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ABSTRACT 16 

The integrated analysis of foraminiferal assemblages, geochemical proxies, and stable isotopes 17 

in the Oued Bahloul section (Tunisia) allowed us to reconstruct the environmental turnover 18 

across the Cenomanian–Turonian boundary. An increase in palaeoproductivity proxies (P/Ti, 19 

U/Al, Sr/Al) and in δ
13

C values, and a decrease in foraminiferal diversity and δ
18

O values mark 20 

the beginning of the Oceanic Anoxic Event 2 (OAE2) at the Rotalipora cushmani and 21 

Whiteinella archaeocretacea biozones boundary. Eutrophic conditions at the seafloor and in the 22 

water column are evidenced by high proportions of buliminids and the replacement of planktic 23 

oligotrophic specialist Rotalipora by eutrophic opportunist Hedbergella. The enrichment in 24 

organic matter and redox sensitive elements, together with the abundance of low-oxygen 25 

tolerant benthic foraminifera, indicate dysoxic conditions in the deep-water column and at the 26 
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seafloor (higher Uaut than Moaut). Among planktic foraminifera, deep- and intermediate-dwellers 27 

disappear (Rotalipora and Globigerinelloides), and surface-dwellers proliferate (Hedbergella). 28 

The persistency of the poorly oxygenated conditions during the W. archaeocretacea Biozone 29 

locally produced euxinic conditions where MoEF and Moaut reach high values, diversity presents 30 

minimum values, and benthic foraminifera temporarily disappear. The maximum percentage of 31 

heterohelicids indicates a stratified water column with a well-developed oxygen minimum zone. 32 

Improved oxygen conditions returned in the upper part of the W. archaeocretacea Biozone and 33 

Helvetoglobotruncana helvetica Biozone, with a slow recovery of foraminiferal assemblages, 34 

decrease in eutrophic genera (Heterohelix) and increase in mesotrophic genera (Whiteinella). A 35 

gradual increase in δ
18

O values suggests decreased temperatures in surface waters. The OAE2 36 

has been attributed to global temperature changes and palaeoceanographic reorganization. The 37 

poor mixing of surface and deep waters and enhanced primary productivity related to global 38 

warming —associated with increasing continental weathering and nutrient runoff— may have 39 

favored the eutrophication of the ocean and the expansion of the oxygen minimum zone.  40 

 41 

Keywords: trophic conditions, redox conditions, ecostratigraphy, foraminifera, OAE2, 42 

Cretaceous 43 

 44 

1. Introduction 45 

 46 

 The Oceanic Anoxic Event 2 (OAE2), also called Bonarelli Event (e.g., Schlanger and 47 

Jenkyns, 1976; Arthur et al., 1990), is represented by the worldwide deposition of organic-rich 48 

facies close to the Cenomanian–Turonian (C-T) boundary. Two main hypotheses have been 49 

invoked to explain the deposition of organic-rich facies during the Cretaceous: (1) oceanic 50 

anoxia prevented the degradation of organic matter settling through the water column down to 51 

the seafloor by decreased oxygen supply to the deep ocean due to slower oceanic circulation 52 

(e.g. Erbacher et al., 2001; Tsandev and Slomp, 2009), or (2) enhanced surface water 53 
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productivity exceeded the oxygen availability for decaying organic matter at the seafloor (e.g. 54 

Sarmiento et al., 1988; Handoh and Lenton, 2003). The OAE2 has been related to 55 

palaeoceanographic and climatic changes including greenhouse warming (e.g. Huber et al., 56 

2002; Norris et al., 2002; Bornemann et al., 2008; Tsandev and Slomp, 2009; Monteiro et al., 57 

2012; Pogge von Strandmann et al., 2013), a sea-level transgression (Hallam, 1992), a 58 

perturbation of the carbon cycle (e.g. Kuypers et al., 2002; Erba, 2004; Pogge von Strandmann 59 

et al., 2013) and a probable massive magmatic episode (e.g. Kuroda et al., 2007; Turgeon and 60 

Creaser, 2008; Erba et al., 2013). The planktic foraminiferal turnover (Coccioni and Luciani, 61 

2004; Caron et al., 2006) includes the disappearance of genus Rotalipora close to the OAE2 62 

(e.g. Hart 1996, 1999; Nederbragt and Fiorentino, 1999; Keller et al., 2001; Coccioni and 63 

Luciani, 2004). Planktic foraminifera are sensitive to temperature, chemical and trophic 64 

conditions of the sea water (Caron, 1983; Caron and Homewood, 1983; Petrizzo, 2002; 65 

Gebhardt et al., 2004, 2010), and the ecostratigraphic analysis of their assemblages may be used 66 

to reconstruct palaeoceanographic and palaeoecological changes across the OAE2. In addition, 67 

the ecostratigraphic analysis of benthic foraminiferal assemblages is a useful tool to interpret 68 

fluctuations in oxygen and nutrient availability (e.g. Bernhard, 1986; Nagy, 1992; Jorissen et al., 69 

1995; Van der Zwaan et al., 1999; Klein and Mutterlose, 2001; Reolid et al., 2008, 2012a, b). 70 

Some authors have interpreted an extinction event affecting benthic foraminiferal assemblages 71 

at the C-T boundary (e.g. Peryt and Lamolda, 1996; Kaiho, 1994, 1999; Peryt, 2004), yet there 72 

is no unanimity (Holbourn and Kuhnt, 2002). 73 

 The analysis of redox-sensitive trace elements (such as Co, Cr, Cu, Mo, and Ni, among 74 

others) has proven to be a powerful tool for interpreting redox conditions in oceans during 75 

anoxic events. These elements are less soluble under reducing conditions, resulting in 76 

synsedimentary enrichments under oxygen-depleted conditions (Wignall and Myers, 1988; 77 

Calvert and Pedersen, 1993; Jones and Manning, 1994; Powell et al., 2003; Gallego-Torres et 78 

al., 2007; Reolid et al., 2012a, b). Geochemical proxies have also been successfully applied to 79 

interpret palaeoproductivity, the most extensively used being Ba/Al, Sr/Al, Ca/Al and P/Ti 80 
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ratios (e.g., Turgeon and Brumsack, 2006; Gallego-Torres et al., 2007; Robertson and Filippelli, 81 

2008; Sun et al., 2008; Reolid and Martínez-Ruiz, 2012; Reolid et al., 2012a, b). The total 82 

organic carbon (TOC) has also been employed as an indirect palaeoproductivity proxy (e.g., 83 

Gupta and Kawahata, 2006; Su et al., 2008), although enhanced TOC contents may result from 84 

low bottom-water ventilation and oxygen depletion. 85 

The aim of this work is to integrate planktic and benthic foraminiferal assemblages and 86 

geochemical proxies to determine the palaeoenvironmental turnover across the OAE2 in the 87 

Oued Bahloul section, Tunisia. The OAE2 and the C-T transition are recorded in the Bahloul 88 

Formation, where numerous studies on microfacies, planktic foraminifera, organic matter and 89 

stable isotopes have been carried out (e.g. Caron et al., 1999, 2006; Accarie et al., 2000; 90 

Amédro et al., 2005; Zagrarni et al., 2008; Negra et al., 2011; Soua et al., 2011; for recent 91 

works). Here we present the first integrated analysis of foraminiferal assemblages and 92 

geochemical proxies across the C–T transition at Oued Bahloul.  93 

 94 

2. Geological setting and the Oued Bahloul section 95 

 96 

The Cretaceous palaeogeography of Tunisia consists of three main domains: the 97 

Saharan Platform in the South, the Central Tunisian Platform, and the Tunisian Basin in the 98 

North (Burollet and Busson, 1983). The Central Tunisian Platform was mainly occupied by 99 

outer shelf facies rich in planktic foraminifera during the C-T interval. The Bahloul Formation 100 

is a widespread wedge that ranges from 23 m thick in the North to 2 m thick in the South, upon 101 

the Cenomanian Central Tunisian Platform (Saïdi et al., 1997; Scott, 2003; Robaszynski et al., 102 

2010; Zaghbib-Turki and Soua, 2013; Fig. 1).  103 

The Oued Bahloul section was proposed by Burollet (1956) as the type locality of the 104 

