
I

Trabajo Fin de Grado

Kubex, desarrollo de un motor gráfico 3D
basado en cubos

Autor

Víctor Arellano Vicente

Director

Eduardo Mena Nieto

Grado en Ingeniería Informática

Escuela de Ingeniería y Arquitectura
2016

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
A

B
A

JO
S

D
E

FI
N

 D
E

G
R

A
D

O
 /

 F
IN

 D
E

M
Á

ST
ER

(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Máster (TFM) cuando sea depositado para su evaluación).

D./Dª. __,

con nº de DNI ______________________ en aplicación de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Máster)

___, (Título del Trabajo)

__,

es de mi autoría y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, ____________________________________

Fdo: __________________________________

Víctor Arellano Vicente

78754388-L

Grado

Kubex, desarrollo de un motor gráfico 3D basado en cubos.

22 / 04 / 2016

Víctor Arellano Vicente

III

RESUMEN

 Un nuevo género de videojuegos basados en cubos e inspirados en el famoso título

Minecraft (Mojang AB, 2009) está irrumpiendo en el mercado, creciendo rápidamente en

popularidad. No obstante, no existen aún motores gráficos open-source populares

especializados en este género. Además, los motores gráficos tradicionales no son capaces de

explotar suficientemente las características que un mundo dividido en cubos ofrece, y no

permiten desarrollar este tipo de videojuegos con facilidad. Por esta razón, los títulos de este

género están forzados a implementar su propio motor gráfico cuyo desarrollo es, dado el

amplio coste en tiempo y recursos que la creación de un motor gráfico complejo conlleva,

relevado a un segundo plano en la mayor parte de los casos. Esto causa un estándar de calidad

gráfica en este género realmente bajo, muy por debajo del estándar de industria actual.

 En este proyecto se implementa, usando tan solo Java y OpenGL, desde cero y en

código abierto, un motor gráfico orientado a cubos con la calidad gráfica y la eficiencia como

máximas prioridades. Sobre el mismo se ha desarrollado, asimismo, un videojuego basado en

la exploración y creación de estructuras, con todas las características que un título de este

género posee.

 Es nuestra intención que, dada la naturaleza de código abierto de este título, cualquier

programador interesado en este género pueda basarse en este proyecto para resolver sus

dudas, obtener partes de código para implementar funcionalidades que necesite o, incluso,

extender fácilmente este proyecto a un prototipo de mayor jugabilidad, centrándose

únicamente en el desarrollo del mismo y despreocupándose del motor básico, ya

implementado.

IV

Agradecimientos

A mi familia, por su apoyo.

A mis amigos, por sus críticas.

Y a Internet, todos esos miles de desconocidos que, dedicando su tiempo y esfuerzo a dejar

conocimiento al alcance de todos, sin saberlo, han hecho esto posible.

V

TABLA DE CONTENIDOS

1. INTRODUCCIÓN ... 1

1.1. Objetivo y alcance ... 2

1.2. Metodología y herramientas ... 2

1.3. Contenidos de la memoria .. 3

1.4. Licencia usada ... 3

2. LÓGICA DEL SISTEMA .. 3

2.1.Cubos ... 4

2.2. Agrupaciones de cubos .. 6

2.3. Generación procedural de mundos.. 7

2.3.1. Modos de generación .. 7

2.3.2. Mundos infinitos ... 10

2.4. Estructura multihilo .. 12

2.5. Mundo dinámico .. 13

2.6. Motor físico .. 13

2.7. Optimizaciones lógicas (mejora de eficiencia) ... 15

2.8. Gestión de datos en disco .. 16

3. RENDERIZACIÓN .. 20

3.1. Iluminación ... 20

3.1.1. Ciclos de día y noche ... 20

3.1.2. Propagación de luz dinámica en un entorno voxel ... 22

3.2. Sombras .. 24

3.3. Agua fotorrealista ... 25

3.4. Deferred Shading .. 27

3.5. Otras mejoras gráficas .. 30

3.5.1. Mip Mapping ... 30

3.5.2. Anisotropic Filtering .. 30

3.5.3. Atmospheric Scattering ... 31

3.5.4. Ambient Occlusion ... 31

3.6. Optimizaciónes gráficas (mejora de eficiencia) ... 32

4. CONCLUSIONES ... 34

4.1. Cronograma .. 35

4.2. Posibles ampliaciones .. 35

VI

4.3. Opinión personal .. 36

5. BIBLIOGRAFÍA .. 37

6. ANEXO 1: MANUAL DE USUARIO .. 38

7. ANEXO 2: RENDERING DE AGUA ... 43

7.1. Reflexión ... 43

7.2. Refracción ... 44

7.3. Absorción / Scattering de la luz ... 45

7.4. Perturbaciones (oleaje) .. 47

7.5. Reflejos de luz .. 49

7.6. Coeficiente de fresnel .. 49

7.7. Visión subacuática .. 50

8. ANEXO 3: CASCADED SHADOW MAPPING .. 53

9. ANEXO 4: IMÁGENES EXTRAS .. 57

9.1. Mejoras gráficas ilustradas .. 57

9.2. Mundos existentes ... 59

9.3. Comparativa con Minecraft ... 63

1

1. INTRODUCCIÓN
 El popular título Minecraft (Mojang AB, 2009) protagonizó una auténtica revolución en

el mundo de los videojuegos, al crear de la nada un género absolutamente nuevo, basado en

mundos formados por cubos. La absoluta libertad que permitía, dando rienda suelta a la

imaginación de los jugadores, lo catapultó a un éxito inmediato, pese a sus gráficos de aspecto

retro (ver figura 0 a continuación), en desuso en esos tiempos. Tras él han surgido numerosos

títulos, todos compartiendo esa estética alejada de los nuevos estándares de industria en

cuanto a gráficos se refiere. Un motor gráfico basado en cubos y orientado a la calidad gráfica

es pues un desafío inexplorado e interesante, que vamos a afrontar en este proyecto.

Figura 0 – Minecraft, in game

 Crear un motor gráfico es una tarea ardua y compleja, que requiere conocimiento de

múltiples campos de la Informática. Es por ello que normalmente se desaconseja

desarrollarlos, recomendando en su lugar el uso de alguno de los muchos motores ya

existentes con la famosa frase “write games, not engines”.

 En el género de videojuegos de cubos, no obstante, esto no se aplica. De los motores

gráficos más populares en la actualidad ninguno está optimizado para este género, forzando a

los desarrolladores a enfrentar, de forma obligada, el desafío de programar su propio motor

gráfico, careciendo la mayoría del interés, conocimientos o tiempo necesario para ello.

Muchos proyectos de este tipo son abandonados en este punto por frustración, y la mayoría

de los que logra desarrollar un motor prototipo básico detienen ahí la evolución del mismo,

comenzando a implementar la parte que ellos realmente deseaban desde un principio: Un

videojuego.

 Existe mucha información en la red sobre el desarrollo de juegos de este tipo, pero

toda parece acabar cuando se trata el tema gráfico. A partir de este punto solo quedan meros

apuntes genéricos, ya que los pocos proyectos existentes que se han centrado en la

2

implementación de los mismos se mantienen en la oscuridad, sin liberar su código ni dar

explicación alguna de las metodologías que han seguido para cada caso.

 Este proyecto tiene como objetivo afrontar el desafío del desarrollo de esta área tan

olvidada en este género, a la par que de intentar en lo posible servir de ayuda a todos los que,

después de mí, tengan este mismo propósito.

1.1. Objetivo y alcance
 Se implementará un motor gráfico y lógico basado en cubos (así como una versión

jugable del mismo), con todas las características comunes a los videojuegos de este género

(mapas procedurales infinitos, terreno dinámico modificable en tiempo real, iluminación

dinámica independiente al número de luces, motor físico, movimiento de fluidos, carga y

guardado del mundo en mapa, ciclos de día y noche, etc.), a la par que algunas características

gráficas no tan comunes (sombras dinámicas, atmospheric scattering o agua realista, entre

otras).

1.2. Metodología y herramientas
 Todo este proyecto ha sido realizado desde cero y al nivel más bajo posible, en Java

[15] y OpenGL 3.2 [14], requiriéndose una tarjeta gráfica que lo soporte para poder ejecutar el

prototipo. Al no ser posible acceder a las librerías de OpenGL desde Java directamente, se ha

hecho uso de la librería LWJGL (LightWeight Java Graphics Library)1, que actúa tan solo de

intermediaria entre ambos, ofreciendo únicamente funciones análogas a las de OpenGL.

 Dada la dificultad de tratar con texto en OpenGL, se ha hecho uso de la librería

SlickUtil2 para ese único propósito. Asimismo, dada la necesidad de decodificar archivos PNG a

una cadena de bytes a la hora de subirlos a la GPU, se ha usado la librería PNGDecoder3.

 El uso de Java en este proyecto también tiene el propósito de desmentir las muchas

afirmaciones que defienden que este lenguaje no es válido para el desarrollo de videojuegos

en tiempo real dado su recolector de basura y su condición de lenguaje interpretado, o que no

es válido para la realización de juegos con gráficos avanzados. Java es un lenguaje

perfectamente capaz para todas estas tareas, y la única razón por la que no es usado para ellas

es por ese prejuicio falso sobre su lentitud, tan extendido hoy dia. Esto ha ocasionado, al alejar

a posibles desarrolladores de esta área, una gran falta de herramientas especializadas y

documentación sobre estos temas en comparación con otros lenguajes, como C++.

Durante el desarrollo, se ha utilizado un sistema de control de versiones ubicado en GitHub4.

1
LWJGL 2. [Citado el 18/06/2016] https://www.lwjgl.org/

2
Slick-Util. [Citado el 18/06/2016] http://slick.ninjacave.com/slick-util/

3
Loading PNG images with TWL's PNGDecoder. [Citado el 18/06/2016]

http://wiki.lwjgl.org/wiki/Loading_PNG_images_with_TWL's_PNGDecoder

4
 https://github.com/Ivelate/Kubex

3

 Todo este motor se ha implementado utilizando un computador AMD Athlon 64 X2

Dual Core 2’8GHz, 4GB RAM, ATI Radeon 4800. Es un equipo de muchos años de antigüedad, y

podemos considerar que solo llega a los requisitos mínimos para la ejecución de este proyecto

a calidad gráfica máxima. Para alcanzar los requisitos recomendados se aconseja contar con

una tarjeta gráfica de gama superior, como, idóneamente, una de la familia GTX 600 en

adelante.

1.3. Contenidos de la memoria
 Esta memoria se divide en dos partes claramente diferenciadas. Primero, se detallarán

todas las partes lógicas del motor (la estructura de datos en las que se dividen los cubos,

generación procedural de mundos, estructura multihilo implementada, gestión del mundo

dinámico modificable en tiempo real, motor físico, optimizaciones de eficiencia y gestión de

datos en disco), para detallar a continuación las partes gráficas (Iluminación, sombras en

tiempo real, agua realista, Deferred Rendering, optimizaciones de eficiencia gráfica, etc.).

 Tras ello, quedará la conclusión y la bibliografía, seguida de cuatro anexos: Un manual

de usuario, un anexo en el que detallamos que procedimientos hemos seguido para elaborar el

render de agua, un anexo en el que detallamos como hemos realizado el algoritmo de sombras

y, por último, un anexo con fotografías extras, con objeto de no aumentar más aún el volumen

de la memoria.

1.4. Licencia usada
 Se ha optado por el uso, en todo el código del proyecto, de la licencia menos restrictiva

de CreativeCommons, Attribution 4.0 International5. Cualquier persona que lo desee podrá

usar cualquier parte de este trabajo para lo que desee, sea comercial o no, y podrá añadirle la

licencia que considere oportuno. La única restricción será la obligación de mencionar al autor

de este proyecto si lo hace.

5
Creative Commons, Attribution 4.0 International. [Citado el 18/06/2016]

https://creativecommons.org/licenses/by/4.0/

4

2. LÓGICA DEL SISTEMA

 Se detallan a continuación todas las consideraciones tomadas en el desarrollo de la

parte lógica del motor, ejecutadas sobre la CPU del ordenador y usando la memoria RAM.

Toda optimización detallada más adelante estará, por tanto, orientada tanto a relajar la carga

computacional del microprocesador como a reducir la cantidad de memoria usada. Debemos

considerar que trabajamos con Java, con lo que es posible que la memoria asignada a la

ejecución de este motor sea limitada, siendo doblemente importante aplicar las

optimizaciones al respecto que sean pertinentes.

 Los juegos de cubos poseen algunas características que los hacen únicos con respecto

a otro tipo de géneros, siendo esta la razón por la que un motor gráfico genérico no está bien

adaptado para la creación de los mismos. Una longitud infinita de mundo, la posibilidad de

simplificar los mapas procedurales dada la ausencia de detalles de tamaño menor que un

cubo, u optimizaciones posibles en el motor de físicas al asumir que no existen obstáculos

intermedios entre bloque y bloque son algunas de las posibles razones.

2.1. Cubos
 Todo nuestro mundo se basa en cubos de 1m³ de tamaño. Cada cubo en el mundo está

identificado por un byte, reduciendo así el gasto de memoria (y disco) necesario para

mantenerlos. El número máximo de los mismos, por tanto, estará limitado a 256 tipos de

cubos diferentes. Todos los cubos existentes hasta el momento en el juego prototipo

desarrollado pueden apreciarse en la figura 1. De forma natural aparecerán tan solo el tocón

de árbol y las hojas (esquina superior izquierda), la arcilla, la hierba y la nieve (Esquina inferior

derecha), el agua (centro, fila inferior) y la vegetación, tanto verde como amarilla. El bloque en

la parte superior derecha se trata de un bloque indestructible, que aparece en la altura cero

del mundo con objeto de impedir al jugador seguir picando y caer al vacío. El resto de estos

son cubos sólidos estéticos y usados para construir, a excepción del cubo de luz, el cubo de

cristal y el cubo de TNT, siendo estos, respectivamente, el tercero, segundo y primero por la

izquierda en la fila inferior.

 Figura 1 - Todos los cubos existentes

5

Los cubos se basan en un sistema de propiedades, abstrayendo cada cubo de su identidad

real y solo interaccionando con el mismo en función de cada propiedad. Gracias a ello,

podemos añadir nuevos cubos fácilmente, al solo tener que preocuparnos por asignarles cada

propiedad requerida. En concreto, estas son:

- getCubeName: Obtiene el nombre concreto del cubo. Usado al seleccionarlo.

- isSolid: Define si el jugador puede atravesar este cubo andando. Un ejemplo de cubos

no solidos son el agua, el aire o la vegetación.

- isOpaque: Define si la luz puede atravesar el cubo.

- canSeeTrough: Define si el cubo es semitransparente. Si lo es, tendremos que dibujar

también los cubos que se encuentren tras este, ya que no podemos asegurar que los

esté cubriendo.

- isPartnerGrouped: Solo para cubos semitransparentes. Define si los cubos

transparentes dibujan las caras en contacto con otros cubos transparentes del mismo

tipo. Un ejemplo de cubo que no cumple esta propiedad son las hojas, y uno que sí, el

cristal.

- isCrossSectional: Define si el cubo, en vez de dibujarse como cubo, se dibuja en forma

de cruz. Usado para la vegetación.

- isDrawable: Define si el cubo se puede dibujar. Podría haber cubos invisibles que

cumplan determinadas funciones, aunque por ahora el único cubo existente que

cumple esta propiedad es el aire.

- isLiquid: Define si el cubo se comporta como un líquido, permitiendo al jugador nadar

y bucear en él, además de no tener una altura fija, sino variante en función de su nivel,

que marca la cantidad de líquido en cada cubo. Por cada líquido, para cada nivel

deseado deberá haber un cubo extra. Por ejemplo, en caso del agua, si queremos que

pueda ir desde nivel siete (cubo lleno de agua) a nivel cero (solo una mínima cantidad),

deberemos tener ocho cubos dedicados a ella. El nivel de cada uno, y el nivel máximo

se podrán acceder con las propiedades getLiquidLevel y getLiquidMaxLevel.

