a2s Universidad
18 Zaragoza

1542

Trabajo Fin de Grado

MEJORA DE LA DETECCION DE MALWARE
MEDIANTE LA MODIFICACION PROFUNDA DE
SISTEMAS DE SANDBOXING

Autor

José Carlos Ramirez Vega

Director
Antonio Sanz Alcober
Ponente

José Luis Salazar Riano

Escuela de Ingenieria y Arquitectura de la Universidad de Zaragoza.
Grado en Ingenieria de Tecnologias y Servicios de Telecomunicacion.

Curso 2014-2015

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

1.1 Escuela de
' Ingenieria y Arquitectura - L
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompaiar ol Tradajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. José Carlos Ramirez Vega

con n2 de DNI 73020950 K en aplicacién de lo dispuesto en el art.

ra

MASTER

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)
Grado , (Titulo del Trabajo)

Mejora de la deteccién de malware mediante la modificacién profunda de
sistemas de sandboxing.

s

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 25 de septiembre de 2015

Wy
Q
Y
i
L
o
U]
W
Q
o
v
0
&

Fdo: José Carlos Ramirez Vega

[N

N/
o

Agradecimientos

No creo que se pueda recordar a toda la gente que ha aportado su granito de arena
durante estos afos de Grado. A todos los comparieros de clase que he tenido, y a todo el
claustro de profesores.

A Antonio Sanz por su tiempo, direccion y ayuda durante este trabajo, y por la guia en el
mundo de la seguridad que desinteresadamente me ha dado.

A José Luis Salazar, por su gran ayuda a la hora de plasmar el trabajo realizado en la
memoria de manera correcta.

A Mikael Keri por responder a mis dudas y permitirme aportar comentarios a su trabajo
A la ciudad del viento y a la de los lagos helados.

Al Equipo A, que siempre serdn la Universidad. Disfrutad de Europa, no dudo que traeréis
grandes historias.

A los Midori Peppers y el resto de la Vieja Guardia, siempre cerca. Ayer, hoy y manana.
A mis abuelos, tios y tia. La familia es lo que siempre estd, sin dudar.

A Mari-Pi, has sido y serds las cuatro patas de mi mesa. El Apoyo con mayuscula.

A Pepito, que no podra venir a la presentacion pero no dejard de pensar en ella ni un
minuto. Por tu preocupacion, por ser un modelo inalcanzable, por tu esfuerzo, por tu
mano siempre pendiente. Cuidate mucho de los mosquitos.

A Yai. Intentaré sequirte el ritmo, hasta que no haga falta que te lo sigan.

A un Pollito, que me hace volar mas alto que las nubes. Espero dar la talla.

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Mejora de la Deteccion de Malware Mediante la
Modificacion Profunda de Sistemas de Sandboxing

RESUMEN

Este trabajo ha sido realizado por José Carlos Ramirez Vega y dirigido por Antonio
Sanz Alcober, siendo presentado como Trabajo de Fin de Grado de la titulacién con
nombre Grado en Ingenieria de Tecnologias y Servicios de Telecomunicacion, mencién
Telematica, de la Escuela de Ingenieria y Arquitectura de la Universidad de Zaragoza.

Se enmarca en el campo del andlisis de codigo malicioso en los sistemas modernos,
conocido como malware. Concretamente en el analisis realizado de manera dinamica,
observando el comportamiento real en un sistema haciendo uso de Cuckoo Sandbox y
VirtualBox. El objetivo principal es mejorar la deteccion de malware esquivo, el cual es
capaz de comprobar su entorno y en caso de estar siendo analizado no desplegar su
comportamiento malicioso.

Primero se definen conceptos claves necesarios para la comprension del trabajo,
como la tecnologia a usar y su finalidad en este campo. Contintia con la explicacién de
algunas de los principales retos que se plantean a la hora de usar este tipo de analisis.

Entrando ya en el propio trabajo se narra un compendio ordenado de las técnicas mas
usadas por el malware moderno para esquivar los sistemas de analisis dinamico. A
continuacion se muestran las medidas elegidas a implementar, el razonamiento de la
seleccion de cada una de ellas, posibles fallos y el resultado que se espera que produzca
el sistema en un analisis real.

Después se dan detalles conceptuales sobre la implementacién realizada en Python
principalmente, aunque también se hace un uso muy ligero de shell script, batch script y
AutoHotKey script. Se daran unas pequefias indicaciones sobre el uso del software
creado desde el punto de vista del usuario.

Finalmente se propone una metodologia para comprobar la efectividad de la
implementacion propuesta, que consta de: eleccién de muestras, enfrentamiento con el
sistema y definicion de los casos de éxito. Los resultados obtenidos se muestran a través
de unas graficas resumen que son presentadas y comentadas.

Se cierra el trabajo con conclusiones y opiniones sobre trabajo futuro en el ambito
del analisis dinamico de malware y la ciberseguridad.

Malware Detection’s Improvement through Deep
Sandboxing Systems Modification

SUMMARY

This project have been performed by José Carlos Ramirez Vega and directed by
Antonio Sanz Alcober. It is proposed as End of Bachelor’s Thesis in the Bachelor of
Engineering in Telecommunication Technologies and Services, major in Telematics, of
the University of Zaragoza.

This Thesis belongs to the malicious code (malware) analysis field. More specifically
it is part of the “dynamic analysis” group, which monitors the actual behavior of a
sample inside a system using Cuckoo Sandbox and VirtualBox. The main goal of this
project is to improve the detection of evasive malware, that is, malware that is aware of
its environment and is able to decide whether or not to display its malicious behavior.

First, key concepts like technologies are defined. Then, the main challenges in this
kind of analysis are exposed.

The main body of the thesis is organized as follows. An organized set of techniques
used by modern malware to avoid dynamic analysis is presented. Then, measures are
selected and implemented to cover these techniques. These measures are reasoned,
exposing weaknesses and expected behavior during a real analysis.

After that, the software implementation is detailed. This have been done using mainly
Python 2, but also shell script, batch script and AutHotKey script. Next, some guide lines
about the usage of the software solution from the user’s point of view is presented.

Finally a methodology to test the improvement of the solution is proposed. It contains
elements like sample selection, testing against the system, and success definition. The
results are explained using comments and graphs.

As closing lines. Conclusions and opinions about future work, the dynamic malware
analysis and cybersecurity can be found.

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Indice general

Contenido
1] oo [T o] o] o ISP 10
I R |V T (1Y Ut T o USSP 10
I O o] =11 Yo 1SRRI 11
ESy ez o (o] e (=] I U (PSPPI 13
2.1 Virtualizacion y maquinas VirtUales...........ccocooeirereeneneneiene s 13
2.2 SANUDOXES ..ot 14
2.3 Analizando malware con SandboXeS...........cccveveiiiiiieniine e 15
Técnicas mas comunes en el malware esquivo —avanzadocccceeevvreierenenene 18
3.1 HOSt FINGEIrPrintingc.cccveeieiie et 18
3.2 EXIENAEA SIEEPS ...vveeeeceiccieee sttt 18
3.3 THMING et b bttt n bbbt 19
34 EXECULION PAth....cviiiiiiiiccee s 19
3.5 HIdING PrOCESSEScuviiveeieeieciee ittt sttt ettt ae et ste e nnas 20
3.6 INteracCion HUM@ANAccocvieiirieiiic e 20
3.7 ESpecificos del ENOINOcccvoiieiiiiccie e 20
3.8 TECNICAS ANLI-VM Lot 21
D =] Tl (=30 4 T=To [T F= TSR 24
4.1 ENtOrN0 de trabajO.......cccciieiieiiciieie ettt 24
4.2 Medidas frente a comprobaciones de entornoccccceveveeveeveciese e 26
4.3 Caracteristicas de 1a MAQUING...........cooeieereneirese e 28
4.4 Imitacion del comportamiento humanocccceveevieie e 28
4.5 Otras medidas dentro del guest OS..........ccoo e 29
4.6 Técnicas conocidas N0 SOIUCIONAAAS.........ccevververererieieeeeeeie e 29
Detalles sobre la Implementacioncccooeiviii e 31
ST A V=T 0 - T ST UROPR SRR 31
5.2 FUNCIONAMIENTO ...vviiieieeiesiiesie e sieeste e e ste e e se e eseesnaesteeseesneenneenaesneenns 32
Pruebas realizadas. ... 35
6.1 Planteamiento de 10S SCENANIOScceeviiieiiieiirie e 35
6.2 Resultados ODIENIAOScccveiiiiiiiee e 37
Conclusiones Y trabajo fULUFOcouvviiiiiie e 40
BIDHOGrafia......c..o e 42
AANIEXOS ...ttt 45
Anexo A - Informacién ampliada de las técnicas del capitulo 3..........ccccocovveiviienens 45
Al HOSt FINGEIPIINTING: .ooivieiiiie et e 45

8

A2 EXIENTEd SIEEPS: ...t s 45

N T I 111 T TSSO 45
A4 EXECULION Path: ...cceiiic e 45
A5 HIAING PrOCESSES: ..ottt 45
A.6 ESpecificos del ENtOrNO0:.........cooveiiiiiiiece e 46
A7 TECNICAS ANLI-V Mo 46
Anexo B - Informe de un analisis realizado con CUCKOO...........ccccveriereieiiiesesianeas 49
Anexo C - Lista de dependencCias.........cccvecveiieiieieiiieseeie e 54
Anexo D - Cambios en ficheros de configuracioncccccoeveverereniieiinie s 55
Anexo E - Creacion y modificaciones del guestocooeiiiriinineniiseneeesieas 57
E.1 Valores gENEralesccovciuiiieiieii ettt 57
E.2 Valores especificos de 1a VM........cccooviiiiiiiiniinee e 57
E.3 MOdifiCaCiONeS OUL-QUESTcoveiuiiiiriiiiieiieieesie e 57
E.4 ModificaCiones IN-QUESEc.cciveriiiieiieie e st e et 58
Anexo F - Resultados finales aplicando PaFish...........c.ccociviiiiiiiiiiiees 59
F.1 SIStEMA DASICO ...cviiiiiiciciec e 59
F.2 Sistema bastionado.........ccevvieiiiiiiiisieee e 60
Anexo G - Comparativa de informes generados por CUCKOOcccceveriienerennns 61
G.1 SiStEMA DASICOcueivieiieieece et ne s 61
G.2 SiStema DastioNAU0.......cc.eveiierieiiiieeeee e 63
Anexo H - Glosario de terminos Y SIgIascovvereirireieiee e 66

Capitulo 1

Introduccion

1.1 Motivacion

En la actualidad millones de personas interaccionan a través de Internet cada dia, vy el
namero sigue creciendo. Es la llamada “era de la informacion”. Se desea que todo el
mundo esté conectado simultaneamente, haciendo las operaciones necesarias de manera
absolutamente transparente y con las mayores facilidades para el usuario.

Su funcionamiento esta basado en unas arquitecturas y protocolos disefiados cuando no
se podia imaginar la expansion que ha sufrido y cuyo principal objetivo es poder dar
mayor rendimiento, aprovechando el ancho de banda y otros recursos. En un mundo
idilico este seria el enfoque adecuado, ya que aporta el maximo beneficio en prestaciones
al conjunto de usuarios.

Con el tiempo se ha visto que no todo usuario en la red quiere convivir con los demas, ni
tienen buenas intenciones, y las comunicaciones se han convertido en una mina de oro
para nuevas modalidades de delincuencia.

Con el fin de lucrarse, los llamados ciber-delincuentes pueden intentar coordinar acciones
ocultas a los usuario en maquinas externas (botnets), bombardear agresivamente con
publicidad o directamente robar datos personales con los que suplantar a su propietario
en tramites bancarios. Situaciones en las que no se pensé en el desarrollo original de
Internet, pero que hoy ocurren con una frecuencia abrumadora.

Esto ha llevado a plantear activamente soluciones segun se van descubriendo diferentes
vulnerabilidades o “trucos” en los sistemas y en las redes que permitan actuar a estos
delincuentes. En los ultimos afios la ciberseguridad se ha convertido en una de las
principales preocupaciones de los grandes actores del mundo de las comunicaciones e
Internet. Cada vez maés, el resto de empresas y el publico estan empezando a ser
conscientes de ello, a través de diferentes escandalos como el robo de fotografias
personales a famosos o la filtracion de datos confidenciales de servicios como Ashley
Madison.

El mundo de la ciberseguridad es muy amplio. Comprende dominios tan dispares como
las intrusiones en aplicaciones web, el bastionado de sistemas o el estudio con ingenieria
inversa de malware o codigo malicioso. En los programas de ingenieria actuales no suele
haber una gran oferta en estos campos. Lo mas comun en los grados de ingenieria es
ofrecer una asignatura introductoria, y el TFG es una buena manera de profundizar en un
tema concreto.

Estas son las razones que han llevado a la eleccion de la tematica de este TFG. Poder
profundizar en uno de los aspectos de la seguridad, en la que se inicia a los alumnos

10

durante el tercer curso del grado y el reto de enfrentarse a plataformas, conceptos y
sistemas a los que no se esta a veces tan acostumbrado.

Ademas empujara el desarrollo de la capacidad resolutiva frente a los problemas
desconocidos y enfrentara al alumno al disefio de una solucién software que interaccione
con programas de terceros.

1.2 Objetivos

El objetivo principal ha sido disefiar un plan de mejora para la deteccion de malware,
adaptando software existente que permite analizar de manera sistematica el
comportamiento de archivos. Se ha centrado el enfoque en el malware evasivo moderno,
que trata de comprobar si esta ejecutdndose en una maquina virtual o una sandbox para
no mostrar actividad maligna en tal caso. Para ello, se creardn maquinas virtuales con
caracteristicas no convencionales y se adaptara la configuracion de Cuckoo Sandbox
haciendo més dificil detectar sus caracteristicas de entorno.

Los sistemas operativos con los que se ha trabajado son: Ubuntu 14.04 LTS, para el host
en el que se ejecuta Cuckoo, VirtualBox, etc., y Windows XP SP3, para las maquinas
guest dentro de VirtualBox.

El proceso llevado a cabo ha consistido en:

» Investigacion sobre virtualizacion, sandboxing y analisis de malware.
Adquisicién de una base conceptual sobre el entorno en el que se desarrolla el
trabajo. Comprender las ventajas e inconvenientes que impone el uso de este tipo
de sistemas. Saber determinar sus debilidades y como son explotadas por el
malware moderno. Ser capaz de entender el proceso al que se somete una muestra
potencialmente maliciosa cuando interactlia con estos sistemas.

» Analisis de protecciones frente a analisis dindmico usadas por malware. Conocer
las diferentes caracteristicas de los entornos de analisis y entender cémo una
muestra de codigo malicioso puede percibirlas. Enumerar y caracterizar las
técnicas usadas por el malware para detectar los diferentes indicios de analisis.

» Disefio de medidas para mejorar la deteccion de malware esquivo. Basado en lo
descrito en las fases anteriores, se propone una serie de medidas que palian
completa o parcialmente las técnicas usadas por el malware a la hora de ser
analizado. La eleccion de estas medidas estd enfocada a completar las
caracteristicas que las sandboxes ya ofrecen de por si, y que permitan un
funcionamiento normal y automatizado de las mismas.

» Implementacion de la solucion. Aplicacion automatizada de las medidas
disefiadas para la creacién de maquinas virtuales y configuracién de sandboxes
para su uso en el analisis de malware.

» Verificacion de las mejoras a través del analisis de muestras reales. Se comprobara
la efectividad de la solucion planteada realizando una bateria de pruebas
automatizadas, con muestras reales obtenidas de diferentes repositorios y bases
de datos de Internet en busca de comportamiento anti-analisis. Primero se ha

11

planteado el escenario de pruebas, fijando SO (Sistema Operativo) del guest y
programas instalados. A partir de ahi se han analizado las muestras usando el
sistema “mejorado” y el sistema sin medidas aplicadas. Después, se presenta una
comparativa de analisis efectivos en el sistema mejorado.

Tras el desarrollo realizado se muestran una serie de conclusiones respecto al resultado
conseguido y el uso de sistemas de sandboxing en el analisis de malware moderno,
planteando posibles lineas futuras relacionadas con el TFG.

Para ayudar a la lectura de este documento se facilita un glosario de términos Yy siglas,
ordenado alfabéticamente, en el Anexo H.

12

Capitulo 2

Estado del arte

Es necesario introducir conceptos basicos sobre el analisis de malware y las tecnologias
bésicas usadas para ello. No se profundizara excesivamente, pero se va a dar una vision
clara sobre los sistemas virtualizados, las sandboxes y como se afronta hoy en dia el
andlisis de codigo malicioso.

2.1 Virtualizacidon y maquinas virtuales

Los conceptos de maquina virtual (VM, por sus siglas en inglés) y sandbox se basan en
la llamada virtualizacién. La virtualizacién puede definirse como la creacién a través de
software de algun recurso ya sea hardware, un SO (Sistema Operativo), una zona de
almacenamiento, etc., obteniendo una “interpretacion virtual” del mismo. La capa de
software encargada de esta virtualizacion se llama hypervisor o Virtual Machine Monitor
(VMM). Esta capa divide todos los recursos disponibles de la méaquina fisica como CPU,
memoria, etc., en diferentes entornos de ejecucion que el hypervisor se encarga de
gestionar.