Bahloul Formation. This outcrop presents the best sedimentary record of the OAE2 in the 105 

southern margin of the Tethys (Robaszynski et al., 1993; Caron et al., 2006). The OAE2 is 106 

marked by a strong positive shift in δ
13

C in bulk carbonate and an increase in organic matter 107 
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content in the Bahloul Formation (Accarie et al., 1996; Nederbragt and Fiorentino, 1999). The 108 

studied interval is 47 m thick and includes the uppermost 5 m of the Fahdène Formation, the 109 

Bahloul Formation (29 m thick) and the lowermost 13 m of the Kef Formation (Fig. 1). The 110 

Fahdène Formation consists of an alternation of grey-greenish marls and light-coloured 111 

limestones. The Bahloul Formation is divided into two members: lower Pre-Bahloul Member 112 

and upper Bahloul s. str. Member (Fig. 1). In turn, the Pre-Bahloul Member is 3.4 m thick and 113 

its lower boundary with the Fahdène Formation is sharp and erosive. The first level (0.5 m 114 

thick) is a sandy micro-conglomeratic limestone that contains phosphatic black pebbles and 115 

quartz grains with well-developed graded bedding. The overlying bed is a bioclastic-rich 116 

calcarenite. The upper part of the Pre-Bahloul Member consists of marls with a decreasing 117 

content of quartz and bioclasts. 118 

The Bahloul s. str. Member, in this work Bahloul Member, is composed of an 119 

alternation of 2 to 5 cm thick, bedded black limestones with thin parallel lamination, and grey 120 

marls. Different calcareous packages (50 cm thick) may be recognized where thin black 121 

limestones dominate versus intervals with dominance of grey marls. The lamination of the black 122 

limestones consists of clear laminae with abundant planktic foraminifera, and black laminae 123 

with abundant pellets embedded in a dark matrix with common radiolaria, benthic foraminifera 124 

(buliminids) and planktic foraminifera. The vertical transition from laminated black limestones 125 

to grey marls is gradual, but the transition from grey marls to black laminated limestones is 126 

abrupt. The top of the Bahloul Formation corresponds to densely bioturbated grey marls, and is 127 

locally overlain by a thin limestone layer rich in ammonoid moulds with phosphate and 128 

glauconite grains (Caron et al., 2006; Zagrarni et al., 2008). The overlying Annaba Member of 129 

the Kef Formation consists of grey marls with interlayered marly-limestones. 130 

Robaszynski et al. (1990, 1993) located a sequence boundary at the top of Fahdène 131 

Formation, at the base of a channel-fill limestone bed (Ce SB5 s. Hardenbol et al., 1998). These 132 

authors situated the transgressive contact (Ce TS5) at the top of a thicker limestone bed, and the 133 

maximum flooding surface between the black laminated limestones of the Bahloul Formation 134 
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and the marls of the Kef Formation.  135 

 136 

3. Material and methods 137 

 138 

Foraminiferal and geochemical analyses were conducted across the upper Cenomanian- 139 

lower Turonian at Oued Bahloul section. A total of 25 sampling levels were selected from this 140 

47 m thick limestone and marly-limestone succession (Fig. 1). Micropalaeontological samples 141 

were disaggregated in water with diluted H2O2, washed through a 63 µm sieve, and dried at 142 

50ºC. More endurated limestones were immersed in acetic acid (80%) during 1 h to 4 h, 143 

depending on the carbonate content, then washed through a 63 µm sieve, and dried at 50ºC. 144 

Quantitative studies (Tables 1 and 2) were based on representative splits (using a 145 

modified Otto microsplitter) of over 300 specimens of benthic foraminifera larger than 63 µm 146 

and 300 specimens of planktic foraminifera larger than 100 µm per sample. The remaining 147 

residue was scanned for rare species. Planktic foraminiferal taxa (Fig. 2) were also allocated to 148 

biserial (Heterohelix), triserial (Guembelitria), planispiral (Globigerinelloides), and trochospiral 149 

morphogroups (Table 3). The latter include strongly keeled (Dicarinella, Rotalipora, 150 

Thalmanninella), weakly keeled (Anaticinella, Helvetoglobotruncana, Praeglobotruncana) and 151 

unkeeled (Hedbergella, Schackoina, Whiteinella) forms (Table 3). Changes in depth 152 

stratification of the water column and trophic structure, temperature and salinity are the main 153 

factors controlling the composition of planktic foraminiferal assemblages. The stratification and 154 

richness of nutrients in the water column is narrowly related to productivity and the behavior of 155 

the planktic foraminifera. In this sense, opportunists (r-strategists) flourish in eutrophic waters 156 

whereas specialists (K-strategists) proliferate in oligotrophic waters (Valentine, 1973). Depth 157 

stratification favored differentiation of biotic and abiotic environmental features providing 158 

distinct ecological niches and minimizing the competition among species (Hemleben et al., 159 

1989). Based on morphotype analyses (e.g. Corliss, 1985; Jones and Charnock, 1985; Corliss 160 

and Chen, 1988), benthic foraminiferal taxa (Fig. 3) were allocated to infaunal, epifaunal, and 161 
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epifaunal/infaunal morphogroups. In general, benthic foraminifera with trochospiral, 162 

planoconvex or biconvex tests are inferred to have had an epifaunal mode of life, living at the 163 

sediment surface or in its upper few centimetres, while infaunal foraminifera have cylindrical or 164 

flattened tapered, spherical, globular unilocular or elongated multilocular tests, and live in the 165 

deeper layers of the sediment (Corliss, 1991; Reolid et al., 2008). Simple diversity (number of 166 

species) and the Fisher-α diversity index (e.g. Murray, 1991) were calculated separately for 167 

benthic and planktic foraminiferal assemblages.  168 

Whole-rock analyses of major elements were carried out in 25 samples using X-ray 169 

fluorescence (XRF) in a Philips PW 1040/10 spectrometer. The content of trace elements was 170 

determined using an inductively coupled plasma-mass spectrometer (ICP-MS Perkin Elmer 171 

Sciex-Elan 5000) at the Centro de Instrumentación Científica (CIC, Universidad de Granada). 172 

Instrumental error was ± 2% and ± 5% for respective elemental concentrations of 50 ppm and 5 173 

ppm.  174 

The contents in C, N and S, as well as the total organic carbon (TOC) content, were 175 

analysed analyzed with an Elemental Analyzer LECO CNS-TruSpec and an Inorganic Carbon 176 

Analyzer CM5240 UIC in the laboratories of the Centro Andaluz de Medio Ambiente 177 

(CEAMA, Granada). Total organic carbon was obtained as the difference between total carbon 178 

and total inorganic carbon; it was measured in mg and calculated as percentage of sample 179 

weight.  180 

For δ
 13

C and δ
18

O analyses, and after roasting, the samples were reacted at 73ºC in an 181 

automated carbonate reaction system (Kiel-IV) coupled directly to the inlet of a Finnigan MAT 182 

253 gas ratio mass spectrometer at the Laboratory of Stable Isotopes of the University of 183 

Michigan. Isotopic ratios were corrected for 
17

O contribution and are reported in per mil 184 

notation relative to the VPDB standard. Values were calibrated using NBS 19 as the primary 185 

standard, and analytical precision was monitored by daily analyses of NBS powdered carbonate 186 

standards. The measured precision was maintained above 0.02‰ for δ
 13

C and δ
 18

O. 187 
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In order to compare trace-element proportions in samples with varying carbonate and 188 

clay contents, trace-element concentrations were normalized to aluminium content (Calvert and 189 

Pedersen, 1993). This technique avoids any lithological effects on trace or major element 190 

concentrations, assuming that Al content in sediments is heightened by alumino-silicates (e.g., 191 

Calvert, 1990). The study of palaeoproductivity was carried out applying a set of proxies (Sr/Al, 192 

U/Al and P/Ti). To analyzse palaeo-oxygenation, diverse redox proxies evaluating the relative 193 

increase of redox sensitive elements (Co/Al, Cr/Al, Cu/Al, Mo/Al, Ni/Al, and Th/Al) were 194 

applied throughout the section. Distinct enrichment factors (Mo and U), applied according to 195 

Zhou et al. (2012) and Tribovillard et al. (2012), included MoEF= [Mo/Al]sample/[Mo/Al]PAAS and 196 

UEF= [U/Al]sample/[U/Al]PAAS. The authigenic values of U and Mo were also calculated according 197 

to Zhou et al. (2012), as Moaut=[Mo]sample-[Mo]PAAS/[Al]PAAS*[Al]simple, Uaut=[U]sample-198 

