Trabajo Fin de Grado

Desarrollo de concepto de un sistema de
microfonia distribuido para sala de conferencias
inaldmbrico.

Autor

lvéin Martin Escartin

Directores

José Ramén Beltrén Blazquez
Isidro Urriza Parroqué

Escuela de Ingenieria y Arquitectura
2014-2015

“Dedico este proyecto a todos los que
confiaron en mi, a mi familia, a mi chica,

a mis amigos y compafieros de la universidad,
y como no, a los profesores que me
apoyaron y ayudaron en todo momento,
haciendo que fuera posible terminar

esta etapa de mi vida”

e

MASTER

DECLARACION DE

y - ;
AUTORIA Y ORIGINALIDAD

Universidad Zaragoza

(Este documento debe acompaiiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. Ivan Martin Escartin

)

con n2 de DNI 17760984 Q en aplicacion de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Desarrollo de concepto de un sistema de microfonia distribuido para sala de

conferencias inalambrico

J

W
&
=
W,
N
o
2.
o
©
W
Q
<
L
T
Q
w
@
<
<
-

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, Junio 2015

Fdo: Ivan Martin Escartin

Desarrollo de concepto de un sistema de microfonia distribuido
para sala de conferencias inalambrico.

RESUMEN

El proyecto aqui propuesto consiste en el desarrollo de un sistema de microfonia
distribuido para salas de conferencia.

El sistema desarrollado se basa en programar y prototipar un dispositivo portatil el cual debe
conectarse de manera inaldmbrica, detectar automaticamente al hablante y gestionar el
control de la instalacion.

Una vez que el usuario del dispositivo habla por su micréfono el sistema reconoce
automaticamente al hablante, manda inaldmbricamente la sefial y se reproduce en el resto de
los dispositivos portatiles.

El sistema ha sido prototipado en el DSP TMX320C5535 de Texas Instruments utilizando el
sistema de desarrollo C5535 eZDdsp y contiene los siguientes bloques y funciones:

Respecto a la parte hardware se pueden diferenciar cuatro partes: El cddec de audio, el DSP
C5535 de Texas Instruments, la UART y el médulo de comunicaciones inalambrico.

En la parte software se encuentran las funciones programadas del DSP las cuales gestionan la
configuracién y el control de la instalacidn, ademas de las funciones del calculo de la densidad
espectral de potencia, el filtro para la banda telefénica y las funciones de compresién y
descompresion de los datos.

iINDICE DE CONTENIDOS

Contenido
RESUIMEN .ttt ettt st st et b et s e et et e b e s beesaae s anesane e beenneesmeesmnes i
INDICE DE CONTENIDOS.....ouvuuvuirmiimrmenetntiettitestisseseessesssessessesse ettt siensensens i
LISTADO DE FIGURAS ...ttt ettt e e ettt e e e e s e ettt e e e e e s e annbeeeeeeeeseannnreneeaeeans iv
LISTADO DE TABLAS ...ttt ettt ettt ettt ettt ettt ettt ee ettt ettt et e et et et et e et e et et et et et et e e e e e eeeeeeeeeeeneeenenene v
LISTADO DE SIMBOLOS Y ABREVIATURAS.......cuivieeteeeeeeeeessesssesesesessssssessssssessseesessesesesessssssssanans Vi
IMEIMORIA ...ttt ettt st sttt e b e bt e s bt e st e st e bt e bt e sb e e sheesanesaneereeneenneenaes 7
INEFOAUCCION ..ttt sttt b e s bt e sae e sae e et e e beesbeesmeenaee 9
1.1 Arquitectura del SISTEMAcoocciiii e e e 10
1.2 IMPIEMENTACION ..oeiiiiee e e et e et e e s et e e e e are e e e eareeeeennreas 11
13 Estructura de 1a MemOria......ei it 12
(0o o} = (VT [ol o] We 1o I [y € =T s o - PR 13
2.1 Configuracion del sistema y CONtrol......cc.uuiiiiciiieecee e 14
2.2 L8 PP PP PP PPPPPPPPPPPPPPPRY 17
23 BUS A€ CONTIOI I2C ...ttt sne e 18
24 COAEC TLV320AIC3204eeeeeeeiieee ettt st e e st e e s st e e s s ta e e s sabae e e ssbaeessasaaeean 19
25 MOAUIOS INAIAMDIICOSuveeiiiiiiie et e 20
2.6 Carga del programa mediante tarjeta SD.......ccceeveciiee e 21
Funciones de procesado de SEMalccciciiiiiiiiiie i e s 23
3.1 Filtro para la banda telefonicaccccveei i e 24
3.2 Calculo de la Densidad Espectral de Potencia........cccccueeeeeeieecciiiieeee e 29
33 Compresion Y deSCOMPIESIONceiiiiiiecciiiieee e e e ecirre e e e e e e e srrrrr e e e e e e e essnraaeeeeaaeeeas 30
34 ENVIO POF 1@ UART .ttt ettt sttt st e s et e e e s abae e e s nte e e s s ateeeesannes 32
Disefio hardware Y SOfEWAIEuvii i e et e e ate e e e e 33
4.1 Diagrama de flujo del SiIStEM@.......ccceciiiiiiiiiie e e 34
4.2 Disefio del esquematico y COMPONENTEScceecuvieeeeiiieeeeieee e e et e e reee e 36
4.3 DiISEMO PCB ...ttt ettt e ettt e e e e e sttt e e e e e e e sanb e bt e e e e e e e s eanreraeeas 37
4.4 Prototipado y comprobacion del hardware y softwarecccccccvveeevveeeiicieee e, 38
(070 [ol [V 1] oY =T3PPSR 41

5.1 Caracteristicas finales del SIStEMAeeeeeeeeiece e 42

5.2 Mejoras propuestas al SIStEMAueieiieeiiciiieeee e 42
REFERENCIAS ...ttt ettt ettt ettt ettt e s bt e sht e st e e be e be e bt e saeesaeesateeabe e bee bt e sbeesabesatesnteans 45
ANEXO |: COIZO |ENGUAJE € ...ttt ettt ettt e ettt e e et e e e et e e e eeata e e e sentaeeesanbaeeeennbaeeeannes 47

ALLL IMIAIN.C ittt 47
ALLZ AIC3204 _1.C ittt ettt ettt sttt et sb e she e sae e et e e b e nneesaee e 52
AL COMPIESION.C oo, 54
ALLA DESCOMPIESION.Currriieeieeieiiitttteeeeeaattrteeeeesesauurrtteeeessaassnbtteeeesssaasassseeeeeessssassssraeeeesesans 55
ALLS FIIEEOLC ettt ettt ettt e s e e st e st e s be e e st e e e nr e e sabeeebeeesabeeeaneeenas 55
ALLB UAIT.Corriiiiiiiiiiiiiii i 58
F B A UL o1 4 13 B Y 7 ol oSSR 58
LA 2V Tot o T =T 1 o PO P PSRRI 61
ANEXO II: Esquema de tiempos de reproducCion.cceeeeeeciieeeeciiiee et 63

LISTADO DE FIGURAS

Figura 1: MAquina de @STadOScccivuiiiiiiiiiie ettt et e st e e s e e e sta e e e s araeeesnsaeeean 12
Figura 2: Diagrama de bloques del C5535 €ZdSP ...ccccccuvriiiieeeeieiciieere e e e e eecrrrrre e e e e e ecvaeee e e e e 14
Figura 3: Peripheral Software Reset Counter Register (PSRCR)......ccccccvveeeiereiieescieeerieeciee e 15
Figura 4: Peripheral Reset Control Register (PRCR)ccoccviiiiiiiiieeciiec et e e 15
Figura 5: Peripheral Clock Gating Configuration Register (PCGCR1).......cccccuveeecreeeeecrieeeeinneennn. 15
Figura 6: Peripheral Clock Gating Configuration Register (PCGCR2).........ccceevveevcveeeceeeesieeennenn 15
Figura 7: Clock Generator Control Register (CGCRL)cccccuieeeeuiieeeeiiieeeecireeeevre e e e civre e e saaee e 16
Figura 8: Clock Generator Control Register (CGCR2)cccuevieeciiieeeciieeeecreeeeeeree et e e e saaee e 16
Figura 9: Clock Generator Control Register (CGCR3)ceeeciieiieriieiesreeciee et svee e ae e 16
Figura 10 Clock Generator Control Register (CGCRA)cccueveieciieeeeieee et 16
Figura 11: External Bus Selection Register (EBSR).........ccoccuiiiieiiiieeeciieeeecreeeeereee et e e 16
Figura 12: C5535 @ZASP (TOP) werrvrrerrrrerrereiiieiieesiteeesteeetesesseeesssesssseesssessssesessseessseessesessessnsees 18
T U I R TNV ol o 1 SR 18
Figura 14: Seccidn de orden 2 del filtroooooccuiiii et 24
Figura 15: Respuesta en frecuencia del filtro paso banda.cccccceeciieeiciiiee e, 25
Figura 16: Respuesta al IMPUISO......cccuiii ittt e e re e e e aaa e e e eraaaeeean 25
Figura 17: Diagrama de polos y ceros del filtro.......oooccuiiiieeei e 26
Figura 18: Efecto del truncado en la cuantizacionccoccvveiiiciiei e 26
Figura 19: Aspecto en el dominio frecuencial de la respuesta impulsional tedrica de las

Y Tolol o] g =T e [l o] o [=T o N PRSPPI 27
Figura 20: Respuesta impulsional y Respuesta frecuencial del filtro en conjunto..................... 27
Figura 21: Aspecto en el dominio frecuencial de la respuesta impulsional real de las secciones
(o L] (o Lo T A Y 1T = U T | [ST 28
Figura 22: Respuesta frecuencial real del filtro en conjunto en lenguaje C........cccceeevvveeennneenn. 29
Figura 23: Aproximacioén lineal a la ecuacion de compresion logaritmica Ley-A.........cccceuueee. 31
Figura 24: Tabla de compresion de 1a LeY-A.........oeiiiiieiiiiiie ittt e e e s saaaee e 31
Figura 25: Tabla de descompresion de 1a LEY-A.......ccuviiiiciiiiiciiiee ettt e st e e 32
Figura 26: Diagrama de flujo del SiStEMmMa.......ccccuviiiiiciiiie e e 34
Figura 27: Esquematico de la placa de Circuito impreso......ccvvcvieeieciiee e 37
Figura 28: DiseN0 de 1@ PCB €N EAGLE..........ooeoeciiiee e ccieeeeettee e tte e st e s aae e e e saaa e e e e saaaeeean 38
Figura 29: Sistema en placa de prototipado de tOPOS. ...cccuvieeeciiieeeciiee e 39
Figura 30: Parte real de la FFT del tono de prueba........cccooviiiiiiiiiiiinieeeceiecec e 39
Figura 31: Parte imaginaria de la FFT del tono de pruebacccceeeeciieeicciiee e 40
Figura 32: DEP del tono de pruba........ccoceeiiiieiiic e 40
Figura 33: Esquema de tiempos de reproducCiOn.........ccoccvvieiiciiieiiiiiee e veee e 63

file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422319993
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320004
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320005
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320009
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320011
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320011
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320012
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320015
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320016
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320017
file:///C:/Users/Ivan/Downloads/TFG/Memoria/TFG_IvanMartinEscartin_corregido2.docx%23_Toc422320018

LISTADO DE TABLAS

Tabla 1: Registros de la configuracion UARTcciiiiiiiei ettt e e e e ecinrere e e e e e e e ennnns 17
Tabla 2: Registros de la configuracion del bus 12C..........ccuveiiieiiiiiieieee e 19
Tabla 3: Coeficientes codificados del filtrocovvvviiiiiiiiiiii e 28
Tabla 4: Componentes de la placa de CirCUito iMPreSoooccivieeeeeeeeeccieeeee e e e 37

LISTADO DE SIMBOLOS Y ABREVIATURAS

DSP Digital Signal Processor
DEP/PSD Densidad espectral de potencia/Power Spectral Density
FFT Fast Fourier Transform
UART Universal Asynchronous Receiver-Transmitter
CCs Code Composer Studio
ADC Analog Digital Converter
DAC Digital Analog Converter
FIFO First Input First Output
IIR Infinite Impulse Response
CR Carriage Return
LF Line Feed
SD Secure Digital
PCB Printed Circuit Board
ubDP User Datagram Protocol
SPI Serial Peripheral Interface
PLL Phase-Locked Loop
AT ATtention
GPIO General Purpose Input Output
CcoM COMmunications
UsB Universal Serial Bus

Vi

MEMORIA

Introduccion

En este capitulo se presenta la vision general del sistema que se ha desarrollado en este
proyecto, la arquitectura general del mismo, los detalles generales de la implementacion para
finalizar con una visién general de la estructura de esta memoria.

Sistema de microfonia inaldmbrico para sala de conferencias

1.1 Arquitectura del sistema

El trabajo desarrollado en este proyecto consiste en programar y prototipar un dispositivo
de microfonia distribuido para salas de conferencia.

Las especificaciones del sistema que se ha desarrollado son: conectarse de manera inaldmbrica
con el resto de los sistemas portatiles, detectar automaticamente al hablante y gestionar el
control de la instalacion haciendo que no sea posible que mds de un dispositivo esté
transmitiendo a la vez.

La primera decisidon que fue necesario tomar fue la plataforma en la que se iba a implementar
este proyecto. El sistema propuesto es exigente desde el punto de vista del procesado de la
sefial de audio para la gestién de la instalacidn, por lo que se decidio realizar la programacion
sobre un DSP y no sobre otras plataformas como Arduino o Raspberry Pi.

De manera general el comportamiento del sistema de microfonia es el siguiente. Una vez que
el sistema portatil detecta que existe un hablante, manda inaldmbricamente la sefial al resto
de los dispositivos y la reproduce en ellos. Una vez que el hablante deja de hablar, el sistema
debe ser capaz de detectarlo y volver al estado inicial. Se trata asi de establecer una red de
dispositivos sobre la sala de conferencia para que todos los participantes dispongan de un
dispositivo portatil con micréfono y auriculares.

Para solventar el problema de la conectividad inaldmbrica se ha decidido crear una red
dedicada para los dispositivos gestionada con un router y que estos elementos transmitan en
UDP y en broadcast a todos los elementos de la red. La eleccidon de utilizar conectividad
inalambrica mediante WiFi radica en la amplia implantacién de este tipo de redes de
comunicaciones, lo que permitird aumentar las caracteristicas funcionales del sistema en un
futuro.

