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RESUMEN

Un nuevo género de videojuegos basados en cubos e inspirados en el famoso titulo
Minecraft (Mojang AB, 2009) estd irrumpiendo en el mercado, creciendo rdpidamente en
popularidad. No obstante, no existen aun motores graficos open-source populares
especializados en este género. Ademas, los motores graficos tradicionales no son capaces de
explotar suficientemente las caracteristicas que un mundo dividido en cubos ofrece, y no
permiten desarrollar este tipo de videojuegos con facilidad. Por esta razdn, los titulos de este
género estan forzados a implementar su propio motor grafico cuyo desarrollo es, dado el
amplio coste en tiempo y recursos que la creacién de un motor grafico complejo conlleva,
relevado a un segundo plano en la mayor parte de los casos. Esto causa un estdndar de calidad
grafica en este género realmente bajo, muy por debajo del estdndar de industria actual.

En este proyecto se implementa, usando tan solo Java y OpenGL, desde cero y en
cddigo abierto, un motor grafico orientado a cubos con la calidad grafica y la eficiencia como
maximas prioridades. Sobre el mismo se ha desarrollado, asimismo, un videojuego basado en
la exploracién y creacion de estructuras, con todas las caracteristicas que un titulo de este
género posee.

Es nuestra intencidén que, dada la naturaleza de cddigo abierto de este titulo, cualquier
programador interesado en este género pueda basarse en este proyecto para resolver sus
dudas, obtener partes de cddigo para implementar funcionalidades que necesite o, incluso,
extender facilmente este proyecto a un prototipo de mayor jugabilidad, centrandose
Unicamente en el desarrollo del mismo y despreocupdndose del motor bdsico, ya
implementado.
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1. INTRODUCCION

El popular titulo Minecraft (Mojang AB, 2009) protagonizé una auténtica revolucion en
el mundo de los videojuegos, al crear de la nada un género absolutamente nuevo, basado en
mundos formados por cubos. La absoluta libertad que permitia, dando rienda suelta a la
imaginacién de los jugadores, lo catapultd a un éxito inmediato, pese a sus graficos de aspecto
retro (ver figura 0 a continuacidn), en desuso en esos tiempos. Tras él han surgido numerosos
titulos, todos compartiendo esa estética alejada de los nuevos estandares de industria en
cuanto a graficos se refiere. Un motor grafico basado en cubos y orientado a la calidad grafica
es pues un desafio inexplorado e interesante, que vamos a afrontar en este proyecto.

Figura 0 — Minecraft, in game

Crear un motor gréfico es una tarea ardua y compleja, que requiere conocimiento de
multiples campos de la Informatica. Es por ello que normalmente se desaconseja
desarrollarlos, recomendando en su lugar el uso de alguno de los muchos motores ya
existentes con la famosa frase “write games, not engines”.

En el género de videojuegos de cubos, no obstante, esto no se aplica. De los motores
graficos mas populares en la actualidad ninguno esta optimizado para este género, forzando a
los desarrolladores a enfrentar, de forma obligada, el desafio de programar su propio motor
grafico, careciendo la mayoria del interés, conocimientos o tiempo necesario para ello.
Muchos proyectos de este tipo son abandonados en este punto por frustracion, y la mayoria
de los que logra desarrollar un motor prototipo basico detienen ahi la evolucién del mismo,
comenzando a implementar la parte que ellos realmente deseaban desde un principio: Un
videojuego.

Existe mucha informacion en la red sobre el desarrollo de juegos de este tipo, pero
toda parece acabar cuando se trata el tema gréfico. A partir de este punto solo quedan meros
apuntes genéricos, ya que los pocos proyectos existentes que se han centrado en la



implementacién de los mismos se mantienen en la oscuridad, sin liberar su cédigo ni dar
explicacion alguna de las metodologias que han seguido para cada caso.

Este proyecto tiene como objetivo afrontar el desafio del desarrollo de esta area tan
olvidada en este género, a la par que de intentar en lo posible servir de ayuda a todos los que,
después de mi, tengan este mismo propdsito.

1.1. Objetivo y alcance

Se implementara un motor grafico y légico basado en cubos (asi como una version
jugable del mismo), con todas las caracteristicas comunes a los videojuegos de este género
(mapas procedurales infinitos, terreno dinamico modificable en tiempo real, iluminacion
dindmica independiente al nimero de luces, motor fisico, movimiento de fluidos, carga y
guardado del mundo en mapa, ciclos de dia y noche, etc.), a la par que algunas caracteristicas
graficas no tan comunes (sombras dindmicas, atmospheric scattering o agua realista, entre
otras).

1.2. Metodologia y herramientas

Todo este proyecto ha sido realizado desde cero y al nivel mds bajo posible, en Java
[15] y OpenGL 3.2 [14], requiriéndose una tarjeta grafica que lo soporte para poder ejecutar el
prototipo. Al no ser posible acceder a las librerias de OpenGL desde Java directamente, se ha
hecho uso de la libreria LWJGL (LightWeight Java Graphics Library)!, que actta tan solo de
intermediaria entre ambos, ofreciendo Unicamente funciones andlogas a las de OpenGL.

Dada la dificultad de tratar con texto en OpenGL, se ha hecho uso de la libreria
SlickUtil* para ese Unico propdsito. Asimismo, dada la necesidad de decodificar archivos PNG a
una cadena de bytes a la hora de subirlos a la GPU, se ha usado la libreria PNGDecoder’.

El uso de Java en este proyecto también tiene el propdsito de desmentir las muchas
afirmaciones que defienden que este lenguaje no es valido para el desarrollo de videojuegos
en tiempo real dado su recolector de basura y su condicion de lenguaje interpretado, o que no
es valido para la realizacion de juegos con graficos avanzados. Java es un lenguaje
perfectamente capaz para todas estas tareas, y la Unica razén por la que no es usado para ellas
es por ese prejuicio falso sobre su lentitud, tan extendido hoy dia. Esto ha ocasionado, al alejar
a posibles desarrolladores de esta area, una gran falta de herramientas especializadas y
documentacién sobre estos temas en comparacién con otros lenguajes, como C++.

Durante el desarrollo, se ha utilizado un sistema de control de versiones ubicado en GitHub®.

'LWJGL 2. [Citado el 18/06/2016] https://www.lwjgl.org/

%Slick-Util. [Citado el 18/06/2016] http://slick.ninjacave.com/slick-util/

*Loading PNG images with TWL's PNGDecoder. [Citado el 18/06/2016]
http://wiki.lwjgl.org/wiki/Loading_PNG_images_with_TWL's_PNGDecoder

* https://github.com/Ivelate/Kubex



Todo este motor se ha implementado utilizando un computador AMD Athlon 64 X2
Dual Core 2’8GHz, 4GB RAM, ATl Radeon 4800. Es un equipo de muchos afos de antigliedad, y
podemos considerar que solo llega a los requisitos minimos para la ejecucién de este proyecto
a calidad grafica maxima. Para alcanzar los requisitos recomendados se aconseja contar con
una tarjeta gréfica de gama superior, como, idoneamente, una de la familia GTX 600 en
adelante.

1.3. Contenidos de la memoria

Esta memoria se divide en dos partes claramente diferenciadas. Primero, se detallaran
todas las partes logicas del motor (la estructura de datos en las que se dividen los cubos,
generacion procedural de mundos, estructura multihilo implementada, gestién del mundo
dindmico modificable en tiempo real, motor fisico, optimizaciones de eficiencia y gestién de
datos en disco), para detallar a continuacion las partes graficas (lluminacidn, sombras en
tiempo real, agua realista, Deferred Rendering, optimizaciones de eficiencia grafica, etc.).

Tras ello, quedara la conclusion y la bibliografia, seguida de cuatro anexos: Un manual
de usuario, un anexo en el que detallamos que procedimientos hemos seguido para elaborar el
render de agua, un anexo en el que detallamos como hemos realizado el algoritmo de sombras
y, por ultimo, un anexo con fotografias extras, con objeto de no aumentar mas aun el volumen
de la memoria.

1.4. Licencia usada

Se ha optado por el uso, en todo el cddigo del proyecto, de la licencia menos restrictiva
de CreativeCommons, Attribution 4.0 International’. Cualquier persona que lo desee podra
usar cualquier parte de este trabajo para lo que desee, sea comercial o no, y podra afiadirle la
licencia que considere oportuno. La Unica restriccion serd la obligacidn de mencionar al autor
de este proyecto si lo hace.

>Creative Commons, Attribution 4.0 International. [Citado el 18/06/2016]
https://creativecommons.org/licenses/by/4.0/



2. LOGICA DEL SISTEMA

Se detallan a continuacién todas las consideraciones tomadas en el desarrollo de la
parte légica del motor, ejecutadas sobre la CPU del ordenador y usando la memoria RAM.
Toda optimizacién detallada mas adelante estara, por tanto, orientada tanto a relajar la carga
computacional del microprocesador como a reducir la cantidad de memoria usada. Debemos
considerar que trabajamos con Java, con lo que es posible que la memoria asignada a la
ejecuciéon de este motor sea limitada, siendo doblemente importante aplicar las
optimizaciones al respecto que sean pertinentes.

Los juegos de cubos poseen algunas caracteristicas que los hacen Unicos con respecto
a otro tipo de géneros, siendo esta la razdén por la que un motor grafico genérico no esta bien
adaptado para la creacién de los mismos. Una longitud infinita de mundo, la posibilidad de
simplificar los mapas procedurales dada la ausencia de detalles de tamafio menor que un
cubo, u optimizaciones posibles en el motor de fisicas al asumir que no existen obstaculos
intermedios entre bloque y bloque son algunas de las posibles razones.

2.1. Cubos

Todo nuestro mundo se basa en cubos de 1m?® de tamafio. Cada cubo en el mundo esta
identificado por un byte, reduciendo asi el gasto de memoria (y disco) necesario para
mantenerlos. El nimero maximo de los mismos, por tanto, estara limitado a 256 tipos de
cubos diferentes. Todos los cubos existentes hasta el momento en el juego prototipo
desarrollado pueden apreciarse en la figura 1. De forma natural aparecerdn tan solo el tocén
de arbol y las hojas (esquina superior izquierda), la arcilla, la hierba y la nieve (Esquina inferior
derecha), el agua (centro, fila inferior) y la vegetacidn, tanto verde como amarilla. El bloque en
la parte superior derecha se trata de un bloque indestructible, que aparece en la altura cero
del mundo con objeto de impedir al jugador seguir picando y caer al vacio. El resto de estos
son cubos sélidos estéticos y usados para construir, a excepcion del cubo de luz, el cubo de
cristal y el cubo de TNT, siendo estos, respectivamente, el tercero, segundo y primero por la
izquierda en la fila inferior.

Figura 1 - Todos los cubos existentes
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Los cubos se basan en un sistema de propiedades, abstrayendo cada cubo de su identidad
real y solo interaccionando con el mismo en funcién de cada propiedad. Gracias a ello,
podemos afadir nuevos cubos facilmente, al solo tener que preocuparnos por asignarles cada
propiedad requerida. En concreto, estas son:

getCubeName: Obtiene el nombre concreto del cubo. Usado al seleccionarlo.

- isSolid: Define si el jugador puede atravesar este cubo andando. Un ejemplo de cubos
no solidos son el agua, el aire o la vegetacion.

- isOpaque: Define si la luz puede atravesar el cubo.

- canSeeTrough: Define si el cubo es semitransparente. Si lo es, tendremos que dibujar
también los cubos que se encuentren tras este, ya que no podemos asegurar que los
esté cubriendo.

- isPartnerGrouped: Solo para cubos semitransparentes. Define si los cubos

transparentes dibujan las caras en contacto con otros cubos transparentes del mismo
tipo. Un ejemplo de cubo que no cumple esta propiedad son las hojas, y uno que si, el
cristal.

- isCrossSectional: Define si el cubo, en vez de dibujarse como cubo, se dibuja en forma
de cruz. Usado para la vegetacion.

- isDrawable: Define si el cubo se puede dibujar. Podria haber cubos invisibles que
cumplan determinadas funciones, aunque por ahora el Unico cubo existente que
cumple esta propiedad es el aire.

- isLiquid: Define si el cubo se comporta como un liquido, permitiendo al jugador nadar
y bucear en él, ademas de no tener una altura fija, sino variante en funcién de su nivel,
que marca la cantidad de liquido en cada cubo. Por cada liquido, para cada nivel
deseado debera haber un cubo extra. Por ejemplo, en caso del agua, si queremos que
pueda ir desde nivel siete (cubo lleno de agua) a nivel cero (solo una minima cantidad),
deberemos tener ocho cubos dedicados a ella. El nivel de cada uno, y el nivel maximo
se podrdn acceder con las propiedades getlLiquidLevel y getLiquidMaxLevel.

- getLightProduced: Define la cantidad de luz producida por el cubo. En caso de cubos
no luminosos, este valor sera cero. Un cubo puede producir hasta 15 unidades de luz.

- getUpTex, getLatTex, getDownTex: Indica el identificador de la textura superior, lateral
e inferior del cubo, respectivamente. Ese identificador de textura es el marcado por la

clase FileLoader en la carga de cada imagen.

- occludesNaturallight: Define si el cubo impide que pasen rayos de luz natural por él.

Ello no impide la propagacion de luz indirecta a través del mismo, con lo que al llegar a
éste la luz natural comenzara gradualmente a disminuir.

Todas estas propiedades serdn accedidas de forma estdtica mediante la clase BlockLibrary,
aportando el identificador del cubo deseado.



2.2. Agrupaciones de cubos

Cargar de disco el mundo cubo a cubo o renderizar el mundo cubo a cubo no es una
idea viable. Desde el punto de vista grafico, toda llamada de dibujo a OpenGL gasta muchos
ciclos, en los que la CPU debe sincronizarse con la GPU, con lo que hay que procurar
minimizarlas. Desde el punto de vista légico, cargar y guardar cada cubo de forma separada en
disco conllevaria un gran gasto de tiempo abriendo o cerrando ficheros, y buscando indices
concretos en los mismos. En Minecraft, el titulo lider en este género, se llegan a tener unos
115.605.504 cubos diferentes en pantalla al mismo tiempo. Tomando una aproximacion
individualizada para cada cubo, esta cifra seria sencillamente inalcanzable. Por tanto,
agrupamos los cubos en “grupos de cubos”, llamados chunks. Ahora se dibujaran, cargarany
guardaran grupos grandes de cubos simultdaneamente, minimizando las llamadas de dibujo a
OpenGL y los cambios de estado de archivos en disco. Esta aproximacion tiene desventajas,
como una carga en pantalla menos suave (los chunks se cargaran en forma de grandes masas
de cubos simultaneos, apreciables en la distancia) y un culling grafico® menos efectivo
(dibujando cubo a cubo, podiamos analizar si éste estaba dentro del drea de visualizacion o no
antes de dibujarlo. Para un chunk, eso no es posible: Solo podremos aplicar culling cuando la
totalidad del chunk esté fuera del drea de dibujo. Si una minima parte se encuentra dentro,
deberemos dibujarlo entero). No obstante, estos pequefios inconvenientes son compensados
con creces por las ventajas que esta estructuracion aporta.

Para este proyecto, se ha observado que un tamafio de chunk de 32x32x32 cubos da
buenos resultados, siendo este el usado en el prototipo desarrollado. No obstante, un tamafio
de 16x16x16 también podria ser aceptable. El hecho de dividir el mundo en chunks hace la
carga dindmica del mismo mucho mas sencilla. Al cambiar el jugador de chunk, se descargaran
los que sobrepasen esa distancia de render y se mandaran peticiones de carga para los chunks
gue acaban de acercarse a menos de esa distancia.

Un ejemplo grafico de un solo chunk dibujado en pantalla puede verse en la figura 2.
Se puede apreciar tierra, agua hasta el nivel del mar y, a partir del mismo, bloques de hierba,
vegetacion y un cimulo de bloques formando un arbol.

