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Abstract. A geometrical description of the virial theorem (VT) of statistical mechanics is pre-
sented using the symplectic formalism. The character of the Clausius virial function is determined
for second-order differential equations of the Liénard type. The explicit dependence of the virial
function on the Jacobi last multiplier is illustrated. The latter displays a dual role, namely, as a
position-dependent mass term and as an appropriate measure in the geometrical context.
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1. Introduction

The virial theorem (VT) is an important theorem of classical mechanics which has been
successfully applied in the last century to a number of relevant physics problems, mainly
in astrophysics, cosmology, molecular physics, quantum mechanics and in statistical
mechanics. In mechanics, it provides a general equation relating the average over time
of the total kinetic energy, 〈〈T 〉〉, of a stable system consisting of N particles, bound by
potential forces, with that of the total potential energy, 〈〈VTOT〉〉, where angle brackets
represent the average over time of the enclosed quantity. The word virial derives from
vis, the latin word for force or energy and was introduced by Rudolf Clausius in 1870
[1]. The scalar virial theorem says that kinetic and potential energies must be in balance,
whereas the tensor virial theorem [2,3] says that the kinetic and potential energies must be
in balance in each separate direction. The scalar theorem is useful for estimating global
average property while the tensor virial theorem is useful for relating the shapes of the
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system. Recently, Li et al [4] considered the hypervirial theorem (HVT) and obtained the
hypervirial relations. The HVT and Hellmann–Feynman theorem are shown to provide a
powerful method of generating perturbation expansions.

In this paper we consider geometrical mechanics approach and necessity of geometric
treatment of VT [5,6] can be argued as follows. The standard VT is based on the transfor-
mation properties of kinetic and potential energies under dilations, and therefore is only
valid for systems with R

n as configuration space. In order to generalize the VT for other
systems, the tools of geometric mechanics are used.

1.1 Standard approach of virial theorem

Clausius introduced the virial function for a one-particle system

G(x, ẋ) = mx · ẋ = d

dt

(
1

2
mx · x

)

for studying the motion of a particle of mass m under the action of a force F . The time
evolution of G is given by

dG

dt
= mẋ · ẋ + x · F,

where we use Newton’s second law, F = mẍ.
On integrating this expression between t = 0 and t = T and dividing by the total time

interval T we find

1

T

[
G(T ) − G(0)

] = 2

T

∫ T

0
K(ẋ) dt + 1

T

∫ T

0
x · F dt

= 〈〈2K(ẋ)〉〉 + 〈〈x · F〉〉 ,

where K(ẋ) = 1
2m(ẋ · ẋ) and 〈〈A〉〉 is the time average. By time average we mean

〈〈F 〉〉 = lim T →∞
1

T

∫ T

0
F(x(t)) dt .

If either the motion is periodic of period T or the possible values of the function G are
bounded, then we take the limit T → ∞:

0 = 〈〈2K(ẋ)〉〉 + 〈〈x · F〉〉 .

For F = −∇V , this becomes

0 = 〈〈2K(ẋ)〉〉 − 〈〈x · ∇V 〉〉 .

If the potential V is homogeneous of degree k, Euler’s theorem of homogeneous functions
implies that x · ∇V = kV , thus we obtain by

〈〈2K(ẋ)〉〉 = k 〈〈V (x)〉〉 .

If E is the total energy, then

〈〈K(ẋ)〉〉 = kE

k + 2
, 〈〈V (x)〉〉 = 2E

k + 2
.

For harmonic oscillator:

〈〈K(ẋ)〉〉 = 〈〈V (x)〉〉 = 1

2
E

and for Kepler equation

〈〈K(ẋ)〉〉 = −E, 〈〈V (x)〉〉 = 2E.
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2. Symplectic form, Hamiltonian systems and virial theorem

The pair (M,ω) of a smooth manifold M with a symplectic form ω is called a symplectic
manifold. A necessary condition for the existence of a symplectic form ω on M is that
M should have even dimension 2n, so for all practical purposes one can imagine M as a
generalized phase space. Throughout this paper we assume that M is a smooth manifold.
A Hamiltonian system is a triple (M,ω,H), where (M,ω) is a symplectic manifold and
H ∈ C∞(M,R) is a function, called the Hamiltonian function.

