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Resumen

Los drones o UAV son una tecnoloǵıa en auge en los últimos años. Esto se debe al gran
número de aplicaciones que se están desarrollando, sobre todo en escenarios exteriores, donde
se dispone información GPS para su localización. En escenarios interiores, al no disponer de
información GPS, la localización y la navegación tiene que hacer uso de otros sensores para
dicha navegación y localización.

En este trabajo fin de grado se va a diseñar e implementar un sistema de navegación en
espacios cerrados (tipo túnel,galeŕıa...) para un dron F450. Este sistema debe ser capaz de
modificar la orientación del dron de forma autónoma, para desplazarse sin colisión por ese tipo
de escenarios. La información del entorno se adquiere a partir un escáner de rango láser. Se
trata de un primer paso en el control autónomo del dron en interior, para lo cual únicamente se
controlará el ángulo Yaw (orientación en la dirección del movimiento). Los otros grados de liber-
tad se controlarán manualmente desde el mando disponible. Con ello se desacopla el problema
complejo de control de este tipo de veh́ıculos, centrando el estudio del control en este grado
de libertad. De esta forma se consigue el objetivo fundamental de seguimiento semiautónomo
de pasillos o tubeŕıas, paso por puertas que comunican varias estancias, e intersecciones entre
pasillos.

Para conseguir estos objetivos se han realizado simulaciones haciendo uso de la herramien-
ta Matlab para poder comprobar el correcto funcionamiento de los métodos de navegación
implementados antes de probarlos en el modelo real.

Se ha diseñado la arquitectura hardware y tiempo-real del sistema, integrando los sensores,
el sistema de comunicaciones, y el procesador F28335. Este procesador es un microcontrolador
de gama media de Texas Instruments (150MHz,32 bits, CPU en coma flotante). Las técnivas
de percepción y navegación se han realizado como un sistema en tiempo real basado en tareas,
implementado en el sistema operativo SYS/BIOS.

Se han desarrollado dos métodos de navegación. Tras su evaluación e implementación se
ha optado por uno de ellos para realizar las pruebas de vuelo finales. Se ha conseguido realizar
vuelos en espacios cerrados con obstáculos que el quadcopter ha esquivado satisfactoriamente,
alcanzando los objetivos planteados.
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2.1.5. Bateŕıa y regulador de tensión . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.6. Multiplexor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2. Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Code Composer Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. SYS/BIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3. MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3. Arquitectura del Sistema 10
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1. Introducción

1.1. Contexto y estado del arte

Un dron es un veh́ıculo aéreo no tripulado reutilizable(UAV)1. Este es capaz de mantener
un nivel de vuelo controlado mediante la fuerza ejercida normalmente por hélices propulsadas
por motores de explosión o reacción.

Los primeros drones surgieron durante la primera guerra mundial y se utilizaron en la
segunda para entrenar a los operarios que manejaban los cañones antiaéreos. La única carac-
teŕıstica que diferencia a los drones de los misiles con control remoto, es que los primeros son
reutilizables. Es por esta razón por la que los misiles no son considerados UAV.

Existe una amplia variedad de formas, tamaños, configuraciones y caracteŕısticas en el
diseño de los drones. Se pueden encontrar desde helicópteros, drones con forma de avión o
multirotor.

Históricamente los drones han sido únicamente de uso militar, utilizados tanto para mi-
siones de ataque como de reconocimiento. En la actualidad se están desarrollando numerosas
aplicaciones de uso civil, tanto de tipo profesional tales como búsqueda de personas desapareci-
das, cartograf́ıa aérea como por ejemplo reconstrucción 3D de un terreno 1.1(c), prevención de
incendios, revisión de tubeŕıas 1.1(b), vigilancia,agricultura1.1(a)... o usos más lúdicos como
realizar filmaciones o uso recreativo de los drones comerciales.

(a) Dron con aplicación agricola (b) Dron revisando una tu-
beŕıa

(c) Reconstrucción 3D de
un edificio con un dron

Figura 1.1: Diferentes aplicaciones de drones

1UAV:Unmanned Aerial Vehicle

1
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Para realizar el control autónomo de los drones es necesario desarrollar algoritmos de planifi-
cación y navegación reactiva, que utilizan información del entorno obtenida mediante diferentes
sensores externos conectados a una unidad de control capaz de procesar toda la información
captada del entorno. En la actualidad los drones cuentan con sensores tales como: GPS, IMU,
alt́ımetro, y sensores de rango, para obtener la ubicación en la que estos se encuentran. Para
realizar una localización en interior donde no hay información GPS, es necesario un cierto re-
conocimiento del entorno para lo cual se utilizan e integran sensores tales como escáner láser,
RGBD (Kinect), y cámaras.

En la actualidad la navegación en interiores, sin información GPS, se está desarrollando
principalmente en laboratorios de investigación. Para una navegación autónoma completa es
necesario aplicar y desarrollar complejos algoritmos de construcción de mapas y localización a
partir de la información sensorial. En este proyecto se da un paso más hacia ese objetivo en
esta ĺınea de investigación del Grupo de Robótica, desarrollando un algoritmo de navegación
implementable en el procesador de bajo coste embarcado en el dron. Con esta técnica se
controlará autónomamente uno de los grados de libertad del quadrotor, la orientación o ángulo
Yaw, a partir únicamente de la información de un escáner láser embarcado. Ello permitirá
guiarlo en interiores, manteniendo un nivel de seguridad frente a colisiones con obstáculos
y una orientación en la dirección principal del espacio libre en el escenario de navegación.
Como aplicaciones inmediatas cabe mencionar la navegación en pasillos dentro de edificios, o
en túneles o tubeŕıas para inspección.

Este proyecto se lleva a cabo dentro del grupo de Robótica, Percepción y Tiempo Real
de la Universidad de Zaragoza, uno de los grupos de investigación del Instituto Universitario
de Investigación en Ingenieŕıa de Aragón (I3A) considerado Grupo de Investigación por el
Gobierno de Aragón. Dicho grupo tiene las siguientes lineas de trabajo:

Localización y Mapeado Simultaneo.

Visión por Computador y Percepción.

Comunicaciones y redes ad-hoc.

Exoesqueletos y procesamiento de bioseñales.

Aprendizaje: en robótica, optimización Bayesiana, interfaces cerebro-ordenador...

Robótica Móvil. Planificación y navegación.

Este proyecto se centra en la ĺınea de “Robótica móvil, planificación y navegación”. Se
van a desarrollar diferentes proyectos en los que la intervención de drones autónomos es una
pieza central de la investigación. En particular se va a trabajar en la inspección de túneles y
tubeŕıas, en la detección de sustancias tóxicas y cálculo de parámetros medioambientales, por
poner algunos ejemplos. En todos ellos es fundamental dotar al dron de la capacidad de navegar
orientándose adecuadamente y evitando los obstáculos que aparezca en su camino, bien para
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la navegación completamente autónoma o para dotar de un mecanismo de autoprotección si es
manipulado remotamente.

Se han realizado varios TFG en esta linea de investigación como son: La creación de un
autopiloto para poder tener el control de todas las variables del dron o un generador de tra-
yectorias, para poder enviar una serie de consignas de posición que el dron deberá alcanzar.
Este proyecto continúa los anteriores, añadiendo nuevas capacidades autónomas.

1.2. Objetivos

El objetivo principal de este proyecto es conseguir implementar un sistema de navegación
para espacios cerrados(tipo túnel, galeŕıa,...), capaz de controlar un quadcopter FlameWheel
F450 a partir de la información tomada por un sensor láser y un autopiloto Naza-M Lite.