El desarrollo del sistema ha sido pensado y disefiado en dos partes principales. La primera
parte corresponde al desarrollo software que contiene todo lo necesario para la programacién
del DSP TMX320C5535 de Texas Instruments para realizar las funciones de procesado de seiial
y control de las comunicaciones. La segunda parte es el desarrollo del hardware necesario para
que el sistema sea de tipo portatil y presente conectividad inaldmbrica.

Los bloques presentes en el sistema son los siguientes:

Respecto a la parte hardware se pueden diferenciar cuatro partes: El cddec de audio, el DSP
C5535 de Texas Instruments, la UART y el mdédulo de comunicaciones inaldambrico.

En la parte software se encuentran las funciones programadas del DSP las cuales gestionan la
configuracién y el control de la instalacidon, ademds de las funciones del calculo de la densidad
espectral de potencia, el filtro para la banda telefénica y las funciones de compresion y
descompresién de los datos.

La interaccion entre los bloques del sistema se realiza de la siguiente manera. La sefal captada
por el micréfono es procesada por el filtro disefiado para la banda telefénica. Una vez
obtenido el dato del micréfono se realiza un procesado de la sefial para el cdlculo de la DEP a

10

Capitulo 1. Introduccién

través de la FFT. Si la DEP es mayor que un cierto umbral el sistema reconoce que existe un
hablante sobre el dispositivo, por lo que cambia al estado de envio en el cual los datos son
transmitidos a través del médulo WiFi.

El resto de los dispositivos deben detectar que otro dispositivo les estd mandando datos, y
entrar en el modo de reproduccion de los datos que les estan llegando (el sistema da prioridad
siempre a esta situacion). Los datos recibidos también son procesados para que una vez que se
detecte que ya no se esta hablando el sistema vuelva al estado inicial.

El funcionamiento del sistema mediante un diagrama de flujo se puede observar en el
apartado 4.1 Diagrama de flujo del sistema.

1.2 Implementaciéon

La implementacién del sistema ha sido desarrollada en el DSP de Texas Instruments
TMX320C5535, programado en lenguaje C a través del programa CCS v5.3.0, utilizando la
tarjeta de desarrollo C5535 eZdsp.

La implementacion del sistema se ha llevado a cabo mediante una mdaquina de tres estados, a
través de los cuales el sistema es capaz de gestionar completamente la instalacién vy
cumpliendo la funcionalidad deseada. La maquina de estados se puede ver en la figura 1.

Los tres estados que se han implementado son los siguientes:

- Reposo: Estado inicial en el que el sistema da prioridad al dato que recibe a través de
la UART (dato proveniente del médulo WiFi). En este estado el sistema comprueba si
se estan recibiendo datos provenientes de otros dispositivos. Si esto es asi, el sistema
pasa al estado Reproducir. Si no se reciben datos por la UART, se mira si se esta
hablando en el propio dispositivo procesando la sefial para el cdlculo de la DEP y
comparandola con un cierto umbral. En el caso de que se esté hablando se vuelve a
comprobar que no haya llegado en ese intervalo de tiempo ningun dato por UART, y si
es asi, se pasa al estado Transmision. En caso de que no se reciban datos por la UART o
no se esté hablando en el dispositivo, el sistema se queda en éste estado repitiendo las
comprobaciones anteriores.

- Reproducir: Estado en el que se reproduce el dato que se esta recibiendo por la UART.
Ademads se hace un procesado del dato que se recibe para que, en el caso de estar
recibiendo silencio (caso en el que dejan de hablar), se vuelve al estado Reposo.

- Transmisién: Estado en el que se estd hablando por el dispositivo, por lo que el dato
que se recibe del micréfono se manda por la UART para que llegue al mddulo
inaldmbrico. Ademas se procesan los datos para que el sistema detecte cuando se deja
de hablar, y volver al estado Reposo.

En el sistema prototipado se han incorporado indicadores luminosos para indicar en todo
momento en qué estado se encuentra el sistema. La informacién que muestran los indicadores
luminosos es la siguiente:

11

Sistema de microfonia inaldmbrico para sala de conferencias

- Leds amarillo, azul, rojo y verde: Estado Reposo.

- Leds amarillo y azul: Estado Transmision.

- Leds rojo y verde: Estado Reproducir.

- Led rojo: Realizando configuracién del sistema.
- Leds apagados: Paso de un estado a otro.

Detecta hablante y no
Llega dato porla UART llega dato por la UART

"0 ONORNY

Detecta silencio Detecta silencio

@O0

Reproducir j Reposo E Transmision

Figura 1: Maquina de estados

1.3 Estructura de la memoria

La memoria estd estructurada de la siguiente manera:

- Enel capitulo 2. Configuracion del sistema se presentan las indicaciones necesarias
para realizar la correcta configuracion del DSP.

- Enel capitulo 3. Funciones de procesado de sefial se realiza una explicacién de las
funciones que se han tenido que programar como son: filtrado, calculo de la densidad
espectral de potencia, y compresion/descompresion.

- Enel capitulo 4. Disefio hardware y software se explica detalladamente el
funcionamiento del sistema que se ha desarrollado e implementado. Ademas se
realiza el disefio de la placa de circuito impreso para hacer que el sistema sea de tipo
portatil y presente conectividad inaldmbrica. Por ultimo, se aborda la comprobacion
del hardware y software mediante una revision histérica de los pasos llevados a cabo
hasta el desarrollo final.

- Por ultimo en el capitulo 5. Conclusiones se hace una valoracion de las caracteristicas
del sistema implementado, y se proponen una serie de mejoras que estan abiertas
como lineas de trabajo futuro.

Configuracion del sistema

Hasta ahora se ha podido observar la arquitectura del sistema y el funcionamiento de éste.
En este capitulo se aborda la configuracion del sistema y de control tanto del DSP como de los
periféricos necesarios para el arranque y el funcionamiento. Ademas también es necesaria la
configuracién de los mddulos inaldmbricos seleccionados.

La configuracién de las diferentes secciones se ha realizado siguiendo las indicaciones del
TMS320C5535/34/33/32 Ultra-Low Power DSP Technical Reference Manual [1].

13

Sistema de microfonia inaldmbrico para sala de conferencias

Todo el sistema se ha desarrollado en la plataforma de desarrollo C5535 eZdsp la cual contiene
ademas del DSP, una serie de periféricos y de interfaces de comunicacion del DSP con el
exterior. Como puede observarse en el Diagrama de bloques del 5535 eZdsp de la figura 2, es
necesario configurar estos periféricos e interfaces de comunicacion para el desarrollo de la
aplicacion, como son la UART, el bus IS el cédec AIC3204 y el bus I°C.

T
(]
@ || Embedded
£y XDS100 JTAG —
i}
w
=
96 x 16 pixel |___rPcBus {| £»
OLED Display g0
SW1i sw2 |
i | @ g
Analog [} = 3
Input 1 - ! g
i : = 2
MicroSD
(on back)

Figura 2: Diagrama de bloques del C5535 eZdsp

2.1 Configuracion del sistema y control

Antes de crear el cédigo de la aplicacidon lo primero que hay que hacer es realizar la
configuracién bdasica del sistema para que funcione correctamente. Esta configuracion
contiene, por ejemplo, el reseteo de los periféricos, la habilitacion del reloj sélo en los
periféricos que se utilizan, la configuracion del PLL y la seleccion del modo de funcionamiento
del DSP.

Siguiendo las instrucciones del Technical Reference Manual (Seccion 1.7.5 Peripheral Reset) [1]
para resetear un grupo de periféricos se deben utilizar los registros peripheral reset control
register (PRCR) y peripheral software reset counter register (PSRCR) y seguir los siguientes
pasos:

- Poner como minimo el valor 0x0008 en el registro PSRCR.

Poner a 1 los periféricos que se quieren resetear en el registro PRCR.
- Esperar el nUmero de ciclos necesario para que todos los periféricos se reseteen.

En algunos casos, como en el sistema desarrollado, un solo reset en el registro PRCR resetea
varios periféricos a la vez. En el caso del sistema propuesto PG4_RST controla el reset del 1252,
1253, UART y del SPI.

14

Capitulo 2. Configuracién del sistema

Los registros comentados anteriormente pueden visualizarse en la imagen 3 y 4.

15 0
COUNT
RW-0
LEGEND: R/W = Read/Write; -n = value after reset
Figura 3: Peripheral Software Reset Counter Register (PSRCR)
15 14 13 12 11 10 9 8
| Reserved |
R-0
7 6 5 4 3 2 1 0
| PGa_RsT Reserved PG3_RST DMA_RST USB_RST SAR_RST PG1_RST 12C_RST |
RW-0 R-0 R/MW-0 R/W-0 RMW-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figura 4: Peripheral Reset Control Register (PRCR)
Con estas instrucciones el cddigo generado queda de la siguiente manera:
10_PSRCR = 0x020; 10_PRCR = 0x0081; asm(" RPT #65535 "); asm(" NOP ");

Una vez reseteados los periféricos, y siguiendo el manual, se debe habilitar la sefial de reloj
para que llegue a los periféricos deseados. Esto se hace en los registros Peripheral Clock Gating
Configuration Registers (PCGCR1/PCGCR2). Los cuales se muestran en las figuras 5y 6.

15 14 13 12 11 10 9 8
| syscikois | 1s2ce | TMR2CG TMRICG | Reserved TMROGG | 12s1cG | 12s0cG |
RW-0 RW-0 RW-0 RIW-0 RIW-D RIW-0 RIW-0 RIW-0
7 6 5 4 3 2 1 0
[mMcspicg | 12ccéG | Reserved | MMCSDOCG | DMAOCG UARTCG | sPicG | 12s3cG |
RW-0 RIW-0 RW-0 RIW-0 RIW-D RIW-0 RIW-0 RIW-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figura 5: Peripheral Clock Gating Configuration Register (PCGCR1)

15 8
| Reserved |
R-0
7 6 5 4 3 2 1 0
| Reserved ANAREGCG DMA3CG DMA2CG DMA1CG USBCG SARCG LCDCG |
R-0 R/W-0 R/W-0 R/W-0 RW-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figura 6: Peripheral Clock Gating Configuration Register (PCGCR2)

El siguiente paso para la configuracién es configurar el PLL, para ello se hace uso de los Clock
Generator Registers (CGCR). Los cuales quedan explicados en Technical Reference Manual
(Seccion 1.4.4) [1] y pueden observarse en las figuras 7, 8, 9, 10.

15

Sistema de microfonia inaldmbrico para sala de conferencias

15 14 13 12 1 8
| CLR CNTL Reserved PLL_PWRDN M |
RAW-0 RIW-0 RAW-1 R/W-0
7 6 5 4 3 2 1 0
\ M |
RIW-0

LEGEND: R/\W = Read/Wnte; R = Read only; -n = value after reset

Figura 7: Clock Generator Control Register (CGCR1)

15 14 12 1 0
RDBYPASS Reserved | RDRATIO
RW-0 R-0 RIW-0

LEGEND: R/W = Read/Wnte; R = Read only; -n = value after reset

Figura 8: Clock Generator Control Register (CGCR2)

INIT
R/W-0806h

LEGEND: R/IW = Read/Write; -n = value after reset

Figura 9: Clock Generator Control Register (CGCR3)

15 10 9 8 7 0
Reserved OUTDIVEN Reserved ODRATIO
R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figura 10 Clock Generator Control Register (CGCR4)
Quedando la configuracién del sistema de la siguiente manera:

PLL_CNTL1 = Ox8BES; PLL_CNTL2 = 0x8000; PLL_CNTL3 = 0x0806; PLL_CNTL4 = 0x0000;

Por ultimo para terminar la configuracién se debe de configurar el mapeo de las sefales 1252,
1253, UART, SPI y GPIO a los pines a través del registro External Bus Selection Register (EBSR). El
registro contiene los campos que se muestran en la figura 11 y quedan configurados de la
siguiente manera:

10_EBSR = 0x1A00;

15 14 12 11 10 9 8
[Reserved | PPMODE SP1MODE SPOMODE |
R-0 R/W-000 R/W-00 R/W-00
7 6 5 4 3 2 1 0
‘ Reserved |
R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset
Figura 11: External Bus Selection Register (EBSR)

Una vez configurado el funcionamiento deseado del DSP ya se puede pasar a la configuracién
de los periféricos, la cual se describe en los apartados siguientes.

16

Capitulo 2. Configuracién del sistema

2.2 UART

La UART proporciona una conversion serie-paralelo de los datos que se reciben y una
conversion paralelo-serie para los datos transmitidos. Ademds permite entre otras cosas
configurar la tasa de bits (baud rate) deseada para establecer diferentes velocidades de
comunicacién, cambiar el tamafio de los bits de datos, decidir si se quiere paridad o no,
cuantos bits de stop se desean, etc.

Tal y como indica Technical Reference Manual (Capitulo 7) [1] para configurar la UART se
deben de configurar sucesivamente una serie de registros, los cuales quedan reflejados en la
tabla 1.

RBR Receiver Buffer Register

THR Transmitter Holding Register

IER Interrupt Enable Register

lIR Interrupt Identification Register

FCR FIFO Control Register

LCR Line Control Register

MCR Modem Control Register

LSR Line Status Register

SCR Scratch Register

DLL Divisor LSB Latch Register

DLH Divisor MISB Latch Register
PWREMU_MGMT | Power and Emulation Management Register

Tabla 1: Registros de la configuracién UART

Para que el sistema de transmisidn funcione correctamente la UART debe adaptarse a los
maodulos inaldmbricos. Estos mddulos suelen presentar un bit de inicio (start), 8 bits de datos y
un bit de parada (stop), lo que implica que un simbolo se transmite con 10 bits.

Como el sistema trabaja con datos de 16 bits se ha implementado la compresion a 8 bits de los
datos capturados por el micré6fono para enviarlos a través de la UART.

La tasa de bits (baud rate) seleccionada es de 115200 baudios debido a que el minimo para
poder trabajar con audio en tiempo real son 8kHz que se corresponden con 80000 baudios.
Para configurar la UART del DSP a esta velocidad se deben realizar los siguientes pasos:

- Los registros DLL y DLH contienen el baud rate que se desea establecer en la
comunicacién. Siguiendo la férmula que establece Technical Reference Manual
(Seccion 7.2.1) [1], para obtener un baud rate de 115200 baudios se debe de poner un
valor entero de 54.

