Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs
Resumen: Background: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. Results: We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. Conclusions: We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.
Idioma: Inglés
DOI: 10.1186/s12711-016-0185-1
Año: 2016
Publicado en: GENETICS SELECTION EVOLUTION 48, 1 (2016), [8 pp]
ISSN: 0999-193X

Factor impacto JCR: 2.964 (2016)
Categ. JCR: AGRICULTURE, DAIRY & ANIMAL SCIENCE rank: 2 / 57 = 0.035 (2016) - Q1 - T1
Categ. JCR: GENETICS & HEREDITY rank: 70 / 166 = 0.422 (2016) - Q2 - T2

Factor impacto SCIMAGO: 1.534 - Animal Science and Zoology (Q1) - Medicine (miscellaneous) (Q1) - Ecology, Evolution, Behavior and Systematics (Q1) - Genetics (Q2)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Genética (Dpto. Anatom.,Embri.Genét.Ani.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2020-02-21-13:43:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2016-04-08, última modificación el 2020-02-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)