
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado

MEJORA DE LA DETECCIÓN DE MALWARE
MEDIANTE LA MODIFICACIÓN PROFUNDA DE

SISTEMAS DE SANDBOXING

Autor

José Carlos Ramírez Vega

Director

Antonio Sanz Alcober

Ponente

José Luis Salazar Riaño

Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza.

Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación.

Curso 2014-2015

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

2

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

3

Agradecimientos

No creo que se pueda recordar a toda la gente que ha aportado su granito de arena
durante estos años de Grado. A todos los compañeros de clase que he tenido, y a todo el

claustro de profesores.

A Antonio Sanz por su tiempo, dirección y ayuda durante este trabajo, y por la guía en el
mundo de la seguridad que desinteresadamente me ha dado.

A José Luis Salazar, por su gran ayuda a la hora de plasmar el trabajo realizado en la

memoria de manera correcta.

A Mikael Keri por responder a mis dudas y permitirme aportar comentarios a su trabajo

A la ciudad del viento y a la de los lagos helados.

Al Equipo A, que siempre serán la Universidad. Disfrutad de Europa, no dudo que traeréis
grandes historias.

A los Midori Peppers y el resto de la Vieja Guardia, siempre cerca. Ayer, hoy y mañana.

A mis abuelos, tíos y tía. La familia es lo que siempre está, sin dudar.

A Mari-Pi, has sido y serás las cuatro patas de mi mesa. El Apoyo con mayúscula.

A Pepito, que no podrá venir a la presentación pero no dejará de pensar en ella ni un
minuto. Por tu preocupación, por ser un modelo inalcanzable, por tu esfuerzo, por tu

mano siempre pendiente. Cuídate mucho de los mosquitos.

A Yai. Intentaré seguirte el ritmo, hasta que no haga falta que te lo sigan.

A un Pollito, que me hace volar más alto que las nubes. Espero dar la talla.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

4

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

5

Mejora de la Detección de Malware Mediante la

Modificación Profunda de Sistemas de Sandboxing

RESUMEN

Este trabajo ha sido realizado por José Carlos Ramírez Vega y dirigido por Antonio

Sanz Alcober, siendo presentado como Trabajo de Fin de Grado de la titulación con

nombre Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación, mención

Telemática, de la Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza.

Se enmarca en el campo del análisis de código malicioso en los sistemas modernos,

conocido como malware. Concretamente en el análisis realizado de manera dinámica,

observando el comportamiento real en un sistema haciendo uso de Cuckoo Sandbox y

VirtualBox. El objetivo principal es mejorar la detección de malware esquivo, el cual es

capaz de comprobar su entorno y en caso de estar siendo analizado no desplegar su

comportamiento malicioso.

Primero se definen conceptos claves necesarios para la comprensión del trabajo,

como la tecnología a usar y su finalidad en este campo. Continúa con la explicación de

algunas de los principales retos que se plantean a la hora de usar este tipo de análisis.

Entrando ya en el propio trabajo se narra un compendio ordenado de las técnicas más

usadas por el malware moderno para esquivar los sistemas de análisis dinámico. A

continuación se muestran las medidas elegidas a implementar, el razonamiento de la

selección de cada una de ellas, posibles fallos y el resultado que se espera que produzca

el sistema en un análisis real.

Después se dan detalles conceptuales sobre la implementación realizada en Python

principalmente, aunque también se hace un uso muy ligero de shell script, batch script y

AutoHotKey script. Se darán unas pequeñas indicaciones sobre el uso del software

creado desde el punto de vista del usuario.

Finalmente se propone una metodología para comprobar la efectividad de la

implementación propuesta, que consta de: elección de muestras, enfrentamiento con el

sistema y definición de los casos de éxito. Los resultados obtenidos se muestran a través

de unas gráficas resumen que son presentadas y comentadas.

Se cierra el trabajo con conclusiones y opiniones sobre trabajo futuro en el ámbito

del análisis dinámico de malware y la ciberseguridad.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

6

Malware Detection’s Improvement through Deep

Sandboxing Systems Modification

SUMMARY

This project have been performed by José Carlos Ramírez Vega and directed by

Antonio Sanz Alcober. It is proposed as End of Bachelor’s Thesis in the Bachelor of

Engineering in Telecommunication Technologies and Services, major in Telematics, of

the University of Zaragoza.

This Thesis belongs to the malicious code (malware) analysis field. More specifically

it is part of the “dynamic analysis” group, which monitors the actual behavior of a

sample inside a system using Cuckoo Sandbox and VirtualBox. The main goal of this

project is to improve the detection of evasive malware, that is, malware that is aware of

its environment and is able to decide whether or not to display its malicious behavior.

First, key concepts like technologies are defined. Then, the main challenges in this

kind of analysis are exposed.

The main body of the thesis is organized as follows. An organized set of techniques

used by modern malware to avoid dynamic analysis is presented. Then, measures are

selected and implemented to cover these techniques. These measures are reasoned,

exposing weaknesses and expected behavior during a real analysis.

After that, the software implementation is detailed. This have been done using mainly

Python 2, but also shell script, batch script and AutHotKey script. Next, some guide lines

about the usage of the software solution from the user’s point of view is presented.

Finally a methodology to test the improvement of the solution is proposed. It contains

elements like sample selection, testing against the system, and success definition. The

results are explained using comments and graphs.

As closing lines. Conclusions and opinions about future work, the dynamic malware

analysis and cybersecurity can be found.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

7

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

8

Índice general

Contenido
Introducción .. 10

1.1 Motivación ... 10

1.2 Objetivos .. 11

Estado del arte .. 13

2.1 Virtualización y máquinas virtuales... 13

2.2 Sandboxes .. 14

2.3 Analizando malware con sandboxes .. 15

Técnicas más comunes en el malware esquivo – avanzado 18

3.1 Host Fingerprinting ... 18

3.2 Extended Sleeps ... 18

3.3 Timing .. 19

3.4 Execution Path ... 19

3.5 Hiding Processes ... 20

3.6 Interacción Humana .. 20

3.7 Específicos del Entorno ... 20

3.8 Técnicas Anti-VM ... 21

Diseño de medidas .. 24

4.1 Entorno de trabajo .. 24

4.2 Medidas frente a comprobaciones de entorno ... 26

4.3 Características de la máquina... 28

4.4 Imitación del comportamiento humano ... 28

4.5 Otras medidas dentro del guest OS .. 29

4.6 Técnicas conocidas no solucionadas .. 29

Detalles sobre la Implementación ... 31

5.1 Ventajas ... 31

5.2 Funcionamiento ... 32

Pruebas realizadas .. 35

6.1 Planteamiento de los escenarios .. 35

6.2 Resultados obtenidos ... 37

Conclusiones y trabajo futuro ... 40

Bibliografía .. 42

Anexos .. 45

Anexo A - Información ampliada de las técnicas del capítulo 3 45

A.1 Host Fingerprinting: .. 45

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

9

A.2 Extended Sleeps: ... 45

A.3 Timing... 45

A.4 Execution Path: .. 45

A.5 Hiding Processes: .. 45

A.6 Específicos del Entorno:... 46

A.7 Técnicas anti-VM: .. 46

Anexo B - Informe de un análisis realizado con Cuckoo ... 49

Anexo C - Lista de dependencias ... 54

Anexo D - Cambios en ficheros de configuración ... 55

Anexo E - Creación y modificaciones del guest .. 57

E.1 Valores generales ... 57

E.2 Valores específicos de la VM... 57

E.3 Modificaciones out-guest ... 57

E.4 Modificaciones in-guest ... 58

Anexo F - Resultados finales aplicando PaFish ... 59

F.1 Sistema básico .. 59

F.2 Sistema bastionado ... 60

Anexo G - Comparativa de informes generados por Cuckoo 61

G.1 Sistema básico .. 61

G.2 Sistema bastionado ... 63

Anexo H - Glosario de términos y siglas ... 66

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

10

Capítulo 1

Introducción

1.1 Motivación

En la actualidad millones de personas interaccionan a través de Internet cada día, y el

número sigue creciendo. Es la llamada “era de la información”. Se desea que todo el

mundo esté conectado simultáneamente, haciendo las operaciones necesarias de manera

absolutamente transparente y con las mayores facilidades para el usuario.

Su funcionamiento está basado en unas arquitecturas y protocolos diseñados cuando no

se podía imaginar la expansión que ha sufrido y cuyo principal objetivo es poder dar

mayor rendimiento, aprovechando el ancho de banda y otros recursos. En un mundo

idílico este sería el enfoque adecuado, ya que aporta el máximo beneficio en prestaciones

al conjunto de usuarios.

Con el tiempo se ha visto que no todo usuario en la red quiere convivir con los demás, ni

tienen buenas intenciones, y las comunicaciones se han convertido en una mina de oro

para nuevas modalidades de delincuencia.

Con el fin de lucrarse, los llamados ciber-delincuentes pueden intentar coordinar acciones

ocultas a los usuario en máquinas externas (botnets), bombardear agresivamente con

publicidad o directamente robar datos personales con los que suplantar a su propietario

en trámites bancarios. Situaciones en las que no se pensó en el desarrollo original de

Internet, pero que hoy ocurren con una frecuencia abrumadora.

Esto ha llevado a plantear activamente soluciones según se van descubriendo diferentes

vulnerabilidades o “trucos” en los sistemas y en las redes que permitan actuar a estos

delincuentes. En los últimos años la ciberseguridad se ha convertido en una de las

principales preocupaciones de los grandes actores del mundo de las comunicaciones e

Internet. Cada vez más, el resto de empresas y el público están empezando a ser

conscientes de ello, a través de diferentes escándalos como el robo de fotografías

personales a famosos o la filtración de datos confidenciales de servicios como Ashley

Madison.

El mundo de la ciberseguridad es muy amplio. Comprende dominios tan dispares como

las intrusiones en aplicaciones web, el bastionado de sistemas o el estudio con ingeniería

inversa de malware o código malicioso. En los programas de ingeniería actuales no suele

haber una gran oferta en estos campos. Lo más común en los grados de ingeniería es

ofrecer una asignatura introductoria, y el TFG es una buena manera de profundizar en un

tema concreto.

Estas son las razones que han llevado a la elección de la temática de este TFG. Poder

profundizar en uno de los aspectos de la seguridad, en la que se inicia a los alumnos

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

11

durante el tercer curso del grado y el reto de enfrentarse a plataformas, conceptos y

sistemas a los que no se está a veces tan acostumbrado.

Además empujará el desarrollo de la capacidad resolutiva frente a los problemas

desconocidos y enfrentará al alumno al diseño de una solución software que interaccione

con programas de terceros.

1.2 Objetivos

El objetivo principal ha sido diseñar un plan de mejora para la detección de malware,

adaptando software existente que permite analizar de manera sistemática el

comportamiento de archivos. Se ha centrado el enfoque en el malware evasivo moderno,

que trata de comprobar si está ejecutándose en una máquina virtual o una sandbox para

no mostrar actividad maligna en tal caso. Para ello, se crearán máquinas virtuales con

características no convencionales y se adaptará la configuración de Cuckoo Sandbox

haciendo más difícil detectar sus características de entorno.

Los sistemas operativos con los que se ha trabajado son: Ubuntu 14.04 LTS, para el host

en el que se ejecuta Cuckoo, VirtualBox, etc., y Windows XP SP3, para las máquinas

guest dentro de VirtualBox.

El proceso llevado a cabo ha consistido en:

 Investigación sobre virtualización, sandboxing y análisis de malware.

Adquisición de una base conceptual sobre el entorno en el que se desarrolla el

trabajo. Comprender las ventajas e inconvenientes que impone el uso de este tipo

de sistemas. Saber determinar sus debilidades y cómo son explotadas por el

malware moderno. Ser capaz de entender el proceso al que se somete una muestra

potencialmente maliciosa cuando interactúa con estos sistemas.

 Análisis de protecciones frente a análisis dinámico usadas por malware. Conocer

las diferentes características de los entornos de análisis y entender cómo una

muestra de código malicioso puede percibirlas. Enumerar y caracterizar las

técnicas usadas por el malware para detectar los diferentes indicios de análisis.

 Diseño de medidas para mejorar la detección de malware esquivo. Basado en lo

descrito en las fases anteriores, se propone una serie de medidas que palían

completa o parcialmente las técnicas usadas por el malware a la hora de ser

analizado. La elección de estas medidas está enfocada a completar las

características que las sandboxes ya ofrecen de por sí, y que permitan un

funcionamiento normal y automatizado de las mismas.

 Implementación de la solución. Aplicación automatizada de las medidas

diseñadas para la creación de máquinas virtuales y configuración de sandboxes

para su uso en el análisis de malware.

 Verificación de las mejoras a través del análisis de muestras reales. Se comprobará

la efectividad de la solución planteada realizando una batería de pruebas

automatizadas, con muestras reales obtenidas de diferentes repositorios y bases

de datos de Internet en busca de comportamiento anti-análisis. Primero se ha

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

12

planteado el escenario de pruebas, fijando SO (Sistema Operativo) del guest y

programas instalados. A partir de ahí se han analizado las muestras usando el

sistema “mejorado” y el sistema sin medidas aplicadas. Después, se presenta una

comparativa de análisis efectivos en el sistema mejorado.

Tras el desarrollo realizado se muestran una serie de conclusiones respecto al resultado

conseguido y el uso de sistemas de sandboxing en el análisis de malware moderno,

planteando posibles líneas futuras relacionadas con el TFG.

Para ayudar a la lectura de este documento se facilita un glosario de términos y siglas,

ordenado alfabéticamente, en el Anexo H.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

13

Capítulo 2

Estado del arte

Es necesario introducir conceptos básicos sobre el análisis de malware y las tecnologías

básicas usadas para ello. No se profundizará excesivamente, pero se va a dar una visión

clara sobre los sistemas virtualizados, las sandboxes y cómo se afronta hoy en día el

análisis de código malicioso.

2.1 Virtualización y máquinas virtuales

Los conceptos de máquina virtual (VM, por sus siglas en inglés) y sandbox se basan en

la llamada virtualización. La virtualización puede definirse como la creación a través de

software de algún recurso ya sea hardware, un SO (Sistema Operativo), una zona de

almacenamiento, etc., obteniendo una “interpretación virtual” del mismo. La capa de

software encargada de esta virtualización se llama hypervisor o Virtual Machine Monitor

(VMM). Esta capa divide todos los recursos disponibles de la máquina física como CPU,

memoria, etc., en diferentes entornos de ejecución que el hypervisor se encarga de

gestionar.

Uno de los usos más extendidos de la virtualización, aunque no el único, son las máquinas

virtuales. Una VM es la simulación de un equipo completo virtualizado dentro de uno

físico, denominando respectivamente guest o huésped, a la VM, y host o anfitrión, a la

máquina física. Las VM pueden tener sus propios drivers para los distintos dispositivos

de los que imita la presencia, pero es el host quien accede a estos recursos. Por ello se

puede tener un gran número de guests dentro de un mismo host.

Otro uso, es el denominado como “VM de aplicación”. En lugar de imitar un sistema

completo, soporta un proceso al que le proporcionará un entorno de ejecución particular

pudiendo ser usado en cualquier equipo y comportándose con las mismas características.

El ejemplo más conocido de este caso es la Máquina Virtual de Java (JVM).