Uno de los usos mas extendidos de la virtualizacion, aunque no el Gnico, son las maquinas
virtuales. Una VM es la simulacién de un equipo completo virtualizado dentro de uno
fisico, denominando respectivamente guest o huésped, a la VM, y host o anfitrién, a la
maquina fisica. Las VM pueden tener sus propios drivers para los distintos dispositivos
de los que imita la presencia, pero es el host quien accede a estos recursos. Por ello se
puede tener un gran numero de guests dentro de un mismo host.

Otro uso, es el denominado como “VM de aplicacion”. En lugar de imitar un sistema
completo, soporta un proceso al que le proporcionara un entorno de ejecucion particular
pudiendo ser usado en cualquier equipo y comportandose con las mismas caracteristicas.
El ejemplo méas conocido de este caso es la Maquina Virtual de Java (JVM).

A pesar de la vision basica dada del concepto de virtualizacion, a la hora de aplicarlo a
las VM existen dos posibilidades para alcanzar el objetivo: virtualizacion y emulacion.

En la virtualizacion la VM se ejecuta directamente sobre el hardware de la maquina fisica,
controlada por el hypervisor que a efectos practicos afiade una carga extra al scheduler.
En cambio, en laemulacion el hardware sobre el que se ejecuta la VM esta completamente
basado en software. Esto da mucha libertad en algunos casos, se pueden ejecutar sistemas
y programas disefiados para una arquitectura completamente distinta, como plataformas
obsoletas, al igual que resulta en una reproduccion mas fiel en ciertos aspectos del
sistema. A cambio, tiene una penalizacion en rendimiento mucho mayor que el caso
anterior, pero con los procesadores tan potentes que hay en el mercado hoy en dia es mas
que asumible.

13

La gran expansion de este tipo de tecnologia se explica por si sola pensando en algunas
de las ventajas de su uso, tanto en clientes como en servidores: la posibilidad de “volver
atras” cargando una snapshot (imagen del sistema) previa hace que las pruebas y el
mantenimiento en servidores virtuales sea mucho mas sencillo y ahorre coste; como ya
se ha comentado puede haber varios guest en un mismo servidor fisico, lo que genera un
ahorro directo de hardware mediante lo que se denomina consolidacion de servidores;
también se puede concentrar el gasto en mantenimiento/actualizacion de ese equipo
concreto, aumentando la fiabilidad del mismo; y un largo etc.

Una caracteristica basica de las VM es que sus entornos estan limitados en recursos por
el propio Hypervisor y no afectan al resto de guests o al host. Con ello, se puede decir
gue en teoria estos entornos estan completamente aislados y son indistinguibles de una
maquina real. Pero a lo largo del tiempo se han ido viendo diferentes maneras de escapar
de algunas VMs. Y por supuesto, ya que es la parte central de este trabajo, también de
poder diferenciarlas de una maquina real. Uno de los ejemplos mas recientes de “escapar”
de una VM, es la vulnerabilidad llamada “VENOM?” [1], que explota un buffer-overflow
en el controlador del disquete de maquinas virtuales Xen, KVM y QEMU.

2.2 Sandboxes

Una vez introducida la virtualizacién y las VM como uso de ella, se debe entender el
concepto de sandbox para ver como realmente estdn muy ligadas y ha impulsado lo que
en el campo del anélisis de malware se llama analisis dindmico.

Una sandbox es un mecanismo de seguridad usado para probar o verificar el
comportamiento de un archivo, denominado muestra, de manera aislada del resto del
sistema y desde la que se puede monitorizar la actividad de la muestra en cuestion. Una
sandbox normalmente proporciona una parte limitada de espacio de disco, acceso a red u
otros recursos del sistema y cualquier cosa creada o modificada por la muestra no sera
visible fuera de la sandbox, ni sera guardada tras finalizar la ejecucion del andlisis.

Asi vemos que una sandbox se entiende como un ejemplo de uso de virtualizacién. Como
el objetivo de estos sistemas es el analisis y la monitorizacion, han de ser ejecutados en
un nivel de privilegios que esté por encima, y fuera, del entorno a analizar. Es decir, al
nivel del hypervisor.

Pero las sandboxes no solo se limitan a aislar ciertos procesos y recursos del sistema, si
no que se puede aislar una VM entera dentro del sistema de sandboxing, con lo que toda
su actividad quedara monitorizada y se obtendra informacién muy valiosa a la hora de
caracterizar el comportamiento de muestras potencialmente maliciosas. En estos casos la
capacidad de las VM de volver a una imagen previa del sistema es de tremenda utilidad
ya que simplifica el poder probar, una y otra vez, codigo potencialmente malicioso en un
entorno elegido, sin que haya que reinstalar o formatear el equipo (VM).

Aqui se empieza a ver claramente el interés que pueden tener los productores de malware
en detectar la virtualizacion o el sandboxing. Mientras no se pueda caracterizar una
muestra, esta podrd seguir realizando su actividad maliciosa sin ser detectada.
Actualmente lo mas deseable para el malware es detectar el sistema de sandbox en lugar

14

de la VM, ya que muchos “objetivos deseables” de algunas muestras son sistemas
virtualizados.

Aunque no solo el malware esta interesado en saber si esta siendo ejecutado en un entorno
virtual. Otros casos en los que es interesante conocerlo pueden ser fabricantes de
videojuegos para comprobar si sus jugadores estan haciendo trampas gracias al uso de
una VM. O para detectar la presencia de algunos de los llamados “Rootkits”, que a través
de la virtualizacion intentan dar al usuario una sensacion de normalidad mientras llevan
a cabo sus actividades maliciosas.

2.3 Analizando malware con sandboxes

Actualmente el malware se ha convertido en todo un mercado dentro de la Deep Web,
moviendo mucho dinero. Con ello, los productores de malware no solo hacen cada vez
muestras mas complejas y elaboradas, sino que cada vez estdn mas extendidas y las
“familias”, muestras con trozos de cddigo o comportamientos muy parecidos, son mucho
mas grandes.

La conocida aproximacion de deteccién de firmas se ha quedado insuficiente en muchos
casos, viéendose impotente ante el llamado “malware polimorfico”, una misma muestra
que muta en una variedad de archivos con diferentes caracteristicas pero mismo
efecto, que hallevado a la industria anti-malware a usar nuevos mecanismos de deteccion
mas rapidos y que no se vean afectados por técnicas de ofuscacion de codigo [2]. Un buen
ejemplo es el uso de los sistemas sandbox previamente explicados.

Comunmente las técnicas de analisis de malware se dividen en analisis estatico y
dindmico. El analisis estatico puede hacerse simplemente extrayendo cadenas de
caracteres de interés en el ejecutable o librerias importadas, 0 mas profundamente aplicar
ingenieria inversa pasando el binario a ensamblador y tratar de entender su
funcionamiento. En cambio, el andlisis dindmico se basa en analizar la propia
ejecucion/comportamiento del binario. Esto puede hacerse mediante el uso de debuggers,
viendo paso a paso el efecto de la ejecucién de cada instruccion, o como en el caso de
este trabajo usando sandboxes.

Las sandbox usan diferentes mecanismos para monitorizar la muestra ejecutada tras la
introduccién de un moédulo en la maquina virtual, la cual intentard imitar a una victima
en todos los aspectos.

Los métodos de analisis mas comunes en las sandboxes son los hooks. Estos han sido
clasificados en [3], donde se da una explicacion algo mas detallada_

» Hooks a nivel de usuario: obtienen informacion de toda la actividad a nivel de
usuario de las aplicaciones, asemejandose al funcionamiento de un keylogger. Son
los més faciles de detectar, y por ende, de engafar.

» Hooks a nivel de kernel: modificacion del propio kernel del guest para

implementar el seguimiento deseado. De forma que desde el nivel de usuario,
donde se ejecuta la muestra, no sea facil detectar su presencia. Se pueden

15

monitorizar operaciones basicas del sistema como el manejo de registros y de
archivos, en otras palabras “ver lo que el malware le pide al sistema que haga”.

» Emulacion del sistema: modificacion de un emulador de hardware de forma que
se cologuen hooks en zonas de memoria concreta y poder registrar la actividad de
1/0 (Input/Output), periféricos, etc.

Al ser el entorno de pruebas elegido un SO Windows, objetivo de la gran mayoria del
malware actual, se necesitan tener ciertos conceptos del funcionamiento de su API
(Application Programming Interface) y la llamada “API nativa” [4]:

» APl de Windows: coleccion de rutinas en modo usuario utilizadas para interactuar
con las funcionalidades basicas del SO, como acceso a recursos, funciones de red,
o0 servicios de Windows. Esta documentada en la plataforma de desarrollo de
software de Windows, es la misma entre diferentes versiones del SO y esta hecha
para ser la manera Optima a través de la cual las aplicaciones interactdan con el
SO.

» API nativa de Windows: aporta el interfaz de llamadas al sistema que se pueden
realizar desde el modo usuario. En algunos casos cambia entre diferentes
versiones del SO y no esta oficialmente documentada ya que en principio no es la
manera correcta por la que las aplicaciones deberian interactuar con el SO.

Normalmente las aplicaciones usan la APl de Windows, la cual Ilama a la API nativa
internamente. El interés en estas funciones de API nativa surge a raiz de que el malware
suele usarlas directamente, en vez de las llamadas de la APl comun, para evitar que sean
detectadas por algunas técnicas de analisis que se sitian normalmente al nivel de llamadas
de API comun.

Un ejemplo del funcionamiento que hace el sistema de ambas podria ser: una aplicacion
a nivel de usuario llama a WriteFile, funcion de la API com(n contenida en kernel32.dll;
la cual internamente llama a NtWriteFile, perteneciente a la API nativa y contenida en
ntdll.dll; a partir de aqui pasaria la llamada al modo kernel que ejecuta finalmente la
rutina.

La deteccion de malware se asemeja al juego “el gato y el raton”. EI malware muestra
nuevas tecnicas que son estudiadas y afiadidas a los sistemas de deteccion, después el
malware evoluciona para evitar ser detectado o desarrolla nuevos comportamientos.

Como era esperable en esta evolucion, han surgido diferentes maneras de hacer inefectivo
el uso de sandboxes. Estos mecanismos no solo se basan en deteccion de la misma, sino
también en aplicar medidas que no hagan viable su andlisis automatico mediante
sandboxing. Algunas de estas técnicas de deteccion, que serdn explicadas con detalle en
el siguiente capitulo, pueden ser: buscar la interaccién humana, comprobar el entorno en
el que se ejecuta, o inspeccionar el propio sistema son algunas de las méas usadas y que al
“dar positivo” harian que el malware iniciara una rama de ejecucion benigna que no
levantase sospechas hasta que se agotase el tiempo de andlisis o simplemente terminase
su ejecucion.

16

Algunas de las debilidades del analisis dindmico con sandboxes son: la ya citada
limitacidn en el tiempo de andlisis y en la potencia de procesado, comparandolo con un
equipo real, o que solo se muestre la actividad de “un camino de ejecucion”. Esto ultimo
hace referencia a que las muestras pueden tener diferentes ejecuciones, no solo para
mostrar actividad benigna como se ha visto, sino para desplegar diferentes modos de
actividad maligna dependiendo de su entorno [5]. Con ello no se caracteriza la muestra
de una manera tan detallada como se haria mediante el analisis estatico del propio codigo
si fuese posible, o se necesitaria la ejecucion de varias VM con diferentes sistemas de
andlisis y diferentes caracteristicas de entorno.

En el siguiente capitulo se enumeran algunas de las técnicas mas usadas y sus posibles
soluciones. Aun asi, en algunos casos es posible cambiar el funcionamiento basico y
obtener una con mejores resultados. Con esto se puede decir que no existe un sistema
perfecto e infalible para detectar malware ya que, por ejemplo, los hooks son detectables

[3].

17

Capitulo 3

Técnicas mas comunes en el malware esquivo —
avanzado

Las técnicas que se presentan a continuacion son algunas de las mas comunes que
diferentes analistas, investigadores o profesionales han encontrado en los miles de
muestras analizadas cada afio. Conforme pasa el tiempo van variando, con lo que algunas
técnicas que se pueden considerar “desfasadas” o apenas usadas actualmente han sido
excluidas. Se puede encontrar informacién adicional mas concreta, como las llamadas al
sistema que se suelen usar o un listado exhaustivo de las claves de registro, en el Anexo
A.

3.1 Host Fingerprinting

La logica debajo de esta técnica es simple, “si el equipo en el que estoy siendo ejecutado
no es el mismo que el que infecté, estoy siendo analizado”. Por lo tanto, la muestra de
malware incrustara uno o varios valores tnicos del sistema que acaba de infectar en su
propio binario de ejecucion. Si se decide analizar esa muestra, comprobard que esta
ejecutdndose en una maqguina distinta y no mostrard comportamiento malicioso. Al
reescribir parte de su binario el patron de firma cambiard, haciendo imposible su
deteccidn por tal mecanismo [6].

Algunos de los valores unicos comunmente elegidos son: GUID, direccion MAC, nombre
de NetBIOS, una entrada de registro concreta, el path de ejecucion o el nombre de
usuario.

3.2 Extended Sleeps

Técnica sencilla enfocada a aprovechar el limitado tiempo de analisis dedicado a cada
muestra de un sistema de analisis automatico, con multiples muestras que analizar. La
muestra espera sin mostrar actividad un tiempo suficiente como para en caso de ser
ejecutado en un entorno de analisis, este haya terminado. Asi que aungue se utilicen varias
sandboxes en paralelo para monitorizarla, no seria identificada [7].

Podria solucionarse modificando dindmicamente el tiempo que tiene como argumento la

Ilamada al sistema o manipulando el reloj interno del sistema. Por ejemplo Cuckoo,
incluye un sistema para evitar extended sleeps.

18

3.3 Timing

Una version con cierto parecido a la anterior, pero mas avanzada, son las llamadas
“técnicas de timing”.

Por ejemplo, si se obtiene el valor en milisegundos desde que se inicio el sistema con
GetTickCount(), después Ilama a Sleep(), y finalmente a GetTickCount() de nuevo, se
puede comprobar restando ambos valores si en efecto ha pasado ese tiempo y la funcion
de Sleep() no tiene un hook [8].

También se han visto algunos casos que seleccionan fechas concretas [3], por ejemplo el
25 de cada mes, y al comprobar la fecha del sistema llamar a Sleep() sino coincide. Asi
sucesivamente hasta que se dispara la condicion y despliega su funcionamiento malicioso.

Otra mejora a esta técnica es leer valores del sistema mas dificiles de suplantar como
Periodic Interrupt Timer, ACPI (Advanced Configuration and Power Interface) timer,
APIC (Advance Programable Interface Controller) timer, o ejecutar la instruccién
“rdtsc”, que devuelve un valor en ciclos del procesador [9].

En el caso de comprobar la instruccion “rdtsc”, si la sandbox estuviese basada en un
emulador en lugar de virtualizacion no seria posible detectarla, ya que la emulacion
replica completamente el hardware de una maquina incluyendo la CPU, con lo que tendra
su propia implementacion de TSC (Time Stamp Counter) que seria coherente y similar al
de una CPU fisica [10].

También se han observado muestras que comprueban la hora de manera externa al sistema
[4], como podria ser conectdndose a la pagina principal de Yahoo u otro servicio
conocido.

En esta categoria también se pueden contar las muestras que intentan consumir los
recursos del sistema de analisis, por ejemplo iniciando grandes bucles con operaciones
basicas que a las maquinas de hoy en dia no les representan apenas molestia, pero en el
caso de sistemas de analisis con bajo procesado hace que termine antes el analisis que el
bucle [11].

3.4 Execution Path

En las maquinas reales, el malware suele ejecutarse en directorios tales como archivos
temporales, carpetas de descarga, etc. En cambio algunos analizadores directamente
ejecutan estas muestras desde el directorio root u otros directorios poco frecuentes en
situaciones reales.

Otra sencilla comprobacion sobre el path, sea el que sea, es buscar cadenas

potencialmente sospechosas de pertenecer a un sistema de andlisis, como pueden ser:
sample, virus, sandbox, malware, test... [12]

19

3.5 Hiding Processes

Las sandboxes suelen monitorizar la actividad de los procesos del sistema, cuando se
crean o terminan, intentando detectar actividades raras que se asocien con malware. Por
ello ocultar su propio proceso es un mecanismo muy comun.

Esconderse no solo se limita a ocultar proceso en si. En algunos casos también es
interesante evitar que su actividad de red sea percibida a traves de analizadores de trafico
como Wireshark, netstat etc. Para ello, conseguir ocultarse del driver de WinPcap es una
solucion inteligente, vista en una muestra real [13].

3.6 Interaccion Humana

Otro enfoque intenta detectar la presencia de un usuario real manejando la maquina,
situacion que no se da durante un andlisis automatico. Estas técnicas van desde la simple
comprobacion del movimiento del raton en un periodo de tiempo, clicks, esperar a que el
sistema sea reiniciado, a pedir captchas o interactuar con ventanas [3].