- getLightProduced: Define la cantidad de luz producida por el cubo. En caso de cubos

no luminosos, este valor será cero. Un cubo puede producir hasta 15 unidades de luz.

- getUpTex, getLatTex, getDownTex: Indica el identificador de la textura superior, lateral

e inferior del cubo, respectivamente. Ese identificador de textura es el marcado por la

clase FileLoader en la carga de cada imagen.

- occludesNaturalLight: Define si el cubo impide que pasen rayos de luz natural por él.

Ello no impide la propagación de luz indirecta a través del mismo, con lo que al llegar a

éste la luz natural comenzará gradualmente a disminuir.

Todas estas propiedades serán accedidas de forma estática mediante la clase BlockLibrary,

aportando el identificador del cubo deseado.

6

2.2. Agrupaciones de cubos

Cargar de disco el mundo cubo a cubo o renderizar el mundo cubo a cubo no es una

idea viable. Desde el punto de vista gráfico, toda llamada de dibujo a OpenGL gasta muchos

ciclos, en los que la CPU debe sincronizarse con la GPU, con lo que hay que procurar

minimizarlas. Desde el punto de vista lógico, cargar y guardar cada cubo de forma separada en

disco conllevaría un gran gasto de tiempo abriendo o cerrando ficheros, y buscando índices

concretos en los mismos. En Mínecraft, el título líder en este género, se llegan a tener unos

115.605.504 cubos diferentes en pantalla al mismo tiempo. Tomando una aproximación

individualizada para cada cubo, esta cifra sería sencillamente inalcanzable. Por tanto,

agrupamos los cubos en “grupos de cubos”, llamados chunks. Ahora se dibujarán, cargarán y

guardarán grupos grandes de cubos simultáneamente, minimizando las llamadas de dibujo a

OpenGL y los cambios de estado de archivos en disco. Esta aproximación tiene desventajas,

como una carga en pantalla menos suave (los chunks se cargarán en forma de grandes masas

de cubos simultáneos, apreciables en la distancia) y un culling grafico6 menos efectivo

(dibujando cubo a cubo, podíamos analizar si éste estaba dentro del área de visualización o no

antes de dibujarlo. Para un chunk, eso no es posible: Solo podremos aplicar culling cuando la

totalidad del chunk esté fuera del área de dibujo. Si una mínima parte se encuentra dentro,

deberemos dibujarlo entero). No obstante, estos pequeños inconvenientes son compensados

con creces por las ventajas que esta estructuración aporta.

Para este proyecto, se ha observado que un tamaño de chunk de 32x32x32 cubos da

buenos resultados, siendo este el usado en el prototipo desarrollado. No obstante, un tamaño

de 16x16x16 también podría ser aceptable. El hecho de dividir el mundo en chunks hace la

carga dinámica del mismo mucho más sencilla. Al cambiar el jugador de chunk, se descargarán

los que sobrepasen esa distancia de render y se mandarán peticiones de carga para los chunks

que acaban de acercarse a menos de esa distancia.

Un ejemplo gráfico de un solo chunk dibujado en pantalla puede verse en la figura 2.

Se puede apreciar tierra, agua hasta el nivel del mar y, a partir del mismo, bloques de hierba,

vegetación y un cúmulo de bloques formando un árbol.

6
 No ordenar dibujar polígonos no visibles desde el punto de vista actual, reduciendo la carga

computacional de la GPU. Más información: Culling Explained. Crytek. [Citado el 18/06/2016]
http://docs.cryengine.com/display/SDKDOC4/Culling+Explained

7

Figura 2 - Chunk de terreno en solitario

2.3. Generación procedural de mundos
 En este proyecto nos basamos en la generación procedural de mundos infinitos, en

contraposición con la carga de mapas ya existentes, siendo los cubos, o vóxeles, unos

excelentes candidatos para la aplicación de estas técnicas dada su poca complejidad en

contraposición a otros tipos de escenarios.

2.3.1. Modos de generación

 Dada nuestra necesidad de crear mundos infinitos, la única posibilidad factible que

tenemos es que estos sean creados en tiempo real por este propio sistema, en función de la

posición del jugador en un momento dado. Por tanto, necesitamos algún método que nos

garantice una generación realista, determinista y rápida para cualquier punto concreto del

terreno. De todos los posibles métodos existentes, nos hemos decantado por el uso de ruido

Simplex, una versión actualizada y más eficaz del ruido Perlin, más conocido. Se usa, en

concreto, una implementación eficiente del mismo, disponible online7. A pesar de ser este

algoritmo una optimización del citado ruido Perlin8, comparte con el mismo las mismas bases.

 Estos algoritmos requieren de una semilla inicial, usada para generar valores de ruido

blanco pseudo aleatorios, que después interpolarán, y mezclarán en varias octavas, para

7
 A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. Stefan Gustavson [Citado el

18/04/2016] http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java

8
PerlinNoise [Citado el 18/04/2016] http://freespace.virgin.net/hugo.elias/models/m_perlin.html

8

obtener el resultado final para un punto solicitado. Partiendo de una misma semilla inicial,

todo sampleo para un mismo punto nos dará, en todo momento, el mismo resultado,

cumpliendo así la propiedad determinista requerida. Por tanto, cada punto del mundo se

generará de forma idéntica independientemente del momento o condición del programa en el

que sea requerida su carga, y todo mundo usando la misma semilla será idéntico. En nuestra

implementación, cada instancia de ruido Simplex existente usará tres octavas, lo que nos

proporcionará un terreno suficientemente detallado para este caso puntual.

 El ruido Simplex puede ser aplicado tanto en dos dimensiones como en tres. La

aplicación más común para generar terrenos usa el ruido en dos dimensiones para generar un

heightmap, que, multiplicado por la altura máxima deseada (el ruido genera valores entre cero

y uno) nos informará de hasta que altura llegan los bloques del terreno en cada punto (x,z)

requerido. Este modo de generación es rápido y realista, pero no es capaz de generar cuevas, o

acantilados. El tipo de cubo colocado variará también con la altura: El bloque más alto será de

hierba si está a una altura baja, o de nieve si es alta. Los bloques inferiores a éste serán todos

de tierra. Todo bloque por encima de la altura marcada será aire, salvo si se encuentra por

debajo del nivel del mar, siendo agua. El ruido de tres dimensiones, por su parte, se usa como

una función de densidad en cada punto (x,y,z) del terreno, en la que se considerará un

resultado por debajo de un valor prefijado (por ejemplo, cero) como terreno sólido y un valor

por encima como aire. Esto sí genera cuevas o acantilados en el terreno, pero es un orden de

magnitud más lento que la anterior aproximación. En este proyecto se hacen uso de ambos

modos dependiendo del tipo de mapa, siendo esto detallado en la siguiente sección.

En el caso de ruido 2D, a pesar de las propiedades favorables para la generación de

terrenos que éste posee, samplear un solo ruido resultará en un terreno muy repetitivo,

realista pero sin variaciones significativas. Por ello, hacemos uso de tres funciones de ruido

diferentes:

- mapBase: Ruido suave y de variación lenta. Crea praderas suaves. Un ejemplo de mapa

generado usando tan solo esta función puede verse en la figura 3a.

- mapElevation: Ruido de variación rápida. Crea montañas. Un ejemplo de mapa

generado usando tan solo esta función puede verse en la figura 3b.

- elevationCoef: Ruido irregular de variación lenta. Especifica cómo de relevante es

mapElevation en cada punto.

La forma de combinar estos ruidos tiene el formato:

Con algunas variaciones. Esto generará un mapa más complejo, con praderas suaves en

algunas zonas, y montañas escarpadas en otras (ver figura 4). Usamos esta técnica en el tipo

de mapa Islands y en el tipo de mapa SnowyMountains.

9

Figura 4 - Mapa generado combinando mapBase y mapElevation mediante elevationCoeff

Generamos, basándonos en lo explicado anteriormente, seis tipos diferentes de mapas:

- Islands: Genera islas interconectadas, con praderas y montañas. Un ejemplo de este

mapa puede apreciarse en la figura 31 del Anexo 4.

- Snowy Mountains: Resultado de multiplicar por un índice mayor el valor del ruido con

respecto a lo hecho en Islands al calcular la altitud de cada punto. Genera un mapa con

variaciones de altitud más significativas, con montañas muy altas y extensas, y algunas

praderas bajas con lagos. Un ejemplo gráfico se encuentra en la figura 32 del Anexo 4.

- Plains: Solo usa el ruido mapBase, así que solo contiene praderas, y océanos poco

profundos. Ver figura 33 del Anexo 4.

Figura 3a: Mapa generado usando la función
mapBase

Figura 3b: Mapa generado usando la función
mapElevation

10

- Buggy caves: Usa ruido 3D (sumándole a la densidad un valor exponencial en función

de la altura, lo que lo hace generar menos terreno a medida que la altura sube) y ruido

2D para controlar la altitud de cada grupo de bloques. Genera un mapa de cuevas con

algunos errores en el terreno intencionales, que le dan un buen aspecto. No genera

agua. Una escena renderizada usando este mapa se puede apreciar en la figura 34 del

Anexo 4.

- Floating world: Usa ruido 3D, sumándole a la densidad un valor que solo disminuye al

estar cerca del suelo o al estar a una altura determinada (recordemos que, en nuestra

implementación, una densidad menor que cero es terreno). Esto genera un mapa

relativamente suave, con islas flotantes que arrojan sombras en el terreno. No genera

agua. Dos imágenes de un mapa creado usando este parámetro se pueden ver en las

figuras 35 y 36 del Anexo 4.

- Underwater ruins: Mediante operaciones con el ruido 3D, genera un entramado de

cuevas. Tras ello, se aplica agua hasta cierta altura, con lo que se forman unas islas con

unos océanos profundos. Se generan bloques de luz bajo el agua de forma aleatoria,

con lo que el jugador podrá explorar las cuevas submarinas buceando. Una imagen

mostrando la superficie de este mapa se puede encontrar en la figura 37 del Anexo 4.

Una imagen subacuática del mismo se aprecia en la figura 38 del Anexo 4.

 Para todos estos mapas, se hará una segunda fase de generación para cada chunk,

para la que se esperará a que todos los chunks colindantes a él (sus chunks vecinos) se hayan

añadido a escena. Esta segunda fase servirá para añadir árboles, generados también

proceduralmente, o vegetación. La razón por la que se espera a una segunda generación es

que, si algún vecino no está añadido aún y el árbol generado tenía (por ejemplo) una rama que

pasara por ese chunk que aún no existe, el árbol no podría ser generado completamente, y

aparecería cortado en el terreno. Tanto los árboles como la vegetación requerirán de un cubo

de aire inmediatamente superior a un cubo de hierba, e iluminación natural suficiente. Un

árbol aparecerá de media cada 200 cubos, vegetación verde cada 10 y plantas amarillas cada

50. La vegetación solo comenzará a ser generada a partir de un bloque por encima del nivel del

mar.

 La altura de los arboles será aleatoria, entre tres y nueve bloques. Con una

probabilidad proporcional a su altura, el árbol podrá hacer crecer una rama en una dirección

aleatoria, de longitud menor que dos tercios de la altura del árbol. Tras ello, el árbol se llenará

de hojas.

2.3.2. Mundos infinitos

La posibilidad de la existencia de mundos infinitos genera otro problema: Al alejarnos

del origen, comienzan a aparecer problemas con la precisión de los floats, lo que produce

errores gráficos y lógicos (movimiento entrecortado, deformaciones en el terreno, fallos en el

motor de colisiones, fallos en la generación de terreno), como se puede apreciar en las figuras

5a y 5b. La solución será cambiar todos los floats del jugador y del sistema de Simplex Noise

por doubles (arreglando así el movimiento y las colisiones). No obstante, OpenGL no puede

usar doubles, así que para arreglar los errores gráficos deberemos crear un modelo de

11

rendering basado en la posición del jugador como origen, manipulando manualmente cada

vector traslación de cada matriz de modelo en función de la posición del jugador antes de

poder enviarlas a la tarjeta gráfica. La matriz vista, por su parte, tendrá siempre una traslación

igual a cero.

No obstante, el mundo no es totalmente infinito. A pesar de poder solventar el

problema de los floats, el overflow de los int es inevitable llegado a algún punto. A pesar de la

posibilidad de cambiar cada int del programa por un long (O por un BigInteger si se desea un

mundo verdaderamente ilimitado), se ha considerado que una anchura de mapa de 4.294.967

km, con un área 36.162.995 veces mayor que la de la tierra, es suficiente en este caso

concreto. Este límite puede apreciarse en la figura 6, que muestra a esa distancia un corte

abrupto en el terreno, con una ausencia absoluta de fallos gráficos.

Figura 6 - Límite del mundo actualmente, a 2.147.484 km del origen

Figura 5a - Antigua distorsión gráfica a 10.000km del
origen

Figura 5b - Antigua distorsión gráfica a 100km del
origen

12

2.4. Estructura multihilo
 En un motor gráfico en tiempo real como éste, una ejecución suave y sin bloqueos

debido a cálculos complejos es imprescindible. Al estar creando la ilusión de movimiento en

pantalla al cambiar numerosas veces por segundo la imagen que esta muestra, cualquier

bloqueo inesperado, por corto que sea, hará que la imagen actual permanezca en pantalla más

tiempo del normal, rompiendo la ilusión y causando una sensación desagradable en el usuario.

Por tanto, todo el hilo principal encargado de calcular el movimiento del jugador, pintar la

pantalla, etc. Debe ser lo más ligero posible.

 Por ello, se han separado las dos tareas más computacionalmente costosas (generar

los chunks mediante ruido y generar el buffer de vértices que debe ser enviado a la tarjeta

gráfica cada vez que un chunk cambia) en dos hilos diferentes. Asimismo, se ha creado otro

hilo aparte para las operaciones de Input / output ya que, a pesar de no ser estas tan

computacionalmente caras como los dos casos anteriores, generan numerosos bloqueos

indeseados al ser el disco duro mucho más lento que la memoria RAM. Se detalla en

profundidad cada hilo a continuación:

- ChunkGenerator: El hilo principal guarda peticiones de añadido de chunks en un stack.

Este hilo los inicializa, generándolos con ruido si no existen o cargándolos de disco si ya

se encuentran guardados en el mismo. Tras ello, añadirá el chunk ya inicializado a una

cola de espera del hilo principal, para ser añadido al almacén de chunks definitivo.

- ChunkUpdater: Para cada chunk que se le proporcione, en función de los contenidos

del mismo generará un buffer de vértices en punto flotante correspondiente a la

representación gráfica de ese chunk en un mundo 3D. Este buffer tan solo tendrá que

ser enviado a la tarjeta gráfica por el hilo principal. Por defecto, generará primero los

buffers de los chunks más cercanos al jugador, logrando así una carga de mapa

centrada en éste.

- ChunkStorer: Se encarga de guardar chunks en disco, evitándole esa tarea al hilo

principal, e interaccionando con la clase FileManager. A pesar de que

computacionalmente no tendrá que hacer labores muy complejas (comprimir chunks y

guardarlos), se mantendrá la mayor parte del tiempo esperando en bloqueos de disco,

tarea que le debemos evitar al hilo principal.

- Hilo Principal: Se encarga de hacer todas las llamadas pertinentes a OpenGL, que solo

pueden ser realizadas desde éste, como dibujar cada chunk en pantalla o enviar los

buffers de vértices de los mismos, aportados por ChunkUpdater, a la tarjeta gráfica.

Asimismo, gestiona el motor de físicas, eventos, el movimiento del jugador y genera

peticiones de borrado o añadido de chunks.