Starting with a Hamiltonian function H , one produces a vector field XH as follows:

H → XH : ω(XH , ·) = iXH
ω = dH,

which defines a flow φt on M and the Hamiltonian H is a conserved quantity under this
flow. Hamiltonian equations are dynamical systems for the vector field XH . The Poisson
bracket for any two Hamiltonian functions F and H in M is given by

{F,H } = ω(XF ,XH ) = XH F = −XF H.

The flow φt commutes with XH for any w ∈ C∞(M)

XH φ∗
t w = φ∗

t XH w = d

ds

[
φ∗

s (φ
∗
t w)

] ∣∣∣∣
s=0

= d

du

[
φ∗

uw
]∣∣∣∣

u=t

.

If we choose f as an observable function f = G

d

dt
(φ∗

t G) = φ∗
t (XH G) = φ∗

t {G,H },

by integrating both sides from 0 to T we obtain

1

T
[G ◦ φT − G] = 1

T

∫ T

0
{G,H } ◦ φt dt .

If the function remains bounded in its time evolution, taking the limit when T goes to
infinity

〈〈{G,H }〉〉 = 0.

As an instance, when M = T ∗
R

3 and G = x · p we obtain

XG =
3∑

i=1

(
xi ∂

∂xi
− pi

∂

∂pi

)
.

If the Hamiltonian is given by

H(x, p) = 1

2m
p · p + V (x) = K(p) + V (x),

then

XGH = −2K + x · ∇V.
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Thus, taking the limit of T going to infinity we obtain

〈〈2K〉〉 = 〈〈x · ∇V 〉〉 .

2.1 Virial theorem for Henon–Heiles system

The Hamiltonian of the Henon–Heiles system is given by

H = 1

2
(p2

x + p2
y + ax2 + by2) + dx2y − 1

3
ey3.

Three known integrable cases were found by the Painlevé method in [7], Fordy
[8] employed the technique connecting the Hamiltonian formalisms of stationary and
nonstationary flows to prove that these were the only three integrable cases of the
system

• d/e = −1, a = b.
• d/e = −1/6, a, b arbitrary.
• d/e = −1/16, b = 16a arbitrary.

The bi-Hamiltonian properties have been exhibited only for the first case where the
additional first integral is given by

H2 =
(

xy + x2y + 1

3
y3 + pxpy

)

and other two cases do not have a second first integral.
The virial function

G = xpx + ypy

yields

Ġ = px

∂H

∂px

+ py

∂H

∂py

− x
∂H

∂x
− y

∂H

∂y
= 2K − x · ∇H.

Thus, we obtain classical VT

2 〈〈K〉〉 = 〈〈x · ∇H 〉〉 .

From energy conservation 〈〈K〉〉 + 〈〈V 〉〉 = E we obtain

2E =
〈〈

2ax2 + 2by2 + 5dx2y − 5

3
ey3

〉〉
= 〈〈P(x, y)〉〉 .

The asymptotic invariant polynomial P(x, y) converges rapidly to 2E in both regular and
chaotic cases; the only apparent difference between the regular and chaotic cases is the
somewhat larger oscillations in the latter case. The convergence of the virial integrals for
chaotic orbits is complicated by sticky regions, where an orbit can spend long intervals
exploring islands [9].
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3. Conformal Hamiltonian systems and virial theorem

Let (M,ω) be a symplectic manifold, where M is a differentiable manifold endowed
with a symplectic form ω. Consider a diffeomorphism φ such that φ∗(ω) = kω, where
0 �= k ∈ R are called non-strictly canonical transformations. Let the vector field � be the
generator of a one-parameter group of non-strictly canonical transformations φ∗

ε (ω) =
k(ε)ω. Then, there exists a real number a �= 0 such that Lie derivative of the dynamical
vector field � satisfies L�ω = aω, with k and a related by k(ε) = exp(aε). Note
that, in [5] a dynamics given by a Hamiltonian vector field and a non-strictly canonical
infinitesimal symmetry were considered. In this study, we are considering the dynamics
given by a non-Hamiltonian vector field and also a Hamiltonian vector field X. Procedures
are different but the result is almost the same.