[U]PAAS/[Al]PAAS*[Al]simple. 199 

 200 

4. Results 201 

 202 

4.1. Planktic foraminifera and biostratigraphy 203 

  204 

Planktic foraminifera dominate the assemblages in the Fahdène Formation (Fig. 4), 205 

where the P/B ratio is high (up to 93%). P/B values gradually decrease from the uppermost part 206 

of this formation towards the Bahloul Formation, with values commonly <30%, then gradually 207 

increase up to 98% towards the middle part of the Bahloul Formation (metre 17), remaining low 208 

(<30%) throughout the rest of the section and slightly increasing (up to 57%) in the lower part 209 

of the Kef Formation (Fig. 4). 210 

A total of 13 genera and 31 species of planktic foraminifera were identified at Oued 211 

Bahloul (Fig. 2, Appendix 1). The species distribution allowed us to identify the Rotalipora 212 

cushmani, Whiteinella archaeocretacea and Helvetoglobotruncana helvetica biozones (Fig. 5). 213 

The upper Cenomanian R. cushmani Biozone corresponds to the lower part of the studied 214 
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interval, and is mostly represented by the Fahdène Formation (Fig. 5). This interval contains 215 

abundant keeled trochospiral forms, such as Rotalipora cushmani, Thalmanninella 216 

greenhornensis, Thalmannninella brotzeni, Rotalipora monsalvensis and Anaticinella 217 

multiloculata (with a poorly developed keel). The W. archaeocretacea Biozone is 28 m thick, 218 

and it includes the uppermost 50 cm of the Fahdène Formation and the Bahloul Formation, 219 

containing the Cenomanian-Turonian boundary. This biozone is characterised by common 220 

biserial forms such as Heterohelix reussi and unkeeled trochospiral forms such as Whiteinella 221 

archaeocretacea, Whiteinella aprica, Hedbergella planispira and Hedbergella delrioensis. The 222 

H. helvetica Biozone (lower Turonian) is represented in the uppermost 1.2 m of the Bahloul 223 

Formation and in the Kef Formation. This biozone is characterised by the species 224 

Helvetoglobotruncana helvetica, Dicarinella imbricata, Shackoina bicornis and Whiteinella 225 

paradubia. 226 

The correlation of the planktic foraminiferal and ammonite (Caron et al., 1999, 2006; 227 

Amédro et al., 2005) biozones is shown in Fig. 1C. The record of Pseudocalycoceras 228 

angolaense in the Pre-Bahloul Member and lowermost 3 m of the Bahloul Member indicates the 229 

Metoicoceras geslinianum Biozone (Cenomanian). The record of Pseudaspidoceras 230 

pseudonodosoides in the Bahloul Formation (12 to 29 m) indicates a late Cenomanian age (P. 231 

pseudonodosoides Biozone), and the record of Watinoceras and Fagesia in the topmost Bahloul 232 

Formation indicates early Turonian age (Watinoceras Biozone) (Fig. 1C). The base of the Kef 233 

Formation is lower Turonian in age: the Pseudaspidoceras flexuosum Biozone has been inferred 234 

by correlation with other sections (Accarie et al., 2000), and the Thomasites rollandi Biozone is 235 

indicated by the record of Thomasites sp. (Caron et al., 2006). 236 

Diversity of planktic foraminiferal assemblages (Fig. 4) shows a decreasing trend from 237 

the Fahdène Formation towards the lower half of the Bahloul Formation (uppermost part of the 238 

R. cushmani Biozone and lower part of the W. archaeocretacea Biozone). Some taxa went 239 

extinct (e.g., Globigerinelloides ultramicrus, Thalmanninella brotzeni, T. greenhornensis, 240 

Rotalipora cushmani, R. monsalvensis), and others (e.g. Anaticinella multicostata, Dicarinella 241 
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spp., Globigerinelloides bentonensis, Schackoina spp.) temporarily disappeared across this 242 

interval and reappeared within the upper half of the W. archaeocretacea Biozone. Assemblages 243 

diversified towards the top of the section, where diversity values are similar to those in the 244 

Fahdène Formation (Fig. 4).  245 

Assemblages from the lowermost part of the section include common to abundant 246 

planispiral (Globigerinelloides bentonensis), trochospiral (Hedbergella delrioensis, H. 247 

planispira, H. simplex) and biserial forms (Heterohelix reussi) (Fig. 5). Right at the base of the 248 

Whiteinella archaeocretacea Biozone, the abundance of H. delrioensis increases up to 67% of 249 

the assemblage (metre 7), and minor quantitative peaks in Thalmanninella brotzeni and 250 

Whiteinella aprica are observed (Fig. 5). Assemblages from the lower half of the Bahloul 251 

Formation are strongly dominated by Heterohelix reussi (up to 78% of the assemblage), whose 252 

relative abundance decreases towards the upper half of this formation, where trochospiral taxa 253 

(e.g., W. archaeocretacea, W. aprica, W. baltica) become common to abundant. Assemblages 254 

from the Kef Formation are similar to those from the upper Bahloul Formation, but they contain 255 

higher percentages of triserial (Guembelitria cenomama), trochospiral (Hedbergella delrioensis) 256 

and biserial morphogroups (e.g, Globoheterohelix paraglobulosa). A 5 m thick interval in the 257 

Kef Formation (metres 37–42) is strongly dominated by W. aprica, which is rapidly replaced by 258 

Heterohelix reussi in the uppermost part of the studied section (Fig. 5). 259 

 260 

4.2. Benthic foraminifera 261 

 262 

Among benthic foraminifera, calcareous taxa dominate over agglutinated ones. A total 263 

of 45 genera and 70 species were recorded throughout the Oued Bahloul section (Appendix 2). 264 

Neobulimina, Gavelinella, Praebulimina, Tappanina, and Lenticulina are the most common 265 

genera. Trochammina, Gyroidinoides and Laevidentalina are locally abundant (Fig. 6).  266 

Changes in diversity of benthic foraminiferal assemblages are similar to those of 267 

planktic assemblages, showing a decreasing trend from the Fahdéne Formation to the middle 268 
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part of the Bahloul Formation, with minimum values in metres 10–17, and gradual recovery 269 

above this interval towards the top of the section (Fig. 4). Sample 17 (Bahloul Formation) is 270 

barren of benthic foraminifera (Fig. 6), and very few specimens were found in samples OB-28, 271 

OB-30, OB-37, OB-38 and OB-40; thus the benthic foraminiferal counts are not considered as 272 

representative in these samples. While planktic foraminiferal assemblages from the uppermost 273 

part of the studied section (upper part of W. archaeocretacea Biozone and H. helvetica Biozone) 274 

reach diversity values similar to those in the Fahdéne Formation, the diversity of benthic 275 

foraminifera does not fully recover and is significantly lower at the top of the section.  276 

Benthic foraminiferal assemblages from the lowermost part of the section are diverse 277 

and dominated by epifaunal trochospiral forms (e.g., Gavelinella flandrini, Gyroidinoides 278 

globosus and Gyroidinoides lenticulus). Spherical (Trochammina globolaevigata) and 279 

cylindrical tapered morphogroups (Praebulimina reussi and Laevidentalina spp.) are also 280 

common. The relative abundance of Gavelinella spp. significantly increases to the top of Pre-281 

Bahloul Member (Fig. 6), and assemblages are clearly dominated by Gavelinella spp., 282 

Lenticulina gaultina, and abundant Globorotalites spp. (Fig. 6). 283 

The boundary between the Pre-Bahloul Member and the Bahloul Member (lower part of 284 

the W. archaeocretacea Biozone) is characterised by an abrupt decrease in the relative 285 

abundance of Gavelinella and Lenticulina, the disappearance of such taxa as Trochammina sp., 286 

Globorotalites spp. and Lingulogavelinella frankei, and the temporary disappearance of 287 

Laevidentalina spp., Laevidentalina gaultina and Lenticulina subgaultina (Lazarus taxa). This 288 

boundary marks a clear change in benthic assemblages, from epifauna-dominated assemblages 289 

in the lower part of the section to infauna-dominated assemblages in the rest of the studied 290 

section. Low-diversity assemblages from the lower half of the Bahloul Member are clearly 291 

dominated by Neobulimina albertensis (up to 81% of the assemblages), with a minor 292 

contribution of Tappanina laciniosa and Coryphostoma spp. The upper part of this member 293 

contains more diversified assemblages, with abundant Neobulimina albertensis and T. laciniosa, 294 
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common Laevidentalina spp., and new taxa such as Gavelinella rochardensis and Bolivina sp. 295 