Incluso en computadores modestos con tan solo uno o dos núcleos esta estructura es positiva,

al permitir a los demás hilos seguirse ejecutando mientras alguno de ellos permanece en algún

bloqueo. Las tareas en las que se han dividido exigen una mínima cantidad de sincronizaciones,

al estar completamente separadas desde el punto de vista lógico.

13

2.5. Mundo dinámico
 Lo que hace a este tipo de motores únicos es la posibilidad de modificar cualquier

parte del mapa en tiempo real, en contraposición a los habituales proyectos existentes en los

que el mapa es un ente completamente estático y pre generado. Esta es la razón por la que el

hilo ChunkUpdater existe: Si el mundo jamás cambiara, podríamos directamente cargar ese

buffer de vértices del disco, o similares. De este modo, no obstante, tenemos que recrear ese

buffer cada vez que un cubo cambie en el chunk, para después sobrescribir el contenido

guardado en el vbo9 de la tarjeta gráfica por el nuevo recién generado.

 Esto también hace posible la carga dinámica de mundo, al solo tener que

preocuparnos por cargar los chunks más cercanos al jugador. Los más lejanos serán borrados, y

para volver a cargarlos solo tendremos que tratarlos como un chunk que acaba de cambiar, y

en función de sus cubos se generará un buffer de vértices de forma limpia y rápida.

 A pesar de que el contenido de cada chunk puede cambiar en cualquier momento,

seleccionamos como tipo de almacenamiento de memoria la propiedad GL_STATIC_DRAW,

que asume que el contenido del buffer no va a cambiar, aportando una mayor velocidad de

dibujo y una menor velocidad de actualización de contenido. La razón para ello se basa en que

muchos chunks del mundo jamás serán modificados por el jugador y, los que los sean, lo serán

solo a nuestra escala temporal (por ejemplo, una actualización por segundo) que, aunque para

nosotros es un instante breve, para una computadora es una cantidad de tiempo realmente

alta. Se recomienda que la actualización periódica de cubos (agua expandiéndose, TNT

explotando, etc.) se realice con valor temporal suficientemente bajo como para que al jugador

no le sea molesto, pero extremadamente alto desde el punto de vista de la computadora. Por

defecto, en nuestro prototipo, este valor ha sido configurado a 0.3 segundos.

2.6. Motor físico
Se implementa un motor físico básico para el jugador, en el que se gestiona su

movimiento, colisiones con el mundo, gravedad, etc. En concreto, se gestionan tan solo una

serie de propiedades variables, siendo tras ello toda variación de posición el resultado de

movimientos en torno a los tres ejes. Las propiedades son:

- grounded: Si el jugador está tocando tierra. Esto activa la capacidad de saltar, por

ejemplo. Si esta variable es falsa, se incrementará la velocidad vertical, hasta colisionar

en el eje Y con algún cubo, momento en que la velocidad vertical es puesta a cero y

grounded pasa a ser verdadero.

- flying: Si el jugador está volando. El modo volar se activa por defecto pulsando la tecla

SHIFT (ver Anexo 1), y se desactiva volviéndola a pulsar. Si el jugador está volando, su

velocidad se incrementará significativamente y podrá saltar sin estar tocando tierra.

- climbing: Si el jugador está trepando. Esta propiedad se activa mientras se intente

avanzar hacia un muro, y si la velocidad vertical es mayor que -1m/s. El jugador

9
 Buffer de OpenGL en el que se insertan los datos para cada vértice a dibujar. En nuestra

implementación, cada chunk posee uno diferente.

14

comenzará a trepar por ese bloque, subiendo a 2/3 de su velocidad normal. La

gravedad no afecta al personaje si climbing es verdadero.

- underwater: Si el jugador está bajo el agua. Bajo el agua, la velocidad desciende, la

velocidad de caída se limita y se activa la posibilidad de saltar sin estar tocando tierra

(nadar hacia arriba)

 Considerando estas propiedades, el movimiento se calculará trigonométricamente en

función del ángulo de visión en el plano XZ y una velocidad módulo, que será aumentada al

volar y reducida al nadar. Si el jugador no está tocando tierra (grounded), la gravedad

comenzará a afectarle, agregándole una velocidad creciente en el eje Y en función de la

gravedad a la que el mundo se encuentre configurada. Sabiendo el tiempo pasado desde el

anterior frame de movimiento, podremos obtener la distancia total a recorrer. Se realizará el

movimiento en cada eje de forma separada y por partes, comprobando la propiedad isSolid de

cada cubo por el que vaya a pasar cualquier parte del cuerpo del jugador, teniendo en cuenta

su tamaño y altura y deteniendo el movimiento en cuanto un obstáculo se encuentre, sea cual

sea nuestra velocidad.

 Esta posición x, y, z del jugador, sumándole la altura de los ojos del mismo, será la

utilizada como centro del mundo, restándola manualmente a la traslación de las matrices

modelo de los chunks a la hora de dibujar.

 En el prototipo desarrollado contamos por defecto con un mundo de gravedad 15m/s²

y un personaje de anchura 0.8m y altura 1.8m, con los ojos posicionados a una altura de 1.65m

y una velocidad módulo de 5m/s. Estos valores son totalmente modulares, pudiendo ser

alterados libremente en cualquier implementación que se desee realizar sobre este motor.

En cuanto al agua, su sistema físico de propagación se basa en unas reglas sencillas:

- Si el bloque inferior es aire, agua o vegetación, crear abajo un bloque de agua de nivel

máximo.

- Si el bloque inferior es sólido, modificar los cubos a los lados de este, si no son sólidos,

plantas o líquidos por un cubo de líquido con un nivel una unidad menor que el nivel

del líquido del cubo actual. Si ese nivel fuera a ser menor que cero, no hacer nada.

Un ejemplo de este sistema de propagación puede apreciarse en la figura 7, que muestra agua

fluyendo en una estructura de canales construida por el jugador.

15

Figura7- Flujo de agua

2.7. Optimizaciones lógicas (mejora de eficiencia)
 Se desea mantener la mayor cantidad posible de cubos en pantalla al mismo tiempo.

Además, se desea que la carga de mundo sea todo lo rápida que sea posible, y que no haya

ninguna clase de bloqueos durante la ejecución de este motor. En el caso de los bloqueos,

aunque pueda parecer que nos hemos librado de la gran mayoría gracias a la estructura

multihilo, queda un gran problema por solucionar. Java es un lenguaje que cuenta con un

recolector de basura. En aplicaciones de otro tipo, la ejecución del mismo no es apreciable,

pero en aplicaciones en tiempo real, éste para brevemente la ejecución del hilo principal a su

paso el suficiente tiempo como para que sea percibido por el jugador, resultando en una

experiencia molesta. Como no poseemos control directo sobre el recolector de basura ni

podemos indicarle en que momentos o no pasar, no nos queda otra opción que intentar hacer

que su ejecución sea lo más ligera posible, evitando interferir con el normal funcionamiento

del programa. Para ello, la única opción que tenemos es tratar de minimizar, en todo

momento, la cantidad de objetos a ser destruidos. Para ello, usaremos Pooling.

 El Pooling10es un patrón de diseño que permite reciclar objetos ya inútiles, para ser

reutilizados más tarde. La mayor cantidad de memoria destruida es causada por el borrado y la

creación automática de chunks cada vez que el jugador se mueve: Cada chunk contiene dos

arrays de 32x32x32 bytes, uno para almacenar los cubos y otro para almacenar la luz de los

mismos, sumando ambos un total de 64KB de memoria. La opción más lógica, por tanto, será

gestionar la creación y destrucción de estas listas mediante una Pool, lo que permitirá que la

memoria que antes usaba un chunk sea reutilizada por otro creado posteriormente. Esto

soluciona dos problemas: Elimina una enorme cantidad de trabajo del recolector de basura y

10
 Game Programming Patterns: Object Pool [Citado el 18/06/2016]

http://gameprogrammingpatterns.com/object-pool.html

16

acelera la creación de chunks, dado que no es ya necesario reservar dinámicamente una gran

cantidad de memoria por cada nueva inicialización. La desventaja que este método posee es

que al reciclar un array es posible que éste no esté inicializado a cero, pudiendo causar

problemas en arquitecturas que den por hecho este estado inicial, o un gasto de tiempo en

recorrer cada array para reinicializarlo. Por ello esta Pool, llamada ByteArrayPool, almacenará

una lista de arrays “sucios” y una lista de arrays a cero, devolviendo en cada caso la más

necesaria para cada ocasión. Además, el hilo con menos trabajo (ChunkGenerator) se

encargará de llenar arrays de ceros en su tiempo libre.

 Esta aproximación será tomada también para los buffers de floats, usados para

guardar los vértices a ser dibujados para cada chunk antes de ser enviados a la tarjeta gráfica,

y para buffers de bytes, usados para cargar imágenes.

 Otro gran problema es el alto gasto de memoria que tal cantidad de chunks provocan,

sobre todo considerando que la memoria asignada a java suele ser relativamente baja en

comparación a la memoria total del computador. En concreto, en un mundo con una distancia

de render de, por ejemplo, 10 (Siendo la usada en Minecraft), la cantidad de chunks en

pantalla al mismo tiempo es de 3528, dando un total de gasto de memoria, solo en arrays de

luz y cubos, de 220’5MB. En otro lenguaje de programación con acceso a toda la memoria

RAM del computador, esta cifra sería aceptable. Sin embargo, en el caso de Java, la memoria

que se asigna es limitada. Debemos, por tanto, intentar comprimir de alguna forma el

contenido de los chunks existentes, sin empeorar excesivamente el tiempo de computación.

Para ello, nos aprovechamos de que hay una gran cantidad de chunks formados

exclusivamente por un tipo de cubo: Aire o tierra. De todos estos, el predominante es el aire,

ya que muchos mundos no suelen sobrepasar los cuatro chunks de altura, y la altura máxima

del mundo, es de, por defecto, ocho chunks. Es decir, que la mitad del mapa está compuesta

por arrays vacíos.

 Abstraeremos por tanto estos arrays, encapsulándolos en una clase genérica. Cuando

detectemos que todo el chunk está formado por el mismo cubo, o que toda la luz del chunk es

idéntica, reciclaremos ese array y lo cambiaremos por un solo byte constante, que será el valor

devuelto cuando se intente obtener cualquier cubo o luz del chunk. Con esto, reduciremos el

consumo de memoria a, aproximadamente, un cuarto de la usada anteriormente.

2.8. Gestión de datos en disco
Aunque dedicar un fichero en disco para cada chunk es la opción más sencilla

existente, se trata de una práctica muy poco eficiente. Como ya se ha descrito anteriormente,

usando una distancia de render razonable como 10 chunks tendremos 3528 chunks al mismo

tiempo en pantalla. Sólo éstos, considerando que el jugador no se ha movido en ningún

momento y son los únicos generados, conllevarían ya la creación de 3528 ficheros. Cuando el

jugador comenzara a moverse y llegara al punto en el que se deben descargar chunks lejanos y

generar nuevos cercanos, sería necesario escribir un total de 168 ficheros nuevos, y cargar

otros tantos. Esta es una práctica realmente problemática, por muchas razones.

17

- Cuanto más alto es el número de ficheros en una carpeta, más costoso es encontrar un

fichero en particular en la misma. Si guardáramos el identificador de cada chunk en el

nombre de su fichero correspondiente, deberíamos dedicar una gran cantidad de

tiempo para tan solo descubrir si el mismo existe ya en disco, o no.

- El mero hecho de abrir un fichero para leerlo o escribirlo conlleva múltiples llamadas

computacionalmente caras al sistema operativo. Aunque la apertura de un solo fichero

particular en un momento puntual puede no parecer extremadamente costosa, la

apertura de (como se ha detallado antes) 168 ficheros para guardar archivos lo más

rápido posible conllevaría una gran cantidad de bloqueos y tiempo desaprovechado.

Ambas razones hacen a esta práctica inviable, más aun al tratarse de un programa en tiempo

real.

 Está claro, por tanto, que el problema radica en el número de archivos. Al igual que las

razones que nos llevaron a agrupar cubos en chunks, éstas nos deberán llevar a crear

agrupaciones grandes de chunks en ficheros especializados. Esta aproximación, llamada

ficheros de región11, es la que han tomado muchos juegos de este estilo.

 Un fichero de región agrupa en su interior grupos grandes de chunks. En concreto, en

nuestra implementación se ha observado que un tamaño de 8x8x8 chunks ofrece buenos

resultados. Necesitaremos para esto alguna forma de escribir y leer en partes no secuenciales

del archivo, tareas para las cuales la clase RandomAccessFile nos ofrecerá todas las utilidades

que necesitemos.

 Sería problemático, no obstante, volver a tomar en este momento la aproximación

más intuitiva, creando grandes ficheros de región vacíos y asignar, mediante alguna fórmula,

una posición en el archivo a cada chunk que requiera ser escrito en el mismo. Esta

aproximación, teniendo en cuenta que cada chunk posee un total de 32KB de datos de cubos,

generaría ficheros de región con un tamaño, cada uno, de 16MB, estando la mayor parte

vacíos. Un mapa normal, sin alejarnos en exceso del origen, podría ocupar fácilmente unos

200Mb. Esto es completamente inadmisible.

 Una buena solución pasará por no añadir ningún chunk al fichero hasta que no sea

necesario. Cuando lo sea, se añadirá al final del mismo. Aplicando técnicas de compresión

como RunlengthEncoding12 y ZLIB (existente por defecto en las librerías de Java) será posible

reducir el tamaño de cada chunk significativamente. De hecho, siendo el mapa tan

homogéneo, una compresión como RunlengthEncoding reducirá el tamaño de cada chunk, de

media, a una veinteava parte del original. Tras aplicar estas compresiones, el tamaño final de

los datos comprimidos, a usar a la hora de leerlos, no es ya posible de calcular. Por tanto,

dedicaremos tres bytes antes de comenzar a escribir los datos comprimidos para almacenar el

tamaño en bytes de datos que el chunk ocupa en disco, y el bit más significativo para

11
Creating a Region File System for a Voxel Game. Benjamin Arnold [Citado el 18/06/2016]

https://www.seedofandromeda.com/blogs/1-creating-a-region-file-system-for-a-voxel-game

12
Run-length encoding. Wikipedia [Citado el 19/06/2016] https://es.wikipedia.org/wiki/Run-

length_encoding

18

comprobar si el chunk ya ha pasado la segunda generación (uno) o no (cero), con objeto de

aplicársela al cargarlo si las condiciones son correctas (todos los vecinos se han añadido).

 Como los chunks ya no tienen un tamaño fijo y pueden ser añadidos en cualquier lugar

del fichero, comportándose ya éste como una especie de lista dinámica, dividiremos el mismo

en sectores de tamaño fijo, de forma que si un chunk se expande o reduce tenga cierto

margen hasta que haya que reescribir el fichero entero por falta de espacio (si un chunk

comprimido ocupaba 500b y al reescribirlo ocupa 600b, y el sector ocupa 512b, estos datos ya

no cabrán en un sector, sino en dos. No obstante, el siguiente sector puede estar ya en uso,

con lo que la solución será reescribir el archivo, ampliando el tamaño de este chunk a dos

sectores). Usamos por tanto en esta implementación un tamaño de sector de 1024 bytes, cifra

que ofrece una buena relación entre espacio malgastado y número de reescrituras de archivo.

Además, necesitaremos alguna clase de índice al principio del fichero para poder

localizar la posición de cada chunk. Reservaremos para ello cuatro bytes por cada posible

chunk (un total de 2048 bytes) al principio del fichero. El primer byte marcará el tamaño en

sectores que el chunk comprimido ocupa, y los últimos tres bytes, el sector de comienzo del

mismo. Un tamaño de chunk igual a cero significará que el éste no existe aún en el fichero.

Además, con objeto de aumentar aún más la compresión, si un chunk está formado

enteramente por un tipo de cubo (por ejemplo, solo aire), se guardará con un tamaño de -1 en

este índice, usando el último byte reservado para la posición para indicar, en vez, que código

de cubo es el repetido en la totalidad del chunk. De esta forma, los chunks vacíos, o los llenos

de materiales homogéneos, no ocuparán ni un solo sector de espacio en el fichero, quedando

comprimidos dentro del propio índice.