También se han empezado a ver implementaciones mas avanzadas que esperan a que el
usuario realice acciones como meterse en Facebook, su correo electrénico, o0 comprobar
que en la maquina hay credenciales de redes sociales conocidas, historial de navegacion,
documentos, etc. [14].

3.7 Especificos del Entorno

Estas técnicas se basan en comprobar diferentes programas o partes del sistema que, o
bien delaten la sandbox directamente, 0 sea raro que no posea una maquina real y por lo
tanto considere que pueda estar siendo analizado.

En algunos casos con el fin de monitorizar el sistema, las diferentes sandboxes
comerciales cargan DLLs o modulos propios especificos dentro del mismo, que si son
detectados ser&n un indicio claro.

Algunas caracteristicas de entorno mas comunmente comprobadas en las sandboxes son:

» No suele ejecutar las muestras con todos los privilegios, con lo que simplemente
puede intentar realizar una accion que requiera privilegios altos para asegurarse
[11].

» No suelen permitir que las muestras se conecten a Internet o limitan la conexion
para evitar que se propaguen o envien spam. Una muestra puede intentar descargar
un archivo, a lo que la sandbox respondera devolviendo un error o generando un
archivo automaticamente. Asi que si comparase su hash con el del archivo que
habia previsto descargar lo detectaria, o al contrario, intentar acceder a un dominio
web inexistente, en cuyo caso algunas sandbox generaria una pagina por defecto
en lugar de un error [11].

20

Otra comprobacién de entorno muy extendida es buscar aplicaciones concretas. En
algunos casos no son una medida anti-analisis en si, sino que esa muestra esta hecha para
atacar una versién de aplicacion determinada, pero puede conseguir que no se clasifique
la muestra como malware ya que no actuaria. Por ejemplo podrian comprobar si Internet
Explorer tiene habilitadas extensiones de terceros o si tiene Java Runtime Environment o
programas P2P como BitTorrent instalados, cosas muy comunes en maquinas reales [12].

También hay malware que utilizan cargadores de DLL distintos del mas comun con lo
que si no esta presente no se ejecutara [12].

Algunas muestras optan por reiniciar el sistema, lo que conlleva perder parte de las trazas
de ejecucidon (evadiendo el analisis). Esto no es algo que suela pasar inadvertido en un
analisis, asi que no es un buen mecanismo anti-analisis.

También hay técnicas que directamente comprueban partes de la memoria. Por ejemplo
comprobar zonas de memoria conocidas donde encontrar referencias a hooks colocados
por ciertas sandboxes [15]. Esta Gltima era usada por la conocida empresa Hacking Team
y se descubri6 su uso en produccion tras el robo de informacion que sufrieron en julio de
2015.

Otra medida, que no solo comprueba si estan analizandolo sino que directamente quita
los posibles hooks, pasa por restaurar las direcciones de memoria originales de la SSDT
leyéndolas de ntoskrnl.exe [4]. Esto puede hacerse incluso desde el nivel de usuario.

A modo de ejemplo, una técnica reactiva al entorno que no se ha considerado como
“comun” es el caso visto en ciertas muestras enviadas a una sandbox online conocida con
conexidn a Internet, Anubis. Filtran al exterior las direcciones IP de estos sistemas para
poder afiadirlas a una lista negra. Con ello futuras muestras del mismo fabricante de
malware pueden evitar mostrarse en esos sistemas [4].

3.8 Técnicas Anti-VM

Aqui es necesario hacer subcategorias por la gran variedad que representan, con ello se
distingue entre:

» Técnicas que comprueban procesos, archivos del sistema o registros.
» Técnicas que comprueban la memoria.

» Técnicas que comprueban hardware especifico de VM.

» Técnicas que comprueban instrucciones especificas del procesador.

Como se va a ver a lo largo de este capitulo, la mayoria de las referencias, como cadenas
de texto predefinidas, hacen objetivo a VirtualBox y VMware. La razén es sencilla: son
los sistemas de virtualizacion mas usados en la actualidad, y por lo tanto los principales
objetivos del malware moderno.

» Procesos, archivos del sistema y registros:

o Leer la ID del disco duro de la maquina y comparar con nombres tipicos
como VIRTUAL, VMWARE, VIRTUALBOX.

21

o Comprobar si el ProductID de la version de Windows coincide con el de
diferentes sandboxes 6 VMs comerciales.

o Comprobar la System BIOS Version buscando nombres tipicos como
VIRTUALBOX 0 VMWARE.

o Buscar en los registros de servicios nombres como: VMTools, vmware,
VirtualBoxMouse, VirtualBoxGuest, xennet, etc.

o Enumerar las claves relacionadas con las tablas ACPlI como DSDT
(Differentiated System Descriptor Table) y FADT (Fixed ACPI Desciptor
Table), buscando nombres como: VIRTUALBOX o xen.

o Comprobar la clave del driver de video buscando VMware SVGA II.

o Comprobar la clave del Hard Drive Driver: VMware, Virtual, IDE o Hard
Drive.

o Comprobar una clave que contenga un GUID, el cual puede seguir un
patron conocido [4].

o Buscar software de apoyo como VMware tools [16] o VirtualBox Guest
Additions [17].

o Procesos que en los nombres contengan las cadenas: VirtualBox,
VirtualBoxService, VirtualBoxtray, vmware, tcpview, wireshark.exe...

o Buscar en los servicios de Windows cadenas como: vmci, vmdebug,
vmmouse, VMTools, vmware...

o Comprobar el nombre de usuario en la maquina, y averiguar si es algo
como: maltest, virus, malware, currentuser, sandbox, honey, vmware,
snort...

o Buscar, en el directorio que contiene los drivers
(%windir%\system32\drivers\), archivos que contengan cadenas
conocidas.

o DLLs o ejecutables pertenecientes a VMs en el directorio system32.

» Comprobaciones de memoria. Aqui se encuentra el abanderado de las
comprobaciones de virtualizacion, la técnica llamada RedPill de Joanna
Rutkowska. Otras suelen conllevar una carga mucho mayor.

o La técnica llamada RedPill hace objetivo a la IDT (Interrupt Descriptor
Table) que en un ordenador fisico reside en un rango memoria conocida
pero en los guest se encuentran en otro (bajo y alto), para evitar conflictos
con la tabla de descriptores entre guest y host ya que solo hay una tabla
por procesador [18]. Eso evita que las interrupciones de unay otra se vean

22

afectadas entre ellas. A través de la instruccion en ensamblador SIDT se
obtiene la direccion de memoria de la tabla para compararla con valores
conocidos, pudiendo diferenciar entre un entorno virtualizado y uno real.
Més adelante se aplico la misma técnica en otras tablas como GDT y LDT
[19]. Actualmente no es una buena solucion ya que cuando hay mas de un
nucleo cada procesador las localiza en una posicion distinta, con lo que
diferentes ejecuciones daran diferentes valores [20]. También se ha visto
que en algunos SO es posible proteger esas zonas de memoria, evitando
que pueda obtenerse el valor [21].

» Técnicas que hacen objetivo al hardware virtual, aunque en los registros ya se
puede encontrar bastante informacion relacionada por ejemplo con sus IDs:

o Comprobar el tamafio del disco duro. Una maquina real no suele tener un
espacio menor de 200 Gb, en cambio una sandbox si [8].

o Comprobar las direcciones MAC. Normalmente las VM suelen usar
prefijos conocidos. Por ejemplo en VMware son 0x0569, 0x0C29, 0x1C14
y 0x5056 [22].

o Obtener el nimero de nucleos. Es bastante comun que a la VM se le asigne
un solo nucleo de la maquina fisica cuando se realizan analisis. En cambio
en maquinas reales lo mas normal es encontrar varios [20].

o Comprobar atributos de la pantalla como resolucion, ratio de refresco y
tamafo. Algunas VM los tienen fijados por defecto en todos los casos [23].

» Técnicas que comprueban instrucciones del procesador:

o Comprobar a través de la instruccion CPUID si esta activo el bit
hypervisor-present, bit 31 del registro ECX. Acto seguido comparar el
nombre de este con una lista de cadenas tipicas [24].

o Hay instrucciones concretas que tienen comportamiento diferente
dependiendo de si se ejecutan en un entorno real o uno virtualizado. Por
ejemplo no lanzando una excepcion cuando deberia [25].

o Una instruccion en x86 puede ser alargada usando prefijos redundantes.
Aunque se apilen varios se comporta como uno, siendo el tamafio maximo
permitido 15 bytes. En una maquina real, el no respetar este maximo
lanzaria una excepcion, pero QEMU falla al hacer cumplir este limite, con
lo que no lanza tal excepcion [20].

23

Capitulo 4

Diseno de medidas

Las medidas se han dividido en bloques enfocados a combatir las técnicas citadas
anteriormente. En cada bloque se expondra: primero la técnica (o familia de técnicas) a
las que esta enfocada la medida, como les afectaria y consideraciones; segundo como se
ha implementado en concreto la o las medidas; y tercero y ultimo, comparativa entre antes
y después, fortalezas y debilidades de la propuesta.

A la hora de evaluar la eficacia de una medida se han estudiado diferentes herramientas
de deteccion de maquinas virtuales y sandboxes que la comunidad ha ido creando, tanto
mecanismos encontrados en malware real como PoCs (Proof of Concept o Pruebas de
Concepto). Estas herramientas han servido para ver de manera clara el funcionamiento
de las técnicas y su respuesta ante diferentes medidas. La mas representativa ha sido
Paranoid Fish (PaFish) [15], que aglutina gran variedad de técnicas de diferente indole
encontradas en muestras reales. Suele actualizarse con frecuencia, conteniendo por
ejemplo las técnicas usadas por la empresa Hacking Team.

4.1 Entorno de trabajo

» VirtualBox (version 4.3.10): conocido software de virtualizacion (x86 vy
AMDG64/Intel64) de codigo abierto. Se puede ejecutar sobre Windows, Linux y
Mac soportando una gran cantidad de sistemas operativos en sus maquinas
virtuales. Permite configurar diferentes caracteristicas de sus maquinas virtuales,
tanto del sistema, la red, el disco o los periféricos disponibles. Aun asi, al realizar
configuraciones automatizadas mucha de la informacion relacionada con el
hardware de la VM (inexistente) contiene valores por defecto, al igual que
elementos como claves de registro de Windows.

» Cuckoo Sandbox (version 1.2): sistema de sandbox de cddigo abierto
desarrollado en Python. Es un proyecto joven que fue anunciado y empezé su
distribucion en 2011. Muy vivo, con actualizaciones frecuentes que van
afiadiendo piezas de gran utilidad al sistema. Es capaz de analizar gran cantidad
de archivos como ejecutables de Windows, DLLs (Dynamic Link Library),
archivos ZIP, java, diferentes scripts, archivos de Microsoft Office “y casi
cualquier cosa” [26]. Tras un andlisis devuelve resultados como trazas de
Ilamadas al sistema realizadas por los procesos creados por la muestra, archivos
creados, eliminados y descargados durante la ejecucién, volcados de memoria de
los procesos, capturas de trafico en formato PCAP, capturas de pantalla durante
la ejecucidn, volcado de memoria completo de la maquina, etc. En el Anexo B se
puede ver una descripcion con imagenes de un informe de ejemplo. Cuckoo
soporta el uso de diferentes softwares de creacion de maquinas virtuales como son
VirtualBox, KVM, VMware o XenServer. Como se muestra en la figura siguiente

24

se usa la configuracion de red host-only de VirtualBox, que crea un segmento
virtual de red aislado a través del que comunicarse.

Analysis Guests
A clean environment when run a

Cuckoo host sample.
Responsible for guest and The sample behavior is reported back to
analysis management. the Cuckoo host.

Start analysis, dumps traffic
and generates reports.

Wt

Analysis VM n.1

5
]
S

Analysis VM n.2

(Virtual network @

-
Virtual network :
Internet / Sinkhole An isolateq ngtwork where S
run analysis virtual
machines. Analysis VM n.3

Cuckoo, a lo largo del tiempo, ha ido solucionando diferentes debilidades frente al
malware esquivo. De esta forma, es capaz de evitar algunas técnicas por defecto, y no
hara falta fortificar dichos aspectos.

» Posee un sistema para evitar las “extended sleeps” que intenten sobrepasar el
tiempo del analisis [27]. Como ya se coment0, esto es una técnica muy basica,
con lo que no es sorprendente que vaya por defecto fortificada. Se ha visto que
hay casos en los que se comprueba de otras maneras que ese tiempo ha
transcurrido correctamente, pero como Cuckoo da la lista completa de llamadas
al sistema, se puede intentar contrastar con ejemplos conocidos y evitar caer en
un falso negativo.

» Respecto al path en el que la muestra era ejecutada, en las primeras versiones de
Cuckoo esto era una debilidad ya que la muestra la ejecutaba en un directorio con
un nombre definido y fijo no coman, con lo que podia ser detectado con métodos
sencillos [28]. En versiones posteriores esto ha sido corregido haciendo aleatorio
el nombre de este directorio.

» La ocultacion de procesos no es tan problematica como en otros sistemas ya que
“anota” cada nuevo proceso creado. Asi aunque posteriormente sea ocultado, se
conoceran los procesos lanzados.

» Hace uso de un mddulo auxiliar llamado “human.py”, su propio modo de imitar
el comportamiento de un usuario en el sistema. Con este modulo el ratén se mueve

25

constantemente por la pantalla y hace diferentes clicks de vez en cuando. También
interacta con las posibles ventanas que aparecen, pulsando “aceptar”, “ok”, etc.

En cambio, ain hay pendiente por parte de Cuckoo un elemento importante: Cuckoo
necesita que en la maquina guest se encuentre en ejecucion “agent.py”, proceso con el
que se comunicara el sistema Cuckoo desde el host. De forma que podria comprobarse
sencillamente si existe una ventana abierta con el nombre correspondiente.

Aqui se podria:

» Hacer que se ejecute sin abrir una consola nueva (cambiando la extension de “.py”
a “.pyw”).

Aun asi, sigue habiendo una debilidad. A pesar de que Python se extiende cada vez mas,
no es muy comuan encontrar en equipos de usuarios corrientes el proceso python.exe
siendo ejecutado, la cual ocurrira en la solucién dada anteriormente. Se muestre 0 no la
ventana, el malware puede listar los procesos y buscar entre ellos python o pythonw.

» Solucién mas definitiva: convertir “agent.pyw” en un ejecutable de Windows
corriente que no llamase la atencion frente al resto de procesos gque se ejecuten en
la maquina.

Esta fue la opcion elegida inicialmente al plantear las medidas, ya que es la mas definitiva.
Sin embargo ha resultado ser mas problematico de lo esperado, y no se ha conseguido
que agent.py se ejecute correctamente al convertirlo en un ejecutable de Windows usando
conocidas herramientas como Pylnstaller [29] y Py2exe [30]. En este aspecto es
necesario encontrar un sistema o herramienta que permita un correcto funcionamiento de
agent.py al convertirlo a ejecutable.

4.2 Medidas frente a comprobaciones de entorno

> Evitar la instalacién de VirtualBox Guest Additions.

La inclusion de esta caracteristica de VirtualBox hace mas comodo interactuar entre la
maquina virtual y el host, pero afiade muchos archivos nombrados anteriormente en
diferentes localizaciones y que son usados como objetivo en las comprobaciones del
malware. Algun usuario recomienda instalarlo por comodidad durante la adecuacion del
guest y desinstalarlas posteriormente, pero es posible que no todos los archivos y claves
se eliminen automaticamente.

La solucion que se plantea frente a esto es por supuesto no instalar Guest Additions. Pero
como sigue siendo necesaria una forma de interactuar con el host para afadir todo lo
necesario en la preparacion de la VM, se configurara un servidor FTP con vsftpd en la
interfaz virtual creada para interactuar con Cuckoo en el host Ubuntu. Habilitando la
descarga andnima no haria falta usuario y contrasefia, esta inseguridad es asumible ya que
estard en la red de la interfaz virtual.

26

Con esto se consigue una forma facil y rapida de afiadir diferentes archivos a la VM, sin
necesidad de usar software sospechosos a los ojos del malware. El servidor FTP es
desactivado durante los analisis.

» Una de las formas més comunes de detectar VirtualBox, sin contar con Guest
Additions, son los numerosos registros de Windows con valores o nombres por
defecto.

Este ha sido uno de los aspectos mas estudiados y revisado por los diferentes
investigadores o profesionales de la materia, con lo que a través de diferentes articulos y
publicaciones se pueden encontrar detalladas descripciones de este tema.

No es dificil encontrar la mayoria, haciendo una simple copia de todas las claves y
buscando entre ellas términos como “virtualbox”, “VirtualBox” o similares. Pero esto no
sera un resultado fiable ya que hay varios casos en los que son nimeros de serie, y
similares, de valor fijo pero sin contener esas cadenas.

Siendo que este ha sido uno de los campos que mas ha sido trabajado previamente, tras
hacer las comprobaciones pertinentes de la existencia de estas claves, y ver como PaFish
las reconocia. Se modifico un proyecto de codigo abierto [31] para adecuarlo a las
necesidades del trabajo.