- Elregistro FCR contiene el modo FIFO para los datos que se transmiten o se reciben.

17

Sistema de microfonia inaldmbrico para sala de conferencias

- El registro LCR contiene la configuracion de la trama de datos, la cual debe ser la
misma que la que acepta el médulo WiFi, por lo que debe de ser configurada con 8 bits
de datos, un bit de start, un bit de stop, sin paridad.

- El registro MCR habilita que las sefiales internas de la UART estén disponibles en los
pines exteriores de la placa de desarrollo del DSP.

- El registro PWREMU_MGMT contiene la habilitacién de la transmisién/recepcion asi
como del estado de reset.

Para la configuracién del UART como indica eZdsp™ Technical Reference [2] se debe configurar
el switch3 presente en la placa (ver figura 12) tal y como indica la figura 13, ya que esto
deshabilita el UART por el conector J2.

ps1) (Ds2
5
(/]
O o eeg 11 e
\"IUJ o1z - ° @ Sv(‘ 0 P
9% 528 ghiev oo (00 IHIHHH HIHH = :
a8 Tﬂi}]l:gn mwnﬂa vEUs P TMS320C5535 eZDSP P
St s iL'E‘El 1 L \Oq L ol S_lé EE =
2 <, I g, EE): £ =
— 1= Ny ui=fg &i =]
— Lo “ sYf: o5 =
e O Ee Sl P = °
‘ignﬂﬁa E e . : =
o 4 :)
“OfS 28 00000000 =
) %8 r J
A)(,gg;_‘,:gv a1 Qi l P2 =
=
=
=)

o5l Dy
mai‘e'] q 00 BB ==EBEb H ofpa
Oi=

s ¥ oo @ HI_\H 6 Ur=
R63 L7 vl \/ uls uie &
- wﬂmj——“%ﬁ Oonos o _|J-‘5 i 1
DS3-DS6 = e ud SoE| 5
30
m

Wil

o DSZ UEs cam o ®
s
QIC O]ses H ﬂ i1 2 2
. %] Blooz ki i
Display - J,—l & réf CInEIng o] B QOrR0=0. 00re2 ©)
— {0 gy 5 e 687 LT <
85 ”ﬂgggf%lc;DF‘ll_h
(:: <~ S_E‘D”g;- z o S
o] o
Swi swe

. Figura 13: Switch3
Figura 12: C5535 eZdsp (top)

La configuracién de la UART en el cddigo de la aplicacion ha sido integrada en una funcién
llamada UART_init() (ver Anexo 1.6 Uart.c) la cual asigna los valores adecuados a los registros
comentados anteriormente.

2.3 Bus de control 12C

Como indica Technical Reference Manual (Capitulo 9) [1] se trata de un bus creado para
conectar periféricos a un microcontrolador a baja velocidad (<100kb/s) que presenta una
arquitectura de dos cables, uno de datos y otro de reloj. Los dispositivos conectados al bus
son identificados con una direccién Unica y pueden actuar como maestros o como esclavos
independientemente de que operen como transmisores o como receptores.

Los registros que se pueden modificar son los mostrados en la tabla 2:

18

Capitulo 2. Configuracién del sistema

ICOAR 12C Own Address Register
ICIMR 12C Interrupt Mask Register
ICSTR 12C Interrupt Status Register
ICCLKL Clock Low-time
ICCLKH Clock High-time
ICCNT 12C Data Count Register
ICDRR 12C Data Receive Register
ICSAR 12C Slave Address Register
ICDXR 12C Data Transmit Register
ICMDR 12C Mode Register
ICIVR 12C Interrupt Vector Register
ICEMDR 12C Extended Mode Register
ICPSC 12C Prescaler Register
ICPID1 12C Peripheral Identification Register
ICPID2 12C Peripheral Identification Register

Tabla 2: Registros de la configuracion del bus 12C

La inicializacion del bus se realiza mediante la funcion USBSTK5515_12C init() (ver Anexo 1.7
Usbstk5515 _i2c.c) la cual configura adecuadamente los registros nombrados en la tabla 2 para
el funcionamiento del bus. Debido a que la configuracién del bus I°C es siempre la misma se ha
utilizado la funcién que proporciona Texas Instruments para la configuracién del bus con los
parametros adecuados.

2.4 Cédec TLV320AIC3204

Para procesar la sefial de audio proveniente de un sistema de captacién analdgico como es
el micréfono es necesario utilizar un conversor analdgico-digital. Asi mismo para la
reproduccion del audio del dato que ha sido procesado es necesario un conversor digital-
analdgico. Hay que destacar que las conversiones analdgico-digital y digital-analégico son
operaciones inversas si se cumple el teorema del muestreo de Nyquist-Shannon salvo por el
error de cuantificacion.

El teorema de Nyquist-Shannon indica que la frecuencia de muestreo debe ser mayor o igual a
dos veces la frecuencia maxima de la sefial (normalmente el ancho de banda). Como la sefial
de voz suele presentar la informacién relevante hasta los primeros 4 kHz, la frecuencia de
muestreo minima debe de ser al menos 8kHz. No obstante en aplicaciones de audio
profesional se suele utilizar una frecuencia de muestreo de 48kHz ya que esta por encima del
doble de la frecuencia maxima audible por el oido humano que es de 20kHz.

Los conversores AD y DA estan presentes en el cdédec TLV320AIC3204, y deben ser
configurados correctamente. En este caso se ha configurado una frecuencia de muestreo de
48kHz, datos de 16 bits, dos canales en configuracion mono, y se ha modificado la ganancia de

19

Sistema de microfonia inaldmbrico para sala de conferencias

los conversores con el fin de ajustarse al micréfono vy a los auriculares para intentar obtener la
mayor amplitud de la sefial de salida sin distorsion.

La configuracién del codec se realiza a través del bus serie I°C que conecta el DSP y el cédec,
mientras que los datos de audio se intercambian a través del bus serie 1°S2 tal y como indica la
figura 3 Diagrama de bloques del C5535 eZdsp.

Los registros del codec han sido configurados siguiendo las instrucciones de TLV320AIC3204
Ultra Low Power Stereo Audio Codec [3]y TLV320AIC3204 Application Reference Guide [4].

En el sistema desarrollado se ha creado una funciéon llamada AIC3204_1_init() (ver Anexo 1.2
Aic3204 1.c) la cual realiza la configuracion del cddec, la configuraciéon de los relojes, la
configuracién del DAC, la configuracidn del ADC y la configuracion del 1252.

2.5 Modulos inalambricos

Para solventar el problema de la conectividad inaldmbrica, se ha optado por la eleccién de
un moédulo WiFi conectado a un DSP a través de UART. Estos mddulos se suelen programar
mediante comandos AT, y se pueden conectar mediante UART a otro dispositivo.

Para las pruebas se ha utilizado un médulo como es el ESP8266. La informacidn relativa a
la programacion del mddulo se encuentra disponible en el sitio web
https://nurdspace.nl/ESP8266. Para su adecuada puesta en marcha se ha actualizado la

versiéon del firmware a la versidn v0.9.2.2. Una vez actualizado se ha configurado mediante
Arduino a velocidad de 115200 baudios, ya que al actualizar la versién del software la
velocidad por defecto es de 9600 baudios, y hay que mandarle a esta velocidad el comando
AT+CIOBAUD=115200 para que se cambie la velocidad. Esto es debido a que la UART del DSP
estd programada a esta velocidad de 115200 y no es posible mandar un comando a otra
velocidad menor.

Para la familiarizacion con dichos mddulos se ha utilizado la plataforma Arduino, ya que
presenta una interfaz mas agradable y usable que la programacion directa en lenguaje C. Una
vez conocido su funcionamiento se programaron en lenguaje C las funciones que establecian
las configuraciones tanto de modo servidor (modo por defecto en el que los mddulos WiFi
escuchan si alguien les estd mandando algo), modo cliente (modo al que pasa cuando quieren
transmitir al resto de los dispositivos), y conexion al punto de acceso (conexion a la red creada
exclusivamente para éstos dispositivos).

Las diferentes funciones que se implementaron fueron: conectar(), configurar cliente() y
configurar_servidor() (ver Anexo 1.1 Main.c).

En el sistema final no ha sido posible implementar estos médulos debido a que en la recepcién
de los datos introducen unas cabeceras, las cuales deben ser eliminadas antes de reproducir el
dato, por lo que se deberia incrementar la velocidad para poder procesar los datos
correspondientes a 8kHz. Una prueba que se ha realizado sin éxito ha sido aumentar la
velocidad de los mddulos a 921600 baudios (velocidad maxima que admite el mddulo

20

https://nurdspace.nl/ESP8266

Capitulo 2. Configuracién del sistema

ESP8266) ya que la cabecera son 9 simbolos para intentar procesarla y reproducir el dato de
audio a 8kHz. Ademas otro problema que se ha encontrado es que el DSP en la recepcidn de la
UART tiene una memoria FIFO la cual tiene un tamafio maximo de 16 palabras, por lo que el
empaquetado de los datos queda bastante limitado, ya que no se pueden almacenar mas de
16 simbolos.

Actualmente no existen en el mercado mdédulos WiFi que no incorporen cabeceras en los datos
recibidos. Si hubiera modulos que transmitieran y recibieran datos en bruto con velocidad de
115200 baudios seria suficiente para poder implementar este sistema.

Otra alternativa a los médulos WiFi seria la utilizacidon de cualquier médulo de comunicaciones
inaldambricas el cual permitiera el envio y recepcién de datos en tiempo real a la velocidad
adecuada, como podria ser un transceiver de RF. Estos mddulos inalambricos de RF permitirian
el envio y recepcion de los datos en bruto pero no ofrecerian las ventajas que incorpora el
utilizar un protocolo tan extendido a dia de hoy como es el protocolo TCP/IP.

2.6 Carga del programa mediante tarjeta SD

Una desventaja de utilizar el DSP C5535 es que el cddigo de la aplicacion se pierde cada vez
que se desconecta de la alimentacion. El sistema final ha sido desarrollado con el fin de cargar
en una tarjeta SD el programa generado y que mediante un lector de tarjetas SD el DSP sea
capaz de ejecutar el cddigo cada vez que se conecta la alimentacién, lo que hace posible el
prototipado portatil del sistema.

Una vez que mediante CCS v5 se ha generado el fichero de compilacidn .out, se debe ejecutar
en consola el fichero hex55.exe con el siguiente comando:

>> hex55 -i Aplicacion.out -0 bootimg.bin -boot -v5505 -b -serial8

Este comando genera un fichero llamado bootimg.bin el cual contiene en binario el cédigo de
la aplicacidn. El fichero bootimg.bin debe de ser copiado en la tarjeta SD para que el DSP lo
ejecute cuando se conecte la alimentacidn.

En este capitulo se ha realizado una visién de la configuracién del sistema observando en
los diferentes apartados la configuracion de cada una de las partes del sistema.

Durante los capitulos posteriores se llevara a cabo una visién de las funciones implementadas,
el disefio software del sistema global y el disefio hardware necesario para que el sistema sea
de tipo portatil y presente conectividad inaldmbrica.

21

Funciones de procesado de senal

Se han desarrollado tres funciones de procesado de sefial necesarias para el control del
hablante, la limitacion en banda de la sefial de audio y la compresién/descompresion necesaria
para la transmision de los datos a través de la UART.

Las funciones son: Filtro para la banda telefdnica, Calculo de la densidad espectral de potencia,
compresion/descompresion y se detallan a continuacién.

23

Sistema de microfonia inaldmbrico para sala de conferencias

3.1 Filtro para la banda telefénica

La sefial de audio proveniente del micréfono no sélo contiene la informacidn deseada que
es la sefial de voz, ademas puede contener ruido e interferencias provenientes de otras
fuentes sonoras las cuales intervienen negativamente en nuestro sistema.

Para eliminar en mayor medida la contribucidn de estas partes negativas a la sefial de audio, se
debe realizar un filtrado para la sefial de voz en la banda frecuencial en la que ésta se
encuentra.

Un filtro es un componente activo o pasivo el cual, mediante procesamiento matematico de la
sefial de entrada, permite obtener a su salida el resultado de dicha operacién con el objetivo
de resaltar o atenuar ciertas caracteristicas de la sefial. En otras palabras, es un sistema que
modifica el contenido frecuencial de la sefial de entrada de forma preestablecida.

La sefial de voz presenta la informacion relevante aproximadamente desde los 50Hz hasta los
4kHz. Por ello mismo, se ha disefiado un filtro el cual permite quedarse con la sefial deseada,
sin apreciar apenas distorsion de la sefial y permitiendo la identificacion posterior del
hablante.

El filtro que se ha implementado es un filtro IIR (la salida actual depende, ademas de las
muestras pasadas y actuales de entrada, de las muestras de salida anteriores) en secciones de
orden 2 colocadas en cascada con el fin de conseguir que sea estable. Cada seccion de orden 2
presenta el esquema que se indica en la figura 14.

Dy

Figura 14: Seccidon de orden 2 del filtro

El filtro ha sido implementado en digital, ya que el procesamiento de la seial digital es mucho
mas sencillo y mucho mds facil de llevar a la préctica que uno en el dominio analégico. Esto se
debe a que la implementacion de sistemas digitales cubre un amplio margen de posibilidades.
No obstante debe existir un filtro analédgico antialiasing a la entrada del conversor analégico
digital presente en forma de condensador para cumplir el teorema de Nyquist en todo
momento.

En el caso de este trabajo se requiere que el filtrado sea en tiempo real por lo que el sistema
debe de ser causal y estable.

24

Capitulo 3. Funciones de procesado de sefial

Antes de crear en lenguaje C el filtro, se ha simulado en Matlab mediante la herramienta de
simulacion fdatool y se han comparado los resultados obtenidos en ambos casos.

Las especificaciones del filtro han sido las siguientes:

Respuesta tipo paso banda.

Tipo lIR

Frecuencia de muestreo de 48kHz.

Frecuencias de corte entre 300-500Hz y 3-4kHz.
Atenuacion con respecto a la banda de paso de 50dB
Rizado de 1 dB en la banda de paso.

Con estas especificaciones, el filtro obtenido en Matlab se puede observar en la figura 15.

