, pero
quizds la més emotiva, recibida dias antes de su fallecimiento, en un
impresionante acto claustral, en el que aun tuvo fuerzas para leer un
discurso de agradecimiento, fue la concesién de la Medalla de Oro de la
Universidad de Zaragoza.

En este breve resumen hemos querido exponer la fuerte vitalidad
humana y cientifica de D. Justiniano Casas, al que deseamos descanse en
la paz del Seifior.
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