Este script, escrito en Python, utiliza la libreria dmidecode para obtener informacién del
host, que utilizara para rellenar una lista fija de las claves de registro de Windows que
usan valores predeterminados. También afiade informacion a la VM desde VBoxManage,
el sistema desde el que se maneja VirtualBox en el host, como informacién de la tabla
ACPI.

De esta forma, al crear un nuevo guest se personalizan los valores por defecto
configurando informacion especifica desde el exterior a través de VBoxManage:
configuracion personalizada de ACPI, informacién del vendedor de los discos duros y
CD-ROM, informacion sobre DMI BIOS. Igualmente desde el interior modifica las
claves de registro relacionadas con ACPI (DSDT, FADT y RSDT), BIOS (version de la
misma, fecha de lanzamiento y version de la BIOS de la tarjeta grafica). Con esto las
comprobaciones comunes desde el interior del guest de VirtualBox son inutilizadas.

En lo previamente descrito hay que tener en cuenta que en algunos casos VirtualBox no
soporta los datos extraidos directamente del host [17], de forma que se han ido aplicando
en el propio codigo las restricciones encontradas. Aun asi se requiere un estudio mas
exhaustivo para fijar el tamafio o formato de todos los campos. Otro comportamiento no
deseado en esto casos viene a raiz de que la maquina fisica posea muchos nucleos de
CPU, en cuyo caso la tabla DSDT del host serd mayor de 64KB, que es el limite de
VirtualBox.

» Unatecnica no introducida en el listado de técnicas mas comunes, pero de la que
se ha hablado mucho, es la utilizacion de la informacion WMI (Windows
Management Instrumentation) para detectar VirtualBox a través del UPnP
(Universal Plug and Play).

27

La técnica cobro relevancia a raiz del robo de informacién a la empresa italiana Hacking
Team, quienes la usaban en sus troyanos para evitar ser analizados. Esto puede
comprobarse en una VM (Windows) de VirtualBox: ejecutando wbemtest.exe,
introduciendo en espacio de nombres “root\cimv2”, y haciendo la consulta "select * from
Win32_PnPEntity", en la respuesta se encuentran varios identificadores con cadenas
conocidas (“VirtualBox™).

La solucion presentada es bastante simple y tiene inconvenientes. Lo que se hace es
desactivar el servicio UPnP a través de una clave de registro, con lo que no podria ser
usado para ello... pero tampoco para otras tantas cosas, como por ejemplo verificar la
autenticidad de la instalacion de Windows. De forma que este también seria un apartado
en el que poder profundizar.

4.3 Caracteristicas de la maquina

» VirtualBox usa direcciones por defecto, por ejemplo MAC con prefijos
conocidos, o cierto rango IP para las redes host-only. Aunque esto Gltimo no tiene
por qué ser un indicador inequivoco de estar en una VM. El rango es
192.168.56.X, por defecto empezando en 101, 102, etc., con lo que podri
encontrarse en una red local.

La solucion aqui es muy sencilla. Generar una direccion MAC aleatoria para cada
maquina, mover la red del interfaz virtual a un rango distinto y hacer aleatorias las IPs
que se asignen dentro de ese rango. También se usara uno de los DNS de Google como
servidor DNS primario.

» Cuando se crea una VM por defecto, VirtualBox le asigna capacidades que en una
maquina fisica hace muchos afios que no son comunes, como son: 192MB de
RAM, HDD de 10GB, un solo nucleo de CPU.

Esto se debe modificar para encajar mas en los valores que suela tener una maguina hoy
en dia. Esto conlleva que el equipo que esté realizando el analisis necesite ser potente,
mas si se piensan hacer varios en paralelo. De esta manera se fija la memoria RAM en
2Gb y el tamafio del HDD en 250 Gb que son valores bastante estandar, ademés los
nacleos de CPU en 3.

4.4 Imitacion del comportamiento humano

Cuckoo trae un modulo encargado de esto de por si. EI campo del analisis de malware es
reactivo a lo que hacen las muestras y viceversa, por lo que se ha visto que es posible
determinar si el movimiento del raton es el definido por una sandbox [7] [15] basandose
en el uso de cadencias fijas, posiciones demasiado dispares en instantes muy cercanos,
etc.

Por ello se decidio replantear este apartado, asi que del human-module de Cuckoo se dejo
activo solo el encargado de hacer click en las diferentes ventanas que muestren opciones
(“aceptar”, “ok”, “next”...). A pesar de esto, hay otro aspecto que se debe cubrir en la
imitacion de un sistema “usado por un humano”, y es que no esté “a estrenar” sin archivos,
temporales, historiales de navegacion, etc.

28

La puesta en accion de estas medidas se divide en dos partes: pre-analisis y durante el
analisis.

» Pre-analisis: se generaran diferentes archivos (no vacios) de texto en varios
directorios diferentes de Windows, y se creara historial de navegacion actual y
previa. Esto implica que se navegara automaticamente a diferentes paginas usando
Internet Explorer variando la hora y la fecha del sistema, de forma que se genere
“historial” a lo largo de unos meses previos en diferentes dias y un rango de horas.

» Durante el analisis: a través de un ejecutable generado a partir de un script de
AutoHotKey, se han definido varias acciones “comunes” de un usuario cuando
usa su equipo.

o Crear un nuevo archivo de texto que se escribird y guardara con nombre
semi-aleatorizado.

o Navegar manualmente por el sistema de archivos y copiar y eliminar
archivos.

o Navegar por Internet, autenticandose en diferentes webs como Facebook
o Outlook.

o Movimientos de raton siguiendo un camino semi-aleatorio. De esta forma
los puntos no son consecutivos ni fijos pero si siguen una direccion con
cadencia de movimiento aleatorizada. Igualmente clicks izquierdos
(simple y doble) y derechos aleatorios.

Hay que decir que una implementacion mas fiel del comportamiento humano, como en
este caso con navegacion a Internet, etc., tiene una desventaja: los informes generados
estaran “contaminados” con la actividad que realiza el “mo6dulo humano™.

4.5 Otras medidas dentro del guest OS

Se desactivan las actualizaciones y el firewall de Windows. En este caso se necesita que
la maquina sea lo mas vulnerable posible, pero en otros casos lo ideal seria imitar los
sistemas victima.

El nombre de usuario no debe ser indicativo de nada. Lo mejor es usar uno aleatorio
introducido durante la instalacion.

4.6 Técnicas conocidas no solucionadas

A pesar de todo lo nombrado anteriormente, hay ciertas técnicas de las mas conocidas y
usadas por el malware moderno ante las que el sistema es descubierto, sin contar varias
PoCs gue no son practicas para el malware [32].

» Deteccion mediante sucesivas ejecuciones de la instruccion rdtsc, que devuelve
el nimero de ciclos de CPU desde el ultimo reset (contador TSC).

29

Inicialmente devolvia exactamente el nimero de ciclos de CPU, pero actualmente se va
incrementando en una constante determinada por la frecuencia méaxima a la que el
procesador puede llegar a funcionar, para no variar en casos de ahorro de energia, etc.
[10].

La deteccion se basa en que en una maquina fisica dos medidas consecutivas tendran una
diferencia muy pequefia, en cambio en sistemas virtualizados esta diferencia puede ser
mayor, con picos, debido al overhead que implica la virtualizacién cémo ya se ha visto
en secciones previas. Aungue depende del producto de virtualizacion, esta diferencia es
realmente significativa si la maquina tiene asignados dos o0 méas nucleos [10].

Frente a esto puede buscarse el producto de virtualizacién que menos afecte a este valor
y asignarle solo un nucleo, esto Gltimo choca con otra medidas de comprobacion simple
presentadas anteriormente, que los equipos fisicos no suelen tener un solo nicleo. O usar
una VM basada en emulacion en lugar de virtualizacion, ya que replican todo el hardware
de una méaquina, con lo que tienen su propia implementacién del contador TSC vy el
nimero de ciclos entre dos rdtsc consecutivas se asemeja bastante al de una maquina
fisica, por ejemplo QEMU [10].

La segunda de estas técnicas ante las que estas medidas no protegen:

» Cuckoo almacena las direcciones de vuelta (return addresses) en un espacio extra
en conjunto con la informacion de los hooks en la TLS (Thread-local storage).

Como el espacio extra ocupado es conocido, basta con calcular el valor maximo y minimo
de la localizacién de estas direcciones y comprobar si la informacion obtenida de los
hooks en la TLS, mas el espacio extra, es una zona de memoria contenida entre el maximo
y el minimo. De ese modo se puede conocer si se esta siendo analizado por Cuckoo [15].

30

Capitulo 5

Detalles sobre la Implementacion

El software se ha disefiado para ser usado junto a Cuckoo y VirtualBox pero sin tener que
trabajar con ellos durante la puesta a punto, relegando su uso a los analisis. Las
configuraciones y dependencias son gestionadas por la solucion propuesta. De esta forma
todas las medidas planteadas son automatizadas de manera sencilla y clara, pudiendo
generar un sistema VM-Sandbox bastionado v listo para usar.

En el desarrollo de esta implementacion se ha hecho uso de un control de versiones
basado en Git. Puede encontrarse todo el cddigo y la informacion en el repositorio de
GitHub habilitado para ello: https://github.com/Silverse

5.1 Ventajas

Quizéas en un primer momento puede no parecer prescindible. Pero Cuckoo, al igual que
otras partes de la solucion propuesta, posee un buen nimero de dependencias. Ademas
implica la gestion de algunos archivos de configuracion que no hace automaticamente, ni
con GUI (Graphical User Interface). Aunque una vez se tiene claro qué se esta haciendo
no es complicado, al principio puede llevar méas tiempo del esperado y siempre es
engorroso.

Crear una maquina virtual en VirtualBox se antoja més fécil ya que posee un claro interfaz
gréfico. El problema es que en ciertos aspectos no tiene la granularidad deseada y el
usuario se ve obligado a tener que afiadir configuracion a través de VBoxManage
(command line interface). Por ello, uno de los pasos iniciales del trabajo fue familiarizarse
con estas dos herramientas, VirtualBox y Cuckoo, y saber como se podian gestionar de
diferentes maneras y hasta donde se podia configurar en cada una.

Finalmente, la aplicacion del resto de medidas conlleva un nimero no despreciable de
operaciones. La particularizacion de la solucion en cada caso con valores de la VM, la
eleccion del orden iddneo y la correcta aplicacion de las medidas, es fundamental para el
correcto funcionamiento. Todo ello hace necesario gestionar de manera automatizada y
controlada el uso del sistema

Tras esta introduccion, en la Figura 2 se puede ver lo que mostrard inicialmente la
ejecucion “main.py”:

31

https://github.com/Silverse

HUOARRBABRUBARRBRRRRAR Nenu HERRHBBBRRRARRUR

-1) Install the dependancies and Cuckoo [DONE]
-2) Create a new fixed-VM
-3) List of Cuckoo's VMs
-4) Run Cuckoo and the webserver (localhost:8080)
-5) Close

option's number: |

La interfaz creada para el Terminal contiene una cabecera y las cinco opciones posibles,
volviendo al mend tras realizar la opcion seleccionada.

A la hora de seleccionar cada opcién e introducir informacién, se han implementado
ciertas comprobaciones de entorno y entrada. Por ejemplo ver si las dependencias han
sido instaladas, que los nombres no contengan caracteres extrafios, que se haya creado un
usuario con los requerimientos para usar Cuckoo, etc. Ofreciendo en algunos casos
asistencia para su creacion, como en el usuario, y en otros un aviso de entrada no valida.

5.2 Funcionamiento

La primera opcion, “Install the dependancies and Cuckoo”, muestra a la derecha una
comprobacion del momento en el que se inicia el programa. Es imprescindible que se
haya ejecutado la opcion para el correcto funcionamiento del resto. Con ello se vera “<-
- Select this one!!”, en rojo, 0 “/Done] ”, en verde, cada vez que se muestre el menu por
pantalla. Es posible volver a seleccionarla e instalar otra vez las partes que lo permitan.
Por ejemplo, los archivos de Cuckoo serian sustituidos por archivos por defecto. En el
Anexo C se muestra la lista completa de las dependencias instaladas en esta opcion.

La segunda opcidn, “Create a new fixed-VM”, realiza el proceso necesario para generar
una maquina de VirtualBox con caracteristicas previamente fijadas por las medidas
disefiadas o por compatibilidad con Cuckoo, como el interfaz host-only. También
modifica los archivos de configuracién de Cuckoo necesarios para detectar la VM y
funcionar correctamente. En el Anexo D se listan los archivos de configuracion
modificados en este proceso y en el Anexo E se detallan las modificaciones y
caracteristicas relativas a la creacion de un nuevo guest con la solucion propuesta.

No se limita a ejecutar lo necesario para crear la VM con las caracteristicas de VirtualBox
deseadas. Guia al usuario durante la puesta a punto, la instalacion del guest OS vy las
operaciones a realizar dentro de él, habiendo copiando los archivos necesarios a través
del servidor FTP. En el guest solo habra que ejecutar un script, aparte de instalar todo el
software extra deseado en el momento seleccionado para ello.

32

Para obtener diferentes andlisis efectivos, se deben seleccionar diferentes versiones
antiguas de programas que comunmente sean objetivo de software malicioso. Seran
claros candidatos Microsoft Silverlight, Microsoft Office, Java o Flash.

La solucion propuesta realiza automaticamente los apagados y encendidos de la maquina
durante el proceso, con lo que el usuario solo tendra que ejecutar algunos scripts. Para su
uso continuado es recomendable entender el funcionamiento del software. Por ejemplo,
si se apaga la VM vy se quiere tomar una nueva snapshot, se den realizar ciertas tareas
previas para preparar la VM otra vez. Por ejemplo, reescribir algunos registros del
sistema.

FIXED VM READY FOR CUKOO USAGE.
SPECIFICATIONS:

NAME : =y

RAM:

HDD:

05: WINDOWS XP
SNAPSHOT: snapshot

|
|
|
|
|
| CPU
|
|
|
|

En los scripts a ejecutar en el interior de la VM, se realizan dos pasos:

» Ejecutar un fichero “.bat” que instalara Python y tras ello iniciara un script con el
mismo nombre, pero en Python.

» En el script en Python hay que seguir las instrucciones indicadas. Se encarga de
ejecutar los instaladores imprescindibles y otros scripts para, por ejemplo, crear
historial de navegacion de relleno.

En cierto punto sera necesario reiniciar la maquina, guiado por la solucion propuesta
siempre. Habra que ejecutar otra vez “guide.py”, pero eligiendo otra rama de ejecucion
para los ajustes post-reinicio. Culminara con la puesta en marcha del mddulo de
interaccion humana ejecutado durante los analisis, y la toma de la snapshot del sistema.

La tercera opcion del menu estd enfocada al uso continuado, cuando se han afiadido
manualmente VMs a los archivos de configuracion de Cuckoo. Listard las maguinas
afadidas y sus caracteristicas, y si alguna no esta disponibles en VirtualBox o ha sido
eliminadas, actualizara el fichero de configuracion en consecuencia. Manteniendo asi la
cohesion de ambos sistemas.

Finalmente, sin contar la opcion que termina la ejecucion, se encuentra “Run Cuckoo and

the Webserver”. Ejecutara en dos terminales separados: primero el programa principal de
Cuckoo, y segundo un servidor web al que se podra acceder desde la direccion

33

“localhost:8080”, establecida por defecto en los archivos de configuracion. Este servidor
web ofrece una interfaz comoda e intuitiva para los analisis de Cuckoo, permitiendo
afiadir muestras o ver los informes de analisis previos.

34

Capitulo 6

Pruebas realizadas

Tras haber perfeccionado la implementacion de las medidas elegidas se debe comprobar
su eficacia frente a malware real. Previamente a enfrentar al sistema con las pruebas
reales, hay que asegurarse de que las medidas implementadas se han hecho
correctamente. Para ello se ha confiado en el realismo de la herramienta PaFish,
analizando su ejecutable como si de una muestra de malware se tratase. En el Anexo F
se muestra el log de salida de PaFish en ambos casos, el sistema bastionado y el basico.

6.1 Planteamiento de los escenarios

Para realizar la comparativa, se analizara el set de muestras con un sistema Cuckoo
preparado a través de la solucion propuesta y con un sistema Cuckoo basico, con valores
por defecto y configuraciones sencillas sacadas en la documentacién de Cuckoo.

El set de muestras de malware vivo usado para las pruebas procede de lo recopilado por
el dominio MalcOde [33]. En concreto de muestras enviadas desde los Estados Unidos,
uno de los principales objetivos de todas las campafias de malware.

Para poner a punto ambos sistemas y evitar que algunas muestras no desplieguen su
comportamiento por falta de software, se ha afadido siguiendo las instrucciones
facilitadas durante la instalacion, el siguiente software complementario:

Internet Explorer 8

Adobe Acrobat Reader 5.0.5
Microsoft Office Professional Edition 2003
BitTorrent 4.3.3

JRE 5.0

Silverlight 1.0

Utorrent 1.7.3

Shockwave 7.03.015
Firefox 1.0.3

Adobe Flash Player 10
Thunderbird 3.0

VVVVVVVVYYY

Por supuesto en ambos casos para hacer funcionar Cuckoo se necesitara:
» Instalar Python 2.7

» Instalar Python Imaging Library, ya que es necesario para las capturas de pantalla.
» Estar ejecutando “agent.py” en la version sencilla o “agent.pyw” en la bastionada.

