
Proyecto Final de Carrera
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Diseño de una Base Normativa de
EEG Basal en Adultos

RESUMEN

El electroencefalograma constituye una de las técnicas de adquisición no invasivas más
ampliamente utilizadas para el registro de actividad cerebral. El uso de Bases Normativas
de EEG resulta de gran interés para determinar un patrón de referencia en cuanto a señal
EEG se refiere.

En el presente proyecto se diseña, desarrolla y valida una Base Normativa de EEG
basal en adultos, con el objetivo de automatizar el diagnóstico, tratamiento y evaluación
de las enfermedades neurológicas.

Actualmente la problemática existente en el desarrollo de una Base Normativa de EEG
viene determinada por la alta variabilidad interpersonal de la señal EEG. Este aspecto ha
sido estudiado mediante la relación de esta variabilidad con factores fisiológicos llevando
a cabo una estratificación de sujetos clasificados por dichos factores. Esta técnica ha
resultado útil en el caso de Bases Normativas de adultos, pero no en el caso de Bases
Normativas infantiles. Este proyecto plantea una alternativa mediante la estratificación
de la Base Normativa de forma expĺıcita sobre los cambios significativos de la propia señal
EEG. Además, se han elaborado unas herramientas matemáticas que permiten aplicar la
Base Normativa en el diagnóstico de una patoloǵıa neurológica y en el análisis de la
evolución de un sujeto bajo una terapia establecida.

La ventaja del conjunto de técnicas desarrolladas frente a las existentes sobre Bases
Normativas radica en la automatización tanto del proceso de inclusión de un sujeto a la
base, como en la aplicación de las herramientas que determinan la normalidad en la señal
EEG, evitando cualquier intervención humana en el diseño de la Base Normativa.

El conjunto de procesos desarrollados se centran en favorecer la capacidad de discri-
minación entre sujetos sanos y patológicos, en función de unos patrones extráıdos de la
señal EEG, y analizar estad́ısticamente estos patrones para determinar su robustez frente
a la variabilidad interpersonal. La búsqueda de los patrones de referencia se orientó hacia
descriptores de la enerǵıa en las bandas del espectro de potencias de la señal EEG los
cuales se ha demostrado su relación con diferentes patoloǵıas neurológicas.

Finalmente, se lleva a cabo la validación global de las técnicas diseñadas tomando
la Base Normativa desarrollada como una prueba diagnóstica bajo un contexto cĺınico,
mediante el uso de datos EEG cuasi-sintéticos.
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1. Introducción

1.1. Contexto

El presente proyecto fin de carrera se ha realizado dentro del Grupo Robótica, Per-
cepción y Tiempo real (RoPeRT) del Instituto de Investigación en Ingenieŕıa de Aragón
(I3A) de la Universidad de Zaragoza. En particular se ha desarrollado junto con el equipo
de investigación de Interfaces Cerebro-Computador (BCI), compuesto por un grupo mul-
tidisciplinar conformado por profesionales en áreas como la Informática, la Psicoloǵıa y
las Telecomunicaciones.

El trabajo desarrollado se enmarca en un proyecto orientado a la aplicación de Neu-
rofeedback mediante una Interfaz Cerebro-Computador en el tratamiento de trastornos
psiquiátricos como el Trastorno de Déficit de Atención (TDA).

1.2. Motivación y trabajo relacionado

La evolución de la tecnoloǵıa moderna ha transformado completamente el diagnóstico,
pronóstico y tratamiento de las enfermedades neurológicas en las últimas décadas situando
al electroencefalograma (EEG) entre las técnicas más utilizadas en aplicaciones cĺınicas.
En esta dirección, una herramienta que está ganando peso son las Bases Normativas de
EEG como una herramienta de referencia para el diagnóstico cĺınico. Una Base Normativa
de EEG se obtiene a partir de una colección de señales electroencefalográficas que han sido
obtenidas usando el mismo protocolo de adquisición sobre un conjunto de personas sanas.
La Base Normativa en śı, proporciona un patrón de referencia o comparativo que permite
definir el estado de normalidad en una muestra de población sana. A su vez, la Base
Normativa tiene asociadas unas herramientas matemáticas que permiten comparar a un
sujeto frente a una población con el objetivo de identificar las medidas que se desv́ıan de la
normalidad, aśı como la magnitud de esta desviación. De tal forma, una Base Normativa
puede usarse en las siguientes aplicaciones:

Evaluar el estado neurológico de un paciente y verificar un diagnóstico psicológi-
co. Un profesional evalúa el historial cĺınico, śıntomas y dolencias, y posteriormente
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1. Introducción 1.2 Motivación y trabajo relacionado

hace uso de las herramientas de medida para comparar el paciente con la Base
Normativa, añadiendo de esta forma precisión al diagnóstico cĺınico.