A pesar de la visión básica dada del concepto de virtualización, a la hora de aplicarlo a

las VM existen dos posibilidades para alcanzar el objetivo: virtualización y emulación.

En la virtualización la VM se ejecuta directamente sobre el hardware de la máquina física,

controlada por el hypervisor que a efectos prácticos añade una carga extra al scheduler.

En cambio, en la emulación el hardware sobre el que se ejecuta la VM está completamente

basado en software. Esto da mucha libertad en algunos casos, se pueden ejecutar sistemas

y programas diseñados para una arquitectura completamente distinta, como plataformas

obsoletas, al igual que resulta en una reproducción más fiel en ciertos aspectos del

sistema. A cambio, tiene una penalización en rendimiento mucho mayor que el caso

anterior, pero con los procesadores tan potentes que hay en el mercado hoy en día es más

que asumible.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

14

La gran expansión de este tipo de tecnología se explica por sí sola pensando en algunas

de las ventajas de su uso, tanto en clientes como en servidores: la posibilidad de “volver

atrás” cargando una snapshot (imagen del sistema) previa hace que las pruebas y el

mantenimiento en servidores virtuales sea mucho más sencillo y ahorre coste; como ya

se ha comentado puede haber varios guest en un mismo servidor físico, lo que genera un

ahorro directo de hardware mediante lo que se denomina consolidación de servidores;

también se puede concentrar el gasto en mantenimiento/actualización de ese equipo

concreto, aumentando la fiabilidad del mismo; y un largo etc.

Una característica básica de las VM es que sus entornos están limitados en recursos por

el propio Hypervisor y no afectan al resto de guests o al host. Con ello, se puede decir

que en teoría estos entornos están completamente aislados y son indistinguibles de una

máquina real. Pero a lo largo del tiempo se han ido viendo diferentes maneras de escapar

de algunas VMs. Y por supuesto, ya que es la parte central de este trabajo, también de

poder diferenciarlas de una máquina real. Uno de los ejemplos más recientes de “escapar”

de una VM, es la vulnerabilidad llamada “VENOM” [1], que explota un buffer-overflow

en el controlador del disquete de máquinas virtuales Xen, KVM y QEMU.

2.2 Sandboxes

Una vez introducida la virtualización y las VM como uso de ella, se debe entender el

concepto de sandbox para ver como realmente están muy ligadas y ha impulsado lo que

en el campo del análisis de malware se llama análisis dinámico.

Una sandbox es un mecanismo de seguridad usado para probar o verificar el

comportamiento de un archivo, denominado muestra, de manera aislada del resto del

sistema y desde la que se puede monitorizar la actividad de la muestra en cuestión. Una

sandbox normalmente proporciona una parte limitada de espacio de disco, acceso a red u

otros recursos del sistema y cualquier cosa creada o modificada por la muestra no será

visible fuera de la sandbox, ni será guardada tras finalizar la ejecución del análisis.

Así vemos que una sandbox se entiende como un ejemplo de uso de virtualización. Como

el objetivo de estos sistemas es el análisis y la monitorización, han de ser ejecutados en

un nivel de privilegios que esté por encima, y fuera, del entorno a analizar. Es decir, al

nivel del hypervisor.

Pero las sandboxes no solo se limitan a aislar ciertos procesos y recursos del sistema, si

no que se puede aislar una VM entera dentro del sistema de sandboxing, con lo que toda

su actividad quedará monitorizada y se obtendrá información muy valiosa a la hora de

caracterizar el comportamiento de muestras potencialmente maliciosas. En estos casos la

capacidad de las VM de volver a una imagen previa del sistema es de tremenda utilidad

ya que simplifica el poder probar, una y otra vez, código potencialmente malicioso en un

entorno elegido, sin que haya que reinstalar o formatear el equipo (VM).

Aquí se empieza a ver claramente el interés que pueden tener los productores de malware

en detectar la virtualización o el sandboxing. Mientras no se pueda caracterizar una

muestra, esta podrá seguir realizando su actividad maliciosa sin ser detectada.

Actualmente lo más deseable para el malware es detectar el sistema de sandbox en lugar

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

15

de la VM, ya que muchos “objetivos deseables” de algunas muestras son sistemas

virtualizados.

Aunque no solo el malware está interesado en saber si está siendo ejecutado en un entorno

virtual. Otros casos en los que es interesante conocerlo pueden ser fabricantes de

videojuegos para comprobar si sus jugadores están haciendo trampas gracias al uso de

una VM. O para detectar la presencia de algunos de los llamados “Rootkits”, que a través

de la virtualización intentan dar al usuario una sensación de normalidad mientras llevan

a cabo sus actividades maliciosas.

2.3 Analizando malware con sandboxes

Actualmente el malware se ha convertido en todo un mercado dentro de la Deep Web,

moviendo mucho dinero. Con ello, los productores de malware no solo hacen cada vez

muestras más complejas y elaboradas, sino que cada vez están más extendidas y las

“familias”, muestras con trozos de código o comportamientos muy parecidos, son mucho

más grandes.

La conocida aproximación de detección de firmas se ha quedado insuficiente en muchos

casos, viéndose impotente ante el llamado “malware polimórfico”, una misma muestra

que muta en una variedad de archivos con diferentes características pero mismo

efecto, que ha llevado a la industria anti-malware a usar nuevos mecanismos de detección

más rápidos y que no se vean afectados por técnicas de ofuscación de código [2]. Un buen

ejemplo es el uso de los sistemas sandbox previamente explicados.

Comúnmente las técnicas de análisis de malware se dividen en análisis estático y

dinámico. El análisis estático puede hacerse simplemente extrayendo cadenas de

caracteres de interés en el ejecutable o librerías importadas, o más profundamente aplicar

ingeniería inversa pasando el binario a ensamblador y tratar de entender su

funcionamiento. En cambio, el análisis dinámico se basa en analizar la propia

ejecución/comportamiento del binario. Esto puede hacerse mediante el uso de debuggers,

viendo paso a paso el efecto de la ejecución de cada instrucción, o como en el caso de

este trabajo usando sandboxes.

Las sandbox usan diferentes mecanismos para monitorizar la muestra ejecutada tras la

introducción de un módulo en la máquina virtual, la cual intentará imitar a una víctima

en todos los aspectos.

Los métodos de análisis más comunes en las sandboxes son los hooks. Estos han sido

clasificados en [3], donde se da una explicación algo más detallada_

 Hooks a nivel de usuario: obtienen información de toda la actividad a nivel de

usuario de las aplicaciones, asemejándose al funcionamiento de un keylogger. Son

los más fáciles de detectar, y por ende, de engañar.

 Hooks a nivel de kernel: modificación del propio kernel del guest para

implementar el seguimiento deseado. De forma que desde el nivel de usuario,

donde se ejecuta la muestra, no sea fácil detectar su presencia. Se pueden

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

16

monitorizar operaciones básicas del sistema como el manejo de registros y de

archivos, en otras palabras “ver lo que el malware le pide al sistema que haga”.

 Emulación del sistema: modificación de un emulador de hardware de forma que

se coloquen hooks en zonas de memoria concreta y poder registrar la actividad de

I/O (Input/Output), periféricos, etc.

Al ser el entorno de pruebas elegido un SO Windows, objetivo de la gran mayoría del

malware actual, se necesitan tener ciertos conceptos del funcionamiento de su API

(Application Programming Interface) y la llamada “API nativa” [4]:

 API de Windows: colección de rutinas en modo usuario utilizadas para interactuar

con las funcionalidades básicas del SO, como acceso a recursos, funciones de red,

o servicios de Windows. Está documentada en la plataforma de desarrollo de

software de Windows, es la misma entre diferentes versiones del SO y está hecha

para ser la manera óptima a través de la cual las aplicaciones interactúan con el

SO.

 API nativa de Windows: aporta el interfaz de llamadas al sistema que se pueden

realizar desde el modo usuario. En algunos casos cambia entre diferentes

versiones del SO y no está oficialmente documentada ya que en principio no es la

manera correcta por la que las aplicaciones deberían interactuar con el SO.

Normalmente las aplicaciones usan la API de Windows, la cual llama a la API nativa

internamente. El interés en estas funciones de API nativa surge a raíz de que el malware

suele usarlas directamente, en vez de las llamadas de la API común, para evitar que sean

detectadas por algunas técnicas de análisis que se sitúan normalmente al nivel de llamadas

de API común.

Un ejemplo del funcionamiento que hace el sistema de ambas podría ser: una aplicación

a nivel de usuario llama a WriteFile, función de la API común contenida en kernel32.dll;

la cual internamente llama a NtWriteFile, perteneciente a la API nativa y contenida en

ntdll.dll; a partir de aquí pasaría la llamada al modo kernel que ejecuta finalmente la

rutina.

La detección de malware se asemeja al juego “el gato y el ratón”. El malware muestra

nuevas técnicas que son estudiadas y añadidas a los sistemas de detección, después el

malware evoluciona para evitar ser detectado o desarrolla nuevos comportamientos.

Como era esperable en esta evolución, han surgido diferentes maneras de hacer inefectivo

el uso de sandboxes. Estos mecanismos no solo se basan en detección de la misma, sino

también en aplicar medidas que no hagan viable su análisis automático mediante

sandboxing. Algunas de estas técnicas de detección, que serán explicadas con detalle en

el siguiente capítulo, pueden ser: buscar la interacción humana, comprobar el entorno en

el que se ejecuta, o inspeccionar el propio sistema son algunas de las más usadas y que al

“dar positivo” harían que el malware iniciara una rama de ejecución benigna que no

levantase sospechas hasta que se agotase el tiempo de análisis o simplemente terminase

su ejecución.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

17

Algunas de las debilidades del análisis dinámico con sandboxes son: la ya citada

limitación en el tiempo de análisis y en la potencia de procesado, comparándolo con un

equipo real, o que solo se muestre la actividad de “un camino de ejecución”. Esto último

hace referencia a que las muestras pueden tener diferentes ejecuciones, no solo para

mostrar actividad benigna como se ha visto, sino para desplegar diferentes modos de

actividad maligna dependiendo de su entorno [5]. Con ello no se caracteriza la muestra

de una manera tan detallada como se haría mediante el análisis estático del propio código

si fuese posible, o se necesitaría la ejecución de varias VM con diferentes sistemas de

análisis y diferentes características de entorno.

En el siguiente capítulo se enumeran algunas de las técnicas más usadas y sus posibles

soluciones. Aun así, en algunos casos es posible cambiar el funcionamiento básico y

obtener una con mejores resultados. Con esto se puede decir que no existe un sistema

perfecto e infalible para detectar malware ya que, por ejemplo, los hooks son detectables

[3].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

18

Capítulo 3

Técnicas más comunes en el malware esquivo –
avanzado

Las técnicas que se presentan a continuación son algunas de las más comunes que

diferentes analistas, investigadores o profesionales han encontrado en los miles de

muestras analizadas cada año. Conforme pasa el tiempo van variando, con lo que algunas

técnicas que se pueden considerar “desfasadas” o apenas usadas actualmente han sido

excluidas. Se puede encontrar información adicional más concreta, como las llamadas al

sistema que se suelen usar o un listado exhaustivo de las claves de registro, en el Anexo

A.

3.1 Host Fingerprinting

La lógica debajo de esta técnica es simple, “si el equipo en el que estoy siendo ejecutado

no es el mismo que el que infecté, estoy siendo analizado”. Por lo tanto, la muestra de

malware incrustará uno o varios valores únicos del sistema que acaba de infectar en su

propio binario de ejecución. Si se decide analizar esa muestra, comprobará que está

ejecutándose en una máquina distinta y no mostrará comportamiento malicioso. Al

reescribir parte de su binario el patrón de firma cambiará, haciendo imposible su

detección por tal mecanismo [6].

Algunos de los valores únicos comúnmente elegidos son: GUID, dirección MAC, nombre

de NetBIOS, una entrada de registro concreta, el path de ejecución o el nombre de

usuario.

3.2 Extended Sleeps

Técnica sencilla enfocada a aprovechar el limitado tiempo de análisis dedicado a cada

muestra de un sistema de análisis automático, con múltiples muestras que analizar. La

muestra espera sin mostrar actividad un tiempo suficiente como para en caso de ser

ejecutado en un entorno de análisis, este haya terminado. Así que aunque se utilicen varias

sandboxes en paralelo para monitorizarla, no sería identificada [7].

Podría solucionarse modificando dinámicamente el tiempo que tiene como argumento la

llamada al sistema o manipulando el reloj interno del sistema. Por ejemplo Cuckoo,

incluye un sistema para evitar extended sleeps.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

19

3.3 Timing

Una versión con cierto parecido a la anterior, pero más avanzada, son las llamadas

“técnicas de timing”.

Por ejemplo, si se obtiene el valor en milisegundos desde que se inició el sistema con

GetTickCount(), después llama a Sleep(), y finalmente a GetTickCount() de nuevo, se

puede comprobar restando ambos valores si en efecto ha pasado ese tiempo y la función

de Sleep() no tiene un hook [8].

También se han visto algunos casos que seleccionan fechas concretas [3], por ejemplo el

25 de cada mes, y al comprobar la fecha del sistema llamar a Sleep() sino coincide. Así

sucesivamente hasta que se dispara la condición y despliega su funcionamiento malicioso.

Otra mejora a esta técnica es leer valores del sistema más difíciles de suplantar como

Periodic Interrupt Timer, ACPI (Advanced Configuration and Power Interface) timer,

APIC (Advance Programable Interface Controller) timer, o ejecutar la instrucción

“rdtsc”, que devuelve un valor en ciclos del procesador [9].

En el caso de comprobar la instrucción “rdtsc”, si la sandbox estuviese basada en un

emulador en lugar de virtualización no sería posible detectarla, ya que la emulación

replica completamente el hardware de una máquina incluyendo la CPU, con lo que tendrá

su propia implementación de TSC (Time Stamp Counter) que sería coherente y similar al

de una CPU física [10].

También se han observado muestras que comprueban la hora de manera externa al sistema

[4], como podría ser conectándose a la página principal de Yahoo u otro servicio

conocido.

En esta categoría también se pueden contar las muestras que intentan consumir los

recursos del sistema de análisis, por ejemplo iniciando grandes bucles con operaciones

básicas que a las máquinas de hoy en día no les representan apenas molestia, pero en el

caso de sistemas de análisis con bajo procesado hace que termine antes el análisis que el

bucle [11].

3.4 Execution Path

En las máquinas reales, el malware suele ejecutarse en directorios tales como archivos

temporales, carpetas de descarga, etc. En cambio algunos analizadores directamente

ejecutan estas muestras desde el directorio root u otros directorios poco frecuentes en

situaciones reales.

Otra sencilla comprobación sobre el path, sea el que sea, es buscar cadenas

potencialmente sospechosas de pertenecer a un sistema de análisis, como pueden ser:

sample, virus, sandbox, malware, test… [12]

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

20

3.5 Hiding Processes

Las sandboxes suelen monitorizar la actividad de los procesos del sistema, cuándo se

crean o terminan, intentando detectar actividades raras que se asocien con malware. Por

ello ocultar su propio proceso es un mecanismo muy común.

Esconderse no solo se limita a ocultar proceso en sí. En algunos casos también es

interesante evitar que su actividad de red sea percibida a través de analizadores de tráfico

como Wireshark, netstat etc. Para ello, conseguir ocultarse del driver de WinPcap es una

solución inteligente, vista en una muestra real [13].