35

Durante la creacion del sistema basico no se prestara atencién a las indicaciones dadas
previamente, con lo que se dejaran los valores de VirtualBox por defecto al realizar una
instalacion usando GUI:

» 192MB de RAM

» HDD de 10GB

» Un solo nacleo de CPU.

» MAC por defecto, con prefijo conocido.

También se utilizara como nombre de usuario, y de la maquina, “malware” y se instalara
VirtualBox Guest Additions.

La revisién de resultados se ha enfocado a comprobar si en un sistema se despliegan mas
comportamientos que en el otro, y no en caracterizar completamente el funcionamiento
de cada muestra. Se considerard que una prueba ha mostrado su comportamiento
malicioso cuando descargue archivos en la version bastionada y no en la basica. Por ello
se centrara la comparativa en los archivos descargados y sus caracteristicas, asi como
posibles anomalias presentes.

La razén principal por la cual no se han tenido en cuenta los host remotos contactados en
los andlisis o las peticiones DNS es la contaminacion generada por el médulo humano.
La mayoria del trafico generado se puede conocer a qué corresponde, pero en algunos
casos se crean situaciones confusas ya que, por ejemplo, Facebook carga contenido
externo variable. Esto hace que no se pueda filtrar correctamente la contaminacion
generada en red ya que no siempre es la misma. En el Anexo G se puede ver un ejemplo
de contaminacion generada, no solo en red sino en todo el sistema.

De esta manera tras realizar todo el conjunto de analisis y haber obtenido los informes de
ambos sistemas, se compararan en los resultados, y se generara un documento mostrando
las diferencias entre ambos.

Definicion de los casos de éxito:

» No descarga archivos en la version bastionada: es malware que no contacta con
el exterior 0 es malware anti-analisis capaz de superar las mejoras del sistema
bastionado.

» Los mismos archivos son descargados en ambas versiones: no tiene
comportamiento anti-analisis o lo tiene, ha superado las medidas de la solucién
propuesta y ademas sigue descargando archivos que simulen un comportamiento
normal. Este segundo caso es algo enrevesado, pero el tipo de duda lleva a que se
deba considerar como desfavorable.

» Elnombre de los archivos descargados es el mismo, pero poseen diferente tamafio.
Es algo relativamente comun y dado que en el caso bastionado tendriamos mas
informacién, se podria considerar positivo. Aun asi no se tienen indicios
suficientes para afirmar tal cosa.

36

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

» Se alcanza el tiempo méaximo de encendido de la VM: la muestra ha forzado que
no pueda realizarse el analisis con normalidad, y sobrepasa tanto el tiempo de
analisis como el limite estricto total.

o Si la version bastionada no alcanza el tiempo méaximo pero la bésica si, la
muestra posee comportamiento anti-analisis inefectivo contra la solucion
propuesta.

o Si ambas versiones alcanzan el tiempo méaximo no se puede afirmar que
tenga comportamiento estrictamente anti-analisis, pero ha levantado
sospechas que haran que sea revisada mas a fondo.

» Nuevos archivos descargados en la version bastionada: la muestra tiene
comportamiento anti-analisis, ya que en la versién basica ha elegido una rama de
ejecucion en la que no despliega completamente su actividad maliciosa. En
cambio, cuando es analizada por el sistema bastionado no es capaz de identificarlo
como VM o sandbox y directamente opta por descargar el payload real que infecte
completamente el equipo.

6.2 Resultados obtenidos

Se ha analizado un total de 200 muestras elegidas de manera aleatoria en la base de datos.
De estos 200 analisis, en 12 casos ha ocurrido algun problema grave, como que
VirtualBox deje de responder o el host tenga algun fallo, y no se ha terminado el analisis
Estos casos no estan relacionados con el comportamiento de la muestra. Estos 12 casos
no son computados, con lo que tenemos un total de 188 analisis efectivos.

Las estadisticas extraidas de los informes son las siguientes:

= Timed-Out ® Ninguna descarga
® Nueva descarga ® Mismas descargas
= Otros

Fig 4: Gréafica de datos en bruto.

37

Llaman la atencion sobre todo tres datos:

» Mismas descargas en 55 casos. Para evitar incertidumbre deberia analizarse bien
el comportamiento, de forma que si ha descargado un ejecutable consideremos
que no posee capacidades anti-analisis. Pero como se ha expuesto en la seccion
anterior, se toma como caso desfavorable.

» Ninguna descarga en 35 casos. Este dato refleja exclusivamente los analisis con
el sistema bastionado. A primera vista parece un dato muy preocupante, ya que
da la sensacion de que 35 muestras que han detectado el sistema.

» Otros, 56 casos. En este grupo entran los casos en los que se han descargado
archivos con el mismo nombre pero diferente peso.

Para entender que el segundo dato no significa un fracaso, hay que ver cémo funciona
Cuckoo. Durante algunos analisis no consigue seleccionar efectivamente las opciones de
la GUI del instalador de la muestra. Puede ser porque esté en un idioma distinto del inglés,
0 por que use opciones o formatos no conocidos para el médulo humano, esto no es tan
raro ya que este apartado de Cuckoo no es un software excesivamente complejo.

A esto hay que afadirle que cierta parte de las muestras analizadas, son sencillamente
AdWare. Programas gque poseen excesiva publicidad durante su uso. En estos casos no es
raro que si no se continlia con la instalacién, la muestra no descargue contenido por su
cuenta y entre en el alarmante segundo dato. Por ello no se debe considerar
automéaticamente como malware evasivo a la totalidad de las muestras del segundo grupo.

Para poder conocer la efectividad real del sistema, no solo es necesario trabajar con un
volumen mayor de muestras para eliminar casos marginales como instaladores que no
contindan su desarrollo, también se deberia trabajar sobre un ser de muestras que posean
exclusivamente comportamiento anti-analisis, ya que varios de los casos expuestos
generan incertidumbre al no poder estar seguros de si ha sido efectivo o no.

Tras haber descrito los posibles casos a considerar como negativos, se puede juzgar mejor
la relacion que tienen los casos de éxito con el total. De esta manera se replantean los
resultados:

» Casos con con diferente peso, 56 casos. Como ya se ha comentado previamente,
no se deben incluir en desfavorables pero tampoco se tienen suficientes indicios
como para darlos completamente por favorables. Por ello podemos descartarlas.

» 38 casos con nuevos archivos. Representan éxitos rotundos, ya que demuestran
un cambio de comportamiento en el que se muestra una naturaleza mas agresiva.

» 35 casos sin descarga y 55 con las mismas descargas. De partida es el dato que
muestra los fallos del sistema. Los que posean las mismas descargas puede que
no tengan comportamiento anti-analisis, pero ante la duda se debe considerar que
el sistema esté siendo detectado.

38

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

m Favorables

® Desfavorables y dudosos

Fig 5: Resultados tras replantear los datos.

En esta segunda gréfica, habiendo aplicado el criterio derivado de un conocimiento mas
especifico del analisis con Cuckoo, muestra como la solucion resuelve como minimo un
tercio de los casos. Aun asi la incertidumbre sigue siendo demasiado alta como para sacar
conclusiones definitivas, por lo que se deberia replantear la metodologia de pruebas para
aportar mayor fiabilidad a los resultados, en lugar de dar por desfavorables los casos con
duda.

39

Capitulo 7

Conclusiones y trabajo futuro

Al enfrentar el sistema contra pruebas reales se comprueba que buena parte de ellas siguen
siendo dudosas. Seria preciso replantear la metodologia de pruebas desde su inicio,
partiendo de una seleccion cuidada en el sistema bésico, de forma que solo se enfrente el
sistema bastionado a muestras con comportamiento anti-analisis asegurado, comprobado
tanto con trafico de red como con archivos descargados.

Uno de los aspectos mas importantes sobre los que continuar trabajando es conseguir que
el mddulo “agent.py” pudiera ser tratado como un ejecutable corriente. En una de las
pruebas realizadas se pudo comprobar como una muestra sencillamente terminaba los
procesos “python.exe” y “pythonw.exe”. Este comportamiento no da lugar a dudas en la
situacion actual, ya que se trata de una base de datos de malware y podemos identificarlo
como un comportamiento anti-analisis, pero si en lugar de terminar los procesos
simplemente eligiese no hacer nada, pasaria facilmente el analisis.

Se podria estudiar mas profundamente el modulo de comportamiento humano para
reducir la contaminacion en los informes, ademés la forma més correcta de implementarlo
seria integrandolo en el modulo “human.py” de Cuckoo. Podrian estudiarse diferentes
funciones con las que elegir trayectorias para el movimiento de ratdn, intentando
mantener la coherencia correspondiente a los movimientos que realizaria un usuario. La
navegacion por internet podria mejorarse también, haciendo uso de una extension de
navegador gue bloquee todo el contenido de terceros que las paginas visitadas tratasen de
cargar. Esto llevaria a elaborar una lista fija de dominios visitados por el mddulo durante
el analisis, que al comparar con las DNS requests y hosts del informe, filtraria
correctamente dejando solo las acciones de la muestra.

Otro aspecto del médulo humano que se podria trabajar mas profundamente es la
capacidad de dar sensacion de uso. En la solucién propuesta se limita a crear diferentes
carpetas con archivos de textos distintos y a generar historial de navegacion y cookies.
Se deberia conseguir generar informacion de uso en todos los programas instalados en el
guest, al igual que obtener archivos de diferentes tipos, personalizar aspectos no
relevantes del sistema como el fondo de pantalla, etc.

También seria interesante afiadir mejores criterios a los casos de éxito de las pruebas.
Para ello se deberia mejorar el script con el que se extraen datos de manera automatizada
de los informes, recogiendo mas informacion relevante. Se deberian revisar
exhaustivamente los informes y volcados de memoria correspondientes a muestras con
comportamiento anti-analisis e identificar cbmo reflejan las técnicas. Al final se deberian
haber comprobado absolutamente todas las técnicas sobre la que se han disefiado mejoras,
y saber identificarlas en un analisis. A partir de ahi se deberia trabajar sobre PoCs o
comportamientos que no se vean frecuentemente, pero que mejorarian la efectividad del
sistema de cara al futuro.

40

Los requisitos establecidos conllevaban el uso de VirtualBox, software para el que
Cuckoo se encuentra optimizado en su desarrollo. Esto no implica que no pueda dar
buenos resultados con otros sistemas de virtualizacion o emulacion. Un estudio pausado
sobre las diferentes soluciones de virtualizacion y emulacion existentes en el mercado,
considerando concienzudamente las ventajas y desventajas que posean, podria resultar en
una mejora de resultados.

Como se ha mostrado, el uso de sandboxes se ha convertido en un método comodo y
efectivo en la lucha contra el malware moderno, pero no infalible. Aun asi la preparacion
de un sistema de sandboxing cuidado puede dar grandes resultados en la mayoria de los
anélisis.

Es necesario continuar investigando incesantemente e incentivar a los profesionales e
investigadores a participar activamente, por ejemplo mediante sistemas de recompensa
como los bug bounties. Como se ha visto en el caso de Hacking Team, el malware siempre
tienen un truco bajo la manga o va un paso por delante (0-day) sin que se conozca, y no
se puede confiar en que todos los dias se filtren sus bases de datos masivamente.

Dado que los posibles fallos técnicos o “pistas” que dejan estos sistemas y permiten su
deteccidn estan cada vez mas controlados, y que el uso de sistemas de virtualizacion ha
dejado de ser un tema de investigadores y ha sido adoptado por un gran ndmero de
sistemas de produccion, el “descubrir la VM” esta dejando de ser el punto central de las
técnicas de evasion.

Estas técnicas se mueven hacia deteccion exclusiva para sandboxes o de interaccion con
el usuario, ya que no discrimina entre sistemas virtualizados y no pero presenta una
eficacia nada despreciable frente a sistemas de andlisis. Por ello cada vez se deberia
prestar mds atencion y esfuerzo al disefio de “mddulos de comportamiento humano™ que
no solo realicen unos sencillos movimientos y clicks de raton, en los que es facil detectar
patrones. Se debe tomar una concepcidn en la que se intente imitar una sesion real de un
usuario, con todas las situaciones aleatorias que se dan, y la capacidad de responder a los
intentos de interaccion que pueda realizar el malware, desde cartelitos sencillos de “next,
ok, accept”, hasta captchas, o preguntas dirigidas.

De manera personal, la realizacién de este trabajo me ha llevado a darme cuenta de algo
importante. A lo largo de la titulacion, aparte de obtener conocimientos sobre los que
poder cimentar el desarrollo profesional de los alumnos en los diferentes campos de
estudio, también “aprendemos a aprender”, se fomenta el desarrollo de pensamiento
critico y la capacidad para avanzar por nuestra cuenta en diferentes materias.

De esta forma podemos seguir nutriendonos y ampliando nuestros horizontes sea cual sea
el camino que se tome al terminar el grado. Nos ha dado la capacidad de saber y poder
enfrentar los diferentes retos profesionales que nos esperan en el futuro.

Para mi, este trabajo ha sido una muestra de ello. Era un tema sobre el que no tenia
conocimiento alguno, pero en el que he tenido la posibilidad de desarrollar mi TFG. Sobre
él ahora tengo una perspectiva mas clara y el conocimiento suficiente para poder seguir
profundizando en ello, habiendo descubierto un campo profesional apasionante.

No ha sido el conocimiento en si, sino poder trazar el camino hasta obtenerlo.

41

Bibliografia

[1] Geffner J. Sitio web: vulnerabilidad VENOM. Disponible en:
http://venom.crowdstrike.com/. 2015.

[2] Vinod P. Laxmi V. “Survey of Malware Detection Methods”. Disponible en:
http://www.security.iitk.ac.in/contents/events/workshops/iitkhack09/papers/vinod.pdf.
20009.

[3] Bilogorskiy N. Sharma S. “Malware’s Most Wanted. Anti-Sandbox malware
techniques”. Webinar. Disponible en: www.youtube.com/watch?v=4Cp2ZMAtog8.
2015.

[4] Lindorfer M. “Detecting Environment-Sensitive Malware” [Tesis de Master].
Faculty of Informatics, Vienna University of Technology. 2011.

[5] Moser A. Kruegel C. Kierda E. “Exploring Multiple Execution Paths for Malware
Analysis”. Proceedings of the 2007 IEEE Symposium on Security and Privacy. 2007.

[6] Chubachi Y. Aiko K. “TENTACLE: Environment-Sensitive Malware Palpation”.
PacSec 2014. 2014.

[7] Lakhani A. “Malware Sandbox and Breach Detection Evasion Techniques”. Dr.
Chaos [www.drchaos.com/]. Disponible en: http://www.drchaos.com/malware-
sandbox-and-breach-detection-evasion-techniques/. 6 de mayo de 2015 [acceso julio de
2015].

[8] Hoffman N. “VM Checking and Detecting”. Blog personal
[securitykitten.github.io/]. Disponible en: http://securitykitten.github.io/vm-checking-
and-detecting/. 3 de diciembre de 2014 [acceso julio 2015].

[9] Pek G. Bencsath B. Buttyan L. “nEther: In-guest Detection of Out-of-the-guest
Malware Analyzers”. . In Proceedings of the Fourth European Workshop on System
Security, EUROSEC’11. 2011.

[10] Ortega A. "rdtsc x86 instruction to detect virtual machines”. Plug it, play it, burn it,
rip it [blog.badtrace.com]. Disponible en: http://blog.badtrace.com/post/rdtsc-x86-
instruction-to-detect-vms/. 22 de marzo de 2015 [acceso julio de 2015].

[11] Nasi E. “Bypass Antivirus Dynamic Analysis”. Disponible en:
http://packetstorm.wowhacker.com/papers/virus/BypassAVDynamics.pdf.
2014.

[12] Singh A. Bu Z. “Hot Knives through Butter: Evading File-based Sandboxes”.
BlackHat Conference U.S. 2013. 2013.

[13] Vasilescu M. Gheorghe L. Tapus N. “Practical Malware Analysis based on

Sandboxing”. RoEduNet Conference 13th Edition: Networking in Education and
Research Joint Event RENAM 8th Conference. 2014.

42

[14] Kirat D. Vigna G. “BareCloud: Bare-metal Analysis-based Evasive Malware
Detection”. Proceedings of the 23rd USENIX Security Symposium. 2014.

[15] Ortega A. Repositorio: herramienta PaFish. Disponible en:
https://github.com/aOrtega/pafish. 2015.

[16] VMware support team. "Workstation User's Manual 7.1". VMware
[www.vmware.com]. Disponible en: http://www.vmware.com/pdf/ws71_manual.pdf.
2010 [acceso julio de 2010].

[17] VirtualBox support team. "Oracle VM VirtualBox User Manual". VirtualBox web
[www.virtualbox.org]. Disponible en: https://www.virtualbox.org/manual/. 2015
[acceso julio de 2015].