(Fig. 6). 296 

The lowermost 2.5 m of the H. helvetica Biozone are characterised by the disappearance 297 

of Astacolus spp. and Dorothia spp. The Annaba Formation (H. helvetica Biozone) contains 298 

highly variable percentages of Neobulimina albertensis and quantitative peaks of infaunal 299 

(Lenticulina subgaultina, Bolivina spp.) and some epifaunal taxa (Gavelinella spp., 300 

Gyroidinoides lenticulus). 301 

 302 

4.3. Geochemistry 303 

 304 

4.3.1. Redox proxies 305 

The stratigraphic distribution throughout the succession of the analysed ratios shows 306 

three intervals with main changes: a) the base of the W. archaeocretacea Biozone, b) the middle 307 

part of the W. archaeocretacea Biozone, and c) the W. archaeocretacea/H. helvetica biozone 308 

boundary.  309 

The lowermost part of the section (R. cushmani Biozone) is characterised by decreasing 310 

Co/Al, Ni/Al and Th/Al ratios, followed by a sudden increase in all the studied proxies in the 311 

Pre-Bahloul Member (base of W. archaeocretacea Biozone, Fig. 7). The MoEF, Moaut., UEF and 312 

Uaut. ratios also increase in the Pre-Bahloul Member, with a dramatic increase in U proxies in 313 

the topmost Fahdène Formation (R. cushmani/W. archaeocretacea biozone boundary), 314 

immediately preceding the peaks of all other proxies. The UEF values reach 8.08, which is very 315 

relevant (Fig. 7). According to Tribovillard et al. (2012), values of elemental enrichment factor 316 

> 3 are considerable and > 10 is considered as a strong enrichment.  317 

An increase in the Cr/Al ratio and in MoEF and Moaut values, and a minor increase in 318 

Cu/Al, Ni/Al, UEF and Uaut are recorded in sample OB-17 (metre 17, middle part of the W. 319 

archaeocretacea Biozone), which is barren of benthic foraminifera (Fig. 7).  320 
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The Th/Al ratio remains constant throughout the rest of the section, while the other 321 

proxies increase towards the top of the Bahloul Formation (W. archaeocretacea/H. helvetica 322 

biozone boundary), where new peaks in Co/Al, Cr/Al, Cu/Al, Ni/Al and MoEF and minor 323 

increases in Th/Al, Moaut., UEF and Uaut are observed (Fig. 7). Towards the top of the section 324 

(Annaba Member), the selected ratios return to the original values recorded in the lowermost 325 

part of the section (Fahdène Formation). 326 

 327 

4.3.2. Palaeoproductivity proxies and TOC  328 

In contrast to redox proxies, the selected palaeoproductivity proxies and TOC only 329 

show prominent changes in the Pre-Bahloul Formation (base of the W. archaeocretacea 330 

Biozone; Fig. 8). The U/Al and P/Ti ratios increase coinciding with the first peak in redox 331 

proxies, whereas TOC reaches the maximum values (2.8 wt.%) 1 m above the U/Al and P/Ti 332 

peaks. TOC values fluctuate throughout the rest of the section but never exceed the high values 333 

recorded at the top of the Pre-Bahloul Formation. The Sr/Al ratio and TOC values (2.1 wt.%) 334 

are higher in the W. archaeocretacea/H. helvetica biozone boundary than in the other biozones. 335 

Apart from decreased TOC and Sr/Al values in the lower half of the Annaba Member, 336 

palaeoproductivity proxies remain relatively stable up to the top of the section. 337 

 338 

4.3.3. δ
13

C and δ
18

O 339 

 Bulk rock δ
13

C values obtained in this study have been compared to previous results by 340 

Caron et al. (2006) and Zagrarni et al. (2008), and show similar trends (Fig. 9). A 2‰ increase 341 

(from 1.83 – 3.76‰) in δ
13

C is recorded at the transition from the Pre-Bahloul Member to the 342 

Bahloul Member (lower part of the W. archaeocretacea Biozone). A marked increase in δ
13

C 343 

values is a typical feature of the OAE2 (e.g. Scholle and Arthur, 1980; Schlanger et al., 1987). 344 

δ
13

C values remain high throughout most of the W. archaeocretacea Biozone (mean value 345 

3.09‰), and decrease in its uppermost 5 m. The δ
13

C mean value in the H. helvetica Biozone 346 

(base of the Annaba Member) is 2.30‰. 347 
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 The δ
18

O values gradually decrease from the Fahdène Formation to the Bahloul Member 348 

(from -4.54 to -5.31‰), and remain low (mean value -5.39‰) throughout the rest of the Bahloul 349 

Formation, progressively increasing in the Annaba Member (mean value -4.55‰). 350 

  351 

5. Palaeoenvironmental interpretation 352 

 353 

5.1. Top of the Fahdène Formation and Pre-Bahloul Member 354 

 355 

Analysis of redox conditions in the water column and at the seafloor is based on redox-356 

sensitive trace elements (Co, Cr, Cu, Mo, Ni, U, and Th), which tend to co-precipitate with 357 

sulfides (mainly pyrite) and are usually not remobilised during diagenesis in the absence of 358 

post-depositional replacement of oxidizing agents (Tribovillard et al., 2006). The enrichment in 359 

redox sensitive elements (Co/Al, Cr/Al, Cu/Al, U/Al, Th/Al, MoEF, Moaut, UEF and Uaut) points 360 

to depleted oxygen conditions during deposition of the Pre-Bahloul Member (base of the W. 361 

archaeocretacea Biozone). U-based proxies (UEF=8.08; Fig. 7) and increased TOC values point 362 

to depleted oxygen conditions in the lower part of the water column. 363 

The P/Ti ratio is a commonly used proxy for productivity (Latimer and Filippelli, 2001; 364 

Robertson and Filippelli, 2008; Reolid et al., 2012a, b). Increased values are related to higher 365 

phosphorous supply to the seafloor derived from biological processes, not from terrigenous 366 

components (Latimer and Filippelli, 2001; Flores et al., 2005; Sen et al., 2008). At Oued 367 

Bahloul, the increase in P/Ti values at the base of the W. archaeocretacea Biozone (Pre-368 

Bahloul Member) indicates an abrupt increase in productivity (Fig. 8). Mort et al. (2007) 369 

suggested that the increase in P-accumulation rates coinciding with the OAE2 may be related to 370 

an overall increase in surface-water productivity. At Oued Bahloul, high P/Ti values coincide 371 

with high U/Al and UEF values (Figs. 7 and 8), and point to a productivity increase in the Pre-372 

Bahloul Member. The Sr/Al ratio, which has also been used as a palaeoproductivity proxy (Sun 373 

et al., 2008; Reolid et al., 2012), shows a minor increase in the Pre-Bahloul Member (Fig. 8).  374 
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This interpretation is compatible with the decreased foraminiferal diversity (both in 375 

planktic and benthic assemblages) and with the assemblage turnover at the base of the W. 376 

archaeocretacea Biozone (Figs. 4–6). Among benthic assemblages, the percentage of 377 

Gavelinella spp. and Lenticulina spp. significantly increases in the Pre-Bahloul Member, and 378 

Globorotalites shows a minor peak (Fig. 6). Lenticulina is regarded as an opportunistic genus 379 

that recolonizes the seafloor after redox fluctuations (Tyszka, 1994; Reolid et al., 2008; Reolid 380 

et al., 2012a). Gavelinella spp. is a low-oxygen tolerant genus (Sliter, 1975; Gertsch et al., 381 

2010), and it occurs in shales with high organic matter levels (Holbourn et al., 2001). 382 

Globorotalites has been observed to peak under stressful conditions at the seafloor after the 383 

Cretaceous/Paleogene impact event, mostly related to changes in the type (rather than in the 384 

amount) of food supply (Alegret, 2007; Alegret et al., 2012). This assemblage composition, 385 

together with the disappearance of some taxa at the R. cushmani/W. archaeocretacea biozone 386 

boundary, indicate dysoxic conditions and a high food flux to the seafloor. The disappearance 387 

of Dorothia, Gyroidinoides, Laevidentalina, Lingulogavelinella, and Pyrulinoides may be 388 

related to the dysoxic conditions in the sea-bottom. The boundary between the Pre-Bahloul 389 