3.6 Interacción Humana

Otro enfoque intenta detectar la presencia de un usuario real manejando la máquina,

situación que no se da durante un análisis automático. Estas técnicas van desde la simple

comprobación del movimiento del ratón en un periodo de tiempo, clicks, esperar a que el

sistema sea reiniciado, a pedir captchas o interactuar con ventanas [3].

También se han empezado a ver implementaciones más avanzadas que esperan a que el

usuario realice acciones como meterse en Facebook, su correo electrónico, o comprobar

que en la máquina hay credenciales de redes sociales conocidas, historial de navegación,

documentos, etc. [14].

3.7 Específicos del Entorno

Estas técnicas se basan en comprobar diferentes programas o partes del sistema que, o

bien delaten la sandbox directamente, o sea raro que no posea una máquina real y por lo

tanto considere que pueda estar siendo analizado.

En algunos casos con el fin de monitorizar el sistema, las diferentes sandboxes

comerciales cargan DLLs o módulos propios específicos dentro del mismo, que si son

detectados serán un indicio claro.

Algunas características de entorno más comúnmente comprobadas en las sandboxes son:

 No suele ejecutar las muestras con todos los privilegios, con lo que simplemente

puede intentar realizar una acción que requiera privilegios altos para asegurarse

[11].

 No suelen permitir que las muestras se conecten a Internet o limitan la conexión

para evitar que se propaguen o envíen spam. Una muestra puede intentar descargar

un archivo, a lo que la sandbox responderá devolviendo un error o generando un

archivo automáticamente. Así que si comparase su hash con el del archivo que

había previsto descargar lo detectaría, o al contrario, intentar acceder a un dominio

web inexistente, en cuyo caso algunas sandbox generaría una página por defecto

en lugar de un error [11].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

21

Otra comprobación de entorno muy extendida es buscar aplicaciones concretas. En

algunos casos no son una medida anti-análisis en sí, sino que esa muestra está hecha para

atacar una versión de aplicación determinada, pero puede conseguir que no se clasifique

la muestra como malware ya que no actuaría. Por ejemplo podrían comprobar si Internet

Explorer tiene habilitadas extensiones de terceros o si tiene Java Runtime Environment o

programas P2P como BitTorrent instalados, cosas muy comunes en máquinas reales [12].

También hay malware que utilizan cargadores de DLL distintos del más común con lo

que si no está presente no se ejecutará [12].

Algunas muestras optan por reiniciar el sistema, lo que conlleva perder parte de las trazas

de ejecución (evadiendo el análisis). Esto no es algo que suela pasar inadvertido en un

análisis, así que no es un buen mecanismo anti-análisis.

También hay técnicas que directamente comprueban partes de la memoria. Por ejemplo

comprobar zonas de memoria conocidas donde encontrar referencias a hooks colocados

por ciertas sandboxes [15]. Esta última era usada por la conocida empresa Hacking Team

y se descubrió su uso en producción tras el robo de información que sufrieron en julio de

2015.

Otra medida, que no solo comprueba si están analizándolo sino que directamente quita

los posibles hooks, pasa por restaurar las direcciones de memoria originales de la SSDT

leyéndolas de ntoskrnl.exe [4]. Esto puede hacerse incluso desde el nivel de usuario.

A modo de ejemplo, una técnica reactiva al entorno que no se ha considerado como

“común” es el caso visto en ciertas muestras enviadas a una sandbox online conocida con

conexión a Internet, Anubis. Filtran al exterior las direcciones IP de estos sistemas para

poder añadirlas a una lista negra. Con ello futuras muestras del mismo fabricante de

malware pueden evitar mostrarse en esos sistemas [4].

3.8 Técnicas Anti-VM

Aquí es necesario hacer subcategorías por la gran variedad que representan, con ello se

distingue entre:

 Técnicas que comprueban procesos, archivos del sistema o registros.

 Técnicas que comprueban la memoria.

 Técnicas que comprueban hardware específico de VM.

 Técnicas que comprueban instrucciones específicas del procesador.

Como se va a ver a lo largo de este capítulo, la mayoría de las referencias, como cadenas

de texto predefinidas, hacen objetivo a VirtualBox y VMware. La razón es sencilla: son

los sistemas de virtualización más usados en la actualidad, y por lo tanto los principales

objetivos del malware moderno.

 Procesos, archivos del sistema y registros:

o Leer la ID del disco duro de la máquina y comparar con nombres típicos

como VIRTUAL, VMWARE, VIRTUALBOX.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

22

o Comprobar si el ProductID de la versión de Windows coincide con el de

diferentes sandboxes ó VMs comerciales.

o Comprobar la System BIOS Version buscando nombres típicos como

VIRTUALBOX o VMWARE.

o Buscar en los registros de servicios nombres como: VMTools, vmware,

VirtualBoxMouse, VirtualBoxGuest, xennet, etc.

o Enumerar las claves relacionadas con las tablas ACPI como DSDT

(Differentiated System Descriptor Table) y FADT (Fixed ACPI Desciptor

Table), buscando nombres como: VIRTUALBOX o xen.

o Comprobar la clave del driver de video buscando VMware SVGA II.

o Comprobar la clave del Hard Drive Driver: VMware, Virtual, IDE o Hard

Drive.

o Comprobar una clave que contenga un GUID, el cual puede seguir un

patrón conocido [4].

o Buscar software de apoyo como VMware tools [16] o VirtualBox Guest

Additions [17].

o Procesos que en los nombres contengan las cadenas: VirtualBox,

VirtualBoxService, VirtualBoxtray, vmware, tcpview, wireshark.exe...

o Buscar en los servicios de Windows cadenas como: vmci, vmdebug,

vmmouse, VMTools, vmware...

o Comprobar el nombre de usuario en la máquina, y averiguar si es algo

como: maltest, virus, malware, currentuser, sandbox, honey, vmware,

snort...

o Buscar, en el directorio que contiene los drivers

(%windir%\system32\drivers\), archivos que contengan cadenas

conocidas.

o DLLs o ejecutables pertenecientes a VMs en el directorio system32.

 Comprobaciones de memoria. Aquí se encuentra el abanderado de las

comprobaciones de virtualización, la técnica llamada RedPill de Joanna

Rutkowska. Otras suelen conllevar una carga mucho mayor.

o La técnica llamada RedPill hace objetivo a la IDT (Interrupt Descriptor

Table) que en un ordenador físico reside en un rango memoria conocida

pero en los guest se encuentran en otro (bajo y alto), para evitar conflictos

con la tabla de descriptores entre guest y host ya que solo hay una tabla

por procesador [18]. Eso evita que las interrupciones de una y otra se vean

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

23

afectadas entre ellas. A través de la instrucción en ensamblador SIDT se

obtiene la dirección de memoria de la tabla para compararla con valores

conocidos, pudiendo diferenciar entre un entorno virtualizado y uno real.

Más adelante se aplicó la misma técnica en otras tablas como GDT y LDT

[19]. Actualmente no es una buena solución ya que cuando hay más de un

núcleo cada procesador las localiza en una posición distinta, con lo que

diferentes ejecuciones darán diferentes valores [20]. También se ha visto

que en algunos SO es posible proteger esas zonas de memoria, evitando

que pueda obtenerse el valor [21].

 Técnicas que hacen objetivo al hardware virtual, aunque en los registros ya se

puede encontrar bastante información relacionada por ejemplo con sus IDs:

o Comprobar el tamaño del disco duro. Una máquina real no suele tener un

espacio menor de 200 Gb, en cambio una sandbox sí [8].

o Comprobar las direcciones MAC. Normalmente las VM suelen usar

prefijos conocidos. Por ejemplo en VMware son 0x0569, 0x0C29, 0x1C14

y 0x5056 [22].

o Obtener el número de núcleos. Es bastante común que a la VM se le asigne

un solo núcleo de la máquina física cuando se realizan análisis. En cambio

en máquinas reales lo más normal es encontrar varios [20].

o Comprobar atributos de la pantalla como resolución, ratio de refresco y

tamaño. Algunas VM los tienen fijados por defecto en todos los casos [23].

 Técnicas que comprueban instrucciones del procesador:

o Comprobar a través de la instrucción CPUID si está activo el bit

hypervisor-present, bit 31 del registro ECX. Acto seguido comparar el

nombre de este con una lista de cadenas típicas [24].

o Hay instrucciones concretas que tienen comportamiento diferente

dependiendo de si se ejecutan en un entorno real o uno virtualizado. Por

ejemplo no lanzando una excepción cuando debería [25].

o Una instrucción en x86 puede ser alargada usando prefijos redundantes.

Aunque se apilen varios se comporta como uno, siendo el tamaño máximo

permitido 15 bytes. En una máquina real, el no respetar este máximo

lanzaría una excepción, pero QEMU falla al hacer cumplir este límite, con

lo que no lanza tal excepción [20].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

24

Capítulo 4

Diseño de medidas

Las medidas se han dividido en bloques enfocados a combatir las técnicas citadas

anteriormente. En cada bloque se expondrá: primero la técnica (o familia de técnicas) a

las que está enfocada la medida, cómo les afectaría y consideraciones; segundo cómo se

ha implementado en concreto la o las medidas; y tercero y último, comparativa entre antes

y después, fortalezas y debilidades de la propuesta.

A la hora de evaluar la eficacia de una medida se han estudiado diferentes herramientas

de detección de máquinas virtuales y sandboxes que la comunidad ha ido creando, tanto

mecanismos encontrados en malware real como PoCs (Proof of Concept o Pruebas de

Concepto). Estas herramientas han servido para ver de manera clara el funcionamiento

de las técnicas y su respuesta ante diferentes medidas. La más representativa ha sido

Paranoid Fish (PaFish) [15], que aglutina gran variedad de técnicas de diferente índole

encontradas en muestras reales. Suele actualizarse con frecuencia, conteniendo por

ejemplo las técnicas usadas por la empresa Hacking Team.

4.1 Entorno de trabajo

 VirtualBox (versión 4.3.10): conocido software de virtualización (x86 y

AMD64/Intel64) de código abierto. Se puede ejecutar sobre Windows, Linux y

Mac soportando una gran cantidad de sistemas operativos en sus máquinas

virtuales. Permite configurar diferentes características de sus máquinas virtuales,

tanto del sistema, la red, el disco o los periféricos disponibles. Aun así, al realizar

configuraciones automatizadas mucha de la información relacionada con el

hardware de la VM (inexistente) contiene valores por defecto, al igual que

elementos como claves de registro de Windows.

 Cuckoo Sandbox (versión 1.2): sistema de sandbox de código abierto

desarrollado en Python. Es un proyecto joven que fue anunciado y empezó su

distribución en 2011. Muy vivo, con actualizaciones frecuentes que van

añadiendo piezas de gran utilidad al sistema. Es capaz de analizar gran cantidad

de archivos como ejecutables de Windows, DLLs (Dynamic Link Library),

archivos ZIP, java, diferentes scripts, archivos de Microsoft Office “y casi

cualquier cosa” [26]. Tras un análisis devuelve resultados como trazas de

llamadas al sistema realizadas por los procesos creados por la muestra, archivos

creados, eliminados y descargados durante la ejecución, volcados de memoria de

los procesos, capturas de tráfico en formato PCAP, capturas de pantalla durante

la ejecución, volcado de memoria completo de la máquina, etc. En el Anexo B se

puede ver una descripción con imágenes de un informe de ejemplo. Cuckoo

soporta el uso de diferentes softwares de creación de máquinas virtuales como son

VirtualBox, KVM, VMware o XenServer. Como se muestra en la figura siguiente

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

25

se usa la configuración de red host-only de VirtualBox, que crea un segmento

virtual de red aislado a través del que comunicarse.

Figura 1: esquema de la arquitectura de Cuckoo. Obtenida de su web [26].

Cuckoo, a lo largo del tiempo, ha ido solucionando diferentes debilidades frente al

malware esquivo. De esta forma, es capaz de evitar algunas técnicas por defecto, y no

hará falta fortificar dichos aspectos.

 Posee un sistema para evitar las “extended sleeps” que intenten sobrepasar el

tiempo del análisis [27]. Como ya se comentó, esto es una técnica muy básica,

con lo que no es sorprendente que vaya por defecto fortificada. Se ha visto que

hay casos en los que se comprueba de otras maneras que ese tiempo ha

transcurrido correctamente, pero como Cuckoo da la lista completa de llamadas

al sistema, se puede intentar contrastar con ejemplos conocidos y evitar caer en

un falso negativo.

 Respecto al path en el que la muestra era ejecutada, en las primeras versiones de

Cuckoo esto era una debilidad ya que la muestra la ejecutaba en un directorio con

un nombre definido y fijo no común, con lo que podía ser detectado con métodos

sencillos [28]. En versiones posteriores esto ha sido corregido haciendo aleatorio

el nombre de este directorio.

 La ocultación de procesos no es tan problemática como en otros sistemas ya que

“anota” cada nuevo proceso creado. Así aunque posteriormente sea ocultado, se

conocerán los procesos lanzados.

 Hace uso de un módulo auxiliar llamado “human.py”, su propio modo de imitar

el comportamiento de un usuario en el sistema. Con este módulo el ratón se mueve

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

26

constantemente por la pantalla y hace diferentes clicks de vez en cuando. También

interactúa con las posibles ventanas que aparecen, pulsando “aceptar”, “ok”, etc.

En cambio, aún hay pendiente por parte de Cuckoo un elemento importante: Cuckoo

necesita que en la máquina guest se encuentre en ejecución “agent.py”, proceso con el

que se comunicará el sistema Cuckoo desde el host. De forma que podría comprobarse

sencillamente si existe una ventana abierta con el nombre correspondiente.

Aquí se podría:

 Hacer que se ejecute sin abrir una consola nueva (cambiando la extensión de “.py”

a “.pyw”).

Aun así, sigue habiendo una debilidad. A pesar de que Python se extiende cada vez más,

no es muy común encontrar en equipos de usuarios corrientes el proceso python.exe

siendo ejecutado, la cual ocurrirá en la solución dada anteriormente. Se muestre o no la

ventana, el malware puede listar los procesos y buscar entre ellos python o pythonw.

 Solución más definitiva: convertir “agent.pyw” en un ejecutable de Windows

corriente que no llamase la atención frente al resto de procesos que se ejecuten en

la máquina.

Esta fue la opción elegida inicialmente al plantear las medidas, ya que es la más definitiva.

Sin embargo ha resultado ser más problemático de lo esperado, y no se ha conseguido

que agent.py se ejecute correctamente al convertirlo en un ejecutable de Windows usando

conocidas herramientas como PyInstaller [29] y Py2exe [30]. En este aspecto es

necesario encontrar un sistema o herramienta que permita un correcto funcionamiento de

agent.py al convertirlo a ejecutable.

4.2 Medidas frente a comprobaciones de entorno

 Evitar la instalación de VirtualBox Guest Additions.

 La inclusión de esta característica de VirtualBox hace más cómodo interactuar entre la

máquina virtual y el host, pero añade muchos archivos nombrados anteriormente en

diferentes localizaciones y que son usados como objetivo en las comprobaciones del

malware. Algún usuario recomienda instalarlo por comodidad durante la adecuación del

guest y desinstalarlas posteriormente, pero es posible que no todos los archivos y claves

se eliminen automáticamente.