Aumentar la eficiencia de un tratamiento mediante la comparación del EEG antes,
durante y después del tratamiento, analizando la evaluación del mismo.

Figura 1.1: Aplicaciones generales de una Base Normativa. (Izquierda) Diagnóstico de un sujeto medi-
ante la comparación del mismo frente a la Base Normativa. (Derecha) Análisis de la evaluación de un
tratamiento o terapia realizado sobre un sujeto externo a la Base Normativa.

Se distinguen dos tipos de Bases Normativas según las condiciones de adquisición de
EEG: (a) Las Bases Normativas Pasivas (BNP) [1] en el caso que el sujeto permanezca
en estado basal1; y (b) Las Bases Normativas Activas (BNA) [2] cuando el sujeto re-
aliza algún tipo de tarea cognitiva o perceptual durante el registro de datos. Las BNP
proporcionan simplicidad y relativa uniformidad en las condiciones de registro de EEG,
dado que el registro se realiza en unas condiciones estándar. Esto permite comparar BNP
procedentes de diferentes laboratorios y/o muestras de población con alta fiabilidad. Por
su parte las BNA resultan más dif́ıciles de homogeneizar dado que el proceso se complica
debido a la variabilidad de las condiciones del recording (la intensidad de est́ımulos, la dis-
tancia est́ımulo sujeto) y otros aspectos dif́ıciles de calcular como el nivel de involucración
del sujeto. A estos motivos se suma la problemática asociada al filtrado de artefactos de
una señal EEG adquirida en condiciones de tarea activa (en EEG basal los artefactos son
estándar y se estudian en cursos básicos de Neurofeedback2 por medio de atlas [3]). Dadas
las dificultades añadidas que presenta una BNA, y a la poca experiencia del grupo inves-
tigación en el campo de las Bases Normativas se decidió desarrollar una Base Normativa
de EEG basal en ojos cerrados.

Un aspecto clave en el desarrollo de una Base Normativa e independientemente de las
condiciones de adquisición de EEG es la alta variabilidad interindividual del registro de
EEG. Este aspecto ha sido estudiado de forma expĺıcita [4], demostrando que tal variabili-
dad podŕıa ser atribuible a la presencia de un factor de escala multiplicativo asociado con
la amplitud del EEG. Es decir, los registros del EEG están condicionados por un Factor de
Escala Global (FEG) que permanece constante en cada individuo en todas las frecuencias,

1Estado basal: el sujeto permanece con los ojos abiertos o cerrados en reposo sin realizar ninguna
tarea mental en particular

2Neurofeedback: también denominado neuroterapia, es una técnica que se basa en medir la actividad
cerebral y enseñar a las personas su propia regulación por aprendizaje condicionado.
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1. Introducción 1.3 Objetivo y Alcance del proyecto

derivaciones y diferentes estados funcionales (estado de reposo, tarea activa...) pero cambia
entre individuos. Además se atribuye una posible dependencia del FEG con aspectos
fisiológicos del individuo (como la edad), y por tanto con propiedades de maduración
del volumen conductor del cerebro, como las caracteŕısticas del hueso, la geometŕıa del
cráneo y las conductancias de la piel y el cráneo. En consecuencia, el desarrollo de una
Base Normativa requiere o bien un estudio de la variabilidad del EEG causado por motivos
fisiológicos (los cuales no han sido completamente demostrados actualmente, como la edad,
la geometŕıa del cráneo, etc), o bien una estratificación de sujetos de la Base Normativa
que tenga en cuenta expĺıcitamente los cambios significativos en su EEG. Hasta la fecha
todas las Bases Normativas realizan una estratificación por edades [5] (aunque se ha visto
que es útil en sujetos maduros dado que el EEG es relativamente invariable este criterio
no se satisface en el caso de Bases Normativas de niños) y otros autores han ajustado
estos patrones dependiendo además de la región del cerebro analizada [6].