Member and the Bahloul Member is characterised by the disappearance or abrupt decrease in 390 

relative abundance of Lenticulina, Gavelinella and Globorotalites, and by an abrupt increase in 391 

low-oxygen tolerant forms such as epifaunal Neobulimina (Fig. 6). 392 

The planktic foraminiferal turnover across the Pre-Bahloul Member includes the 393 

disappearance of specialist, intermediate to deep-dweller species adapted to oligotrophic 394 

environments (Rotalipora monsalvensis), along with the temporary disappearance of 395 

mesotrophic, intermediate-dwellers (Praeglobotruncana gibba, Dicarinella spp.). A peak in the 396 

relative abundance of the specialist intermediate-dweller Thalmanninella brotzeni is recorded at 397 

the base of the Pre-Bahloul Member just before its disappearance (Fig. 5). The percentages of 398 

the eutrophic, surface-dweller species Hedbergella delrioensis (and Whiteinella aprica to a 399 

minor extent) increase towards the top of the Pre-Bahloul Member, coinciding with the peaks in 400 

redox proxies (Figs. 7 and 8), the disappearance of deep-dweller species (R. cuhsmani), and the 401 
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temporary disappearance of surface- and intermediate-dwellers (Globigerinelloides spp., 402 

Praeglobotruncana stephani). These data suggest that the deeper and intermediate layers of the 403 

water column were more severely affected than surface waters at the R. cushmani-W. 404 

archaeocretacea biozone transition, as suggested by Coccioni and Luciani (2004). An increase 405 

in surface palaeoproductivity is supported by the disappearance of the large keeled Rotalipora, a 406 

specialist genus probably living at or below the thermocline in oligotrophic conditions 407 

(Coccioni and Luciani, 2004; Table 3), and by the increase in relative abundance of small-sized 408 

Hedbergella and Heterohelix, opportunistic taxa adapted to eutrophic conditions (e.g. Hart, 409 

1999; Keller et al., 2001; Table 3). An increase in P content in sections from the Tethys and 410 

North Atlantic has been interpreted as indicative of changes in continental input (and nutrient 411 

influx) or upwelling intensification during the late Cenomanian (Mort et al., 2007). Monteiro et 412 

al. (2012) suggested that a high P content could be sustained by increased chemical weathering 413 

and P regeneration from anoxic sediments. 414 

The increase in P/Ti and U/Al in the Pre-Bahloul Member has good stratigraphic 415 

correlation with increased redox proxies (Co/Al, Cr/Al, Ni/Al, and Th/Al), and shows a short 416 

delay with respect to the increase in TOC values (Figs. 7 and 8). The marine anoxia of the 417 

OAE2 is thought to have been related to enhanced biological productivity (e.g. Monteiro et al., 418 

2012; Pogge von Strandmann et al., 2013). Uranium and organic matter in the sediment are 419 

related, as uranium may form a complex with dissolved fulvic acid in hemipelagic sediments 420 

(Nagao and Nakashima, 1992). In this sense, high values for U/Al, UEF and Uaut are congruent 421 

with the high values of P/Ti.  422 

In open-ocean systems with suboxic bottom waters, Uaut enrichment is greater than that 423 

of Moaut because Uaut accumulation begins at the Fe(II)-Fe(III) redox boundary (Zhou et al., 424 

2012), while Moaut accumulation becomes more important as waters become euxinic. Higher 425 

values of Uaut recorded in the Pre-Bahloul Member are congruent with oxygen-depleted 426 

conditions not only at the sea-bottom waters but also in the deeper layers of the water column, 427 
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where deep dwellers such as Rotalipora inhabited. The relative abundance of surface dwellers 428 

such as Hedbergella delrioensis increased in the Pre-Bahloul Member.  429 

 430 

5.2. Bahloul s. str. Member 431 

 432 

Two intervals with significant peaks in redox proxies are recorded within the Bahloul 433 

Member (Fig. 7). The first one is located in the middle part of this unit (sample OB-17), and the 434 

second one is located towards its top, at the W. archaeocretacea/H. helvetica Biozone boundary 435 

(Fig. 7). Some redox proxies, such as Th/Al, UEF and Uaut, do not show any significant changes 436 

across this interval.  437 

In the lower half of the Bahloul Member (previous to sample OB-17), the amount of 438 

dissolved oxygen in the sea-bottom waters is interpreted to have been even lower than in the 439 

underlying Pre-Bahloul Member, as inferred from the disappearance of several benthic 440 

foraminiferal taxa and from the very low-diversity assemblages (Figs. 2 and 6), which are 441 

dominated by low-oxygen tolerant forms such as Neobulimina (Gertsch et al., 2010), 442 

Praebulimina, Coryphostoma and Tappanina spp. (incl. T. laciniosa). The clear dominance of 443 

Neobulimina and Praebulimina immediately above the extinction interval suggests that they 444 

may have behaved as disaster species, as suggested by Peryt and Lamolda (1996). According to 445 

these authors, disaster taxa evolved during the late, most stressful phases of an extinction 446 

interval, and persisted during the survival and recovery intervals. Species of Coryphostoma 447 

have small, tapered tests with abundant pores, and are common in dysaerobic environments 448 

(e.g., Leutenegger and Hansen, 1979; Bernhard, 1986). Coryphostoma is a common genus in 449 

low-oxygen environments during the early Danian (Coccioni et al., 1993; Alegret, 2007), and 450 

Tappanina laciniosa is a biserial, infaunal species that has been reported from dysoxic facies in 451 

highly eutrophic environments (e.g. Eicher and Worstell, 1970; Gustafsson et al., 2003; 452 

Friedrich and Erbacher, 2006). Moreover, the dominance of infaunal taxa in the Bahloul 453 
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Member and in the Annaba Member supports the interpretation of low oxygen conditions at the 454 

seafloor (Jorissen et al., 1995). 455 

The decreased abundance of the surface-dweller Hedbergella delrioensis at the base of 456 

the Bahloul Member (Fig. 5) points to oxygen-depleted eutrophic surface waters, while low-457 

oxygen conditions only affected deep and intermediate waters in the underlying Pre-Bahloul 458 

Member. Only Heterohelix reussi —opportunistic taxon adapted to eutrophic conditions— 459 

proliferates in the lower part of Baloul Member in a context of decreasing diversity of planktic 460 

foraminiferal assemblages.  461 

 Relatively higher TOC values (mean 1.42 wt.%) and high δ
13

C are recorded in the 462 

Bahloul Member (Fig. 8), suggesting higher productivity than in the other units and high 463 

accumulation of organic matter derived from surface primary productivity (Schlanger and 464 

Jenkyns, 1976; Arthur et al., 1990; Ingall et al., 1993; Van Cappellen and Ingall, 1994; Mort et 465 

al., 2007). TOC values have been used as an indirect palaeoproductivity proxy by various 466 

authors (e.g., Calvert and Fontugne, 2001; Gupta and Kawahata, 2006; Plewa et al., 2006; Su et 467 

al., 2008; Reolid et al., 2012a) when TOC is related to phytodetritus associated with 468 

phytoplankton or dinoflagellate remains. Nevertheless, because high TOC values may result 469 

from low bottom-water ventilation and oxygen depletion, they are not necessarily related to 470 

high surface productivity. According to Tribovillard et al. (2006), the TOC is generally 471 

proportional to surface-water productivity and constitutes a useful palaeoproductivity proxy in 472 

spite of certain complications attributable to efficient organic recycling, export productivity, 473 

delivery to the sediment-water interface and final burial. The maximum TOC values (2.82 474 

wt.%) are recorded at the base of this unit (Fig. 8), coeval with high percentages of Heterohelix 475 

reussi, Heterohelix moremani and Hedbergella planispira (Fig. 5), which are thought to be 476 

indicative of eutrophic environments (Table 3). These results are compatible with the analyses 477 

of organic matter carried out by Farrimond et al. (1990), who reported abundant algal-derived 478 

biological markers across the Cenomanian-Turonian transition at Oued Bahloul, suggesting high 479 

surface productivity. High TOC values are also correlated to high percentages of Neobulimina 480 
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and other buliminids (Fig. 6), which are considered to be indicators of high-food and/or low 481 

oxygenation at the seafloor in the modern oceans (e.g., Fontanier et al., 2002; Gooday, 2003). 482 