® No ordenar dibujar poligonos no visibles desde el punto de vista actual, reduciendo la carga
computacional de la GPU. Mas informacién: Culling Explained. Crytek. [Citado el 18/06/2016]
http://docs.cryengine.com/display/SDKDOC4/Culling+Explained

6



Figura 2 - Chunk de terreno en solitario

2.3. Generacion procedural de mundos

En este proyecto nos basamos en la generacién procedural de mundos infinitos, en
contraposicidn con la carga de mapas ya existentes, siendo los cubos, o vdxeles, unos
excelentes candidatos para la aplicacion de estas técnicas dada su poca complejidad en
contraposicidn a otros tipos de escenarios.

2.3.1. Modos de generacion

Dada nuestra necesidad de crear mundos infinitos, la Unica posibilidad factible que
tenemos es que estos sean creados en tiempo real por este propio sistema, en funcién de la
posicion del jugador en un momento dado. Por tanto, necesitamos algun método que nos
garantice una generacion realista, determinista y rdpida para cualquier punto concreto del
terreno. De todos los posibles métodos existentes, nos hemos decantado por el uso de ruido
Simplex, una version actualizada y mas eficaz del ruido Perlin, mas conocido. Se usa, en
concreto, una implementacién eficiente del mismo, disponible online’. A pesar de ser este
algoritmo una optimizacién del citado ruido Perlin®, comparte con el mismo las mismas bases.

Estos algoritmos requieren de una semilla inicial, usada para generar valores de ruido
blanco pseudo aleatorios, que después interpolaran, y mezclardn en varias octavas, para

'y speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. Stefan Gustavson [Citado el
18/04/2016] http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java
®perlinNoise [Citado el 18/04/2016] http://freespace.virgin.net/hugo.elias/models/m_perlin.html
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obtener el resultado final para un punto solicitado. Partiendo de una misma semilla inicial,
todo sampleo para un mismo punto nos dard, en todo momento, el mismo resultado,
cumpliendo asi la propiedad determinista requerida. Por tanto, cada punto del mundo se
generara de forma idéntica independientemente del momento o condicién del programa en el
que sea requerida su carga, y todo mundo usando la misma semilla serd idéntico. En nuestra
implementacidn, cada instancia de ruido Simplex existente usard tres octavas, lo que nos
proporcionard un terreno suficientemente detallado para este caso puntual.

El ruido Simplex puede ser aplicado tanto en dos dimensiones como en tres. La
aplicacion mas comun para generar terrenos usa el ruido en dos dimensiones para generar un
heightmap, que, multiplicado por la altura maxima deseada (el ruido genera valores entre cero
y uno) nos informara de hasta que altura llegan los bloques del terreno en cada punto (x,z)
requerido. Este modo de generacién es rdpido y realista, pero no es capaz de generar cuevas, o
acantilados. El tipo de cubo colocado variard también con la altura: El bloque m3s alto sera de
hierba si esta a una altura baja, o de nieve si es alta. Los bloques inferiores a éste seran todos
de tierra. Todo bloque por encima de la altura marcada sera aire, salvo si se encuentra por
debajo del nivel del mar, siendo agua. El ruido de tres dimensiones, por su parte, se usa como
una funcién de densidad en cada punto (x,y,z) del terreno, en la que se considerara un
resultado por debajo de un valor prefijado (por ejemplo, cero) como terreno sélido y un valor
por encima como aire. Esto si genera cuevas o acantilados en el terreno, pero es un orden de
magnitud mas lento que la anterior aproximacion. En este proyecto se hacen uso de ambos
modos dependiendo del tipo de mapa, siendo esto detallado en la siguiente seccion.

En el caso de ruido 2D, a pesar de las propiedades favorables para la generacion de
terrenos que éste posee, samplear un solo ruido resultard en un terreno muy repetitivo,
realista pero sin variaciones significativas. Por ello, hacemos uso de tres funciones de ruido
diferentes:

- mapBase: Ruido suave y de variacion lenta. Crea praderas suaves. Un ejemplo de mapa
generado usando tan solo esta funcion puede verse en la figura 3a.

- mapElevation: Ruido de variacién rapida. Crea montafias. Un ejemplo de mapa
generado usando tan solo esta funcién puede verse en la figura 3b.

- elevationCoef: Ruido irregular de variacidon lenta. Especifica cdmo de relevante es
mapElevation en cada punto.

La forma de combinar estos ruidos tiene el formato:
mapBase + (mapElevation * elevationCoef f)

Con algunas variaciones. Esto generard un mapa mds complejo, con praderas suaves en
algunas zonas, y montafias escarpadas en otras (ver figura 4). Usamos esta técnica en el tipo
de mapa Islands y en el tipo de mapa SnowyMountains.



Figura 3a: Mapa generado usando la funcién Figura 3b: Mapa generado usando la funciéon
mapBase mapElevation

Figura 4 - Mapa generado combinando mapBase y mapElevation mediante elevationCoeff

Generamos, basandonos en lo explicado anteriormente, seis tipos diferentes de mapas:

- Islands: Genera islas interconectadas, con praderas y montafias. Un ejemplo de este
mapa puede apreciarse en la figura 31 del Anexo 4.

- Snowy Mountains: Resultado de multiplicar por un indice mayor el valor del ruido con

respecto a lo hecho en Islands al calcular la altitud de cada punto. Genera un mapa con
variaciones de altitud mas significativas, con montafias muy altas y extensas, y algunas
praderas bajas con lagos. Un ejemplo grafico se encuentra en la figura 32 del Anexo 4.

- Plains: Solo usa el ruido mapBase, asi que solo contiene praderas, y océanos poco
profundos. Ver figura 33 del Anexo 4.



- Buggy caves: Usa ruido 3D (sumandole a la densidad un valor exponencial en funcidn
de la altura, lo que lo hace generar menos terreno a medida que la altura sube) y ruido
2D para controlar la altitud de cada grupo de bloques. Genera un mapa de cuevas con
algunos errores en el terreno intencionales, que le dan un buen aspecto. No genera
agua. Una escena renderizada usando este mapa se puede apreciar en la figura 34 del
Anexo 4.

- Floating world: Usa ruido 3D, sumandole a la densidad un valor que solo disminuye al
estar cerca del suelo o al estar a una altura determinada (recordemos que, en nuestra
implementacién, una densidad menor que cero es terreno). Esto genera un mapa
relativamente suave, con islas flotantes que arrojan sombras en el terreno. No genera
agua. Dos imagenes de un mapa creado usando este pardmetro se pueden ver en las
figuras 35 y 36 del Anexo 4.

- Underwater ruins: Mediante operaciones con el ruido 3D, genera un entramado de

cuevas. Tras ello, se aplica agua hasta cierta altura, con lo que se forman unas islas con
unos océanos profundos. Se generan bloques de luz bajo el agua de forma aleatoria,
con lo que el jugador podra explorar las cuevas submarinas buceando. Una imagen
mostrando la superficie de este mapa se puede encontrar en la figura 37 del Anexo 4.
Una imagen subacuatica del mismo se aprecia en la figura 38 del Anexo 4.

Para todos estos mapas, se hard una segunda fase de generacion para cada chunk,
para la que se esperara a que todos los chunks colindantes a él (sus chunks vecinos) se hayan
anadido a escena. Esta segunda fase servird para anadir arboles, generados también
proceduralmente, o vegetacién. La razén por la que se espera a una segunda generacién es
que, si algun vecino no estd afiadido aun y el arbol generado tenia (por ejemplo) una rama que
pasara por ese chunk que aun no existe, el drbol no podria ser generado completamente, y
apareceria cortado en el terreno. Tanto los arboles como la vegetacién requerirdan de un cubo
de aire inmediatamente superior a un cubo de hierba, e iluminacién natural suficiente. Un
arbol aparecera de media cada 200 cubos, vegetacion verde cada 10 y plantas amarillas cada
50. La vegetacion solo comenzard a ser generada a partir de un bloque por encima del nivel del
mar.

La altura de los arboles serd aleatoria, entre tres y nueve bloques. Con una
probabilidad proporcional a su altura, el drbol podra hacer crecer una rama en una direccion
aleatoria, de longitud menor que dos tercios de la altura del arbol. Tras ello, el arbol se llenara
de hojas.

2.3.2. Mundos infinitos

La posibilidad de la existencia de mundos infinitos genera otro problema: Al alejarnos
del origen, comienzan a aparecer problemas con la precision de los floats, lo que produce
errores graficos y légicos (movimiento entrecortado, deformaciones en el terreno, fallos en el
motor de colisiones, fallos en la generacion de terreno), como se puede apreciar en las figuras
5a y 5b. La solucidn sera cambiar todos los floats del jugador y del sistema de Simplex Noise
por doubles (arreglando asi el movimiento y las colisiones). No obstante, OpenGL no puede
usar doubles, asi que para arreglar los errores graficos deberemos crear un modelo de
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rendering basado en la posicion del jugador como origen, manipulando manualmente cada
vector traslacion de cada matriz de modelo en funcién de la posicion del jugador antes de
poder enviarlas a la tarjeta grafica. La matriz vista, por su parte, tendra siempre una traslacion
igual a cero.

No obstante, el mundo no es totalmente infinito. A pesar de poder solventar el
problema de los floats, el overflow de los int es inevitable llegado a algin punto. A pesar de la
posibilidad de cambiar cada int del programa por un long (O por un Biginteger si se desea un
mundo verdaderamente ilimitado), se ha considerado que una anchura de mapa de 4.294.967

km, con un drea 36.162.995 veces mayor que la de la tierra, es suficiente en este caso
concreto. Este limite puede apreciarse en la figura 6, que muestra a esa distancia un corte
abrupto en el terreno, con una ausencia absoluta de fallos graficos.

Figura 5a - Antigua distorsion grafica a 10.000km del Figura 5b - Antigua distorsion grafica a 100km del
origen origen

Figura 6 - Limite del mundo actualmente, a 2.147.484 km del origen
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2.4. Estructura multihilo

En un motor grafico en tiempo real como éste, una ejecucién suave y sin bloqueos
debido a cdlculos complejos es imprescindible. Al estar creando la ilusion de movimiento en
pantalla al cambiar numerosas veces por segundo la imagen que esta muestra, cualquier
bloqueo inesperado, por corto que sea, hara que la imagen actual permanezca en pantalla mas
tiempo del normal, rompiendo la ilusién y causando una sensacién desagradable en el usuario.
Por tanto, todo el hilo principal encargado de calcular el movimiento del jugador, pintar la
pantalla, etc. Debe ser lo mas ligero posible.

Por ello, se han separado las dos tareas mas computacionalmente costosas (generar
los chunks mediante ruido y generar el buffer de vértices que debe ser enviado a la tarjeta
grafica cada vez que un chunk cambia) en dos hilos diferentes. Asimismo, se ha creado otro
hilo aparte para las operaciones de Input / output ya que, a pesar de no ser estas tan
computacionalmente caras como los dos casos anteriores, generan numerosos bloqueos
indeseados al ser el disco duro mucho mas lento que la memoria RAM. Se detalla en
profundidad cada hilo a continuacién:

- ChunkGenerator: El hilo principal guarda peticiones de afiadido de chunks en un stack.

Este hilo los inicializa, generandolos con ruido si no existen o cargandolos de disco si ya
se encuentran guardados en el mismo. Tras ello, afiadira el chunk ya inicializado a una
cola de espera del hilo principal, para ser afiadido al almacén de chunks definitivo.

- ChunkUpdater: Para cada chunk que se le proporcione, en funcion de los contenidos
del mismo generard un buffer de vértices en punto flotante correspondiente a la
representacion grafica de ese chunk en un mundo 3D. Este buffer tan solo tendra que
ser enviado a la tarjeta grafica por el hilo principal. Por defecto, generara primero los
buffers de los chunks mas cercanos al jugador, logrando asi una carga de mapa
centrada en éste.

- ChunkStorer: Se encarga de guardar chunks en disco, evitdndole esa tarea al hilo
principal, e interaccionando con la clase FileManager. A pesar de que
computacionalmente no tendra que hacer labores muy complejas (comprimir chunks y
guardarlos), se mantendra la mayor parte del tiempo esperando en bloqueos de disco,
tarea que le debemos evitar al hilo principal.

- Hilo Principal: Se encarga de hacer todas las llamadas pertinentes a OpenGL, que solo
pueden ser realizadas desde éste, como dibujar cada chunk en pantalla o enviar los
buffers de vértices de los mismos, aportados por ChunkUpdater, a la tarjeta gréfica.
Asimismo, gestiona el motor de fisicas, eventos, el movimiento del jugador y genera
peticiones de borrado o afadido de chunks.

Incluso en computadores modestos con tan solo uno o dos nucleos esta estructura es positiva,
al permitir a los demas hilos seguirse ejecutando mientras alguno de ellos permanece en algun
bloqueo. Las tareas en las que se han dividido exigen una minima cantidad de sincronizaciones,
al estar completamente separadas desde el punto de vista légico.
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2.5. Mundo dinamico

Lo que hace a este tipo de motores Unicos es la posibilidad de modificar cualquier
parte del mapa en tiempo real, en contraposicién a los habituales proyectos existentes en los
gue el mapa es un ente completamente estdtico y pre generado. Esta es la razén por la que el
hilo ChunkUpdater existe: Si el mundo jamdas cambiara, podriamos directamente cargar ese
buffer de vértices del disco, o similares. De este modo, no obstante, tenemos que recrear ese
buffer cada vez que un cubo cambie en el chunk, para después sobrescribir el contenido
guardado en el vbo® de la tarjeta grafica por el nuevo recién generado.

Esto también hace posible la carga dinamica de mundo, al solo tener que
preocuparnos por cargar los chunks mas cercanos al jugador. Los mds lejanos seran borrados, y
para volver a cargarlos solo tendremos que tratarlos como un chunk que acaba de cambiar, y
en funcién de sus cubos se generard un buffer de vértices de forma limpia y rapida.

A pesar de que el contenido de cada chunk puede cambiar en cualquier momento,
seleccionamos como tipo de almacenamiento de memoria la propiedad GL_STATIC_DRAW,
gue asume que el contenido del buffer no va a cambiar, aportando una mayor velocidad de
dibujo y una menor velocidad de actualizacidon de contenido. La razén para ello se basa en que
muchos chunks del mundo jamds serdn modificados por el jugador y, los que los sean, lo seran
solo a nuestra escala temporal (por ejemplo, una actualizacion por segundo) que, aunque para
nosotros es un instante breve, para una computadora es una cantidad de tiempo realmente
alta. Se recomienda que la actualizaciéon peridédica de cubos (agua expandiéndose, TNT
explotando, etc.) se realice con valor temporal suficientemente bajo como para que al jugador
no le sea molesto, pero extremadamente alto desde el punto de vista de la computadora. Por
defecto, en nuestro prototipo, este valor ha sido configurado a 0.3 segundos.

2.6. Motor fisico

Se implementa un motor fisico basico para el jugador, en el que se gestiona su
movimiento, colisiones con el mundo, gravedad, etc. En concreto, se gestionan tan solo una
serie de propiedades variables, siendo tras ello toda variacién de posicién el resultado de
movimientos en torno a los tres ejes. Las propiedades son:

- grounded: Si el jugador estd tocando tierra. Esto activa la capacidad de saltar, por
ejemplo. Si esta variable es falsa, se incrementara la velocidad vertical, hasta colisionar
en el eje Y con algun cubo, momento en que la velocidad vertical es puesta a cero y
grounded pasa a ser verdadero.

- flying: Si el jugador esta volando. EI modo volar se activa por defecto pulsando la tecla
SHIFT (ver Anexo 1), y se desactiva volviéndola a pulsar. Si el jugador esta volando, su
velocidad se incrementara significativamente y podra saltar sin estar tocando tierra.