Magnitude {dB)

-- — - — - Bandpass Elliptic: Reference |--—

Bandpass Elliptic: Quantized)

Freguency (kHz)

Figura 15: Respuesta en frecuencia del filtro paso banda.

Ademads del cdlculo de los coeficientes, la herramienta fdatool permite la visualizacién de la

respuesta al impulso, asi como el diagrama de polos y ceros del filtro los cuales pueden ser
observados en la figura 16 Respuesta al impulso y 17 Diagrama de polos y ceros del filtro.

Amplitude

0.06

—+F]1 Bandpass Elliptic: Quantized

j . ! j —& Bandpass Elliptic: Reference |
| | | | T T I

10 20 30 40 50 60 70
Time (mseconds)

Figura 16: Respuesta al Impulso

25

Sistema de microfonia inaldmbrico para sala de conferencias

=
in

Bandpass Elliptic: Quantized Zero '
Bandpase Eliptic: Reference Zero |
Bandpass Elliptic: Quantized Pole
Bandpass Elliptic: Reference Pole

Imaginary Part
=

I
=
en

Figura 17: Diagrama de polos y ceros del filtro

Una vez obtenido el filtro se ha pasado a la cuantizacién de los coeficientes del filtro para
observar el comportamiento una vez codificados en coma fija. Al simular éste comportamiento
se ha observado que el desplazamiento que se realizaria en lenguaje C al ajustar las escalas
introduce una sefal continua al desplazar hacia arriba la cuantizacion, efecto que se puede
observar en la figura 18. Para solventar éste problema, en vez de realizar un truncado
directamente, se ha implementado el redondeo y posteriormente el truncado del dato.

7
4

Figura 18: Efecto del truncado en la cuantizacion

Una vez simulado el comportamiento del filtro en Matlab de las diferentes secciones y del
comportamiento global del sistema se pueden visualizar los resultados en las figuras 19 y 20.

26

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

Capitulo 3. Funciones de procesado de sefial

FFT (salidat) FFT (salida2)
10 T T T T T T T 4 T T T T T T T T T
3k 4
5r E 2 E
1k 4
0 r r r B r T r 0 7 ki Y
25 2 15 -1 05 0 0.5 1.5 2 25 25 2 145 1 05 0 0.5 1 1.5 2 25
Frecuencia (kHz) X 104 Frecuencia (kHz) M 104
FFT (salida3) FFT (salidad)
10 T T v T v T T 4 v T T T v T v T T
3k 4
5r E 2 E
1k 4
0 : A : 0 : :
25 2 15 -1 -05 0 0.5 15 2 25 25 2 15 -1 05 0 0.5 1 1.5 2 25
Frecuencia (kHz) X 104 Frecuencia (kHz) M 104
FFT (salida5)
8 T T v T v T T
6L 4
ol | -Reales
2t 1 -Codificados
0 . . . r . .
-2.5 -2 -1.5 -1 -0.5 0 0.5 1.5 2 25
Frecuencia (kHz) x 10°
Figura 19: Aspecto en el dominio frecuencial de la respuesta impulsional tedrica de las secciones de orden 2
Respuesta Impulsional FFT (Respuesta Impulsional)
T T T T T T T T 1.4 T T T T T T T T T
L , -Reales
124 " 4
-Codificados
1k i
i , 0.8 7
r
~ i} 0.6 :
041 A
0.2 A
L L r r r r r r 0 r r L 3 L L r L
0.5 1 1.5 2 2.5 3 3.5 4.5 5 2.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Muestras (n) X 104 Frecuencia (kHz) X 104

Figura 20: Respuesta impulsional y Respuesta frecuencial del filtro en conjunto

27

Sistema de microfonia inaldmbrico para sala de conferencias

Una vez comprobado el correcto funcionamiento del sistema en Matlab, se ha procedido a la
implementacion en lenguaje C del sistema, con los coeficientes del filtro observados en la tabla
3. Posteriormente se ha calculado la respuesta impulsional del sistema al pasar una delta por
el filtro en Cy los resultados se han trasladado a Matlab para poder visualizarlos, obteniendo
los resultados observados en las figuras 21 y 22. Observando que se cumplen los requisitos de
las especificaciones del sistema.

BO Bl B2 AO Al A2 Ganancia Escala
Etapal | 32767 | -28416 | 32767 | 32767 | -29772 | 31662 26586 <16.14>
Etapa2 | 32767 | -32729 | 32767 | 32767 | -32601 | 32576 26586 <16.15>
Etapa3 | 32767 | -24687 | 32767 | 32767 | -29437 | 29146 22634 <16.16>
Etapad | 32767 | -32748 | 32767 | 32767 | -32160 | 31768 22634 <16.17>
Etapa5 | 32767 0 -32768 | 32767 | -30587 | 29208 20464

Tabla 3: Coeficientes codificados del filtro

x10° FFT (salidat)
T T o T

T T T T T T T T T
1.5 -
10 1
1k i
5 4
0.5 1
0 c c c c ‘ c c 0 c c c A a c c c
2.5 2 -1.5 -1 -0.5 0 0.5 1 15 2 25 -25 2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Frecuencia (kHz) Frecuencia (kHz) 10t
FFT (salidad) % 10" FFT (salidad)

FFT (salida2)

x 10

05 0 05
Frecuencia (kHz)

FFT (salida5)

15 2 25
x10°

05 0 05 1 15 2
Frecuencia (kHz)

25
x 10"

05 0 05 1 15 2
Frecuencia (kHz)

25
x 10°

Figura 21: Aspecto en el dominio frecuencial de la respuesta impulsional real de las secciones de orden 2 en
lenguaje C

28

Capitulo 3. Funciones de procesado de sefial

x 10" FFT (salidaTotal)
2 T T T T T T T T T

[[L. [LM L L [[

Frecuencia (kHz)

Figura 22: Respuesta frecuencial real del filtro en conjunto en lenguaje C

Por ultimo se ha medido el tiempo en ciclos de reloj que le cuesta ejecutar la tarea del filtrado
en el proyecto que es de 221 ciclos/muestra.

3.2 Calculo de la Densidad Espectral de Potencia

La densidad espectral de potencia indica cémo esta distribuida la potencia de la sefial en
el espectro frecuencial. Se ha optado utilizar este procesado tras pasar el dato recibido por el
filtro de la banda telefdnica con lo que se obtiene Unicamente la sefial que se encuentra
dentro del rango frecuencial de la voz, con el fin de conocer cuando existe una persona
hablando o cuando no.

Si el calculo de la densidad espectral de potencia es menor que un cierto umbral, el sistema
detectard que no existe ningun hablante mientras que si se supera un cierto umbral
establecido con anterioridad el sistema detectard que existe un hablante y pasara a la
transmisidn de los datos.

El calculo de la densidad espectral se puede calcular como el cuadrado del médulo de la
Transformada de Fourier de la sefial tal y como indica la ecuaciodn:

© 2
DEP = f limy e (@) df

Para el calculo de la FFT se debe acudir a Technical Reference Manual (Capitulo 2) [1] y seguir
las instrucciones que este indica con el fin de realizar correctamente el procesado de la sefal.

No obstante se ha consultado la Silicon Revision 2.2 [5] ya que existia un error en la version
Technical Reference Manual (Capitulo 2) [1].

29

Sistema de microfonia inaldmbrico para sala de conferencias

Existen dos maneras diferentes para realizar el cdlculo de la FFT, la primera es que el
TMS320C5535 contiene un acelerador por hardware que acelera el calculo de la FFT, y la
segunda es el cdlculo por software.

Durante las pruebas realizadas en el disefio se utilizd tanto el acelerador hardware como el
calculo por software. No obstante, el acelerador por hardware no ha sido posible utilizarlo en
el sistema final ya que no existe suficiente documentacion de los registros que habilitan dicho
acelerador al hacer un programa que arranque desde cero, por lo que finalmente se ha
utilizado el calculo mediante software.

Para que el sistema realice la FFT se debe incluir en la ruta de directorios (path) de busqueda
del proyecto la carpeta que contiene la libreria del calculo de la FFT. Ademas tal y como indica
Technical Reference Manual (Capitulo 2) [1] se deben alinear ciertos registros implicados en el
calculo de la FFT mediante el comando #pragma para poder utilizar correctamente las
funciones cfft() y cbrev().

El resultado de la FFT se almacena en un registro de la longitud indicada al numero de puntos
con el que se ha realizado la FFT de 32 bits cada uno. En el que los 16 primeros bits
representan la parte real y los 16 bits siguientes representan la parte imaginaria.

Para el calculo de la densidad espectral se debe separar la parte real y la imaginaria y
posteriormente realizar el calculo del médulo al cuadrado.

La funcion que realiza el cdlculo de la densidad espectral en el cddigo desarrollado es:
calculo_PSD()(ver Anexo |.1 Main.c).

Una vez acabada la funcidn se ha calculado cuanto tiempo en ciclos de reloj tarda en realizarse
el calculo de la DEP obteniendo un total de unos 160000 ciclos de reloj.

3.3 Compresion y descompresion

Debido a que el dato obtenido del micréfono se codifica en una variable de tipo entero de
16 bits y los médulos inaldmbricos utilizan datos de 8 bits, se ha incorporado el método de
compresion-expansion (companding) con el fin de obtener el dato original transmitiendo
solamente una vez cada dato.

La ley que se ha seguido es la que se utiliza en Europa, la ley-A. Los motivos por lo que se ha
decantado por este tipo de algoritmo es que se utiliza principalmente para la voz humana ya
que el funcionamiento explota las caracteristicas de ésta.

Este método expande las amplitudes de la sefial de audio pequefias mientras que las de
amplitudes mads elevadas se comprimen ya que tienen menos posibilidad de aparicién. Es
decir, se aplica una cuantificacion no uniforme (logaritmica) a la sefial original, en la cual se
obtienen pasos de cuantificacion pequefios para los valores pequefios de amplitud y pasos
grandes para los valores grandes.

Dicho algoritmo es un mecanismo de compresién con pérdidas ya que no se recupera
exactamente la sefial original.

30

Capitulo 3. Funciones de procesado de sefial

Siguiendo TMS320C6000 u-Law and A-Law Companding [6] en la practica la cuantificacion
logaritmica se ha llevado a cabo aproximando la funcién logaritmica por segmentos de rectas,
los cuales se aproximan fielmente a la logaritmica pero simplifican la cuantizacion como se
puede observar en la figura 23.

F(x) =sgn(x)A|[x]/(1+InA) 0 <|x] <1/A
= sgn(x) (1+In Alx]) /(1 + InA) 1AL |x| =1
A=87.06
128 1
112 0.875
2 98 075 T
T— 80 0625 8=
Sc 64 05 we
£ 48 0375 £3
S 2 025 3
0

Normalized Input

Figura 23: Aproximacion lineal a la ecuaciéon de compresion logaritmica Ley-A

La ley-A utiliza palabras de entrada de 13 bits, en los que el bit mas significativo es el bit de
signo. Posteriormente se codifican el resto de los bits siguiendo la tabla de compresién de la
figura 24.

Input Values Compressed Code Word

Chord | Step
Bit: 11 10 9 8 7 6 4 2 1 0 |Bit: 68 5 4 2 1 0
0 0 0 0o 0 O c d x 0 0 0 a b ¢ d
0 0 00O OO 1T a b ¢ d x 0 01 a b ¢ d
0 0 00O 0O 1 a b ¢ d x x 0 1 0 a b ¢ d
0 0 0 01T a b ¢ d x x x 0 1 1 a b ¢ d
0o 0 0 1 b ¢ d x x x x 1 0 0 a b ¢ d
0 0 1 a b ¢ d x X x x X 1 01 a b ¢ d
0 1 a b ¢ d x x x x x X 1 1 0 a b ¢ d
1T a b ¢ d x X X X X X X 1 1 1 a b ¢ d

Figura 24: Tabla de compresion de la Ley-A

El dato original de la sefial de audio estd representado con 16 bits por lo que se escogen los 13
bits mas significativos como palabra de entrada a la tabla de la figura anterior.

En el proceso de recepcion se debe realizar el procesado inverso del dato con el fin de obtener
el original salvo por las pérdidas de cuantificacion. La tabla que representa éste proceso queda
reflejada en la figura 25.

31

Sistema de microfonia inaldmbrico para sala de conferencias

F=1(y) = sgn(y) |yJI [1+ In{A} IA, 0 <ly|= 1/(1+In(A))
= sgn(y) e(YI[1+IN(A)] = 1)/ [A+ A In(A)], 1/(1+In(A) < |y| <1
Compressed Code Word .
Chord | Step Biased Output Values
Bit: 6 5 4 3 2 1 oOo]|Bit: 1 10 9 8 7 6 5 4 3 2 1 0

0 0 0 a b c d 0 o 0 0 0 0O O a b ¢ d
0 01 a b ¢ d o 0 0 OO O 1T a b ¢ d 1
0 1 0 a b ¢ d 0O 0 00 0O1T a b ¢ d 1 0
0 1 1 a b ¢ d 0o 0 0 01t a b ¢ d 1 0 O
1 0 0 a b ¢ d 0O 0 01 a b c¢c d 1 0 0 O
1 0 1 a b ¢ d 0O 01 a b ¢ d 1 0 0 0 O
1 1 0 a b ¢ d 0 1t a b ¢ d 1 0 0 0 0 O
1 1 1 a b ¢ d 1 a b c¢c d4 1 0 0 0 0 0 0

Figura 25: Tabla de descompresidon de la Ley-A

En el cddigo del proyecto existen dos funciones las cuales realizan el proceso de compandig.
Estas funciones son compresién() y descompresién() (ver Anexo 1.3 Compresion.c y 1.4
Descompresion.c).

3.4 Envio por la UART

La configuracién de los mddulos inaldmbricos suele ser a través de comandos AT, por lo
gue se han implementado funciones que simplifican el envio de éstos comandos.

Se ha creado en lenguaje C una funcién a la que le se le pasa como parametro un string de
caracteres con el comando a enviar terminado en \015\012 los cuales representan a los
comandos CR y LF en octal.

Esta funcidn envia por la UART a la velocidad configurada los caracteres del string con el fin de
simplificar la configuracién de los mddulos inaldmbricos. Ademds entre dos comando sucesivos
de configuracién de los médulos es necesario esperar un cierto tiempo para que el médulo se
configure correctamente y responda, por lo que también se ha implementado una funcién que
espera un cierto tiempo de ciclos de reloj.