The dominance of buliminids is also compatible with the proposed conditions, given that high 483 

proportions of buliminids indicate eutrophic conditions (Sprong et al., 2013). These results point 484 

to a high export productivity and poor oxygenation at the sea-bottom waters during deposition 485 

of the lower part of the Bahloul Member; and combined with the high TOC and δ
13

C values 486 

(Figs. 8 and 9), they suggest a major climatic and palaeoceanographic perturbation in a 487 

transgressive context (e.g. Zagrarni et al., 2008). In addition, Caron et al. (1999) and Soua et al. 488 

(2011) documented the proliferation of radiolarians (mainly Nassellarian) and diatoms at the 489 

base of the Whiteinella archaeocretacea Biozone (from the uppermost Pre-Bahloul Member), in 490 

coincidence with an increased abundance of Heterohelix during the deposition of dark laminated 491 

limestones. These authors interpreted the proliferation of radiolarians as indicative of renewal of 492 

nutrient-rich oceanic waters and increase in water depth.   493 

 An increase in MoEF and Moaut, and a minor increase in Cu/Al, Cr/Al and Ni/Al are 494 

observed in bed OB-17 (Fig. 7). High MoEF and Moaut values require the presence of H2S 495 

(euxinic conditions) (Tribovillard et al., 2012; Zhou et al., 2012). The gradual increase in MoEF 496 

and Moaut across the lower half of the studied section indicates a progressive decrease in oxygen 497 

availability towards euxinic conditions. Other authors have reported euxinic conditions from the 498 

OAE2 (e.g. Wang et al., 2001; Scopelliti et al., 2004). The progressive accentuation of oxygen-499 

depleted conditions from the Pre-Bahloul Member towards the lower half of the Bahloul 500 

Member is compatible with the disappearance of benthic taxa that flourished at the beginning of 501 

the suboxic conditions (e.g., Lenticulina, Gavelinella, Globorotalites), and with the proliferation 502 

of the disaster genus Neobulimina (low oxygen tolerant form, Friedrich et al., 2009), which has 503 

been documented from other sections during the Cenomanian–Turonian event (e.g. Gebhardt et 504 

al., 2004). Finally, the interpretation of anoxia/euxinia is compatible with the lack of benthic 505 

foraminifera and very low diversity of planktic assemblages in sample OB-17. The bed OB-17 506 

represents a benthic barren level. Unfavorable conditions also affected the water column during 507 



20 

 

 

this interval, as inferred from the dramatic decrease in the percentage of the opportunistic 508 

surface dweller Hedbergella delrioensis and the increase in opportunistic surface to 509 

intermediate dwellers (Heterohelix spp.). The highest relative abundances of heterohelicids (H. 510 

reussi) occur in OB-17 (Fig. 5), where maximum values of MoEF and Moaut are recorded (Fig. 511 

7). Heterohelix has been interpreted as a low-oxygen tolerant genus that bloomed in stratified 512 

open marine settings with a well-developed oxygen minimum zone (e.g. Leckie et al., 1998; 513 

Premoli Silva and Sliter, 1999; Keller et al., 2001; Keller and Pardo, 2004).  514 

Redox proxies indicate the return to normal oxygen conditions across the upper half of 515 

the Bahloul Member, but the palaeoenvironmental perturbation induced slow recovery of the 516 

foraminiferal assemblages, as reflected by the dominance of the opportunistic Heterohelix and 517 

Whiteinella in intermediate and surface waters, respectively. Diversity of benthic assemblages 518 

slightly increases through this interval, and assemblages are dominated by buliminids 519 

(Neobulimina and Praebulimina), with higher percentages of Gavelinella rochardensis, 520 

Laevidentalina and T. laciniosa towards the upper part of the Bahloul Formation. The species T. 521 

laciniosa and the genera Gavelinella, Neobulimina and Praebulimina have been reported from 522 

dysoxic facies in highly eutrophic environments and high organic-matter fluxes (e.g. Eicher and 523 

Worstell, 1970; Coccioni et al., 1993; Gustafsson et al., 2003; Gebhardt et al., 2004; Friedrich 524 

and Erbacher, 2006; Friedrich et al., 2009). This assemblage suggests that the repopulation 525 

phase at the seafloor occurred in the upper half of the Bahloul Formation. Among planktic 526 

foraminifera, the opportunistic surface dweller Whiteinella proliferated in this interval, together 527 

with the intermediate dweller H. reussi, as previously reported from the Tethys area (Coccioni 528 

and Luciani, 2004). Non-opportunist forms including Praeglobotruncana and Dicarinella are 529 

recorded in the upper part of the W. archaeocretacea Biozone, whereas deep dweller specialists 530 

as Rotalipora are definitively extinct and there are no genera occupying this ecologic niche.  531 

A positive peak in redox proxies (MoEF, Cu/Al, Co/Al, Cr/Al, Ni/Al ratios) and a minor 532 

increase in some palaeoproductivity proxies have been recorded at the W. archaeocretacea/H. 533 

helvetica biozone boundary (sample OB-33), coinciding with an increase in the percentage of 534 
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buliminids and Guembelitria cenomana. Guembelitria is interpreted as an opportunist surface 535 

dweller adapted to poorly oxygenated, eutrophic waters (Table 3) or to variable salinity and 536 

nutrient levels (Keller and Pardo, 2004). The obtained data indicate high productivity and low-537 

oxygen conditions both in surface waters and at the seafloor towards the top of the W. 538 

archaeocretacea Biozone. According to Soua et al. (2011), the composition of radiolarian 539 

assemblages also experiments a turnover related to low-oxygen conditions with a drastic 540 

decrease of nassellarians and an abundance and diversification of spumellarians. 541 

 542 

5.3. Base of the Kef Formation 543 

 544 

A progressive increase in the diversity of planktic assemblages, together with the co-545 

occurrence of surface and intermediate-to-deep dwellers indicates partial recovery of the 546 

assemblages at the beginning of the H. helvetica Biozone. The most common taxa (Whiteinella, 547 

Heterohelix, Hedbergella) are indicative of eutrophic, oxygenated to poorly oxygenated surface 548 

and intermediate waters. Deep dwellers such as the intermediate to specialist 549 

Helvetoglobotruncana (Table 3) make only a minor contribution to the assemblages. Just after 550 

the last suboxic pulse of the top of Bahloul Member (level OB-33), Whiteinella proliferates 551 

again in the assemblage as a rapid response to improved conditions.  552 

In benthic microhabitats, the beginning of the H. helvetica Biozone is marked by an 553 

increase in relative abundance of Gyroidinoides, Lenticulina and Planularia, and a decrease in 554 

Tappanina and Gavelinella. Diversity of the benthic assemblages remains low, and the 555 

dominance of buliminids (Praebulimina and Neobulimina) indicates a high food supply or low-556 

oxygen conditions at the seafloor (Jorissen et al., 1995; Widmark and Speijer, 1997; Fontanier 557 

et al., 2002).  558 

 559 

6. Climatic and palaeoceanographic changes across the Cenomanian–Turonian boundary 560 

 561 
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 Analyses of δ
18

O in bulk rock show a ~ 1.5 ‰ decrease from the base of the section 562 

towards the Bahoul Member, followed by a gradual recovery above this unit (Fig. 9). Assuming 563 

these results have not been strongly altered by diagenesis, we infer significantly warmer (~ 6ºC) 564 

temperatures during deposition of the organic rich facies of the Bahoul Member (W. 565 

archaeocretacea Biozone), coeval with the disappearance of specialist planktic foraminifera 566 

(e.g. Rotalipora) and with the proliferation of opportunistic, eutrophic forms such as 567 

Heterohelix and Hedbergella. These results suggest a narrow link between the development of 568 

the anoxic event and eutrophic conditions with changes in the ocean-atmosphere system. Some 569 

authors have identified a short term cooling during the OAE2 (e.g. Jarvis et al., 2011; Gavrilov 570 

et al., 2013; Zheng et al., 2013), which we were not able to recognize in our record from Oued 571 

Bahloul at the present resolution.  572 

 In the transgressive context of the Cenomanian–Turonian boundary (e.g. Zagrarni et al., 573 