 Por último, hemos aplicado técnicas para acelerar aún más el proceso de Input /

Output. Guardamos una lista bidimensional de ficheros de región abiertos, con un tamaño

igual al máximo de ficheros de región que pueden ser abarcados por la distancia de render

actual. Así minimizaremos la apertura y cierre de ficheros, ocurriendo solo en algunos puntos

al movernos por el mapa. Asimismo, para cada fichero de región abierto cachearemos su

índice entero, guardándolo en RAM. Cada lectura del índice se podrá realizar ahora en la RAM,

a costa de un mayor gasto de memoria, pero dividiendo las lecturas de ficheros a la mitad en el

peor caso (chunk existe en el fichero) y a cero en el mejor (chunk no existe aún en el fichero, o

está formado en su totalidad por el mismo cubo). Esto nos permitirá obtener velocidades de

carga de mundo desde disco más altas que la propia velocidad de generación procedural de

ese mundo usando funciones de ruido.

Todos estos archivos se guardarán dentro de una carpeta cuyo nombre será igual al

nombre que se le ha dado al mapa creado, con el nombre f_<x>_<y>_<z>.kxw. Cada chunk

comprobará a que fichero de sectores pertenece aplicando, la formula

Por su parte, los datos generales para el mundo (semilla del mundo, posición del jugador,

momento del día, tipo de mapa, etc.) se guardarán en un archivo estándar de texto llamado

settings.txt

19

 Un ejemplo de esta técnica de almacenamiento en disco puede apreciarse a

continuación en la figura 8, en la que suponemos un tamaño de región de dos chunks para que

la explicación resulte más simple. El chunk cero indica, con su tamaño -1, que es uniforme, y

no ocupara un sector en el archivo. Como vemos, en su bit de ubicación menos significativo

hay un dos, con lo que será un chunk con todos los cubos de id=2. En caso del chunk uno,

vemos que ocupa un sector de espacio y está en el sector 0x00 00 00. Al posicionarnos en ese

sector y combinar los bytes ocho, nueve y diez tendremos, en el bit más significativo, si los

árboles y vegetación del chunk han sido ya generados, y en los demás bits la longitud en bytes

del chunk en disco. Leemos esos bytes comenzando desde el byte 11 y descomprimimos lo

obtenido usando ZLIB y, tras ello, RLE. Tendremos ya los bytes del chunk, que podremos

insertar en un array tridimensional.

Figura 8 - Ejemplo de chunks guardados con este método, suponiendo un tamaño de sector de 2 chunks.

20

3. RENDERIZACIÓN
 Se detallan a continuación todas las consideraciones tomadas en el desarrollo de la

parte gráfica del motor, ejecutadas sobre la GPU de nuestro computador. Los algoritmos

detallados a continuación exigen una tarjeta gráfica moderadamente potente y con una

memoria gráfica elevada. Sin embargo se han incluido en el menú opciones para desactivar

alguna de estas características gráficas con objeto de lograr una ejecución correcta en

ordenadores más modestos.

 Existen en la parte gráfica también ventajas a la hora de desarrollar nuestro propio

motor gráfico para este género en contraposición a usar uno ya existente. Al saber que todos

los cubos miden lo mismo, están posicionados secuencialmente y están alineados con los ejes,

no nos será necesario indicar para cada vértice enviado a la GPU que coordenada de que

textura cada cubo usa, al poder deducirlas simplemente con la posición del mismo. Además,

podremos precalcular iluminación dinámica, como se detalla más adelante, o renderizar agua

en múltiples alturas y direcciones de visualización, situaciones no existentes en otros géneros y

para las que, por lo tanto, los motores gráficos genéricos no están diseñados.

3.1. Iluminación
 Un sistema de iluminación completo debe contener tanto la iluminación causada por el

sol, creando ciclos de día y noche, como la iluminación causada por cada uno de los posibles

cubos de luz de la escena, causando luz artificial. Esta iluminación será computada a nivel de

shader, manteniendo en cada punto la que más predomine. Mientras que la iluminación

artificial será constante, la luz natural nocturna brillará a un nivel del 15% de la luz diurna.

 No existe un nivel mínimo de luz, con lo que en las cuevas más profundas, donde ni tan

siquiera un atisbo de luz indirecta solar llegue, todo será negro.

3.1.1. Ciclos de día y noche

Se buscaba generar un cielo diurno relativamente fotorrealista actualizable en tiempo

real y de generación relativamente sencilla, basándonos tan solo en un vector de dirección de

vista. Se ha decidido, por cumplir todos esos puntos, implementar el paper “A Practical

Analytic Model for Daylight“, de A. J. Preetham [1]. En concreto, se ha extendido y trasladado

a Java la implementación del mismo propuesta en [2], con algunas diferencias.

A pesar de la recomendación del autor de usar un tetraedro o un cubo para plasmar el

cielo, en nuestro caso este cambia en tiempo real. Teniendo ello en cuenta, y aprovechando el

uso de DeferredShading13podemos renderizarlo sin el uso de ninguna clase de geometría extra,

shader especializado o llamada de dibujo. Para ello, comprobaremos la profundidad de la

escena en cada pixel. Si esta es igual a uno, asumiremos que no hay nada tapando el cielo y lo

dibujaremos aportándole al método la dirección de visualización en coordenadas de mundo,

precalculada según el modelo presentado por Crytek [16].

13
 Técnica de render detallada en el punto 3.4

21

La turbiedad del cielo ha sido elegida mediante prueba y error, con un valor final de

2’7 en nuestra implementación. Asimismo, consideramos una latitud, longitud y día del año

constante en toda la ejecución, con objeto de evitar ángulos poco estéticos del sol a la hora de

arrojar sombras. Este día, en recuerdo del día en el que este algoritmo fue implementado, será

el 25 de Agosto del 2015. En cuanto a la latitud y longitud, también constante, se ha elegido

una latitud de 0 y una longitud, al no ser relevante a excepción de para el cálculo de la hora del

día, exactamente igual a la ubicación de un punto de mi ciudad, -1.630753. Un ejemplo del

color del cielo al atardecer puede ser encontrado en la figura 9a.

El cielo nocturno es, por su parte, una imagen circular obtenida de Internet, que se

samplea trigonométricamente a partir de la dirección de la visión. Consideraremos una

dirección de visión dirigida por debajo del horizonte como no cielo, y pintaremos el pixel

asociado del color de fondo del mundo, un azul dependiente de la luz del día. El color nocturno

será atenuado en función del momento del día en que nos encontremos, comenzando a

aparecer gradualmente en un zenith14 igual a 1.1, aumentando en intensidad hasta el zenith

1.94, en el que alcanzará su máximo. Un ejemplo del color del cielo a medianoche puede

apreciarse en la figura 9b.

El color que este algoritmo arroja del cielo en horarios nocturnos es incorrecto. Por

tanto, marcaremos el color de día como puramente negro a partir del zenith 1.94, mismo

momento en el que el cielo nocturno alcanza su máxima intensidad. En otras latitudes o días

del año esta cifra podría no ser lo suficientemente baja para que estos errores no aparecieran,

siendo esta la razón por la que es doblemente importante conservar el día del año, latitud y

longitud completamente iguales.

El color final del cielo será igual a la suma del color nocturno y el color de día (la luz es aditiva).

Se creará además otra variable, llamada daylightAmount, que reducirá suavemente su

valor al aproximarse el anochecer, pasando de un valor de uno al mediodía a un valor de 0.45

tras la puesta de sol. Este valor será multiplicado a todos los cubos a los que se vaya a aplicar

iluminación natural, haciendo la luz nocturna notablemente más tenue que la diurna

(considerando que, además de este oscurecimiento, de noche todo el mundo está en sombra,

lo que lo oscurece aún más).

14
 Medición usada en astronomía para simbolizar la altura del sol. Con valor 0, el sol se encuentra en

la cúspide del cielo. Con valor pi/2 el sol se encuentra a la altura del horizonte, simbolizando todo valor
mayor que ese un sol aún más bajo y, por tanto, la noche.

22

3.1.2. Propagación de luz dinámica en un entorno voxel

Prácticamente todos los proyectos 3D existentes tienen un problema con la cantidad

de luces en la escena, ya que a mayor cantidad de luces, mayor es la complejidad de los

cálculos en la tarjeta gráfica. Aunque el uso de DeferredShading disminuye este coste, sigue

siendo significativo.

En este motor gráfico, sin embargo, todo cubo puede ser una fuente de luz en un

momento dado. Incluso aun creando los mapas sin fuentes de luz, nada impide al jugador

poner las que considere oportuno. No podemos, por tanto, tomar una aproximación en la que

la cantidad de luces puedan ralentizar el juego.

La solución a este problema es precalcular la luz en cada cubo de cada chunk, y

guardarla en otro array de bytes. Cada vértice subido a la tarjeta gráfica tendrá por tanto un

valor precalculado de luz artificial y de luz natural, resultante de interpolar la luz de todos los

bloques colindantes al mismo, con lo que el trabajo de calcular la iluminación ya estará hecho

de antemano. Como deseamos dos tipos de iluminación, natural (para luz propagada por el

sol) y artificial (luz propagada por bloques), pero no queremos gastar más de un byte por

bloque, deberemos compactarlas. Por tanto, la luz natural ocupará los primeros cuatro bits del

byte y la artificial los cuatro últimos. Esto nos proporcionará una intensidad de luz

comprendida entre los valores 15 y cero. Este valor entero será traducido a un valor de luz

normalizado entre cero y uno de forma linear, dividiéndolo entre 15. A pesar de que la luz

decae exponencialmente, en este caso concreto una disminución lineal de la intensidad da

también resultados aceptables, al tardar las luces más distancia en comenzar a perder

intensidad, perdiéndola más rápidamente al final.

La luz será precalculada mediante un autómata celular. Por cada bloque, toda luz se

extenderá a los bloques colindantes mientras estos no sean opacos, perdiendo un nivel de

intensidad. Por tanto, la máxima distancia que un cubo de luz podrá iluminar será de 15

bloques, suponiendo una intensidad inicial también máxima, de 15. La luz natural tendrá una

propiedad extra además de la anterior: Mientras la intensidad sea máxima (15) y el bloque

inferior no sea opaco ni impida el paso de rayos de sol (occludesNaturalLight), la luz podrá

propagarse hacia abajo sin perder intensidad, simulando los rayos de sol. Todas las

Figura 9a - Cielo diurno Figura 9b - Cielo nocturno

23

propagaciones / borrados de luz existentes en el proyecto son versiones optimizadas de estos

dos principios.

Cuando un chunk es inicializado, su valor de luz es cero para todos los cubos. El chunk

analizará la luz de los bloques colindantes a él desde cada chunk vecino en cada dirección, y

extenderá la luz desde ellos a él de esta forma. Tras ello, analizará si en su interior existe algún

bloque fuente de luz, extendiéndola dentro de él mismo y potencialmente a algún chunk

vecino.

En el interior de los shaders, se comprobará la luz artificial (constante) y la luz natural

(afectada por sombras y por luminosidad del día, daylightAmount). La iluminación elegida será

la que tenga mayor valor de ambas, razón por las que las luces en una casa, por ejemplo, no se

harán aparentes hasta que se haga de noche.

Se muestra en la figura 10 un ejemplo de este sistema de propagación de luz. Podemos

ver que, dada la corta longitud de los muros, algo de luz indirecta logra "escapar" por las

esquinas, con mucha menor intensidad. El color de fondo no es completamente negro al

encontrarnos en el exterior, y ser la luz nocturna levemente luminosa. En caso de habernos

encontrado dentro de una cueva, por ejemplo, la única luz existente sería la arrojada por

nuestro cubo de luz.

Figura10 - Propagación de la luz usando un autómata celular, en una construcción con muros.

24

3.2. Sombras
 Para calcular sombras, la técnica más popular existente es el Shadow Mapping15. Se

basa en redibujar la escena desde el punto de vista de la luz deseada (con matrices de

perspectiva para luces puntuales y con matrices ortogonales para luces direccionales, como el

sol), guardando solo el depth buffer en una textura aparte. Al dibujar la escena de forma

normal, se transformará cada pixel al espacio basado en el punto de vista de esa luz de nuevo,

y se comprobará ahí su profundidad. Si esa profundidad es igual que la profundidad guardada

para ese punto en la textura de sombras, el pixel estará iluminado por esa luz. Si, sin embargo,

la profundidad es mayor que la guardada, el pixel estará detrás de algún otro objeto tapándole

la luz, resultando sombreado.

 Esta técnica posee un gran problema, entre otros. Al estar guardando toda la

información sobre las sombras de toda la escena en una textura de resolución limitada,

múltiples pixeles del terreno caerán, a la hora de la transformación espacial, en el mismo pixel

de la textura de sombras, causando una resolución extremadamente baja (tan baja, de hecho,

que resulta inaplicable). Si intentamos lograr sombras de alta resolución, deberemos reducir el

área de la matriz de proyección de la luz. Haciendo que esta matriz solo abarque un área

cercana al jugador, lograremos unas sombras bien definidas durante unos metros. Mirando

más lejos las sombras simplemente desaparecerán, al no tener información de luz a la que

acceder al haber comprimido el área de la matriz de proyección de la luz a una zona pequeña,

y no a toda la escena. Esta desaparición de sombras, aun pareciendo una mala práctica, ha sido

(y continúa siendo) la aplicada en muchos motores gráficos.

 Se ha implementado uno de los algoritmos de sombras más usados a nivel profesional

en los actuales motores gráficos modernos. Se descartaba su uso hasta hace relativamente

poco tiempo por la complejidad de su implementación y su alto coste computacional y en

memoria, ya que hace necesario redibujar las sombras de la escena en varias ocasiones, así

como reservar una gran cantidad de memoria gráfica para texturas de profundidad. A cambio,

contaremos con sombras detalladas en todo el mapa, sea cual sea su distancia, opción

imposible usando algoritmos de sombras estándar. Su nombre es Cascaded Shadow Mapping

[10], [11].

 Un ejemplo del aspecto de las sombras en la escena puede apreciarse en la figura 11.

Se pueden apreciar sombras de alta calidad en la proximidad a la cámara, donde las hojas del

árbol cercano permiten pasar algunos rayos de sol. A lo lejos se puede ver que los árboles

proyectan también sombras detalladas, logrando sombrear con éxito y alta calidad a una

escena entera, lo que no es posible usando Shadow Mapping simplemente.

Una explicación detallada del desarrollo de este algoritmo se encuentra en el Anexo 3.

15
 Tutorial 16: Shadow Mapping. [Citado el 18/06/2016]

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

25

Figura 11 - Sombras al anochecer

3.3. Agua fotorrealista
 Renderizar agua fotorrealista en tiempo real es una tarea extremadamente compleja,

que no ha podido ser acontecida hasta hace relativamente poco tiempo. Aun así, por su

complejidad y, ante todo, por estar trabajando con un sistema basado en matrices de

proyección a pantalla en vez de con un trazador de rayos, los métodos que se suelen proponer,

aunque simulan los fenómenos y características de este líquido, no lo hacen de forma realista.

De hecho, al contrario que en muchas áreas, aún no existe un estándar para enfrentarnos a

este desafío, causando que el agua varíe radicalmente entre proyectos, tanto en métodos

como en calidad y eficiencia.

