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Abstract: Here, we propose a method to estimate misalignment losses that 
is based on the calculation of the radiated angular power distribution as 
light propagates through space using the fiber far field pattern (FFP) and 
simplifying and speeding calculations with the Hankel transform. This 
method gives good estimates for combined transversal and longitudinal 
losses at short, intermediate and long offset distances. In addition, the same 
methodology can be adapted to describe not only scalar loss but also its 
angular dependence caused by misalignments. We show that this approach 
can be applied to upgrade a connector matrix included in a propagation 
model that is integrated into simulation software. This way, we assess the 
effects of misalignments at different points in the link and are able to 
predict the performance of different layouts at system level. 
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1. Introduction 

Fiber misalignments are not unusual in splices and connectors where they constitute one of 
the main causes for power loss. These effects are particularly accentuated for plastic optical 
fibers (POFs) where the lower demands imposed to connectors imply larger error margins. 
Moreover, the deployment of POF requires a large number of connectors which is particularly 
critical in avionics systems [1]. In these networks, the presence of several connectors, whose 
insertion loss is usually higher than 1 dB [2,3], reduces significantly the power budget. Some 
misalignments are difficult to avoid when inserting the connectors as a tight control over the 
fibers can be expensive and troublesome. In addition, large fiber separation can be 
intentionally introduced as that in air-gap connectors. Vibrations, frequent in transportation 
network environments, are also the source of statistically variable positional mismatches. All 
these effects can add together introducing severe global limitations limiting further the 
already compromised power budget. 

Most of the models for misalignment loss [4–8] assess each individual misalignment 
individually which prevents an accurate description of their combination as there is a strong 
non-linear dependence between them. Also, most models assume that the power radiated by 
the fiber takes a uniform distribution at any distance that renders them simple at the cost of 
poor accuracy, particularly for shorter (less than 100 microns) longitudinal separations that 
are the more likely to happen between connectors. In fact, the fiber radiated power 
distribution is a key point to predict misalignment losses. Thus, a more realistic approach is to 
estimate the radiated pattern from the far field pattern (FFP) emitted by the fiber as proposed 
in [9, 10]. In this later work, the calculation of misalignment loss requires an analytical FFP 
which was assumed to be the equilibrium mode distribution (EMD). However, for most POF 
systems the EMD can only be reached after more than a hundred meters [11], which is a 
distance well over the usual link length and, moreover, fiber union by connectors or splices 
can be needed at any position in the link [12,13]. 

In this paper, we formalize and optimize the method we proposed in [9] where the radiated 
angular power distribution is calculated as the convolution of the fiber aperture and its far 
field pattern (FFP), applying the Hankel transform to simplify and speed calculations. Thus, 
our approach is capable to handle several combined misalignments while having the 
flexibility to accommodate different analytical functions or even measured FFPs which will 
permit to obtain misalignment loss for any input conditions and at any point at the link. 
However, misalignments cause not only overall loss, but also introduce changes in the shape 
of the angular power distribution. Therefore, we also present a similar methodology applied to 
obtain the effect of the misalignments as a function of the propagation angle. These 
calculations are independent of the shape of the FFP and provide a qualitative assessment of 
the angular-dependent power loss caused by different misalignments that can be used to 
predict its impact on transmission properties. Moreover, the functions obtained are used to 
upgrade a basic connector model in the context of the propagation matrix framework that 
describes the power loss and the diffusion introduced by a double-connector including 
misalignments [12]. 

The paper is organized as follows: first, the model is described stating the initial 
assumptions and simplifying the calculations using the Hankel transform to obtain power loss. 
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Second, following this approach, we obtain an analytical description of the relative change in 
power as a function of the angle for different misalignments. Then, we present the model 
results for combined longitudinal and transversal misalignments and show how the angular-
dependent power loss caused by misalignments can be very useful to evaluate their impact 
over transmission properties in the context of the matrix propagation model [14]. Finally, we 
summarize our proposal focusing on its flexibility to accommodate other fibers, effects and 
conditions. 