2008), the enhanced fertility resulting in high primary productivity and eutrophication was 574 

favored by nutrient inputs by leaching from flooded shelves (Erbacher et al., 2001) or enhanced 575 

continental supply of nutrients (Föllmi, 1995; Handoh and Lenton, 2003). According to Wagner 576 

et al. (2007), the warm humid climate contributes to an intensified hydrological cycle and 577 

enhanced export of nutrient-rich weathered material from land to the ocean, as also suggested 578 

for the Paleocene-Eocene Thermal Maximum (see refs. in Arreguín-Rodríguez et al., 2014). For 579 

the end of Cenomanian, another hypothesis was developed by Caron et al. (1999): the 580 

alternation of climatic fluctuations, with evaporation/precipitation in low latitude areas and the 581 

formation of dense, hypersaline sea waters. 582 

Calcareous nannofossil turnover has been interpreted in terms of enhanced fertility and 583 

increased temperatures, pointing to an eutrophication event (Erba, 2004; Hardas and Mutterlose, 584 

2007). P-cycling models for Cretaceous Anoxic Events, however, indicate that enhanced 585 

primary productivity is not enough for producing anoxic conditions in the bottom waters if 586 

water circulation exists (Tsandev and Slomp, 2009). According to these authors, the global 587 

ocean has to be sufficiently stagnant (low mixing) to allow the system to achieve oxygen 588 
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depletion in the deep sea. In general, the thermohaline circulation during the Cretaceous is 589 

believed to have been slower due to reduced thermal gradients between the tropics and poles 590 

(e.g. Shlanger and Jenkyns, 1976; Fischer and Arthur, 1977), and the wider extension of 591 

continental shelves (e.g. Bjerrum et al., 2006). In this context, increased P supply from flooded 592 

shelves and weathered continental areas may have triggered enhanced primary production and 593 

anoxia in a stagnant ocean. In the Oued Bahloul section, a significant increase in P has been 594 

observed in the Pre-Bahloul Member coeval with high dominance of Hedbergella and the 595 

extinction of Rotalipora. The progressive decrease in oxygenation of bottom- and deep-waters 596 

towards anoxic conditions in the Bahloul Member (metre 17, OB-17) represents the most 597 

stressing conditions for the foraminiferal assemblages, with the disappearance of benthic 598 

foraminifera, the expansion of the oxygen minimum zone coincident with maximum values of 599 

Heterohelix, and probably euxinic conditions in the low water column as indicated by increased 600 

MoEF and Moaut.    601 

 602 

7. Conclusions  603 

 604 

The integrated analysis of planktic and benthic foraminiferal assemblages, geochemical 605 

proxies, TOC and δ
13

C and δ
18

O from the classic locality of the Oued Bahloul section allowed 606 

us to interpret: (a) the redox and palaeoproductivity fluctuations related to the C/T boundary, 607 

and (b) the ecostratigraphic changes of foraminiferal associations across the OAE2.  608 

Significant changes were recorded across the R. cushmani/W. archaeocretacea 609 

boundary, and planktic and benthic foraminiferal diversity decreased. The disappearance of the 610 

planktic genera Rotalipora, Praeglobotruncana, Globigerinelloides and Thalmanninella, and 611 

the occurrence of the opportunist genus Hedbergella, together with the proliferation of 612 

buliminids and the increase in palaeoproductivity proxies (P/Ti, U/Al, Sr/Al), indicate eutrophic 613 

conditions both in the water column and at the seafloor. The abundance of low-oxygen tolerant 614 

genera of benthic foraminifera at the base of W. archaeocretacea Biozone is compatible with 615 
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the enrichment in redox proxies indicating dysoxic conditions in sediment pore water. Deep 616 

waters were also oxygen-depleted, as deduced from higher values of Uaut than Moaut, favouring 617 

the disappearance of Rotalipora and Globigerinelloides and the proliferation of surface-dweller 618 

Hedbergella. The maximum TOC values registered in the lower part of the W. archaeocretacea 619 

Biozone indicate an abrupt increase in organic matter coeval with an increase in 620 

palaeoproductivity and redox proxies. 621 

The persistence of the poorly oxygenated conditions in the W. archaeocretacea Biozone 622 

probably produced euxinic conditions, as indicated by high MoEF and Moaut values, minimum 623 

diversity and the local disappearance of benthic forms. The decrease in abundance of 624 

opportunist surface dwellers (Hedbergella) and the increase in opportunist intermediate dwellers 625 

(heterohelicids), together with maximum values of MoEF and Moaut, indicate stressed conditions 626 

and stratified open marine settings with a well-developed oxygen minimum zone.  627 

The redox proxies indicate a return to normal oxygen conditions in the upper part of the 628 

W. archaeocretacea Biozone, with a slow recovery of foraminiferal assemblages. The genus 629 

Whiteinella, characteristic of mesotrophic environments, becomes more abundant upward in the 630 

section. The subsequent colonization of the bottom after the anoxic event was produced by 631 

Praebulimina (disaster genus), Gavelinella, Neobulimina and Tappanina. These genera are 632 

low-oxygen tolerant and related to high organic matter fluxes, thus representing the 633 

repopulation episode of the bottom after the benthic barren interval.     634 

The W. archaeocretacea/H. helvetica biozone boundary is characterized by increasing 635 

values of redox proxies, coeval with a new peak of Praebulimina, a decrease in Whiteinella and 636 

the record of opportunist Guembelitria.  637 

The beginning of the H. helvetica Biozone indicates a partial recovery of the planktic 638 

foraminiferal assemblage due to a persistent dominance of opportunists (Whiteinella and 639 

Hedbergella in surface waters, and Heterohelix in intermediate waters). In benthic 640 

microhabitats, the beginning of the H. helvetica Biozone is marked by an increase in relative 641 

abundance of Neobulimina, Lenticulina, and Gyroidinoides, and a decrease in Tappanina.  642 
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 Temperature changes and palaeoceanographic reorganization have been inferred across 643 

the OAE2. This entailed a low mixing of surface and deep waters (poor ocean ventilation) and 644 

enhanced primary productivity related to global warming, increasing continental weathering and 645 

nutrient input to the ocean. The expansion of the oxygen minimum zone and the eutrophication 646 

led to a reduced diversity of foraminifera and the planktic foraminiferal shift, showing a 647 

dominance of genera with low-oxygen tolerance typical of high mesotrophic to eutrophic 648 

conditions.  649 
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Appendix 1: Planktic foraminiferal species 1015 

Anaticinella multiloculata (Morrow, 1934) 1016 

Dicarinella algeriana (Caron, 1966) 1017 

Dicarinella hagni (Scheibnerova, 1962) 1018 

Dicarinella imbricata (Mornod, 1950) 1019 

Globigerinelloides bentonensis  (Morrow, 1934) 1020 

Globigerinelloides ultramicrus (Subbotina, 1949) 1021 

Globoheterohelix paraglobulosa Georgescu and Huber, 2009 1022 

Guembelitria cenomana (Keller, 1935) 1023 

Hedbergella delrioensis (Carsey, 1926) 1024 

Hedbergella planispira (Tappan, 1940) 1025 

Hedbergella simplex (Morrow, 1934) 1026 

Helvetoglobotruncana helvetica (Bolli, 1945) 1027 

Helvetoglobotruncana praehelvetica (Trujillo, 1960) 1028 



40 

 

 

Heterohelix moremani (Cushman, 1938) 1029 

Heterohelix pulchra (Brotzen, 1936) 1030 

Heterohelix reussi (Cushman, 1938) 1031 

Praeglobotruncana gibba Klaus, 1960 1032 

Praeglobotruncana stephani (Gandolfi, 1942) 1033 

Rotalipora cushmani (Morrow, 1934) 1034 

Rotalipora monsalvensis (Mornod, 1950) 1035 

Shackoina bicornis (Reichel, 1948) 1036 

Schackoina cenomana (Shacko, 1897)  1037 

Thalmanninella  brotzeni (Sigal, 1948)  1038 

Thalmanninella greenhornensis (Morrow, 1934)  1039 

Whiteinella aprica (Loeblich and Tappan, 1961) 1040 

Whiteinella archaeocretacea Pesaggno, 1967 1041 

Whiteinella aumalensis (Sigal, 1952) 1042 

Whiteinella baltica Douglas and Rankin, 1969 1043 

Whiteinella brittonensis (Loeblich and Tappan, 1961) 1044 

Whiteinella paradubia (Sigal, 1952) 1045 

Whiteinella sp. 1046 

 1047 

Appendix 2: Benthic foraminiferal species 1048 

Ammodiscus spp. 1049 

Arenobulimina  spp. 1050 

Astacolus spp. 1051 

Bathysiphon spp. 1052 

Bigenerina sp.  1053 

Bolivina sp.  1054 

Bolivinopsis sp. 1055 
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Brunsvigella thoerensis  (Bartenstein and Brand, 1951) 1056 