La solución que se plantea frente a esto es por supuesto no instalar Guest Additions. Pero

como sigue siendo necesaria una forma de interactuar con el host para añadir todo lo

necesario en la preparación de la VM, se configurará un servidor FTP con vsftpd en la

interfaz virtual creada para interactuar con Cuckoo en el host Ubuntu. Habilitando la

descarga anónima no haría falta usuario y contraseña, esta inseguridad es asumible ya que

estará en la red de la interfaz virtual.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

27

Con esto se consigue una forma fácil y rápida de añadir diferentes archivos a la VM, sin

necesidad de usar software sospechosos a los ojos del malware. El servidor FTP es

desactivado durante los análisis.

 Una de las formas más comunes de detectar VirtualBox, sin contar con Guest

Additions, son los numerosos registros de Windows con valores o nombres por

defecto.

Este ha sido uno de los aspectos más estudiados y revisado por los diferentes

investigadores o profesionales de la materia, con lo que a través de diferentes artículos y

publicaciones se pueden encontrar detalladas descripciones de este tema.

No es difícil encontrar la mayoría, haciendo una simple copia de todas las claves y

buscando entre ellas términos como “virtualbox”, “VirtualBox” o similares. Pero esto no

será un resultado fiable ya que hay varios casos en los que son números de serie, y

similares, de valor fijo pero sin contener esas cadenas.

Siendo que este ha sido uno de los campos que más ha sido trabajado previamente, tras

hacer las comprobaciones pertinentes de la existencia de estas claves, y ver cómo PaFish

las reconocía. Se modificó un proyecto de código abierto [31] para adecuarlo a las

necesidades del trabajo.

Este script, escrito en Python, utiliza la librería dmidecode para obtener información del

host, que utilizará para rellenar una lista fija de las claves de registro de Windows que

usan valores predeterminados. También añade información a la VM desde VBoxManage,

el sistema desde el que se maneja VirtualBox en el host, como información de la tabla

ACPI.

De esta forma, al crear un nuevo guest se personalizan los valores por defecto

configurando información específica desde el exterior a través de VBoxManage:

configuración personalizada de ACPI, información del vendedor de los discos duros y

CD-ROM, información sobre DMI BIOS. Igualmente desde el interior modifica las

claves de registro relacionadas con ACPI (DSDT, FADT y RSDT), BIOS (versión de la

misma, fecha de lanzamiento y versión de la BIOS de la tarjeta gráfica). Con esto las

comprobaciones comunes desde el interior del guest de VirtualBox son inutilizadas.

En lo previamente descrito hay que tener en cuenta que en algunos casos VirtualBox no

soporta los datos extraídos directamente del host [17], de forma que se han ido aplicando

en el propio código las restricciones encontradas. Aun así se requiere un estudio más

exhaustivo para fijar el tamaño o formato de todos los campos. Otro comportamiento no

deseado en esto casos viene a raíz de que la máquina física posea muchos núcleos de

CPU, en cuyo caso la tabla DSDT del host será mayor de 64KB, que es el límite de

VirtualBox.

 Una técnica no introducida en el listado de técnicas más comunes, pero de la que

se ha hablado mucho, es la utilización de la información WMI (Windows

Management Instrumentation) para detectar VirtualBox a través del UPnP

(Universal Plug and Play).

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

28

La técnica cobró relevancia a raíz del robo de información a la empresa italiana Hacking

Team, quienes la usaban en sus troyanos para evitar ser analizados. Esto puede

comprobarse en una VM (Windows) de VirtualBox: ejecutando wbemtest.exe,

introduciendo en espacio de nombres “root\cimv2”, y haciendo la consulta "select * from

Win32_PnPEntity", en la respuesta se encuentran varios identificadores con cadenas

conocidas (“VirtualBox”).

La solución presentada es bastante simple y tiene inconvenientes. Lo que se hace es

desactivar el servicio UPnP a través de una clave de registro, con lo que no podría ser

usado para ello… pero tampoco para otras tantas cosas, como por ejemplo verificar la

autenticidad de la instalación de Windows. De forma que este también sería un apartado

en el que poder profundizar.

4.3 Características de la máquina

 VirtualBox usa direcciones por defecto, por ejemplo MAC con prefijos

conocidos, o cierto rango IP para las redes host-only. Aunque esto último no tiene

por qué ser un indicador inequívoco de estar en una VM. El rango es

192.168.56.X, por defecto empezando en 101, 102, etc., con lo que podrí

encontrarse en una red local.

La solución aquí es muy sencilla. Generar una dirección MAC aleatoria para cada

máquina, mover la red del interfaz virtual a un rango distinto y hacer aleatorias las IPs

que se asignen dentro de ese rango. También se usará uno de los DNS de Google como

servidor DNS primario.

 Cuando se crea una VM por defecto, VirtualBox le asigna capacidades que en una

máquina física hace muchos años que no son comunes, como son: 192MB de

RAM, HDD de 10GB, un solo núcleo de CPU.

Esto se debe modificar para encajar más en los valores que suela tener una máquina hoy

en día. Esto conlleva que el equipo que esté realizando el análisis necesite ser potente,

más si se piensan hacer varios en paralelo. De esta manera se fija la memoria RAM en

2Gb y el tamaño del HDD en 250 Gb que son valores bastante estándar, además los

núcleos de CPU en 3.

4.4 Imitación del comportamiento humano

Cuckoo trae un módulo encargado de esto de por sí. El campo del análisis de malware es

reactivo a lo que hacen las muestras y viceversa, por lo que se ha visto que es posible

determinar si el movimiento del ratón es el definido por una sandbox [7] [15] basándose

en el uso de cadencias fijas, posiciones demasiado dispares en instantes muy cercanos,

etc.

Por ello se decidió replantear este apartado, así que del human-module de Cuckoo se dejó

activo solo el encargado de hacer click en las diferentes ventanas que muestren opciones

(“aceptar”, “ok”, “next”...). A pesar de esto, hay otro aspecto que se debe cubrir en la

imitación de un sistema “usado por un humano”, y es que no esté “a estrenar” sin archivos,

temporales, historiales de navegación, etc.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

29

La puesta en acción de estas medidas se divide en dos partes: pre-análisis y durante el

análisis.

 Pre-análisis: se generarán diferentes archivos (no vacíos) de texto en varios

directorios diferentes de Windows, y se creará historial de navegación actual y

previa. Esto implica que se navegará automáticamente a diferentes páginas usando

Internet Explorer variando la hora y la fecha del sistema, de forma que se genere

“historial” a lo largo de unos meses previos en diferentes días y un rango de horas.

 Durante el análisis: a través de un ejecutable generado a partir de un script de

AutoHotKey, se han definido varias acciones “comunes” de un usuario cuando

usa su equipo.

o Crear un nuevo archivo de texto que se escribirá y guardará con nombre

semi-aleatorizado.

o Navegar manualmente por el sistema de archivos y copiar y eliminar

archivos.

o Navegar por Internet, autenticándose en diferentes webs como Facebook

o Outlook.

o Movimientos de ratón siguiendo un camino semi-aleatorio. De esta forma

los puntos no son consecutivos ni fijos pero sí siguen una dirección con

cadencia de movimiento aleatorizada. Igualmente clicks izquierdos

(simple y doble) y derechos aleatorios.

Hay que decir que una implementación más fiel del comportamiento humano, como en

este caso con navegación a Internet, etc., tiene una desventaja: los informes generados

estarán “contaminados” con la actividad que realiza el “módulo humano”.

4.5 Otras medidas dentro del guest OS

Se desactivan las actualizaciones y el firewall de Windows. En este caso se necesita que

la máquina sea lo más vulnerable posible, pero en otros casos lo ideal sería imitar los

sistemas víctima.

El nombre de usuario no debe ser indicativo de nada. Lo mejor es usar uno aleatorio

introducido durante la instalación.

4.6 Técnicas conocidas no solucionadas

A pesar de todo lo nombrado anteriormente, hay ciertas técnicas de las más conocidas y

usadas por el malware moderno ante las que el sistema es descubierto, sin contar varias

PoCs que no son prácticas para el malware [32].

 Detección mediante sucesivas ejecuciones de la instrucción rdtsc, que devuelve

el número de ciclos de CPU desde el último reset (contador TSC).

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

30

Inicialmente devolvía exactamente el número de ciclos de CPU, pero actualmente se va

incrementando en una constante determinada por la frecuencia máxima a la que el

procesador puede llegar a funcionar, para no variar en casos de ahorro de energía, etc.

[10].

La detección se basa en que en una máquina física dos medidas consecutivas tendrán una

diferencia muy pequeña, en cambio en sistemas virtualizados esta diferencia puede ser

mayor, con picos, debido al overhead que implica la virtualización cómo ya se ha visto

en secciones previas. Aunque depende del producto de virtualización, esta diferencia es

realmente significativa si la máquina tiene asignados dos o más núcleos [10].

Frente a esto puede buscarse el producto de virtualización que menos afecte a este valor

y asignarle solo un núcleo, esto último choca con otra medidas de comprobación simple

presentadas anteriormente, que los equipos físicos no suelen tener un solo núcleo. O usar

una VM basada en emulación en lugar de virtualización, ya que replican todo el hardware

de una máquina, con lo que tienen su propia implementación del contador TSC y el

número de ciclos entre dos rdtsc consecutivas se asemeja bastante al de una máquina

física, por ejemplo QEMU [10].

La segunda de estas técnicas ante las que estas medidas no protegen:

 Cuckoo almacena las direcciones de vuelta (return addresses) en un espacio extra

en conjunto con la información de los hooks en la TLS (Thread-local storage).

Como el espacio extra ocupado es conocido, basta con calcular el valor máximo y mínimo

de la localización de estas direcciones y comprobar si la información obtenida de los

hooks en la TLS, más el espacio extra, es una zona de memoria contenida entre el máximo

y el mínimo. De ese modo se puede conocer si se está siendo analizado por Cuckoo [15].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

31

Capítulo 5

Detalles sobre la Implementación

El software se ha diseñado para ser usado junto a Cuckoo y VirtualBox pero sin tener que

trabajar con ellos durante la puesta a punto, relegando su uso a los análisis. Las

configuraciones y dependencias son gestionadas por la solución propuesta. De esta forma

todas las medidas planteadas son automatizadas de manera sencilla y clara, pudiendo

generar un sistema VM-Sandbox bastionado y listo para usar.

En el desarrollo de esta implementación se ha hecho uso de un control de versiones

basado en Git. Puede encontrarse todo el código y la información en el repositorio de

GitHub habilitado para ello: https://github.com/Silverse

5.1 Ventajas

Quizás en un primer momento puede no parecer prescindible. Pero Cuckoo, al igual que

otras partes de la solución propuesta, posee un buen número de dependencias. Además

implica la gestión de algunos archivos de configuración que no hace automáticamente, ni

con GUI (Graphical User Interface). Aunque una vez se tiene claro qué se está haciendo

no es complicado, al principio puede llevar más tiempo del esperado y siempre es

engorroso.

Crear una máquina virtual en VirtualBox se antoja más fácil ya que posee un claro interfaz

gráfico. El problema es que en ciertos aspectos no tiene la granularidad deseada y el

usuario se ve obligado a tener que añadir configuración a través de VBoxManage

(command line interface). Por ello, uno de los pasos iniciales del trabajo fue familiarizarse

con estas dos herramientas, VirtualBox y Cuckoo, y saber cómo se podían gestionar de

diferentes maneras y hasta dónde se podía configurar en cada una.

Finalmente, la aplicación del resto de medidas conlleva un número no despreciable de

operaciones. La particularización de la solución en cada caso con valores de la VM, la

elección del orden idóneo y la correcta aplicación de las medidas, es fundamental para el

correcto funcionamiento. Todo ello hace necesario gestionar de manera automatizada y

controlada el uso del sistema

Tras esta introducción, en la Figura 2 se puede ver lo que mostrará inicialmente la

ejecución “main.py”:

https://github.com/Silverse

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

32

Figura 2: std-out al iniciar la ejecución.

La interfaz creada para el Terminal contiene una cabecera y las cinco opciones posibles,

volviendo al menú tras realizar la opción seleccionada.

A la hora de seleccionar cada opción e introducir información, se han implementado

ciertas comprobaciones de entorno y entrada. Por ejemplo ver si las dependencias han

sido instaladas, que los nombres no contengan caracteres extraños, que se haya creado un

usuario con los requerimientos para usar Cuckoo, etc. Ofreciendo en algunos casos

asistencia para su creación, como en el usuario, y en otros un aviso de entrada no válida.

5.2 Funcionamiento

La primera opción, “Install the dependancies and Cuckoo”, muestra a la derecha una

comprobación del momento en el que se inicia el programa. Es imprescindible que se

haya ejecutado la opción para el correcto funcionamiento del resto. Con ello se verá “<-

- Select this one!!”, en rojo, o “[Done]”, en verde, cada vez que se muestre el menú por

pantalla. Es posible volver a seleccionarla e instalar otra vez las partes que lo permitan.

Por ejemplo, los archivos de Cuckoo serían sustituidos por archivos por defecto. En el

Anexo C se muestra la lista completa de las dependencias instaladas en esta opción.

La segunda opción, “Create a new fixed-VM”, realiza el proceso necesario para generar

una máquina de VirtualBox con características previamente fijadas por las medidas

diseñadas o por compatibilidad con Cuckoo, como el interfaz host-only. También

modifica los archivos de configuración de Cuckoo necesarios para detectar la VM y

funcionar correctamente. En el Anexo D se listan los archivos de configuración

modificados en este proceso y en el Anexo E se detallan las modificaciones y

características relativas a la creación de un nuevo guest con la solución propuesta.

No se limita a ejecutar lo necesario para crear la VM con las características de VirtualBox

deseadas. Guía al usuario durante la puesta a punto, la instalación del guest OS y las

operaciones a realizar dentro de él, habiendo copiando los archivos necesarios a través

del servidor FTP. En el guest solo habrá que ejecutar un script, aparte de instalar todo el

software extra deseado en el momento seleccionado para ello.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

33

Para obtener diferentes análisis efectivos, se deben seleccionar diferentes versiones

antiguas de programas que comúnmente sean objetivo de software malicioso. Serán

claros candidatos Microsoft Silverlight, Microsoft Office, Java o Flash.

La solución propuesta realiza automáticamente los apagados y encendidos de la máquina

durante el proceso, con lo que el usuario solo tendrá que ejecutar algunos scripts. Para su

uso continuado es recomendable entender el funcionamiento del software. Por ejemplo,

si se apaga la VM y se quiere tomar una nueva snapshot, se den realizar ciertas tareas

previas para preparar la VM otra vez. Por ejemplo, reescribir algunos registros del

sistema.

Figura 3: Resumen mostrado al terminar la creación de una VM.

En los scripts a ejecutar en el interior de la VM, se realizan dos pasos:

 Ejecutar un fichero “.bat” que instalará Python y tras ello iniciará un script con el

mismo nombre, pero en Python.

 En el script en Python hay que seguir las instrucciones indicadas. Se encarga de

ejecutar los instaladores imprescindibles y otros scripts para, por ejemplo, crear

historial de navegación de relleno.

En cierto punto será necesario reiniciar la máquina, guiado por la solución propuesta

siempre. Habrá que ejecutar otra vez “guide.py”, pero eligiendo otra rama de ejecución

para los ajustes post-reinicio. Culminará con la puesta en marcha del módulo de

interacción humana ejecutado durante los análisis, y la toma de la snapshot del sistema.