2. Theoretical development 

2.1 Calculation of misalignment power loss 

In this subsection, we propose a method to obtain the power loss incurred when there are 
combined transversal and longitudinal offsets between two plastic optical fibers by calculating 
the fraction of the power distribution radiated from the radiating fiber that is caught by the 
receiving fiber. We assume some previously admitted hypotheses [9,10,15]: 

i) Each point in the first fiber end surface acts as an independent uncorrelated source. All 
these sources are identical which is equivalent to model the fiber end surface as a 
circular aperture with a real uniform transmission function. 

ii) The radiation of each source point is described by the fiber far field pattern (FFP) 
which is constrained to have circular symmetry. 

iii) The total power at a given point in the space is obtained by adding the scalar 
contributions (optical powers) from all radiating sources that reach that point. 

iv) The power captured by the receiving fiber is obtained as the fraction of power 
radiated from the first fiber that overlaps with the core surface of second fiber. 

v) Another function has to be introduced to account for the difference in the power 
captured by the receiving fiber, depending on its angle of incidence. We call it 
differential efficiency function and model it using the FFP of the receiving fiber. 

Notice that hypotheses i) to iii) relate to the radiating fiber and to how power distribution 
spreads as it propagates in free space while iv) and v) relate to the receiving fiber geometry 
and its physical capability to capture light. 

Next, we show how the power distribution radiated from the fiber at any point in the space 
can be obtained as the 2D convolution of the fiber aperture function and its far field pattern 
whose calculation can be simplified using the Hankel transform providing both functions are 
circularly symmetric. Then, the power transferred to the receiving fiber is obtained by 
integrating the power distribution radiated from one fiber over the other fiber surface. 

The first step is to obtain the radiated optical power distribution R at different distances z 
of the emitting fiber. Taking into account the fiber symmetry, we choose to work in 
cylindrical coordinates ( r, φ , z ) centered on the axis of the emitting fiber (OO’ in Fig. 1), 
where r is the axial distance, φ is the angle relative to the fiber axis, and z is the distance to the 
fiber end face along its axis. Thus, the power distribution can be represented as R( r, φ , z ). 
One of our assumptions, fundamental to apply a fast method to ease the calculations, is that 
the fiber has circular symmetry and consequently, the emitted power distribution R is 
independent on φ. Therefore, from now on we will refer to it as R(r , z). 

For the calculation of the optical power distribution we have assumed that the points on 
the core surface of the emitting fiber are individual sources and that all have the same 
radiation pattern. Thus, we represent the emitting surface at z = 0 as a circle of radius a, and 
unit amplitude, given by: 
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Therefore, any point at the end face of the fiber, A ∈C (r1 , φ1) radiates light with a power 
density given by the fiber FFP, g(θ), whose only dependence is on θ, that is the propagation 
angle relative to the fiber axis. The power distribution over a plane at a distance z from the 
fiber end is given by the projection of the FFP onto this plane. Thus, the amount of radiation 
from each point source A that reaches B is determined by the angle θ between A, B and A’, 
that is the projection of A on the plane perpendicular to the fiber axis that contains B. These 
assumptions are illustrated in Fig. 1. 

 

Fig. 1. Schematic of the geometry of power radiation from the fiber end surface. The power 
radiated from A that reaches B is given by g (θ), where θ is the angle defined by A, A’ and B. 