If π : E → Q is a vector bundle, the vector field generating dilation along the fibres is
well defined: v(∂/∂v) if E = T Q or p(∂/∂p) if E = T ∗Q. When E = T ∗

R, the vector
field

XG = −1

2

n∑
i=1

(
qi

∂

∂qi

+ pi

∂

∂pi

)

generates dilations in identifying T ∗
R � R ⊕ R. One must note that XG is not a

Hamiltonian operator. Its action on the symplectic form ω = ∑n
i=1 dqi ∧ dpi gives

LXG
ω = −ω.

However, if � satisfies L�ω = aω, then aXG + � is a locally-Hamiltonian vector field
because

LaXG+�(ω) = 0.

Let � = Xf − aXG, then the action of X on the Hamiltonian is given by

�(H) = {H,f } − aXG(H).

If we assume that H = K(p) + V (q), we find

XG(H) = −1

2

(
2K(p) +

n∑
i=1

qi ∂H

∂qi

)
.

In this case, the virial expression is given by

2a 〈〈K〉〉 = 〈〈�(H)〉〉 .

3.1 Application to Gierer–Meinhardt system

The dynamical vector field of the autocatalytic Gierer–Meinhardt (GM) system [10] satis-
fies L�ω = (c +h)ω. Hence the flow � is made of non-strictly canonical transformations
with valence e(c+h)t . When we impose c + h = 0, � becomes symplectic or Hamilto-
nian vector field. When restricted to the symplectic case, i.e., c = −h, the associated
Hamiltonian is given by

H = a log(b + y) − D
x2

2
− cxy
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with standard Poisson brackets {x, y} = 1 and equations of motion are given by

ẋ = {x,H } = ∂H

∂y
= a

b + y
− cx,

ẏ = {y,H } = −∂H

∂x
= Dx + cy.

When the manifold is R
2 with coordinates (x, y) and ω = dx ∧ dy, the vector fields

whose flow is made of non-strictly canonical transformations are

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
+ κy,

where H: R2 → R is the Hamiltonian. The flow has the property φ∗ω = eκtω, and so the
symplectic inner product of any two tangent vectors contracts exponentially if κ < 0. If ω

is a locally symplectic structure (LCS) then the two LCS ω and ω′ = eκtω are conformally
equivalent [11].

Thus, the general activator–inhibitor system can be expressed as

ẋ = ∂H

∂y
, ẏ = −∂H

∂x
− (c + h)y.

Given H ∈ C∞(M), the vector field � (or Xc
H – usual notation) satisfies

iXc
H
ω = dH − (c + h)θ, θ = y dx.

The conformal vector field is given by XH + (c + h)Z, where Z is defined by iZω = −θ .
So, it turns out that Z = y∂y .

4. Virial theorem and the Liénard II system

Given a second-order ordinary differential equation (ODE)

ẍ = F(x, ẋ), (1)

we define the Jacobi last multiplier (JLM) M as a solution of the following ODE:

d log M

dt
+ ∂F(x, ẋ)

∂ẋ
= 0. (2)

In fact, as the dynamical vector field for (1) is

� = ẋ
∂

∂x
+ F ∂

∂ẋ

then div � = ∂F/∂ẋ and (2) is the JLM equation (e.g., see [12,13]).
Assuming (1) to be derivable from the Euler–Lagrange equation of a Lagrangian L,

one can show that the JLM is related to the Lagrangian by the following equation:

M = ∂2L

∂ẋ2
. (3)

Moreover, in each JLM, M defines in an essentially unique way (i.e., up to addition of a
gauge term) a Lagrangian such that (3) holds.
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In case of the Liénard II equation