La tercera opción del menú está enfocada al uso continuado, cuando se han añadido

manualmente VMs a los archivos de configuración de Cuckoo. Listará las máquinas

añadidas y sus características, y si alguna no está disponibles en VirtualBox o ha sido

eliminadas, actualizará el fichero de configuración en consecuencia. Manteniendo así la

cohesión de ambos sistemas.

Finalmente, sin contar la opción que termina la ejecución, se encuentra “Run Cuckoo and

the Webserver”. Ejecutará en dos terminales separados: primero el programa principal de

Cuckoo, y segundo un servidor web al que se podrá acceder desde la dirección

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

34

“localhost:8080”, establecida por defecto en los archivos de configuración. Este servidor

web ofrece una interfaz cómoda e intuitiva para los análisis de Cuckoo, permitiendo

añadir muestras o ver los informes de análisis previos.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

35

Capítulo 6

Pruebas realizadas

Tras haber perfeccionado la implementación de las medidas elegidas se debe comprobar

su eficacia frente a malware real. Previamente a enfrentar al sistema con las pruebas

reales, hay que asegurarse de que las medidas implementadas se han hecho

correctamente. Para ello se ha confiado en el realismo de la herramienta PaFish,

analizando su ejecutable como si de una muestra de malware se tratase. En el Anexo F

se muestra el log de salida de PaFish en ambos casos, el sistema bastionado y el básico.

6.1 Planteamiento de los escenarios

Para realizar la comparativa, se analizará el set de muestras con un sistema Cuckoo

preparado a través de la solución propuesta y con un sistema Cuckoo básico, con valores

por defecto y configuraciones sencillas sacadas en la documentación de Cuckoo.

El set de muestras de malware vivo usado para las pruebas procede de lo recopilado por

el dominio Malc0de [33]. En concreto de muestras enviadas desde los Estados Unidos,

uno de los principales objetivos de todas las campañas de malware.

Para poner a punto ambos sistemas y evitar que algunas muestras no desplieguen su

comportamiento por falta de software, se ha añadido siguiendo las instrucciones

facilitadas durante la instalación, el siguiente software complementario:

 Internet Explorer 8

 Adobe Acrobat Reader 5.0.5

 Microsoft Office Professional Edition 2003

 BitTorrent 4.3.3

 JRE 5.0

 Silverlight 1.0

 Utorrent 1.7.3

 Shockwave 7.03.015

 Firefox 1.0.3

 Adobe Flash Player 10

 Thunderbird 3.0

Por supuesto en ambos casos para hacer funcionar Cuckoo se necesitará:

 Instalar Python 2.7

 Instalar Python Imaging Library, ya que es necesario para las capturas de pantalla.

 Estar ejecutando “agent.py” en la versión sencilla o “agent.pyw” en la bastionada.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

36

Durante la creación del sistema básico no se prestará atención a las indicaciones dadas

previamente, con lo que se dejarán los valores de VirtualBox por defecto al realizar una

instalación usando GUI:

 192MB de RAM

 HDD de 10GB

 Un solo núcleo de CPU.

 MAC por defecto, con prefijo conocido.

También se utilizará como nombre de usuario, y de la máquina, “malware” y se instalará

VirtualBox Guest Additions.

La revisión de resultados se ha enfocado a comprobar si en un sistema se despliegan más

comportamientos que en el otro, y no en caracterizar completamente el funcionamiento

de cada muestra. Se considerará que una prueba ha mostrado su comportamiento

malicioso cuando descargue archivos en la versión bastionada y no en la básica. Por ello

se centrará la comparativa en los archivos descargados y sus características, así como

posibles anomalías presentes.

La razón principal por la cual no se han tenido en cuenta los host remotos contactados en

los análisis o las peticiones DNS es la contaminación generada por el módulo humano.

La mayoría del tráfico generado se puede conocer a qué corresponde, pero en algunos

casos se crean situaciones confusas ya que, por ejemplo, Facebook carga contenido

externo variable. Esto hace que no se pueda filtrar correctamente la contaminación

generada en red ya que no siempre es la misma. En el Anexo G se puede ver un ejemplo

de contaminación generada, no solo en red sino en todo el sistema.

De esta manera tras realizar todo el conjunto de análisis y haber obtenido los informes de

ambos sistemas, se compararán en los resultados, y se generará un documento mostrando

las diferencias entre ambos.

Definición de los casos de éxito:

 No descarga archivos en la versión bastionada: es malware que no contacta con

el exterior o es malware anti-análisis capaz de superar las mejoras del sistema

bastionado.

 Los mismos archivos son descargados en ambas versiones: no tiene

comportamiento anti-análisis o lo tiene, ha superado las medidas de la solución

propuesta y además sigue descargando archivos que simulen un comportamiento

normal. Este segundo caso es algo enrevesado, pero el tipo de duda lleva a que se

deba considerar como desfavorable.

 El nombre de los archivos descargados es el mismo, pero poseen diferente tamaño.

Es algo relativamente común y dado que en el caso bastionado tendríamos más

información, se podría considerar positivo. Aun así no se tienen indicios

suficientes para afirmar tal cosa.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

37

 Se alcanza el tiempo máximo de encendido de la VM: la muestra ha forzado que

no pueda realizarse el análisis con normalidad, y sobrepasa tanto el tiempo de

análisis como el límite estricto total.

o Si la versión bastionada no alcanza el tiempo máximo pero la básica sí, la

muestra posee comportamiento anti-análisis inefectivo contra la solución

propuesta.

o Si ambas versiones alcanzan el tiempo máximo no se puede afirmar que

tenga comportamiento estrictamente anti-análisis, pero ha levantado

sospechas que harán que sea revisada más a fondo.

 Nuevos archivos descargados en la versión bastionada: la muestra tiene

comportamiento anti-análisis, ya que en la versión básica ha elegido una rama de

ejecución en la que no despliega completamente su actividad maliciosa. En

cambio, cuando es analizada por el sistema bastionado no es capaz de identificarlo

como VM o sandbox y directamente opta por descargar el payload real que infecte

completamente el equipo.

6.2 Resultados obtenidos

Se ha analizado un total de 200 muestras elegidas de manera aleatoria en la base de datos.

De estos 200 análisis, en 12 casos ha ocurrido algún problema grave, como que

VirtualBox deje de responder o el host tenga algún fallo, y no se ha terminado el análisis

Estos casos no están relacionados con el comportamiento de la muestra. Estos 12 casos

no son computados, con lo que tenemos un total de 188 análisis efectivos.

Las estadísticas extraídas de los informes son las siguientes:

Fig 4: Gráfica de datos en bruto.

3

35

38

55

56

Timed-Out Ninguna descarga
Nueva descarga Mismas descargas
Otros

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

38

Llaman la atención sobre todo tres datos:

 Mismas descargas en 55 casos. Para evitar incertidumbre debería analizarse bien

el comportamiento, de forma que si ha descargado un ejecutable consideremos

que no posee capacidades anti-análisis. Pero como se ha expuesto en la sección

anterior, se toma como caso desfavorable.

 Ninguna descarga en 35 casos. Este dato refleja exclusivamente los análisis con

el sistema bastionado. A primera vista parece un dato muy preocupante, ya que

da la sensación de que 35 muestras que han detectado el sistema.

 Otros, 56 casos. En este grupo entran los casos en los que se han descargado

archivos con el mismo nombre pero diferente peso.

Para entender que el segundo dato no significa un fracaso, hay que ver cómo funciona

Cuckoo. Durante algunos análisis no consigue seleccionar efectivamente las opciones de

la GUI del instalador de la muestra. Puede ser porque esté en un idioma distinto del inglés,

o por que use opciones o formatos no conocidos para el módulo humano, esto no es tan

raro ya que este apartado de Cuckoo no es un software excesivamente complejo.

A esto hay que añadirle que cierta parte de las muestras analizadas, son sencillamente

AdWare. Programas que poseen excesiva publicidad durante su uso. En estos casos no es

raro que si no se continúa con la instalación, la muestra no descargue contenido por su

cuenta y entre en el alarmante segundo dato. Por ello no se debe considerar

automáticamente como malware evasivo a la totalidad de las muestras del segundo grupo.

Para poder conocer la efectividad real del sistema, no solo es necesario trabajar con un

volumen mayor de muestras para eliminar casos marginales como instaladores que no

continúan su desarrollo, también se debería trabajar sobre un ser de muestras que posean

exclusivamente comportamiento anti-análisis, ya que varios de los casos expuestos

generan incertidumbre al no poder estar seguros de si ha sido efectivo o no.

Tras haber descrito los posibles casos a considerar como negativos, se puede juzgar mejor

la relación que tienen los casos de éxito con el total. De esta manera se replantean los

resultados:

 Casos con con diferente peso, 56 casos. Como ya se ha comentado previamente,

no se deben incluir en desfavorables pero tampoco se tienen suficientes indicios

como para darlos completamente por favorables. Por ello podemos descartarlas.

 38 casos con nuevos archivos. Representan éxitos rotundos, ya que demuestran

un cambio de comportamiento en el que se muestra una naturaleza más agresiva.

 35 casos sin descarga y 55 con las mismas descargas. De partida es el dato que

muestra los fallos del sistema. Los que posean las mismas descargas puede que

no tengan comportamiento anti-análisis, pero ante la duda se debe considerar que

el sistema está siendo detectado.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

39

Fig 5: Resultados tras replantear los datos.

En esta segunda gráfica, habiendo aplicado el criterio derivado de un conocimiento más

especifico del análisis con Cuckoo, muestra como la solución resuelve como mínimo un

tercio de los casos. Aún así la incertidumbre sigue siendo demasiado alta como para sacar

conclusiones definitivas, por lo que se debería replantear la metodología de pruebas para

aportar mayor fiabilidad a los resultados, en lugar de dar por desfavorables los casos con

duda.

29,69%

70,31%

Favorables

Desfavorables y dudosos

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

40

Capítulo 7

Conclusiones y trabajo futuro

Al enfrentar el sistema contra pruebas reales se comprueba que buena parte de ellas siguen

siendo dudosas. Sería preciso replantear la metodología de pruebas desde su inicio,

partiendo de una selección cuidada en el sistema básico, de forma que solo se enfrente el

sistema bastionado a muestras con comportamiento anti-análisis asegurado, comprobado

tanto con tráfico de red como con archivos descargados.

Uno de los aspectos más importantes sobre los que continuar trabajando es conseguir que

el módulo “agent.py” pudiera ser tratado como un ejecutable corriente. En una de las

pruebas realizadas se pudo comprobar como una muestra sencillamente terminaba los

procesos “python.exe” y “pythonw.exe”. Este comportamiento no da lugar a dudas en la

situación actual, ya que se trata de una base de datos de malware y podemos identificarlo

como un comportamiento anti-análisis, pero si en lugar de terminar los procesos

simplemente eligiese no hacer nada, pasaría fácilmente el análisis.

Se podría estudiar más profundamente el módulo de comportamiento humano para

reducir la contaminación en los informes, además la forma más correcta de implementarlo

sería integrándolo en el módulo “human.py” de Cuckoo. Podrían estudiarse diferentes

funciones con las que elegir trayectorias para el movimiento de ratón, intentando

mantener la coherencia correspondiente a los movimientos que realizaría un usuario. La

navegación por internet podría mejorarse también, haciendo uso de una extensión de

navegador que bloquee todo el contenido de terceros que las páginas visitadas tratasen de

cargar. Esto llevaría a elaborar una lista fija de dominios visitados por el módulo durante

el análisis, que al comparar con las DNS requests y hosts del informe, filtraría

correctamente dejando solo las acciones de la muestra.

Otro aspecto del módulo humano que se podría trabajar más profundamente es la

capacidad de dar sensación de uso. En la solución propuesta se limita a crear diferentes

carpetas con archivos de textos distintos y a generar historial de navegación y cookies.

Se debería conseguir generar información de uso en todos los programas instalados en el

guest, al igual que obtener archivos de diferentes tipos, personalizar aspectos no

relevantes del sistema como el fondo de pantalla, etc.

También sería interesante añadir mejores criterios a los casos de éxito de las pruebas.

Para ello se debería mejorar el script con el que se extraen datos de manera automatizada

de los informes, recogiendo más información relevante. Se deberían revisar

exhaustivamente los informes y volcados de memoria correspondientes a muestras con

comportamiento anti-análisis e identificar cómo reflejan las técnicas. Al final se deberían

haber comprobado absolutamente todas las técnicas sobre la que se han diseñado mejoras,

y saber identificarlas en un análisis. A partir de ahí se debería trabajar sobre PoCs o

comportamientos que no se vean frecuentemente, pero que mejorarían la efectividad del

sistema de cara al futuro.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

41

Los requisitos establecidos conllevaban el uso de VirtualBox, software para el que

Cuckoo se encuentra optimizado en su desarrollo. Esto no implica que no pueda dar

buenos resultados con otros sistemas de virtualización o emulación. Un estudio pausado

sobre las diferentes soluciones de virtualización y emulación existentes en el mercado,

considerando concienzudamente las ventajas y desventajas que posean, podría resultar en

una mejora de resultados.

Como se ha mostrado, el uso de sandboxes se ha convertido en un método cómodo y

efectivo en la lucha contra el malware moderno, pero no infalible. Aun así la preparación

de un sistema de sandboxing cuidado puede dar grandes resultados en la mayoría de los

análisis.

Es necesario continuar investigando incesantemente e incentivar a los profesionales e

investigadores a participar activamente, por ejemplo mediante sistemas de recompensa

como los bug bounties. Como se ha visto en el caso de Hacking Team, el malware siempre

tienen un truco bajo la manga o va un paso por delante (0-day) sin que se conozca, y no

se puede confiar en que todos los días se filtren sus bases de datos masivamente.

Dado que los posibles fallos técnicos o “pistas” que dejan estos sistemas y permiten su

detección están cada vez más controlados, y que el uso de sistemas de virtualización ha

dejado de ser un tema de investigadores y ha sido adoptado por un gran número de

sistemas de producción, el “descubrir la VM” está dejando de ser el punto central de las

técnicas de evasión.

Estas técnicas se mueven hacia detección exclusiva para sandboxes o de interacción con

el usuario, ya que no discrimina entre sistemas virtualizados y no pero presenta una

eficacia nada despreciable frente a sistemas de análisis. Por ello cada vez se debería

prestar más atención y esfuerzo al diseño de “módulos de comportamiento humano” que

no solo realicen unos sencillos movimientos y clicks de ratón, en los que es fácil detectar

patrones. Se debe tomar una concepción en la que se intente imitar una sesión real de un

usuario, con todas las situaciones aleatorias que se dan, y la capacidad de responder a los

intentos de interacción que pueda realizar el malware, desde cartelitos sencillos de “next,

ok, accept”, hasta captchas, o preguntas dirigidas.

De manera personal, la realización de este trabajo me ha llevado a darme cuenta de algo

importante. A lo largo de la titulación, aparte de obtener conocimientos sobre los que

poder cimentar el desarrollo profesional de los alumnos en los diferentes campos de

estudio, también “aprendemos a aprender”, se fomenta el desarrollo de pensamiento

crítico y la capacidad para avanzar por nuestra cuenta en diferentes materias.