- climbing: Si el jugador esta trepando. Esta propiedad se activa mientras se intente
avanzar hacia un muro, y si la velocidad vertical es mayor que -1m/s. El jugador

° Buffer de OpenGL en el que se insertan los datos para cada vértice a dibujar. En nuestra
implementacion, cada chunk posee uno diferente.
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comenzara a trepar por ese bloque, subiendo a 2/3 de su velocidad normal. La
gravedad no afecta al personaje si climbing es verdadero.

- underwater: Si el jugador estd bajo el agua. Bajo el agua, la velocidad desciende, la
velocidad de caida se limita y se activa la posibilidad de saltar sin estar tocando tierra
(nadar hacia arriba)

Considerando estas propiedades, el movimiento se calcularad trigonométricamente en
funcién del dngulo de visién en el plano XZ y una velocidad mddulo, que serd aumentada al
volar y reducida al nadar. Si el jugador no estd tocando tierra (grounded), la gravedad
comenzara a afectarle, agregdndole una velocidad creciente en el eje Y en funcién de la
gravedad a la que el mundo se encuentre configurada. Sabiendo el tiempo pasado desde el
anterior frame de movimiento, podremos obtener la distancia total a recorrer. Se realizara el
movimiento en cada eje de forma separada y por partes, comprobando la propiedad isSolid de
cada cubo por el que vaya a pasar cualquier parte del cuerpo del jugador, teniendo en cuenta
su tamanfo y altura y deteniendo el movimiento en cuanto un obstaculo se encuentre, sea cual
sea nuestra velocidad.

Esta posicion x, y, z del jugador, sumandole la altura de los ojos del mismo, serd la
utilizada como centro del mundo, restandola manualmente a la traslacion de las matrices
modelo de los chunks a la hora de dibujar.

En el prototipo desarrollado contamos por defecto con un mundo de gravedad 15m/s?
y un personaje de anchura 0.8m y altura 1.8m, con los ojos posicionados a una altura de 1.65m
y una velocidad mdédulo de 5m/s. Estos valores son totalmente modulares, pudiendo ser
alterados libremente en cualquier implementacién que se desee realizar sobre este motor.

En cuanto al agua, su sistema fisico de propagacion se basa en unas reglas sencillas:

- Si el bloque inferior es aire, agua o vegetacion, crear abajo un bloque de agua de nivel
maximo.

- Si el bloque inferior es sdlido, modificar los cubos a los lados de este, si no son sélidos,
plantas o liquidos por un cubo de liquido con un nivel una unidad menor que el nivel
del liquido del cubo actual. Si ese nivel fuera a ser menor que cero, no hacer nada.

Un ejemplo de este sistema de propagacion puede apreciarse en la figura 7, que muestra agua
fluyendo en una estructura de canales construida por el jugador.
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Figura7- Flujo de agua

2.7. Optimizaciones logicas (mejora de eficiencia)

Se desea mantener la mayor cantidad posible de cubos en pantalla al mismo tiempo.
Ademas, se desea que la carga de mundo sea todo lo rapida que sea posible, y que no haya
ninguna clase de bloqueos durante la ejecuciéon de este motor. En el caso de los bloqueos,
aunque pueda parecer que nos hemos librado de la gran mayoria gracias a la estructura
multihilo, queda un gran problema por solucionar. Java es un lenguaje que cuenta con un
recolector de basura. En aplicaciones de otro tipo, la ejecucién del mismo no es apreciable,
pero en aplicaciones en tiempo real, éste para brevemente la ejecucién del hilo principal a su
paso el suficiente tiempo como para que sea percibido por el jugador, resultando en una
experiencia molesta. Como no poseemos control directo sobre el recolector de basura ni
podemos indicarle en que momentos o no pasar, no nos queda otra opcidn que intentar hacer
gue su ejecucién sea lo mas ligera posible, evitando interferir con el normal funcionamiento
del programa. Para ello, la Unica opcién que tenemos es tratar de minimizar, en todo
momento, la cantidad de objetos a ser destruidos. Para ello, usaremos Pooling.

El Pooling'®es un patrén de disefio que permite reciclar objetos ya indtiles, para ser
reutilizados mas tarde. La mayor cantidad de memoria destruida es causada por el borrado y la
creacion automatica de chunks cada vez que el jugador se mueve: Cada chunk contiene dos
arrays de 32x32x32 bytes, uno para almacenar los cubos y otro para almacenar la luz de los
mismos, sumando ambos un total de 64KB de memoria. La opcidon mas ldgica, por tanto, sera
gestionar la creacién y destruccion de estas listas mediante una Pool, lo que permitird que la
memoria que antes usaba un chunk sea reutilizada por otro creado posteriormente. Esto
soluciona dos problemas: Elimina una enorme cantidad de trabajo del recolector de basura y

' Game Programming Patterns: Object Pool [Citado el 18/06/2016]
http://gameprogrammingpatterns.com/object-pool.html
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acelera la creacion de chunks, dado que no es ya necesario reservar dindmicamente una gran
cantidad de memoria por cada nueva inicializacidn. La desventaja que este método posee es
qgue al reciclar un array es posible que éste no esté inicializado a cero, pudiendo causar
problemas en arquitecturas que den por hecho este estado inicial, o un gasto de tiempo en
recorrer cada array para reinicializarlo. Por ello esta Pool, llamada ByteArrayPool, almacenard
una lista de arrays “sucios” y una lista de arrays a cero, devolviendo en cada caso la mas
necesaria para cada ocasidon. Ademads, el hilo con menos trabajo (ChunkGenerator) se
encargara de llenar arrays de ceros en su tiempo libre.

Esta aproximacién sera tomada también para los buffers de floats, usados para
guardar los vértices a ser dibujados para cada chunk antes de ser enviados a la tarjeta gréfica,
y para buffers de bytes, usados para cargar imagenes.

Otro gran problema es el alto gasto de memoria que tal cantidad de chunks provocan,
sobre todo considerando que la memoria asignada a java suele ser relativamente baja en
comparaciéon a la memoria total del computador. En concreto, en un mundo con una distancia
de render de, por ejemplo, 10 (Siendo la usada en Minecraft), la cantidad de chunks en
pantalla al mismo tiempo es de 3528, dando un total de gasto de memoria, solo en arrays de
luz y cubos, de 220°'5MB. En otro lenguaje de programacién con acceso a toda la memoria
RAM del computador, esta cifra seria aceptable. Sin embargo, en el caso de Java, la memoria
que se asigna es limitada. Debemos, por tanto, intentar comprimir de alguna forma el
contenido de los chunks existentes, sin empeorar excesivamente el tiempo de computacion.
Para ello, nos aprovechamos de que hay una gran cantidad de chunks formados
exclusivamente por un tipo de cubo: Aire o tierra. De todos estos, el predominante es el aire,
ya que muchos mundos no suelen sobrepasar los cuatro chunks de altura, y la altura maxima
del mundo, es de, por defecto, ocho chunks. Es decir, que la mitad del mapa estd compuesta
por arrays vacios.

Abstraeremos por tanto estos arrays, encapsulandolos en una clase genérica. Cuando
detectemos que todo el chunk esta formado por el mismo cubo, o que toda la luz del chunk es
idéntica, reciclaremos ese array y lo cambiaremos por un solo byte constante, que sera el valor
devuelto cuando se intente obtener cualquier cubo o luz del chunk. Con esto, reduciremos el
consumo de memoria a, aproximadamente, un cuarto de la usada anteriormente.

2.8. Gestion de datos en disco

Aunque dedicar un fichero en disco para cada chunk es la opcidon mas sencilla
existente, se trata de una practica muy poco eficiente. Como ya se ha descrito anteriormente,
usando una distancia de render razonable como 10 chunks tendremos 3528 chunks al mismo
tiempo en pantalla. Sélo éstos, considerando que el jugador no se ha movido en ningln
momento y son los Unicos generados, conllevarian ya la creacion de 3528 ficheros. Cuando el
jugador comenzara a moverse y llegara al punto en el que se deben descargar chunks lejanos y
generar nuevos cercanos, seria necesario escribir un total de 168 ficheros nuevos, y cargar
otros tantos. Esta es una practica realmente problemdtica, por muchas razones.
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- Cuanto mas alto es el nimero de ficheros en una carpeta, mas costoso es encontrar un
fichero en particular en la misma. Si guardaramos el identificador de cada chunk en el
nombre de su fichero correspondiente, deberiamos dedicar una gran cantidad de
tiempo para tan solo descubrir si el mismo existe ya en disco, o no.

- El mero hecho de abrir un fichero para leerlo o escribirlo conlleva multiples llamadas
computacionalmente caras al sistema operativo. Aunque la apertura de un solo fichero
particular en un momento puntual puede no parecer extremadamente costosa, la
apertura de (como se ha detallado antes) 168 ficheros para guardar archivos lo mas
rapido posible conllevaria una gran cantidad de bloqueos y tiempo desaprovechado.

Ambas razones hacen a esta practica inviable, mds aun al tratarse de un programa en tiempo
real.

Esta claro, por tanto, que el problema radica en el nUmero de archivos. Al igual que las
razones que nos llevaron a agrupar cubos en chunks, éstas nos deberdn llevar a crear
agrupaciones grandes de chunks en ficheros especializados. Esta aproximacion, llamada
ficheros de regién®, es la que han tomado muchos juegos de este estilo.

Un fichero de region agrupa en su interior grupos grandes de chunks. En concreto, en
nuestra implementacidon se ha observado que un tamafio de 8x8x8 chunks ofrece buenos
resultados. Necesitaremos para esto alguna forma de escribir y leer en partes no secuenciales
del archivo, tareas para las cuales la clase RandomAccessFile nos ofrecera todas las utilidades
gue necesitemos.

Seria problematico, no obstante, volver a tomar en este momento la aproximacién
mas intuitiva, creando grandes ficheros de regién vacios y asignar, mediante alguna férmula,
una posicion en el archivo a cada chunk que requiera ser escrito en el mismo. Esta
aproximacion, teniendo en cuenta que cada chunk posee un total de 32KB de datos de cubos,
generaria ficheros de regién con un tamano, cada uno, de 16MB, estando la mayor parte
vacios. Un mapa normal, sin alejarnos en exceso del origen, podria ocupar facilmente unos
200Mb. Esto es completamente inadmisible.

Una buena solucién pasara por no afiadir ningin chunk al fichero hasta que no sea
necesario. Cuando lo sea, se anadira al final del mismo. Aplicando técnicas de compresion
como RunlengthEncoding™ y ZLIB (existente por defecto en las librerias de Java) serd posible
reducir el tamafio de cada chunk significativamente. De hecho, siendo el mapa tan
homogéneo, una compresidon como RunlengthEncoding reducira el tamafio de cada chunk, de
media, a una veinteava parte del original. Tras aplicar estas compresiones, el tamafio final de
los datos comprimidos, a usar a la hora de leerlos, no es ya posible de calcular. Por tanto,
dedicaremos tres bytes antes de comenzar a escribir los datos comprimidos para almacenar el
tamafio en bytes de datos que el chunk ocupa en disco, y el bit mas significativo para

11Creating a Region File System for a Voxel Game. Benjamin Arnold [Citado el 18/06/2016]
https://www.seedofandromeda.com/blogs/1-creating-a-region-file-system-for-a-voxel-game

“Run-length encoding. Wikipedia [Citado el 19/06/2016] https://es.wikipedia.org/wiki/Run-
length_encoding
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comprobar si el chunk ya ha pasado la segunda generacion (uno) o no (cero), con objeto de
aplicarsela al cargarlo si las condiciones son correctas (todos los vecinos se han afiadido).

Como los chunks ya no tienen un tamafio fijo y pueden ser afiadidos en cualquier lugar
del fichero, comportandose ya éste como una especie de lista dindmica, dividiremos el mismo
en sectores de tamano fijo, de forma que si un chunk se expande o reduce tenga cierto
margen hasta que haya que reescribir el fichero entero por falta de espacio (si un chunk
comprimido ocupaba 500b y al reescribirlo ocupa 600b, y el sector ocupa 512b, estos datos ya
no cabran en un sector, sino en dos. No obstante, el siguiente sector puede estar ya en uso,
con lo que la solucién serd reescribir el archivo, ampliando el tamafio de este chunk a dos
sectores). Usamos por tanto en esta implementacion un tamafio de sector de 1024 bytes, cifra
gue ofrece una buena relacion entre espacio malgastado y nimero de reescrituras de archivo.

Ademas, necesitaremos alguna clase de indice al principio del fichero para poder
localizar la posicion de cada chunk. Reservaremos para ello cuatro bytes por cada posible
chunk (un total de 2048 bytes) al principio del fichero. El primer byte marcara el tamafio en
sectores que el chunk comprimido ocupa, y los ultimos tres bytes, el sector de comienzo del
mismo. Un tamafio de chunk igual a cero significard que el éste no existe adn en el fichero.
Ademas, con objeto de aumentar aun mds la compresién, si un chunk estd formado
enteramente por un tipo de cubo (por ejemplo, solo aire), se guardara con un tamano de -1 en
este indice, usando el Ultimo byte reservado para la posicién para indicar, en vez, que cédigo
de cubo es el repetido en la totalidad del chunk. De esta forma, los chunks vacios, o los llenos
de materiales homogéneos, no ocuparan ni un solo sector de espacio en el fichero, quedando
comprimidos dentro del propio indice.

Por ultimo, hemos aplicado técnicas para acelerar ain mas el proceso de Input /
Output. Guardamos una lista bidimensional de ficheros de regién abiertos, con un tamafo
igual al maximo de ficheros de regién que pueden ser abarcados por la distancia de render
actual. Asi minimizaremos la apertura y cierre de ficheros, ocurriendo solo en algunos puntos
al movernos por el mapa. Asimismo, para cada fichero de region abierto cachearemos su
indice entero, guarddandolo en RAM. Cada lectura del indice se podra realizar ahora en la RAM,
a costa de un mayor gasto de memoria, pero dividiendo las lecturas de ficheros a la mitad en el
peor caso (chunk existe en el fichero) y a cero en el mejor (chunk no existe aun en el fichero, o
esta formado en su totalidad por el mismo cubo). Esto nos permitird obtener velocidades de
carga de mundo desde disco mads altas que la propia velocidad de generacién procedural de
ese mundo usando funciones de ruido.

Todos estos archivos se guardardn dentro de una carpeta cuyo nombre sera igual al
nombre que se le ha dado al mapa creado, con el nombre f_<x>_<y> <z>.kxw. Cada chunk
comprobara a que fichero de sectores pertenece aplicando, la formula

(x,v,2) = (floor(chunkx/8), floor(chunky/8), floor(chunkz/8))

Por su parte, los datos generales para el mundo (semilla del mundo, posicion del jugador,
momento del dia, tipo de mapa, etc.) se guardaran en un archivo estandar de texto llamado
settings.txt
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Un ejemplo de esta técnica de almacenamiento en disco puede apreciarse a
continuacién en la figura 8, en la que suponemos un tamano de regién de dos chunks para que
la explicacién resulte mas simple. El chunk cero indica, con su tamafo -1, que es uniforme, y
no ocupara un sector en el archivo. Como vemos, en su bit de ubicacién menos significativo
hay un dos, con lo que serd un chunk con todos los cubos de id=2. En caso del chunk uno,
vemos que ocupa un sector de espacio y esta en el sector 0x00 00 00. Al posicionarnos en ese
sector y combinar los bytes ocho, nueve y diez tendremos, en el bit mas significativo, si los
arboles y vegetacidn del chunk han sido ya generados, y en los demas bits la longitud en bytes
del chunk en disco. Leemos esos bytes comenzando desde el byte 11 y descomprimimos lo
obtenido usando ZLIB vy, tras ello, RLE. Tendremos ya los bytes del chunk, que podremos
insertar en un array tridimensional.