Then, the optical power over a point B in the space with coordinates ( r, φ , z ) is obtained 
by adding the uncorrelated contributions from all the source points on the circular surface of 
the radiating fiber which is calculated as the integral over the emitting circle C(r1 , φ1) of the 
projection of the FFP onto the plane containing B. This integral is given by: 
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Using basic trigonometric relationships, angle θ can be expressed in terms of the 
cylindrical coordinates of any point A(r1 , φ1), on the fiber core surface and B( r, φ , z ), on the 
perpendicular plane at distance z from the fiber: 
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Introducing this relationship in Eq. (2), the power distribution R(r , z) is given by the 
following expression: 
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Notice that even though all functions have rotational symmetry, there is a dependence on 
the angles φ and φ1 that makes this integral tedious to calculate. However, Eq. (4) is exactly 
the two-dimensional convolution of the circle and the FFP expressed in cylindrical 
coordinates. The former result is quite intuitive as it is reasonable to expect that to obtain the 
power at a given point we have to add the shifted contributions from all points at the radiating 
fiber surface, as is illustrated in Fig. 2. 

 

Fig. 2. The radiated power from all points at the radiating fiber end surface is superposed to 
obtain the total power at plane z = z0, where the receiving fiber is placed. 

The key point is that the 2D convolution of two circular symmetric functions can be 
simplified using the Hankel transform of order 0 [16]. In the transformed domain, the 
convolution is computed as the product of the transforms of C( r ) and the scaled FFP that are 
both functions of ρ. Then, we can obtain the power distribution R(r , z) as the inverse Hankel 
transform of the product given by: 
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R r z C r g r C r g z

z
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   (5) 

where H−1 is the inverse zero-order Hankel transform, G(ρ) is the transform of g(r), and 
a·J1(2π aρ) /ρ is the Airy pattern that is the transform of a circular aperture with radius a. We 
have applied the similarity property of the Hankel transform: h(sr) ↔s−2 H(ρ / s) to obtain 
H{g (r / z)}. 

Once the radiated power distribution R(r , z) given in Eq. (5) has been obtained, it can be 
used to calculate the fraction of the power radiated from the first fiber that is coupled into the 
second fiber when the two fibers have both longitudinal (z0) and transversal (r0) offsets as 
shown in Fig. 2, applying hypotheses iv) and v). The first hypothesis implies that the fraction 
of the power emitted from the emitting fiber that falls on the core surface of the other fiber is 
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captured while the rest is lost. Thus, the relative power coupled to a fiber of radius a centered 
at coordinates (r0 , z0) is given by the integral of the radiated power distribution projected on 
the plane: z = z0: R(r0 , z0), over the circular surface, C’, of the receiving r0-shifted fiber: 
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The cylindrical coordinates of the integral are again relative to the emitting fiber axis. 
Thus, the limits in r for this integral are different depending on the relative valued of the shift 
r0 and the receiving fiber radius a which makes necessary to consider the cases: r0<a and 
r0>a separately. The integration in φ can be performed in both cases obtaining its limits as a 
function of r, r0 and a using the cosine rule. 
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It remains to introduce the differential efficiency of the receiving fiber to capture light 
depending on the input angle (hypothesis v) in Eq. (4). In that equation, g(θ) was used to 
represent the FFP of the emitting fiber that is the amount of power emitted at each angle. If 
the fiber axes are parallel, the power exiting the radiating fiber with a given angle, will reach 
the other fiber at this same angle. Thus, we model this efficiency as the FFP of the receiving 
fiber. Therefore, from now on, g(θ) will be the product of the FFPs of the emitting fiber, g1(θ), 
and the FFP of the receiving fiber, g2(θ): g(θ) = g1(θ)⋅g2(θ). In this way, the loss of joining 
fibers with different apertures can be obtained in combination with misalignments. Otherwise, 
if both fibers are equal, g(θ) will be the squared fiber FFP. In any case, this enhancement does 
not introduce further calculations due to the use of the Hankel transform. 