De esta forma podemos seguir nutriéndonos y ampliando nuestros horizontes sea cual sea

el camino que se tome al terminar el grado. Nos ha dado la capacidad de saber y poder

enfrentar los diferentes retos profesionales que nos esperan en el futuro.

Para mí, este trabajo ha sido una muestra de ello. Era un tema sobre el que no tenía

conocimiento alguno, pero en el que he tenido la posibilidad de desarrollar mi TFG. Sobre

él ahora tengo una perspectiva más clara y el conocimiento suficiente para poder seguir

profundizando en ello, habiendo descubierto un campo profesional apasionante.

No ha sido el conocimiento en sí, sino poder trazar el camino hasta obtenerlo.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

42

Bibliografía

[1] Geffner J. Sitio web: vulnerabilidad VENOM. Disponible en:

http://venom.crowdstrike.com/. 2015.

[2] Vinod P. Laxmi V. “Survey of Malware Detection Methods”. Disponible en:

http://www.security.iitk.ac.in/contents/events/workshops/iitkhack09/papers/vinod.pdf.

2009.

[3] Bilogorskiy N. Sharma S. “Malware’s Most Wanted. Anti-Sandbox malware

techniques”. Webinar. Disponible en: www.youtube.com/watch?v=4Cp2ZMAtog8.

2015.

[4] Lindorfer M. “Detecting Environment-Sensitive Malware” [Tesis de Máster].

Faculty of Informatics, Vienna University of Technology. 2011.

[5] Moser A. Kruegel C. Kierda E. “Exploring Multiple Execution Paths for Malware

Analysis”. Proceedings of the 2007 IEEE Symposium on Security and Privacy. 2007.

[6] Chubachi Y. Aiko K. “TENTACLE: Environment-Sensitive Malware Palpation”.

PacSec 2014. 2014.

[7] Lakhani A. “Malware Sandbox and Breach Detection Evasion Techniques”. Dr.

Chaos [www.drchaos.com/]. Disponible en: http://www.drchaos.com/malware-

sandbox-and-breach-detection-evasion-techniques/. 6 de mayo de 2015 [acceso julio de

2015].

[8] Hoffman N. “VM Checking and Detecting”. Blog personal

[securitykitten.github.io/]. Disponible en: http://securitykitten.github.io/vm-checking-

and-detecting/. 3 de diciembre de 2014 [acceso julio 2015].

[9] Pek G. Bencsath B. Buttyan L. “nEther: In-guest Detection of Out-of-the-guest

Malware Analyzers”. . In Proceedings of the Fourth European Workshop on System

Security, EUROSEC’11. 2011.

[10] Ortega A. "rdtsc x86 instruction to detect virtual machines". Plug it, play it, burn it,

rip it [blog.badtrace.com]. Disponible en: http://blog.badtrace.com/post/rdtsc-x86-

instruction-to-detect-vms/. 22 de marzo de 2015 [acceso julio de 2015].

[11] Nasi E. “Bypass Antivirus Dynamic Analysis”. Disponible en:

http://packetstorm.wowhacker.com/papers/virus/BypassAVDynamics.pdf.

2014.

[12] Singh A. Bu Z. “Hot Knives through Butter: Evading File-based Sandboxes”.

BlackHat Conference U.S. 2013. 2013.

[13] Vasilescu M. Gheorghe L. Tapus N. “Practical Malware Analysis based on

Sandboxing”. RoEduNet Conference 13th Edition: Networking in Education and

Research Joint Event RENAM 8th Conference. 2014.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

43

[14] Kirat D. Vigna G. “BareCloud: Bare-metal Analysis-based Evasive Malware

Detection”. Proceedings of the 23rd USENIX Security Symposium. 2014.

[15] Ortega A. Repositorio: herramienta PaFish. Disponible en:

https://github.com/a0rtega/pafish. 2015.

[16] VMware support team. "Workstation User's Manual 7.1". VMware

[www.vmware.com]. Disponible en: http://www.vmware.com/pdf/ws71_manual.pdf.

2010 [acceso julio de 2010].

[17] VirtualBox support team. "Oracle VM VirtualBox User Manual". VirtualBox web

[www.virtualbox.org]. Disponible en: https://www.virtualbox.org/manual/. 2015

[acceso julio de 2015].

[18] Zidouemba A. "How does malware know the difference between the virtual world

and the real world?" Snort's Vulnerability Research Team's Blog [vrt-blog.snort.org].

Disponible en: http://vrt-blog.snort.org/2009/10/how-does-malware-know-

difference.html. 14 de octubre de 2009 [acceso julio de 2015].

[19] Quist D. Smith V. “Detecting the Presence of Virtual Machines Using the Local

Data Table”. Disponible en: http://www.offensivecomputing.net/files/active/0/vm.pdf.

Año.

[20] Singh S. “Breaking the Sandbox”. Disponible en: https://www.exploit-

db.com/docs/34591.pdf. Año.

[21] Liston T. Skoudis E. “On the Cutting Edge: Thwarting Virtual Machine

Detection”. Disponible en:

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf. 2006

[22] Joe Sandbox team. "VM and Sandbox Detections become more professional" Joe

Sandbox Blog [joe4security.blogspot.com.es]. Disponible en:

http://joe4security.blogspot.com.es/2012/08/vm-and-sandbox-detections-become-

more.html. 2 de agosto de 2012 [acceso julio de 2015].

[23] Kang L. Xiaoning L. “Comprehensive Virtual Appliance Detection”. BlackHay

Conference Asia 2014. 2014.

[24] Rin N. “Virtual Machines Detection Enhanced”. Disponible en:

http://www.heise.de/security/downloads/07/1/1/8/3/5/5/9/vmde.pdf. 2013.

[25] Chen X. Andersen J. Morley Z. Bailey M. Nazario J. “Towards an Understanding

of Anti-virtualization and Anti-debugging Behavior in Modern Malware”. International

Conference on Dependable Systems &Networks. 2008.

[26] Cuckoo Foundation. "Cuckoo Sandbox User Manual". Cuckoo sandbox Book

[cuckoo.readthedocs.org]. Disponible en: https://cuckoo.readthedocs.org/en/latest/.

Octubre de 2014 [acceso julio de 2015].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

44

[27] Kolbitsch C. Kirda E. Kruegel C. “The Power of Procrastination: Detection and

Mitigation of Execution-Stalling Malicious Code”. In Proceedings of the 18th ACM

Conference on Computer and Communications Security. 2011.

[28] Ferrand O. “How to detect the Cuckoo Sandbox and hardening it?” 22nd EICAR

Annual Conference. 2013.

[29] Goebel H. Zibricky M. Bajo G. Sitio web: herramienta PyInstaller. Disponible en:

http://www.pyinstaller.org/. 2013

[30] Heller T. Retzlaff J. Hammond M. Sitio web: py2exe. Disponible en:

http://www.py2exe.org/. 2013.

[31] Keri M. Repositorio: antivmdetection script. Disponible en:

https://github.com/nsmfoo/antivmdetection. 2015.

[32] Reguera D. Repositorio: herramienta anticuckoo. Disponible en:

https://github.com/David-Reguera-Garcia-Dreg/anticuckoo. 2015.

[33] Malc0de. Base de datos: malware vivo. Disponible en:

http://malc0de.com/database/. 2015.

[34] Gyung M. Yin H. Hanna S. McCamant S. Dawn S. “Emulating Emulation-

Resistant Malware”. In Proceedings of the 2nd Workshop on Virtual Machine Security

(VMSec’09). 2009.

[35] Bachaalany E. “Detect if your program is running inside a Virtual Machine”. Code

Project [www.codeproject.com]. Disponible en:

www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-

Virtual. 4 de abril de 2005 [acceso julio de 2015].

[36] Álvarez V. Sitio web: herramienta YARA. Disponible en:

http://plusvic.github.io/yara/. 2015.

[37] Google Co. Sitio web: servicio VirusTotal. Disponible en:

https://www.virustotal.com/. 2015.

[38] Volatility Foundation. Repositorio: Volatility Framework. Disponible en:

https://github.com/volatilityfoundation/volatility. 2015.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

45

Anexos

Anexo A - Información ampliada de las técnicas del capítulo 3

A.1 Host Fingerprinting:

Llamadas al sistema para la obtención del GUID:

 GetVolumeNameForVolumeMountPoint()

 GetVolumeInformation()

 GetVolumNameByHandle()

 GetAdaptersAddresses().

A.2 Extended Sleeps:

Posibles llamadas al sistema utilizadas:

 SleepEx()

 NtDelayExecution()

A.3 Timing:

Un ejemplo de esto, es un simple bucle llamando a GetTickCount(). GetTickCount() está

implementado en Windows de forma que en lugar de hacer una llamada de sistema

costosa, sencillamente lee el valor directamente de una página de memoria del kernel (el

cuál es actualizado por el SO periódicamente).

Anubis realiza un monitoreo pesado, invocando funciones de log antes y después de cada

llamada al sistema. De esta manera se puede implementar un gran bucle que llame a

GetTickCount() sin que tenga un coste computacional apreciable en máquinas reales y en

cambio cuando sea analizado por Anubis, haga dos llamadas de log y una lectura de

registro por cada una. Convirtiéndolo en una carga suficientemente grande como para

que el análisis termine mucho antes que el bucle [4].

A.4 Execution Path:

System Calls (SC) para la obtención del execution path:

 mmioOpen()

 GetCommandLineA()

 GetModuleFileNameA()

A.5 Hiding Processes:

La monitorización de procesos creados puede realizarse usando por ejemplo la rutina de

kernel PsSetCretaeProcessNotifyRoutine.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

46

A.6 Específicos del Entorno:

A través de GetModuleHandleA() o Module32First() y Module32Next() puede comprobar

si entre los DLLs cargados hay cosas como: sbiedll.dll (Sandboxie), vmcheck.dll (Virtual

PC)... y varios más, de forma que si el DLL está presente la muestra actuará en

consecuencia.

En estos casos no tiene porque simplemente terminar su ejecución, si no puede intentar

quitar el DLL usado por el sistema de análisis (haciendo que deje de monitorizar o

controlar hooks) a través de FreeLibrary(). En este caso existen técnicas para proteger el

sistema de análisis de que eliminen un DLL importante, una sencilla pero no

completamente segura es cargar varias veces el DLL en cuestión de forma que su

Reference Count será mayor que uno, y cuando se llame a FreeLibrary() reducirá este

Reference Count pero no llegará a cero, que sería cuando de verdad eliminaría el DLL

[20].

Esta solución no es completa porque de la misma manera que se llamaría varias veces a

LoadLibrary(), puede llamarse a FreeLibrary() hasta que el Reference Count sea cero.

Otras soluciones podrían ser poner un hook en las funciones de enumeración o

directamente “esconder el DLL”. Las funciones citadas hacen uso del Process

Environment Block, que tiene tres listas de enlaces de los DLLs cargados, con lo que

simplemente desvinculando el DLL en cuestión de estas, no se mostraría con las técnicas

citadas ni se podría quitar con FreeLibrary() (estas funciones usan los datos de la PEB).

A.7 Técnicas anti-VM:

 Claves de registro, se abren usando RegOpenKey, RegQueryValueEx,

RegEnumKey:

o HKLM\SYSTEM\ControlSet001\Services\Disk\Enum; con valor 0 para

leer la ID del disco duro de la máquina.

o HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus

0\Target Id 0\Logical Unit Id 0 con valor Identifier ; buscar identificadores

(nombre del disco) como: vmware, vbox.

o HKLM\Software\Microsoft\Windows\CurrentVersion; con

valor ProductId, y comprobar el ID.

o HKLM\HARDWARE\Description\System; con valor

SystemBiosVersion.

o HKLM\SOFTWARE\Microsoft; comprobar (enumerando) Hyper-V,

VirtualMachine.

o HKLM\SYSTEM\ControlSet001\Services;

o HKLM\HARDWARE\ACPI\DSDT;

HKLM\HARDWARE\ACPI\FADT; HKLM\HARDWARE\ACPI\RSDT

;

o HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class\{

4D36E968-E325-11CE-BFC1-08002BE10318}\0000\DriverDesc .

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\IDE\D

iskVMware_Virtual_IDE_Hard_Drive___________00000001\30303030

30303030303030303030303030303130\FriendlyName .

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

47

o HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi

Port 0\Scsi Bus 0\Target Id 0\Logical Unit Id 0\Identifier

o HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi

Port 1\Scsi Bus 0\Target Id 0\Logical Unit Id 0\Identifier

o HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4

D36E968-E325-11CE-BFC1-08002BE10318}\0000\DriverDesc

o HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4

D36E968-E325-11CE-BFC1-08002BE10318}\0000\ProviderName

o HKLM\SOFTWARE\MICROSOFT\CRYPTOGRAPHY\MACHINEGU

ID

o HKLM\SOFTWARE\VMware, Inc.\VMware Tools

o HKLM\SOFTWARE\oracle\VirtualBox Guest Additions

 Drivers:

o Mouse driver (VMware): WINDIR%\system32\drivers\vmmouse.sys

o Vbox(System32\drivers): VBoxMouse.sys, VBoxGuest.sys, VBoxSF.sys,

VBoxVideo.sys

 System32/: VBoxDisp.dll, VBoxHook.dll, VBoxMRXNP.dll,

VBoxOGLarrayspu.dll, VBoxOGLerrorspu.dll, VBoxOGLcrutil.dll,

VBoxOGLfeedbackspu.dll, VBoxOGLpackspu.dll, VBoxoglpassthroughspu.dll,

VBoxTray.exe, VBoxService.exe, VBoxControl.exe…

 Disco duro:

o A través de CreateFileA() se puede obtener un handler a PhysicalDrive0

y pasarlo a DeviceIOCOntrol con dwIOControlCode 7405C

(IOCTL_DISK_GET_LENGTH_INFO) lo que dividiendo por

1073741824 dará el tamaño del disco en Gb.

o También se puede comprobar si el disco, u otros dispositivos, pertenece a

un sistema no deseado a través de las funciones SetupDiGetClassDevsA,

SetupDiEnumDeviceInfo y SetupDiGetRegistryProperty, y comparar con

las típicas respuestas, “virtual, vmware, hd…”.

o También se puede obtener el número de serie y fabricante con el comando

DFP_RECEIVE_DRIVE_DATA

 Instrucciones del procesador:

o Si ejecuta o no interrupciones o excepciones. Un ejemplo es la instrucción

ICEBP (0xf1), un código de operación no documentado de la arquitectura

x86. Se usaba antiguamente para debugging a nivel de hardware, pero en

las máquinas modernas simplemente lanza una interrupción con vector

0x1, una versión no modificada de la VM QEMU usa esta instrucción para

propósitos propios [34].

o El caso más conocido de este tipo es la “Backdoor I/O” de VMware. Las

instrucciones privilegiadas IN y OUT cuando son ejecutadas en un equipo

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

48

real en modo usuario generarán una excepción, pero VMware usa IN en

un puerto especial (VX) que solo existe dentro de la VM como interfaz

entre las VM y el software de VMware en sí, con lo que en ese caso no

generará una excepción [12].

o Virtual PC también posee instrucciones con finalidad de backdoor que

cumplen esta descripción [35].

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

49

Anexo B - Informe de un análisis realizado con Cuckoo

En este Anexo se va a describir y comentar la información que un informe de análisis

muestra.

Primero se ofrece un pequeño resumen sobre el análisis en sí y la máquina virtual, y las

condiciones en que se ha hecho.