0 1 2 3 4 6 7
-1 0 0 2 1 0 0 0
8| 9| 10 11| | 1035

Tamario en bytes de chunk 1 Datos chunk 1 {Comprimidos con RLE y ZLIB)

Figura 8 - Ejemplo de chunks guardados con este método, suponiendo un tamafio de sector de 2 chunks.
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3. RENDERIZACION

Se detallan a continuacién todas las consideraciones tomadas en el desarrollo de la
parte grafica del motor, ejecutadas sobre la GPU de nuestro computador. Los algoritmos
detallados a continuaciéon exigen una tarjeta grafica moderadamente potente y con una
memoria grafica elevada. Sin embargo se han incluido en el menu opciones para desactivar
alguna de estas caracteristicas graficas con objeto de lograr una ejecuciéon correcta en
ordenadores mas modestos.

Existen en la parte grafica también ventajas a la hora de desarrollar nuestro propio
motor grafico para este género en contraposicidén a usar uno ya existente. Al saber que todos
los cubos miden lo mismo, estan posicionados secuencialmente y estan alineados con los ejes,
no nos sera necesario indicar para cada vértice enviado a la GPU que coordenada de que
textura cada cubo usa, al poder deducirlas simplemente con la posicién del mismo. Ademas,
podremos precalcular iluminacién dindmica, como se detalla mas adelante, o renderizar agua
en multiples alturas y direcciones de visualizacidn, situaciones no existentes en otros géneros y
para las que, por lo tanto, los motores graficos genéricos no estan disefiados.

3.1. Iluminacién

Un sistema de iluminacion completo debe contener tanto la iluminacién causada por el
sol, creando ciclos de dia y noche, como la iluminacidn causada por cada uno de los posibles
cubos de luz de la escena, causando luz artificial. Esta iluminacién serd computada a nivel de
shader, manteniendo en cada punto la que mas predomine. Mientras que la iluminacién
artificial sera constante, la luz natural nocturna brillard a un nivel del 15% de la luz diurna.

No existe un nivel minimo de luz, con lo que en las cuevas mas profundas, donde ni tan
siquiera un atisbo de luz indirecta solar llegue, todo sera negro.

3.1.1. Ciclos de dia y noche

Se buscaba generar un cielo diurno relativamente fotorrealista actualizable en tiempo
real y de generacion relativamente sencilla, basandonos tan solo en un vector de direccion de
vista. Se ha decidido, por cumplir todos esos puntos, implementar el paper “A Practical
Analytic Model for Daylight”, de A. J. Preetham [1]. En concreto, se ha extendido y trasladado
a Java la implementacion del mismo propuesta en [2], con algunas diferencias.

A pesar de la recomendacién del autor de usar un tetraedro o un cubo para plasmar el
cielo, en nuestro caso este cambia en tiempo real. Teniendo ello en cuenta, y aprovechando el
uso de DeferredShading™>podemos renderizarlo sin el uso de ninguna clase de geometria extra,
shader especializado o Ilamada de dibujo. Para ello, comprobaremos la profundidad de la
escena en cada pixel. Si esta es igual a uno, asumiremos que no hay nada tapando el cielo y lo
dibujaremos aportandole al método la direccidn de visualizacion en coordenadas de mundo,
precalculada segun el modelo presentado por Crytek [16].

B Técnica de render detallada en el punto 3.4
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La turbiedad del cielo ha sido elegida mediante prueba y error, con un valor final de
2’7 en nuestra implementacion. Asimismo, consideramos una latitud, longitud y dia del afio
constante en toda la ejecucidn, con objeto de evitar angulos poco estéticos del sol a la hora de
arrojar sombras. Este dia, en recuerdo del dia en el que este algoritmo fue implementado, serd
el 25 de Agosto del 2015. En cuanto a la latitud y longitud, también constante, se ha elegido
una latitud de 0 y una longitud, al no ser relevante a excepcidn de para el calculo de la hora del
dia, exactamente igual a la ubicacidon de un punto de mi ciudad, -1.630753. Un ejemplo del
color del cielo al atardecer puede ser encontrado en la figura 9a.

El cielo nocturno es, por su parte, una imagen circular obtenida de Internet, que se
samplea trigonométricamente a partir de la direccion de la vision. Consideraremos una
direccion de visidn dirigida por debajo del horizonte como no cielo, y pintaremos el pixel
asociado del color de fondo del mundo, un azul dependiente de la luz del dia. El color nocturno
sera atenuado en funcién del momento del dia en que nos encontremos, comenzando a
aparecer gradualmente en un zenith™ igual a 1.1, aumentando en intensidad hasta el zenith
1.94, en el que alcanzara su maximo. Un ejemplo del color del cielo a medianoche puede
apreciarse en la figura 9b.

El color que este algoritmo arroja del cielo en horarios nocturnos es incorrecto. Por
tanto, marcaremos el color de dia como puramente negro a partir del zenith 1.94, mismo
momento en el que el cielo nocturno alcanza su maxima intensidad. En otras latitudes o dias
del afio esta cifra podria no ser lo suficientemente baja para que estos errores no aparecieran,
siendo esta la razén por la que es doblemente importante conservar el dia del afio, latitud y
longitud completamente iguales.

El color final del cielo serd igual a la suma del color nocturno y el color de dia (la luz es aditiva).

Se creard ademas otra variable, llamada daylightAmount, que reducira suavemente su
valor al aproximarse el anochecer, pasando de un valor de uno al mediodia a un valor de 0.45
tras la puesta de sol. Este valor serd multiplicado a todos los cubos a los que se vaya a aplicar
iluminacidon natural, haciendo la luz nocturna notablemente mds tenue que la diurna
(considerando que, ademas de este oscurecimiento, de noche todo el mundo estd en sombra,
lo que lo oscurece aiin mas).

14 Y . . .
Medicién usada en astronomia para simbolizar la altura del sol. Con valor 0, el sol se encuentra en
la cuspide del cielo. Con valor pi/2 el sol se encuentra a la altura del horizonte, simbolizando todo valor
mayor que ese un sol ain mas bajo y, por tanto, la noche.
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Figura 9a - Cielo diurno Figura 9b - Cielo nocturno

3.1.2. Propagacion de luz dinamica en un entorno voxel

Practicamente todos los proyectos 3D existentes tienen un problema con la cantidad
de luces en la escena, ya que a mayor cantidad de luces, mayor es la complejidad de los
calculos en la tarjeta grafica. Aunque el uso de DeferredShading disminuye este coste, sigue
siendo significativo.

En este motor grafico, sin embargo, todo cubo puede ser una fuente de luz en un
momento dado. Incluso aun creando los mapas sin fuentes de luz, nada impide al jugador
poner las que considere oportuno. No podemos, por tanto, tomar una aproximacion en la que
la cantidad de luces puedan ralentizar el juego.

La soluciéon a este problema es precalcular la luz en cada cubo de cada chunk, y
guardarla en otro array de bytes. Cada vértice subido a la tarjeta grafica tendra por tanto un
valor precalculado de luz artificial y de luz natural, resultante de interpolar la luz de todos los
bloques colindantes al mismo, con lo que el trabajo de calcular la iluminacidn ya estarad hecho
de antemano. Como deseamos dos tipos de iluminacion, natural (para luz propagada por el
sol) y artificial (luz propagada por bloques), pero no queremos gastar mas de un byte por
bloque, deberemos compactarlas. Por tanto, la luz natural ocupara los primeros cuatro bits del
byte y la artificial los cuatro ultimos. Esto nos proporcionard una intensidad de luz
comprendida entre los valores 15 y cero. Este valor entero sera traducido a un valor de luz
normalizado entre cero y uno de forma linear, dividiéndolo entre 15. A pesar de que la luz
decae exponencialmente, en este caso concreto una disminucién lineal de la intensidad da
también resultados aceptables, al tardar las luces mas distancia en comenzar a perder
intensidad, perdiéndola mas rapidamente al final.

La luz sera precalculada mediante un autdomata celular. Por cada bloque, toda luz se
extenderd a los bloques colindantes mientras estos no sean opacos, perdiendo un nivel de
intensidad. Por tanto, la maxima distancia que un cubo de luz podra iluminar sera de 15
bloques, suponiendo una intensidad inicial también mdaxima, de 15. La luz natural tendrd una
propiedad extra ademads de la anterior: Mientras la intensidad sea maxima (15) y el bloque
inferior no sea opaco ni impida el paso de rayos de sol (occludesNaturallight), la luz podra
propagarse hacia abajo sin perder intensidad, simulando los rayos de sol. Todas las

22



propagaciones / borrados de luz existentes en el proyecto son versiones optimizadas de estos
dos principios.

Cuando un chunk es inicializado, su valor de luz es cero para todos los cubos. El chunk
analizara la luz de los bloques colindantes a él desde cada chunk vecino en cada direccién, y
extendera la luz desde ellos a él de esta forma. Tras ello, analizara si en su interior existe algln
bloque fuente de luz, extendiéndola dentro de él mismo y potencialmente a algin chunk
vecino.

En el interior de los shaders, se comprobara la luz artificial (constante) y la luz natural
(afectada por sombras y por luminosidad del dia, daylightAmount). La iluminacion elegida serd
la que tenga mayor valor de ambas, razén por las que las luces en una casa, por ejemplo, no se
hardn aparentes hasta que se haga de noche.

Se muestra en la figura 10 un ejemplo de este sistema de propagacion de luz. Podemos
ver que, dada la corta longitud de los muros, algo de luz indirecta logra "escapar" por las
esquinas, con mucha menor intensidad. El color de fondo no es completamente negro al
encontrarnos en el exterior, y ser la luz nocturna levemente luminosa. En caso de habernos
encontrado dentro de una cueva, por ejemplo, la Unica luz existente seria la arrojada por
nuestro cubo de luz.

Figural0 - Propagacion de la luz usando un autémata celular, en una construccién con muros.
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3.2. Sombras

Para calcular sombras, la técnica mas popular existente es el Shadow Mapping®. Se
basa en redibujar la escena desde el punto de vista de la luz deseada (con matrices de
perspectiva para luces puntuales y con matrices ortogonales para luces direccionales, como el
sol), guardando solo el depth buffer en una textura aparte. Al dibujar la escena de forma
normal, se transformara cada pixel al espacio basado en el punto de vista de esa luz de nuevo,
y se comprobard ahi su profundidad. Si esa profundidad es igual que la profundidad guardada
para ese punto en la textura de sombras, el pixel estara iluminado por esa luz. Si, sin embargo,
la profundidad es mayor que la guardada, el pixel estara detrds de algin otro objeto tapandole
la luz, resultando sombreado.

Esta técnica posee un gran problema, entre otros. Al estar guardando toda la
informacion sobre las sombras de toda la escena en una textura de resolucidén limitada,
multiples pixeles del terreno caerdn, a la hora de la transformacién espacial, en el mismo pixel
de la textura de sombras, causando una resolucién extremadamente baja (tan baja, de hecho,
que resulta inaplicable). Si intentamos lograr sombras de alta resolucién, deberemos reducir el
area de la matriz de proyeccion de la luz. Haciendo que esta matriz solo abarque un area
cercana al jugador, lograremos unas sombras bien definidas durante unos metros. Mirando
mas lejos las sombras simplemente desapareceran, al no tener informacién de luz a la que
acceder al haber comprimido el area de la matriz de proyeccion de la luz a una zona pequefia,
y no a toda la escena. Esta desaparicién de sombras, aun pareciendo una mala practica, ha sido
(y continta siendo) la aplicada en muchos motores graficos.

Se ha implementado uno de los algoritmos de sombras mds usados a nivel profesional
en los actuales motores graficos modernos. Se descartaba su uso hasta hace relativamente
poco tiempo por la complejidad de su implementacién y su alto coste computacional y en
memoria, ya que hace necesario redibujar las sombras de la escena en varias ocasiones, asi
como reservar una gran cantidad de memoria grafica para texturas de profundidad. A cambio,
contaremos con sombras detalladas en todo el mapa, sea cual sea su distancia, opcidn
imposible usando algoritmos de sombras estandar. Su nombre es Cascaded Shadow Mapping
[10], [11].

Un ejemplo del aspecto de las sombras en la escena puede apreciarse en la figura 11.
Se pueden apreciar sombras de alta calidad en la proximidad a la cdmara, donde las hojas del
arbol cercano permiten pasar algunos rayos de sol. A lo lejos se puede ver que los arboles
proyectan también sombras detalladas, logrando sombrear con éxito y alta calidad a una
escena entera, lo que no es posible usando Shadow Mapping simplemente.

Una explicacion detallada del desarrollo de este algoritmo se encuentra en el Anexo 3.

> Tutorial 16: Shadow Mapping. [Citado el 18/06/2016]
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
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Figura 11 - Sombras al anochecer

3.3. Agua fotorrealista

Renderizar agua fotorrealista en tiempo real es una tarea extremadamente compleja,
gue no ha podido ser acontecida hasta hace relativamente poco tiempo. Aun asi, por su
complejidad y, ante todo, por estar trabajando con un sistema basado en matrices de
proyeccion a pantalla en vez de con un trazador de rayos, los métodos que se suelen proponer,
aunque simulan los fendmenos y caracteristicas de este liquido, no lo hacen de forma realista.
De hecho, al contrario que en muchas areas, aun no existe un estandar para enfrentarnos a
este desafio, causando que el agua varie radicalmente entre proyectos, tanto en métodos
como en calidad y eficiencia.

En concreto, en los motores graficos basados en cubos existentes en el mercado no
existe practicamente ningln ejemplo que intente generar un agua relativamente realista,
basandose muchos en meras aproximaciones de la misma o, en caso del titulo Minecraft, en
una capa azul semi-transparente. La razén para este descuido de la estética del medio liquido
en este tipo de motores se basa en tres inconvenientes que complican incluso mas la ya
compleja tarea del renderizado de agua foto realista: El agua no estd siempre en la misma
altura (se pueden poner cubos de agua por encima del nivel del mar), el agua puede ser vista
desde mas direcciones que verticalmente (en el caso de un cubo de agua suspendido en el
aire, o en una ladera de la montafia) y se pueden dar casos en los que, en un pixel de vision, un
rayo entre y salga de cubos de agua secuenciales en repetidas ocasiones, haciendo casi
imposible calcular la distancia recorrida bajo el agua del rayo de luz.

El método presentado a continuacion es el resultado de la lectura de numerosos
papers diferentes sobre el tema, a la par que la aplicacién de algunas técnicas poco usadas
para este propdsito con objeto de intentar enfrentar los tres problemas que un motor de
cubos afade a esta area.
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Los seres humanos distinguimos agua de forma instintiva. No obstante ésta es un
material con unas propiedades muy sutiles, que bajo algunas circunstancias causarian, de
carecer nosotros de esa percepcion afinada hacia la misma, que no pudiéramos llegar a
apreciarla. Tomemos por ejemplo un vaso lleno de agua, transparente y calmada. La Unica
diferencia con respecto a un vaso vacio es la refraccion que esta causa sobre los colores del
fondo. En caso de ser el fondo de un color homogéneo, podremos seguir distinguiéndola, al
estar el ojo preparado para detectar cualquier minima variacién que esta cause (por ejemplo,
la tensidn superficial). Esto no ocurre con practicamente ningln otro material existente. Es por
ello que, aunque para (por ejemplo) renderizar arcilla nos bastaria con cubrir sus propiedades
mas basicas y el jugador la reconoceria como tal al instante, para el caso del agua deberemos
intentar mimetizar la mayor parte de sus propiedades si queremos causar esa misma
respuesta en la mente de los que observen nuestro proyecto en funcionamiento.

Entre las propiedades del agua, estas seis son las mas notables:

- Reflexién

- Refraccidn

- Extincién / Scattering de la luz en funcidén de la distancia
- Perturbaciones (oleaje)

- Reflejos de luz

- Fresnel

En la prdctica, podemos no cumplir una de estas propiedades sin que existan problemas.
Cumplir solo cuatro de ellas o menos, no obstante, rompera la ilusidn de realismo.