A estos inconvenientes se suma que la contribución del FEG sobre la varianza total del
EEG apenas alcanza el 42 % de los datos corregidos por la edad. Por tanto, actualmente
en muchos de los estudios de EEG se trata de disminuir esta variabilidad que existe entre
individuos de la misma edad [7]. Más allá de la restricción mencionada, los problemas
principales asociados a la estratificación del EEG en base a la edad se resume en:

No linealidad de las relaciones entre el EEG y la edad del individuo.

Heteroscedasticidad3 de la predicción del error en la no linealidad mencionada.

Vulnerabilidad en errores de calibración.

Todos estos aspectos apuntan a que la variabilidad interpersonal es una limitación en
la construcción de las Bases Normativas actuales. Este proyecto propone una alternativa
a la estratificación de señal EEG por edades, la cual está basada en la aplicación de una
técnica de clusterización de individuos en función de un conjunto de caracteŕısticas de
señal extráıdas sobre el EEG. Como consecuencia, la población normal queda dividida en
clusters caracterizados por propiedades de la señal. La gran ventaja de la técnica es que
permite la automatización completa del proceso de generación de la Base Normativa. A
su vez, realiza una estratificación expĺıcita basada en los cambios significativos del EEG.

1.3. Objetivo y Alcance del proyecto

El objetivo de este proyecto fin de carrera es el diseño, desarrollo y validación de una
Base Normativa de EEG basal de 84 adultos sanos (comprendidos entre 18 y 30 años) en
condiciones de adquisición de ojos cerrados. En esta dirección se ha diseñado un proceso
innovador de creación de una Base Normativa mediante el cual los sujetos que componen

3Heteroscedasticidad: Se produce cuando la varianza de las perturbaciones no es constante a lo largo
de las observaciones.
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1. Introducción 1.3 Objetivo y Alcance del proyecto

Figura 1.2: Clusterización de una Base Normativa

la Base Normativa se dividen en clases aplicando un algoritmo paramétrico construido
sobre caracteŕısticas del EEG. A su vez se han creado las herramientas automáticas para
comparar un individuo frente a la Base Normativa, y determinar si se encuentra dentro
de una normalidad definida. Si el sujeto no concuerda con la Base Normativa, es posible
determinar de que manera se desv́ıa de la normalidad y la magnitud de esta desviación.
La ventaja del proceso creado es que es automático con lo que la inclusión de un individuo
es directa y evita la intervención humana en el proceso.

La figura 1.3 muestra el proceso desarrollado y las etapas que se han llevado a cabo en
este proyecto. Las cuales se describen a continuación: el desarrollo de la Base Normativa
comienza con la etapa de adquisición de EEG, la cual no ha formado parte del presente
proyecto. En concreto, se ha trabajado con datos de señal EEG recogidos por la empresa
Nova Tech EEG (NTE). A esta etapa le sigue un tratamiento de señal espećıfico para la
extracción de las caracteŕısticas en las que sustenta la Base Normativa. Estos parámetros
son analizados mediante la técnica de Split&Half para estudiar su fiabilidad. Posterior-
mente, se realiza un análisis estad́ıstico de dichas caracteŕısticas con el objetivo de obtener
una distribución estad́ıstica común a todas ellas, determinándose la distribución gaussiana
como función objetivo. La siguiente etapa define un método de clusterización de los sujetos
en clases siguiendo un criterio de similitud en cuanto a caracteŕısticas de señal EEG. Por
último, se concluye con una etapa de validación, en la cual se analiza la sensibilidad de la
Base Normativa y las herramientas de medida diseñadas como una prueba de diagnóstico.
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Figura 1.3: Procedimientos para el desarrollo y validación de una base normativa de EEG.