En el cddigo las funciones que realizan estas operaciones son las funciones: enviar() y esperar()
(ver Anexo 1.1 Main.c).

32

Disenno hardware y software

Hasta este capitulo se ha realizado la configuracion del DSP y los periféricos, asi como de
las funciones necesarias para la programacion del cédigo de la aplicacidn.

En este capitulo se presentan los detalles de implementacién del sistema. Para la depuracién
del cédigo en lenguaje C se ha utilizado el entorno de programacién CCS.

En el capitulo se explica mediante un diagrama de flujo el funcionamiento del sistema. El
codigo generado en éste capitulo se puede ver en el Anexo |: Codigo lenguaje C.

Una vez presentada la parte del desarrollo de software, se presenta el disefio hardware que ha
sido necesario realizar en este trabajo.

Una de las caracteristicas que debe tener el sistema es que sea un dispositivo portatil, ademds
de presentar conectividad inaldmbrica. Se ha optado por el disefio de una placa de circuito
impreso que contenga por un lado, el disefio de la alimentaciéon y, por otro, el disefio de la
conectividad inaldambrica.

33

Sistema de microfonia inaldmbrico para sala de conferencias

4.1 Diagrama de flujo del sistema

El cédigo de la aplicacién generado se puede observar en el Anexo |: Codigo lenguaje C.

El diagrama de flujo del sistema es el mostrado en la figura 26.

*

 Catvoenergasetal

ey
=
_%—
R

| Cakuo DEPO |

Figura 26: Diagrama de flujo del sistema

34

Capitulo 4. Disefio hardware y software

Como ha podido observarse existen 3 estados los cuales son: Reposo, Reproducir y
Transmision.

Nada mas inicializarse, el sistema se configura e inicializa los periféricos para poder empezar a
funcionar. Una vez pasada la configuracién el sistema debe conectarse a la red inaldmbrica,
para ello se hace uso de la funcion ya explicada anteriormente en el apartado 2.5 Mddulos
inalambricos. Una vez que el sistema se ha conectado a la red, el siguiente paso es la
configuracién en modo servidor la cual es la configuracion por defecto de todos los
dispositivos.

Cuando el sistema acaba de configurarse totalmente se pasa al estado de reposo, en el cual se
comprueba si se estdn recibiendo datos en el dispositivo o si se esta hablando sobre el
dispositivo. Para ello, lo primero que se hace es la comprobacion de si existe un nuevo dato
proveniente de la UART en cuyo caso se pasaria al estado de Reproducir. Si no existe un dato
en la UART, se pasa a comprobar si existe un hablante sobre el dispositivo. Para ello se
procesan muestras de voz, con lo que se calcula la densidad espectral de potencia. Si la
densidad espectral de potencia es mayor que un cierto umbral, el sistema detecta que existe
un hablante por lo que se configura como cliente y pasa al estado de Transmision.

En el estado de Transmisidn el sistema coge muestras de voz y las procesa para transmitir por
la UART una de cada 6 muestras (ver Anexo Il: Esquema de tiempos de reproduccion). Ademas
con los datos que se han capturado se calcula la densidad espectral de potencia y la energia de
la sefial con el propdsito de determinar mediante un umbral cuando existe silencio, es decir,
cuando se ha dejado de hablar sobre el dispositivo.

Cabe decir, que existe un compromiso en las prestaciones del sistema el cual es un
compromiso entre cuanto tiempo es silencio y cuanto tiempo es pausa del hablante.

El procesado de los datos mediante el célculo de la DEP y de la energia de la sefal se realiza
tanto en el estado Transmisidn como en el estado Reproducir, y sélo se vuelve al estado de
Reposo en el caso que no se detecte presencia de voz.

35

Sistema de microfonia inaldmbrico para sala de conferencias

4.2 Diseiio del esquematico y componentes

Para la parte relativa a la alimentaciéon del DSP se ha empleado la documentacidn de
TMS320C5535 eZdsp Module [7] con el fin de obtener los datos necesarios para su disefio. Con
respecto a la parte inaldmbrica se han dejado accesibles en la placa los pines de transmisién y
recepcion, el pin de alimentacién de 3.3V, un pin de masa, asi como dos pines auxiliares por si
fuera necesario el empleo de algunas sefiales de control.

Se ha planteado el disefio partiendo de que la alimentacién va a provenir de una bateria
externa. Dicha bateria tiene que alimentar tanto al DSP como al mdédulo inaldmbrico.

La alimentacion del DSP es de 5V tal y como indica TMS320C5535 eZdsp Module [7] mientras
que la alimentacién de los médulo suele ser de 3,3V. Por lo tanto la bateria tiene que ser capaz
de suministrar dicha tensidn.

La bateria que se ha escogido es una bateria de 2200mAh y 11,1V, suficiente para alimentar
durante un largo periodo de tiempo al sistema disefiado.

Posteriormente se ha elegido el conector adecuado para extraer del DSP las sefiales
provenientes de la UART para llevarlas a la transmision y recepcién del mddulo de
comunicaciones. El modelo del conector es el que indica eZdsp™ Technical Reference [2] con
referencia del fabricante FCI 87024-610LF.

Para el regulador de 5V de tensidn se ha escogido el regulador 7805 un conocido regulador de
tensidn con las caracteristicas suficientes para solucionar el problema que plantea el sistema.

Tal y como indica las hojas de caracteristicas [8] de este regulador es necesario incorporar dos
condensadores de filtrado uno a la entrada y otro a la salida que se han incorporado al disefio
final. Posteriormente la salida del regulador se llevara a un conector USB para la alimentacién
del DSP.

Para el regulador de 3,3V se ha escogido un regulador de tensién regulable mediante un
potencidémetro, con el fin de poder ajustar los 3,3V con ayuda de un osciloscopio. A la salida de
éste regulador se ha incorporado un condensador de filtrado para establecer una tension con
el menor rizado posible.

Una vez definido cdmo se va a alimentar al sistema, el siguiente paso es la realizacién del
esquematico, con el propdsito de tener disefiado el circuito y de tener la lista necesaria de los
componentes que se incluyen en el disefio. El esquematico planteado es el que se muestra en
la figura 27.

36

Capitulo 4. Disefio hardware y software

Conector
bateria

Rx
Conector DSP
| Regulador | Regulador

Maédulo 3.3V 5V Conector
WiFi UsSB

47 uF = — 0.33uF | 0.1 uF =

Figura 27: Esquematico de la placa de circuito impreso

Como puede observarse en la figura anterior, se han dejado accesibles mediante cuatro pines
dos puertos COM para la visualizacion en el ordenador del intercambio de los datos
establecidos, y dos GPIO para sefiales auxiliares para la depuracion del cédigo software o como
salidas auxiliares para senales de control necesarias en ciertos médulos inaldmbricos.

Los componentes necesarios para el disefio de la PCB son los que se muestran en la tabla 4.

Componente Cantidad
Mini DC Adjustable Power Supply Buck 1
Module Step Down Module
C=47uF
C=0.33uF
C=0.1uF
Regulador 7805
Conector USB
Conectores de dos entradas
Tiras de pines
Conector FCI 87024-610LF

RIRIN|IR|R|R|R|R

Tabla 4: Componentes de la placa de circuito impreso

4.3 Diseiio PCB

Una vez que se ha realizado el diseio del circuito, se debe crear la PCB en si. Para ello se
ha empleado el programa EAGLE v6.5.0 con el que se ha generado el disefio mostrado en la
figura 28.

37

Sistema de microfonia inaldmbrico para sala de conferencias

BATERIA

REGULADOR_1 «"REGUOADARCIB05OLT

47uF

G7805IN
CREGOUT

REGULADOR_2 REGULADOR_4

Figura 28: Disefo de la PCB en EAGLE

La disposicion de los elementos se ha tenido en cuenta disefiando la placa de circuito impreso
para que se ajuste correctamente a las dimensiones del DSP. Para asegurar mas firmemente la
placa al DSP se han creado dos agujeros que permiten sujetar este shield al DSP y no provocar
que el conector se desconecte mientras el sistema esté en funcionamiento.

Ademas para el disefio de la PCB se ha tenido en cuenta que todos los elementos tienen que
estar por arriba para poder encajar correctamente el conector y no tener problemas de
espacio, por lo que se ha intentado realizar la configuracién de las pistas en una sola cara de la
PCB, cambiando a la segunda sélo en los casos que no quede mas remedio.

4.4 Prototipado y comprobacion del hardware y software

Una vez creado el hardware correspondiente se debe verificar que realmente funciona
como se desea. Para ello se ha comprobado mediante el osciloscopio que las tensiones que
proporcionan a la salida ambos reguladores son las correctas. Ademas se han hecho pruebas
de funcionamiento de diferentes partes.

Para realizar el prototipado rapido del hardware sin esperar a la fabricacién de la PCB), se ha
utilizado una placa de prototipado de topos, en los que se ha reproducido el esquematico
anterior. Los resultados pueden ser observados en la figura 29.

(1) Debido a un problema con la maquina de prototipado en PCB de la universidad, se ha decantado por utilizar una
placa de topos para la fabricacién de las placas.

38

Capitulo 4. Disefio hardware y software

Figura 29: Sistema en placa de prototipado de topos.

Para la comprobacion del software se han realizado diferentes programas de pruebas que se
explican a continuacién, a modo de revisidn histérica del trabajo realizado hasta conseguir
llegar al sistema final propuesto en este trabajo.

El sistema se puede descomponer en 5 bloques fundamentales, la configuraciéon del DSP, la
captura y reproduccién del audio, el filtro, el calculo de la DEP y la comunicacién por la UART.

Para la captura de voz y la reproduccién de audio se ha creado un programa el cual captura la
voz a 48kHz y la reproduce en el mismo DSP pudiendo seleccionar la frecuencia de
reproduccion a 48kHz u 8kHz, En el Anexo Il: Esquema de tiempos de reproduccion, se presenta
esta informacion con mayor detalle. Ademds en este programa se realizé el ajuste del ADC y
del DAC con el fin de obtener el mejor resultado posible en la reproduccion del audio.

Para la prueba del filtro, se ha creado un programa el cual filtra una funcién delta con el filtro
de banda telefdnica para la comprobacidn de la respuesta impulsional y se han trasladado a
Matlab los resultados tal y como explica el apartado 3.1 Filtro para la banda telefénica. Una
vez comprobado el filtro, se ha aplicado al dato capturado por el micréfono en el programa
anterior para poder observar los cambios que introduce en la reproduccidon. Otra prueba
realizada en el filtro fue pasar tonos de distinta frecuencia con el fin de comprobar el correcto
funcionamiento del filtrado, obteniendo los resultados esperados en funcién de la banda de
paso y la banda de atenuacién.

Para probar el calculo de la DEP se ha creado un programa que calcula la FFT de un tono y
posteriormente se aplica el cdlculo de la DEP, como el mddulo al cuadrado de la FFT. El calculo
de la FFT se ha realizado utilizando tanto el acelerador hardware como el calculo por software
tal y como indica el apartado 3.2 Cdlculo de la Densidad Espectral de Potencia. La FFT del tono
se puede observar en la figura 30 y 31 las cuales contienen respectivamente la parte real de la
FFT y la parte imaginaria. En la figura 32 se muestra la DEP como médulo al cuadrado de la FFT.

[l Console | v Single Time -1 53 | [ix Single Time 10 | fas Single Time -15 R A Y M EE I e IR
10000
6000
2000

-2000
-6000

T T T T T T T T T T T T T T T T T T T T
0 +50 +100 +150 +200 +250 +300 +350 +400 +450 +500 +550 +600 +650 +700 750 +800 +850 +900 £950 +1000
sample

Figura 30: Parte real de la FFT del tono de prueba

39

Sistema de microfonia inaldmbrico para sala de conferencias

=] Console | [t Single Time -1 | [t Single Time -10 53 | i Single Time -15 Hrdr R S R FEF RS B - E

5000

1000

-3000

-7000

-

i T T T T T T T T T T T T T T T T T T T
0 +50 +100 +150 +200 +250 +300 +350 +400 +450 +500 +550 +600 +650 +700 +750 +800 850 +900 +050
sample

Licensed 50 [

T
+1000

Figura 31: Parte imaginaria de la FFT del tono de prueba

2900

1900

900

T T T T T T T T T T T T T T T T T T T
+50 +100 +150 +200 +250 +300 +350 +400 +450 +500 +550 +600 +650 +700 +750 +800 +850 +900 +0950

T
+1000

Figura 32: DEP del tono de prueba

El siguiente programa realizado para la comprobacion del software fue la deteccidon del
hablante en el cual al programa anterior del filtrado de la voz y a la reproduccion se le afiadié
el cdlculo de la DEP para establecer los umbrales a partir de los cuales el sistema decide si se
esta hablando o no. Fue en este punto en el cual hubo que afiadir la deteccién del silencio y se
ajustd para que el sistema detectara silencio si el hablante se queda callado mds de medio
segundo.

Una vez verificado que todos los bloques anteriores funcionaban correctamente el siguiente
paso fue la configuracién de la UART para mandar el dato una vez que se detectaba que se
estaba hablando. Para ello se implementaron las funciones explicadas en el apartado 3.4 Envio
por la UART, y se realizd la comunicacion entre dos DSP monitorizando en todo momento la
transmisién y recepcién de datos a través de los puertos COM y mediante programas como
Arduino y Putty. Ademds se implementd un programa el cual enviaba el valor 0x30 (que se
corresponde con el valor ASCII del ‘0’) y que al recibirlo se pusiera a parpadear un led.

Verificado el funcionamiento de la configuracion de la UART, se ha modificado el programa
anterior de deteccidn del hablante con el fin de incorporar esto y realizar correctamente el
funcionamiento. Una vez modificado el programa se ha comprobado su funcionamiento
monitorizando el intercambio de informacion como se ha explicado anteriormente y se ha
comprobado que el sistema cumple con los objetivos del disefio.

Una vez llegados a este punto se ha intentado realizar la comunicacién inaldmbrica con los
modulos ESP8266 disponibles y las funciones de configuracidon explicadas en el apartado 2.5
Moddulos inalémbricos, pero debido a los problemas de velocidad de los mddulos y de las
cabeceras que estos introducian no ha sido posible realizar la comunicacién inalambrica. Las
soluciones que se proponen a este problema quedan recogidas en el apartado 2.5 Mddulos
inaldmbricos.