Figura 1.2: FlameWheel F450

Se busca crear un sistema de navegación que otorgue al quadcopter [1] la capacidad de
modificar su orientación de forma autónoma. El proyecto se va a centrar en el cálculo de la
orientación del quadcopter a partir de la información de los obstáculos del entorno propor-
cionada por el escáner láser. De los 6 grados de libertad del dron (x,y,z,roll,pitch,yaw), los 5
primeros serán controlados remotamente por el piloto o autopiloto comercial de abordo, y se
actuará sobre “yaw”que es el que proporciona la orientación del veh́ıculo. De esta manera se
simplifica y desacopla el problema de control del movimiento, ya de por śı complejo.

Para desarrollar estos objetivos se cuenta con:

Un Sensor de rango láser HOKUYO-04LX

Un microcontrolador F28335

Software de desarrollo integrado de aplicaciones Code Composer

Sistema operativo de tiempo real SYS/BIOS

Matlab R2015a
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1.3. Organización de la memoria

El trabajo se ha dividido en 5 caṕıtulos:

Hardware y Software: Se ha utilizado el hardware y software proporcionado por el
grupo de Robótica, Percepción y Tiempo Real de la Universidad de Zaragoza. En es-
te caṕıtulo se van a explicar las caracteŕısticas más relevantes del hardware que se ha
integrado en el quadcopter y el software utilizado para la programación de este.

Arquitectura del Hardware: En este caṕıtulo se va a dar una visión global de la
estructura hardware integrada en el sistema y se van a explicar las caracteŕısticas básicas
de el hardware que ha sido necesario añadir al diseño.

Navegación con evitación de obstáculos: En este caṕıtulo, se van a analizar los
diferentes métodos de navegación que se han probado en el quadcopter. También se hará
una pequeña comparación entre dos de los métodos propuestos y se explicará como se ha
llevado a acabo el cálculo de el ángulo de referencia que debe llevar el quadcopter.

Implementación software del sistema: Aqúı es donde se explica como se ha llevado
a acabo la integración del hardware en el procesador haciendo uso de las herramientas
que nos ofrece el sistema de tiempo real que se ha utilizado.

Pruebas de vuelo: Se han realizado numerosas pruebas para poner a punto el sensor
para que sea capaz de orientarse correctamente. En este caṕıtulo se explican algunas de
las más importantes.

Conclusiones: En este caṕıtulo se recogen las conclusiones obtenidas con este TFG.



2. Descripción del hardware y software

2.1. Hardware

Para llevar a cabo el control del quadcopter se va a hacer uso de los siguientes componen-
tes: Un sensor láser para calcular algoritmos que permitan navegar al quadcopter en espacio
libre, un Autopiloto en el que van integradas las ecuaciones de movimiento para controlar el
quadcopter y un microcontrolador en el cual se implementará el software para llevar a cabo el
control. A continuación se va a dar una pequeña explicación de cada uno de estos dispositivos.

2.1.1. Sensor Láser HOKUYO-04LX

El HOKUYO-04LX [2] es un sensor láser de tamaño reducido y preciso, adecuado para
aplicaciones robóticas. Tiene un rango de medida de 20mm a 4m, en un arco de 240◦. El rango
de medida es suficiente para navegar por un entorno cerrado, que es por el cual se va a tener
que mover el quadcopter.

Figura 2.1: Sensor Láser

5
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2.1.1.1. Especificaciones técnicas del sensor láser

En esta sección se presenta la información básica del sensor láser. Estas especificaciones
son importantes para la decodificación de los datos enviados por el mismo.

Figura 2.2: Rango de detección

En la Figura 2.2 podemos ver que el sensor va captando las medidas en sentido antihorario
visto desde arriba. En el caso del Hokuyo URG-04LX el “Step ”que vemos en la imagen 2.2,
es el angulo máximo al que el sensor llega a tomar medidas, y el “Step A”es el punto inicial
del escaneo. La resolución angular del láser se obtiene dividiendo 240o(Rango de escaneo del
sensor) entre 682(Número de medidas tomadas). Realizando esta operación, se obtiene una
precisión de 0.36

o

medida

2.1.1.2. Codificación de los datos

Los datos enviados por el sensor, vienen codificados para reducir el tiempo de transmisión
entre el procesador y este. Estos datos deben ser decodificados para poder procesarlos. Hay
tres técnicas de codificación distintas para enviar los datos que el usuario puede seleccionar
en función del volumen de datos que se vayan a tratar. Estas son: codificación de dos, tres,
y cuatro caracteres. En nuestro caso utilizaremos la codificación de dos caracteres, ya que
al ser una aplicación que debe funcionar en tiempo real y la cantidad de operaciones que el
procesador debe realizar es relativamente elevada, interesa que el tiempo de respuesta sea el
menor posible, para un funcionamiento óptimo de la aplicación.

2.1.2. Autopiloto Naza-M Lite

Este dispositivo es un controlador en el que están integradas las ecuaciones de movimiento
del quadcopter, a partir de las cuales se calculan las señales PWM para que cada motor funcione
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con la potencia necesaria para alcanzar las consignas de ángulo impuestas por el usuario. Esto
último puede hacerse a través de un mando que controla la potencia y los ángulos Roll, Pitch,
Yaw, o en el caso de la aplicación que se va a ha implementar para la navegación por espacio
cerrado, únicamente se actuará sobre el ángulo Yaw.

2.1.3. Microcontrolador TMS320F28335

El TMS320F28335 [3] es un microcontrolador de Texas Instruments que trabaja a una
frecuencia de 150 MHz con una CPU de 32 bit de coma flotante. Este procesador es idóneo
para aplicaciones en tiempo real. Tiene una frecuencia de trabajo suficiente para realizar las
operaciones que se quieren llevar a cabo en esta aplicación. Ademas incluye 3 módulos para
conexión SCI, que son los necesarios para conectar el sensor láser, el IMU y los XBee.

Figura 2.3: Microcontrolador F28335

2.1.4. Estructura mecánica y motores del quadcopter

El quadcopter está formado por una estructura de plástico sobre la que se sitúa todo el hard-
ware descrito anteriormente aśı como los cuatro motores con sus respectivos ESC(Electronic
Speed Controller). Esta estructura está formada por dos barras rojas y dos blancas. Las rojas
indican la parte delantera del quadcopter.[4]

Los motores son trifásicos śıncronos de corriente continua capaces de desarrollar una po-
tencia máxima de 370W. Para ello es necesario el uso de los ESC, cuya función es convertir la
señal PWM enviada por el microcontrolador en tres fases que controlan la velocidad del motor.
1.2

2.1.5. Bateŕıa y regulador de tensión

La bateŕıa utilizada es el modelo Turnigy 5.0. Dicha bateŕıa es de 4 celdas y tiene una carga
mı́nima de 14,8 voltios. Su capacidad es de 5000 mAh, lo que conlleva un vuelo medio entre 10
y 12 minutos. Pesa 552 g y tiene unas dimensiones de 149 x 49 x 33 mm. También se utiliza
un regulador de tensión de 5V para alimentar el microcontrolador y después este alimenta los
sensores a 3,3 V y 5V.
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2.1.6. Multiplexor

El multiplexor 4-Channel RC Servo Multiplexer, esta diseñado para este tipo de aplicacio-
nes. Es capaz de multiplexar dos entradas de 4 canales a través de un 5o canal y obtener la
salida que se seleccione con este último.

Este dispositivo ofrece la posibilidad de realizar pruebas de vuelo con el código implemen-
tado en el microcontrolador, con la seguridad de que si el sistema falla, se puede conmutar
rápidamente a modo autopiloto con una palanca situada en el mando.