Tras implementar todas estas propiedades en nuestros bloques de agua, obtendremos
imagenes como las ilustradas en las figuras 12 y 13. Una explicacién detallada de Ia
implementacién de cada propiedad del agua puede verse en el Anexo 2.

Figura 12- Agua final, producto de combinar todas estas propiedades
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Figura 13 - Visién subacudtica

3.4. Deferred Shading

El Deferred Shading [13] es un paradigma de programacion grafica de popularidad
creciente orientado a GPUs de alta gama®, que cambia el orden natural de dibujo en pantalla.
Por defecto, sin usar Deferred Shading, se suelen agrupar todas las funcionalidades de dibujo
en un shader haciendo que dibuje los pertinentes poligonos en pantalla, aplicandoles las
operaciones necesarias. Para shaders basicos esto no produce problema alguno, pero en
shaders muy complejos computacionalmente se va a perder mucho tiempo calculando el color
de pixeles que serdan después ocultos por otros poligonos para los que habra también que
calcular su color. En una escena compleja este escenario puede ocurrir numerosas veces por
pixel, en claro detrimento de nuestra eficiencia grafica al estar la GPU derrochando tiempo de
calculo en pixeles que jamas van a ser vistos.

Deferred Shading aboga por usar un shader simple para calcular la imagen producida
por los poligonos y después aplicar las operaciones graficas complejas sobre esa imagen
producida por el primer shader. Asi, garantizaremos que cada pixel sobre el que esas
operaciones van a ser aplicadas es el pixel final de la escena, que no va a ser ocultado por
ningun otro pixel mas cercano a la cdmara. No obstante, al trabajar sélo sobre una imagen a
color no tendremos toda la informacién que teniamos en el primer shader (la posicidon de cada
pixel en el mundo, su profundidad, su normal, etc.). El principal inconveniente de esta técnica
es que, para poder acceder a ellas, deberemos guardarlas también en texturas aparte,
consumiendo una gran cantidad de memoria grafica.

®Forward Rendering vs. Deferred Rendering. Brent Owens. [Citado el 18/06/2016]
http://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-
12342
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En este proyecto se usa un Deferred Shading de tres pasadas, necesitando tres
ordenes de dibujo sucesivas para obtener la imagen final a dibujar en pantalla. En concreto, se
distribuye de esta forma:

- Primera pasada: Muchos shaders simples generan texturas con datos a ser usados en
pasadas posteriores, como podemos ver en la figura 14. En concreto:

o Se generan las texturas de profundidad (de 16 bits) para cada shadow map.

o Se generan las texturas de profundidad (de 16 bits) para cada capa de agua
por cada pixel, generando también una textura que albergue la normal de la
primera capa de agua encontrada (rgb).

o Se genera la textura de color inicial (rgb) tras dibujar todos los poligonos.
Contendra solo el color de cada cubo en cada punto, sin sombras ni
iluminacion de ningun tipo. Se genera también una textura extra para guardar
la profundidad de cada pixel en pantalla (el depth buffer, 16 bits), a partir de la
cual la posicion completa puede ser recuperada sin necesidad de guardarla en
otra textura, como explica el paper de Crytek [16]. Se genera asimismo otra
textura para guardar tanto la iluminacién (en los canales rg) como la normal de
cada pixel (en los canales ba, comprimida guardando solo dos de sus
componentes’, podremos reconstruirla al saber que la normal de los pixeles
dibujados siempre apunta a pantalla al estar GL_CULL_FACE" activado).

Disco Duro
v v v 2048x2048
RGB RGBA RGB RGB RGBA FLOAT_16| | FLOAT_16| |FLOAT_16 RGB RGBA
ARRAY ARRAY ARRAY
Agua Caras de Cielo Color Normales Depth Shadow Capas 1°Capa Color
Normales cubos nocturno Base y luz base Base Maps Liguido Normal Deferrad
Y [y Y
USA
Terrain
Shader GENERA
Shadow
Shader GENERA
Liquid
Layers
Shader GEMERA

Figura 14 - Interaccion de los shaders de primera pasada con las texturas guardadas en memoria grafica

v Compact Normal Storage for Small G-buffers [Citado el 20/04/2016] http://aras-
p.info/texts/CompactNormalStorage.html

'8 parametro de OpenGL que, al activarse, dibuja solo los tridngulos cuya normal apunta hacia la
direccién de vision. Reduce la carga grafica en un 50% ya que, normalmente, los demas tridngulos se
trataban de caras tapadas de objetos, que no iban a poder ser vistos de igual manera. Es un modo de
culling.
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- Segunda pasada: Aplica sombras sobre la textura de color inicial y las capas de agua

existentes, si las hay. Ademas, calcula la absorcion / scattering en cada pixel que posea
capas de agua intermedias. Esta nueva textura de color generada se guardara en una
imagen rgba, guardando en el canal alfa informacidn importante (si el pixel estd o no
bajo el agua y que cantidad de iluminacidn especular se le aplica en caso de estarlo). El
uso de texturas en esta pasada por parte del shader puede verse en la figura 15 a
continuacién.

) CARGA
Disco Dura
v ¥ v 2048x2048
RGB RGBA RGB RGB RGBA FLOAT_16| | FLOAT_16| |FLOAT_16 RGB RGBA
ARRAY ARRAY ARRAY
Agua Caras de Cielo Caolor Normales Depth Shadow Capas 1® Capa Caolor
Normales cubos nocturno Base yluz base Base Maps Liguida Mormal Deferred
| T I
¥ USA
2*Pasada
Deferred
Shader GENERA

Figura 15 - Interaccion de los shaders de segunda pasada con las texturas guardadas en memoria grafica

- Tercera pasada: En esta pasada se dibujard ya directamente en pantalla.

o En caso de no estar bajo el agua, calcula reflejos (usando Screen Space Ray
Marching), fresnel, refraccion e iluminacién especular sobre las superficies de
agua, si las hay. Asimismo, genera el cielo usando el algoritmo de A.J.
Preetham mencionado anteriormente en todos los pixeles que no sean de
terreno, asi como en los reflejos que no colisionen con ninglin dato en
pantalla. Mostramos este caso en la figura 16.

o En caso de estar bajo el agua, calcula tanto la refraccion como el fresnel de la

superficie.
) CARGA
Disco Dura
h 4 Y b 2048x2048
RGB RGBA RGB RGB RGBA FLOAT_16| | FLOAT_16| |FLOAT_16 RGB RGBA
ARRAY ARRAY ARRAY
Agua Caras de Cielo Caolor Normales Depth Shadow Capas 1® Capa Caolor
Normales cubos nocturno Base yluz base Base Maps Liguida Mormal Deferred

| ! | |

¥ USA

3*Pasada
Deferred
Shader PINTA EN PANTALLA

Y

Figural6 - Interaccion de los shaders de tercera pasada con las texturas guardadas en memoria grafica
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3.5. Otras mejoras graficas

Ademads de todas las técnicas graficas complejas implementadas, se detallan aqui otras
que, pese a ser mucho mas simples, mejoran también significativamente el aspecto de la
escena.

3.5.1. Mip Mapping

El Mip Mapping [12] crea, para cada textura, subtexturas de la misma en menor
resolucidn, hasta llegar a una textura 1x1. OpenGL aplicard una subtextura u otra (o una
mezcla de varias) en funcidn de la distancia existente hasta la textura a renderizar. Esto evita

|II

ruido y aliasing en la distancia, afiadiendo un antialiasing de forma “natural”, sin necesidad de

aplicar supermuestreo™, al emborronar ya la imagen de antemano.

El problema con el Mip Mapping es que, en caso de usar atlas de imagenes (almacenar
varias imagenes en una grande, aproximacion ampliamente utilizada en motores voxel de este
tipo, agrupando todos los voxeles en una imagen grande y pintando uno u otro en funcién de
la circunstancia) y alejarnos, se comenzaran a ver lineas entre cubo y cubo. Esto es causado
porque, al calcular los mipmaps, openGL estd mezclando el color de unos cubos con el de
otros. No existe una solucién limpia a este problema, con lo que ha sido necesario pasar cada
textura de cubo a una imagen propia, y cargarlas todas usando un TextureArray2D. Esto
implica que para arquitecturas mas antiguas, que no soporten esta estructura de datos, este
proyecto no funcionara.

OpenGL permite asignar a cada textura que filtro aplicarle en la distancia y en la
cercania. No nos es un inconveniente mantener un estilo ligeramente retro, al ser este un
motor de cubos. En la cercania, por tanto, filtraremos usando GL_NEAREST, con el que se
distinguira cada pixel de la textura al acercarnos a un cubo (la alternativa, GL_LINEAR, lo
emborronaria). En la distancia el filtro serd GL_NEAREST_MIPMAP_LINEAR. La parte
MIPMAP_LINEAR indicard a OpenGL fundir varias subtexturas de la imagen en funcion de la
distancia, en vez de cambiar de una a otra directamente, lo que causa artefactos visuales. Esta
opcién, evidentemente, sera mas cara computacionalmente.

3.5.2. Anisotropic Filtering

El filtrado anisotrépico®es la versién avanzada del Mip Mapping. En Mip Mapping, al
ver imagenes desde angulos oblicuos, estas aparecen emborronadas debido a la disminucién
de la calidad en la frecuencia vertical, mientras que la horizontal se mantiene igual. En un
filtrado anisotrépico las subtexturas generadas se reescalan para cada eje en funcién de
diversos grados de inclinacién, causando un mayor gasto en memoria grafica pero una mayor
calidad de imagen. Dado el gasto extra que esta mejora supone, se permite activarla o
desactivarla desde el menu principal.

¥ Técnicas de Antialiasing [Citado el 20/04/2016]
http://acacia.ual.es/profesor/LIRIBARNE/AIG/antialiasing/tecnicas.html

*% Filtrado Anisotrépico. Wikipedia. [Citado el 18/06/2016]
https://es.wikipedia.org/wiki/Filtrado_anisotr%C3%B3pico
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Configuraremos OpenGL para que, si este filtrado es activado, use la maxima calidad
del mismo que la tarjeta grdfica soporte, marcado por la variable de entorno
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT.

3.5.3. Atmospheric Scattering

En la vida real, los objetos en la distancia parecen azulados. Esto se ocasiona por el
Scattering de Rayleigh [17]. A pesar de que computacionalmente implementar algoritmos que
usen este principio es demasiado costoso, se puede aplicar una ligera niebla, exponencial en la
distancia, de un color azulado. En esta implementacidn concreta se usara un color de niebla
azulado-blanquecino de color (0.6,0.74,0.8), que se ird oscureciendo suavemente con la
llegada del anochecer, alcanzando por la noche un valor oscuro de (0.06,0.074,0.08) .

En concreto, con objeto de dar a esta aproximacidon un aspecto lo mas agradable
posible (asumiendo su inexactitud) se aplicara la siguiente formula:

fog = g —0.00001+distance? ;fog=02;fog <1
finalColor = mix(fogColor,originalColor, fog)

Cortamos el valor fog a 0.2 para que ninguna parte del terreno, esté lo lejos que esté,
sea nunca completamente tapada. Basandonos en esta ecuacién, a una distancia de
aproximadamente 263 metros la niebla tendrd la misma relevancia en la mezcla que el color
original, aumentando exponencialmente a partir de ahi, hasta alcanzar el valor 0.2 a los 401
metros.

3.5.4. Ambient Occlusion

La oclusién ambiental®! es una técnica grafica sutil que afiade una gran mejora visual a
la escena. Se basa en el principio de que a las esquinas llega menos luz que a otros puntos de
los muros, al tener esta menos area disponible desde la que proceder. Esta es una propiedad
que los humanos no solemos apreciar a simple vista, pero que nuestra vista extrafia si no est3,
notando un gran aumento de realismo al comparar imagenes con y sin esta mejora activada
(ver Anexo 4, figuras 27, 28, 29, 30).

Se aplicard obteniendo para cada vértice de la escena la luz de sus cuatro cubos
colindantes en el plano en el que este vértice se encuentre, y dividiendo la luz acumulada
entre cuatro. En casos normales se conseguird luz dindmica, mientras que en las esquinas, al
tener los cubos sélidos un valor de luz igual a cero, se conseguira oclusién ambiental de una
forma sencilla.

> Ambient Occlusion for Minecraft-like worlds. M. Lysenko. [Citado el 18/06/2016]
https://0fps.net/2013/07/03/ambient-occlusion-for-minecraft-like-worlds/
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3.6. Optimizaciones graficas (mejora de eficiencia)

Con objeto de poder dibujar el juego en pantalla tantas veces por segundo como sea
posible, se deben incluir algunas optimizaciones graficas a nivel de cubos, para reducir lo mas
posible la cantidad de geometria a renderizar.

- Renderizar caras de cubos sélo si no son adyacentes a otro cubo: Si un cubo estd

rodeado de cubos no transparentes, no nos sirve de nada dibujarlo porque jamas va a
poder ser visto, al estar siendo tapado por los otros cubos. Podemos reducir este
planteamiento a nivel de caras de cubos: Si una cara de un cubo es adyacente a otro
cubo solido no transparente, ni esta cara ni la cara adyacente van a poder verse jamas,
asi que evitando enviarlas a la tarjeta grafica ahorraremos un gran espacio en memoria
grafica y aceleraremos enormemente el tiempo de dibujo de la escena. Esta técnica es
llamada culling.

En concreto, para cubos no liquidos, solo se dibujara una cara de un cubo si su
cubo adyacente es semitransparente o transparente, o si, en caso de que sea
transparente, no cumple la propiedad isPartnerGrouped, que activaba este culling de
forma forzosa. Para cubos liquidos, solo se dibujara la cara si el cubo colindante es
transparente o semitransparente, y ademads este no es un liquido. De esta forma, se
dibujaran caras de cubos mirando hacia el agua, pero no se dibujardn capas de agua
inutiles pegadas a esos cubos, que a fin de cuentas no van a suponer una variacion de
distancia recorrida por el rayo de luz.

- Usar un VBO por chunk: Cada chunk posee su propio VertexBufferObject [14], que

actualiza contando cuantos triangulos liquidos y sélidos posee, dibujando uno u otro
segln se especifique. Este VBO sera borrado si se detecta que el chunk no dibuja nada
en pantalla, credndose de nuevo cuando esto si ocurra. Esto puede ocurrir tanto
debido al afadido de un cubo nuevo como debido al borrado de algin cubo en algun
chunk colindante que haya desactivado el culling en algin cubo de este. Hay que
considerar que los chunks subterrdneos no dibujan nada a pesar de estar
completamente llenos de cubos, al estar estos pegando con otros cubos y aplicarsele
culling a todos. Asimismo, si se detecta que el chunk no tiene nada que dibujar, la
llamada de g/DrawArrays ni siquiera se producira.

- Frustrum culling a nivel de chunk: Cada vez que un chunk va a ser dibujado, se pasa su

punto central a coordenadas de pantalla y se comprueba si alguna parte de su esfera
envolvente se encuentra dentro de alguna parte del frustrum de visualizacion.
Asimismo, se comprueba también si el chunk se encuentra tras la cédmara,
comprobando su coordenada z y el radio de su esfera envolvente. Si cualquiera de esas
condiciones se cumplen, el chunk no necesitara ser dibujado en este frame concreto.

- Compresion de la normal de cada vértice en los datos del shader: Cada vértice subido a

la tarjeta grafica requerira ciertos datos en punto flotante: La posicién x, la posicién vy,
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la posicién z, la iluminacion artificial, la iluminacidén natural, la textura a usar y la
normal del vértice en cuestién sumando, en total, nueve datos por vértice. Esa
cantidad es muy grande, pero podemos aprovechar que un cubo solo tiene seis
normales posibles para comprimir estos datos. Ademas, sabemos que la textura a usar
por el cubo va a ser forzadamente un valor entre cero y 255, con lo que la mayor parte
de la capacidad del punto flotante usado para contenerla va a ser desaprovechada.