40

5

Conclusiones

En este capitulo se hace una valoracién global del sistema planteado en el trabajo. Ademas
se hace un posible planteamiento de mejoras las cuales podrian ser implementadas en un
futuro.

41

Sistema de microfonia inaldmbrico para sala de conferencias

5.1 Caracteristicas finales del sistema

Este sistema es capaz de detectar automdticamente al hablante, realizar y gestionar el
control de la instalacion y conectarse de manera inaldmbrica, con el Unico inconveniente de
que no se puede implementar actualmente debido a los médulos inaldmbricos que se
encuentran en el mercado.

El sistema ha sido planteado para una sala de conferencias, en la cual se dan por supuestas
una serie de caracteristicas como por ejemplo que es un lugar en la que no existe mucho ruido
de fondo, se va a respetar siempre el turno de palabra entre los interlocutores, y éstos estan
dispuestos, en la medida de lo posible, a colaborar.

Las caracteristicas del sistema que pueden presentar ciertos tipos de inconvenientes son:

- Al realizar una comunicacidén mediante WiFi, existe un tiempo al realizar la conexién y
desconexién que puede ser elevado segun el médulo inaldmbrico escogido (pasar del
modo servidor al modo cliente y viceversa). Por lo que desde que se detecta al
hablante, hasta que el sistema manda los datos al resto puede existir un retardo
bastante elevado.

- Para evitar interferir unos sistemas con otros, la sensibilidad del micré6fono tiene que
ser pequena para que si dos interlocutores estan cercanos no detecten los dos
sistemas que se estan hablando sobre ellos.

- El tiempo de deteccidon de silencio se ha ajustado a medio segundo, el cual puede ser
un tiempo pequenio si el hablante realiza pausas largas. Es decir, existe un compromiso
en el tiempo de silencio en el que no se sabe si la persona ha realizado una pausa o ha
dejado definitivamente de hablar.

- Al arrancar el sistema tarda un tiempo en configurarse y estar disponible.

5.2 Mejoras propuestas al sistema

Al ser una primera version del sistema existen muchos aspectos que se podrian mejorar las
cuales quedan recogidas a continuacion.

- Se podria incluir un sistema de deteccion del hablante mas robusto, es decir, introducir
un algoritmo adaptativo al ruido con el fin de poder determinar el ruido de fondo que
se encuentra en la sala.

- Se podria incluir la FFT por hardware si se realizara la correcta configuracion de los
registros tras el arranque, lo cual eliminaria carga de procesado al DSP y llevaria al
sistema a ser mas eficiente.

- Se podrian reducir los tiempos de conexidn y desconexidon en funcion de los médulos
inaldmbricos escogidos.

- Al ser una comunicacion WiFi mediante UDP se podrian crear funciones alternativas y
muy diversas del sistema dotandolo con conectividad a internet como por ejemplo
utilizar reconocimiento de voz para pedir el turno de palabra.

42

Capitulo 5. Conclusiones

- Se podria reducir el tamafio del sistema y la eficiencia escogiendo de la placa C5535
eZdsp sélo los componentes que intervienen en el sistema y realizando una PCB con
estos elementos.

43

REFERENCIAS

[1] Texas Instruments, TMS320C5535/34/33/32 Ultra-Low Power DSP Technical Reference
Manual, www.ti.com/lit/pdf/spruh87, August 2011—Revised May 2014.

[2] Spectrum Digital, TMS320C5535 eZdsp™ Technical Reference,
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535 TechRef RevC.p
df, 514585-0001 Rev. A. August 2011.

[3] Texas Instruments, TLV320AIC3204 Ultra Low Power Stereo Audio Codec,
http://www.ti.com/lit/ds/symlink/tlv320aic3204.pdf , SLOS602C —SEPTEMBER 2008—REVISED
NOVEMBER 2014.

[4] Texas Instruments, TLV320AIC3204 Application Reference Guide,
http://www.ti.com/lit/ml/slaa557/slaa557.pdf , SLAA557—November 2012.

[5] Texas Instruments, TMS320C5535/34/33/32 Fixed-Point Digital Signal Processor Silicon
Revision 2.2 Silicon Errata, http://www.ti.com/lit/er/sprz373b/sprz373b.pdf , SPRZ373B—
February 2012—Revised May 2014.

[6] Texas Instruments, TMS320C6000 p-Law and A-Law Companding with Software or the
McBSP, http://www.ti.com/lit/an/spra634/spra634.pdf , SPRA634 - April 2000.

[7] Spectrum Digital, TMS320C5535 EZDSP MODULE,
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535 Schematics Rev
C.pdf, Tuesday, July 26, 2011.

[8] Fairchild Semiconductor, KA78XX/KA78XXA 3-Terminal 1A Positive Voltage Regulator,
http://datasheet.eeworld.com.cn/pdf/FAIRCHILD/21191 KA7810A.pdf, Rev. 1.0.0 — 2001.

45

http://www.ti.com/lit/pdf/spruh87
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535_TechRef_RevC.pdf
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535_TechRef_RevC.pdf
http://www.ti.com/lit/ds/symlink/tlv320aic3204.pdf
http://www.ti.com/lit/ml/slaa557/slaa557.pdf
http://www.ti.com/lit/er/sprz373b/sprz373b.pdf
http://www.ti.com/lit/an/spra634/spra634.pdf
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535_Schematics_RevC.pdf
http://support.spectrumdigital.com/boards/ezdsp5535/revc/files/ezdsp5535_Schematics_RevC.pdf
http://datasheet.eeworld.com.cn/pdf/FAIRCHILD/21191_KA7810A.pdf

ANEXO I: Cadigo lenguaje C

En este anexo se muestra el cddigo en lenguaje C del sistema completo. Este capitulo contiene
en los diferentes apartados las funciones: main.c, aic32044_1.c, compresion.c,
descompresion.c, filtro.c, uart.c, usbstk5515_i2c.c, vectores.asm.

A.l.1 Main.c

En éste apartado se muestra el cddigo que contiene el programa principal. Ademas contiene
las interrupciones para transmitir y recibir datos, la funcion esperar(), enviar(), la funcién
calculo_PSD(), y las funciones que configuran el mddulo inaldmbrico conectar(),
configurar_cliente() y configurar_servidor(). Estas ultimas tres funciones deberian ser
modificadas con la configuracion de los moddulos inaldmbricos correspondientes. Como
ejemplo se adjunta la configuracidn de los mddulos ESP8266, los cuales si pudieran transmitir
datos en bruto (sin cabeceras) tal y como se ha descrito en el apartado 2.5 Mddulos
inalambricos, servirian para esta aplicacion.

#include "SEmp_5515.h"
#include "usbstk5515_i2c.h"
#include "aic3204_1.h"
#include <stdio.h>
#include "stdint.h"
#tinclude "Dsplib.h"
#include "TMS320.h"
t#tinclude "Filtro.h"
#tinclude "compresion.h"
#tinclude "descompresion.h"
#tinclude "Uart.h"

#include <string.h>

#tpragma DATA_SECTION(data_buf, "data_buf");
#tpragma DATA_ALIGN (data_buf, 4096);

Int32 data_buf[1024];

Int32 *data = data_buf;

DATA *data_input;

DATA Re[1024], Img[1024];

LDATA PSD[1024];

int calculo_PSD(int *datos);
void enviar(char texto[]);
void esperar();

void conectar();

void configurar_servidor();
void configurar_cliente();

intl6_t interrupcion_generada = 0;
intl6_t interrupcion_recepcion = 0;
intl1l6_t datoRX_filtrado;

intl6_t dato_descomprimido;

int main(void) {
int32_t suma_DEP = 0;
uintl6_t contadorBloque = 0;
intl6_t voz[1024];
uintlée_t cnt_vector = 0;

47

Sistema de microfonia inaldmbrico para sala de conferencias

uintl6e_t cnt_energia = 0;
int32_t suma_Energia_antigua = 0;
int32_t suma_energia = 0;
intl6_t dummyl;
intl6_t cnt_48 a_8 = 0;
intl6_t contador_salir = 0;
typedef enum {
reposo, transmision, reproducir
} estados;
estados estado = reposo;

// Configuracion DSP y perifericos
I0_PSRCR = 0x020;
I0_PRCR = 0x0081;
asm(" RPT #65535 ");
asm(" NOP ");
I0O_PCGR1 = Ox3FBB;
IO_PCGR2 = OxO@OFF;
PLL_CNTL1 = Ox8BES;
PLL_CNTL2 = 0x8000;
PLL_CNTL3 = 0x0806;
PLL_CNTL4 = 0x0000;
IO_EBSR = 0x1A00

UART_init();

CPU_IVPD = 0x0480;
CPU_IVPH = 0x0480;
IODIR1=0xC000;
IODIR2=0x03;
IODATAOUT1=0xc000;
IODATAOUT2=0x02;
USBSTK5515_I2C_init();
AIC3204_1 init();
conectar();
configurar_servidor();
IODATAOUT1 =0xc000;
IODATAOUT2=0x003;
CPU_IER® = 0;

CPU_IER1 = ©;
_enable_interrupts();
UART_IER=0x0001;

while ((UART_LSR&0x0081)==0x0001) {
dummy1=UART_RBR;

}

//Programa
while (1) {
switch (estado) {

case reposo:
IODATAOUT1 =0x0000;
IODATAOUT2=0x0000;
if ((UART_LSR&Ox0081)==0x0001) {
CPU_IERO = 0x4000;
estado = reproducir;
cnt_vector = 0;
contadorBloque = 0;
suma_DEP = 1;
dato_descomprimido=descompresion(UART_RBR);

} else {
CPU_IERO = 0x8000;
if (interrupcion_generada == 1) {

interrupcion_generada = 0;
voz[cnt_vector] = datoRX_filtrado;
cnt_vector++;

if (cnt_vector == 1024) {

48

Anexo |

cnt_vector = 0;

}

if (contadorBloque == 6000) {
contadorBloque = 0;
suma_DEP = 0O;
suma_DEP = calculo_PSD(voz);

}

contadorBloque++;

if ((suma_DEP > 0)&&(!((UART_LSR&0x0081)==0x0001))) {
IODATAOUT1=0xc000;
IODATAOUT2=0x0003;
configurar_cliente();
estado = transmision;
cnt_vector = 0;
contadorBloque = 0;
suma_DEP = 1;

}

break;

case transmision:
IODATAOUT1=0x0000;
IODATAOUT2=0x003;
if (interrupcion_generada == 1) {
interrupcion_generada = 0;
if (cnt_48_a_8 == 5) {
UART_THR=compresion(datoRX_filtrado);
while (!((UART_LSR&0x0040)==0x0040));
cnt_48_a_8 = 0;

}
cnt_48 a_8++;
voz[cnt_vector] = datoRX_filtrado;

cnt_vector++;
if (cnt_vector == 1024) {
cnt_vector = 0;

}

if (contadorBloque == 24000) {
contadorBloque = 0;
suma_DEP = 0;
suma_DEP = calculo_PSD(voz);

}

contadorBloque++;

suma_Energia_antigua = suma_Energia_antigua
+ (((long) datoRX_filtrado * datoRX_filtrado) >> 16);
if (cnt_energia == 24000) {
cnt_energia = 9;
suma_energia = suma_Energia_antigua;
suma_Energia_antigua = 0;
}
cnt_energia++;
if ((suma_DEP == @) && (suma_energia == 0)) {
IODATAOUT1=0xc000;
IODATAOUT2=0x003;
configurar_servidor();
CPU_IERO = 0x8000;
estado = reposo;
suma_Energia_antigua = 0;
suma_energia = 0;
cnt_vector = 0;
contadorBloque = 0;
suma_DEP = 0;
while ((UART_LSR&Ox0081)==0x0001) {

49

Sistema de microfonia inaldmbrico para sala de conferencias

dummy1=UART_RBR;
}

}

break;

case reproducir:
IODATAOUT1 =0xc000;
IODATAOUT2=0x0000;
CPU_IERO=0x4000;
if (interrupcion_recepcion == 1) {
interrupcion_recepcion = 9;
voz[cnt_vector] = dato_descomprimido;
cnt_vector++;
if (cnt_vector == 1024) {
cnt_vector = 0;
¥
if (contadorBloque == 24000) {
contadorBloque = 0;
suma_DEP = 0O;
suma_DEP = calculo_PSD(voz);
}
contadorBloque++;
suma_Energia_antigua = suma_Energia_antigua
+ (((long) dato_descomprimido * dato_descomprimido) >> 16);
if (cnt_energia == 24000) {
cnt_energia = 0;
suma_energia = suma_Energia_antigua;
suma_Energia_antigua = 0;
}
cnt_energia++;
if ((suma_DEP == @) && (suma_energia == 0)) {
IODATAOUT1 =0xc000;
IODATAOUT2=0x0003;
for(contador_salir=0;contador_salir<1l;contador_salir++) {
esperar();}
CPU_TIERO = 0Ox8000;
estado = reposo;
suma_Energia_antigua = 9;
suma_energia = 0;
cnt_vector = 0;
contadorBloque = 0;
suma_DEP = 9;
while ((UART_LSR&0Ox0081)==0x0001) {
dummy1=UART_RBR;

}

}

}

break;

}

}

}

interrupt void ISR_I2S_rx(void) {
int dummy;
dummy = I2S2 WO_LSW_R;
dummy = I2S2_W1_MSW_R;
dummy = I2S2_W1_LSW_R;
datoRX_filtrado= Filtro(I2S2_WO_MSW_R);
interrupcion_generada = 1;

}

interrupt void ISR_I2S_tx(void) {
static int contador = 0;
1252 WO _LSW W = 0x0000;
1252 W1_LSW W = 0x0000;

50

if (contador == 5) {

}

contador = 0;
if ((UART_LSR&Ox0081)==0x0001) {

dato_descomprimido = descompresion(UART_RBR);

}

contador++;

I2S2 WO _MSW _W=Filtro(dato_descomprimido);
I2S2 W1 MSW W=Filtro(dato_descomprimido);

interrupcion_recepcion = 1;

int calculo_PSD(int *datos) {

}
int i = 0;
int p = 0;

int suma_PSD = ©;

for (i =90; 1

data_buf[i] = ((long) datos[i] << 20) & OxFFFF0000;