2.2. Software

La implementación del software se va ha realizar en el entorno de programación Code
Composer de Texas Instruments, mediante el uso de SYS/BIOS, un sistema operativo para
controlar las distintas tareas que el procesador debe realizar en tiempo real. Previamente
todo el software ha sido simulado en MATLAB, para comprobar de una forma más visual el
funcionamiento de los métodos de navegación utilizados. El codigo ha sido implementado en
coma flotante en C++.

2.2.1. Code Composer Studio

Code Composer [5] es un entorno de desarrollo integrado de aplicaciones creado por Texas
Instruments. En el se puede encontrar una serie de herramientas para analizar paso a paso el
código implementado. Tiene editor, debugger, compilador y linker

Se puede programar en el microprocesadores tales como C2000, TMS570, Sitara, C55x o
C28x. Se ha utilizado la versión 5.5.

2.2.2. SYS/BIOS

SYS/BIOS es un núcleo de tiempo real de Texas Instruments para DSP’s,ARM y micro-
controladores. Permite una planificación de tareas en el procesador basdada en prioridades
fijas y herencia de prioridad. Este sistema operativo contiene herramientas para facilitar la
gestión de las tareas y analizar de una forma sencilla la conmutación de las distintas tareas
en el procesador. Con ella se pueden visualizar: tiempos de cómputo, carga del procesador,
graficos de ejecución...Los elementos que forman SYS/BIOS son:

Interrupciones hardware(Hwi)

Interrupciones software(Swi)
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Tareas(Task)

• Periódicas

• Esporádicas

Semáforos

2.2.3. MATLAB

Se ha utilizado Matlab [6] R2010a y R2015a para simular todos los métodos matemáticos
utilizados para calcular la trayectoria que debe seguir el quadcopter. Matlab es una herramienta
muy completa y útil que permite simular de forma visual los métodos utilizados para la nave-
gación del quadcopter y comprobar si éstos funcionan correctamente antes de implementarlos
en C++ en el procesador.



3. Arquitectura del Sistema

Además del hardware del que se part́ıa inicialmente, ha sido necesario añadir otros dispo-
sitivos e implementar drivers software para poder cumplir los objetivos de este TFG.

Figura 3.1: Diagrama de bloques del hardware utilizado

Para poder conectar el sensor láser al microcontrolador F28335, ha sido necesario hacer
uso de un conversor de tensión. Esto es debido a que el láser transmite las tramas mediante el
protocolo RS-232 1, y el microncontrolador mediante SCI 2. La RS-232, funciona con señales
bipolares de +/-6V y la SCI del microcontrolador funciona mediante señales de entre 0 y
3,3v. Por esta razón es necesario hacer un dispositivo capaz de adaptar ambas señales para
que ambos dispositivos puedan comunicarse entre ellos. Ademas de esto, es necesario crear un
driver software para procesar la información enviada por el sensor láser.

Debido a que el quadcopter no puede estar conectado con cables a la estación de control,

1Recommended Standard 232, es un interfaz que designa una norma para el intercambio de una serie de
datos binarios

2Serial Comunication Interface

10
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es necesario integrar un módulo de comunicaciones inalámbrica para poder visualizar en un
dispositivo externo información de importancia que permita comprobar el correcto funciona-
miento de los métodos de navegación. En este caso, se va a utilizar un módulo de comunicación
XBee. Uno de los dispositivos se conecta directamente al microcontrolador F28335 a través
de uno de los puertos SCI integrados en este y el otro, se conecta directamente al dispositivo
externo en el que se visualizará la información mediante un USB. El dispositivo va a enviar la
telemetŕıa del quadcopter para poder visualizar en todo momento los obstáculos que se están
detectando, y la dirección de movimiento a seguir. Con el fin de facilitar el env́ıo de tramas
desde el ordenador al microcontrolador y la visualización de las tramas recibidas desde el mi-
crocontrolador, se ha hecho uso de la herramienta “GUIDE”de Matlab para crear una interfaz
gráfica y poder visualizar de forma clara la telemetŕıa del quadcopter.

Tamb́ıen será necesario generar un PWM para controlar el ángulo Yaw, que es el que define
la orientación del quadcopter. Para ello será necesario utilizar el módulo EPWM del F28335.
Esta señal PWM será enviada al autopiloto Naza M, el cuál se encargará de enviarla a los
ESC para darles la velocidad necesaria a los motores para alcanzar la consigna impuesta por
el PWM.

El resto de variables de estado del sistema serán controladas con un mando de radiofre-
cuencia, el cual transmite señales a un receptor integrado en el quadcopter. Este receptor
está conectado directamente al autopiloto cuya función es procesar las señales enviadas por el
receptor.

El software creado para el desarrollo de los métodos de navegación ha sido creado en Matlab
para poder realizar simulaciones antes de probarlo en el modelo real. Una vez realizadas las
simulaciones, ha sido necesario implementar todo el código en C++ para poder integrarlo en
el microcontrolador F28335 que será el encargado de gestionar todos los dispositivos hardware
integrados en el sistema, y de realizar los cálculos necesarios para obtener la dirección de
movimiento del quadcopter con los métodos de navegación que se explicarán en el siguiente
caṕıtulo.

3.1. Descripción del hardware añadido

En esta sección se da información básica de los dispositivos hardware que ha sido necesario
añadir durante la realización de este TFG para conseguir que el sistema funcione correctamente.

3.2. Modulos de comunicación XBEE

El módulo de comunicación XBee [7] ha sido proporcionado por el grupo de Robótica,
Percepción y Tiempo Real de la Universidad de Zaragoza.

Este dispositivo tiene una distancia máxima de transmisión de datos de 550m en interiores
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o núcleos urbanos y de 40km en campo abierto. Su velocidad de transmisión es de 24Kbits
por segundo, lo que limita mucho la separación mı́nima entre las tramas de telemetŕıa que se
quieren enviar debido a la extensión de estas.

3.3. Conversor de tensión MAX3222

La señal de salida del puerto SCI del microcontrolador que es enviada al láser es de 3,3 V,
aśı que es necesario utilizar un conversor de tensión para obtener una señal bipolar entre +/-
6V, que es la requerida por el estándar RS-232 , haciendo de esta forma posible la comunicación
entre microcontrolador y sensor láser.

Este dispositivo [8] cuenta con dos canales de recepción y dos de env́ıo, que da la posibilidad
de conectar otra RS-232 a los puertos SCI.



4. Navegación con evitación de obstáculos

Para llevar a cabo el cálculo de la dirección de movimiento del quadcopter, es decir, el
control del ángulo Yaw, se han estudiado tres métodos. El primero de todos es el método
del eje principal de inercia, con el se va a calcular la dirección principal de movimiento del
quadcopter, en campo abierto (sin obstáculos), o cuando hay obstáculos laterales (por ejemplo
paredes) que permiten centrar el movimiento en el eje principal. Este método se ha elegido por
su simplicidad de cálculo, importante para una implementación en tiempo real. Este método
no es suficiente para navegar de forma autónoma, ya que es necesario dotar al quadcopter de
técnicas para esquivar obstáculos que se interpongan en la dirección calculada con este método.
Para ello se han implementado los métodos de campos de potencial, y una simplificación del
método ND [9].

Existen muchos métodos de navegación para la evitación de obstáculos; se han seleccionado
inicialmente éstos por se de los más utilizados en este tipo de navegación. Sin embargo, como
se explica más adelante, su aplicación completa exige una serie de cálculos que no es posible
implementar en el procesador embarcado, debido a las restricciones de capacidad de memoria
y de cálculo del mismo. Por ello se ha simplificado su implementación para cumplir estos
requisitos y adaptar los métodos a las restricciones hardware. Evidentemente ello tiene el
inconveniente de no contemplar todas las posibilidades de navegación segura que proporcionan
los métodos completos, pero se ha conseguido un funcionamiento razonable para el tipo de
entornos no muy densos considerados en este proyecto.