ẍ + f (x)ẋ2 + g(x) = 0, (4)

where F = −f (x)v2 − g(x), and one can show that the solution of the JLM is given by

M(x) = e2F(x), F (x) :=
∫ x

f (s)ds. (5)

Furthermore, it follows from (3) that its Lagrangian is

L(x, ẋ) = 1

2
e2F(x)ẋ2 − V (x), (6)

where the potential term

V (x) =
∫ x

e2F(s)g(s)ds. (7)

The image under the Legendre transformation yields the conjugate momentum

p := ∂L

∂ẋ
= ẋe2F(x) implies ẋ = pe−2F(x), (8)

so that the final expression for the Hamiltonian is

H = p2

2M(x)
+

∫ x

M(s)g(s)ds, (9)

where it is explicitly denoted in terms of the last multiplier M(x) to highlight its role as a
position-dependent mass term [14].

4.1 Another virial theorem

Given a differentiable function L on T Q we can construct a semibasic one-form θL ∈
∧1(T Q) and an exact two-form ωL ∈ ∧2(T Q), given by

θL = S∗(dL), ωL = −dθL,

where S is the vertical endomorphism. The Lagrangian L is said to be regular, then ωL is
symplectic. The energy function is

EL = 
(L) − L, 
 = Liouville vector field.

The dynamics is given by the vector field XL ∈ X(T Q) such that i(XL)ωL = dEL.
If a vector field X ∈ X(T Q) is the complete lift of a vector field Y ∈ X(Q), then

LXθL = θX(L), X(EL) = EX(L).

Let Y be the vector field in R given by

Y = ξ(x)
∂

∂x
,

whose complete lift is given by

X(x, ẋ) = Y c(x, ẋ) = ξ(x)∂x + ξx ẋ∂ẋ .
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When the vector field Y is such that

X(L) = Y c(L) = aL, a ∈ R (10)

then

LXωL = aωL and LXEL = aEL.

Such a vector field X is a symmetry of the dynamical vector XL, i.e.,

[X,XL] = 0.

The important point is that the function G = i(X)θL is such that XL(G) = aL and
therefore we obtain the virial type result 〈〈L〉〉 = 0. In the particular case of a position-
dependent mass Lagrangian

L(x, v) = 1

2
m(x)v2 − V (x)

the condition X(L) = aL implies that the unknown functions ξ and the potential V (x)

are to be determined from the following relations:

ξ ′(x) + m′(x)

2m(x)
ξ(x) = a

2
, (11)

ξ(x)V ′(x) = aV (x). (12)

As an example, we consider the vector field X that is the complete lift of the vector
field Y generating the dilations in Q = R

3, given by

X = Y c =
3∑

i=1

(
xi ∂

∂xi
+ vi ∂

∂vi

)
,

and the Lagrangian of a harmonic oscillator with k = m, L = 1
2mv · v − 1

2mx · x. Here
θL(x, v) = mv dx, then ωL = m dx ∧ dv and the energy function is EL = 1

2m(v2 + x2).
Therefore,

XL = v
∂

∂x
− x

∂

∂v
,

and consequently G = mxv, X(L) being

X(L) = X

(
1

2
mv · v − 1

2
mx · x

)
= 2 L,

i.e., the particular case a = 2. One can also check

[X,XL] =
[
x

∂

∂x
+ v

∂

∂v
, v

∂

∂x
− x

∂

∂v

]
= 0.

Thus VT provides 〈〈XLG〉〉 = 2 〈〈L〉〉 = 0.

Liénard-type equation. When

XL = v
∂

∂x
− (f (x)v + g(x))

∂

∂v
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operates on G = m(x)ξ(x)v for Liénard II equation it yields eqs (11) and (12), where
V ′(x)/m(x) = g(x).

We can determine ξ(x) from (11) to be

ξ(x) = 1√
m(x)

(
C1 + a

2

∫ x

0

√
m(s)ds

)
. (13)

Using this expression, the potential turns out to be

V (x) = C2 exp

(
a

∫ x

0

ds

ξ(s)

)
. (14)

5. Virial theorem in quantum world

Let H be the complexified Hilbert space of Lebesgue integrable functions on R
3 with

Hermitian inner product

〈u1, u2〉 =
∫

d3x u2(x)ū1(x).