We want to stress that this method has ample flexibility as the Hankel transform of the far 
field pattern, G(ρ) is tabulated for most functions proposed to model the FFP (uniform, 
Gaussian, etc.), but can also be obtained for experimental or non-analytical FFPs provided 
they have circular symmetry and can be described by their radial profiles. However, any 
change in the shape of the FFP will imply to re-calculate the radiation power distribution by 
Eq. (5) and then, applying Eq. (7) to obtain actual losses. Moreover, the method gives scalar 
power loss but its angular dependence is not retained. Thus, in the next subsection we 
describe a framework that gives, not only the absolute power loss produced by fiber 
misalignments, but also its angular variation while it does not require advanced knowledge of 
the shape of the FFP. 

2.2 Calculation of angular-dependent power loss 

In this subsection, our aim is to offer a new tool to describe the changes in power distribution 
that are caused by combined longitudinal and transversal shifts. Thus, we propose an 
approach similar to that described in Subsection 2.1, keeping assumptions i), ii) and iv) while 
it is not necessary to know either the emitting or the receiving fiber FFPs. In this case, we 
calculate the proportion of light that, exiting the radiating fiber only at a given angle θr, is able 
to reach the receiving fiber. This is equivalent to assume that each point of the fiber radiates 
light in a very narrow angular range dθ centered at θr that can be ideally represented with a 
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delta function as δ(θ−θr). Then, instead of a circular pattern, its projection onto a 
perpendicular plane will be a very narrow ring, as depicted in Fig. 3. Notice that any 
rotational symmetric pattern can be represented on the plane as a linear combination of these 
rings for different angles. 

 

Fig. 3. Schematic that shows the fiber radiating light only at a specific direction given by angle 
θr and the projection of the radiation pattern onto the plane of the second fiber. 

The radiated power distribution is then calculated by convolving the circular aperture of 
the emitting fiber with the narrow ring described by its radius: z tan(θr). As circular symmetry 
is still maintained, the Hankel transform can be used to simplify these calculations. In fact, its 
use is paramount as otherwise a double integral will have to be calculated for each angle θr 
while we only have to obtain the product of two functions and its inverse transform. 

Thus, following the same procedure as in Eqs. (2) to (5), the power distribution over a 
plane at a distance z of the power radiated at angle θr by the emitting fiber is given by the 
following equation: 

 ( ) ( ) ( ) ( )( )12 1
0

2
, , 2 tan 2 tan ,r r r

J a
R r z z a J z

a

π ρ
θ π θ π θ ρ

ρ
−   = ⋅Η ⋅ 
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where a·J1(2π aρ) /ρ is again the Airy pattern and 2π z tan (θr) J0 (2π z tan (θr) ρ) is the Hankel 
transform of a delta function: δ (r −b) ↔ 2π b J0 (2πbρ) with b = z tan (θr). 

Finally, the fraction of the power emitted at a given angle, θr, that falls on the core surface 
of the other fiber is obtained for each pair (r0 , z0) applying the same procedure described in 
Subsection 2.1, but to R(θr, r , z) instead of to R(r , z). It simply consists in substituting R(r , z) 
by R(θr, r , z) in Eq. (7) and implies to calculate the integral for each θr. In this way, the 
function obtained does not only depend on the misalignments, but also on the propagation 
angle: P(θr, r0 , z0). This function represents the proportion of power propagating at angle θr, 
that is transferred to the receiving fiber when it is shifted at (r0 , z0). Therefore, it can be used 
to obtain the angular-dependent power loss imposed by any pair of misalignments. As in the 
case of POFs spatial changes are very much entangled to their temporal behavior, they can 
have important consequences on the fiber transmission as will be demonstrated in Subsections 
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3.3 and 3.4 with a specific application to incorporate the effects of misalignments into a 
connector matrix model and predict transmission parameters under different conditions. 

