Lloyd-model generalization: Conductance fluctuations in one-dimensional disordered systems
Resumen: We perform a detailed numerical study of the conductance G through one-dimensional (1D) tight-binding wires with on-site disorder. The random configurations of the on-site energies e of the tight-binding Hamiltonian are characterized by long-tailed distributions: For large e, P(e)~1/e1+a with a(0, 2). Our model serves as a generalization of the 1D Lloyd model, which corresponds to a=1. First, we verify that the ensemble average -lnG is proportional to the length of the wire L for all values of a, providing the localization length ¿ from -lnG=2L/¿. Then, we show that the probability distribution function P(G) is fully determined by the exponent a and -lnG. In contrast to 1D wires with standard white-noise disorder, our wire model exhibits bimodal distributions of the conductance with peaks at G=0 and 1. In addition, we show that P(lnG) is proportional to Gß, for G¿0, with ß=a/2, in agreement with previous studies.
Idioma: Inglés
DOI: 10.1103/PhysRevE.93.012135
Año: 2016
Publicado en: Physical Review E 93, 1 (2016), 012135 [ 5pp.]
ISSN: 2470-0045

Factor impacto JCR: 2.366 (2016)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 6 / 55 = 0.109 (2016) - Q1 - T1
Categ. JCR: PHYSICS, FLUIDS & PLASMAS rank: 10 / 31 = 0.323 (2016) - Q2 - T1

Factor impacto SCIMAGO: 1.27 - Condensed Matter Physics (Q1) - Statistics and Probability (Q1) - Statistical and Nonlinear Physics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2012-35719-C02
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-02-21-13:04:48)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-03-03, last modified 2020-02-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)