Figura B.1

Justo después se ve otro cuadro resumen, esta vez sobre el archivo analizado. Información

como tamaño, tipo, hashes etc. Los dos últimos son secciones muy interesantes, la

primera es la aplicación de firmas Yara (firmas basadas es strings en vez de en hashes

como otros sistemas de firmas) [36], y segundo el resultado de analizar el fichero en

VirusTotal [37] que se despliega para ver los resultados detalladas de cada antivirus.

Figura B.2

A continuación se ve la serie de capturas de pantalla del interior del guest, donde poder

ver ciertos comportamientos de manera gráfica (en un análisis de 120 segundos se suelen

obtener unas 60-70 capturas).

Figura B.3

En este nuevo bloque titulado Static Analysis se muestran aspectos al analizar el binario

en sí de manera estática, como Imports y Strings.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

50

Figura B.4

Figura B.5

Continúa con un bloque en el que da información de todos los archivos que ha creado o

descargado el proceso objetivo. De cada uno muestra un cuadro de información como el

nombrado al principio en la Figura B.2.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

51

Figura B.6 Solo se muestra un archivo desplegado

Aquí se encuentra el apartado sobre actividad de red, permite descargar la captura

completa en formato PCAP o simplemente observar el resumen que contiene:

 IPs de los hosts con los que ha habido actividad

Figura B.7

 Peticiones DNS realizadas

Figura B.8

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

52

 Peticiones HTTP

Figura B.9

Luego hay un sumario de la actividad de la muestra en el sistema durante el análisis, que

muestra diferentes aspectos como son:

 Archivos modificados

Figura B.10

 Claves del Sistema modificadas

Figura B.11

 Mutexes

Figura B.12

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

53

Después se encuentra un resumen de los procesos lanzados durante el análisis

Figura B.13

Cada uno de esos procesos puede ser desplegado y mostrar información ordenada de la

actividad, diferenciando el objetivo de cada llamada al sistema realizada (usando la

leyenda basada en colores que se muestra en la Figura B.13).

Figura B.14

Figura B.15

Finalmente hay información obtenida del volcado de memoria realizado por Volatility

[38].

Como extra, en algunos casos se obtiene un añadido a las secciones anteriores, en el caso

de que haya situaciones que alteren parte del análisis, como es el caso de quitarle el hook

(unhook) a una función, lo que no se guardará información sobre las llamadas a esa

función a partir de ahí.

Figura B.16

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

54

Anexo C - Lista de dependencias

 Cuckoo

 VirtualBox

 Python 2

 Python Imaging Library

 Internet Explorer 8

 vsftpd

 volatility

 acpidump

 libcdio-utils

 ssdeep

 pydeep

 build-essential

 libjansson-dev

 libmagic-dev

 libtool

 eclipse-cdt-autotools

 yara

 yara-python

 tcpdump

 python-bson

 python-sqlalchemy

 python-jinja2

 python-magic

 python-pymongo

 python-gridfs

 python-bottle

 python-pefile

 python-chardet

 python-dmidecode

 python-dateutil

 python-dev

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

55

Anexo D - Cambios en ficheros de configuración

Enumeración de los valores añadidos o cambiados en cada uno de los archivos de

configuración, el resto del archivo se deja por defecto.

Cuckoo:

“~/cuckoo/conf/cuckoo.conf”:

 machinery = virtualbox

 memory_dump = on

 ip = 192.168.58.1

 port = 2042

“~/cuckoo/conf/auxiliary.conf”:

 [sniffer]

 enabled = yes

 tcpdump = vboxnet0

“~/cuckoo/conf/virtualbox.conf”:

 mode = gui

 path = /usr/bin/vboxmanage - Este path es extraído usando whereis por si acaso

esté en otro directorio.

 machines = VM1,VM2,VM3 - Lista separada por comas de las VMs disponibles

para Cuckoo

 Comentar el caso de ejemplo llamado cuckoo1 y eliminarlo de la lista “machines”

 [- Nombre de la VM]

 label = - Nombre de la VM.

 platform = windows

 ip = - @IP del guest.

 snapshot = - Nombre de la Snapshot

 tags = - Lista de etiquetas introducidas por el usuario.

“~/cuckoo/conf/reporting.conf”:

 [reporthtml]

 enabled = yes

“~/cuckoo/analyzer/windows/modules/auxiliary/human.py”

 Comentar las líneas de la función main:

o move_mouse()

o click_mouse()

Very Secure FTP Daemon (vsftpd):

“/etc/vsftpd.conf”:

 listen = yes

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

56

 anonymous_enable = yes

 dirmessage_enable = yes

 use_localtime = yes

 xferlog_enable = yes

 connect_from_port_20 = yes

 listen_address = 192.168.58.1 - Aunque en el inicio de la instalación del guest es

192.168.56.1, la dirección por defecto de vboxnet0.

 listen_port = 21

Levantamiento del firewall al iniciar el sistema.

“/etc/rc.local”

 Evitar DDoS: vigila los paquetes TCP con el flag SYN activado, descartando a

partir del 15 proveniente de un mismo host. Lo que a efectos prácticos significa

limitar el número de conexiones.

o iptables -A INPUT -p tcp -i vboxnet0 -s <host_net> --syn -m connlimit --

connlimit-above 15 --connlimit-mask 32 -j REJECT --reject-with tcp-

reset

 Evitar DDoS: permite 20 nuevas conexiones antes de aplicar un límite de 30

nuevas conexiones por segundo.

o iptables -A INPUT -m state --state RELATED,ESTABLISHED -m limit

--limit 30/second --limit-burst 20 -j ACCEPT

 Evitar spam: tira todo el tráfico de entrada desde la VM dirigido al puerto de

SMTP (25).

o iptables -A INPUT -p tcp -i vboxnet0 -s <host_net> --dport 25 -j DROP

 Permitir la conexión al exterior de la VM:

o iptables -A FORWARD -o eth0 -i vboxnet0 -s <host_net> -m conntrack -

-ctstate NEW -j ACCEPT

o iptables -A FORWARD -m conntrack --ctstate

ESTABLISHED,RELATED -j ACCEPT

o iptables -A POSTROUTING -t nat -j MASQUERADE

o sysctl -w net.ipv4.ip_forward=1

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

57

Anexo E - Creación y modificaciones del guest

E.1 Valores generales
Tanto in- como out- guest.

 Memoria RAM 2 Gb.

 Tamaño HDD 250 Gb.

 Sistema operativo Windows XP SP3.

 Número de núcleos 3.

 Dirección MAC aleatorizada.

 Dirección IP aleatorizada en el rango 192.168.58.0/24.

 DNS 8.8.8.8

E.2 Valores específicos de la VM

 ACPI habilitado.

 IO-ACPI habilitado.

 Iniciar desde el lector DVD.

 Interfaz virtual en NIC 1.

o vboxnet0 - IP 192.168.58.1

 Almacenamiento IDE:

o Puerto 0, HDD formato “vdi”.

o Puerto 1, DVD-drive con el path de la imagen ISO del SO a instalar.

 Snapshot con el nombre elegido.

E.3 Modificaciones out-guest
Usando VBoxManage y tomando los valores de la máquina física.

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSFirmwareMajor

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSFirmwareMinor

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseDate

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseMajor

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseMinor

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSVendor

 VBoxInternal/Devices/pcbios/0/Config/DmiBIOSVersion

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardAssetTag

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardBoardType

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardLocInChass

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardProduct

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardSerial

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardVendor

 VBoxInternal/Devices/pcbios/0/Config/DmiBoardVersion

 VBoxInternal/Devices/pcbios/0/Config/DmiChassisAssetTag

 VBoxInternal/Devices/pcbios/0/Config/DmiChassisSerial

 VBoxInternal/Devices/pcbios/0/Config/DmiChassisType

 VBoxInternal/Devices/pcbios/0/Config/DmiChassisVendor

 VBoxInternal/Devices/pcbios/0/Config/DmiChassisVersion

 VBoxInternal/Devices/pcbios/0/Config/DmiOEMVBoxRev

 VBoxInternal/Devices/pcbios/0/Config/DmiOEMVBoxVer

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

58

 VBoxInternal/Devices/pcbios/0/Config/DmiProcManufacturer

 VBoxInternal/Devices/pcbios/0/Config/DmiProcVersion

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemFamily

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemProduct

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemSKU

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemSerial

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemUuid

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemVendor

 VBoxInternal/Devices/pcbios/0/Config/DmiSystemVersion

 VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/ModelNumber

 VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/SerialNumber

 VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/FirmwareRevision

 VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPIVendorId

 VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPIRevision

 VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPIProductId

 VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPISerialNumbe

r

 VBoxInternal/Devices/acpi/0/Config/AcpiOemId

 VBoxInternal/Devices/acpi/0/Config/AcpiCreatorId

 VBoxInternal/Devices/acpi/0/Config/AcpiCreatorRev

E.4 Modificaciones in-guest

 Claves de registro:

o HKLM\HARDWARE\ACPI\DSDT\

o HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\

o HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\

o HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\

o HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

SystemBiosVersion

o HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

VideoBiosVersion

o HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

SystemBiosDate

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Plug

Play /v Start

o HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current

Version\WindowsUpdate\Auto Update

 Desactivar el firewall de Windows.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

59

Anexo F - Resultados finales aplicando PaFish

Para comprobar la efectividad de la implementación, previamente a las pruebas se ha

sometido el ejecutable de la herramienta PaFish a análisis a través de cuckoo.

F.1 Sistema básico
[pafish] Start

[pafish] Windows version: 5.1 build 2600

[pafish] CPU vendor: GenuineIntel

[pafish] CPU VM traced by checking the difference between CPU timestamp counters

(rdtsc)

[pafish] CPU VM traced by checking the difference between CPU timestamp counters

(rdtsc) forcing VM exit

[pafish] Sandbox traced using mouse activity

[pafish] Sandbox traced by checking username

[pafish] Sandbox traced by checking disk size <= 60GB via DeviceIoControl()

[pafish] Sandbox traced by checking disk size <= 60GB via GetDiskFreeSpaceExA()

[pafish] Sandbox traced by checking if NumberOfProcessors is less than 2 via raw

access

[pafish] Sandbox traced by checking if NumberOfProcessors is less than 2 via

GetSystemInfo()

[pafish] Sandbox traced by checking if pysical memory is less than 1Gb

[pafish] VirtualBox traced using Reg key

HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\Logical

Unit Id 0 "Identifier"

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\Description\System

"SystemBiosVersion"

[pafish] VirtualBox traced using Reg key HKLM\SOFTWARE\Oracle\VirtualBox

Guest Additions

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\Description\System

"VideoBiosVersion"

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\DSDT\VBOX__

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\FADT\VBOX__

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\RSDT\VBOX__

[pafish] VirtualBox traced using Reg key

HKLM\SYSTEM\ControlSet001\Services\VBoxGuest

[pafish] VirtualBox traced using Reg key

HKLM\SYSTEM\ControlSet001\Services\VBoxMouse

[pafish] VirtualBox traced using Reg key

HKLM\SYSTEM\ControlSet001\Services\VBoxService

[pafish] VirtualBox traced using Reg key

HKLM\SYSTEM\ControlSet001\Services\VBoxSF

[pafish] VirtualBox traced using Reg key

HKLM\SYSTEM\ControlSet001\Services\VBoxVideo

[pafish] VirtualBox traced using Reg key

HKLM\HARDWARE\DESCRIPTION\System "SystemBiosDate"

[pafish] VirtualBox traced using driver file

C:\WINDOWS\system32\drivers\VBoxMouse.sys

[pafish] VirtualBox traced using driver file

C:\WINDOWS\system32\drivers\VBoxGuest.sys

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

60

[pafish] VirtualBox traced using driver file

C:\WINDOWS\system32\drivers\VBoxSF.sys

[pafish] VirtualBox traced using driver file

C:\WINDOWS\system32\drivers\VBoxVideo.sys

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxdisp.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxhook.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxmrxnp.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxogl.dll

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\vboxoglarrayspu.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxoglcrutil.dll

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\vboxoglerrorspu.dll

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\vboxoglfeedbackspu.dll

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\vboxoglpackspu.dll

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\vboxoglpassthroughspu.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxservice.exe

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxtray.exe

[pafish] VirtualBox traced using system file

C:\WINDOWS\system32\VBoxControl.exe

[pafish] VirtualBox traced using MAC address starting with 08:00:27

[pafish] VirtualBox traced using device \\.\VBoxMiniRdrDN

[pafish] VirtualBox traced using VBoxTray windows

[pafish] VirtualBox traced using its network share

[pafish] VirtualBox traced using vboxservice.exe process

[pafish] VirtualBox traced using vboxtray.exe process

[pafish] VirtualBox device identifiers traced using WMI

[pafish] Cuckoo hooks information structure traced in the TLS

[pafish] End

F.2 Sistema bastionado

[pafish] Start

[pafish] Windows version: 5.1 build 2600

[pafish] CPU vendor: GenuineIntel

[pafish] CPU VM traced by checking the difference between CPU timestamp counters

(rdtsc)

[pafish] CPU VM traced by checking the difference between CPU timestamp counters

(rdtsc) forcing VM exit

[pafish] Sandbox traced using mouse activity

[pafish] Cuckoo hooks information structure traced in the TLS

[pafish] End

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

61

Anexo G - Comparativa de informes generados por Cuckoo

Con el fin de apreciar la contaminación producida por el módulo humano implementado,

aquí se muestra parte de los informes generados al analizar un sencillo archivo de texto,

que solo contiene unas cadenas de texto aleatorias formadas por números, letras y ‘-‘,

llamado “seriales.txt”.

G.1 Sistema básico:

Network Analysis

 Nothing to display.