[18] Zidouemba A. "How does malware know the difference between the virtual world
and the real world?" Snort's Vulnerability Research Team's Blog [vrt-blog.snort.org].
Disponible en: http://vrt-blog.snort.org/2009/10/how-does-malware-know-
difference.html. 14 de octubre de 2009 [acceso julio de 2015].

[19] Quist D. Smith V. “Detecting the Presence of Virtual Machines Using the Local
Data Table”. Disponible en: http://www.offensivecomputing.net/files/active/0/vm.pdf.
Afo.

[20] Singh S. “Breaking the Sandbox”. Disponible en: https://www.exploit-
db.com/docs/34591.pdf. Afio.

[21] Liston T. Skoudis E. “On the Cutting Edge: Thwarting Virtual Machine
Detection”. Disponible en:
http://handlers.sans.org/tliston/ThwartingVVMDetection_Liston_Skoudis.pdf. 2006

[22] Joe Sandbox team. "VM and Sandbox Detections become more professional™ Joe
Sandbox Blog [joedsecurity.blogspot.com.es]. Disponible en:
http://joedsecurity.blogspot.com.es/2012/08/vm-and-sandbox-detections-become-
more.html. 2 de agosto de 2012 [acceso julio de 2015].

[23] Kang L. Xiaoning L. “Comprehensive Virtual Appliance Detection”. BlackHay
Conference Asia 2014. 2014.

[24] Rin N. “Virtual Machines Detection Enhanced”. Disponible en:
http://www.heise.de/security/downloads/07/1/1/8/3/5/5/9/vmde.pdf. 2013.

[25] Chen X. Andersen J. Morley Z. Bailey M. Nazario J. “Towards an Understanding
of Anti-virtualization and Anti-debugging Behavior in Modern Malware”. International
Conference on Dependable Systems &Networks. 2008.

[26] Cuckoo Foundation. "Cuckoo Sandbox User Manual™. Cuckoo sandbox Book

[cuckoo.readthedocs.org]. Disponible en: https://cuckoo.readthedocs.org/en/latest/.
Octubre de 2014 [acceso julio de 2015].

43

[27] Kolbitsch C. Kirda E. Kruegel C. “The Power of Procrastination: Detection and
Mitigation of Execution-Stalling Malicious Code”. In Proceedings of the 18th ACM
Conference on Computer and Communications Security. 2011.

[28] Ferrand O. “How to detect the Cuckoo Sandbox and hardening it?”” 22nd EICAR
Annual Conference. 2013.

[29] Goebel H. Zibricky M. Bajo G. Sitio web: herramienta PylInstaller. Disponible en:
http://www.pyinstaller.org/. 2013

[30] Heller T. Retzlaff J. Hammond M. Sitio web: py2exe. Disponible en:
http://www.py2exe.org/. 2013.

[31] Keri M. Repositorio: antivmdetection script. Disponible en:
https://github.com/nsmfoo/antivmdetection. 2015.

[32] Reguera D. Repositorio: herramienta anticuckoo. Disponible en:
https://github.com/David-Reguera-Garcia-Dreg/anticuckoo. 2015.

[33] MalcOde. Base de datos: malware vivo. Disponible en:
http://malcOde.com/database/. 2015.

[34] Gyung M. Yin H. Hanna S. McCamant S. Dawn S. “Emulating Emulation-
Resistant Malware”. In Proceedings of the 2nd Workshop on Virtual Machine Security
(VMSec’09). 2009.

[35] Bachaalany E. “Detect if your program is running inside a Virtual Machine”. Code
Project [www.codeproject.com]. Disponible en:
www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-
Virtual. 4 de abril de 2005 [acceso julio de 2015].

[36] Alvarez V. Sitio web: herramienta YARA. Disponible en:
http://plusvic.github.io/yara/. 2015.

[37] Google Co. Sitio web: servicio VirusTotal. Disponible en:
https://www.virustotal.com/. 2015.

[38] Volatility Foundation. Repositorio: Volatility Framework. Disponible en:
https://github.com/volatilityfoundation/volatility. 2015.

44

Anexos

Anexo A - Informacion ampliada de las técnicas del capitulo 3

A.1 Host Fingerprinting:
Llamadas al sistema para la obtencion del GUID:

GetVolumeNameForVolumeMountPoint()
GetVolumelnformation()
GetVolumNameByHandle()
GetAdaptersAddresses().

VVVY

A.2 Extended Sleeps:
Posibles llamadas al sistema utilizadas:

» SleepEx()
> NtDelayExecution()

A.3 Timing:

Un ejemplo de esto, es un simple bucle llamando a GetTickCount(). GetTickCount() esta
implementado en Windows de forma que en lugar de hacer una llamada de sistema
costosa, sencillamente lee el valor directamente de una pagina de memoria del kernel (el
cuél es actualizado por el SO periddicamente).

Anubis realiza un monitoreo pesado, invocando funciones de log antes y después de cada
Ilamada al sistema. De esta manera se puede implementar un gran bucle que llame a
GetTickCount() sin que tenga un coste computacional apreciable en maquinas reales y en
cambio cuando sea analizado por Anubis, haga dos llamadas de log y una lectura de
registro por cada una. Convirtiéndolo en una carga suficientemente grande como para
que el analisis termine mucho antes que el bucle [4].

A.4 Execution Path:
System Calls (SC) para la obtencion del execution path:
» mmioOpen()

» GetCommandLineA()
» GetModuleFileNameA()

A.5 Hiding Processes:

La monitorizacion de procesos creados puede realizarse usando por ejemplo la rutina de
kernel PsSetCretaeProcessNotifyRoutine.

45

A.6 Especificos del Entorno:

A través de GetModuleHandleA() o Module32First() y Module32Next() puede comprobar
si entre los DLLs cargados hay cosas como: sbiedll.dll (Sandboxie), vmcheck.dll (Virtual
PC)... y varios méas, de forma que si el DLL esta presente la muestra actuara en
consecuencia.

En estos casos no tiene porque simplemente terminar su ejecucion, si no puede intentar
quitar el DLL usado por el sistema de analisis (haciendo que deje de monitorizar o
controlar hooks) a través de FreeLibrary(). En este caso existen técnicas para proteger el
sistema de andlisis de que eliminen un DLL importante, una sencilla pero no
completamente segura es cargar varias veces el DLL en cuestion de forma que su
Reference Count serd mayor que uno, y cuando se llame a FreeLibrary() reducira este
Reference Count pero no llegara a cero, que seria cuando de verdad eliminaria el DLL
[20].

Esta solucidn no es completa porque de la misma manera que se llamaria varias veces a
LoadLibrary(), puede llamarse a FreeLibrary() hasta que el Reference Count sea cero.
Otras soluciones podrian ser poner un hook en las funciones de enumeracion o
directamente “esconder el DLL”. Las funciones citadas hacen uso del Process
Environment Block, que tiene tres listas de enlaces de los DLLs cargados, con lo que
simplemente desvinculando el DLL en cuestion de estas, no se mostraria con las técnicas
citadas ni se podria quitar con FreeLibrary() (estas funciones usan los datos de la PEB).

A.7 Técnicas anti-VM:

» Claves de registro, se abren usando RegOpenKey, RegQueryValueEx,
RegEnumKey:

o HKLM\SYSTEM\ControlSet001\Services\Disk\Enum; con valor 0 para
leer la ID del disco duro de la maquina.

o HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi ~ Port 0\Scsi ~ Bus
O\Target Id O\Logical Unit Id 0 con valor Identifier ; buscar identificadores
(nombre del disco) como: vmware, vbox.

o HKLM\Software\Microsoft\Windows\CurrentVersion; con
valor Productld, y comprobar el ID.
o HKLM\HARDWARE\Description\System; con valor

SystemBiosVersion.

o HKLM\SOFTWARE\Microsoft; comprobar (enumerando) Hyper-V,
VirtualMachine.

o HKLM\SYSTEM\ControlSet001\Services;

o HKLM\HARDWARE\ACPI\DSDT;
HKLM\HARDWARE\ACPI\FADT; HKLM\HARDWARE\ACPI\RSDT

o HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class\{
4D36E968-E325-11CE-BFC1-08002BE103183}\0000\DriverDesc .

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\IDE\D
iskVMware_Virtual IDE_Hard_Drive 00000001\30303030
30303030303030303030303030303130\FriendlyName .

46

@)
©)

HKEY_ LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi
Port 0\Scsi Bus O\Target Id O\Logical Unit Id O\Identifier

HKEY_ LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi
Port 1\Scsi Bus O\Target Id O\Logical Unit Id O\Identifier
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4
D36E968-E325-11CE-BFC1-08002BE10318}\0000\DriverDesc
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4
D36E968-E325-11CE-BFC1-08002BE10318}\0000\ProviderName
HKLM\SOFTWARE\MICROSOFT\CRYPTOGRAPHY\MACHINEGU
ID

HKLM\SOFTWARE\VMware, Inc.\VMware Tools
HKLM\SOFTWARE\oracle\VirtualBox Guest Additions

> Drivers:

©)
@)

Mouse driver (VMware): WINDIR%\system32\drivers\vmmouse.sys
Vbox(System32\drivers): VBoxMouse.sys, VBoxGuest.sys, VBOXSF.sys,
VBoxVideo.sys

» System32/: VBoxDisp.dll, VBoxHook.dll, VBoxMRXNP.dII,
VBoxOGLarrayspu.dll, VBoxOGLerrorspu.dil, VBoxOGLcrutil.dll,
VBoxOGLfeedbackspu.dll, VBoxOGLpackspu.dll, VBoxoglpassthroughspu.dll,
VBoxTray.exe, VBoxService.exe, VBoxControl.exe...

> Disco duro:

o

@)

A traveés de CreateFileA() se puede obtener un handler a PhysicalDrive0
y pasarlo a DevicelOCOntrol con dwlOControlCode 7405C
(IOCTL_DISK_GET _LENGTH_INFO) lo que dividiendo por
1073741824 dara el tamafio del disco en Gb.

También se puede comprobar si el disco, u otros dispositivos, pertenece a
un sistema no deseado a través de las funciones SetupDiGetClassDevsA,
SetupDiEnumDevicelnfo y SetupDiGetRegistryProperty, y comparar con
las tipicas respuestas, “virtual, vmware, hd...”.

También se puede obtener el nimero de serie y fabricante con el comando
DFP_RECEIVE_DRIVE_DATA

» Instrucciones del procesador:

o

Si ejecuta o0 no interrupciones o excepciones. Un ejemplo es la instruccién
ICEBP (0xf1), un cédigo de operacion no documentado de la arquitectura
x86. Se usaba antiguamente para debugging a nivel de hardware, pero en
las maquinas modernas simplemente lanza una interrupcién con vector
0x1, una versién no modificada de la VM QEMU usa esta instruccion para
propdsitos propios [34].

El caso mas conocido de este tipo es la “Backdoor I/O” de VMware. Las
instrucciones privilegiadas IN y OUT cuando son ejecutadas en un equipo

47

real en modo usuario generaran una excepcion, pero VMware usa IN en
un puerto especial (VX) que solo existe dentro de la VM como interfaz
entre las VM vy el software de VMware en si, con lo que en ese caso no
generara una excepcion [12].

Virtual PC también posee instrucciones con finalidad de backdoor que
cumplen esta descripcion [35].

48

Anexo B - Informe de un anadlisis realizado con Cuckoo

En este Anexo se va a describir y comentar la informacion que un informe de analisis
muestra.

Primero se ofrece un pequefio resumen sobre el andlisis en si y la maquina virtual, y las
condiciones en que se ha hecho.

EIXED EIXED Al4ng|gox 5042-08-03 00:#2'5) 5012-08-03 00-#e'31

WScpiue rsps| WsusdeL 219yeq QU 2pngomu Qu

EITE 5042-08-03 00:¢R'5A 5042-08-03 00:¢e:38 1] escouge 13

coredolh 2194sq QU couwb|eieq QU prisfiou CMcroo Aclzlou

Justo después se ve otro cuadro resumen, esta vez sobre el archivo analizado. Informacion
como tamafo, tipo, hashes etc. Los dos Ultimos son secciones muy interesantes, la
primera es la aplicacion de firmas Yara (firmas basadas es strings en vez de en hashes
como otros sistemas de firmas) [36], y segundo el resultado de analizar el fichero en
VirusTotal [37] que se despliega para ver los resultados detalladas de cada antivirus.

File name ad@veupdates2016.exe

File size 1592958 bytes

File type PE32 executable (GUI) Intel 80386, for MS Windows

CRC32 19E8BB7D

MD5 2908al6be4671788afbffOBae44ccB551

SHA1 b53f1da@c7cd8b7d3c679d23807b71de2ce2elda

SHA256 8088aecB2c17ebl4aBe8325c41387a57e7b%aald49aa407 1ee271c797115794df
SHA512 b42450853e82713d9bad15350b457d02698d051ccc8c9227c19884d2ebf960d134a8ce5d2752ce0d20bb897d268c775c22fdb5387245563093d04eb9clac3a
Ssdeep 49152:dJZoQrbTFZY1iasFZQIS1Txr3BXLKTHSTLRFS : dtrbTA1DMrhKfp3s
PEID None matched

Yara None matched

VirusTotal Permalink

VirusTotal Scan Date: 2015-09-02 13:57:02
Detection Rate: 9/57 (Expand)

A continuacién se ve la serie de capturas de pantalla del interior del guest, donde poder
ver ciertos comportamientos de manera grafica (en un analisis de 120 segundos se suelen
obtener unas 60-70 capturas).

Screenshots

En este nuevo bloque titulado Static Analysis se muestran aspectos al analizar el binario
en si de manera estatica, como Imports y Strings.

49

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Imports

Library WSOCK32.dlIl:
« @x482794 - None
» Bx4827e8 - None

Library VERSION.dII:

» Ox482738 - VerQueryValueW

« Ox48273c - GetFileVersionlnfoW

« Ox482740 - GetFileVersionlnfoSizeW

Figura B.4

________ gs

IThis program cannot be run in DOS mode.
*.rdata

@.data

L$LOVW

L$paLs\

D$x; DS\

D$p;D$D

T$x;T$p

D$x; D3N

C;\%8r

T$XR@Q

{D9{ v

u h4sH

u h4sH

Figura B.5

Continuda con un bloque en el que da informacidn de todos los archivos que ha creado o

descargado el proceso objetivo. De cada uno muestra un cuadro de informacion como el
nombrado al principio en la Figura B.2.

50

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Dropped Files

File name gSHWKHmTD

File size 858978 bytes

File type data

MD5 53f9b2f4064986aT55ddf4ede33404ac

SHA1 5125b2326a5cc4d65a3182a170f9f87a081ae3ch

SHA256 d63233b5a25b855Td72647ecel7318e73354257dc4c602091180137d4d88508ce

SHA512 4b7b45dcdc795283d2651964ed4db7 feced43632330154ebT46c4102805db70ald17ac94d1d1674fc67af431d!
Ssdeep 24576:0rU8T4Iyy1l1hokmq3Bj7Lg3fH/vTVfgWPLAerjtUNV: 0ZQI51Txr3BXLKTH5FLRFS

Yara None matched

VirusTotal Search for Analysis

Windows.Ink
XAPJxyj.exe
Figura B.6 Solo se muestra un archivo desplegado

Aqui se encuentra el apartado sobre actividad de red, permite descargar la captura
completa en formato PCAP o simplemente observar el resumen que contiene:

» IPs de los hosts con los que ha habido actividad

Network Analysis

Hosts Involved

IP Address

185.43.182.24

185.43.182.35

208.67.222.222

Figura B.7
» Peticiones DNS realizadas
Domain IP Address
wwwi . gmail. com 216.58.210.133
tiles.cdn.mozilla.net 68.232.34.191
clientsl.google.com 216.58.210.142
Figura B.8

51

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

> Peticiones HTTP
HTTP Requests

URL Data

http://clientsl.google.com/ocsp POST /ocsp HTTR/1.1

Host: clientsl.google.com

User-Agent: Mozillas5.@ (Windows NT 5.1; rv:48.0) Gecko/20100101 Firefox/40.0
Accept: text/html,application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=08.5

Accept-Encoding: gzip, deflate

Content-Length: 75

Content-Type: application/ocsp-request

Connection: keep-alive

OIOGEEACHAD AKBB6\XE5+\XBe\ xB3\x02\x1a\x05 \x00\ B\ x 14\ x T2\ xeBj \xFO\x85\x8a\
¥14xXdd\X06\Xx16N\x1b\XbCAXTEN A XD5VAXTE\X 81\ xb6\Xbbb\x1a\xbaZ \ x81/\x02\x08
Axd6i\xb3\x18\x91Xg

Figura B.9

Luego hay un sumario de la actividad de la muestra en el sistema durante el analisis, que
muestra diferentes aspectos como son:

» Archivos modificados

Behavior Summary

Files
* C:\DOCUME~1\weT%CONFIG~1\Temp\addveupdates2o0l6.exe
« C:\DOCUME~1
¢ C:\Documents and Settings\wef
s C:\Documents and Settings\wef\CONFIG~1
Figura B.10

> Claves del Sistema modificadas

Registry Keys

» HKEY CURRENT USER\Control Panel\Mouse

* HKEY CURRENT USER%\Software\AutoIt v3\AutoIt
HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer
HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer

Figura B.11

> Mutexes

Mutexes
* CTF.TimListCache.FMPDefaultS-1-5-21-1202660629-1284227242-1801674531-
* MSCTF.Shared.MUTEX. AEG
Figura B.12

52

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Después se encuentra un resumen de los procesos lanzados durante el anélisis
Processes

registry filesystem process services network synchronization
adOveupdates2o16.exe PID: 2012, Parent PID: 540
adOveupdates2o16.exe PID: 972, Parent PID: 2012

Figura B.13

Cada uno de esos procesos puede ser desplegado y mostrar informacion ordenada de la
actividad, diferenciando el objetivo de cada llamada al sistema realizada (usando la
leyenda basada en colores que se muestra en la Figura B.13).