 En concreto, en los motores gráficos basados en cubos existentes en el mercado no

existe prácticamente ningún ejemplo que intente generar un agua relativamente realista,

basándose muchos en meras aproximaciones de la misma o, en caso del título Minecraft, en

una capa azul semi-transparente. La razón para este descuido de la estética del medio líquido

en este tipo de motores se basa en tres inconvenientes que complican incluso más la ya

compleja tarea del renderizado de agua foto realista: El agua no está siempre en la misma

altura (se pueden poner cubos de agua por encima del nivel del mar), el agua puede ser vista

desde más direcciones que verticalmente (en el caso de un cubo de agua suspendido en el

aire, o en una ladera de la montaña) y se pueden dar casos en los que, en un pixel de visión, un

rayo entre y salga de cubos de agua secuenciales en repetidas ocasiones, haciendo casi

imposible calcular la distancia recorrida bajo el agua del rayo de luz.

 El método presentado a continuación es el resultado de la lectura de numerosos

papers diferentes sobre el tema, a la par que la aplicación de algunas técnicas poco usadas

para este propósito con objeto de intentar enfrentar los tres problemas que un motor de

cubos añade a esta área.

26

 Los seres humanos distinguimos agua de forma instintiva. No obstante ésta es un

material con unas propiedades muy sutiles, que bajo algunas circunstancias causarían, de

carecer nosotros de esa percepción afinada hacia la misma, que no pudiéramos llegar a

apreciarla. Tomemos por ejemplo un vaso lleno de agua, transparente y calmada. La única

diferencia con respecto a un vaso vacío es la refracción que esta causa sobre los colores del

fondo. En caso de ser el fondo de un color homogéneo, podremos seguir distinguiéndola, al

estar el ojo preparado para detectar cualquier mínima variación que esta cause (por ejemplo,

la tensión superficial). Esto no ocurre con prácticamente ningún otro material existente. Es por

ello que, aunque para (por ejemplo) renderizar arcilla nos bastaría con cubrir sus propiedades

más básicas y el jugador la reconocería como tal al instante, para el caso del agua deberemos

intentar mimetizar la mayor parte de sus propiedades si queremos causar esa misma

respuesta en la mente de los que observen nuestro proyecto en funcionamiento.

Entre las propiedades del agua, estas seis son las más notables:

- Reflexión

- Refracción

- Extinción / Scattering de la luz en función de la distancia

- Perturbaciones (oleaje)

- Reflejos de luz

- Fresnel

En la práctica, podemos no cumplir una de estas propiedades sin que existan problemas.

Cumplir solo cuatro de ellas o menos, no obstante, romperá la ilusión de realismo.

Tras implementar todas estas propiedades en nuestros bloques de agua, obtendremos

imágenes como las ilustradas en las figuras 12 y 13. Una explicación detallada de la

implementación de cada propiedad del agua puede verse en el Anexo 2.

Figura 12- Agua final, producto de combinar todas estas propiedades

27

Figura 13 - Visión subacuática

3.4. Deferred Shading
 El Deferred Shading [13] es un paradigma de programación gráfica de popularidad

creciente orientado a GPUs de alta gama16, que cambia el orden natural de dibujo en pantalla.

Por defecto, sin usar Deferred Shading, se suelen agrupar todas las funcionalidades de dibujo

en un shader haciendo que dibuje los pertinentes polígonos en pantalla, aplicándoles las

operaciones necesarias. Para shaders básicos esto no produce problema alguno, pero en

shaders muy complejos computacionalmente se va a perder mucho tiempo calculando el color

de pixeles que serán después ocultos por otros polígonos para los que habrá también que

calcular su color. En una escena compleja este escenario puede ocurrir numerosas veces por

pixel, en claro detrimento de nuestra eficiencia gráfica al estar la GPU derrochando tiempo de

cálculo en pixeles que jamás van a ser vistos.

 Deferred Shading aboga por usar un shader simple para calcular la imagen producida

por los polígonos y después aplicar las operaciones gráficas complejas sobre esa imagen

producida por el primer shader. Así, garantizaremos que cada pixel sobre el que esas

operaciones van a ser aplicadas es el pixel final de la escena, que no va a ser ocultado por

ningún otro pixel más cercano a la cámara. No obstante, al trabajar sólo sobre una imagen a

color no tendremos toda la información que teníamos en el primer shader (la posición de cada

pixel en el mundo, su profundidad, su normal, etc.). El principal inconveniente de esta técnica

es que, para poder acceder a ellas, deberemos guardarlas también en texturas aparte,

consumiendo una gran cantidad de memoria gráfica.

16
Forward Rendering vs. Deferred Rendering. Brent Owens. [Citado el 18/06/2016]

http://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-
12342

28

 En este proyecto se usa un Deferred Shading de tres pasadas, necesitando tres

órdenes de dibujo sucesivas para obtener la imagen final a dibujar en pantalla. En concreto, se

distribuye de esta forma:

- Primera pasada: Muchos shaders simples generan texturas con datos a ser usados en

pasadas posteriores, como podemos ver en la figura 14. En concreto:

o Se generan las texturas de profundidad (de 16 bits) para cada shadow map.

o Se generan las texturas de profundidad (de 16 bits) para cada capa de agua

por cada pixel, generando también una textura que albergue la normal de la

primera capa de agua encontrada (rgb).

o Se genera la textura de color inicial (rgb) tras dibujar todos los polígonos.

Contendrá solo el color de cada cubo en cada punto, sin sombras ni

iluminación de ningún tipo. Se genera también una textura extra para guardar

la profundidad de cada pixel en pantalla (el depth buffer, 16 bits), a partir de la

cual la posición completa puede ser recuperada sin necesidad de guardarla en

otra textura, como explica el paper de Crytek [16]. Se genera asimismo otra

textura para guardar tanto la iluminación (en los canales rg) como la normal de

cada pixel (en los canales ba, comprimida guardando solo dos de sus

componentes17, podremos reconstruirla al saber que la normal de los pixeles

dibujados siempre apunta a pantalla al estar GL_CULL_FACE18 activado).

Figura 14 - Interacción de los shaders de primera pasada con las texturas guardadas en memoria gráfica

17
 Compact Normal Storage for Small G-buffers [Citado el 20/04/2016] http://aras-

p.info/texts/CompactNormalStorage.html

18
 Parámetro de OpenGL que, al activarse, dibuja solo los triángulos cuya normal apunta hacia la

dirección de visión. Reduce la carga gráfica en un 50% ya que, normalmente, los demás triángulos se
trataban de caras tapadas de objetos, que no iban a poder ser vistos de igual manera. Es un modo de
culling.

29

- Segunda pasada: Aplica sombras sobre la textura de color inicial y las capas de agua

existentes, si las hay. Además, calcula la absorción / scattering en cada pixel que posea

capas de agua intermedias. Esta nueva textura de color generada se guardará en una

imagen rgba, guardando en el canal alfa información importante (si el pixel está o no

bajo el agua y que cantidad de iluminación especular se le aplica en caso de estarlo). El

uso de texturas en esta pasada por parte del shader puede verse en la figura 15 a

continuación.

Figura 15 - Interacción de los shaders de segunda pasada con las texturas guardadas en memoria gráfica

- Tercera pasada: En esta pasada se dibujará ya directamente en pantalla.

o En caso de no estar bajo el agua, calcula reflejos (usando Screen Space Ray

Marching), fresnel, refracción e iluminación especular sobre las superficies de

agua, si las hay. Asimismo, genera el cielo usando el algoritmo de A.J.

Preetham mencionado anteriormente en todos los pixeles que no sean de

terreno, así como en los reflejos que no colisionen con ningún dato en

pantalla. Mostramos este caso en la figura 16.

o En caso de estar bajo el agua, calcula tanto la refracción como el fresnel de la

superficie.

Figura16 - Interacción de los shaders de tercera pasada con las texturas guardadas en memoria gráfica

30

3.5. Otras mejoras gráficas
 Además de todas las técnicas gráficas complejas implementadas, se detallan aquí otras

que, pese a ser mucho más simples, mejoran también significativamente el aspecto de la

escena.

3.5.1. Mip Mapping

El Mip Mapping [12] crea, para cada textura, subtexturas de la misma en menor

resolución, hasta llegar a una textura 1x1. OpenGL aplicará una subtextura u otra (o una

mezcla de varias) en función de la distancia existente hasta la textura a renderizar. Esto evita

ruido y aliasing en la distancia, añadiendo un antialiasing de forma “natural”, sin necesidad de

aplicar supermuestreo19, al emborronar ya la imagen de antemano.

El problema con el Mip Mapping es que, en caso de usar atlas de imágenes (almacenar

varias imágenes en una grande, aproximación ampliamente utilizada en motores voxel de este

tipo, agrupando todos los voxeles en una imagen grande y pintando uno u otro en función de

la circunstancia) y alejarnos, se comenzarán a ver líneas entre cubo y cubo. Esto es causado

porque, al calcular los mipmaps, openGL está mezclando el color de unos cubos con el de

otros. No existe una solución limpia a este problema, con lo que ha sido necesario pasar cada

textura de cubo a una imagen propia, y cargarlas todas usando un TextureArray2D. Esto

implica que para arquitecturas más antiguas, que no soporten esta estructura de datos, este

proyecto no funcionará.

OpenGL permite asignar a cada textura que filtro aplicarle en la distancia y en la

cercanía. No nos es un inconveniente mantener un estilo ligeramente retro, al ser este un

motor de cubos. En la cercanía, por tanto, filtraremos usando GL_NEAREST, con el que se

distinguirá cada pixel de la textura al acercarnos a un cubo (la alternativa, GL_LINEAR, lo

emborronaría). En la distancia el filtro será GL_NEAREST_MIPMAP_LINEAR. La parte

MIPMAP_LINEAR indicará a OpenGL fundir varias subtexturas de la imagen en función de la

distancia, en vez de cambiar de una a otra directamente, lo que causa artefactos visuales. Esta

opción, evidentemente, será más cara computacionalmente.

3.5.2. Anisotropic Filtering

El filtrado anisotrópico20es la versión avanzada del Mip Mapping. En Mip Mapping, al

ver imágenes desde ángulos oblicuos, estas aparecen emborronadas debido a la disminución

de la calidad en la frecuencia vertical, mientras que la horizontal se mantiene igual. En un

filtrado anisotrópico las subtexturas generadas se reescalan para cada eje en función de

diversos grados de inclinación, causando un mayor gasto en memoria gráfica pero una mayor

calidad de imagen. Dado el gasto extra que esta mejora supone, se permite activarla o

desactivarla desde el menú principal.

19
 Técnicas de Antialiasing [Citado el 20/04/2016]

http://acacia.ual.es/profesor/LIRIBARNE/AIG/antialiasing/tecnicas.html

20
 Filtrado Anisotrópico. Wikipedia. [Citado el 18/06/2016]

https://es.wikipedia.org/wiki/Filtrado_anisotr%C3%B3pico

31

Configuraremos OpenGL para que, si este filtrado es activado, use la máxima calidad

del mismo que la tarjeta gráfica soporte, marcado por la variable de entorno

GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT.

3.5.3. Atmospheric Scattering

En la vida real, los objetos en la distancia parecen azulados. Esto se ocasiona por el

Scattering de Rayleigh [17]. A pesar de que computacionalmente implementar algoritmos que

usen este principio es demasiado costoso, se puede aplicar una ligera niebla, exponencial en la

distancia, de un color azulado. En esta implementación concreta se usará un color de niebla

azulado-blanquecino de color (0.6,0.74,0.8), que se irá oscureciendo suavemente con la

llegada del anochecer, alcanzando por la noche un valor oscuro de (0.06,0.074,0.08) .

En concreto, con objeto de dar a esta aproximación un aspecto lo más agradable

posible (asumiendo su inexactitud) se aplicará la siguiente fórmula:

Cortamos el valor fog a 0.2 para que ninguna parte del terreno, esté lo lejos que esté,

sea nunca completamente tapada. Basándonos en esta ecuación, a una distancia de

aproximadamente 263 metros la niebla tendrá la misma relevancia en la mezcla que el color

original, aumentando exponencialmente a partir de ahí, hasta alcanzar el valor 0.2 a los 401

metros.

3.5.4. Ambient Occlusion

La oclusión ambiental21 es una técnica gráfica sutil que añade una gran mejora visual a

la escena. Se basa en el principio de que a las esquinas llega menos luz que a otros puntos de

los muros, al tener esta menos área disponible desde la que proceder. Esta es una propiedad

que los humanos no solemos apreciar a simple vista, pero que nuestra vista extraña si no está,

notando un gran aumento de realismo al comparar imágenes con y sin esta mejora activada

(ver Anexo 4, figuras 27, 28, 29, 30).

Se aplicará obteniendo para cada vértice de la escena la luz de sus cuatro cubos

colindantes en el plano en el que este vértice se encuentre, y dividiendo la luz acumulada

entre cuatro. En casos normales se conseguirá luz dinámica, mientras que en las esquinas, al

tener los cubos sólidos un valor de luz igual a cero, se conseguirá oclusión ambiental de una

forma sencilla.

21
Ambient Occlusion for Minecraft-like worlds. M. Lysenko. [Citado el 18/06/2016]

https://0fps.net/2013/07/03/ambient-occlusion-for-minecraft-like-worlds/

32

3.6. Optimizaciones gráficas (mejora de eficiencia)
Con objeto de poder dibujar el juego en pantalla tantas veces por segundo como sea

posible, se deben incluir algunas optimizaciones gráficas a nivel de cubos, para reducir lo más

posible la cantidad de geometría a renderizar.

- Renderizar caras de cubos sólo si no son adyacentes a otro cubo: Si un cubo está

rodeado de cubos no transparentes, no nos sirve de nada dibujarlo porque jamás va a

poder ser visto, al estar siendo tapado por los otros cubos. Podemos reducir este

planteamiento a nivel de caras de cubos: Si una cara de un cubo es adyacente a otro

cubo solido no transparente, ni esta cara ni la cara adyacente van a poder verse jamás,

así que evitando enviarlas a la tarjeta gráfica ahorraremos un gran espacio en memoria

gráfica y aceleraremos enormemente el tiempo de dibujo de la escena. Esta técnica es

llamada culling.

 En concreto, para cubos no líquidos, solo se dibujará una cara de un cubo si su

cubo adyacente es semitransparente o transparente, o si, en caso de que sea

transparente, no cumple la propiedad isPartnerGrouped, que activaba este culling de

forma forzosa. Para cubos líquidos, solo se dibujará la cara si el cubo colindante es

transparente o semitransparente, y además este no es un líquido. De esta forma, se

dibujarán caras de cubos mirando hacia el agua, pero no se dibujarán capas de agua

inútiles pegadas a esos cubos, que a fin de cuentas no van a suponer una variación de

distancia recorrida por el rayo de luz.

- Usar un VBO por chunk: Cada chunk posee su propio VertexBufferObject [14], que

actualiza contando cuantos triángulos líquidos y sólidos posee, dibujando uno u otro

según se especifique. Este VBO será borrado si se detecta que el chunk no dibuja nada

en pantalla, creándose de nuevo cuando esto si ocurra. Esto puede ocurrir tanto

debido al añadido de un cubo nuevo como debido al borrado de algún cubo en algún

chunk colindante que haya desactivado el culling en algún cubo de este. Hay que

considerar que los chunks subterráneos no dibujan nada a pesar de estar

completamente llenos de cubos, al estar estos pegando con otros cubos y aplicársele

culling a todos. Asimismo, si se detecta que el chunk no tiene nada que dibujar, la

llamada de glDrawArrays ni siquiera se producirá.

- Frustrum culling a nivel de chunk: Cada vez que un chunk va a ser dibujado, se pasa su

punto central a coordenadas de pantalla y se comprueba si alguna parte de su esfera

envolvente se encuentra dentro de alguna parte del frustrum de visualización.

Asimismo, se comprueba también si el chunk se encuentra tras la cámara,

comprobando su coordenada z y el radio de su esfera envolvente. Si cualquiera de esas

condiciones se cumplen, el chunk no necesitará ser dibujado en este frame concreto.

