000056063 001__ 56063
000056063 005__ 20200221144324.0
000056063 0247_ $$2doi$$a10.3390/app6040100
000056063 0248_ $$2sideral$$a94900
000056063 037__ $$aART-2016-94900
000056063 041__ $$aeng
000056063 100__ $$0(orcid)0000-0001-8689-6482$$aAguado, S.$$uUniversidad de Zaragoza
000056063 245__ $$aAdequacy of technical and commercial alternatives applied to machine tool verification using laser tracker
000056063 260__ $$c2016
000056063 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056063 5203_ $$aBesides presenting a volumetric verification technique that allows characterization of the different geometric errors of a machine tool (MT) depending on its kinematic chain and geometry through a kinematic model, this paper investigates the influence of measurement tools and techniques available on the final accuracy of the MT. Volumetric verification based on a laser tracker (LT) relates the coordinates of the tool with the coordinates of the LT, including it into the kinematic model. Using a non-lineal optimization process, approximation functions that characterize the joint influence of MT geometric errors are obtained. However, measurement data will be affected by previous compensation of the MT, the accuracy of the measurement system, LT measurement technology, the type of retroreflector used, and techniques used to improve data accuracy, among other sources of errors. This paper studies the adequacy of different commercial alternatives such as: retroreflectors, LTs from different manufacturers, etc., that can be applied in MT verification using a long-range MT. As the accuracy is strongly affected by the uncertainty of its angular encoders, the multilateration technique tries to improve data accuracy using only LT radial information. Nonetheless, a new bundle adjustment which uses radial and angular information is presented in current metrology software. This paper studies both techniques and analyzes their adequacy for MT verification too.
000056063 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T62$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2013-46979-C2-1-P
000056063 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000056063 592__ $$a0.109$$b2016
000056063 593__ $$aApplied Mathematics$$c2016$$dQ4
000056063 593__ $$aComputer Science Applications$$c2016$$dQ4
000056063 593__ $$aEngineering (miscellaneous)$$c2016$$dQ4
000056063 593__ $$aProcess Chemistry and Technology$$c2016$$dQ4
000056063 593__ $$aInstrumentation$$c2016$$dQ4
000056063 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ4
000056063 593__ $$aFluid Flow and Transfer Processes$$c2016$$dQ4
000056063 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056063 700__ $$0(orcid)0000-0001-7316-0003$$aSantolaria, J.$$uUniversidad de Zaragoza
000056063 700__ $$0(orcid)0000-0002-2521-2611$$aSamper, D.$$uUniversidad de Zaragoza
000056063 700__ $$0(orcid)0000-0001-9617-1004$$aVelázquez, J.$$uUniversidad de Zaragoza
000056063 700__ $$0(orcid)0000-0002-8008-4819$$aJavierre, C.$$uUniversidad de Zaragoza
000056063 700__ $$0(orcid)0000-0002-0544-0182$$aFernández, Á.$$uUniversidad de Zaragoza
000056063 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000056063 7102_ $$15002$$2X$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cProy. investigación HHA
000056063 7102_ $$15002$$2515$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Ing. Procesos Fabricación
000056063 773__ $$g6, 4 (2016), 100 [16 p.]$$pAppl. Sci. (Bucur.)$$tApplied Sciences (Bucuresti)$$x1454-5101
000056063 8564_ $$s4348558$$uhttps://zaguan.unizar.es/record/56063/files/texto_completo.pdf$$yVersión publicada
000056063 8564_ $$s105844$$uhttps://zaguan.unizar.es/record/56063/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056063 909CO $$ooai:zaguan.unizar.es:56063$$particulos$$pdriver
000056063 951__ $$a2020-02-21-13:43:10
000056063 980__ $$aARTICLE