The realification of the Hilbert space H (real Banach manifold) is endowed with a natural
symplectic structure

ω(u, v) = 2 Im〈u, v〉.
Given a self-adjoint linear operator Ĥ we can define a real function h in H by

h(u) = 〈u, Ĥu〉.
Then

dh(u)(v) = d〈u, Ĥu〉(v)

= d

ds

∣∣∣∣
s=0

〈
u + sv, Ĥ ((u + sv)

〉

= d

ds

∣∣∣∣
s=0

(〈u, Ĥu〉 + s〈u, Ĥ v〉 + s〈v, Ĥ u〉 + s2〈v, Ĥ v〉)
= (〈u, Ĥ v〉 + 〈v, Ĥ u〉) = 2〈u, Ĥ v〉
= 2i〈u,−iĤv〉 = ω(u,−iĤ v).

Therefore, if Ĥ is the Hamiltonian of a quantum system, the Schrödinger equation
describing time evolution plays the role of Hamiltonian equations for the Hamiltonian
dynamical system (H, ω, h), where h(u) = 〈u, Ĥu〉, the integral curves of Xh satisfy

u̇ = Xh(u) = −iĤu.

Thus h(u) and −iĤ stand for Hamiltonian and Hamiltonian vector field for the quantum
system.

Let us consider two Hamiltonian functions f (u) = 〈u, F̂ u〉 and g(u) = 〈u, Ĝu〉
corresponding to two self-adjoint operators F̂ and Ĝ.

{f, g}(u) = ω(Xf ,Xg)(u) = 2 Im 〈F̂ u, Ĝu〉
= −i

[〈F̂ u, Ĝu〉 − 〈Ĝu, F̂ u〉]
= −i

[〈u, F̂ Ĝu〉 − 〈u, ĜF̂ u〉]
= −i

[〈u, [F̂ , Ĝ]u〉.
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The integral curves of the vector field Xh yields

ȧ(u) = {a, h}(u) = −i〈u, [Â, Ĥ ]u〉
and Ehrenfest theorem

d

dt
〈u, Âu〉 = −i〈u, [Â, Ĥ ]u〉.

If we integrate between 0 and T we obtain

〈u(T ), Âu(T )〉 − 〈u(0), Âu(0)〉 = −i

∫ T

0
〈u, [Â, Ĥ ]u〉dt,

and if 〈u, [Â, Ĥ ]u〉 remains bounded then taking the limit for T → ∞ of the quotient of
both sides by T yields the quantum VT

〈u, [Â, Ĥ ]u〉 = 0.

Suppose that the Hamiltonian of a quantum system is

H = 1

2
p̂ · p̂ + V (x), where p̂ = −i∇.

Let G be given by

G = 1

2

(
p̂ · x + x · p̂

)
,

then we obtain the standard quantum virial

〈u, p̂ · p̂u〉 − 〈u, (x·∇V (x))u〉 = 0.

5.1 Application to quantum Liénard II

In this section, we apply the scheme to quantum Liénard II equation [15]. It has been
shown in [16] that the appropriate Hilbert space for the description of position-dependent
mass systems is H = L2(R, dμ) with dμ = √

m(x) dx. Here (dμ/dx) = √
m(x)(∂/∂x),

is the (square root of the) Radon–Nikodym derivative [17] of the measure dμ with respect
to the Lebesque measure dx.

Let us recall few basic definitions. Let (X,F) be a measure space and m be a non-
negative Borel function. Note that

μ(E) =
∫

E

m dν, E ∈ F

is a measure satisfying ν(E) = 0 implies μ(E) = 0. We say μ is absolutely continuous
with respect to ν and the function f is called the Radon–Nikodym derivative or density
of μ with respect to ν and is denoted by dμ/dν.