- Compresión de la normal de cada vértice en los datos del shader: Cada vértice subido a

la tarjeta gráfica requerirá ciertos datos en punto flotante: La posición x, la posición y,

33

la posición z, la iluminación artificial, la iluminación natural, la textura a usar y la

normal del vértice en cuestión sumando, en total, nueve datos por vértice. Esa

cantidad es muy grande, pero podemos aprovechar que un cubo solo tiene seis

normales posibles para comprimir estos datos. Además, sabemos que la textura a usar

por el cubo va a ser forzadamente un valor entre cero y 255, con lo que la mayor parte

de la capacidad del punto flotante usado para contenerla va a ser desaprovechada.

 Como sabemos que solo hay seis normales, podemos distinguirlas con un

número de cero a cinco y descomprimirlas en el shader. Por ejemplo, consideramos

que cero es igual a la normal (1,0,0), que uno es igual a la normal (-1,0,0) , etc. Viendo

pues que las normales se comprimen en un número de cero a cinco y que las texturas

se limitan en un número de cero a 255, podemos comprimir esos dos datos juntos

(para separarlos luego vía shader) con la fórmula:

Usando así sólo un total de seis puntos flotantes por vértice a subir a la GPU.

34

4. CONCLUSIONES
 Se ha implementado con éxito un motor gráfico y lógico completo para un mundo

basado en cubos, cumpliendo todos nuestros propósitos marcados. Se ha superado

ampliamente el estándar gráfico en este género, mostrando que un género de videojuegos

basado en cubos no es un impedimento para desarrollar gráficos avanzados a todos los niveles

posibles. Asimismo, podemos comprobar que Java es perfectamente capaz de ser usado para

desarrollar aplicaciones gráficas en tiempo real, pese a tener implementado de base un

colector de basuras. Es cierto que el colector de basuras causa, de no tomar las debidas

precauciones, pequeños bloqueos que en aplicaciones de tiempo real son notables y molestos.

La solución para esto, como se ha visto, es gestionar nosotros mediante Pooling la mayor

cantidad de memoria que podamos, dejándole al colector de basuras un trabajo menor, lo que

hace su ejecución absolutamente imperceptible.

 Podemos ver las comparaciones gráficas entre nuestro motor y el videojuego líder en

este género, Minecraft, en el Anexo 4, figuras 39 a 44, contrastando nuestros gráficos

detallados con su aspecto retro, en el que se han basado la mayor parte de títulos de este

género. Esperamos que este motor demuestre que esa estética no es la única posible en el

género, a pesar de encontrarse esta tan extendida.

Entre todos los algoritmos desarrollados, destacamos:

- Algoritmo de Cascaded Shadow Mapping: Un algoritmo realmente avanzado, muy

difícil de conseguir hacer funcionar correctamente y no implementado por ningún otro

motor de cubos que hayamos podido encontrar, en los que las sombras, si existen,

simplemente desaparecen al alejarse.

- Algoritmo de rendering del agua: El agua implementada es el resultado de numerosas

lecturas de artículos científicos y de una implementación totalmente personal, sin

basarse en ningún algoritmo preexistente. Mención especial requieren los reflejos en

superficies acuáticas en entornos de cubos usando Screen Space Ray Marching,

desmintiendo las afirmaciones existentes en múltiples lugares de la red que exponían

que sencillamente no era posible realizar reflejos de agua a tantas alturas en tiempo

real. Es cierto que este sistema tiene sus limitaciones (destacando el claro error visual

en las esquinas del agua al inclinar la pantalla hacia abajo), pero dados los buenos

resultados obtenidos en condiciones normales, y dadas las limitaciones de este

sistema, se considera asumible.

 De todos los problemas encontrados en la implementación, el más destacable de todos

ha sido, paradójicamente, la propia dificultad de debug que OpenGL posee. Al no permitirse

devolver datos a la CPU no es posible imprimir valores críticos en la consola, siendo la única

opción posible imprimir esos datos en forma de colores por pantalla, a pesar de que la

información obtenida de ese modo es extremadamente vaga. Incontables horas de tediosa

solución de errores han sido causadas por este hecho, errores que, de otro modo, podrían

haber sido solventados en muy poco tiempo. Mención especial requieren, de nuevo, los

errores producidos por los algoritmos de sombras y el agua durante la implementación, siendo

estos también, con diferencia, los más difíciles de depurar. Del tiempo de implementación de

los mismos, de hecho, un alto porcentaje ha sido empleado en intentar encontrar la razón de

35

diversos errores y su depuración. Esta puede ser una de las razones por las que la mayor parte

de los programadores son reticentes a implementar motores gráficos.

4.1. Cronograma
 Al comenzar a implementar este proyecto a finales de 2013 con objeto de aprender 3D

y no haber tenido en mente en esa época que este podría crecer tanto, llegando a ser de

hecho mi proyecto en el futuro, comencé esta implementación sin seguir ninguna clase de

estructuración o diseño de código. De hecho, cuando comencé a implementar la parte de

insertar y eliminar cubos, descubrí que esa tarea era imposible dada mi estructura de código

del momento. Una gran cantidad del tiempo de este proyecto ha sido utilizado, por tanto, en

reescribir y reestructurar código ya elaborado previamente con objeto de hacerlo

suficientemente extensible.

Sumando el tiempo empleado en aprender 3D desde cero, las horas empleadas en

reestructurar el código y mi poco o nulo conocimiento de esta área de la informática en 2013,

además del tiempo empleado en debuguear errores en OpenGL y al gran alcance de este

proyecto, podemos asumir una cantidad de horas de trabajo en este motor, desde sus

orígenes, superior a 1000.

Se ilustra en el siguiente cronograma la división del trabajo desde que se aceptó este motor

como proyecto. Anteriormente a ello, este fue desarrollado en momentos de tiempo libre y de

forma muy inconstante, con lo que no se detallan.

4.2. Posibles ampliaciones
 En proyectos de este tipo es siempre posible añadir más características. Ilustramos,

para cada área del mismo, unos ejemplos:

- Mejora en el render de agua: Se podría considerar el añadido de un blur gaussiano a la

superficie del agua, suavizando la imagen como ocurre en la vida real, aunque esto

36

añadiría una pasada extra de Deferred Shading. Se podrían implementar también

cáusticas o brillos superficiales para los fondos marinos.

- Mejora en la generación de mundos: Se podría extender la generación de mundos para

generar diferentes tipos de mapas en función de la posición en el mapa, en lugar de

seleccionarlos vía menú. Mediante el uso de datos long se podrían generar mundos

con límites de tamaño mucho mayores que los actuales, o incluso lograr mapas

infinitos con el uso de clases sin límite de tamaño como BigInteger.

- Mejora en el motor físico: Podría extenderse el motor físico para que afectara también

a los bloques, pudiendo añadirles propiedades físicas, o que fueran afectados por

explosiones o la gravedad.

- Mejora en el rendering general: Se podría añadir glare al mirar al sol, niebla en el

horizonte, partículas para las explosiones o viento que afectara a la vegetación,

creando movimiento en las hojas.

 La ampliación más evidente, no obstante, es crear usando este motor un juego más

avanzado que el prototipo presentado, al tratar el actual solo de construcción de estructuras y

exploración. En esta ampliación, no obstante, las posibles ideas y posibilidades son infinitas, y

escapan al alcance de este proyecto.

4.3. Opinión personal
 Desarrollar un motor gráfico propio desde cero es una tarea compleja, larga y plagada

innumerables horas de debug. Implementar un motor gráfico no es implementar un

videojuego, pudiendo ahora afirmar rotundamente y con conocimiento de causa a cualquiera

que me manifieste su deseo de desarrollar uno, la ya mencionada frase de “write games, not

engines”.

 A pesar de que la implementación de un motor gráfico diste mucho de la

programación de un videojuego, no está exenta de encanto. Este desarrollo me ha permitido

profundizar con creces en mi conocimiento del área gráfica de la informática aplicada a tiempo

real. Ahora sé cómo funcionan la mayor parte de las características gráficas de los juegos

actuales, y puedo pararme a apreciarlas, en lugar de ignorarlas como estaba haciendo hasta

este momento. Gracias a la investigación para este proyecto he aprendido mucho sobre la

física de la luz en diversos medios, sobre la programación eficiente y avanzada de OpenGL y

sobre el funcionamiento de una GPU.

 Y, por último, así como Internet me ha enseñado y ayudado ampliamente a conseguir

esta meta, espero honestamente que, gracias al código abierto, este proyecto pueda llegar a

ayudar también a alguien algún día.

37

5. BIBLIOGRAFÍA

1. Preetham, A. J., Shirley, P., & Smits, B. (1999, July). A practical analytic model for
daylight. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques (pp. 91-100). ACM Press/Addison-Wesley Publishing Co.

2. Nico Schertler. Simulating a day’s Sky. [En línea] [Citado el 18/06/2016]
https://nicoschertler.wordpress.com/2013/04/03/simulating-a-days-sky/

3. McGuire, M., & Mara, M. (2014). Efficient GPU screen-space ray tracing. Journal of
Computer Graphics Techniques.

4. Pharr, M., & Fernando, R. (2005). Generic Refraction Simulation. In GPU gems 2:
Programming techniques for high-performance graphics and general-purpose
computation. Upper Saddle River, NJ: Addison-Wesley.

5. Everitt, C. (2001). Interactive order-independent transparency. White paper, nVIDIA,
2(6), 7.

6. Wojciech Toman. Rendering Water as a Post-process Effect. [En línea] [Citado el
18/06/2016] http://www.gamedev.net/page/resources/_/technical/graphics-
programming-and-theory/rendering-water-as-a-post-process-effect-r2642

7. Mtnphil. Water shader follow up. [En línea] [Citado el 18/06/2016]
https://mtnphil.wordpress.com/2012/09/15/water-shader-follow-up/

8. Pharr, M., & Fernando, R. (2005). Volume Rendering Techniques. In GPU gems. Upper
Saddle River, NJ: Addison-Wesley.

9. Hecht, E., Dal Col, R., Talavera, R. W., & Pérez, J. M. G. (2000). Óptica. Addison Wesley.
p.113-120

10. Dimitrov, R. (2007). Cascaded shadow maps. Developer Documentation, NVIDIA Corp.

11. Parallel-Split Shadow Maps on Programmable GPUs. (2007). In GPU gems 3:
Programming techniques for high-performance graphics and general-purpose
computation. Boston, MA: Addison-Wesley.

12. McReynolds, T., & Blythe, D. (2005). Advanced graphics programming using OpenGL.
Elsevier.

13. Pharr, M., & Fernando, R. (2005). Deferred Shading in S.T.A.L.K.E.R. In GPU gems 2:
Programming techniques for high-performance graphics and general-purpose
computation. Upper Saddle River, NJ: Addison-Wesley.

14. Shreiner, D., & Bill The Khronos OpenGL ARB Working Group. (2009). OpenGL
programming guide: the official guide to learning OpenGL, versions 3.0 and 3.1.
Pearson Education.

15. Croft, D. W. (2004). Advanced Java game programming. Apress.

16. Wenzel, C. (2006, July). Real-time atmospheric effects in games. In ACM SIGGRAPH
2006 Courses (pp. 113-128). ACM.

17. Hecht, E., Dal Col, R., Talavera, R. W., & Pérez, J. M. G. (2000). Óptica. Addison Wesley.
p.86

18. Glassner, A. S. (1989). An introduction to ray tracing. Elsevier.

38

6. ANEXO 1: MANUAL DE USUARIO
 Tan solo es necesario un archivo para la correcta ejecución de este programa, cuyo

nombre dependerá del Sistema Operativo en el que se vaya a ejecutar. Seleccionamos el

archivo:

Kubex_<nombreDeTuSO>.jar

 Copiamos ese archivo a cualquier carpeta en la que nosotros tengamos derechos para

crear archivos y carpetas nuevos (muy importante, ya que los mapas se guardarán ahí).

Simplemente con esto el juego estará instalado. Para ejecutarlo, hacemos doble clic en el

mismo, lo que mostrará una ventana como la mostrada en la ilustración 1.

Ilustración 1 - Ventana de menú principal

 En esta ventana se puede seleccionar la resolución de pantalla deseada, a elegir entre

algunos tamaños predefinidos, incluyendo la posibilidad de ejecución a pantalla completa.

 El Spinner Simultaneous Water Layers especifica cuantas capas de agua se dibujarán al

mismo tiempo. Cuanto mayor sea el número, mayores superficies de agua separadas podrá

atravesar cada rayo de visión, obteniendo una suma correcta del espacio que este rayo ha

atravesado bajo el agua, con objeto de calcular el scattering y la absorción de la misma. En la

práctica, un valor mayor de siete no es práctico: Solo es útil en cascadas en las que existen

muchos cubos de agua separados, logrando con un número alto ver una imagen correcta. La

mayor parte del tiempo, no obstante, solo va a causar un gasto innecesario de recursos. Para

ordenadores modestos el valor se puede configurar como uno, aunque se podrán ver errores

gráficos cada vez que un rayo deba salir de un cubo líquido ya que considerará que, tras entrar,

toda la distancia a partir de ese punto es agua.

39

 El Spinner Render Distance permite configurar la distancia de renderizado máxima.

Considerando que cada chunk tiene por defecto una anchura de 32m, una distancia de render

de 10 chunks equivaldrá a un radio de visión de unos 320 metros. 10 es un buen valor, aunque

se puede subir hasta 30 (en la práctica, valores mayores que 20 resultan poco prácticos). En

ordenadores modestos este valor puede bajarse hasta tres, aunque el mínimo recomendado,

con objeto de mantener la experiencia de juego, es cinco.

 Cada uno de los Combo Box existentes indican si se desea activar alguna característica

gráfica (Reflections para reflejos, Shadows para sombras y Anisotropic Filtering para activar el

filtrado anisotrópico de la GPU). En caso de ordenadores modernos, se recomienda activarlos.

En caso de ordenadores más modestos se pueden desactivar, en orden de mayor a menor

consumo gráfico, el agua, las sombras y, por último, el filtrado anisotrópico.

 A la derecha tenemos un botón llamado Controls, que abrirá una ventana de

información de controles como la detallada por la ilustración 2.

Ilustración 2 - Ventana de información de controles

 Más abajo, tenemos una Drop Box con todos los mapas que hayamos creado.

Seleccionando el que deseemos podemos elegir presionar la X (lo que lo eliminará), o pulsar el

botón Load Selected Map, lo que comenzará el juego usando el mapa seleccionado.

 Por último, tenemos el botón Create new map, que nos llevará a la ventana de

creación de mapa, mostrada en la ilustración 3.

40

Ilustración 3 - Ventana de creación de mapa

 Se permite aquí seleccionar el tipo de mapa deseado (mostrándose información de

cada tipo de mapa a la derecha), ponerle un nombre al mapa (debe ser válido y no estar usado,

o no permitirá crearlo) y usar una semilla para el mapa (dos mapas con la misma semilla son

idénticos, así que se puede crear un clon de un mapa deseado, o sencillamente usar una

semilla aleatoria pulsando el botón Randomize seed).

Tras ello, pulsar en Create Map comenzará el juego usando el mapa recién creado. Se nos

presentará una pantalla como la que la ilustración 4 nos muestra.

Ilustración 4- Pantalla de juego

41

La forma de interactuar con el mundo se basa en una combinación entre el teclado y el ratón.

Mediante el teclado, podemos:

- Teclas WASD: Mover el personaje

- Tecla SHIFT: Activar o desactivar el modo de vuelo. En este modo la velocidad se ve

incrementada, y se puede ascender pulsando SPACE. Nos seguimos viendo afectados

por la gravedad, con lo que el vuelo se realizará mediante numerosos saltos aéreos.

- Tecla SPACE: Hace al personaje saltar si este se encuentra en el suelo. En casos

especiales, como al estar volando o nadando, estar en el suelo dejará de ser un

requisito.

- Teclas 0..9: Atajos de teclado. Selecciona como cubo actual el cubo asociado al atajo

del número presionado. Al comienzo los atajos están configurados por defecto, pero

pueden configurarse mediante el siguiente modo de control que detallamos.