4.1. Dirección principal de movimiento

En esta sección se va a explicar como se ha llevado a cabo el calculo de la dirección principal
que debe llevar el quadcopter. Para ello se ha utilizado el eje principal de inercia calculado a
partir de las medidas obtenidas por el sensor láser.

4.1.1. Ejes principales de inercia

Los ejes principales de inercia o ejes de simetŕıa, son las direcciones representadas por los
vectores propios del tensor de inercia. Estos vectores, definen los ejes en torno a los cuales

13
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(a) Entorno real en el que debe volar (b) Obstáculos detectados por el
escáner láser (azul) y dirección
principal calculada (rojo).

Figura 4.1: Entorno y dirección principal de movimiento

se genera el máximo y mı́nimo momento de inercia. Es decir estos ejes definen la recta que
minimiza y maximiza la distancia a todos los puntos obtenidos con el sensor. En nuestro caso,
elegiremos el eje de menor inercia, ya que el quadcopter debe estar siempre lo más alejado
posible de los obstáculos detectados por el sensor. La Figura 4.1 representa un escenario real
y la dirección principal calculada.

4.1.2. Cálculo del momento de inercia

El momento de inercia se define como la suma del cuadrado de las distancias tomadas por
el sensor láser al eje de inercia. La masa es tomada como la unidad, ya que no se trata de un
cuerpo f́ısico con masa, sino que se trata de una figura virtual formada por los puntos del láser.

J =

n∑
i=0

mr2i (4.1)

Para llevar a cabo el calculo de los ejes principales de inercia, se ha utilizado la matriz
tensor de inercia. Para ello es necesario calcular cada uno de los términos que componen la
matriz.

I =

(
Ixx Ixy
Iyx Iyy

)
(4.2)

Los elementos Iii, i = 1, 2 de la diagonal, reciben el nombre de momento de inercia respecto al
eje.

Ixx =
n∑

i=0

y2i (4.3)
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Iyy =
n∑

i=0

x2i (4.4)

Los otros dos términos son los productos de inercia según los mismos ejes.

Ixy = Iyx =

n∑
i=0

−xiyi (4.5)

Una vez calculado el tensor de inercia de los puntos obtenidos con el sensor láser, calculando
los vectores propios de esta matriz, se obtienen los ejes de simetŕıa o ejes de inercia.

4.1.3. Vectores propios

Los vectores propios se obtienen a partir de los valores propios de la matriz de inercia.
Como se ha explicado anteriormente, el objetivo de estos vectores es obtener el eje de menor
inercia, el cual marca la dirección principal de movimiento. Este eje viene asociado al menor
valor propio.

4.1.3.1. Cálculo de valores propios y vectores propios

La herramienta utilizada para encontrar valores propios de matrices cuadradas es el poli-
nomio caracteŕıstico: decir que λ es un valor propio de A es equivalente a decir que el sistema
de ecuaciones lineales A v = λ v → Av - λv = 0 (factorizando por v queda) (A - λI ) v = 0
(donde I es la matriz identidad) tiene una solución no nula v (un vector propio), y de esta
forma es equivalente al determinante:

det(A− λI) = 0 (4.6)

Una vez que se conocen los valores propios λ, los vectores propios se pueden hallar resol-
viendo el sistema de ecuaciones homogéneo:

(A− λI)v = 0 (4.7)

4.2. Detección de obstáculos

Una vez obtenida la dirección principal que determinará la consigna de orientación a alcan-
zar por el quadrotor, es necesario definir métodos para esquivar obstáculos que se interpongan
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en la dirección de movimiento calculada con el método inercial. Para llevar a cabo dicha función
han sido probados los dos siguientes métodos: Campos de potencial y ND.[10]

4.2.1. Campos de potencial

El método de campos de potencial, consiste en suponer que se está navegando por un campo
de fuerzas virtual en el que los obstáculos generan una fuerza repulsiva y el objetivo genera
una fuerza atractiva.[11]

4.2.1.1. Cálculo de potenciales

Para crear el campo de fuerzas nombrado anteriormente, es necesario ponderar de alguna
forma la influencia que van a tener en el mapa los obstáculos detectados por el sensor. Para
ello se ha utilizado la función gaussiana. Intuitivamente con esta función representamos que
en el obstáculo y en sus proximidades existe una fuerza virtual repulsiva, que va decreciendo
conforme se aleja el punto considerado del obstáculo. Se pueden utilizar diferentes funciones
para esta representación, la gaussiana es una de ellas.

f(x, y) = A exp

(
−
(

(x− xo)2

2σ2x
+

(y − yo)2

2σ2y

))
. (4.8)

x,y son las variables de la función, los puntos de evaluación de la función.

xo,yo son las coordenadas del centro de la gaussiana, es decir, las coordenadas de los
obstáculos detectados por el láser.

σx,σy son las desviaciones t́ıpicas en cada uno de los ejes.

A es un coeficiente para ajustar la amplitud de la función gaussiana.

Potencial repulsivo

Vamos a realizar una representación discretizada en vez de continua del escenario para sim-
plificar los cálculos. Por ello trabajamos con una ret́ıcula o “grid”en la que cada celda tendrá
asignado un potencial. Cada uno de los puntos detectados por el sensor, tiene asignada una
función gaussiana para saber de esta forma la influencia que tiene en el campo de potenciales.
El campo de potenciales final, se genera sumando cada una de estas funciones nombradas ante-
riormente en una única función, que es la que va a definir la influencia de todos los obstáculos
detectados. Esta función está proyectada en la ret́ıcula, como se representa en la Figura 4.2
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(a) Entorno real (b) Mapa de potencial repulsivo
2D

(c) Mapa de potencial repulsivo
3D

Figura 4.2: Mapas de potencial repulsivo

Potencial atractivo

El objetivo a alcanzar, definido como una posición en el escenario sobre la dirección principal
de movimiento calculada anteriormente, define un potencial atractivo virtual, que “atrae”al
quadrotor hacia ese punto. Esta función va a generar una pendiente negativa hacia el objetivo,
hacia el que se “deslizará”el dron.

(a) Mapa de potencial atractivo 2D (b) Mapa de potencial atractivo 3D

Figura 4.3: Mapas de potencial atractivo

Una vez calculado los potenciales atractivo y repulsivo, uniendo ambos mapas, se obtiene
el mapa de potencial total, a partir de el cual se puede obtener la dirección instantánea en
cada celda de la ret́ıcula por la que debe navegar el quadcopter siguiendo el camino de mayor
gradiente negativo.
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(a) Mapa de potencial 2D (b) Mapa de potencial 3D

Figura 4.4: Mapas de potencial atractivo y repulsivo

4.2.1.2. Gradiente del campo de potencial

Para determinar la dirección de navegación por el campo de potencial en cada punto de
la ret́ıcula, es necesario calcular el gradiente. Esta función determina el camino de mayor
pendiente, el cual acaba en el punto objetivo marcado anteriormente, ya que es el punto del
mapa de menor potencial.

El gradiente es el campo vectorial obtenido al derivar la función gaussiana, cuyas compo-
nentes son las derivadas parciales de esta función.