In addition, the conclusions derived from this function are general in the sense that no 
assumptions have been made on the shape of the FFP of the fibers involved. In fact, P(θr,r0,z0) 
can be treated as a kernel to obtain the power transferred to the receiving fiber for a given 
misalignment pair (r0 , z0): P(r0 , z0) that was obtained before using Eq. (7). Now, once the 
user knows how to implement g(θ), the only calculation required to obtain the power coupled 
into a fiber placed at (r0 , z0) will be the following integral: 

 ( ) ( ) ( ) ( )2
0 0 0 00
, , , sin .P r z g P r z d

π
θ θ θ θ=   (9) 

3. Results 

3.1 Combined misalignment power loss 

To demonstrate how the proposed method is able to predict losses for combined 
misalignments, the surface plot in the upper graph of Fig. 4 shows the power transferred from 
one fiber to another as a function of combined longitudinal and transversal offsets calculated 
using our method with a Gaussian FFP. Experimental measurements obtained with a 1 mm 
SI-POF are superimposed to these predictions as black dots [9]. 

 

Fig. 4. The surface plot on the upper side represents the model prediction of the power 
transferred between two fibers with longitudinal and transversal offsets. Superimposed black 
dots are experimental measurements obtained shifting two fibers along the longitudinal and 
transversal axis. On the lower side, the predictions of our model (red lines) for transversal (left) 
and longitudinal (right) offsets are compared to predictions of the traditional model (blue 
circles) and experimental measurements (black circles). 

The lower graphs show experimental measurements of the transmitted power separately 
for transversal (left) and longitudinal (right) offsets, respectively. They are compared to our 
predictions and to those obtained using the prevailing model described in [17] (pp. 261 and 
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266). While measurements for transversal offsets are well predicted by both models, our 
method provides a better representation of experimental data for longitudinal misalignments. 
The reason is that the initial decrease of transferred power with a longitudinal offset is not as 
steep as predicted by the traditional model. This model assumes that the radiated power has a 
uniform distribution that spreads with the numerical aperture (NA) of the fiber while our 
model predicts that power spreads at a lower rate with propagation, producing a better match. 
This demonstrates that the shape of the FFP used to calculate the radiation pattern determines 
not only its profile but also its dependence with length, both of which have an impact on the 
predicted misalignment losses. This is particularly important for POFs whose power 
distribution is strongly dependent on launching conditions and fiber type which added to their 
strong mode coupling and differential attenuation that produce rapid changes in power 
distribution with propagation distance [11]. In addition, it has been demonstrated that power 
distribution can be easily altered by curvatures and other localized disturbances. Therefore, 
the effects of misalignment for POFs can change drastically for different conditions and also 
depend on their position in the line as we will illustrate later in Subsection 3.3. 

3.2 Angular-dependent power loss by combined misalignments 

To generalize and make more flexible our proposal, we have obtained in Subsection 2.2 the 
power transferred between two shifted fibers for each propagation angle: P(θr, r0 , z0), that can 
be calculated as shown in that subsection without making any assumptions on the shape of the 
FFP. Now, we will use this function to get further insight in the influence of the different 
misalignments on the power distribution. Figure 5 represents the angle-dependent transferred 
power P(θr, r0 , z0) for three longitudinal misalignments: z0 = 0.1 mm, 0.5 mm and 1 mm, 
alone and combined with four transversal misalignments, r0 = 0.25 mm, 0.5 mm, 0.75 mm 
and 1 mm. These curves confirm that it is necessary to assess the combined effects of both 
misalignments as they are not independent. The graphs also show how, for increasing  
z-distances, power at higher angles is lost. This finding is consistent with previous reports that 
have indicated the effect of longitudinal shifts acting as a spatial filter that is able to increase 
bandwidth depending on its position in the link [12]. For r-shifts above 0.2 mm, losses are 
greater but relatively constant for small z distances. However, if the z-shift increases, the 
angular dependence is no longer constant and the relative power coupled from lower and 
higher angles changes depending on the transversal offset. In fact, for 1-mm shifts in both 
dimensions, power from higher angles is coupled to the other fiber while all power 
transmitted near the axis (0°) is practically lost. This is reasonable as, when the centers of the 
fibers are separated by large transversal shifts, only light radiated at the highest angles is able 
to reach the receiving fiber. 