Timestamp Thread Function Arguments Status Return Repeate
d
00:45:28,500 2020 LdrGetD11Handle ModuleHandle => 8x7c800000 SUCCES (0x00000000
FileName => KERNEL32.DLL S
Figura B.14
00:49:21,453 392 ZwMapViewofSection SectionOffset => 6x8012690 SUCCES 0x00000000
SectionHandle => 0x0080008¢ s

ProcessHandle == oxfffff{ff
BaseAddress => 0x00bfo808

00:48:21,453 382 GetSystemMetrics SystemMetriclndex => 31 SUCCES 0x00000019 1 time
s
00:49:21,469 392 LdrLoadD1l Flags == 1243232 SUCCES 0x00000000
BaseAddress => 0x746b0000 S
FileName => C: \WINDOWS\system32\MSCTF.d1l
00:49:21,469 392 NtCreateMutant Handle => 0x000000b0 SUCCES 0x40000000
InitialOwner => & S

MutexName => CTF.TimListCache. FMPDefaults-
1-5-21-329068152-839522115-682003330- 1003MUTEX. Defaults-
1-5-21-329068152-839522115-682003330-1003

00:49:21,469 392 NtOpenSection DesiredAccess => 0xpe0fealf SUCCES 0x00000000
ObjectAttributes => C:\ntdll S
SectionHandle => 6x000006b4
Figura B.15

Finalmente hay informacion obtenida del volcado de memoria realizado por Volatility
[38].

Como extra, en algunos casos se obtiene un afiadido a las secciones anteriores, en el caso
de que haya situaciones que alteren parte del analisis, como es el caso de quitarle el hook
(unhook) a una funcion, lo que no se guardard informacion sobre las Ilamadas a esa
funcién a partir de ahi.

Anomalies

* unhook LdrLoadDll Function hook was modified! (pid=1484, process=6fflcevalldkey0@.exe)

* unhook CreateProcessInternalW Function hook was modified! (pid=1484, process=0fflcevalldkey@o.exe)
« unhook NtCreateFile Function hook was modified! (pid=1484, process=0fflcevalldkey@®.exe)

* unhook NtOpenFile Function hook was modified! (pid=1484, process=0fflcevalldkeyd®.exe)

« unhook NtReadFile Function hook was modified! (pid=1484, process=0fflcevalldkey@®.exe)

o Figura B.16

53

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Anexo C - Lista de dependencias

VVVYVYVYVYVVYVYVVYVVVVYVYVVVYVVVYVYVYVVVYYVYVYVYYVYYVYYVY

Cuckoo
VirtualBox
Python 2

Python Imaging Library

Internet Explorer 8
vsftpd

volatility
acpidump
libcdio-utils
ssdeep

pydeep
build-essential
libjansson-dev
libmagic-dev
libtool
eclipse-cdt-autotools
yara

yara-python
tcpdump
python-bson
python-sqlalchemy
python-jinja2
python-magic
python-pymongo
python-gridfs
python-bottle
python-pefile
python-chardet
python-dmidecode
python-dateutil
python-dev

54

Anexo D - Cambios en ficheros de configuracion

Enumeraciéon de los valores afiadidos o cambiados en cada uno de los archivos de
configuracién, el resto del archivo se deja por defecto.

Cuckoo:

“~/cuckoo/conf/cuckoo.conf”:

VV VY

machinery = virtualbox
memory_dump =on
ip=192.168.58.1

port = 2042

“~/cuckoo/conf/auxiliary.conf’:

>
>
>

[sniffer]
enabled = yes
tcpdump = vboxnet0

“~/cuckoo/conf/virtualbox.conf™:

>
>

A\

YVV VY VYV

mode = gui

path = /usr/bin/vboxmanage - Este path es extraido usando whereis por si acaso
este en otro directorio.

machines = VM1,VM2,VM3 - Lista separada por comas de las VMs disponibles
para Cuckoo

Comentar el caso de ejemplo llamado cuckool y eliminarlo de la lista “machines”
[- Nombre de laVM]

label = - Nombre de la VM.

platform = windows

ip =- @IP del guest.

snapshot = - Nombre de la Snapshot

tags = - Lista de etiquetas introducidas por el usuario.

“~/cuckoo/conf/reporting.conf™:

>
>

[reporthtml]
enabled = yes

“~/cuckoo/analyzer/windows/modules/auxiliary/human.py”

> Comentar las lineas de la funcién main:

o move_mouse()
o click_mouse()

Very Secure FTP Daemon (vsftpd):
“/etc/vsftpd.cont™:

>

listen = yes

55

YV V VY Y

Y

anonymous_enable = yes

dirmessage_enable = yes

use_localtime = yes

xferlog_enable = yes

connect_from_port_20 = yes

listen_address = 192.168.58.1 - Aunque en el inicio de la instalacion del guest es
192.168.56.1, la direccion por defecto de vboxnetO.

listen_port =21

Levantamiento del firewall al iniciar el sistema.
“/etc/rc.local”

>

Evitar DDoS: vigila los paquetes TCP con el flag SYN activado, descartando a
partir del 15 proveniente de un mismo host. Lo que a efectos préacticos significa
limitar el nUmero de conexiones.
o iptables -A INPUT -p tcp -i vboxnetO -s <host_net> --syn -m connlimit --
connlimit-above 15 --connlimit-mask 32 -j REJECT --reject-with tcp-
reset

Evitar DDoS: permite 20 nuevas conexiones antes de aplicar un limite de 30
nuevas conexiones por segundo.

o iptables -A INPUT -m state --state RELATED,ESTABLISHED -m limit
--limit 30/second --limit-burst 20 -j ACCEPT

Evitar spam: tira todo el trafico de entrada desde la VM dirigido al puerto de
SMTP (25).

o iptables-A INPUT -p tcp -i vboxnetO -s <host_net> --dport 25 -j DROP
Permitir la conexion al exterior de la VM:

o iptables -A FORWARD -o ethO -i vboxnet0 -s <host_net> -m conntrack -
-ctstate NEW -j ACCEPT

o Iptables -A FORWARD -m conntrack --Ctstate
ESTABLISHED,RELATED -j ACCEPT

o iptables -A POSTROUTING -t nat -j MASQUERADE

o sysctl -w net.ipv4.ip_forward=1

56

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

Anexo E - Creacion y modificaciones del guest

E.1

Valores generales

Tanto in- como out- guest.

YVV VYV VYV

E.2

YV VVVYVY

E.3

Memoria RAM 2 Gb.

Tamario HDD 250 Gb.

Sistema operativo Windows XP SP3.

NUmero de nucleos 3.

Direccion MAC aleatorizada.

Direccién IP aleatorizada en el rango 192.168.58.0/24.
DNS 8.8.8.8

Valores especificos de la VM

ACPI habilitado.
I0-ACPI habilitado.
Iniciar desde el lector DVD.
Interfaz virtual en NIC 1.
o VboxnetO - IP 192.168.58.1
Almacenamiento IDE:
o Puerto 0, HDD formato “vdi”.
o Puerto 1, DVD-drive con el path de la imagen ISO del SO a instalar.
Snapshot con el nombre elegido.

Modificaciones out-guest

Usando VBoxManage y tomando los valores de la méaquina fisica.

VVVYVYVVYVYVVYVYVVVYVYVYVVVYVYVYYVYYVYYVY

VBoxInternal/Devices/pchios/0/Config/DmiBIOSFirmwareMajor
VBoxInternal/Devices/pcbios/0/Config/DmiBIOSFirmwareMinor
VBoxInternal/Devices/pchios/0/Config/DmiBIOSReleaseDate
VBoxInternal/Devices/pchios/0/Config/DmiBIOSReleaseMajor
VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseMinor
VBoxInternal/Devices/pchios/0/Config/DmiBIOSVendor
VBoxInternal/Devices/pchios/0/Config/DmiBIOSVersion
VBoxInternal/Devices/pcbios/0/Config/DmiBoardAssetTag
VBoxInternal/Devices/pchios/0/Config/DmiBoardBoardType
VBoxInternal/Devices/pcbios/0/Config/DmiBoardLocInChass
VBoxInternal/Devices/pchios/0/Config/DmiBoardProduct
VBoxInternal/Devices/pchios/0/Config/DmiBoardSerial
VBoxInternal/Devices/pchios/0/Config/DmiBoardVendor
VBoxInternal/Devices/pcbios/0/Config/DmiBoardVersion
VBoxInternal/Devices/pchios/0/Config/DmiChassisAssetTag
VBoxInternal/Devices/pcbios/0/Config/DmiChassisSerial
VBoxInternal/Devices/pchios/0/Config/DmiChassisType
VBoxInternal/Devices/pchios/0/Config/DmiChassisVendor
VBoxInternal/Devices/pchios/0/Config/DmiChassisVersion
VBoxInternal/Devices/pchios/0/Config/DmiIOEMVBoxRev
VBoxInternal/Devices/pchios/0/Config/DmiOEMVBoxVer

57

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

VBoxInternal/Devices/pchios/0/Config/DmiProcManufacturer
VBoxInternal/Devices/pchios/0/Config/DmiProcVersion
VBoxInternal/Devices/pcbios/0/Config/DmiSystemFamily
VBoxInternal/Devices/pchios/0/Config/DmiSystemProduct
VBoxInternal/Devices/pcbios/0/Config/DmiSystemSKU
VBoxInternal/Devices/pchios/0/Config/DmiSystemSerial
VBoxInternal/Devices/pcbios/0/Config/DmiSystemUuid
VBoxInternal/Devices/pcbios/0/Config/DmiSystemVendor
VBoxInternal/Devices/pcbios/0/Config/DmiSystemVersion
VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/ModelNumber
VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/SerialNumber
VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/FirmwareRevision
VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPIVendorld
VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ AT APIRevision
VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPIProductld
VBoxInternal/Devices/piix3ide/0/Config/SecondaryMaster/ATAPISerialNumbe
r

VBoxInternal/Devices/acpi/0/Config/AcpiOemld
VBoxInternal/Devices/acpi/0/Config/AcpiCreatorld
VBoxInternal/Devices/acpi/0/Config/AcpiCreatorRev

YVVVVYVVYVYVVYVYVYVYVYYVYVYYVYYVYYVY

YV V V

E.4 Modificaciones in-guest
» Claves de registro:

HKLM\HARDWARE\ACPI\DSDT\

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\FADT\

HKEY_LOCAL_MACHINE\HARDWARE\ACPI\RSDT\

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

SystemBiosVersion

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v

VideoBiosVersion

o HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System /v
SystemBiosDate

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\Plug
Play /v Start

o HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current

Version\WindowsUpdate\Auto Update

O O O O O

(@]

> Desactivar el firewall de Windows.

58

Anexo F - Resultados finales aplicando PaFish

Para comprobar la efectividad de la implementacién, previamente a las pruebas se ha
sometido el ejecutable de la herramienta PaFish a andlisis a traves de cuckoo.

F.1 Sistema basico

[pafish] Start

[pafish] Windows version: 5.1 build 2600

[pafish] CPU vendor: Genuinelntel

[pafish] CPU VM traced by checking the difference between CPU timestamp counters
(rdtsc)

[pafish] CPU VM traced by checking the difference between CPU timestamp counters
(rdtsc) forcing VM exit

[pafish] Sandbox traced using mouse activity

[pafish] Sandbox traced by checking username

[pafish] Sandbox traced by checking disk size <= 60GB via DeviceloControl()
[pafish] Sandbox traced by checking disk size <= 60GB via GetDiskFreeSpaceExA()
[pafish] Sandbox traced by checking if NumberOfProcessors is less than 2 via raw
access

[pafish] Sandbox traced by checking if NumberOfProcessors is less than 2 via
GetSystemInfo()

[pafish] Sandbox traced by checking if pysical memory is less than 1Gb

[pafish] VirtualBox traced using Reg key
HKLM\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id O\Logical
Unit Id 0 "Identifier"

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\Description\System
"SystemBiosVersion"

[pafish] VirtualBox traced using Reg key HKLM\SOFTWARE\Oracle\VirtualBox
Guest Additions

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\Description\System
"VideoBiosVersion"

[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\DSDT\VBOX___
[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\FADT\VBOX__
[pafish] VirtualBox traced using Reg key HKLM\HARDWARE\ACPI\RSDT\VBOX
[pafish] VirtualBox traced using Reg key
HKLM\SYSTEM\ControlSet001\Services\VBoxGuest

[pafish] VirtualBox traced using Reg key

HKLM\SY STEM\ControlSet001\Services\\VBoxMouse

[pafish] VirtualBox traced using Reg key
HKLM\SYSTEM\ControlSet001\Services\\VBoxService

[pafish] VirtualBox traced using Reg key

HKLM\SY STEM\ControlSet001\Services\\VBoxSF

[pafish] VirtualBox traced using Reg key
HKLM\SYSTEM\ControlSet001\Services\VBoxVideo

[pafish] VirtualBox traced using Reg key
HKLM\HARDWARE\DESCRIPTION\System "SystemBiosDate"

[pafish] VirtualBox traced using driver file
C:\WINDOWS\system32\drivers\VBoxMouse.sys

[pafish] VirtualBox traced using driver file
C:\WINDOWS\system32\drivers\VBoxGuest.sys

59

[pafish] VirtualBox traced using driver file
C:\WINDOWS\system32\drivers\VBoxSF.sys

[pafish] VirtualBox traced using driver file
C:\WINDOWS\system32\drivers\VBoxVideo.sys

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxdisp.dll
[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxhook.dl|
[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxmrxnp.dll
[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxogl.dll
[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\vboxoglarrayspu.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxoglcrutil.dll
[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\vbhoxoglerrorspu.dll

[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\vboxoglfeedbackspu.dll

[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\vbhoxoglpackspu.dll

[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\vhoxoglpassthroughspu.dll

[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxservice.exe
[pafish] VirtualBox traced using system file C:\WINDOWS\system32\vboxtray.exe
[pafish] VirtualBox traced using system file
C:\WINDOWS\system32\\VBoxControl.exe

[pafish] VirtualBox traced using MAC address starting with 08:00:27

[pafish] VirtualBox traced using device \\.\VBoxMiniRdrDN

[pafish] VirtualBox traced using VBoxTray windows

[pafish] VirtualBox traced using its network share

[pafish] VirtualBox traced using vboxservice.exe process

[pafish] VirtualBox traced using vboxtray.exe process

[pafish] VirtualBox device identifiers traced using WMI

[pafish] Cuckoo hooks information structure traced in the TLS

[pafish] End

F.2 Sistema bastionado

[pafish] Start

[pafish] Windows version: 5.1 build 2600

[pafish] CPU vendor: Genuinelntel

[pafish] CPU VM traced by checking the difference between CPU timestamp counters
(rdtsc)

[pafish] CPU VM traced by checking the difference between CPU timestamp counters
(rdtsc) forcing VM exit

[pafish] Sandbox traced using mouse activity

[pafish] Cuckoo hooks information structure traced in the TLS

[pafish] End

60

Anexo G - Comparativa de informes generados por Cuckoo

Con el fin de apreciar la contaminacion producida por el médulo humano implementado,
aqui se muestra parte de los informes generados al analizar un sencillo archivo de texto,
que solo contiene unas cadenas de texto aleatorias formadas por nimeros, letras y “-°,
llamado “seriales.txt”.