- Tecla CTRL + 0..9: Asigna el cubo actual al atajo de teclado deseado. Así, si estamos

construyendo usando unos pocos cubos, podemos configurarlos en atajos de teclado y

así poder acelerar mucho nuestra tarea, al no tener que buscar cada cubo

individualmente al desear cambiar el actual.

- Tecla P: Acelera el tiempo. El personaje seguirá moviéndose a la misma velocidad, pero

el día pasará más rápido. Existen numerosas escalas de tiempo configuradas, pasando

de la realista (una hora del juego equivale a una hora real) a la ultra rápida (Una hora

en el juego equivale a 0’5 segundos en la realidad). Al crear un mapa nuevo, antes de

que el jugador comience a configurar la escala temporal con estas teclas, una hora en

el juego equivaldrá a 20 segundos en la realidad.

- Tecla O: Desacelera el tiempo.

- ESC: Cierra el juego, guardando todos los cambios en mapa y en configuraciones

(escala temporal seleccionada, atajos de teclado configurados, posición del jugador,

etc.)

Mediante el ratón, podremos:

- CLIC IZQUIERDO: Insertar el bloque seleccionado en la posición del mundo marcada

por el punto central de la pantalla. El bloque no podrá ser insertado si nos

encontramos demasiado cerca (dentro) de la posición elegida, o demasiado lejos.

- CLIC DERECHO: Eliminar el bloque seleccionado en la posición del mundo marcada por

el punto central de la pantalla. Este no podrá ser eliminado si se encuentra demasiado

lejos.

- RUEDA DEL RATÓN: Selecciona cubo. Al desplazar la rueda hacia arriba se elegirá el

siguiente cubo en la lista y al rotarla hacia abajo, el anterior. La lista es cíclica: Cuando

se haya sobrepasado el último cubo existente, se volverá al primero. El nombre del

cubo actual seleccionado aparecerá en pantalla brevemente tras cada cambio en la

selección.

42

 Aunque el juego comenzará de día, la noche llegará en algún momento. La posición del

sol es un buen indicativo del tiempo de día restante, o las sombras del terreno, que se

volverán alargadas al atardecer. Tras el anochecer, el mundo se quedará en penumbra. Se

recomienda al jugador posicionar luces (Light Block, por defecto la tecla 4 en los atajos de

teclado), que iluminarán la zona en la que se coloquen. Estas luces también son útiles al

explorar (o construir) cuevas, al poder estas iluminar zonas a las que el sol, ni de día, puede

llegar.

 El modo vuelo (tecla SHIFT) favorece la exploración rápida del terreno. El mundo es

infinito, con lo que podremos viajar en la dirección que deseemos el tiempo que deseemos,

encontrando en cada lugar paisajes diferentes a los visitados anteriormente. Si creamos alguna

estructura que deseemos volver a ver habrá que ser, no obstante, cauteloso viajando, ya que

un mundo infinito unido a un modo de vuelo rápido hacen muy posible perderse y no volver a

encontrar los puntos en los que habíamos construido estructuras anteriormente. Se

recomienda ir dejando marcas en el terreno al viajar que nos permitan guiarnos en la vuelta.

 No existe daño en este videojuego, ni muertes, ni enemigos. El único propósito es

construir y explorar, y las posibilidades son infinitas. No es necesaria ya ninguna explicación

extra: Es el jugador, llevado por su imaginación, el que decida cuál va a ser su siguiente

propósito, tarea en la que esta guía no puede ser ya de ayuda. Proporcionamos, no obstante,

un último consejo: La TNT explota. Recomendamos cautela antes de intentar usarla como

decoración en alguna estructura a la que tengamos aprecio.

43

7. ANEXO 2: RENDERING DE AGUA
 Relegamos al anexo la parte más compleja y larga de todo el proyecto. El agua

obtenida ha sido el resultado de intentar emular cada una de sus propiedades de la forma más

realista posible, usando técnicas totalmente diferentes para cada una.

7.1. Reflexión
La mayor parte de los métodos de reflexión de agua existentes en la actualidad

asumen una altura de agua constante (Lo cual es falso en el caso de los videojuegos de cubos),

recomendando redibujar el mundo en esa altura aplicándole una matriz de simetría en el eje Y.

De ser aplicada esta aproximación en este caso concreto, deberíamos redibujar el mundo una

vez por cada altura de agua distinta en la pantalla, siendo esto computacionalmente imposible

de lograr en tiempo real. Debemos tomar, pues, otra aproximación.

Se ha optado por usar una técnica nueva, basada en el raytracing [18] y usada en

conjunción con Deferred Shading, que está aumentando mucho de popularidad en los últimos

años. Su nombre es Screen Space Ray Marching22. Se basa en, sabiendo el color y profundidad

de cada pixel en la pantalla, detectar el punto de colisión con el agua y trazar desde él el rayo

reflejado, comprobando su colisión por cada pixel por el que este fuera a pasar. Este método,

aunque es el único que permite solventar en tiempo real nuestro problema, no está exento de

fallos, al solo permitir reflejar objetos que se estén viendo en pantalla en este momento

(fallando para objetos fuera de la pantalla, u objetos siendo tapados por otros objetos), y al

causar artefactos visuales al mover la cámara. Es inviable aplicarlo sin contar con algún otro

sistema que nos dé un color de reflejo alternativo si el Screen Space Ray Marching falla para

algún pixel. Por fortuna, el método de renderizado de cielo que hemos elegido permite su

generación aportando solo una dirección de vista, que es justo lo que obtenemos al calcular el

vector de dirección del rayo reflejado por el agua. Por tanto, podremos reflejar el cielo cada

vez que este algoritmo falle en algún pixel. Esto, aunque seguirá causando errores visuales

(como se aprecia en los bordes de la parte superior de la figura 17, donde reflejos del paisaje

aparecen con el color del cielo al no estar siendo vistos en este momento), los minimizará lo

suficiente como para que sean aceptables. En cuanto a los artefactos visuales, podemos

confiar en que el oleaje será lo suficientemente elevado como para ocultarlos.

 La implementación del Screen Space Ray Marching utilizada, salvo por algunos

añadidos, se ha obtenido de [3], al ofrecerla ellos ya altamente optimizada. Se ha elegido una

Thickness para cada pixel de 20 (suponiendo así un mundo compuesto por cubos de una

profundidad igual a 20 metros, en vez de uno). La razón para esto es que, aunque se causen

algunos errores en reflejos cercanos, los reflejos lejanos se podrán fundir perfectamente (por

ejemplo, un árbol con una montaña detrás en la que, aunque el árbol tape reflejos de la

montaña, podemos asumir un árbol más profundo y reflejar este en vez), sin renderizar trozos

de cielo, quedando mucho más estéticos. Además, una anchura mayor ocultará algunos

artefactos visuales. Este número ha sido obtenido por prueba y error. Podemos ver un ejemplo

22
The future of screenspace reflections. Bartlomiej Wronski [En línea] [Citado el 18/06/2016]

http://www.gamasutra.com/blogs/BartlomiejWronski/20140129/209609/The_future_of_screenspace_r
eflections.php

44

de este algoritmo en funcionamiento en la figura 18, en el que, incluso sin aplicar oleaje, los

resultados no muestran ningún error apreciable.

Figura 17 - Fallos de reflexión usando Screen Space Ray Marching por falta de información en pantalla

Figura 18 - Reflexión pura

7.2. Refracción
La refracción es un fenómeno prácticamente imposible de calcular correctamente sin

usar un raytracer. Por tanto, usaremos una aproximación que, aunque no sea realista,

consigue engañar a la mente jugador, siendo tomada como real. Usaremos el método

propuesto en [4].

45

 Guardado en la cuarta coordenada de la imagen aportada a nosotros por la segunda

pasada del Deferred Shading, se encontrará un valor que indica si ese pixel de la imagen se

encuentra tras una capa de agua. Gracias a ello, podremos modificar la posición en la cual

sampleamos la imagen en función de la normal del agua en el punto de colisión. Si intentamos

samplear un lugar de la imagen fuera del agua, ese valor nos indicará que la refracción es

incorrecta y nos quedaremos con la imagen normal, sin perturbar. Esto, sumándolo al oleaje

en movimiento, proporcionará una refracción razonable, que dará aspecto realista (aunque no

lo sea). Un ejemplo de este método de refracción puede verse en la figura 19, en la que se

puede apreciar que la refracción ha curvado las líneas rectas de los cubos bajo el agua. Este

efecto, sutil al ser visto en una imagen, es mucho más apreciable al verse en movimiento.

Figura 19 - Refracción acentuada para visibilidad.

7.3. Absorción / Scattering de la luz
Lo primero que necesitamos para calcular el valor de luz absorbida y el scattering

aportado a la imagen es saber que distancia exacta el rayo de luz atraviesa bajo el agua. Como

el rayo puede entrar y salir del agua en repetidas ocasiones, se implementa el algoritmo de

Depth Peeling [5]. Este algoritmo cambia el orden natural de render, separando la escena por

capas. En la primera se encontrará, en cada pixel, la profundidad de los polígonos más

cercanos a la cámara. En la segunda se encontrarán la profundidad de los polígonos que, de no

existir los de la primera capa, habrían sido los más cercanos a la cámara. Repitiendo este

proceso para el número de capas especificado se obtiene un listado de polígonos por los que

cada rayo de luz lanzado por cada pixel colisionaba, en orden. El rayo solo encontrará un

46

polígono de agua al entrar o salir de esta: Por lo tanto, para un pixel dado, una cantidad impar

de capas de agua significará que, al final de su recorrido, el rayo de luz ha terminado entrando

en el agua y no ha salido de la misma antes de colisionar contra el terreno, y una par que el

rayo ha entrado y, al final de su recorrido, ha terminado saliendo (Cero capas en un pixel

significarán que el rayo ni tan siquiera ha llegado a entrar al agua en su recorrido). Hay que

tener en cuenta que por cada capa generada hay que hacer una llamada de dibujo extra,

redibujar toda el agua de la pantalla y guardarla en una textura de profundidad con el tamaño

de la pantalla entera. Es decir, cada capa extra añade un gran uso de memoria gráfica y de

tiempo de computación. Tres es un número razonable (entrar en agua, salir y entrar en agua

de mar, por ejemplo), aunque cinco o siete sería mejor aún al cubrir algunos casos especiales,

si contamos con un ordenador que pueda soportarlo. Se puede configurar mediante el menú

este parámetro, elevando el número en secuencias de dos hasta un total de 19 capas, aunque

no suele valer la pena el gasto extra.

Al tener ya guardada la profundidad de cada capa de luz y la profundidad de cada pixel

solido de la imagen final (guardados en una textura, sin aplicar sombreado ni iluminación, en el

dibujo de la geometría del mundo), podemos calcular la distancia exacta hasta cada punto23.

Calcular la distancia exacta recorrida en el agua, sabiendo el valor de profundidad de cada

capa, será trivial. En caso de que un rayo de luz recorra todas las capas de agua reservadas

(siendo la última siempre una entrada a agua), el sistema no podrá detectar si ha salido de esta

o no en algún punto, con lo que asumirá que hay agua hasta la distancia del pixel sólido final.

Sabiendo la distancia exacta de agua por la que el rayo pasa, podremos calcular la

absorción y el scattering de la luz que esta ocasiona. Tanto la absorción como el scattering

dependen de la cantidad de minerales disueltos en el agua o la temperatura, así que hay

muchos entre los que elegir. Los valores de vida media para cada canal de luz en el agua se han

extraído de [6]. Nos hemos inspirado en [7] para las fórmulas de scattering, y los valores.

Se ha aplicado la función de fase para medios participativos asumiendo uniformidad de

medio24 en el caso de la absorción y out-scattering. Para el scattering, se ha aplicado una

aproximación de la misma, en la que se mezcla, exponencialmente en función de la distancia y

un coeficiente de scattering, un color de agua profunda azulado con el color extinto como tal.

La razón de aplicar una mezcla es que el scattering causa dos fenómenos: Extingue color (out

scattering) y lo añade al rayo (in scattering). La fórmula resultante es:

Los valores de extinción (siendo inversos al valor de la vida media, en metros, de cada

canal de color en el agua) son (0.46,0.09,0.06) . Para el scattering usaremos un valor de 0.01

para mostrar un agua bastante limpia, aunque podría aumentarse en caso de agua sucia (por

ejemplo, ríos arenosos). El color de scattering, o color de océano profundo, se ha elegido como

23
Getting the true z value from the depth buffer. StackOverflow [Citado el 18/06/2016]

http://stackoverflow.com/questions/6652253/getting-the-true-z-value-from-the-depth-buffer

24
 Light Transport in Participating Media [Citado el 20/04/2016]

https://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/chapter4.pdf

47

(0.05,0.05,0.1) para dar un aspecto relativamente oscuro a las masas de agua grandes. Ha sido

elegido por prueba y error.

Esta extinción y scattering se puede apreciar en la figura 20. Nótese la rápida absorción del

color rojo por parte del agua. En las zonas más lejanas, donde todo el color ha sido ya

absorbido, solo quedará el color de scattering de fondo.

Figura 20 – Absorción / Scattering puro, sin reflejos.

7.4. Perturbaciones (oleaje)
Para aplicar este efecto se usa una textura de normales del agua extraída de Internet.

Considerando una base en la que el agua tiene siempre una normal (0,1,0), en esta textura el

canal rojo simularía la perturbación de la normal en el eje x, el canal verde en el eje z y el canal

azul en el eje y, por defecto. Esta textura deberá ser normalizada a valores en el rango [-1,1]25

El propio algoritmo de Depth Peeling guardará la normal de la primera capa en una

textura adicional. Es esa normal la que consideramos y perturbamos en función al valor de esta

textura. Al estar la textura considerando una base (0,1,0), deberemos efectuar un cambio de

base. Se realizará de la misma forma en la que se obtienen los vectores unitarios de la cámara

en un trazador de rayos: Se hará un producto vectorial entre la normal y un valor por defecto,

por ejemplo (1,0,0). El resultado de este producto será nuestro vector unitario u. Tras ello, se

25
 OpenGL Water Tutorial 7: Normal Maps. ThinMatrix. [Citado el 18/06/2016]

https://www.youtube.com/watch?v=7T5o4vZXAvI

48

hará el producto vectorial entre u y la normal, obteniendo el vector unitario v. La nueva

normal tras la perturbación será igual, por tanto, a aplicar la proyección de cada canal de la

imagen de perturbación sobre cada eje de esta nueva base, usando el producto escalar, y

normalizar el vector resultante. Más concretamente:

 () () ()

Estas perturbaciones, no obstante, son demasiado intensas. Podemos multiplicar por

un valor el componente rojo y verde de la imagen para suavizarlas. Por ejemplo, para los

reflejos, los multiplicamos por 0.07. Para la refracción, sin embargo, al desearla más suave, los

multiplicamos por 0.02. Para los reflejos especulares la multiplicamos por 0.3 como mínimo, al

desear reflejos más intensos. En caso de agua cayendo, esta multiplicación se incrementará

hasta incluso uno. El resultado de aplicar estas perturbaciones a una capa de agua puede

apreciarse en la figura 21. Las alteraciones del ángulo de la normal del agua causan que el

fresnel de la misma priorice la refracción en algunos puntos y la reflexión en otros, creando el

efecto de olas.

 Un oleaje quieto, sin embargo, no aporta nada. Necesitamos que se mueva para que

dé un aspecto realista. Moveremos el oleaje en función de la corriente marcada por la

gravedad, es decir, en la dirección en la que se maximice la dirección y negativa del flujo de

agua26. La velocidad de la corriente rondará desde los 0.2 m/s (agua horizontal, no puede caer

en ninguna dirección) a los 1.2 m/s (agua completamente vertical, cae directamente hacia la

gravedad). La corriente se determinará por el sampleo de un punto u otro de la textura de

normales, dado el tiempo y la posición, creando ilusión de movimiento.