∂f(x, y)

∂x
= −A(x− xo)

σ2x
exp

(
−
(

(x− xo)2

2σ2x
+

(y − yo)2

2σ2y

))
. (4.9)

∂f(x, y)

∂y
= −A(y − yo)

σ2y
exp

(
−
(

(x− xo)2

2σ2x
+

(y − yo)2

2σ2y

))
. (4.10)

Siguiendo la dirección del campo vectorial obtenido con esta función, se llega al punto
objetivo, y como se puede observar en las figuras (a) y (b), siguiendo el camino de menor
gradiente, se esquivan los obstáculos que se interponen en la dirección de movimiento.

(a) Camino de menor gradiente
2D

(b) Camino de menor gradiente 3D

Figura 4.5: Gradiente del campo de potencial (linea roja)
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4.2.2. ND (Nearness Diagram)

El objetivo de este método de la misma forma que el de campos de potencial, es esquivar los
obstáculos que se interpongan en la dirección principal de movimiento del quadcopter. Como se
ha mencionado antes, la implementación del método completo supone una cantidad de cálculos
elevada, que resulta dif́ıcil de implementar en el procesador embarcado, con las restricciones
de tiempo real necesarias para una rápida corrección del movimiento. Por ello se implementa
una versión simplificada del método.

El algoritmo ND, busca los posibles huecos de paso, f́ısicamente atravesables por el veh́ıcu-
lo, a partir de la información del escáner láser. Seleccionado el mejor hueco (con criterios de
seguridad y proximidad angular al objetivo), el método calcula una dirección instantánea de
movimiento en cada periodo de muestreo, que dirige al veh́ıculo evitando los obstáculos circun-
dantes. Se establece un radio de seguridad para el paso del veh́ıculo, en el cual se identifican
los huecos de paso. Se explica a continuación la implementación simplificada del método ND.

4.2.2.1. Funcionamiento del algoritmo

El objetivo es encontrar el hueco de mayor tamaño más cercano a la dirección principal de
movimiento. Para ello se realiza un barrido en el sentido de escaneo del láser, y se localizan
los obstáculos que se encuentran dentro del radio de seguridad. Una vez obtenidos todos estos
obstáculos, se identifican los huecos formados entre ellos y se calcula la distancia mı́nima entre
dichos obstáculos. Para ello se fija el punto del obstáculo más cercano y se busca el punto
perteneciente al otro obstáculo que defina la menor distancia entre ellos, de esta forma se
asegura que el quadcopter cabe por el hueco. La dirección de movimiento que se le env́ıa al
quadcopter, está definida por la recta que pasa por el punto medio del hueco.

(a) corrección de orientación errónea (b) corrección de orientación correcta

Figura 4.6: Dos posibles cálculos del hueco y sus correspondiente dirección de corrección de
movimiento. La (a) conduce a colisión, la (b) es la correcta.

Se plantea un problema a tener que decidir los dos “extremos”del hueco, ya que hay muchos
puntos candidatos posibles para serlo (ver 4.6). En la Figura 4.6 se pueden apreciar dos posible
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elecciones del punto “izquierdo”del hueco. Una incorrecta elección conduce a un cálculo de la
dirección de corrección fallida, que puede llevar a colisión lateral. En la figura 4.6(a) se puede
apreciar como si no se realiza la corrección necesaria a la hora de elegir los dos puntos que
definen el hueco, el quadcopter tendrá problemas para esquivar el obstáculo, ya que la dirección
de movimiento, definida en la imagen con una linea roja, pasa muy cercana al obstáculo.
Esto es debido a que la distancia tomada como tamaño del hueco es errónea. Para ello se ha
implementado la búsqueda de la distancia mı́nima entre los dos obstáculos que es la que se
muestra en la Figura 4.6(b), que conduce a una dirección correcta para esquivar con seguridad
el obstáculo.

4.2.3. Cálculo de la orientación

Una vez calculada la dirección instantánea a la que hay que conducir al quadcopter, hay
que calcular la acción de corrección de orientación (ángulo Yaw) a ejecutar en el mismo. Para
ello se utiliza una combinación de el método inercial y el de campos de potencial o el ND. Se
calcula primero la dirección principal de inercia, y cuando no se detecte obstáculo dentro del
radio de seguridad, la dirección calculada por el método de potencial o el ND coincide con
dicha dirección principal. En el caso de detectar un obstáculo en este radio, será necesario usar
uno de los dos métodos nombrados anteriormente para corregir la dirección de movimiento.
Al trabajar en una referencia robocéntrica, y considerar que en dicha referencia el quadcopter
avanza siempre en la dirección del eje X (Figura 1.2), el ángulo Yaw de corrección coincide
directamente con el ángulo asociado a la dirección de movimiento calculada por los métodos
descritos. Este ángulo es la consigna que se aplica al autopiloto, el cual deberá aplicar una
acción a los motores proporcional a la diferencia entre el ángulo Yaw calculado por el método
y el eje X del quadcopter(Figura 4.7).

Figura 4.7: El eje X(linea negra) del quadcopter se alinea con el ángulo Yaw(linea roja) calcu-
lado
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4.3. Comparación de métodos

Se ha evaluado la implementación de ambos métodos de evitación. Se ha tomado la decisión
de utilizar el método ND en lugar del de campos de potencial debido las limitaciones de computo
del procesador. El método de campos de potencial requiere más capacidad de procesamiento
que el ND, y además presenta más dificultades a la hora de ajustar las constantes para crear
el mapa de potencial. Si estas constantes no están bien ajustadas, se puede dar la posibilidad
de encontrar un mı́nimo local debido a la combinación de potenciales atractivo y repulsivo.

(a) Mı́nimo Local 3D (b) Mı́nimo Local 2D

Figura 4.8: Bloqueo del avance debido a un mı́nimo local

Como se puede apreciar en la Figura 4.8, calculando el gradiente se llega a un mı́nimo local
antes de llegar al objetivo, lo que implicaŕıa una mala corrección de la dirección de movimiento
del quadcopter, y posiblemente la colisión de este con el obstáculo o el bloqueo del movimiento
de avance.

Otra de las razones por las que se ha decidido utilizar la versión simplificada del método
ND, es que el tiempo de computo de este método es de 28ms frente a los 120ms del método
de campos de potencial. Al utilizar el ND los sensores pueden muestrear más rápido que con
el otro método consiguiendo aśı una mejor respuesta del sistema.



5. Implementación software del sistema

Un sistema en tiempo real [12] es un sistema informático que debe tener la capacidad de
ejecutar las acciones requeridas en intervalos de tiempo bien definidos. Para ello, es necesario
disponer de mecanismos adecuados para medir el tiempo, controlar la duración de las acciones
del sistema, activar tareas o eventos en instantes determinados, reconocer fallos en los plazos
de ocurrencia de los eventos y asegurar los plazos de ejecución de las acciones.[13]

5.1. Estructura del software

Figura 5.1: Estructura software del sistema

Las actividades que se van a implementar son las siguientes:

Gestión del Sensor Láser. Este manda una trama cada 127 ms y se lee a través del puerto
serie SCI.

22
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Decodificación de las medidas. Es necesario decodificar los datos recibidos del sensor
láser, cada vez que el procesador recibe una trama de medidas completa. Para ello la
tarea encargada de gestionar el láser, activa el semáforo que habilita esta tarea.

Cálculo de direcciones de navegación. Esta tarea se activara cada vez que se haya decodi-
ficado una trama del láser mediante un semáforo lanzado por la tarea de decodificación.

Env́ıo de comandos al quadcopter a través del XBee. Cada 300ms se env́ıan y reciben
tramas de datos.