Charltonina australis Scheibnerová, 1978 1057 

Charltonina sp. 1058 

Conorotalites sp. 1059 

Coryphostoma spp. 1060 

Dorothia pupa (Reuss, 1860) 1061 

Dorothia spp. 1062 

Frondicularia sp. 1063 

Gaudryina pyramidata Cushman, 1926 1064 

Gaudryina spp. 1065 

Gavelinella barremiana Bettenstaedt, 1952 1066 

Gavelinella cenomanica (Brotzen, 1945) 1067 

Gavelinella flandrini Moullade. 1960 1068 

Gavelinella intermedia (Berthelin, 1880) 1069 

Gavelinella rochardensis Beckmann, 1991 1070 

Gavelinella spp. 1071 

Glandulina sp. 1072 

Globorotalites sp. 1073 

Globulina spp. 1074 

Gyroidinoides beisseli (White, 1928) 1075 

Gyroidinoides globosus (Hagenow, 1842) 1076 

Gyroidinoides lenticulus (Reuss, 1845) 1077 

Gyroidinoides spp. 1078 

Gyroidinoides subglobosus Dailey, 1970 1079 

Laevidentalina spp. 1080 

Lagena spp. 1081 

Lenticulina gaultina (Berthelin, 1880) 1082 
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Lenticulina spp. 1083 

Lenticulina subgaultina Bartenstein, 1962 1084 

Lingulina sp. 1085 

Lingulina taylorana Cushman, 1938 1086 

Lingulogavelinella frankei (Bykova, 1953) 1087 

Lingulogavelinella sp. 1088 

Marssonella oxycona (Reuss, 1860) 1089 

Neobulimina albertensis (Stelck and Wall, 1954) 1090 

Neobulimina irregularis Cushman and Parker, 1936 1091 

Neobulimina spp. 1092 

Neobulimina subregularis (de Klasz, Magné and Rérat, 1963) 1093 

Neoflabellina sp.  1094 

Palmula sp. 1095 

Planularia advena Cushman and Jarvis, 1932 1096 

Planularia dissona Plummer, 1931 1097 

Planularia sp. 1098 

Praebulimina cf. exigua Cushman and Parker, 1935 1099 

Praebulimina nannina (Tappan, 1940) 1100 

Praebulimina reussi (Morrow, 1934) 1101 

Praebulimina spp. 1102 

Pyrulina spp. 1103 

Pyrulinoides spp. 1104 

Quadrimorphina sp. 1105 

Quasispiroplectammina spp.  1106 

Ramulina spp. 1107 

Reophax sp. 1108 

Repmanina charoides (Jones and Parker, 1860) 1109 
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Saracenaria sp. 1110 

Spiroplectammina sp. 1111 

Stensioeina exsculpta (Reuss, 1860) 1112 

Tappanina laciniosa Eicher and Worstell, 1970 1113 

Tappanina sp. 1114 

Textularia sp. 1115 

Trochammina globolaevigata Beckmann, 1991 1116 

Vaginulina sp. 1117 

Valvulineria sp. 1118 

 1119 

 1120 

 1121 

Figure caption. 1122 

 1123 

Fig. 1. (A) Geological setting, (B) palaeogeographic reconstruction of Western Tethys after 1124 

Thierry (2000) and (C) Oued Bahloul section. Ammonite biostratigraphy according to 1125 

Caron et al. (1999, 2006), Accarie et al. (2000), Amédro et al. (2005) and Zagrarni et al. 1126 

(2008). 1127 

Fig. 2. Planktic foraminiferal species in the Oued Bahloul section: 1- Globigerinelloides 1128 

bentonensis (OB-3.5). 2- Globoheterohelix paraglobulosa (OB-42). 3- Guembelitria 1129 

cenomana (OB-24). 4- Hedbergella delrioensis (OB-42). 5- Hedbergella planispira (OB-1130 

22). 6- Hedbergella simplex (OB-3). 7-8 Helvetoglobotruncana helvetica (7: OB-44, 8: OB-1131 

35). 9- Heterohelix moremani (OB-13). 10- Heterohelix reussi (OB-22). 11- 1132 

Praeglobotruncana gibba (OB-3). 12- Praeglobotruncana stephani (OB-3.5). 13- 1133 

Rotalipora cushmani (OB-3). 14- Rotalipora brotzeni (OB-3.5). 15- Rotalipora 1134 

greenhornensis (OB-3.5). 16- Whiteinella archaeocretacea (OB-20). 17- Whiteinella aprica 1135 

(OB-37). 18 Whiteinella brittonensis (OB-28). Scale bars: 0.1 mm. 1136 
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Fig. 3. Benthic foraminiferal species in the Oued Bahloul section: 1- Neobulimina albertensis 1137 

(OB-10). 2- Neobulimina subregularis (OB-10). 3- Praebulimina prolixa (OB-24). 4- 1138 

Lenticulina gaultina (OB-2). 5- Gyroidinoides lenticulus (OB-2). 6- Gyroidinoides globosus 1139 

(OB-2). 7- Praebulimina nannina (OB-2). 8- Gaudryina pyramidata (OB-3). 9- 1140 

Marssonella oxycona (OB-3). 10- Lenticulina sp (OB-3). 11- Trochammina globolaevigata 1141 

(OB-3). 12- Praebulimina sp (OB-8). 13- Praebulimina reussi (OB-8). 14- Gavelinella 1142 

rochardensis (OB-8). 15- Planularia advena (OB-35.5). 16-Tappanina laciniosa (OB-33). 1143 

17- Gavelinella cf. rochardensis (OB-22). 18- Astacolus ? sp. (OB-35). Scale bars: 0.1 mm 1144 

Fig. 4. Stratigraphic distribution of planktic/benthic ratio and diversity of planktic and benthic 1145 

foraminifera. 1146 

Fig. 5. Stratigraphic distribution of planktic foraminiferal assemblages. 1147 

Fig. 6. Stratigraphic distribution of benthic foraminiferal assemblages. 1148 

Fig. 7. Stratigraphic fluctuations of geochemical redox proxies and U- and Mo-based proxies 1149 

(enrichment factor and authigenic content). 1150 

Fig. 8. Stratigraphic fluctuations of CO3Ca content, TOC and geochemical palaeproductivity 1151 

proxies. 1152 

Fig. 9. Stratigraphic fluctuations of δ
13

C and δ
18

O and comparison with previous δ
13

C curves of 1153 

Caron et al. (2006) (dashed line) and Zagrarni et al. (2008) (dotted line). 1154 

Fig. 10. Evolution of trophic conditions, productivity and oxygenation in the water column and 1155 

the seafloor (sea-bottom waters) inferred from foraminiferal assemblages and geochemical 1156 

proxies.   1157 

 1158 

 1159 

Table caption 1160 

Table 1. Planktic foraminiferal counts per sampling level. 1161 

Table 2. Benthic foraminiferal counts per sampling level. 1162 
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Table 3. Planktic forms and inferred life style including redox and trophic requirements of 1163 

planktic foraminifera from Ouled Bahloul section based on Hart and Bailey (1979), Hart 1164 

(1999), Keller et al. (2001) and Coccioni and Luciani (2005).  1165 
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Dicarinella
Intermediate-

dweller
Intermediate

Rotalipora
Intermediate 

to deep-

dweller

Specialist

Thalmanninella
Intermediate 

to deep-

dweller

Specialist

Anaticinella
Intermediate-

dweller
Intermediate

Helvetoglobotruncana

Intermediate 

to deep-

dweller

Intermediate 

to specialist

Praeglobotruncana
Intermediate-

dweller
Intermediate

Hedbergella
Surface-

dweller
Opportunist

Shackoina
Intermediate-

dweller
Intermediate

Whiteinella
Surface-

dweller
Opportunist

Planispiral Globigerinelloides

Surface to 

intermediate-

dweller

Opportunist to 

Intermediate

Biserial Heterohelix

Surface to 

intermediate -

dweller

Opportunist

Triserial Guembelitria
Surface-

dweller
Opportunist

Unkeeled  trochospiral

Morphology Genera Habitat Mode

Strongly keeled  

trochospiral

Weakly keeled  

trochospiral
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