Appendices

A Experimental results

We present an evaluation of the performance of the propasedhcontrol methods, both in simulation
and in experiments with real images.

A.1 Simulations

We will first show the simulation results for the omnidirectal visual homing technique. The reference
views used in this method were positioned forming a squdckigithe simulations, although any arbi-
trary distribution guaranteeing sufficient geometric dsity on the plane could be chosen. A randomly
distributed cloud of 200 points in 3D was generated and ptefein each camera.

Three sample homing trajectories with a 16-view referereteasd the evolutions of their corre-
sponding motion commands are displayed in Fig. 1. A maximlrashold was set in order to limit
the variation of the sizes of the individual sectéfsbetween two consecutive steps; this avoids abrupt
changes in the linear velocity that may occur when the robomias right across one of the reference
positions.

We also added Gaussian noise to the angles of the projeciet$ po evaluate the performance of
the homing method. Figure 2 displays the final position eoltained after adding variable noise in
simulations with sets of 4 (the minimum number for our medlaoatl 16 reference images. Increasing the
number of reference views makes the system more robust $e,rgince the control operates averaging
the contributions of the individual views.
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Figure 1: Robot path (left), linear velocity (center) angaliar velocity (right) of three sample simulated
homing trajectories.
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Figure 2: Final position error vs. Gaussian noise for the ihngmrmethod.

Next, we present some simulation results for the visualrobmtethod based on sinusoidal inputs.
From the points projected and matched between three cantieeasifocal tensor was computed and the
relative angles between the views were estimated. Thesatbles of the system were subsequently
obtained from this information and used in the closed-looptml. Figure 3 displays three sample
trajectories with our method, along with the velocitiesdis€he maximum orientationp(,...) was set
to 6(°. Smooth trajectories are generated to align the robot Wwihtarget, while in the second stage of
the control the depth is corrected following a straighelpath.

A simulation with added Gaussian noise is illustrated in. Fi§ The standard deviation of the
noise introduced in the angles projected in the cameras Wvaé/@ found it was useful to average the
measurements of the system variables over short intenvaleder to reduce noise. This is particularly
advisable when computing since it is a variable we are obtaining indirectly. The robelocities can
also be smoothed out by limiting their instantaneous vanatThere exists a noise amplification effect
near the end of the motion period due to the low values of theménator of the closed-loop expressions
used to compute the amplitude of the velocitiesiidd). This can be compensated by setting a minimum
threshold on these values. The robot trajectories arefaitily smooth and the position error remains
low, as illustrated by the example shown in the aforemetidiigure.

Simulations with motion drift are illustrated in Fig. 5. Thdded drift is proportional to the linear
and angular velocities of the robot. It can be seen that theedHoop control is capable of compensating
the drift through the variation of the amplitudes of the sioids, and the system reaches the desired state
att = T'/2. In order to illustrate this effect, only the sinusoidaltpafrthe control (i.e. the first step) is
shown.
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Figure 3: Three sample robot trajectories for the sinusaigaut-based control, from starting locations
(4,-1,5°),(—3,2,25°) and(—2, —3, —45°). The evolutions of the state variablegleft), = (center) and
¢ (right) are displayed in the top row. The bottom row showslitmear velocity (left), angular velocity
(center) and the robot paths (right) for each trajectory.
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Figure 4: Simulation of the sinusoidal-based control withled Gaussian noise (= 1°). The robot
velocities are displayed in the top left plot. The top righwtpshows the robot paths from starting
location (—5, 2, —5°) with noise (dashed line) and without noise (solid line). Dlagtom row displays
the evolutions of variables (left), z (center) andy (right). Dashed lines correspond to the simulation
with added noise, solid lines to the noiseless case.
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Figure 5: Simulation results with motion drift in the sinidal input-based part of the control. A driftless
simulation with initial location (-5,2,% is shown in solid line. A simulation with the same parameter
and a +20% drift added to both the linear and angular veéxcitif the robot is displayed with a dashed
line. The dotted line shows the results obtained with a dfiftL0%.



Figure 6: Example image (left), omnidirectional cameranfeg and complete setup (right) used for the
experiments.

A.2 Experimentswith real images

The performance of the omnidirectional visual homing mdthas tested with real images. The setup
for the real experiments consisted of an ActivMedia Piomemtholonomic unicycle robot base with a

catadioptric vision system, made up of a Point Grey FL2-@&2nera and a Neovision HS3 hyperbolic
mirror, mounted on top. The resolution of the employed insagbtained in an indoor, laboratory setting,
was 800x 600 pixels. No calibration is used, other than assumingttteatamera and mirror axis are

vertically aligned. Fig. 6 illustrates the experimentauge

The reference set of views consisted of 20 images acquioed lipcations forming a 5 4 rectan-
gular grid with a spacing of 1.2 m., thus covering a total 4.8 x 3.6 n?. Image features were
extracted and matched, and a RANSAC estimation was usedripute the 1D trifocal tensors between
the views. The number of three-view correspondences era@lbgd in the range of 30 (the threshold
below which the results started to become unreliable) toAlough images taken on opposite sides of
the room could not be matched, the connections betweenesdjacclose sets of views were sufficient to
recover the relative angles of the complete reference ggt7Bhows vector field representations for two
different goal locations within the grid. The arrows at eémdation represent the displacement vectors
associated with the motion that a vertically oriented rafitth nonholonomic constraints would perform
from that spot, according to the proposed control law. THelyave been scaled by an equal factor. As
can be seen, the magnitude of the vectors becomes largee adsthnce to the target increases. The
line segments show the estimated directions of the epimdldse goal position in each of the reference
locations. The results show good accuracy despite therpres# outliers in the putative matches.

A sequence of 170 images was captured by the robot while g@ticonstant speed along a straight-
line, 5 m. long diagonal path crossing the grid from one obiler sides to reach a goal position near
the opposite side. The linear velocity commands that theitgpmethod would generate at every step
in the sequence and the estimated current-to-goal angkehftih the angular velocity of the control law
would be proportional) are displayed in Fig. 8. The resultthese preliminary experiments show that
the homing method can be successful in an environment witicieatly large sets of feature matches.
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Figure 7: Displacement vectors (arrows) and directionefdpipoles (line segments) with respect to
the goal estimated at every reference position for two @iffe goal locations (marked with a cross) in
real setting.
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Figure 8: Linear velocity (left) and angle to the goal (rigbstimated in real image sequence.