5.2. Implementación del software

El software está basado en tareas e implementado con las herramientas de SYS/BIOS. Cada
tarea tiene una parte de inicialización en el main, un bucle infinito en el que se va a ejecutar
el código y una primitiva bloqueante en la que se va a quedar esperando la tarea hasta ser
ejecutada. Estas primitivas son los semáforos. Cuando una tarea está en el estado de espera,
significa que está esperando la llegada de la señal del semáforo que le da permiso para ser
ejecutada. Existen varios tipos de tareas en función del tipo de activación, estas son:

Tareas periódicas: Se ejecuta cada cierto tiempo definido constante

Tareas esporádicas: Se activan cuando ocurre un evento concreto, como por ejemplo
una interrupción hardware o como es el caso de esta aplicación, algunas tareas deben ser
ejecutadas cuando finaliza la ejecución de una parte de código. En este caso se trataŕıa
de interrupciones software.

En la siguiente imagen se explica el funcionamiento de los semáforos en el caso de que la
tarea sea periódica, se puede ver como cuando llega un tick del reloj (1), que coincide con el
periodo de la tarea(2), se lanza la señal del semáforo (3),(4), y si se cumple también que la
tarea está lista para ejecutarse (5), esta entra en el procesador y empieza a ejecutarse(6).

Figura 5.2: Activación de una tarea
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En el caso de que las tareas sean esporádicas, la activación del semáforo no vendrá dada
por el reloj del sistema, sino que será lanzada por la interrupción hardware que se de en el
sistema como por ejemplo la llegada de caracteres por el puerto SCI, o en el caso de que la
interrupción sea software, el fin de la ejecución de una tarea determinara el lanzamiento de un
semáforo para que se ejecute otra tarea.

Estas tareas ademas de tener asignado un periodo y un semáforo como se ha dicho anterior-
mente, es necesario asignarle una prioridad. Existen varios tipos de planificación, pero en este
caso vamos a centrarnos únicamente en la planificación basada en prioridades estáticas, dando
prioridad siempre a la tarea más urgente, es decir, a la de menor separación mı́nima entre
eventos. Para ello sera necesario asignar las prioridades de tal forma que en cada momento se
ejecute la tarea más prioritaria entre todas las que sean ejecutables, pudiendo ser expulsada del
procesador en el caso de que una tarea de mayor prioridad este preparada para ser ejecutada.
En el siguiente diagrama se pueden ver los diferentes estados en los que se puede encontrar
una tarea.

Figura 5.3: Estados de una tarea

Como se puede ver en la anterior imagen, cuando llega una tarea pasa a estar preparada,
si llega la señal del semáforo, el procesador empieza a ejecutar dicha tarea. En el caso de que
una tarea más prioritaria este preparada para su ejecución, la tarea que se estaba ejecutando
inmediatamente pasará al estado de espera hasta que la tarea más prioritaria sea ejecutada.
Una vez terminada dicha ejecución la tarea que estaba en espera podrá volver a ser ejecutada
hasta que finalice su ejecución.

5.2.1. Tareas

Se han creado 4 tareas:

Recepción de tramas del laser: Es la tarea principal del sistema con la que se recogen
los escaneos enviados por el sensor. Este interrumpe al sistema cada vez que recibe un
carácter y cuando se detecta el carácter que indica el final del escaneo, se activa el
semáforo para que esta tarea entre en el procesador. En ella se realiza la verificación de
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la trama y posteriormente se guardan los datos recibidos en el servidor de datos para que
puedan ser utilizados por otras tareas.

Decodificación de tramas del laser: Cada vez que se verifica la recepción de una
trama se produce la activación del semáforo que da permiso a esta tarea para entrar en
el procesador.

Cálculo de las direcciones para la navegación: Esta tarea es periódica y se ejecuta
cada 130ms. En ella se realizan todos los cálculos necesarios para obtener la dirección
principal de movimiento, y detectar los obstáculos que se interpongan en el camino del
quadcopter.

Envio y recepción de tramas con el ordenador: Es una tarea periódica que se
ejecuta cada 300 ms, esta env́ıa la telemetŕıa del quadcopter al ordenador e interpreta
los comandos enviados desde el ordenador al láser.

5.2.2. Servidores

Los servidores son una herramienta necesaria cuando se está trabajando con un sistema de
varias tareas. La función principal de estos es almacenar variables que van a ser utilizadas por
varias de estas, para que en el caso de que una esté modificando una variable, otra no pueda
acceder a ella hasta que la variable haya sido modificada.

Se han creado 3 servidores:

Servidor de Estados: En este servidor se almacena el estado en el que se encuentra el
láser, este puede ser: sin inicializar, parado o enviando. La tarea de recepción de datos
del láser escribe en este servidor para que todas las demás tareas puedan acceder a el y
leer el estado en el que este se encuentra y realizar una cosa u otra en función de este.

Figura 5.4: Estados del sistema

En el autómata de estados de la Figura 5.4, se pueden ver los diferentes estados en los que
puede encontrarse el sistema. En el estado inicial, el sistema está esperando la llegada
del comando de inicialización del sensor láser. Cuando se recibe este comando, se pasa al
estado de Stop, en el que se está esperando la llegada de la orden que hace que el láser
comience a enviar medidas. Cuando esto ocurre se pasa al estado enviando, en el que se
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permanece hasta la llegada de un comando que detenga el envio de medidas, o un reset
del sistema.

Servidor de datos: En el escribe la tarea de recepción del láser la trama recibida en cada
momento para que la tarea de decodificación pueda acceder a estos datos y procesarlos.
Una vez procesados esta escribe en el las medidas decodificadas para que la tarea de
navegación pueda realizar los cálculos necesarios con ellas.

Servidor de Navegación: En el se escriben las direcciones calculadas por los distintos
métodos

5.2.3. Optimización del Código

Todo el software implementado está cargado en la memoria flash del microcontrolador. Para
reducir el tiempo de cómputo de las funciones que cŕıticas(por ejemplo, las de navegación),
se han copiado de la memoria flash a la RAM 1 ya que el tiempo de lectura y escritura en
la segunda es mucho más rápido. Utilizando este procedimiento, se ha conseguido reducir el
tiempo de cómputo de la tarea de navegación nombrada anteriormente de 120ms a 30ms, lo
que supone una mejora importante en la respuesta del sistema.

5.3. Drivers Software Implementados

Se han implementado los drivers necesarios para poder integrar el hardware utilizado en el
F28335

5.3.1. Sensor Láser

Para poder procesar las medidas enviadas por el sensor, es necesario crear una serie de
funciones para procesar los caracteres recibidos por el puerto SCI. Para ello es necesario ha-
bilitar una interrupción hardware que llame a unas funciones de recepción y transmisión de
caracteres, cada vez que el microcontrolador recibe un carácter.

Se ha realizado una adaptación de las funciones ya implementadas para recibir tramas del
módulo XBee, para poder recibir los datos del sensor láser. Ademas de estas funciones de
recepción, se han implementado todas las funciones de decodificación para poder hacer uso en
los algoritmos de navegación de las medidas recibidas.

1RAM: Random Access Memory
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5.3.1.1. Filtrado de medidas

Como prácticamente en todas las aplicaciones en las cuales es necesario obtener datos a
través de un sensor, se pueden adquirir datos erróneos debido a cualquier tipo de ruido que
pueda alterar las lecturas del sensor. Este ruido, puede tratarse por ejemplo de una mala
adquisición del dato por fallo del hardware, o del propio ruido del sensor que proporciona
alguna medida espúrea. Para ello se va a hacer uso de técnicas de filtrado que eliminen o
reduzcan en la medida de lo posible el ruido. En este caso, el tipo de errores que se van a dar,
son medidas erróneas en determinados posiciones angulares del escaneo. Un filtro adecuado
para corregir estos errores, es el de mediana.