Como sabemos que solo hay seis normales, podemos distinguirlas con un
numero de cero a cinco y descomprimirlas en el shader. Por ejemplo, consideramos
que cero es igual a la normal (1,0,0), que uno es igual a la normal (-1,0,0) , etc. Viendo
pues que las normales se comprimen en un niumero de cero a cinco y que las texturas
se limitan en un ndmero de cero a 255, podemos comprimir esos dos datos juntos
(para separarlos luego via shader) con la formula:

indice_normal * 1000 + indice_textura

Usando asi sélo un total de seis puntos flotantes por vértice a subir a la GPU.
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4. CONCLUSIONES

Se ha implementado con éxito un motor grafico y légico completo para un mundo
basado en cubos, cumpliendo todos nuestros propdsitos marcados. Se ha superado
ampliamente el estandar gréfico en este género, mostrando que un género de videojuegos
basado en cubos no es un impedimento para desarrollar graficos avanzados a todos los niveles
posibles. Asimismo, podemos comprobar que Java es perfectamente capaz de ser usado para
desarrollar aplicaciones graficas en tiempo real, pese a tener implementado de base un
colector de basuras. Es cierto que el colector de basuras causa, de no tomar las debidas
precauciones, pequenos bloqueos que en aplicaciones de tiempo real son notables y molestos.
La solucién para esto, como se ha visto, es gestionar nosotros mediante Pooling la mayor
cantidad de memoria que podamos, dejandole al colector de basuras un trabajo menor, lo que
hace su ejecucidn absolutamente imperceptible.

Podemos ver las comparaciones graficas entre nuestro motor y el videojuego lider en
este género, Minecraft, en el Anexo 4, figuras 39 a 44, contrastando nuestros graficos
detallados con su aspecto retro, en el que se han basado la mayor parte de titulos de este
género. Esperamos que este motor demuestre que esa estética no es la Unica posible en el
género, a pesar de encontrarse esta tan extendida.

Entre todos los algoritmos desarrollados, destacamos:

- Algoritmo de Cascaded Shadow Mapping: Un algoritmo realmente avanzado, muy

dificil de conseguir hacer funcionar correctamente y no implementado por ningln otro
motor de cubos que hayamos podido encontrar, en los que las sombras, si existen,
simplemente desaparecen al alejarse.

- Algoritmo de rendering del agua: El agua implementada es el resultado de numerosas

lecturas de articulos cientificos y de una implementacién totalmente personal, sin
basarse en ningun algoritmo preexistente. Mencién especial requieren los reflejos en
superficies acudticas en entornos de cubos usando Screen Space Ray Marching,
desmintiendo las afirmaciones existentes en multiples lugares de la red que exponian
que sencillamente no era posible realizar reflejos de agua a tantas alturas en tiempo
real. Es cierto que este sistema tiene sus limitaciones (destacando el claro error visual
en las esquinas del agua al inclinar la pantalla hacia abajo), pero dados los buenos
resultados obtenidos en condiciones normales, y dadas las limitaciones de este
sistema, se considera asumible.

De todos los problemas encontrados en la implementacion, el mas destacable de todos
ha sido, paraddjicamente, la propia dificultad de debug que OpenGL posee. Al no permitirse
devolver datos a la CPU no es posible imprimir valores criticos en la consola, siendo la Unica
opcién posible imprimir esos datos en forma de colores por pantalla, a pesar de que la
informacidn obtenida de ese modo es extremadamente vaga. Incontables horas de tediosa
solucidn de errores han sido causadas por este hecho, errores que, de otro modo, podrian
haber sido solventados en muy poco tiempo. Mencién especial requieren, de nuevo, los
errores producidos por los algoritmos de sombras y el agua durante la implementacién, siendo
estos también, con diferencia, los mas dificiles de depurar. Del tiempo de implementacion de
los mismos, de hecho, un alto porcentaje ha sido empleado en intentar encontrar la razén de
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diversos errores y su depuracién. Esta puede ser una de las razones por las que la mayor parte
de los programadores son reticentes a implementar motores graficos.

4.1. Cronograma

Al comenzar a implementar este proyecto a finales de 2013 con objeto de aprender 3D
y no haber tenido en mente en esa época que este podria crecer tanto, llegando a ser de
hecho mi proyecto en el futuro, comencé esta implementacion sin seguir ninguna clase de
estructuracion o disefio de cddigo. De hecho, cuando comencé a implementar la parte de
insertar y eliminar cubos, descubri que esa tarea era imposible dada mi estructura de codigo
del momento. Una gran cantidad del tiempo de este proyecto ha sido utilizado, por tanto, en
reescribir y reestructurar cédigo ya elaborado previamente con objeto de hacerlo
suficientemente extensible.

Sumando el tiempo empleado en aprender 3D desde cero, las horas empleadas en
reestructurar el cddigo y mi poco o nulo conocimiento de esta area de la informdatica en 2013,
ademas del tiempo empleado en debuguear errores en OpenGL y al gran alcance de este
proyecto, podemos asumir una cantidad de horas de trabajo en este motor, desde sus
origenes, superior a 1000.

Se ilustra en el siguiente cronograma la division del trabajo desde que se aceptd este motor
como proyecto. Anteriormente a ello, este fue desarrollado en momentos de tiempo libre y de
forma muy inconstante, con lo que no se detallan.

| amz | . ] 2015 | 2016 |
| octubre | ‘ septiembre| octubre | noviembre | diciembre | enero febrero marzo abril ‘
Nucleo del motor (Renderizado de cubos,
texturas basicas, generacion procedural
basica, motor fisico basico, iluminacion
basica, etc.)
Hluminacion avanzade [ [ I [ [ \ [ |
| N R R R | | | | |
Optimizaciones varias I I A A R N N S S

Renderizado procedural avanzado (Mapa

[ [ | N N

infinito, numerosos mapas)

Sombras

| | \

Ages [ [ \ [ [ [ [ e
Mejoras graficas (Deferred shading, ‘ ‘ ‘ ‘

atmospheric scattering...)

Texturas HD, mipmapping | | ‘ | | | | ‘ _ ‘
Input/ Output | | \ | | [ [ [ [
Meni principal | | \ | | | | \ | [
Limpieza de cédigo [ [ \ [ [ [ [ \ [ .

4.2. Posibles ampliaciones
En proyectos de este tipo es siempre posible afiadir mas caracteristicas. llustramos,
para cada area del mismo, unos ejemplos:

- Mejora en el render de agua: Se podria considerar el afiadido de un blur gaussiano a la

superficie del agua, suavizando la imagen como ocurre en la vida real, aunque esto
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afiadiria una pasada extra de Deferred Shading. Se podrian implementar también
causticas o brillos superficiales para los fondos marinos.

- Mejora en la generacion de mundos: Se podria extender la generacién de mundos para

generar diferentes tipos de mapas en funcién de la posicién en el mapa, en lugar de
seleccionarlos via menud. Mediante el uso de datos long se podrian generar mundos
con limites de tamafio mucho mayores que los actuales, o incluso lograr mapas
infinitos con el uso de clases sin limite de tamafio como Biginteger.

- Mejora en el motor fisico: Podria extenderse el motor fisico para que afectara también

a los bloques, pudiendo afadirles propiedades fisicas, o que fueran afectados por
explosiones o la gravedad.

- Mejora en el rendering general: Se podria afiadir glare al mirar al sol, niebla en el

horizonte, particulas para las explosiones o viento que afectara a la vegetacion,
creando movimiento en las hojas.

La ampliacion mas evidente, no obstante, es crear usando este motor un juego mas
avanzado que el prototipo presentado, al tratar el actual solo de construccién de estructuras y
exploracién. En esta ampliacion, no obstante, las posibles ideas y posibilidades son infinitas, y
escapan al alcance de este proyecto.

4.3. Opinion personal

Desarrollar un motor grafico propio desde cero es una tarea compleja, larga y plagada
innumerables horas de debug. Implementar un motor grafico no es implementar un
videojuego, pudiendo ahora afirmar rotundamente y con conocimiento de causa a cualquiera
gue me manifieste su deseo de desarrollar uno, la ya mencionada frase de “write games, not
engines”.

A pesar de que la implementacidn de un motor grafico diste mucho de Ia
programacion de un videojuego, no estd exenta de encanto. Este desarrollo me ha permitido
profundizar con creces en mi conocimiento del drea grafica de la informatica aplicada a tiempo
real. Ahora sé como funcionan la mayor parte de las caracteristicas graficas de los juegos
actuales, y puedo pararme a apreciarlas, en lugar de ignorarlas como estaba haciendo hasta
este momento. Gracias a la investigacidn para este proyecto he aprendido mucho sobre la
fisica de la luz en diversos medios, sobre la programacion eficiente y avanzada de OpenGL y
sobre el funcionamiento de una GPU.

Y, por ultimo, asi como Internet me ha ensefiado y ayudado ampliamente a conseguir
esta meta, espero honestamente que, gracias al cddigo abierto, este proyecto pueda llegar a
ayudar también a alguien algun dia.
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6. ANEXO 1: MANUAL DE USUARIO

Tan solo es necesario un archivo para la correcta ejecucidon de este programa, cuyo
nombre dependerd del Sistema Operativo en el que se vaya a ejecutar. Seleccionamos el
archivo:

Kubex_<nombreDeTuSO>.jar

Copiamos ese archivo a cualquier carpeta en la que nosotros tengamos derechos para
crear archivos y carpetas nuevos (muy importante, ya que los mapas se guardaran ahi).
Simplemente con esto el juego estara instalado. Para ejecutarlo, hacemos doble clic en el
mismo, lo que mostrard una ventana como la mostrada en la ilustracion 1.

| £:| Kubex Launcher EI (=] @

Kubex v1.0

Window resolution |136Eix?68 | - |

Simultaneous Water Layers SE

i
Render distance (Chunks). IEE m |F' ain |‘,|

| Load selected map |

[ | Full Screen Anisotropic filtering

Reflections Shadows | Create new map |

llustracion 1 - Ventana de menu principal

En esta ventana se puede seleccionar la resolucion de pantalla deseada, a elegir entre
algunos tamanos predefinidos, incluyendo la posibilidad de ejecucién a pantalla completa.

El Spinner Simultaneous Water Layers especifica cuantas capas de agua se dibujaran al
mismo tiempo. Cuanto mayor sea el nimero, mayores superficies de agua separadas podra
atravesar cada rayo de visidn, obteniendo una suma correcta del espacio que este rayo ha
atravesado bajo el agua, con objeto de calcular el scattering y la absorcidn de la misma. En la
practica, un valor mayor de siete no es practico: Solo es Util en cascadas en las que existen
muchos cubos de agua separados, logrando con un ndmero alto ver una imagen correcta. La
mayor parte del tiempo, no obstante, solo va a causar un gasto innecesario de recursos. Para
ordenadores modestos el valor se puede configurar como uno, aunque se podran ver errores
graficos cada vez que un rayo deba salir de un cubo liquido ya que considerara que, tras entrar,
toda la distancia a partir de ese punto es agua.
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El Spinner Render Distance permite configurar la distancia de renderizado maxima.
Considerando que cada chunk tiene por defecto una anchura de 32m, una distancia de render
de 10 chunks equivaldra a un radio de visidon de unos 320 metros. 10 es un buen valor, aunque
se puede subir hasta 30 (en la practica, valores mayores que 20 resultan poco practicos). En
ordenadores modestos este valor puede bajarse hasta tres, aunque el minimo recomendado,
con objeto de mantener la experiencia de juego, es cinco.

Cada uno de los Combo Box existentes indican si se desea activar alguna caracteristica
grafica (Reflections para reflejos, Shadows para sombras y Anisotropic Filtering para activar el
filtrado anisotrépico de la GPU). En caso de ordenadores modernos, se recomienda activarlos.
En caso de ordenadores mas modestos se pueden desactivar, en orden de mayor a menor
consumo grafico, el agua, las sombras y, por ultimo, el filtrado anisotrdpico.

A la derecha tenemos un botén llamado Controls, que abrird una ventana de
informacidn de controles como la detallada por la ilustracién 2.

’@ Kubex Launcher EI =] @

-

Kubex v1.0

Controls
WASD: Player Movement MOUSE LEFT CLICK: Place selected cube
SPACE: Jump MOUSE RIGHT CLICK: Remove cube

SHIFT: Togale flying mode ON/OFF 0..9: Select cube assigned to shortcut
MOUSE WHEEL UP/IDOWH: Select cube
CTRL + 0..9: Assign selected cube to shortcut

llustracion 2 - Ventana de informacion de controles

M3ds abajo, tenemos una Drop Box con todos los mapas que hayamos creado.
Seleccionando el que deseemos podemos elegir presionar la X (lo que lo eliminara), o pulsar el
botdn Load Selected Map, lo que comenzard el juego usando el mapa seleccionado.

Por ultimo, tenemos el botdn Create new map, que nos llevard a la ventana de
creacién de mapa, mostrada en la ilustracion 3.
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| £:| Kubex Launcher EIIEIE

Kubex v1.0

Map Creation Window

Map Type |Islands | » | Default map. Large islands with
mountains and hills.
| Load time: LOWW

Map Name |mapa_is|as

Map Seed |?9502038915?1299328 || Randomize seed

Create map
Back

llustraciéon 3 - Ventana de creacion de mapa

Se permite aqui seleccionar el tipo de mapa deseado (mostrandose informacion de
cada tipo de mapa a la derecha), ponerle un nombre al mapa (debe ser valido y no estar usado,
0 no permitird crearlo) y usar una semilla para el mapa (dos mapas con la misma semilla son
idénticos, asi que se puede crear un clon de un mapa deseado, o sencillamente usar una
semilla aleatoria pulsando el botén Randomize seed).

Tras ello, pulsar en Create Map comenzara el juego usando el mapa recién creado. Se nos
presentard una pantalla como la que la ilustracién 4 nos muestra.

llustracion 4- Pantalla de juego

40



La forma de interactuar con el mundo se basa en una combinacién entre el teclado y el ratén.
Mediante el teclado, podemos:

- Teclas WASD: Mover el personaje

- Tecla SHIFT: Activar o desactivar el modo de vuelo. En este modo la velocidad se ve
incrementada, y se puede ascender pulsando SPACE. Nos seguimos viendo afectados
por la gravedad, con lo que el vuelo se realizard mediante numerosos saltos aéreos.

- Tecla SPACE: Hace al personaje saltar si este se encuentra en el suelo. En casos
especiales, como al estar volando o nadando, estar en el suelo dejard de ser un
requisito.

- Teclas 0..9: Atajos de teclado. Selecciona como cubo actual el cubo asociado al atajo
del nimero presionado. Al comienzo los atajos estdn configurados por defecto, pero
pueden configurarse mediante el siguiente modo de control que detallamos.

- Tecla CTRL + 0..9: Asigna el cubo actual al atajo de teclado deseado. Asi, si estamos

construyendo usando unos pocos cubos, podemos configurarlos en atajos de teclado y
asi poder acelerar mucho nuestra tarea, al no tener que buscar cada cubo
individualmente al desear cambiar el actual.

- Tecla P: Acelera el tiempo. El personaje seguira moviéndose a la misma velocidad, pero
el dia pasard mas rdpido. Existen numerosas escalas de tiempo configuradas, pasando
de la realista (una hora del juego equivale a una hora real) a la ultra rapida (Una hora
en el juego equivale a 0’5 segundos en la realidad). Al crear un mapa nuevo, antes de
que el jugador comience a configurar la escala temporal con estas teclas, una hora en
el juego equivaldrd a 20 segundos en la realidad.

- Tecla O: Desacelera el tiempo.

- ESC: Cierra el juego, guardando todos los cambios en mapa y en configuraciones
(escala temporal seleccionada, atajos de teclado configurados, posicién del jugador,
etc.)