Behavior Summary

Files

 C:\DOCUME~1

 C:\DOCUME~1\jjjj

 C:\DOCUME~1\jjjj\CONFIG~1

 C:\DOCUME~1\jjjj\CONFIG~1\Temp

 C:\DOCUME~1\jjjj\CONFIG~1\Temp\seriales.txt

 C:\WINDOWS\system32\msctfime.ime

Mutexes

 CTF.TimListCache.FMPDefaultS-1-5-21-1409082233-436374069-

1957994488-1003MUTEX.DefaultS-1-5-21-1409082233-436374069-

1957994488-1003

 ShimCacheMutex

 MSCTF.Shared.MUTEX.EPF

Registry Keys

 HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\System

 HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor

 HKEY_CURRENT_USER\Software\Microsoft\Command Processor

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Locale

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Locale\Alt

ernate Sorts

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Language

Groups

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\IMM

 HKEY_USERS\S-1-5-21-1409082233-436374069-1957994488-

1003\Software\Microsoft\Windows

NT\CurrentVersion\AppCompatFlags\Layers

 HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF

 HKEY_LOCAL_MACHINE\Software\Microsoft\CTF\SystemShared

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

62

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Poli

cies\Explorer

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici

es\Explorer

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

\ShellCompatibility\Applications\NOTEPAD.EXE

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

\ShellCompatibility\Objects\{20D04FE0-3AEA-1069-A2D8-08002B30309D}

 HKEY_CLASSES_ROOT\CLSID\{20D04FE0-3AEA-1069-A2D8-

08002B30309D}\InProcServer32

 HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions

 HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions\{fbeb8a05-beee-

4442-804e-409d6c4515e9}

 HKEY_CLASSES_ROOT\Directory

 HKEY_CLASSES_ROOT\Directory\

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici

es\System

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\Advanced

 HKEY_CLASSES_ROOT\Directory\\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\Directory\\Clsid

 HKEY_CLASSES_ROOT\Folder

 HKEY_CLASSES_ROOT\Folder\Clsid

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\User Shell Folders

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\FileExts

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\FileExts\.txt

 HKEY_CLASSES_ROOT\.txt

 HKEY_CLASSES_ROOT\txtfile

 HKEY_CLASSES_ROOT\txtfile\CurVer

 HKEY_CLASSES_ROOT\txtfile\

 HKEY_CLASSES_ROOT\txtfile\\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\SystemFileAssociations\.txt

 HKEY_CLASSES_ROOT\SystemFileAssociations\text

 HKEY_CLASSES_ROOT\SystemFileAssociations\text\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\txtfile\\Clsid

 HKEY_CLASSES_ROOT\SystemFileAssociations\text\Clsid

 HKEY_CLASSES_ROOT*

 HKEY_CLASSES_ROOT*\Clsid

 HKEY_CURRENT_USER\Keyboard Layout\Toggle

 HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF\LangBarAddIn\

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\LangBarAddIn\

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

63

Processes

 cmd.exe PID: 480, Parent PID: 296

 NOTEPAD.EXE PID: 504, Parent PID: 480

G.2 Sistema bastionado:

DNS requests

 Name @IP

 www.microsoft.com 72.247.212.64

 www.facebook.com 31.13.83.8

 fbstatic-a.akamaihd.net 185.43.180.152

 vassg141.crl.omniroot.com 84.53.132.72

 i.s-microsoft.com 104.83.36.46

 html5shim.googlecode.com 64.233.184.82

 www.googletagservices.com 216.58.210.162

 partner.googleadservices.com 216.58.211.194

 securepubads.g.doubleclick.net 216.58.211.194

 ads.rubiconproject.com 104.83.13.31

 optimized-by.rubiconproject.com 62.67.193.41

 secure-assets.rubiconproject.com 104.83.13.31

 static.xx.fbcdn.net 31.13.83.4

 fbcdn-profile-a.akamaihd.net 84.53.132.170

 scontent-mad1-1.xx.fbcdn.net 31.13.83.4

 pixel.facebook.com 31.13.83.8

 4-edge-chat.facebook.com 31.13.83.8

 login.live.com 131.253.61.82

 auth.gfx.ms 23.54.88.70

 sc.imp.live.com 104.83.200.133

 account.live.com 65.54.187.24

 account.microsoft.com 64.4.54.25

 assets.onestore.ms 104.83.36.185

 ajax.aspnetcdn.com 68.232.34.200

 mem.gfx.ms 23.223.83.137

 cid-c0967adb2414c24f.users.storage.live.com 134.170.107.48

 www.google.es 216.58.210.131

 ssl.gstatic.com 216.58.211.227

 img.youtube.com 216.58.211.238

 clients1.google.es 216.58.211.227

 es.bab.la 85.25.30.170

 ajax.googleapis.com 216.58.211.202

 www.google-analytics.com 216.58.210.174

 stats.g.doubleclick.net 64.233.184.155

 tpc.googlesyndication.com 216.58.210.161

 pagead2.googlesyndication.com 216.58.211.226

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

64

Behavior Summary

Files

 C:\DOCUME~1

 C:\DOCUME~1\dfgh

 C:\DOCUME~1\dfgh\CONFIG~1

 C:\DOCUME~1\dfgh\CONFIG~1\Temp

 C:\DOCUME~1\dfgh\CONFIG~1\Temp\seriales.txt

 C:\WINDOWS\system32\msctfime.ime

Mutexes

 CTF.TimListCache.FMPDefaultS-1-5-21-329068152-839522115-682003330-

1003MUTEX.DefaultS-1-5-21-329068152-839522115-682003330-1003

 ShimCacheMutex

Registry Keys

 HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\System

 HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor

 HKEY_CURRENT_USER\Software\Microsoft\Command Processor

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Locale

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Locale\Alt

ernate Sorts

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Nls\Language

Groups

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\IMM

 HKEY_USERS\S-1-5-21-329068152-839522115-682003330-

1003\Software\Microsoft\Windows

NT\CurrentVersion\AppCompatFlags\Layers

 HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF

 HKEY_LOCAL_MACHINE\Software\Microsoft\CTF\SystemShared

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Poli

cies\Explorer

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici

es\Explorer

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

\ShellCompatibility\Applications\NOTEPAD.EXE

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

\ShellCompatibility\Objects\{20D04FE0-3AEA-1069-A2D8-08002B30309D}

 HKEY_CLASSES_ROOT\CLSID\{20D04FE0-3AEA-1069-A2D8-

08002B30309D}\InProcServer32

 HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions

 HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions\{fbeb8a05-beee-

4442-804e-409d6c4515e9}

 HKEY_CLASSES_ROOT\Directory

 HKEY_CLASSES_ROOT\Directory\CurVer

 HKEY_CLASSES_ROOT\Directory\

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

65

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici

es\System

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\Advanced

 HKEY_CLASSES_ROOT\Directory\\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\Directory\\Clsid

 HKEY_CLASSES_ROOT\Folder

 HKEY_CLASSES_ROOT\Folder\Clsid

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\User Shell Folders

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\FileExts

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo

rer\FileExts\.txt

 HKEY_CLASSES_ROOT\.txt

 HKEY_CLASSES_ROOT\txtfile

 HKEY_CLASSES_ROOT\txtfile\CurVer

 HKEY_CLASSES_ROOT\txtfile\

 HKEY_CLASSES_ROOT\txtfile\\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\SystemFileAssociations\.txt

 HKEY_CLASSES_ROOT\SystemFileAssociations\text

 HKEY_CLASSES_ROOT\SystemFileAssociations\text\ShellEx\IconHandler

 HKEY_CLASSES_ROOT\txtfile\\Clsid

 HKEY_CLASSES_ROOT\SystemFileAssociations\text\Clsid

 HKEY_CLASSES_ROOT*

 HKEY_CLASSES_ROOT*\Clsid

Processes

 cmd.exe PID: 3700, Parent PID: 4052

 NOTEPAD.EXE PID: 1248, Parent PID: 3700

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

66

Anexo H - Glosario de términos y siglas

 0-day: vulnerabilidad de una aplicación o sistema que no es conocida por el público

o el fabricante.

 ACPI (Advanced Configuration and Power Interface): estándar para proporcionar al

sistema operativo una forma de descubrir, configurar y monitorizar hardware. Basado

en la existencia de diferentes tablas de datos.

 ACPI timer: temporizador de alta precisión contenido en las tablas ACPI.

 Anubis: sandbox on-line basada en QEMU.

 API (Application Programming Interface): conjunto de funciones ofrecidas por un

sistema para poder ser usado a través de otro software.

 APIC (Advance Porgrammable Interrupt Controler) timer: temporizador vinculado

al controlador de interrupciones.

 AutoHotKey: Herramienta de código abierto para la creación de macros y

automatización en Windows. Utilizando un lenguaje de scripts permite interactuar

con diferentes elementos de Windows y automatizar clicks, movimientos de ratón,

uso de teclado.

 Ashley Madison: red social de parejas dirigida principalmente a personas que ya

tienen una relación. En julio de 2015 fue víctima de un robo de información, entre

ella los datos de más de 37 millones de cuentas de usuarios.

 Backdoor: mecanismo que permite el acceso indirecto a un sistema.

 Botnet: conjunto de ordenadores que se pueden ejecutar de forma autónoma y

automática manejándolos de manera remota.

 Buffer Overflow: error producido en un programa mientras se escriben datos a un

buffer por el cual se pasa de los límites de esto y escribe información en zonas de

memoria colindantes.

 Bug Bountie: plan por el cual una compañía o propietario de un software o sistema

ofrece una recompensa económica a quien encuentre y reporte de manera privada

vulnerabilidades no conocidas.

 Captchas (Completely Automated Public Turing Test to tell Computers and Humans

Apart): conjunto de tests para comprobar si el sistema está siendo usado por una

persona.

 Configuración Host-Only: o solo-anfitrión. Modo de red virtual de VirtualBox en el

cual se aísla el segmento que conecta a la VM de la red local del host y se comunica

a través de este.

 CPUID: instrucción de los procesadores x86 para obtener detalles sobre el procesador

en sí.

 Debugger: programa usado parar comprobar el funcionamiento, paso a paso, de un

segundo programa.

 Deep web: Internet profunda. Se refiere a la porción de internet que no es indexada

por los motores de búsqueda comunes

 DLL (Dynamic Link Library): biblioteca de enlace dinámico. Archivos ejecutables

cargados bajo demanda de un programa por parte del SO que contienen funciones que

este desee usar.

 Driver: componente software para que permite la comunicación entre un dispositivo

hardware y el resto del sistema.

 DSDT (Differentiated System Descriptor Table): Tabla perteneciente al estándar

ACPI.

 ECX: registro del procesador.

 FADT (Fixed ACPI Descriptor Table): Tabla perteneciente al estándar ACPI.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

67

 FTP: File Transfer Protocol.

 GDTR (Global Descriptor Table Registry): registro de la GDT (Global Descriptor

Table), estructura de datos usada en la arquitectura x86 en la que se definen

características de diferentes zonas de memoria usadas durante la ejecución de un

programa, incluyendo direcciones base, tamaño y privilegios de acceso.

 Git: software de control y mantenimiento de versiones de código fuente.

 GetTickCount: función de Windows que devuelve la cantidad de milisegundos desde

que el sistema fue inicializado.

 GUI (Graphical User Interface): interfaz visual usado para interactuar con un

Sistema.

 GUID (Globally Unique Identifier): Identificador Único Global. Número pseudo-

aleatorio que no garantiza ser único, aunque en la práctica se puede considerar como

tal. Usado para diferentes aplicaciones software como identificador.

 Hacking Team: compañía italiana especializada en la venta de herramientas de

vigilancia e intrusión. El 5 de Julio de 2015 se filtraron más de 400 Gb de información

interna, entre ella sus productos y listas de clientes.

 Hash: conjunto de bytes de tamaño fijo al que se puede mapear un conjunto arbitrario

de bytes de cualquier tamaño.

 Hook: sistema que intercepta una llamada al sistema o evento pudiendo modificar su

comportamiento.

 I/O: Input and Output.

 ID: identificador.

 IDTR (Interrupt Descriptor Table Registry): registro de la IDT (Interrupt Descriptor

Table), tabla de vectores de interrupción en x86. Usada por el procesador para

determinar la correspondencia entre interrupciones y excepciones.

 In-Guest: acciones tomadas en el interior de la máquina virtual, el guest.

 Kernel: programa encargado de manejar peticiones de I/O y traducirlas a

instrucciones del procesador.

 Keylogger: programa que guarda cada pulsación de tecleado realizada por el usuario

en su sistema.

 KVM (Kernel-based Virtual Machine): solución de virtualización para hosts Unix, y

guests Unix y Windows. Creada y mantenida por Qumranet. En el front-end, utiliza

una versión modificada de QEMU.

 LDT (Local Descriptor Table): estructura de datos con las mismas funcionalidades

que la GDT. La diferencia entre ambas radica en que la GDT es usada para acceder

segmentos usados por cualquier programa, y la LDT es usada para acceder a

segmentos usados por una aplicación en particular.

 NetBIOS (Network Basic Input/Output System): provee servicios de la capa de

sesión.

 Netstat: herramienta por línea de comandos para manejar y mostrar conexiones de

red.

 NIC: Network Interface Card.

 Ofuscación de código: Se refiere a realizar una serie de cambios en el código fuente

de forma que no se altere su funcionamiento pero sea muy difícil de interpretar su

funcionamiento al observar el código.

 Out-Guest: acciones tomadas en el exterior de la máquina virtual, el host, pero cuyo

objetivo es afectar al guest.

 Path: localización única en el sistema de archivos.

 PEB (Process Environment Block): estructura de datos de los sistemas Windows NT,

cuyo objetivo es ser usada solo por el sistema operativo. Contiene información a

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

68

aplicar a lo largo de un proceso concreto, incluyendo contexto, parámetros de inicio,

etc.

 PoC (Proof of Concept):

 Py2exe: herramienta para convertir un script en Python a un ejecutable de Windows

que no necesite el intérprete Python.

 PyInstaller: herramienta para convertir un script en Python a un ejecutable de

Windows que no necesite el intérprete Python

 QUEMU: hypervisor de código abierto que realiza virtualización basada en hardware

(emulación).

 Rama de ejecución: sección del código fuente que se ejecuta en los casos en los que

haya una condición en la que elegir el punto en el que se continúa.

 Rootkit: tipo de malware que da acceso privilegiado de manera continua a ciertas

partes del equipo infectado, manteniéndose oculto al administrador del mismo.

 RSDT (Root System Descriptor Table): Tabla perteneciente al estándar ACPI

 Sandboxes: plural de sandbox.

 Sandboxie: solución sandbox que aísla entornos en los que ejecutar una aplicación

concreta.

 Sandboxing: hecho de realizar la función de un sistema sandbox.

 Scheduler: componente de los SO que se encarga de repartir el tiempo disponible de

un procesador entre los procesos que pueden ser ejecutados.

 Script: programa normalmente simple que suele ser interpretado.

 SGDT (Store Global Descriptor Table): instrucción que consulta el GDTR

 SIDT (Store Interrupt Descriptor Table): instrucción que consulta el IDTR.

 Snapshot: imagen del sistema. Copia del estado completo de un sistema.

 SO: Sistema Operativo. OS, Operative System en inglés.

 SSDT (System Service Descriptor Table): tabla interna de punteros en sistemas

Windows con información sobre hooks del sistema.

 Tcpview: utilidad de monitorización de red para Windows.

 TFG: Trabajo de Fin de Grado.

 TLS: métodos para manejar memoria estática o global en un hilo.

 TSC (Time Stamp Counter): registro en los procesadores x86. Cuenta el número de

ciclos de CPU desde el último reset.

 UPnP (Universal Plug and Play): protocolos de red que permiten a dispositivos de

red descubrirse entre ellos y establecer servicios de red.

 VboxManage: herramienta a través de comandos usada en VirtualBox para

configurar, gestionar o monitorizar los diferentes elementos de este software de

virtualización.

 Virtual PC: software de virtualización de Windows.

 VirtualBox Guest Additions: complementos software para ser usados dentro del

guest en VirtualBox con el objetivo de facilitar su manejo.

 VM: Virtual Machine.

 Vsftpd (Very Secure FTP Daemon): servidor FTP (File Transfer Protocol) para

entornos Unix, bastante ligero y rápido de configurar.

 WinPcap: librería de Windows que implementa pcap, API para capturar tráfico de

red.

 Wireshark: conocido analizador de paquetes de código abierto.

 WMI (Windows Management Instrumentation): infraestructura para gestionar datos

y operaciones en sistemas Windows.

Mejora de la Detección de Malware Mediante la Modificación Profunda de Sistemas de Sandboxing

69

 x86: conocida arquitectura de microprocesadores. También se usa para denominar al

conjunto de instrucciones que estos usan. Ha evolucionado en los microprocesadores

x86-64.

 Xen: solución de virtualización de código abierto para host Unix únicamente y guests

Unix y Windows. Desarrollado por la Universidad de Cambridge.