• Filtro de mediana

El filtro de mediana es una técnica no lineal de filtrado digital comúnmente utilizada para
reducir el ruido en imágenes o en señales. La técnica consiste en asignar a cada punto el valor de
la mediana local (muestras alrededor de cada valor de la señal); sólo cambian aquellos valores
que no corresponden a la mediana de la muestra. La agrupación de las muestras para el cálculo
de la mediana se denomina ventana. Lo bueno de este tipo de filtrado, es que sustituye los
valores erróneos por valores que se encuentran en la señal. Si el número de muestras es impar,
el cálculo de la mediana es sencillo: Simplemente habrá que ordenar los valores de la ventana
y escoger el valor central.

Con ± K vecinos (2K + 1 muestras en total, incluyendo la central):

f (x) = ymed = median{f (x−K) , · · · , f (x− 1) , f (x) , f (x+ 1) , · · · , f (x+K)} (5.1)

(a) Medidas sin filtrar (b) Medidas filtradas

Figura 5.5: Medidas filtradas con un filtro de mediana

Para realizar el filtrado de un escaneo entero, es necesario aplicar la técnica explicada
anteriormente con las 682 medidas tomadas por el sensor. El único inconveniente de aplicar
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esta técnica, es que el filtro aplica un retraso de 2K−1
2 valores. Por ello es necesario corregir

este “offset”para que cada medida se corresponda con su posición real.

5.3.2. XBee

La comunicación inalámbrica se realiza a través del XBee. Con él se env́ıan los comandos
desde el ordenador al láser para inicializarlo, y se recibe la dirección de movimiento calculada
con los métodos de navegación.

Este dispositivo es de gran utilidad, ya que proporciona la posibilidad de visualizar toda la
información necesaria para estudiar el comportamiento del quadcopter en tiempo real.

El XBee va conectado al tercer puerto SCI del microcontrolador. El funcionamiento es igual
que el del láser: se crea una interrupción hardware y se asigna a este puerto SCI para que llame
a unas funciones ya implementadas que procesan los caracteres recibidos y enviados.

5.3.3. ESC y Motores

Es necesario enviar un PWM de unos valores y frecuencia determinados. La frecuencia del
PWM enviado a los motores, puede estar entre 50 y 450 Hz en este caso se ha elegido 73Hz,
lo que implica un refresco del valor del PWM de 13ms.

Para realizar el PWM se han utilizado los módulos PWM incorporados en el microcontro-
lador.

Figura 5.6: Registro PWM

Como se puede ver en la Figura 5.6, es necesario calcular el valor de los registros TBPRD
y CMPA. El funcionamiento es el siguiente: Un Timer va contando ciclos de reloj hasta llegar
al valor del registro CMPA, en ese momento se pone a 1 el valor del PWM. Cuando el Timer
alcance el valor del registro de periodo(TPRD), el valor del PWM volvera a ser 0.
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5.4. Diagrama de Tareas

Con el fin de tener una representación esquemática de la distribución de las tareas y ser-
vidores del sistema y sus caracteŕısticas, se ha realizado un diagrama de bloques, en el que se
representa el tiempo de lectura y escritura en los servidores e indicando que tareas acceden a
ellos. Cada uno de los tiempos que se muestran en este diagrama, se han calculado utilizando
las herramientas de SYS/BIOS.

Figura 5.7: Esquema de Tareas del sistema

5.4.1. Cálculo de tiempos de bloqueo

Para calcular el tiempo máximo que una tarea puede ser bloqueada por un servidor, es
necesario conocer todas las caracteŕısticas temporales de las tareas del sistema.
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Tarea Prioridad C(ms) T(ms) D(ms) Bhp(ms)

Laser 4 7 126 126 0.369

Decode 3 29 126 126 0.369

Navigation 2 32 126 126 0.309

XBee 1 3 300 300 -

Cuadro 5.1: Tabla donde se recogen las caracteŕısticas temporales del sistema

Tarea Laser : Puede ser bloqueada por cualquiera de los servidores a los que esta
tarea accede, en este caso la tarea Navigation que accede al servidor de Estados, puede
bloquear a la tarea Laser 60 µs, asi como la tarea Decode que accede al servidor Data
puede bloquearla 309 µs. Por ello el tiempo de bloqueo es igual a la suma de los dos
bloqueos: 369 µs

Tarea Decode : Puede ser bloqueada por las mismas tareas que la tarea Laser.

Tarea Navigation : Puede ser bloqueada únicamente por la tarea XBee que accede al
servidor Data durante 309 µs.

5.4.2. Cumplimiento de plazos

Para comprobar que todas las tareas del sistema se ejecutan en su plazo de respuesta, sera
necesario comprobarlo de la siguiente forma:

W (Di) =

i−1∑
j=1

Cjd
Di

Pj
e+Bi < Di (5.2)

W (Di) es el trabajo del procesador en el plazo de respuesta de la tarea i

Cj es el tiempo que le cuesta al procesador ejecutar la tarea j

Di es el plazo de respuesta de la tarea i

Pj es el periodo de la tarea j

Bi es el tiempo de bloqueo que puede sufrir la tarea i

Esta condición es suficiente pero no necesaria para asegurar el cumplimiento de plazos de
las tareas del sistema. En el caso de que todas las tareas del sistema cumplan esta condición,
se asegura que el sistema cumple plazos.

Láser

W (DLaser) = 7 + 0,369 = 7,369ms < 126ms (5.3)
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Decode

W (DDecode) = d127

127
e7 + 29 + 0,369 = 36,369ms < 126ms (5.4)

Navigation

W (DNavigation) = d127

127
e7 + d127

127
e29 + 32 + 0,369 = 68,369ms < 126ms (5.5)

XBee

W (DXBee) = d300

127
e7 + d300

127
e29 + d300

127
e32 + 3 = 207ms < 300ms (5.6)

Como se puede observar, se cumplen todos los plazos de respuesta de este sistema sin ningún
problema. Se calcula la utilización del procesador, y debido al elevado coste de cómputo de las
tareas implementadas, se está utilizando un 55 %

U =
n∑

j=1

Cj

Tj
= 54,9 % (5.7)



6. Pruebas de campo con el quadcopter

Para llegar a realizar las pruebas en el modelo real, previamente hay que realizar una serie
de simulaciones de los métodos implementados y calibrar los motores adecuadamente. Dada la
elevada potencia de los motores, es necesario probar el quadcopter de forma controlada para
evitar que este se descontrole y provoque una aveŕıa o pueda llegar a lesionar a alguien.

Para realizar las siguientes pruebas se han utilizado ambos métodos: el de campos de
potencial y el ND. Pero debido a las ventajas que presenta el método ND frente al de campos
de potencial explicado en el caṕıtulo 4, se ha utilizado finalmente para las pruebas reales el
método ND. Las pruebas realizadas son las siguientes:

El primer paso es comprobar que los métodos de navegación funcionan correctamente.
Para ello se han simulado en Matlab dichos métodos y se ha ido desplazando el sensor
láser de forma manual por un entorno similar al que se van a realizar las pruebas con el
modelo real comprobando aśı que la consigna de orientación calculada es la correcta.

Figura 6.1: Prueba realizada desplazando el sensor manualmente

Como se puede ver en la Figura 6.1, se ha ido desplazando el sensor manualmente,
comprobando que la dirección hacia la que se tiene que mover el quadcopter(flecha roja
en la Figura 6.1) siempre apunte hacia el hueco correcto.

Una vez comprobado el correcto funcionamiento de los métodos de navegación, es ne-
cesario comprobar que la acción ejercida por los motores es suficiente para alcanzar las
consignas de orientación. Para ello se ha sujetado el quadcopter con una pértiga(Figura
6.2) y con los motores a una potencia muy baja, se ha ido desplazando por el entorno de
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vuelo de forma manual para comprobar que las correcciones de orientación enviadas por
el procesador son correctas.

