000056123 001__ 56123
000056123 005__ 20170327111845.0
000056123 0247_ $$2doi$$a10.1016/j.ijhydene.2015.02.071
000056123 0248_ $$2sideral$$a95178
000056123 037__ $$aART-2015-95178
000056123 041__ $$aeng
000056123 100__ $$aRenau, Jordi
000056123 245__ $$aUse of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles
000056123 260__ $$c2015
000056123 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056123 5203_ $$aA study is presented to determine if substituting an internal combustion engine (ICE) by an electric motor powered by a fuel cell stack can be a viable option to increase the service ceiling of an available light unmanned aerial vehicle (UAV), extending it to 10,000 m. As a first condition, the stack has to be capable of supplying the minimum power required for horizontal leveled flight at this altitude, which is a function of the UAV total mass. A second step examines if the UAV can transport the energy required to reach the desired service ceiling without exceeding the maximum mass that can be loaded, considering that both hydrogen and oxygen have to be carried on-board. A particularly light PEM fuel cell stack is proposed as a suitable power source. A realistic system is described to store the required amount of reactant gases maintaining the mass below the allowable limits. Results indicate that with its aerodynamic characteristics, the UAV should be capable of ascending up to 10,000 m with the described fuel cell and gas storage system. Some multivariable maps that include service ceiling, total payload and required power are provided to perform this type of analysis.
000056123 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2012-38642-C02-01
000056123 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056123 590__ $$a3.205$$b2015
000056123 591__ $$aCHEMISTRY, PHYSICAL$$b47 / 144 = 0.326$$c2015$$dQ2$$eT1
000056123 591__ $$aELECTROCHEMISTRY$$b8 / 27 = 0.296$$c2015$$dQ2$$eT1
000056123 591__ $$aENERGY & FUELS$$b28 / 88 = 0.318$$c2015$$dQ2$$eT1
000056123 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056123 700__ $$0(orcid)0000-0003-4141-6072$$aLozano, Antonio$$uUniversidad de Zaragoza
000056123 700__ $$0(orcid)0000-0002-0063-1318$$aBarroso Estébanez, Jorge Angel$$uUniversidad de Zaragoza
000056123 700__ $$aMiralles, José
000056123 700__ $$0(orcid)0000-0002-0979-2193$$aMartín, Jesús$$uUniversidad de Zaragoza
000056123 700__ $$aSánchez, Fernando
000056123 700__ $$0(orcid)0000-0002-5391-8021$$aBarreras, Félix$$uUniversidad de Zaragoza
000056123 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDepartamento de Ciencia y Tecnología de Materiales y Fluidos$$cMecánica de Fluidos
000056123 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDepartamento de Ciencia y Tecnología de Materiales y Fluidos$$cCiencia de los Materiales e Ingeniería Metalúrgica
000056123 773__ $$g40 (2015), 14573-14583$$pInt. j. hydrogen energy$$tInternational journal of hydrogen energy$$x0360-3199
000056123 8564_ $$s644952$$uhttp://zaguan.unizar.es/record/56123/files/texto_completo.pdf$$yPostprint
000056123 8564_ $$s70042$$uhttp://zaguan.unizar.es/record/56123/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056123 909CO $$ooai:zaguan.unizar.es:56123$$particulos$$pdriver
000056123 951__ $$a2016-07-20-12:54:58
000056123 980__ $$aARTICLE