Mediante el ratén, podremos:

- CLIC IZQUIERDO: Insertar el bloque seleccionado en la posicion del mundo marcada

por el punto central de la pantalla. El bloque no podra ser insertado si nos
encontramos demasiado cerca (dentro) de la posicién elegida, o demasiado lejos.

- CLIC DERECHO: Eliminar el bloque seleccionado en la posicién del mundo marcada por
el punto central de la pantalla. Este no podra ser eliminado si se encuentra demasiado
lejos.

- RUEDA DEL RATON: Selecciona cubo. Al desplazar la rueda hacia arriba se elegira el

siguiente cubo en la lista y al rotarla hacia abajo, el anterior. La lista es ciclica: Cuando
se haya sobrepasado el ultimo cubo existente, se volvera al primero. El nombre del
cubo actual seleccionado aparecera en pantalla brevemente tras cada cambio en la
seleccion.
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Aunque el juego comenzara de dia, la noche llegara en algin momento. La posicién del
sol es un buen indicativo del tiempo de dia restante, o las sombras del terreno, que se
volveran alargadas al atardecer. Tras el anochecer, el mundo se quedard en penumbra. Se
recomienda al jugador posicionar luces (Light Block, por defecto la tecla 4 en los atajos de
teclado), que iluminaran la zona en la que se coloquen. Estas luces también son utiles al
explorar (o construir) cuevas, al poder estas iluminar zonas a las que el sol, ni de dia, puede
llegar.

El modo vuelo (tecla SHIFT) favorece la exploracién rapida del terreno. EIl mundo es
infinito, con lo que podremos viajar en la direccidn que deseemos el tiempo que deseemos,
encontrando en cada lugar paisajes diferentes a los visitados anteriormente. Si creamos alguna
estructura que deseemos volver a ver habra que ser, no obstante, cauteloso viajando, ya que
un mundo infinito unido a un modo de vuelo rapido hacen muy posible perderse y no volver a
encontrar los puntos en los que habiamos construido estructuras anteriormente. Se
recomienda ir dejando marcas en el terreno al viajar que nos permitan guiarnos en la vuelta.

No existe dafio en este videojuego, ni muertes, ni enemigos. El Unico propdsito es
construir y explorar, y las posibilidades son infinitas. No es necesaria ya ninguna explicacion
extra: Es el jugador, llevado por su imaginacién, el que decida cudl va a ser su siguiente
propdsito, tarea en la que esta guia no puede ser ya de ayuda. Proporcionamos, no obstante,
un ultimo consejo: La TNT explota. Recomendamos cautela antes de intentar usarla como
decoracién en alguna estructura a la que tengamos aprecio.
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7. ANEXO 2: RENDERING DE AGUA

Relegamos al anexo la parte mas compleja y larga de todo el proyecto. El agua
obtenida ha sido el resultado de intentar emular cada una de sus propiedades de la forma mas
realista posible, usando técnicas totalmente diferentes para cada una.

7.1. Reflexion

La mayor parte de los métodos de reflexion de agua existentes en la actualidad
asumen una altura de agua constante (Lo cual es falso en el caso de los videojuegos de cubos),
recomendando redibujar el mundo en esa altura aplicandole una matriz de simetria en el eje Y.
De ser aplicada esta aproximacion en este caso concreto, deberiamos redibujar el mundo una
vez por cada altura de agua distinta en la pantalla, siendo esto computacionalmente imposible
de lograr en tiempo real. Debemos tomar, pues, otra aproximacion.

Se ha optado por usar una técnica nueva, basada en el raytracing [18] y usada en
conjuncién con Deferred Shading, que estd aumentando mucho de popularidad en los ultimos
afios. Su nombre es Screen Space Ray Marching®. Se basa en, sabiendo el color y profundidad
de cada pixel en la pantalla, detectar el punto de colisidon con el agua y trazar desde él el rayo
reflejado, comprobando su colisién por cada pixel por el que este fuera a pasar. Este método,
aunque es el Unico que permite solventar en tiempo real nuestro problema, no esta exento de
fallos, al solo permitir reflejar objetos que se estén viendo en pantalla en este momento
(fallando para objetos fuera de la pantalla, u objetos siendo tapados por otros objetos), y al
causar artefactos visuales al mover la cdmara. Es inviable aplicarlo sin contar con alguin otro
sistema que nos dé un color de reflejo alternativo si el Screen Space Ray Marching falla para
algun pixel. Por fortuna, el método de renderizado de cielo que hemos elegido permite su
generacidn aportando solo una direccidn de vista, que es justo lo que obtenemos al calcular el
vector de direccion del rayo reflejado por el agua. Por tanto, podremos reflejar el cielo cada
vez que este algoritmo falle en algun pixel. Esto, aunque seguird causando errores visuales
(como se aprecia en los bordes de la parte superior de la figura 17, donde reflejos del paisaje
aparecen con el color del cielo al no estar siendo vistos en este momento), los minimizard lo
suficiente como para que sean aceptables. En cuanto a los artefactos visuales, podemos
confiar en que el oleaje sera lo suficientemente elevado como para ocultarlos.

La implementacién del Screen Space Ray Marching utilizada, salvo por algunos
afiadidos, se ha obtenido de [3], al ofrecerla ellos ya altamente optimizada. Se ha elegido una
Thickness para cada pixel de 20 (suponiendo asi un mundo compuesto por cubos de una
profundidad igual a 20 metros, en vez de uno). La razén para esto es que, aunque se causen
algunos errores en reflejos cercanos, los reflejos lejanos se podran fundir perfectamente (por
ejemplo, un arbol con una montana detras en la que, aunque el arbol tape reflejos de la
montafia, podemos asumir un arbol mas profundo y reflejar este en vez), sin renderizar trozos
de cielo, quedando mucho mas estéticos. Ademds, una anchura mayor ocultard algunos
artefactos visuales. Este nimero ha sido obtenido por pruebay error. Podemos ver un ejemplo

“The future of screenspace reflections. Bartlomiej Wronski [En linea] [Citado el 18/06/2016]
http://www.gamasutra.com/blogs/BartlomiejWronski/20140129/209609/The_future_of screenspace_r
eflections.php
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de este algoritmo en funcionamiento en la figura 18, en el que, incluso sin aplicar oleaje, los

resultados no muestran ningln error apreciable.

Figura 17 - Fallos de reflexion usando Screen Space Ray Marching por falta de informacion en pantalla

Figura 18 - Reflexion pura

7.2. Refraccion

La refraccién es un fendmeno practicamente imposible de calcular correctamente sin
usar un raytracer. Por tanto, usaremos una aproximacién que, aunque no sea realista,
consigue engafiar a la mente jugador, siendo tomada como real. Usaremos el método
propuesto en [4].
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Guardado en la cuarta coordenada de la imagen aportada a nosotros por la segunda
pasada del Deferred Shading, se encontrara un valor que indica si ese pixel de la imagen se
encuentra tras una capa de agua. Gracias a ello, podremos modificar la posicién en la cual
sampleamos la imagen en funcidn de la normal del agua en el punto de colision. Si intentamos
samplear un lugar de la imagen fuera del agua, ese valor nos indicard que la refraccién es
incorrecta y nos quedaremos con la imagen normal, sin perturbar. Esto, sumandolo al oleaje
en movimiento, proporcionara una refraccion razonable, que dard aspecto realista (aunque no
lo sea). Un ejemplo de este método de refraccidon puede verse en la figura 19, en la que se
puede apreciar que la refraccién ha curvado las lineas rectas de los cubos bajo el agua. Este

efecto, sutil al ser visto en una imagen, es mucho mds apreciable al verse en movimiento.

Figura 19 - Refraccion acentuada para visibilidad.

7.3. Absorcion / Scattering de la luz

Lo primero que necesitamos para calcular el valor de luz absorbida y el scattering
aportado a la imagen es saber que distancia exacta el rayo de luz atraviesa bajo el agua. Como
el rayo puede entrar y salir del agua en repetidas ocasiones, se implementa el algoritmo de
Depth Peeling [5]. Este algoritmo cambia el orden natural de render, separando la escena por
capas. En la primera se encontrard, en cada pixel, la profundidad de los poligonos mas
cercanos a la cdmara. En la segunda se encontraran la profundidad de los poligonos que, de no
existir los de la primera capa, habrian sido los mas cercanos a la camara. Repitiendo este
proceso para el nimero de capas especificado se obtiene un listado de poligonos por los que
cada rayo de luz lanzado por cada pixel colisionaba, en orden. El rayo solo encontrard un
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poligono de agua al entrar o salir de esta: Por lo tanto, para un pixel dado, una cantidad impar
de capas de agua significard que, al final de su recorrido, el rayo de luz ha terminado entrando
en el agua y no ha salido de la misma antes de colisionar contra el terreno, y una par que el
rayo ha entrado vy, al final de su recorrido, ha terminado saliendo (Cero capas en un pixel
significaran que el rayo ni tan siquiera ha llegado a entrar al agua en su recorrido). Hay que
tener en cuenta que por cada capa generada hay que hacer una llamada de dibujo extra,
redibujar toda el agua de la pantalla y guardarla en una textura de profundidad con el tamafio
de la pantalla entera. Es decir, cada capa extra afiade un gran uso de memoria grafica y de
tiempo de computacién. Tres es un numero razonable (entrar en agua, salir y entrar en agua
de mar, por ejemplo), aunque cinco o siete seria mejor aun al cubrir algunos casos especiales,
si contamos con un ordenador que pueda soportarlo. Se puede configurar mediante el menu
este pardmetro, elevando el nimero en secuencias de dos hasta un total de 19 capas, aunque
no suele valer la pena el gasto extra.

Al tener ya guardada la profundidad de cada capa de luz y la profundidad de cada pixel
solido de la imagen final (guardados en una textura, sin aplicar sombreado ni iluminacién, en el
dibujo de la geometria del mundo), podemos calcular la distancia exacta hasta cada punto®.
Calcular la distancia exacta recorrida en el agua, sabiendo el valor de profundidad de cada
capa, sera trivial. En caso de que un rayo de luz recorra todas las capas de agua reservadas
(siendo la ultima siempre una entrada a agua), el sistema no podra detectar si ha salido de esta
0 no en algun punto, con lo que asumira que hay agua hasta la distancia del pixel sélido final.

Sabiendo la distancia exacta de agua por la que el rayo pasa, podremos calcular la
absorcién y el scattering de la luz que esta ocasiona. Tanto la absorcién como el scattering
dependen de la cantidad de minerales disueltos en el agua o la temperatura, asi que hay
muchos entre los que elegir. Los valores de vida media para cada canal de luz en el agua se han
extraido de [6]. Nos hemos inspirado en [7] para las férmulas de scattering, y los valores.

Se ha aplicado la funcién de fase para medios participativos asumiendo uniformidad de
medio®® en el caso de la absorcidn y out-scattering. Para el scattering, se ha aplicado una
aproximacion de la misma, en la que se mezcla, exponencialmente en funcién de la distancia 'y
un coeficiente de scattering, un color de agua profunda azulado con el color extinto como tal.
La razon de aplicar una mezcla es que el scattering causa dos fenémenos: Extingue color (out
scattering) y lo afiade al rayo (in scattering). La férmula resultante es:

colorTrasAbsorcion = colorInicial » e ~(ext-rojoext verdeext azul)+distancia

colorFinal = mix( colorScattering, colorTrasAbsorcion , e~ 0¢/scattering*distancia

Los valores de extincion (siendo inversos al valor de la vida media, en metros, de cada
canal de color en el agua) son (0.46,0.09,0.06) . Para el scattering usaremos un valor de 0.01
para mostrar un agua bastante limpia, aunque podria aumentarse en caso de agua sucia (por
ejemplo, rios arenosos). El color de scattering, o color de océano profundo, se ha elegido como

23Getting the true z value from the depth buffer. StackOverflow [Citado el 18/06/2016]
http://stackoverflow.com/questions/6652253/getting-the-true-z-value-from-the-depth-buffer

** Light Transport in Participating Media [Citado el 20/04/2016]
https://www.cs.dartmouth.edu/~wjarosz/publications/dissertation/chapter4.pdf
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(0.05,0.05,0.1) para dar un aspecto relativamente oscuro a las masas de agua grandes. Ha sido
elegido por prueba vy error.

Esta extincidn y scattering se puede apreciar en la figura 20. Nétese la rdpida absorcion del
color rojo por parte del agua. En las zonas mas lejanas, donde todo el color ha sido ya

absorbido, solo quedard el color de scattering de fondo.

Figura 20 — Absorcion / Scattering puro, sin reflejos.

7.4. Perturbaciones (oleaje)

Para aplicar este efecto se usa una textura de normales del agua extraida de Internet.
Considerando una base en la que el agua tiene siempre una normal (0,1,0), en esta textura el
canal rojo simularia la perturbacién de la normal en el eje x, el canal verde en el eje z y el canal
azul en el eje y, por defecto. Esta textura debera ser normalizada a valores en el rango [-1,1]*

El propio algoritmo de Depth Peeling guardara la normal de la primera capa en una
textura adicional. Es esa normal la que consideramos y perturbamos en funcién al valor de esta
textura. Al estar la textura considerando una base (0,1,0), deberemos efectuar un cambio de
base. Se realizara de la misma forma en la que se obtienen los vectores unitarios de la cdmara
en un trazador de rayos: Se hara un producto vectorial entre la normal y un valor por defecto,
por ejemplo (1,0,0). El resultado de este producto serad nuestro vector unitario u. Tras ello, se

> OpenGL Water Tutorial 7: Normal Maps. ThinMatrix. [Citado el 18/06/2016]
https://www.youtube.com/watch?v=7T504vZXAvI
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hard el producto vectorial entre u y la normal, obteniendo el vector unitario v. La nueva
normal tras la perturbacion sera igual, por tanto, a aplicar la proyeccion de cada canal de la
imagen de perturbacion sobre cada eje de esta nueva base, usando el producto escalar, y
normalizar el vector resultante. Mds concretamente:

normalperturbada
= (dot(u, texturayert. r), dot(normal, texturayert. b), dot(v, texturdpers. g))

Estas perturbaciones, no obstante, son demasiado intensas. Podemos multiplicar por
un valor el componente rojo y verde de la imagen para suavizarlas. Por ejemplo, para los
reflejos, los multiplicamos por 0.07. Para la refraccion, sin embargo, al desearla mas suave, los
multiplicamos por 0.02. Para los reflejos especulares la multiplicamos por 0.3 como minimo, al
desear reflejos mds intensos. En caso de agua cayendo, esta multiplicacién se incrementara
hasta incluso uno. El resultado de aplicar estas perturbaciones a una capa de agua puede
apreciarse en la figura 21. Las alteraciones del dngulo de la normal del agua causan que el
fresnel de la misma priorice la refraccién en algunos puntos y la reflexion en otros, creando el
efecto de olas.

Un oleaje quieto, sin embargo, no aporta nada. Necesitamos que se mueva para que
dé un aspecto realista. Moveremos el oleaje en funcidon de la corriente marcada por la
gravedad, es decir, en la direccidon en la que se maximice la direccién y negativa del flujo de
agua”. La velocidad de la corriente rondara desde los 0.2 m/s (agua horizontal, no puede caer
en ninguna direccidn) a los 1.2 m/s (agua completamente vertical, cae directamente hacia la
gravedad). La corriente se determinard por el sampleo de un punto u otro de la textura de
normales, dado el tiempo y la posicidn, creando ilusion de movimiento.

Figura 21 - Oleaje exagerado para visibilidad.

%% Get water flow direction vector from water normal vector. StackOverflow [Citado el 18/06/2016]
http://gamedev.stackexchange.com/questions/119086/get-water-flow-direction-vector-from-water-
normal-vector
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7.5. Reflejos de luz

Se aplica el modelo de Blinn-Phong [8] para crear reflejos en la superficie del agua.
Este modelo crea reflejos de luz mds realistas que Phong para luces situadas en el infinito,
como el sol. Usando la normal especular calculada antes, se crearan reflejos en funcién de la
posicidon del sol. El coeficiente de Blinn-Phong en nuestro caso sera de 60, hallado por pruebay
error.