Symplectomorphism and Radon–Nikodym derivative. The momentum of the Liénard II
is given by

pμ = px√
M(x)

μ = μ(x).
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The transformation (px, x) to (pμ,μ) satisfies

pxdx = pμdμ or dpx ∧ dx = dpμ ∧ dμ.

The important point is that there are no translations on the measure.
If dμ = √

M(x)dx is a measure then the norm of the function ψ is given by

‖ψ‖2 =
∫ +∞

−∞
|ψ(x)|2√M(x) dx.

The Hamiltonian operator is given by

Ĥ = K + V = 1

2
p̂2 + V (x), p̂ = − i√

M(x)

∂

∂x
.

We illustrate our construction using the free particle motion of the Mathews–Lakshmanan
system [18] characterized by

L(x, v, λ) = 1

2

(
v2

1 + λx2

)
.

The Lagrangian function is invariant under the action of the vector field X = √
1 + λx2

(∂/∂x) such that the complete lift

Xc =
√

1 + λx2
∂

∂x
+

(
λxv√

1 + λx2

)
∂

∂v

satisfies Xc(L) = 0. This vector field can be seen as a Killing vector field for the metric
g = (1 + λx2)−1dx2. It is clear that the natural measure in the real line is not invariant
under such vector fields; instead, the only invariant measures are the multiples

dμ = 1√
1 + λx2

dx.

Thus the multiplier is M(x) = (1 + λx2)−1.
In order to apply the VT we introduce the generator of the dilation Ĝ = ξ(x)(∂/∂x)

with the property

[p̂, Ĝ] = a

2
p̂.

The general solution of ξ(x) is given by

ξ(x) = 1√
M(x)

(
c1 + a

2

∫ x

0

√
M(ζ) dζ

)
.

6. Discussion and outlook

All the classical cases discussed in this paper are finite-dimensional in nature. This can
be generalized to infinite-dimensional framework. In 1970, Vlasov et al [19] proved that
solutions of nonlinear Schrödinger equation

iut (x1, x2, t) + 1

2
∇u + |u|2u = 0, u(x1, x2, t) = u0(x1, x2)
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satisfy the so-called virial theorem (also called variance identity), given by

d2

dt2
F(t) ≡ d2

dt2

∫
(x2

1 + x2
2)|u|2dx = 4E, E = 1

2

∫
(|∇u0|2|u0|4)dx.

We can derive this relation using the following quadratic form associated with a self-
adjoint differential operator of first-order:

F(t) = 1

2

(
ω(Au, u) − ω(u,Au)

) = i

∫
Rn

xj

(
u∂xj

u∗ − u∗∂xj
u
)
dx

= d

dt

∫
Rn

x2
j |u(x, t)|2dx = d

dt
F(t),

where we have used

i∂tu = −1

2

u + β|u|2σu.

If we differentiate F(t) we obtain

d2

dt2
F(t) = dF

dt
= i

∫
Rn

xj

(
∂tu∂xj

u∗ + u∂t∂xj
u∗ − ∂tu

∗∂xj
u − u∗∂t∂xj

u
)
dx

= i

∫
Rn

(
2xj

(
∂tu∂xj

u∗ − ∂tu
∗∂xj

u
) + (

u∗∂tu − u∂tu
∗))dx

=
∫
Rn

(
2|∂xj

u|2 + 2σβ

σ + 1
|u|2σ+2 − 2xj |u|2∂xj

V (x)
)

dx.

Using the nonlinear Schrödinger equation we obtain

dF

dt
= 4E + 2β(nσ − 2)

σ + 1

∫
Rn

|u|2σ+2dx,

and at the critical dimension dn = 2 this reduces to
dF

dt
= 4E.

Under the NLSE flow F(u) and (dF/dt) are called Morawetz and virial identity. The
term virial identity comes from the analogy to the virial theorem in classical mechanics
(for a rigorous proof, see [20]).

In this paper, we have given a brief outline of the application of the generalized virial
theorem. It would be interesting to study the virial theorem associated with Riemannian
manifolds and other Hamiltonian partial differential equations.
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