¥
data_input =

< 1024; i++) {

(DATA *) data_buf;

cfft(data_input, 1024, SCALE);
cbrev(data_input, data_input, 1024);

for (i =0; 1

< 1024; i++) {
data_input[2 * i];
data_input[2 * i + 1];

< 1024; p++) {

suma_PSD = suma_PSD + PSD[p];

Re[i] =
Img[i] =
PSD[i] =

}

for (p = 0; p

}

return suma_PSD;

}

void enviar(char texto[]) {
int valor_ASCII = ©;

int i = 0;

int longitud =

for (i =90; i

strlen(texto);
< longitud; i++) {

valor_ASCII = texto[i];
UART_THR=valor_ASCII;
while (!((UART_LSR&0x0040)==0x0040));

}
}

void esperar() {

int a = 9;

while (a < 1200) {
asm(" RPT #65535 ");
asm(" NOP ");

a++;

}
}

void conectar() {

esperar();

enviar("AT+CWMODE=3\015\012");

esperar();

enviar("AT+CWJAP=\042MICRO\0®42,\042MICRO\0O42\015\012");

esperar();
esperar();
esperar();
esperar();

}

void configurar_servidor() {

esperar();

enviar("AT+RST\015\012");

51

((long) Re[i] * Re[i] + (long) Img[i] * Img[i]) >> 16;

Anexo |

Sistema de microfonia inaldmbrico para sala de conferencias

esperar();

esperar();

esperar();
enviar("AT+CIPMUX=1\015\012");
esperar();
enviar("AT+CIPSERVER=1,9995\015\012");
esperar();

void configurar_cliente() {
esperar();
enviar("AT+RST\015\012");
esperar();

esperar();

esperar();
enviar("AT+CIPMODE=1\015\012");
esperar();
enviar("AT+CIPMUX=1\015\012");
esperar();
enviar("AT+CIPSTART=0,\042UDP\042,\042192.168.1.255\042,9995\015\012");
esperar();
enviar("AT+CIPSEND\@15\012");

}

A.L2 Aic3204_1.c

Este apartado contiene la configuracion del codec AIC3204 empleado. Para ello se ha hecho
uso de la funcidn que proporciona Digital Spectrum y se ha modificado la funcién con el
propdsito de obtener una salida mono en vez de stereo y ademas proporcionar la ganancia
adecuada a los conversores analdgico digital y digital analégico.
/*

Copyright 2010 by Spectrum Digital Incorporated.

* All rights reserved. Property of Spectrum Digital Incorporated.
*/
/*

AIC3204 Test
*

*/
#define AIC3204_I2C_ADDR ©x18

#tinclude "SEmp_ 5515.h"
#include "usbstk5515_i2c.h"

/* __ *
* *
* _AIC3204_rget(regnum, regval) *
* *
* Return value of codec register regnum *
* *

int1l6_t AIC3204_1_rget(uintl6_t regnum, uintl6_t* regval) {
intl6_t i, retcode = 0;
uintle_t cmd[2];

cmd[0]
cmd[1]

regnum & Ox007F; // 7-bit Register Address
9;

retcode |= USBSTK5515 I2C write(AIC3204 I2C_ADDR, cmd, 1);

52

Anexo |

retcode |= USBSTK5515_I2C_read(AIC3204_I2C_ADDR, cmd, 1);

*regval = cmd[0];

for (i =0; i< 10; i++) {
}; // Short delay
return retcode;

}

/* __ *
* *
* _AIC3204_rset(regnum, regval) *
* *
* Set codec register regnum to value regval *
* *
K L L L o o o o o o o o o o o o o e o e E E — — — — ————————— */

int16_t AIC3204_1_rset(uintl6_t regnum, uintl6_t regval) {

uintlée_t cmd[2];

cmd[@] = regnum & Ox007F; // 7-bit Register Address
cmd[1] = regval; // 8-bit Register Data
return USBSTK5515_I2C_write(AIC3204_I2C_ADDR, cmd, 2);

}

/* __ *
* *
* AIC3204_init() *

* *
* Inicializa el codec *

* *
K o e e e e e e e e e e e e e e ———— e ————— o —— —— */

void AIC3204_1_init(void) {

int i;
int ret = 9;
I0_PCGR1=0x0000;
I0_PCGR2=0x0000;
/* Configure AIC3204 */
AIC3204_1 rset(@, 0x00); // Select page ©
AIC3204_1 rset(1l, ox01); // Reset codec
for (ret = 0; ret < 1000; ret++)
; // Wait 1ms after reset
AIC3204 1 rset(@, 0x01); // Select page 1
AIC3204_1_rset(1l, ox08); // Disable crude AVDD generation from DVDD
AIC3204_1_rset(2, 0x01); // Enable Analog Blocks, use LDO power
AIC3204_1_rset(123,0x05); // Force reference to power up in 4@ms
for (ret = 0; ret < 5000; ret++)
; // Wait at least 4@ms
AIC3204_1 rset(@, 0x00); // Select page ©

/* PLL and Clocks config and Power Up*/
AIC3204_1_rset(27, oxod); // BCLK and WCLK are set as o/p; AIC3204(Master)
AIC3204_1_rset(28, 0x00); // Data ofset = @
AIC3204_1_rset(4, ox03); // PLL setting: PLLCLK <- MCLK, CODEC_CLKIN <-PLL CLK
AIC3204_1 rset(6, 0x07); // PLL setting: J=7
AIC3204_1_rset(7, 0x@6); // PLL setting: HI_BYTE(D=1680)
AIC3204_1_rset(8, 0x90); // PLL setting: LO_BYTE(D=1680)
AIC3204_1 rset(30, 0x88);
AIC3204_1 rset(5, 0x91); // PLL setting: Power up PLL, P=1 and R=1
for (ret = 0; ret < 10000; ret++)

5 // Wait for PLL to come up
AIC3204_1 rset(13, 0x@0); // Hi_Byte(DOSR) for DOSR = 128 decimal or 0x0080
DAC oversamppling
AIC3204_1 rset(14, 0x80); // Lo_Byte(DOSR) for DOSR = 128 decimal or 0x0080
AIC3204_1_rset(20, 0x80); // AOSR for AOSR = 128 decimal or ©0x0080 for
decimation filters 1 to 6
AIC3204_1_rset(11, 0x82); // Power up NDAC and set NDAC value to 2

53

Sistema de microfonia inaldmbrico para sala de conferencias

AIC3204 1 rset(12,
AIC3204_1_rset(18,
AIC3204 1 rset(19,

0x87);
0x87);
0x82);

/* DAC ROUTING and
AIC3204_1 rset(@, oxo01);
AIC3204_1 rset(12, 0x@8);
AIC3204 1 rset(13, 0x08);
AIC3204 1 rset(0, 0x00);
AIC3204 1 rset(64, 0x02);
AIC3204_1 rset(65, 0x20);
(Maximo ©0x30)
AIC3204_1_rset(63,
AIC3204_1_rset(83,
canal izquierdo
AIC3204 1 rset(84, 0x28);
derecho (Maximo 0x28)
AIC3204_1 rset(@, 1);
AIC3204 1 rset(0, 0x01);
AIC3204 1 rset(16, 0x00);
AIC3204 1 rset(17, 0x00);
AIC3204_1 rset(9, 0x30);

oxd4) ;
0x28);

// Power up MDAC and set MDAC value to 7
// Power up NADC and set NADC value to 7
// Power up MADC and set MADC value to 2

Power Up */

// Select page 1

// LDAC AFIR routed to HPL

// RDAC AFIR routed to HPR

// Select page ©

// Left vol=right vol

// Left DAC gain to @dB VOL; Right tracks Left

// Power up left,right data paths and set channel
// Control de volumen del conversor ADC en el

// Control de volumen del conversor ADC en el canal

// Select page 1

// Select page 1

// Unmute HPL , @dB gain
// Unmute HPR , @dB gain
// Power up HPL,HPR

for (ret - 0; ret < 100; ret++)

// Short delay

)

/* ADC ROUTING and Power Up*/

AIC3204 1 rset(0, 0x01);

AIC3204 1 rset(51, 0x48);
AIC3204 1 rset(52, 0x30);
AIC3204 1 rset(55, 0x30);
AIC3204 1 rset(54, 0x03);
AIC3204 1 rset(57, 0xc9);
AIC3204_1 rset(59, 0x00);
AIC3204_1 rset(60, 0x00);
AIC3204_1_rset(0, 0x00);

AIC3204_1 rset(81, 0xc9);
AIC3204_1 rset(82, 0x00);
AIC3204_1_rset(0, 0x00);

for (i = 0; 1 < 200; i++);

/* I2S settings */
I2S2_SRGR = 0x0;
I2S2_CR = 0x8010;
I2S2_ICMR = ©Ox24;

A.L.3 Compresion.c

// Select page 1

// Power up MICBIAS with AVDD (©x40) or LDOIN (©x48)
// STEREO 1 Jack

// IN2_R to RADC_P through 40 kohmm

// MIC_PGA_L unmute
// MIC_PGA_R unmute
// Select page ©
// Powerup Left and Right ADC
// Unmute Left and Right ADC
// Select page ©

// Short delay

En este apartado se ha llevado a cabo la implementacién de la funcidén de compresién

utilizando la ley-A, la cual permite obtener un dato comprimido de 8 bits a partir de uno de 16

bits.

unsigned int compresion(int input
//Ley-A
int segmento=0;
unsigned int i=@, signo=0,

) A

magnitud=0;

unsigned int output=0, absoluto=0, temp=0;

signo
temp = absoluto

for (1 = 0; 1 < 16; i++) {

(input >=0) ? 0 :

1;

(abs(input) >> 3);

output = temp & 0x8000;

if (output)

54

Anexo |

break;

temp <<= 1;
}
segmento=(11-i);
if (segmento <= 0) {

segmento = O;

magnitud = (absoluto >> 1) & OxOF;
} else

magnitud = (absoluto >> segmento) & OxOF;
segmento <<= 4;
output = segmento + magnitud;
if (absoluto > 4095)

output = Ox7F;
if (signo)

return output ~= Ox80;
else

return output;

A.L.4 Descompresion.c

En este apartado se ha llevado a cabo la implementacién de la funcién de descompresion
utilizando la ley-A, la cual permite obtener un dato descomprimido de 16 bits a partir de uno
de 8 bits comprimido previamente.

int descompresion(unsigned int entrada) {

//Ley-A
unsigned int signo=0, segmento=0, magnitud=0;
signo = (entrada & 0x80) >> 7;
segmento = (entrada & 0x70) >> 4;
magnitud = entrada & OxOF;
magnitud <<= 1;
if (!segmento)

magnitud += 1;
else {

magnitud += 33;

magnitud <<= segmento-1;
}
magnitud=(magnitud<<3);
if (signo)

return -magnitud;
else

return magnitud;

A.L5 Filtro.c

En este apartado se ha implementado la funcion que realiza el filtro descrito en el apartado 3.1
Filtro para la banda telefénica, el cual es un filtro paso banda entre 300hz y 3 kHz.

int Filtro(int entrada) {
int salida_filtro;
const int gl = 26586; // <16.16>
const int g2 = 26586; // <16.16>
const int g3 = 22634; // <16.16>
const int g4 = 22634; // <16.16>
const int g5 = 20464; // <16.17>

55

Sistema de microfonia inaldmbrico para sala de conferencias

//Primera Etapa

const int bl_2 = -28416; // bl 2 <16.14>
const int al_2 = -29772; // al_ 2 <16.14>
const int al_3 = 31662; // al_3 <16.15>

long int x0_1, x1_1, x2_1;

long int salida_intermedia_1;

int salida_1;

long int y1_1, y2 1;

static long int acuml_1 = @, acum2_1 = 0;

x0_1 = (((long) entrada) << 15); //<16.15> (<<15) = <32.30>
x1_1 = ((((long) entrada) * bl_2) << 1); // <16.15>%<16.14> = <32.29>
(<<1) = <32.30>
x2_1 = x0_1; // <32.30>
salida_intermedia_1 = (x0_1 + acuml_1) + (Ox00008000); // <32.30> redondeado a

16 bits

salida_1 = (salida_intermedia_1 >> 16); // <16.14> del truncado anterior con
16 bits

yl 1 = (((long) salida_1 * (-al_2)) << 2); // <16.14>*<16.14>= <32.28> (<<2)=
<32.30>

y2_1 = (((long) salida_1 * (-al_3)) << 1); // <16.14>*<16.15>= <32.29> (<<1)=
<32.30>

acuml_1 = x1_1 + y1 1 + acum2_1; // <32.30> + <32.30> + <32.30> = <32.30>

acum2_1 = x2_1 + y2_1; // <32.30> + <32.30> = <32.30>

//Segunda Etapa

const int b2gl = -26554; // <16.15>
const int a2_2 = -32601; // a2_2 <16.14>
const int a2_3 = 32576; // a2 3 <16.15>

long int x0_2, x1_2, x2_2;

long int salida_intermedia_2;

int salida_2;

long int y1_2, y2_2;

static long int acuml_2 = @, acum2_2 = 0;

x0_2 = ((((long) salida_1) * gl) << 1); // <16.14>*<16.16> = <32.30> (<<1)=
<32.31>

x1_2 = ((((long) salida_1) * b2gl) << 2); // <16.14>* <16.15> = <32.29> (<<2)
= <32.31>

X2_2 = x0_2; //<32.31>

salida_intermedia_2 = (x0_2 + acuml_2) + (0x00008000); // <32.31> redondeando
a 16 bits

salida_2 = (salida_intermedia_2 >> 16); // <16.15> del truncado anterior con
16 bits

yl 2 = (((long) salida_2 * (-a2_2)) << 2); // <16.15>%<16.14> = <32.29> (<<2)
= <32.31>

y2_2 = (((long) salida_2 * (-a2_3)) << 1); // <16.15>%<16.15> = <32.30> (<<1)
= <32.31>

acuml_2 = x1_2 + yl 2 + acum2_2; // <32.31> + <32.31> + <32.31> = <32.31>
acum2_2 = x2_2 + y2_2; //<32.31> + <32.31> = <32.31>

//Tercera Etapa

const int b2g2 = -20030; // <16.15>
const int a3_2 = -29437; // a3_2 <16.14>
const int a3_3 = 29146; // a3_3 <16.15>

long int x@_3, x1_3, x2_3;

long int salida_intermedia_3;

int salida_3;

long int y1_3, y2_ 3;

static long int acuml_3 = @, acum2_3 = 0;