Con objeto de que no pueda haber reflejos en zonas a las que el sol no llegue, se
analizard en el célculo de sombras si cada punto de agua estd o no sombreado, guardando, si
lo estd, un valor en la cuarta coordenada (w) de la imagen de cero. Conforme el anochecer
vaya llegando, la w por defecto para lugares con agua no sombreados (0.8) ird decreciendo
también, hasta ser cero al anochecer. El valor final de la especular sera igual al producto del
resultado del blinn-phong por esa coordenada w, que puede apreciarse en la figura 22, a

continuacion.

Figura 22 - Reflejos en el agua

7.6. Coeficiente de fresnel
El coeficiente de fresnel [9] indica que cantidad de luz se refracta y que cantidad se
refleja al pasar de un medio a otro. Estas ecuaciones son computacionalmente complejas, con
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lo que usaremos una aproximacion relativamente buena: La aproximacién de Schlick”’. Esta
aproximacion es fiel solo en un rango concreto de indices de refraccién (de 1.4 a 2.2)*. En el
caso de transiciones aire-agua, como la que estamos estudiando, obtenemos un indice de
refraccion entre los dos elementos de 1.33 que, aunque se encuentra ligeramente fuera del
rango de fidelidad, sigue siendo correcto para un entorno no cientifico, al ser el error aun
minimo.

Calculando el fresnel con la normal usada para calcular los reflejos de luz (la menos
suavizada) y mezclando el color reflejado y refractado con él, obtendremos unas olas de un
aspecto bastante bueno y nuestro sistema de render de agua estarda completo. Podemos
apreciar el fresnel en la figura 23, a continuacion. En las partes bajas de la imagen, el dngulo de
incidencia a la superficie del agua es casi perpendicular a esta, con lo que la refraccion
prevalece. En los lugares mas alejados los rayos de luz inciden de forma casi oblicua lo que,
unido a la ausencia de color refractado en esa zona (al haber sido absorbido por la gran masa
de agua), crea un reflejo muy definido.

Figura 23 - Fresnel en masa de agua

7.7.Vision subacuatica
Deberemos aplicar shaders especializados al estar dentro del agua. Todo el sistema de
calculo de distancias del rayo dentro del agua se invertird, al comenzar este ya por defecto

?’schlick's approximation. Wikipedia. [Citado el 18/06/2016]
https://en.wikipedia.org/wiki/Schlick%27s_approximation

*Memo on Fresnel equations. Sébastien Lagarde. [Citado el 18/06/2016]
https://seblagarde.wordpress.com/2013/04/29/memo-on-fresnel-equations/
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dentro de la misma: Un nimero impar de capas de agua significara que el rayo, al final de su
recorrido, ha salido del agua, y un nimero par que ha terminado su recorrido dentro de ella.

Tras calcular la distancia que cada rayo ha pasado dentro del agua, le aplicaremos
absorcién y scattering como se hacia en el exterior. No obstante, modificaremos ligeramente
los parametros con objeto de darle un aspecto mas atractivo:

- Laextinciéon de color se reduce ligeramente, a (0'3,0'06,0°04)

- El coeficiente de scattering aumenta a 0.04. Esto dard un aspecto mas nublado a los
fondos marinos.

- El color de scattering ahora es mas complejo. Podemos al estar dentro del agua
aproximar relativamente mejor la funcién de fase, al conocer la iluminacidn exacta a
nuestro alrededor en cada momento. Este color estara basado en la iluminacién que
rodee al jugador. Asi, cerca de la superficie y en pleno dia, el agua tendra un color azul
claro. En las profundidades marinas, donde nada de luz llega, el color de scattering
serd mucho mas oscuro.

La superficie del agua es otro problema. Screen Space Ray Marching funciona solo para
reflejar objetos ya visibles en la pantalla, pero bajo el agua, al haber pequefas montafias, la
superficie suele reflejar partes no existentes en la vista actual. La cantidad de errores es tan
alta que se ha decidido no aplicar reflejos bajo el agua. De todas formas, esos reflejos suelen
nublarse enormemente debido al scattering y la absorcidon del agua y ademds, al no estar los
seres humanos preparados para vivir bajo el agua, ni siquiera los echamos en falta si no estan.
En caso de necesitar reflejar un rayo, sencillamente mostraremos el pixel original pero
multiplicando en las ecuaciones de absorcidn y scattering la distancia recorrida por el rayo por
dos, como ocurrird si fuera reflejado (aunque se mostraria otra direccidn). Esto da un resultado
bastante vistoso.

A la hora de calcular el fresnel bajo el agua, la aproximacién de Schlick ya no nos sirve,
al existir un indice de refraccién de 0.75. Aplicamos una férmula ideada por nosotros mismos,
gue no tiene nada de cientifico pero aproxima mas o menos la curva que produce el fresnel
agua-aire, en todos sus puntos (posee nomenclatura comun a la ecuacién de Schlick original):

fresnel = RO+ (1 — RO) * (1.33 — cos8)1°

Bajo el agua, la refraccién de la superficie sera el doble de intensa que al mirar el agua
por fuera. Se adopta esta aproximacion para que la superficie del agua se distinga mas
claramente del mar en si en condiciones poco apreciables, como el cielo nocturno.

Todos estos algoritmos producen resultados como los apreciables en la figura 24.
Notese la reflexion absoluta a partir de cierto angulo, en la que dada la imposibilidad de
reflejar el suelo ocednico se opta por duplicar el scattering / absorcidn y mostrar las montafias
del fondo. Nétese también como practicamente toda la componente de luz roja del cubo de
luz a la izquierda ha sido ya absorbida al llegar a nuestra posicidon, mostrando un cubo azulado.
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Figura 24 - Visién subacuatica.

52



8. ANEXO 3: CASCADED SHADOW MAPPING

Cascaded shadow mapping se basa en una divisidn logaritmica en numerosas partes
del frustrum® de visién. No obstante, en [11] se propone una forma de divisién mas efectiva,
mezclando division lineal y logaritmica, aplicando en nuestra implementacién una variacion de
esa aproximacion, con cuatro divisiones en total. Esas partes separadas del frustrum (al
comienzo del mismo mas pequeiias, al final mas grandes) serdn, una a una, las que la matriz de
proyeccion de la luz deba englobar. Para ello, en vez de guardar todas las sombras de la escena
en una misma textura, se hara uso de tantas texturas como divisiones del frustrum de visidn se
hayan producido, lo que conllevara ese mismo nimero de renderizados de la escena. Al estar
solo almacenando el valor del depth buffer de cada render sucesivo en una textura (usando
shaders computacionalmente muy simples), redibujar la escena serd mucho mas barato que al
hacerlo a texturas de color, en shaders complejos. Aun asi, el coste de redibujar la escena
tantas veces no es anecddtico, con lo que se ha afadido una opcién en el menu para
desactivar las sombras, para poder usar en equipos de gama baja. De hecho, en nuestra
implementacidn, la Unica sombra que generaremos sera la del sol.

Una aclaracion de estos tecnicismos es simple. Sencillamente, deseamos partir el cono
de visién en fragmentos y, en vez de guardar todas las sombras de la escena en una misma
textura, dedicar una textura de sombras para cada fragmento partido del cono de visién. Al
haberlo dividido de tal forma que las primeras secciones engloben un trozo pequefio de
terreno, las sombras en ese lugar serdn de alta calidad (pero abarcaran poco terreno). En
divisiones sucesivas los trozos serdn cada vez mas grandes, siendo las sombras cada vez de
peor calidad pero abarcando mas terreno, hasta asi llegar a la divisién final. Al mirar a lo lejos y
ver las sombras dadas por las divisiones lejanas del frustrum ni tan siquiera notaremos que las
estas tienen poca resolucién, al estar perdiendo nosotros también agudeza visual de forma
natural en funcién de la distancia. Para lugares muy cercanos, donde nuestra agudeza visual es
maxima, si necesitaremos sombras de alta calidad, que nos seran proporcionadas por las
primeras particiones. Dar para cada distancia de visién unas sombras con una calidad
proporcional a nuestra agudeza visual es en lo que se basa este algoritmo.

Tras tener todas las texturas de sombras ya dibujadas, tendremos solo que dibujar la
escena normalmente y, para cada pixel, determinar a qué distancia se encuentra del frustrum
de vision y, por tanto, con que matrices tenemos que hacer la transformacién al espacio de la
luz y con qué textura tenemos que comparar.

El protocolo necesario para calcular cada sombra asociada a cada divisién del frustrum
se hard como sigue:

- Se obtienen los ocho puntos que marcan los limites del pedazo de frustrum
seleccionado

- Se pasan a coordenadas de mundo, con la matriz vista inversa

29 . s . . . s . .y . .
El cono de visidn que el usuario posee dentro del videojuego. Mas informacién: Viewing Frustrum.
Wikipedia [Citado el 21/04/2016] https://en.wikipedia.org/wiki/Viewing_frustum
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- Se pasan a coordenadas de la luz, sin aplicar matriz de proyeccién por ahora

- Se construye una Bounding Box orientada con los ejes, y se hace que englobe a esos
ocho puntos. Con esa Bounding Box se construira la matriz de proyeccidn ortografica.
La coordenada z inicial de esa matriz ortografica debera abarcar todo el posible mundo
visible desde la misma, ya que no podemos solo calcular las sombras de un pedazo de
mundo partiendo desde la altura que deseemos, sino que tenemos que partir desde la
luz. Si no, algunas sombras podrian ser incorrectas al no estar considerando objetos
que tapen la luz por encontrarse mas atras de lo esperado.

- Tras tener ya la matriz de proyeccién, se dibuja la escena usandola (junto a la matriz
vista de la luz, claro estd) y se guarda en una textura. En mi caso particular, estoy
usando un TextureArray2D, siendo cada indice igual al nimero de particién del
frustrum.

- Serepite para todas las particiones.

- Al dibujar la escena, como sabemos a qué distancia de frustrum hemos realizado cada
particion, tan solo tendremos que fijarnos en el zbuffer de cada pixel, y mirar las
sombras de una particién o de otra. Un ejemplo de esta seleccién puede apreciarse en
la figura 25, simplificando cada particion del frustrum mediante colores.

En la figura 26 podemos apreciar la misma escena mostrada en la figura 25 sombreada
de forma correcta. Las distancias estan adaptadas para que las zonas de cambio de shadow
map no sean muy aparentes, aunque pueden distinguirse poniendo atencién. No se ha tenido
que aplicar ningun algoritmo de blending entre zonas al estar las distancias adaptadas para no
ser esto necesario, causando que no existan cambios de calidad muy bruscos entre cada
cascada.

Figura 25 - Division del frustrum de vision en distancias. (Marcadas por rojo, verde, azul, blanco).
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Figura 26 — Ejemplo de escena con sombras a varias distancias

Aun con esta mejora, se pueden ver dientes de sierra en las sombras (causados
porque, aunque hemos mejorado la resolucién, no la hemos aumentado lo suficiente en
puntos inmediatamente cercanos como para alcanzar la excepcional agudeza visual que se
tiene en distancias cortas, por ser un gasto de recursos enorme para cubrir poco terreno), unas
lineas discontinuas en las sombras (Shadow Acne) y unos pequefios saltos al avanzar el dia
(causado porque la resolucion va cambiando en funcién del movimiento del sol).

Los dientes de sierra se han arreglado parcialmente utilizando PCF y Poisson
Sampling® con cuatro sampleos y una dispersién de milimetros. Con una dispersién mas alta
los dientes de sierra se suavizaban totalmente, pero los saltos por cambio de resolucion
empeoraban. Con esta configuracidn se ha intentado obtener la mejor solucién posible para
ambos casos, aunque los dientes de sierra siguen siendo visibles, aunque con mayor dificultad,
y sigue habiendo pequefos saltos al avanzar el sol, aunque mucho menos aparentes. El
resultado, en general, es aceptable.

Las lineas discontinuas se han arreglado afiadiendo un offset a la profundidad de cada
pixel, en funcién de su distancia a la cdmara (con un offset fijo inicial, para evitar este mismo
problema al acercarnos mucho a un bloque). Esto, no obstante, podia causar problemas
cuando el sol se encontraba paralelo al poligono a sombrear, haciendo reaparecer el shadow
acne. La solucion ha sido anadir el offset en la direccién de la normal de cada poligono, en vez
de en la profundidad. La férmula usada es:

3% Tutorial 16: Shadow Mapping. [Citado el 18/06/2016]
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
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of fset = normal * max(mod(distanceVector) = 0.01,0,015)

Ese offset minimo de 0.015 se usa para evitar pequefios errores en poligonos extremadamente
cercanos.

Con esto, el shadow acne se soluciona en todos los casos y, aunque se aflade un pequeiio bias,
es tan diminuto que no es apreciable.

Con objeto de acelerar el cdlculo de sombras, los poligonos en los que su producto
escalar entre su normal y la direccién de la luz sea positivo (es decir, en los poligonos a los que
la luz les da “por detras”) se consideraran completamente sombreados, eliminando errores.
Ademas, para evitar fallos en los que una cara pasa de sombreada a luminosa repentinamente
(cuando el sol cruza justo el dngulo necesario para comenzar a incidir en ella, por ejemplo), las
sombras se suavizaran usando el producto escalar anteriormente descrito, haciendo que los
poligonos pasen suavemente de estar sombreados a no estarlo. Por ultimo, tras el anochecer
comenzaremos a sombrear suavemente todos los poligonos a los que aun las sombras no les
llegan (por ejemplo, torres altas), hasta estar todo el mapa en la oscuridad brevemente tras la
puesta de sol.

Con objeto de conseguir sombras lo mas detalladas posibles en la cercania, usaremos
el método de division de frustrum detallado en [11], pero dividiendo la distancia inicial de
corte entre 4, la distancia del segundo corte entre 2.5 y la distancia del tercero entre 1.5. Esto
causara peor definicion de sombras en la lejania, pero dado que esas sombras solo suelen ser
relevantes en el anochecer o amanecer (mientras que las sombras cercanas lo son todo el
tiempo), es un sacrificio razonable.

Dentro de nuestros shaders existird un parametro, llamado “shadowAttenuation”, que
tendra un valor de uno si el objeto esta recibiendo iluminaciéon solar directa y de 0.3 si esta
completamente en sombra, con valores intermedios en los bordes debido al PCF y al
PoissonSampling. Este valor se multiplicara a la luz natural del cubo, con lo que un cubo
sombreado tendra una iluminacién del 30% con respecto a los cubos iluminados por el sol.
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9. ANEXO 4: IMAGENES EXTRAS

9.1. Mejoras graficas ilustradas

Figura 27- Ambient Occlusion Desactivado

Figura 28 — Ambient Occlusion Activado
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Figura 29 — Ambient Occlusion Desactivado

Figura 30 — Ambient Occlusion Activado
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9.2. Mundos existentes

Figura 31 - Mapa uno: Islands

Figura 32 - Mapa dos: Snowy Mountains
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Figura 33 - Mapa tres: Plains

Figura 34 - Mapa cuatro: Buggy Caves
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Figura 35 - Mapa cinco: Floating Islands

Figura 36- Mapa cinco: Floating Islands
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Figura 37 - Mapa seis: Underwater Ruins (sobre el agua)

Figura 38 - Mapa seis: Underwater Ruins (bajo el agua)
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9.3. Comparativa con Minecraft

Figura 39 - Minecraft: Planicies

Figura 40 - Kubex: Planicies
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Figura 41 - Minecraft: Escena aérea

Figura 42 - Kubex: Escena aérea
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Figura 43 - Minecraft: Mar

Figura 44 - Kubex - Mar
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