000056159 001__ 56159
000056159 005__ 20200221144210.0
000056159 0247_ $$2doi$$a10.1021/acsphotonics.5b00667
000056159 0248_ $$2sideral$$a95263
000056159 037__ $$aART-2016-95263
000056159 041__ $$aeng
000056159 100__ $$aGenç, A.
000056159 245__ $$aTuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures
000056159 260__ $$c2016
000056159 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056159 5203_ $$aWe report the fine-tuning of the localized surface plasmon resonances (LSPRs) from ultraviolet to near-infrared by nanoengineering the metal nanoparticle morphologies from solid Ag nanocubes to hollow AuAg nanoboxes and AuAg nanoframes. Spatially resolved mapping of plasmon resonances by electron energy loss spectroscopy (EELS) revealed a homogeneous distribution of highly intense plasmon resonances around the hollow nanostructures and the interaction, that is, hybridization, of inner and outer plasmon fields for the nanoframe. Experimental findings are accurately correlated with the boundary element method (BEM) simulations demonstrating that the homogeneous distribution of the plasmon resonances is the key factor for their improved plasmonic properties. As a proof of concept for these enhanced plasmonic properties, we show the effective label free sensing of bovine serum albumin (BSA) of single-walled AuAg nanoboxes in comparison with solid Au nanoparticles, demonstrating their excellent performance for future biomedical applications.
000056159 536__ $$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2
000056159 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000056159 590__ $$a6.756$$b2016
000056159 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b28 / 275 = 0.102$$c2016$$dQ1$$eT1
000056159 591__ $$aOPTICS$$b7 / 92 = 0.076$$c2016$$dQ1$$eT1
000056159 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b15 / 87 = 0.172$$c2016$$dQ1$$eT1
000056159 591__ $$aPHYSICS, CONDENSED MATTER$$b14 / 67 = 0.209$$c2016$$dQ1$$eT1
000056159 591__ $$aPHYSICS, APPLIED$$b16 / 147 = 0.109$$c2016$$dQ1$$eT1
000056159 592__ $$a3.471$$b2016
000056159 593__ $$aAtomic and Molecular Physics, and Optics$$c2016$$dQ1
000056159 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000056159 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000056159 593__ $$aBiotechnology$$c2016$$dQ1
000056159 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056159 700__ $$aPatarroyo, J.
000056159 700__ $$aSancho-Parramon, J.
000056159 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000056159 700__ $$aDuchamp, M.
000056159 700__ $$aGonzalez, E.E.
000056159 700__ $$aHenrard, L.
000056159 700__ $$aBastús, N.G.
000056159 700__ $$aDunin-Borkowski, R.
000056159 700__ $$aPuntes, V.F.
000056159 700__ $$aArbiol, J.
000056159 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056159 773__ $$g3, 5 (2016), 770-779$$pACS photonics$$tACS photonics$$x2330-4022
000056159 8564_ $$s897720$$uhttps://zaguan.unizar.es/record/56159/files/texto_completo.pdf$$yVersión publicada
000056159 8564_ $$s86762$$uhttps://zaguan.unizar.es/record/56159/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056159 909CO $$ooai:zaguan.unizar.es:56159$$particulos$$pdriver
000056159 951__ $$a2020-02-21-13:11:32
000056159 980__ $$aARTICLE