Figura 21 - Oleaje exagerado para visibilidad.

26
 Get water flow direction vector from water normal vector. StackOverflow [Citado el 18/06/2016]

http://gamedev.stackexchange.com/questions/119086/get-water-flow-direction-vector-from-water-
normal-vector

49

7.5. Reflejos de luz
Se aplica el modelo de Blinn-Phong [8] para crear reflejos en la superficie del agua.

Este modelo crea reflejos de luz más realistas que Phong para luces situadas en el infinito,

como el sol. Usando la normal especular calculada antes, se crearán reflejos en función de la

posición del sol. El coeficiente de Blinn-Phong en nuestro caso será de 60, hallado por prueba y

error.

 Con objeto de que no pueda haber reflejos en zonas a las que el sol no llegue, se

analizará en el cálculo de sombras si cada punto de agua está o no sombreado, guardando, si

lo está, un valor en la cuarta coordenada (w) de la imagen de cero. Conforme el anochecer

vaya llegando, la w por defecto para lugares con agua no sombreados (0.8) irá decreciendo

también, hasta ser cero al anochecer. El valor final de la especular será igual al producto del

resultado del blinn-phong por esa coordenada w, que puede apreciarse en la figura 22, a

continuación.

Figura 22 - Reflejos en el agua

7.6. Coeficiente de fresnel
El coeficiente de fresnel [9] indica que cantidad de luz se refracta y que cantidad se

refleja al pasar de un medio a otro. Estas ecuaciones son computacionalmente complejas, con

50

lo que usaremos una aproximación relativamente buena: La aproximación de Schlick27. Esta

aproximación es fiel solo en un rango concreto de índices de refracción (de 1.4 a 2.2)28. En el

caso de transiciones aire-agua, como la que estamos estudiando, obtenemos un índice de

refracción entre los dos elementos de 1.33 que, aunque se encuentra ligeramente fuera del

rango de fidelidad, sigue siendo correcto para un entorno no científico, al ser el error aún

mínimo.

 Calculando el fresnel con la normal usada para calcular los reflejos de luz (la menos

suavizada) y mezclando el color reflejado y refractado con él, obtendremos unas olas de un

aspecto bastante bueno y nuestro sistema de render de agua estará completo. Podemos

apreciar el fresnel en la figura 23, a continuación. En las partes bajas de la imagen, el ángulo de

incidencia a la superficie del agua es casi perpendicular a esta, con lo que la refracción

prevalece. En los lugares más alejados los rayos de luz inciden de forma casi oblicua lo que,

unido a la ausencia de color refractado en esa zona (al haber sido absorbido por la gran masa

de agua), crea un reflejo muy definido.

Figura 23 - Fresnel en masa de agua

7.7. Visión subacuática
Deberemos aplicar shaders especializados al estar dentro del agua. Todo el sistema de

cálculo de distancias del rayo dentro del agua se invertirá, al comenzar este ya por defecto

27
Schlick's approximation. Wikipedia. [Citado el 18/06/2016]

https://en.wikipedia.org/wiki/Schlick%27s_approximation

28
Memo on Fresnel equations. Sébastien Lagarde. [Citado el 18/06/2016]

https://seblagarde.wordpress.com/2013/04/29/memo-on-fresnel-equations/

51

dentro de la misma: Un número impar de capas de agua significará que el rayo, al final de su

recorrido, ha salido del agua, y un número par que ha terminado su recorrido dentro de ella.

 Tras calcular la distancia que cada rayo ha pasado dentro del agua, le aplicaremos

absorción y scattering como se hacía en el exterior. No obstante, modificaremos ligeramente

los parámetros con objeto de darle un aspecto más atractivo:

- La extinción de color se reduce ligeramente, a (0’3,0’06,0’04)

- El coeficiente de scattering aumenta a 0.04. Esto dará un aspecto más nublado a los

fondos marinos.

- El color de scattering ahora es más complejo. Podemos al estar dentro del agua

aproximar relativamente mejor la función de fase, al conocer la iluminación exacta a

nuestro alrededor en cada momento. Este color estará basado en la iluminación que

rodee al jugador. Así, cerca de la superficie y en pleno día, el agua tendrá un color azul

claro. En las profundidades marinas, donde nada de luz llega, el color de scattering

será mucho más oscuro.

 La superficie del agua es otro problema. Screen Space Ray Marching funciona solo para

reflejar objetos ya visibles en la pantalla, pero bajo el agua, al haber pequeñas montañas, la

superficie suele reflejar partes no existentes en la vista actual. La cantidad de errores es tan

alta que se ha decidido no aplicar reflejos bajo el agua. De todas formas, esos reflejos suelen

nublarse enormemente debido al scattering y la absorción del agua y además, al no estar los

seres humanos preparados para vivir bajo el agua, ni siquiera los echamos en falta si no están.

En caso de necesitar reflejar un rayo, sencillamente mostraremos el pixel original pero

multiplicando en las ecuaciones de absorción y scattering la distancia recorrida por el rayo por

dos, como ocurrirá si fuera reflejado (aunque se mostraría otra dirección). Esto da un resultado

bastante vistoso.

A la hora de calcular el fresnel bajo el agua, la aproximación de Schlick ya no nos sirve,

al existir un índice de refracción de 0.75. Aplicamos una fórmula ideada por nosotros mismos,

que no tiene nada de científico pero aproxima más o menos la curva que produce el fresnel

agua-aire, en todos sus puntos (posee nomenclatura común a la ecuación de Schlick original):

Bajo el agua, la refracción de la superficie será el doble de intensa que al mirar el agua

por fuera. Se adopta esta aproximación para que la superficie del agua se distinga más

claramente del mar en si en condiciones poco apreciables, como el cielo nocturno.

Todos estos algoritmos producen resultados como los apreciables en la figura 24.

Nótese la reflexión absoluta a partir de cierto ángulo, en la que dada la imposibilidad de

reflejar el suelo oceánico se opta por duplicar el scattering / absorción y mostrar las montañas

del fondo. Nótese también como prácticamente toda la componente de luz roja del cubo de

luz a la izquierda ha sido ya absorbida al llegar a nuestra posición, mostrando un cubo azulado.

52

Figura 24 - Visión subacuática.

53

8. ANEXO 3: CASCADED SHADOW MAPPING

 Cascaded shadow mapping se basa en una división logarítmica en numerosas partes

del frustrum29 de visión. No obstante, en [11] se propone una forma de división más efectiva,

mezclando división lineal y logarítmica, aplicando en nuestra implementación una variación de

esa aproximación, con cuatro divisiones en total. Esas partes separadas del frustrum (al

comienzo del mismo más pequeñas, al final más grandes) serán, una a una, las que la matriz de

proyección de la luz deba englobar. Para ello, en vez de guardar todas las sombras de la escena

en una misma textura, se hará uso de tantas texturas como divisiones del frustrum de visión se

hayan producido, lo que conllevará ese mismo número de renderizados de la escena. Al estar

solo almacenando el valor del depth buffer de cada render sucesivo en una textura (usando

shaders computacionalmente muy simples), redibujar la escena será mucho más barato que al

hacerlo a texturas de color, en shaders complejos. Aun así, el coste de redibujar la escena

tantas veces no es anecdótico, con lo que se ha añadido una opción en el menú para

desactivar las sombras, para poder usar en equipos de gama baja. De hecho, en nuestra

implementación, la única sombra que generaremos será la del sol.

 Una aclaración de estos tecnicismos es simple. Sencillamente, deseamos partir el cono

de visión en fragmentos y, en vez de guardar todas las sombras de la escena en una misma

textura, dedicar una textura de sombras para cada fragmento partido del cono de visión. Al

haberlo dividido de tal forma que las primeras secciones engloben un trozo pequeño de

terreno, las sombras en ese lugar serán de alta calidad (pero abarcarán poco terreno). En

divisiones sucesivas los trozos serán cada vez más grandes, siendo las sombras cada vez de

peor calidad pero abarcando más terreno, hasta así llegar a la división final. Al mirar a lo lejos y

ver las sombras dadas por las divisiones lejanas del frustrum ni tan siquiera notaremos que las

estas tienen poca resolución, al estar perdiendo nosotros también agudeza visual de forma

natural en función de la distancia. Para lugares muy cercanos, donde nuestra agudeza visual es

máxima, si necesitaremos sombras de alta calidad, que nos serán proporcionadas por las

primeras particiones. Dar para cada distancia de visión unas sombras con una calidad

proporcional a nuestra agudeza visual es en lo que se basa este algoritmo.

Tras tener todas las texturas de sombras ya dibujadas, tendremos solo que dibujar la

escena normalmente y, para cada pixel, determinar a qué distancia se encuentra del frustrum

de visión y, por tanto, con que matrices tenemos que hacer la transformación al espacio de la

luz y con qué textura tenemos que comparar.

 El protocolo necesario para calcular cada sombra asociada a cada división del frustrum

se hará como sigue:

- Se obtienen los ocho puntos que marcan los límites del pedazo de frustrum

seleccionado

- Se pasan a coordenadas de mundo, con la matriz vista inversa

29
 El cono de visión que el usuario posee dentro del videojuego. Más información: Viewing Frustrum.

Wikipedia [Citado el 21/04/2016] https://en.wikipedia.org/wiki/Viewing_frustum

54

- Se pasan a coordenadas de la luz, sin aplicar matriz de proyección por ahora

- Se construye una Bounding Box orientada con los ejes, y se hace que englobe a esos

ocho puntos. Con esa Bounding Box se construirá la matriz de proyección ortográfica.

La coordenada z inicial de esa matriz ortográfica deberá abarcar todo el posible mundo

visible desde la misma, ya que no podemos solo calcular las sombras de un pedazo de

mundo partiendo desde la altura que deseemos, sino que tenemos que partir desde la

luz. Si no, algunas sombras podrían ser incorrectas al no estar considerando objetos

que tapen la luz por encontrarse más atrás de lo esperado.

- Tras tener ya la matriz de proyección, se dibuja la escena usándola (junto a la matriz

vista de la luz, claro está) y se guarda en una textura. En mi caso particular, estoy

usando un TextureArray2D, siendo cada índice igual al número de partición del

frustrum.

- Se repite para todas las particiones.

- Al dibujar la escena, como sabemos a qué distancia de frustrum hemos realizado cada

partición, tan solo tendremos que fijarnos en el zbuffer de cada pixel, y mirar las

sombras de una partición o de otra. Un ejemplo de esta selección puede apreciarse en

la figura 25, simplificando cada partición del frustrum mediante colores.

 En la figura 26 podemos apreciar la misma escena mostrada en la figura 25 sombreada

de forma correcta. Las distancias están adaptadas para que las zonas de cambio de shadow

map no sean muy aparentes, aunque pueden distinguirse poniendo atención. No se ha tenido

que aplicar ningún algoritmo de blending entre zonas al estar las distancias adaptadas para no

ser esto necesario, causando que no existan cambios de calidad muy bruscos entre cada

cascada.

Figura 25 - División del frustrum de visión en distancias. (Marcadas por rojo, verde, azul, blanco).

55

Figura 26 – Ejemplo de escena con sombras a varias distancias

 Aun con esta mejora, se pueden ver dientes de sierra en las sombras (causados

porque, aunque hemos mejorado la resolución, no la hemos aumentado lo suficiente en

puntos inmediatamente cercanos como para alcanzar la excepcional agudeza visual que se

tiene en distancias cortas, por ser un gasto de recursos enorme para cubrir poco terreno), unas

líneas discontinuas en las sombras (Shadow Acne) y unos pequeños saltos al avanzar el día

(causado porque la resolución va cambiando en función del movimiento del sol).

 Los dientes de sierra se han arreglado parcialmente utilizando PCF y Poisson

Sampling30 con cuatro sampleos y una dispersión de milímetros. Con una dispersión más alta

los dientes de sierra se suavizaban totalmente, pero los saltos por cambio de resolución

empeoraban. Con esta configuración se ha intentado obtener la mejor solución posible para

ambos casos, aunque los dientes de sierra siguen siendo visibles, aunque con mayor dificultad,

y sigue habiendo pequeños saltos al avanzar el sol, aunque mucho menos aparentes. El

resultado, en general, es aceptable.

 Las líneas discontinuas se han arreglado añadiendo un offset a la profundidad de cada

pixel, en función de su distancia a la cámara (con un offset fijo inicial, para evitar este mismo

problema al acercarnos mucho a un bloque). Esto, no obstante, podía causar problemas

cuando el sol se encontraba paralelo al polígono a sombrear, haciendo reaparecer el shadow

acne. La solución ha sido añadir el offset en la dirección de la normal de cada polígono, en vez

de en la profundidad. La fórmula usada es:

30
 Tutorial 16: Shadow Mapping. [Citado el 18/06/2016]

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

56

Ese offset mínimo de 0.015 se usa para evitar pequeños errores en polígonos extremadamente

cercanos.

 Con esto, el shadow acne se soluciona en todos los casos y, aunque se añade un pequeño bias,

es tan diminuto que no es apreciable.

Con objeto de acelerar el cálculo de sombras, los polígonos en los que su producto

escalar entre su normal y la dirección de la luz sea positivo (es decir, en los polígonos a los que

la luz les da “por detrás”) se considerarán completamente sombreados, eliminando errores.

Además, para evitar fallos en los que una cara pasa de sombreada a luminosa repentinamente

(cuando el sol cruza justo el ángulo necesario para comenzar a incidir en ella, por ejemplo), las

sombras se suavizarán usando el producto escalar anteriormente descrito, haciendo que los

polígonos pasen suavemente de estar sombreados a no estarlo. Por último, tras el anochecer

comenzaremos a sombrear suavemente todos los polígonos a los que aún las sombras no les

llegan (por ejemplo, torres altas), hasta estar todo el mapa en la oscuridad brevemente tras la

puesta de sol.

Con objeto de conseguir sombras lo más detalladas posibles en la cercanía, usaremos

el método de división de frustrum detallado en [11], pero dividiendo la distancia inicial de

corte entre 4, la distancia del segundo corte entre 2.5 y la distancia del tercero entre 1.5. Esto

causará peor definición de sombras en la lejanía, pero dado que esas sombras solo suelen ser

relevantes en el anochecer o amanecer (mientras que las sombras cercanas lo son todo el

tiempo), es un sacrificio razonable.

Dentro de nuestros shaders existirá un parámetro, llamado “shadowAttenuation”, que

tendrá un valor de uno si el objeto está recibiendo iluminación solar directa y de 0.3 si está

completamente en sombra, con valores intermedios en los bordes debido al PCF y al

PoissonSampling. Este valor se multiplicará a la luz natural del cubo, con lo que un cubo

sombreado tendrá una iluminación del 30% con respecto a los cubos iluminados por el sol.

57

9. ANEXO 4: IMÁGENES EXTRAS

9.1. Mejoras gráficas ilustradas

Figura 27- Ambient Occlusion Desactivado

Figura 28 – Ambient Occlusion Activado

58

Figura 29 – Ambient Occlusion Desactivado

Figura 30 – Ambient Occlusion Activado

59

9.2. Mundos existentes

Figura 31 - Mapa uno: Islands

Figura 32 - Mapa dos: Snowy Mountains

60

Figura 33 - Mapa tres: Plains

Figura 34 - Mapa cuatro: Buggy Caves

61

Figura 35 - Mapa cinco: Floating Islands

Figura 36- Mapa cinco: Floating Islands

62

Figura 37 - Mapa seis: Underwater Ruins (sobre el agua)

Figura 38 - Mapa seis: Underwater Ruins (bajo el agua)

63

9.3. Comparativa con Minecraft

Figura 39 - Minecraft: Planicies

Figura 40 - Kubex: Planicies

64

Figura 41 - Minecraft: Escena aérea

Figura 42 - Kubex: Escena aérea

65

Figura 43 - Minecraft: Mar

Figura 44 - Kubex - Mar