56

Anexo |

x0_3 = (((((long) salida_2) * g2) + (0x00000001)) >> 1); // <16.15>*<16.16> =
<32.31> (>>1)= <31.30>

x1_3 = (((long) salida_2) * b2g2); // <16.15>* <16.15> = <32.30>

X2_3 = x0_3; //<31.30>

salida_intermedia_3 = (x0_3 + acuml_3) + (©x00008000); // <32.30>

salida_3 = (salida_intermedia_3 >> 16); // <16.14>

y1l_3 = (((long) salida_3 * (-a3_2)) << 2); // <16.14>*<16.14> = <32.28> (<<2)
= <32.30>

y2_3 = (((long) salida_3 * (-a3_3)) << 1); // <16.14>*<16.15> = <32.29> (<<1)
= <32.30>
acuml_3 =
acum2_3

<32.30>

x1 3 + yl 3 + acum2_3; // <32.30> + <32.30> + <32.30>
xX2_3 +

y2_3; //<31.30> + <32.30> = <32.30>

//Cuarta Etapa

const int b2g3 = -22620; // <16.15>
const int a4 _2 = -32160; // a4 2 <16.14>
const int a4_3 = 31768; // a4_3 <16.15>

long int x0_4, x1_4, x2_4,;

long int salida_intermedia_4;

int salida_4;

long int yl1 4, y2 4,

static long int acuml_4 = @, acum2_4 = 0;

x0_4 = (((long) salida_3) * g3); // <16.14>%<16.16> = <32.30>
x1_4 = ((((long) salida_3) * b2g3) << 1); // <16.14>* <16.15> = <32.29> (<<1)
= <32.30>

X2_4 = x0_4; //<32.30>

salida_intermedia_4 = (x0_4 + acuml_4) + (0x00008000); // <32.30> redondeando
a 16 bits

salida_4 = (salida_intermedia_4 >> 16); // <16.14> del truncado anterior con
16 bits

yl 4 = (((long) salida_4 * (-a4_2)) << 2); // <16.14>*<16.14>
= <32.30>

y2_4 = (((long) salida_4 * (-a4_3)) << 1); // <16.14>*<16.15>
= <32.30>
acuml_4 =
acum2_4

<32.28> (<<2)

<32.29> (<<1)

yl 4 + acum2_4; // <32.30> + <32.30> + <32.30> = <32.30>

x1 4 +
X2_4 + y2_4; //<32.30> + <32.30> = <32.30>

//Quinta Etapa
const int b2g4 = -22634; // <16.16>

const int a5_2 = -30587; // a5_2 <16.14>
const int a5_3 = 29208; // a5_3 <16.15>

long int x@_5, x2_5;

long int salida_intermedia_5;

int salida_5;

long int y1_5, y2_5;

static long int acuml_5 = @, acum2_5 = 0;

x0_ 5 = (((((long) salida_4) * g4)+(0x0000001))>>1); // <16.14>*<16.16> =
<32.30> (>>1) = <31.29>

x2_5 = (((((long)salida_4)*b2g4)+(0x00000001))>>1); // <16.14> *
<16.16>(22634) = <32.30> (>>1) = <31.29>

salida_intermedia_5 = (x0_5 + acuml_5) + (0x00008000); // <32.29> redondeando
a 16 bits

salida_5 = (salida_intermedia_5 >> 16); // <16.13> del truncado anterior con
16 bits

yl 5 = (((long) salida_5 * (-a5_2)) << 2); // <16.13>*<16.14> = <32.27> (<<2)
= <32.29>

y2 5 = (((long) salida_5 * (-a5_3)) << 1); // <16.13>*<16.15>
= <32.29>

acuml_5 =yl 5 + acum2_5; // <32.29> + <32.29> = <32.29>
acum2_5 = x2_5 + y2_5; //<31.29> + <32.29> = <32.29>

<32.28> (<<1)

//Salida final

57

Sistema de microfonia inaldmbrico para sala de conferencias

long int salida_intermedia_total;

salida_intermedia_total=((((long)salida_5)*g5)>>16); //<16.13> * <16.17> =
<32.30> (>>16) = <16.14>

salida_filtro = salida_intermedia_total;

return salida_filtro;

A.l.6 Uart.c

En este apartado se han configurado los pardmetros necesarios para la utilizacién de la UART a
velocidad de 115200 baudios. Ademas se han seleccionado las siguientes caracteristicas: un bit
de start, 8 bits de datos, un bit de stop y no paridad.

* Uart.c

* Created on: 12/05/2015
* Author: Ivan

*/

#include "SEmp_5515.h"
#tinclude "Uart.h"
void UART_init(void) {

UART_PWREMU_MGMT = 0x0000; //Tx y Rx deshabilitados y en estado de reset
UART_DLL=0x0036;//Divisor =54 para tener baud rate 115200
divisor=f_clk_dsp/(baud_rate_desired*16)

UART_DLH=0x0000;//0x028B para 9600 y 36 para 115200

UART_FCR = 0x0001;//FIFO mode

UART_FCR=0x0007 ;

UART_LCR=0x0003; //Palabras de 8 bits, 1 bit stop, no paridad, no stick paridad, no
break control

UART_MCR=0x0000; //0x0010 Loopback activado (0x0000 deshabilita loopback y habilita
las sefales de los pines)

UART_PWREMU_MGMT=0x6000;//Tx y Rx habilitados

}

A.L.7 Usbstk5515_i2c.c

En este apartado se ha hecho uso de la funcidn proporcionada por Digital Spectrum la cual
configura el bus de control I°C. El cual es necesario para el intercambio de informacién de
control y configuracién entre el DSP y el cddec AlC3204.
/*
Copyright 2010 by Spectrum Digital Incorporated.

* All rights reserved. Property of Spectrum Digital Incorporated.

*/
/*

* I2C implementation
*

*/
#include "usbstk5515_i2c.h"

int32_t i2c_timeout = oxofff;

58

Anexo |

/* __ *
* *
* T2C_dinit() *
* *
* Enable and initalize the I2C module *
* The I2C clk is set to run at 20 KHz *
* *
K o e e e e e e e e e ———— e ———— */

int16_t USBSTK5515_I2C_init()

{

I2C_MDR = 0x0400;// Reset I2C
I2C_PSC = 15; // Config prescaler for 100MHz

I2C_CLKL = 25; // Config clk LOW for 100kHz

I2C_CLKH = 25; // Config clk HIGH for 100kHz

I2C_MDR = 0x0420; // Release from reset; Master, Transmitter, 7-bit address
return 9;

}

/* __ *
* *
* _T2C_close() *
* *
K e e e e e e e e e e e e e ———— o ——— */

int16_t USBSTK5515_I2C_close()

{

I2C_MDR = @; // Reset I2C
return 9;

}

/* __ *
* *
* _T2C_reset() *
* *
K e e e e e e e e e e e e e e m m — e — e — e —————————— */

int16_t USBSTK5515_I2C_reset()

{

USBSTK5515_I2C_close();
USBSTK5515_T2C_init();
return 0;

}

/* __ *
* *
* _TI2C_write(i2c_addr, data, len) *
* k
* I2C write in Master mode *
* k
* i2c¢_addr <- I2C slave address *
* data <- I2C data ptr *
* len <- # of bytes to write *
* *

*
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
*
~

intl16_t USBSTK5515_I2C_write(uintl6_t i2c_addr, uintl6_t* data, uintl6_t len)
{

intl6_t timeout, i;

I2C_CNT = len; // Set length
I2C_SAR = i2c_addr; // Set I2C slave address
I2C_MDR = MDR_STT // Set for Master Write
| MDR_TRX
| MDR_MST
| MDR_IRS
| MDR_FREE;
for (1 =0 ; 1< 100 ; i++){ }; // Short delay

for (i =0 ; i< len; i++)

59

Sistema de microfonia inaldmbrico para sala de conferencias

/*

¥ X K K X X X X X ¥ ¥ ¥

*

} while ((I2C_STR & STR_XRDY) == 0);// Wait for Tx Ready

// Write
// I2C_timeout = 1ms;

{
I2C_DXR = data[i];
timeout = 0x510;
do
{
if (timeout-- < @)
{
USBSTK5515 _I2C reset();
return -1;
}

I2C_MDR |= MDR_STP;

// Generate STOP

for (i =0 ; i< 1000 ; i++){ };
return 0;

_I2C_read(i2c_addr, data, len)

I2C read in Master mode

i2c_addr <- I2C slave address
data <- I2C data ptr

len <- # of bytes to write
Returns: @: PASS

-1: FAIL Timeout

int16_t USBSTK5515_I2C_read(uint16_t

{

int32_t timeout, 1i;

I2C_CNT =
I2C_SAR =
I2C_MDR =

for (i=
for (i=
{
timeou
//Wait
do
{

len;

i2c_addr;

MDR_STT

| MDR_MST

| MDR_IRS

| MDR_FREE;

0 ; 1i<10 ; i++){ };
0 ; i< len ; i++)

t = i2c_timeout;
for Rx Ready

if (timeout-- < @)

{

} while ((I2C_STR & STR_RRDY)

data[i
}
I2C_MDR |=
for (1=
return 9;

// Short delay;

*

¥ X X X X ¥ ¥ X X ¥ ¥ ¥

*/

i2c_addr, uintl6_t* data, uintle_t len)

// Set length
// Set I2C slave address
// Set for Master Read

USBSTK5515_I2C_reset();

return -1;

] = I2C_DRR;

MDR_STP;

0 ;1i<10; i++){ };

!/

!/

60

Read

// Short delay

== 0);// Wait for Rx Ready

Generate STOP
// Short delay

Anexo |

A.L.8 Vectores.asm

En este apartado se ha incluido la configuracién del fichero vectores.asm el cual es necesario
para la compilacién del programa principal.

svectors.asm
5
.global _c_int@®, _ISR_I2S_rx, _ISR_I2S_tx
.global Reset ; Es necesario incluirla con este nombre

.sect "vectores"

_Reset: .ivec _c_int0@0,USE_RETA
NMI: .ivec dummy_isr ; Nonmaskable Interrupt
INTO: .ivec dummy_isr ; External User Interrupt #0
INT1: .ivec dummy_isr ; External User Interrupt #1
TINTO: .ivec dummy_isr ; Timer #@ / Software Interrupt #4
PROGO: .ivec dummy_isr ; Programmable © Interrupt
UART: .ivec dummy_isr ; IIS #1 Receive Interrupt
PROG1: .ivec dummy_isr ; Programmable 1 Interrupt
DMA: .ivec dummy_isr ;5 DMA Interrupt
PROG2: .ivec dummy_isr ; Programmable 2 Interrupt
COPROCFFT: .ivec dummy_isr ; Coprocessor FFT Module Interrupt
PROG3: .ivec dummy_isr ; Programmable 3 Interrupt
LCD: .ivec dummy_isr ; LCD Interrupt
SARADC: .ivec dummy_isr 5 SAR ADC Interrupt
XMIT2: .ivec _ISR_I2S_tx ;5 I2S2 Tx Interrupt
RCV2: .ivec _ISR_I2S_rx ;5 I2S2 Rx Interrupt
XMIT3: .ivec dummy_isr ; I2S3 Tx Interrupt
RCV3: .ivec dummy_isr ; I2S3 Rx Interrupt
RTC: .ivec dummy_isr ; RTC interrupt
SPI: .ivec dummy_isr ;5 SPI Receive Interrupt
USB: .ivec dummy_isr 5 USB Transmit Interrupt
GPIO: .ivec dummy_isr 5 GPIO Interrupt
EMIF: .ivec dummy_isr ; EMIF Interrupt
I2C: .ivec dummy_isr ; IIC interrupt
BERRIV:
IV24: .ivec dummy_isr ; Bus error interrupt
DLOGIV:
IV25: .ivec dummy_isr ; Data log (RTDX) interrupt
RTOSIV:
IV26: .ivec dummy_isr ; Real-time 0S interrupt
IV27: .ivec dummy_isr ; General-purpose software-only
interrupt
Iv28: .ivec dummy_isr ; General-purpose software-only
interrupt
IV29: .ivec dummy_isr ; General-purpose software-only
interrupt
IvV3e: .ivec dummy_isr ; General-purpose software-only
interrupt
IV31: .ivec dummy_isr ; General-purpose software-only
interrupt

.text ; E1 codigo siguiente se incluye en la seccion .text
dummy_isr B dummy_isr ; Bucle infinito, bloquea el DSP en caso de error

5 en las interrpciones

.end

61

ANEXO II: Esquema de tiempos de reproduccion.

Para explicar con mas detalle la implementacién de la captura y reproduccion del audio se
adjunta la figura 33: Esquema de tiempos de reproduccién, en la que se explica cémo se realiza
el procesado y a qué velocidad en cada una de las partes del sistema.

[Ty SN KN NN NN N AR (N S N S R N

DSP transmisor

de datos " o

UART a 115200 baudios y
transmisidn y recepcidn de
los datos en bruto
~F)

DSP receptor de

datos

e ||| 0)

fs = BkHz

Figura 33: Esquema de tiempos de reproduccion

Como se puede observar en la figura 33, el DSP transmisor de datos coge las muestras de voz a
48 kHz pero solamente envia por la UART una de cada seis muestras, por lo que la frecuencia
aparente es de 8kHz. Estos datos son enviados a través de la UART y se reproducen en el DSP
receptor. El DSP receptor genera las interrupciones a 48 kHz, en las cuales cada 6 muestras, es
decir cada 8kHz, comprueba si existe un nuevo dato en la UART en cuyo caso actualiza la
variable que contiene al dato y lo reproduce.

Como se esta transmitiendo y reproduciendo a 8kHz basta con configurar la UART a 115200
baudios, ya que la velocidad minima necesaria para reproducir a frecuencia de 8kHz seria de
80000 baudios.

El filtrado del dato como se ha comentado en el apartado 3.1 Filtro para la banda telefénica se
realiza a 48 kHz y aunque no todos los datos en transmisién son enviados por la UART, el
filtrado si que se realiza a 48 kHz.

En la reproduccion del audio se ha tenido en cuenta que una vez que el dato llega al sistema,
éste estd presente durante 8 interrupciones de 48kHz, lo cual genera un sobremuestreo de la
sefial y se debe filtrar para seguir cumpliendo el teorema de Nyquist. El filtro empleado es el

del apartado 3.1 Filtro para la banda telefonica.

63