Figura 6.2: Prueba realizada con la pértiga de sujección

Antes de pasar a volar el quadcopter sin ningún tipo de protección, se realizará una
última prueba utilizando el mismo sistema de protección explicado en el punto anterior,
pero esta vez la potencia de los motores será lo suficientemente elevada para que el
quadcopter sea capaz de volar solo. De esta forma la pértiga no ejercerá ninguna fuerza
sobre el quadcopter y será utilizada únicamente en el caso de que este se descontrole.

Una vez que se han realizado todas estas pruebas, llega el momento de probar el quadcopter
sin ningún tipo de protección. Para ello se arrancará el quadcopter con un mando y se controlará
con éste únicamente la potencia de los motores y la inclinación (ángulo Pitch) para que el
quadcopter pueda avanzar con la orientación (ángulo Yaw) calculada por el método ND.

Se han realizado dos pruebas de vuelo diferentes:

Figura 6.3: Navegación por una galeŕıa

Se comienza navegando por una galeŕıa sin ningún obstáculo. Como se puede ver en la
Figura 6.3 el quadcopter navega por el centro de la galeŕıa sin ningún problema.
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(a) Detección del hueco y reorientación hacia
él

(b) Corrección de la dirección y entrada por
el hueco

Figura 6.4: Detección del hueco por el que debe pasar y entrada a través de él

En la Figura 6.4 se puede ver como el quadcopter que estaba navegando por el centro de
la galeŕıa, se encuentra con el camino bloqueado por unos obstáculos que le impiden el paso.
Esto le obliga a corregir la dirección de movimiento orientándose aśı hacia el hueco por el que
puede pasar sin ningún problema.

(a) Navegando por la galeŕıa sin detectar aun
los obstáculos

(b) Detección del primer obstáculo y co-
rrección de la orientación

(c) Detección del segundo obstáculo y correc-
ción de la orientación

Figura 6.5: Vuelo por una galeŕıa en la que se encuentra con dos obstáculos

Por último se han realizado unas pruebas en el mismo entorno que la anterior prueba, pero
esta vez los obstáculos se han situado en la galeŕıa por la que el quadcopter está navegando
(Figura 6.5). Éste debe corregir su dirección para evitar la colisión con los obstáculos.



7. Conclusiones

El objetivo principal de este TFG es el desarrollo de técnicas de navegación, basadas en la
información de un sensor rango láser integrado en el F28335. Este proporciona información de
la distancia a la que se encuentran los obstáculos para poder crear un mapa local del entorno en
el que navegará el quadcopter. A partir de la información sensorial, se ha calculado la dirección
que este deberá llevar(ángulo yaw) para desplazarse por el entorno y esquivar obstáculos.

Estos objetivos se han conseguido de la siguiente forma:

Integración de todo el hardware en el F28335

Desarrollo de un driver software para la integración del sensor láser en el F28335.

Filtrado y procesamiento de la información obtenida con el sensor.

Desarrollo de un sistema de comunicación inalámbrica para visualizar la telemetŕıa del
quadcopter

Desarrollo de técnicas de navegación basadas en la información sensorial.

Implementación de un sistema de tiempo real capaz de gestionar todos los eventos nece-
sarios para llevar a cabo el control del quadcopter.

Se han desarrollado y evaluado en el modelo real dos métodos de evitación de obstácu-
los. En las pruebas finales se ha decidido utilizar únicamente el método ND para esquivar los
obstáculos que se interpongan en la dirección de movimiento del quadcopter. Ésto es debido
a que el microcontrolador es demasiado lento para obtener un buen tiempo de respuesta con
el método de campos de potencial, lo que impide realizar una corrección de ángulo lo sufi-
cientemente rápida para esquivar los obstáculos correctamente. Además es complicado ajustar
las desviaciones t́ıpicas para que el quadcopter detecte los obstáculos con suficiente antelación
para esquivarlos. Por estos motivos se ha utilizado en las pruebas finales el método ND.

El desarrollo de técnicas de navegación más complejas, se ha visto limitado como se ha
explicado anteriormente por la velocidad de cálculo del procesador y por la imposibilidad de
obtener una buena referencia absoluta con el IMU para poder saber en todo momento la
posición en la que se encuentra el quadcopter.
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Este TFG ha sido un primer paso hacia la integración de sensores en los drones, para
darles la posibilidad de volar forma autónoma. Se plantea como futuro trabajo la integración
de otros sensores capaces de obtener la información necesaria para controlar el resto de grados
de libertad del quadcopter(x,y,z,Roll,Pitch) y el uso de una unidad de procesamiento más
potente, para la implementación de métodos de navegación más complejos.

Se han realizado numerosas pruebas de vuelo en entornos cerrados con obstáculos en las que
se han probado los métodos de navegación implementados, obteniendo excelentes resultados.
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Anexo A

Codificación y Decodificación del sen-
sor láser

Las medidas enviadas por el sensor como hemos dicho anteriormente vienen codificadas por
dos caracteres cada una, teniendo un tamaño máximo de 12 bits por medida. La codificación se
lleva a cabo separando los datos en parte alta y baja(6 bits cada parte) y después sumándoles
”30H”para convertirlos a valores ASCII(Figura A.1).

Figura A.1: Codificación y Decodificación de dos caracteres

Para que el láser comience a enviar tramas, es necesario enviarle una serie de comandos.
Una vez enviados estos comandos, el sensor empezará a enviar tramas. El proceso de recepción
es el siguiente: Cada trama empieza siempre por la letra M, por tanto en el momento que se
detecta la recepción de este caracter por el puerto SCI, se almacenan los caracteres que se van
recibiendo hasta que se detectan dos caracteres \n seguidos que indican el final de la trama.
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A.1. Formato de comunicación

El sensor y el usuario se comunican con una serie de comandos predefinidos. En esta sección
se va a explicar el funcionamiento de los comandos MD/MS, que son los utilizados para iniciar
la transmisión de datos.

Cuando el sensor recibe un comando de este tipo, comienza a enviar medidas hasta com-
pletar el número de escaneos exigidos en el comando.

Figura A.2: Estructura del comando MS

En la primera parte del comando, elegimos el tipo de codificación, en este caso MS ya
que en esta aplicación se va a codificar en dos caracteres.

En los siguientes bytes, se elige el paso inicial y final del escaneo, por ejemplo:

• Paso inicial: 0044(30H,30H,34H,34H)

• Paso final: 0725(30H,37H,32H,35H)

El siguiente registro de 2 bytes, sirve para agrupar aquellas medidas de pasos adyacentes,
cuyo valor se pueda aproximar en una única medida, por ejemplo: Si el çluster count”vale
3, significa que en el caso de que 3 medidas de 3 pasos adyacentes sean 3059,3055 y 3062
el dato recibido sera 3055.

En el ”Number of Scans”se elige el número de escaneos que debe realizar el sensor. En el
caso de que se quieran realizar multiples escaneos, se pone este registro a 00, y el sensor
no parara de enviar medidas hasta que reciba la orden de detención

Una vez enviada la orden, el sensor puede responder de varias formas dependiendo de lo
enviado en esta. En el caso de enviar el comando ”MS0044072500000”, que es el que se ha
utilizado para la recepción de medidas en esta aplicación, la respuesta es la siguiente:
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Figura A.3:

Se puede observar como el sensor devuelve el mismo comando que se le ha enviado para
que empieze a enviar medidas, seguido de una serie de cabeceras y por ultimo una serie de N
bloques de 64 bytes en los que se encuentran codificadas las medidas obtenidas en el escaneo.
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