We want to stress that all the curves represented in Fig. 5 can be calculated without 
making initial assumptions, either on the shape for the fiber FFP or on its angular efficiency, 
and that the conclusions derived from them, are general and independent on other conditions. 

 

Fig. 5. Angle-dependent transferred power for three longitudinal z0 and four transversal 
misalignments, r0. 
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3.3 Generalized connector matrix 

In recent works, we proposed a matrix framework to model light propagation in POFs where 
fiber attenuation and diffusion effects are described using the propagation matrix [14]. This 
matrix that is defined for each temporal frequency gives the amount of power in a given angle 
that is transferred to another angle. The optical power distribution transmitted through the 
fiber is described as a function of propagation angle and frequency. This approach was also 
extended to describe linear passive devices that produce power transfer among angles. In fact, 
we showed that connectors behave linearly and that a square matrix can describe not only 
their insertion loss, but also the changes over the angular power distribution [12]. In this way, 
a POF link can be simulated by the product of several matrices that model different fiber 
lengths and also the connectors that join them [18]. 

As misalignments and mismatches are frequent in the connected fibers, our aim here is to 
obtain an upgrade of the basic connector matrix C, obtained for the best possible alignment 
[12], to incorporate also longitudinal and axial misalignments. In a previous work [9], our 
experimental results revealed that there is no increase in diffusion with misalignments, but 
only power loss that is angular dependent. Then, we incorporate the effects of two combined 
shifts (r0 , z0) into the basic connector matrix for each particular angle by using function 
P(θr,r0,z0) conveniently sampled and put in vector form: P(r0 , z0). Thus, the matrix C(r0 , z0) 
for a misaligned connector can be obtained by the following product: 

 ( ) ( )0 0 0 0, , ,r z r z= ⋅C P C  (10) 

where the further angular-dependent loss produced by the misalignments is described by 
vector P(r0 , z0), while the basic connector matrix C accounts for both attenuation and 
diffusion (mode mixing). Figure 6 shows the connector matrices for several misalignment 
pairs. Each matrix represents the amount of power that entering the connector with a given 
angle (x-axis) exits the connector spread over other angles (y-axis). Red indicates maximum 
power transfer while dark blue is none. All images are shown normalized to the maximum in 
the basic connector matrix, which is shown in the leftmost graph for a polished ST connector 
[12]. 

As expected, these images illustrate how these misalignments not only increase the overall 
connector insertion loss, but alter even further the angular power distribution. The right hand 
matrices reveal how larger shifts produce higher losses, and also that different misalignment 
combinations introduce angular-dependent losses, thus changing the transmitted optical power 
distribution. Particularly, in the case of longitudinal offsets, power loss is very angle-
dependent with higher angles suffering more attenuation. Moreover, these matrices are 
independent of the exact location of the misaligned connector and its calculation does not 
require making assumptions over the FFP of the emitting fiber or the angular efficiency of the 
receiving one, which is essential to the application example shown in the next subsection. 

 

Fig. 6. Matrices for a polished ST connector. From left to right: basic matrix; 0.5 mm 
longitudinal offset; 0.5 mm axial offset and combined axial and longitudinal 0.5 mm offsets. 
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3.4 Integration into the matrix simulation environment 

The generalized connector matrix can be integrated into the POF propagation matrix toolbox 
and used to incorporate the effects of connector misalignments. To illustrate the use of the 
connector matrix to evaluate the impact of misaligned connectors on a practical POF link, we 
analyze here a simple example of the use of all the previous theoretical developments. The 
schematic in Fig. 7 shows a 5-meter POF link that is implemented with or without a 
misaligned connector in two different possible positions. The results obtained with this 
example will also confirm the strong influence of input conditions over the consequences of 
misalignment. 