G.1 Sistema basico:
Network Analysis

« Nothing to display.
Behavior Summary
Files

C:\DOCUME~1

C:\DOCUME-~1\jjjj
C:\DOCUME-~1\jjjj\CONFIG~1
C:\DOCUME~1\jjjj\CONFIG~1\Temp
C:\DOCUME~1\jjjj\CONFIG~1\Temp\seriales.txt
C:\WINDOWS\system32\msctfime.ime

VVVVYYVYY

Mutexes

» CTF.TimListCache.FMPDefaultS-1-5-21-1409082233-436374069-
1957994488-1003MUTEX.DefaultS-1-5-21-1409082233-436374069-
1957994488-1003

> ShimCacheMutex

MSCTF.Shared. MUTEX.EPF

A\

Registry Keys

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\System

HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor

HKEY_CURRENT_USER\Software\Microsoft\Command Processor

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Locale

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Locale\Alt

ernate Sorts

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Language

Groups

> HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\IMM

> HKEY_USERS\S-1-5-21-1409082233-436374069-1957994488-
1003\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers

> HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF

> HKEY_LOCAL_MACHINE\Software\Microsoft\CTF\SystemShared

YV V VYV

Y

61

YV VYV Y

A\

A\

YVVVVVYVYVYVVVVYVYYVYYVYVYVYY

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Poli
cies\Explorer
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici
es\Explorer
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\ShellCompatibility\Applications\NOTEPAD.EXE
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\ShellCompatibility\Objects\{20D04FE0-3AEA-1069-A2D8-08002B30309D}
HKEY_CLASSES_ROOT\CLSID\{20D04FE0-3AEA-1069-A2D8-
08002B30309D}\InProcServer32
HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions
HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6c4515e9}

HKEY_CLASSES_ROOT\Directory

HKEY_CLASSES_ROOT\Directory\
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici
es\System
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\Advanced

HKEY_CLASSES ROOT\Directory\\ShellEx\IconHandler
HKEY_CLASSES_ROOT\Directory\\Clsid

HKEY_CLASSES_ROOT\Folder

HKEY_CLASSES_ROOT\Folder\Clsid
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\User Shell Folders
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\FileExts
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\FileExts\.txt

HKEY_CLASSES_ROOT\.txt

HKEY_ CLASSES ROOT\txtfile

HKEY_CLASSES_ROOT\txtfile\CurVer

HKEY_ CLASSES ROOT\txtfile\

HKEY_CLASSES_ ROOT\txtfile\ShellEx\IconHandler
HKEY_CLASSES_ROOT\SystemFileAssociations\.txt
HKEY_CLASSES_ROOT\SystemFileAssociations\text
HKEY_CLASSES_ROOT\SystemFileAssociations\text\ShellEx\IconHandler
HKEY_CLASSES_ROOT\txtfile\Clsid
HKEY_CLASSES_ROOT\SystemFileAssociations\text\Clsid
HKEY_CLASSES_ROOT*

HKEY_CLASSES ROOT*\Clsid

HKEY_CURRENT_USER\Keyboard Layout\Toggle
HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF\LangBarAddIn\
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\CTF\LangBarAddIn\

62

Processes

» cmd.exe PID: 480, Parent PID: 296
» NOTEPAD.EXE PID: 504, Parent PID: 480

G.2

Sistema bastionado:

DNS requests

pd

ame

VVVYVYVYVYVYVYVVYVYVVVVVVVVVYVVYVVVYVYVYVVYVYVYVYYVYVYYVYY

www.microsoft.com
www.facebook.com
fbstatic-a.akamaihd.net
vassgl4l.crl.omniroot.com
i.s-microsoft.com
htmli5shim.googlecode.com
www.googletagservices.com
partner.googleadservices.com
securepubads.g.doubleclick.net
ads.rubiconproject.com
optimized-by.rubiconproject.com
secure-assets.rubiconproject.com
static.xx.fbcdn.net
fbcdn-profile-a.akamaihd.net
scontent-mad1-1.xx.fbcdn.net
pixel.facebook.com
4-edge-chat.facebook.com
login.live.com

auth.gfx.ms

sc.imp.live.com
account.live.com
account.microsoft.com
assets.onestore.ms
ajax.aspnetcdn.com
mem.gfx.ms

cid-c0967adb2414c24f.users.storage.live.com

www.google.es

ssl.gstatic.com
img.youtube.com
clientsl.google.es

es.bab.la

ajax.googleapis.com
www.google-analytics.com
stats.g.doubleclick.net
tpc.googlesyndication.com
pagead2.googlesyndication.com

@Ip
72.247.212.64
31.13.83.8
185.43.180.152
84.53.132.72
104.83.36.46
64.233.184.82
216.58.210.162
216.58.211.194
216.58.211.194
104.83.13.31
62.67.193.41
104.83.13.31
31.13.83.4
84.53.132.170
31.13.83.4
31.13.83.8
31.13.83.8
131.253.61.82
23.54.88.70
104.83.200.133
65.54.187.24
64.4.54.25
104.83.36.185
68.232.34.200
23.223.83.137
134.170.107.48
216.58.210.131
216.58.211.227
216.58.211.238
216.58.211.227
85.25.30.170
216.58.211.202
216.58.210.174
64.233.184.155

216.58.210.161
216.58.211.226

63

Behavior Summary

Files

YV V VY Y

C:\DOCUME~1

C:\DOCUME~1\dfgh
C:\DOCUME~1\dfgh\CONFIG~1
C:\DOCUME~1\dfgh\CONFIG~1\Temp
C:\DOCUME-~1\dfgh\CONFIG~1\Temp\seriales.txt
C:\WINDOWS\system32\msctfime.ime

Mutexes

>

>

CTF.TimListCache.FMPDefaultS-1-5-21-329068152-839522115-682003330-
1003MUTEX.DefaultS-1-5-21-329068152-839522115-682003330-1003
ShimCacheMutex

Registry Keys

VV VYV

A\

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\System
HKEY_LOCAL_MACHINE\Software\Microsoft\Command Processor
HKEY_CURRENT_USER\Software\Microsoft\Command Processor
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Locale
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Locale\Alt
ernate Sorts
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NIs\Language
Groups

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\IMM
HKEY_USERS\S-1-5-21-329068152-839522115-682003330-
1003\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers
HKEY_CURRENT_USER\SOFTWARE\Microsoft\CTF
HKEY_LOCAL_MACHINE\Software\Microsoft\CTF\SystemShared
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Poli
cies\Explorer
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici
es\Explorer
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\ShellCompatibility\Applications\NOTEPAD.EXE
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion
\ShellCompatibility\Objects\{20D04FE0-3AEA-1069-A2D8-08002B30309D}
HKEY_CLASSES ROOT\CLSID\{20D04FEO-3AEA-1069-A2D8-
08002B30309D H\InProcServer32
HKEY_CLASSES_ROOT\Drive\shellex\FolderExtensions

HKEY_CLASSES ROOT\Drive\shellex\FolderExtensions\{fbeb8a05-beee-
4442-804e-409d6¢c4515e9}

HKEY_CLASSES_ROOT\Directory
HKEY_CLASSES_ROOT\Directory\CurVer
HKEY_CLASSES_ROOT\Directory\

64

YV VV VY A\

A\

A\

VVVVYVYVVYVYVYYVYYVYYVYYVYYVY

>
>

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Polici
es\System
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\Advanced

HKEY_CLASSES_ROOT\Directory\\ShellEx\IconHandler

HKEY_CLASSES _ROOT\Directory\\Clsid

HKEY_CLASSES ROOT\Folder

HKEY_CLASSES_ROOT\Folder\Clsid
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\User Shell Folders
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\FileExts
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explo
rer\FileExts\.txt

HKEY_ CLASSES ROOT\.txt

HKEY_CLASSES ROOT\txtfile

HKEY_CLASSES_ROOT\txtfile\CurVer

HKEY_CLASSES ROOT\txtfile\
HKEY_CLASSES_ROOT\txtfile\ShellEx\IconHandler

HKEY_CLASSES ROOT\SystemFileAssociations\.txt
HKEY_CLASSES_ROOT\SystemFileAssociations\text
HKEY_CLASSES_ROOT\SystemFileAssociations\text\ShellEx\IconHandler
HKEY_CLASSES_ ROOT\txtfile\Clsid

HKEY_CLASSES ROOT\SystemFileAssociations\text\Clsid
HKEY_CLASSES ROOT*

HKEY_CLASSES _ROOT*\Clsid

Processes

cmd.exe PID: 3700, Parent PID: 4052
NOTEPAD.EXE PID: 1248, Parent PID: 3700

65

Anexo H - Glosario de términos y siglas

>

0-day: vulnerabilidad de una aplicacion o sistema que no es conocida por el publico
o el fabricante.

» ACPI (Advanced Configuration and Power Interface): estandar para proporcionar al

vV V VYVV

vV VYV V¥V V

Vv VYV 'V

sistema operativo una forma de descubrir, configurar y monitorizar hardware. Basado
en la existencia de diferentes tablas de datos.

ACPI timer: temporizador de alta precision contenido en las tablas ACPI.

Anubis: sandbox on-line basada en QEMU.

API (Application Programming Interface): conjunto de funciones ofrecidas por un
sistema para poder ser usado a través de otro software.

APIC (Advance Porgrammable Interrupt Controler) timer: temporizador vinculado
al controlador de interrupciones.

AutoHotKey: Herramienta de coddigo abierto para la creacion de macros y
automatizacion en Windows. Utilizando un lenguaje de scripts permite interactuar
con diferentes elementos de Windows y automatizar clicks, movimientos de raton,
uso de teclado.

Ashley Madison: red social de parejas dirigida principalmente a personas que ya
tienen una relacion. En julio de 2015 fue victima de un robo de informacion, entre
ella los datos de mas de 37 millones de cuentas de usuarios.

Backdoor: mecanismo que permite el acceso indirecto a un sistema.

Botnet: conjunto de ordenadores que se pueden ejecutar de forma auténoma y
automatica manejandolos de manera remota.

Buffer Overflow: error producido en un programa mientras se escriben datos a un
buffer por el cual se pasa de los limites de esto y escribe informacion en zonas de
memoria colindantes.

Bug Bountie: plan por el cual una compafiia o propietario de un software o sistema
ofrece una recompensa econdémica a quien encuentre y reporte de manera privada
vulnerabilidades no conocidas.

Captchas (Completely Automated Public Turing Test to tell Computers and Humans
Apart): conjunto de tests para comprobar si el sistema estd siendo usado por una
persona.

Configuracion Host-Only: o solo-anfitrion. Modo de red virtual de VirtualBox en el
cual se aisla el segmento que conecta a la VM de la red local del host y se comunica
a traves de este.

CPUID: instruccion de los procesadores x86 para obtener detalles sobre el procesador
en si.

Debugger: programa usado parar comprobar el funcionamiento, paso a paso, de un
segundo programa.

Deep web: Internet profunda. Se refiere a la porcién de internet que no es indexada
por los motores de bdsqueda comunes

DLL (Dynamic Link Library): biblioteca de enlace dindmico. Archivos ejecutables
cargados bajo demanda de un programa por parte del SO que contienen funciones que
este desee usar.

Driver: componente software para que permite la comunicacion entre un dispositivo
hardware y el resto del sistema.

DSDT (Differentiated System Descriptor Table): Tabla perteneciente al estandar
ACPI.

ECX: registro del procesador.

FADT (Fixed ACPI Descriptor Table): Tabla perteneciente al estindar ACPI.

66

vV VYV 'V A\ YV V VYV YVVV VYV 'V A\ Y V VYV Y VY

v

Y VY

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

FTP: File Transfer Protocol.

GDTR (Global Descriptor Table Registry): registro de la GDT (Global Descriptor
Table), estructura de datos usada en la arquitectura x86 en la que se definen
caracteristicas de diferentes zonas de memoria usadas durante la ejecucion de un
programa, incluyendo direcciones base, tamafio y privilegios de acceso.

Git: software de control y mantenimiento de versiones de cddigo fuente.
GetTickCount: funcién de Windows que devuelve la cantidad de milisegundos desde
que el sistema fue inicializado.

GUI (Graphical User Interface): interfaz visual usado para interactuar con un
Sistema.

GUID (Globally Unique Identifier): Identificador Unico Global. NGmero pseudo-
aleatorio que no garantiza ser Unico, aunque en la practica se puede considerar como
tal. Usado para diferentes aplicaciones software como identificador.

Hacking Team: compafiia italiana especializada en la venta de herramientas de
vigilancia e intrusion. El 5 de Julio de 2015 se filtraron més de 400 Gb de informacion
interna, entre ella sus productos y listas de clientes.

Hash: conjunto de bytes de tamario fijo al que se puede mapear un conjunto arbitrario
de bytes de cualquier tamafio.

Hook: sistema que intercepta una llamada al sistema o evento pudiendo modificar su
comportamiento.

1/0: Input and Output.

ID: identificador.

IDTR (Interrupt Descriptor Table Registry): registro de la IDT (Interrupt Descriptor
Table), tabla de vectores de interrupcion en x86. Usada por el procesador para
determinar la correspondencia entre interrupciones y excepciones.

In-Guest: acciones tomadas en el interior de la maquina virtual, el guest.

Kernel: programa encargado de manejar peticiones de 1/O y traducirlas a
instrucciones del procesador.

Keylogger: programa que guarda cada pulsacion de tecleado realizada por el usuario
en su sistema.

KVM (Kernel-based Virtual Machine): solucion de virtualizacion para hosts Unix, y
guests Unix y Windows. Creada y mantenida por Qumranet. En el front-end, utiliza
una versién modificada de QEMU.

LDT (Local Descriptor Table): estructura de datos con las mismas funcionalidades
que la GDT. La diferencia entre ambas radica en que la GDT es usada para acceder
segmentos usados por cualquier programa, y la LDT es usada para acceder a
segmentos usados por una aplicacion en particular.

NetBIOS (Network Basic Input/Output System): provee servicios de la capa de
sesion.

Netstat: herramienta por linea de comandos para manejar y mostrar conexiones de
red.

NIC: Network Interface Card.

Ofuscacion de codigo: Se refiere a realizar una serie de cambios en el codigo fuente
de forma que no se altere su funcionamiento pero sea muy dificil de interpretar su
funcionamiento al observar el cédigo.

Out-Guest: acciones tomadas en el exterior de la maquina virtual, el host, pero cuyo
objetivo es afectar al guest.

Path: localizacion Unica en el sistema de archivos.

PEB (Process Environment Block): estructura de datos de los sistemas Windows NT,
cuyo objetivo es ser usada solo por el sistema operativo. Contiene informacion a

67

YV V VVVYVY VYVVVVVYY VYV VYVVV Y V V VY VYV

VV VY VV VY

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

aplicar a lo largo de un proceso concreto, incluyendo contexto, parametros de inicio,
etc.

PoC (Proof of Concept):

Py2exe: herramienta para convertir un script en Python a un ejecutable de Windows
que no necesite el intérprete Python.

Pylnstaller: herramienta para convertir un script en Python a un ejecutable de
Windows que no necesite el intérprete Python

QUEMUE: hypervisor de codigo abierto que realiza virtualizacion basada en hardware
(emulacion).

Rama de ejecucion: seccién del codigo fuente que se ejecuta en los casos en los que
haya una condicion en la que elegir el punto en el que se continGa.

Rootkit: tipo de malware que da acceso privilegiado de manera continua a ciertas
partes del equipo infectado, manteniéndose oculto al administrador del mismo.
RSDT (Root System Descriptor Table): Tabla perteneciente al estandar ACPI
Sandboxes: plural de sandbox.

Sandboxie: solucion sandbox que aisla entornos en los que ejecutar una aplicacién
concreta.

Sandboxing: hecho de realizar la funcién de un sistema sandbox.

Scheduler: componente de los SO que se encarga de repartir el tiempo disponible de
un procesador entre los procesos que pueden ser ejecutados.

Script: programa normalmente simple que suele ser interpretado.

SGDT (Store Global Descriptor Table): instruccion que consulta el GDTR

SIDT (Store Interrupt Descriptor Table): instruccion que consulta el IDTR.
Snapshot: imagen del sistema. Copia del estado completo de un sistema.

SO: Sistema Operativo. OS, Operative System en inglés.

SSDT (System Service Descriptor Table): tabla interna de punteros en sistemas
Windows con informacion sobre hooks del sistema.

Tcpview: utilidad de monitorizacion de red para Windows.

TFG: Trabajo de Fin de Grado.

TLS: métodos para manejar memoria estatica o global en un hilo.

TSC (Time Stamp Counter): registro en los procesadores x86. Cuenta el nimero de
ciclos de CPU desde el ultimo reset.

UPNP (Universal Plug and Play): protocolos de red que permiten a dispositivos de
red descubrirse entre ellos y establecer servicios de red.

VboxManage: herramienta a través de comandos usada en VirtualBox para
configurar, gestionar o monitorizar los diferentes elementos de este software de
virtualizacion.

Virtual PC: software de virtualizacion de Windows.

VirtualBox Guest Additions: complementos software para ser usados dentro del
guest en VirtualBox con el objetivo de facilitar su manejo.

VM: Virtual Machine.

Vsftpd (Very Secure FTP Daemon): servidor FTP (File Transfer Protocol) para
entornos Unix, bastante ligero y rapido de configurar.

WinPcap: libreria de Windows que implementa pcap, APl para capturar trafico de
red.

Wireshark: conocido analizador de paquetes de codigo abierto.

WMI (Windows Management Instrumentation): infraestructura para gestionar datos
y operaciones en sistemas Windows.

68

Mejora de la Deteccion de Malware Mediante la Modificacion Profunda de Sistemas de Sandboxing

» x86: conocida arquitectura de microprocesadores. También se usa para denominar al
conjunto de instrucciones que estos usan. Ha evolucionado en los microprocesadores
x86-64.

» Xen: solucion de virtualizacion de codigo abierto para host Unix Gnicamente y guests
Unix y Windows. Desarrollado por la Universidad de Cambridge.

69