 

Fig. 7. Five-meter POF link with a) a connector at 0.5 m from the emitter; (b) without 
connectors and (c) with a connector at 4.5 m from the emitter. The connector is misaligned 
(r0=0.5 mm, z0=0.5 mm). 

In our approach, vectors provide angular power distributions at different points in the link 
and matrices describe the diffusion and loss introduced by different fiber lengths or by 
misaligned connectors. The links shown in Fig. 7 are described by the following matrix 
products: 

 
( )

( )

0.5 4.5

0.5 4.5

4.5 0.5

a) 0.5,0.5
b) ,
c) 0.5,0.5

D m m E

D m m E

D m m E

= ⋅ ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅ ⋅

p M C M p

p M M p

p M C M p

  
                      
  

 (11) 

where pE is the source angular distribution in vector form, and pD the transmitted power 
distribution that reaches the detector. ML is the propagation matrices that account for power 
loss and mode coupling caused by L fiber meters (in this case, L is 0.5 or 4.5 m). C(0.5,0.5) is 
the upgraded connector matrix for longitudinal and transversal offsets of 0.5 mm. This matrix, 
shown in the rightmost graph of Fig. 6, describes not only the power loss and mode mixing 
introduced by a basic connector but also incorporates the angular-dependent power loss due to 
the combined misalignment. Both the fiber propagation matrix and the power distribution 
have dependences on the angle and the frequency, while the connector matrix only has 
angular dependence. As Eq. (11) shows, a change of the position of the connector in the link 
only affects the order of product operation but, as we soon will see, has a relevant impact on 
performance. 

In Fig. 8, the amplitude transfer functions measured at the detector are compared for the 
three configurations. The left graph shows the simulation results when the source has a wide 
emission pattern such as a LED (with a FWHM of 30°) and the one on the right for a 
narrower source such as a VCSEL (10°). As all matrices are independent on the input 
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conditions, they do not have to be re-calculated to evaluate the link when the source is 
changed. 

 

Fig. 8. Absolute value of the normalized transfer function measured at the detector for a LED 
(FWHM of 30°) on the left and a VCSEL (10°) on the right. 

Although in this example overall connector loss is similar for both sources and positions 
(for the VCSEL: 5.53 dB and 5.40 dB for a) and c) respectively and 5.33 dB and 5.31 dB for 
the LED), their transfer functions are very different. A comparison of the right and left graphs 
shows how the presence of the connector degrades the performance in the case of a narrow 
source, particularly when the connector is near the source. For the LED, however, the 
presence of the connector near the detector actually improves the performance while the 
degradation introduced when it is near the source is very small. These effects are consequence 
of the changes in angular power distribution along the fiber that are intensified by the large 
misalignments in the connector. This example illustrates how connector misalignment can be 
critical in actual links and how it is difficult to use a general model based on fixed FFPs to 
predict their effects. 

6. Conclusions 

In this paper, we obtained the radiated power distribution as light propagates in free space 
from the end surface of a fiber in order to calculate the fraction of power that can be captured 
by another fiber depending on their relative positions. We showed that the radiated power 
distribution can be calculated as a 2D convolution simplified using the Hankel transform. 
Using this power distribution, we calculated misalignment power losses that gave good 
estimates for combined transversal and longitudinal offsets. We stress the simplicity of our 
approach and its adaptability that permits to incorporate fiber parameter mismatches (different 
radii or numerical aperture, lack of circularity, etc.) or misalignments along other axes (tilt, 
etc.). In addition, the approach has been used to upgrade a connector matrix in the context of 
the propagation matrix framework where fiber propagation and localized disturbances are 
described as matrices and, there is no need to make assumptions over the fiber FFP. While 
other models proposed so far are only able to predict global power loss the upgraded 
connector matrix also provides changes in angular power distribution. In addition, it can be 
easily introduced at any point of a POF link to provide an estimate of the performance for any 
initial conditions. 
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