1.4. Organización

El presente documento está estructurado en siete caṕıtulos, siendo este primero la
introducción; el caṕıtulo dos presenta los conceptos básicos sobre el electroencefalograma
además detalla el registro y procesado de señal EEG llevado a cabo para la extracción
de los patrones que caracterizan la Base Normativa; el caṕıtulo tres detalla los estudios
realizados sobre la fiabilidad de los datos adquiridos; el caṕıtulo cuatro describe el análisis
estad́ıstico realizado sobre la distribución de las muestras utilizadas; el caṕıtulo cinco
expone el proceso de segmentación realizado sobre los sujetos de la Base Normativa según
criterios de similitud en parámetros de la señal EEG; el caṕıtulo seis describe la validación
de las herramientas de medida diseñadas junto con la Base Normativa y por último en el
caṕıtulo siete se recopila la valoración sobre el trabajo realizado, y se exponen las posibles
extensiones del proyecto.
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2. Registro y procesado de señal EEG

2.1. Introducción

El presente caṕıtulo describe la señal empleada en el desarrollo de este proyecto, su
adquisición y procesado. La sección 2.2 presenta una introducción del electroencefalogra-
ma, describiendo el origen fisiológico de la señal EEG y de sus caracteŕısticas temporales y
espectrales. A continuación, la sección 2.3 describe los datos EEG utilizados en este proyec-
to y el registro llevado a cabo. Y por último, en la sección 2.4 se detalla el tratamiento de
señal realizado, una primera etapa de filtrado de artefactos y un procesado más concreto
para la extracción de los parámetros que recogen la Base Normativa de este proyecto.

2.2. Electroencefalograma

El electroencefalograma (EEG) es el registro no invasivo de la actividad eléctrica cere-
bral mediante electrodos colocados en la superficie del cuero cabelludo. Al conjunto de
la actividad eléctrica se le conoce como ritmo debido a su comportamiento oscilatorio.
Concretamente la actividad de una sola neurona cortical no puede ser medida debido al
grosor de las capas de tejido que componen la corteza cerebral. Sin embargo la activi-
dad conjunta de millones de neuronas corticales, localizadas a una profundidad de varios
miĺımetros, producen un campo eléctrico suficientemente fuerte para ser medido en la
superficie cerebral, siendo esta profundidad dependiente de la potencia de la fuente neu-
ronal. El campo eléctrico es principalmente generado por corrientes que fluyen durante
excitaciones sinápticas1 de las dendritas, la excitación post-sináptica. La diversidad de
ritmos EEG es inmensa y depende, entre otras cosas, del estado mental del sujeto (grado
de atención, de relajación, etc). Los ritmos están convencionalmente caracterizados por:

La amplitud de EEG: está relacionada con el grado de sincronización con el
cual las neuronas corticales interaccionan. Una excitación sincronizada se produce

1Sinapsis: unión intercelular producida por una descarga qúımica que origina una corriente eléctrica
en la membrana de la célula sináptica (emisora) una vez que este impulso alcanza el extremo del axón la
propia neurona segrega neurotransmisores.
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2. Registro y procesado de señal EEG2.3 Descripción de los datos y Registro

cuando las señales originadas por cada neurona se suman de forma coherente en fase
produciendo como resultado una señal de amplitud elevada. Por el contrario, una
excitación aśıncrona de las neuronas provoca un EEG irregular de baja amplitud.
La amplitud es variable, de 20-60 µV (50 µV por término medio).

La frecuencia de EEG: viene definida por la actividad proveniente del Tálamo.
Esta parte del cerebro está formada por neuronas que poseen propiedades marca-
pasos, es decir, tienen la capacidad intŕınseca para generar un patrón ŕıtmico.

En la actualidad, el registro de EEG se lleva a cabo mediante la colocación de un gorro
sobre el cuero cabelludo, en el cual se colocan un conjunto de electrodos. La disposición
de los electrodos sobre el cuero cabelludo sigue el estándar descrito por el Sistema In-
ternacional 10-20, ver en anexo B.1. Cada par de electrodos registra las variaciones de
potencial eléctrico definiendo un canal de EEG. Cada una de estas señales son amplifi-
cadas mediante el uso de una amplificador diferencial previo a la etapa de digitalización.
La figura 2.2 representa una muestra de encefalograma compuesta por 16 canales. Tal y
como se observa, la señal es segmentada en fragmentos temporales denominados epochs
(divididos por ĺıneas verticales en la figura).

Figura 2.1: (Izquierda) Ejemplo de señal EEG adquirida sobre 16 posiciones del cuello cabelludo. Cada
fila representa un canal. (Derecha) Representación visual en forma de mapa de color de la zona sombreada
en la imagen izquierda

2.3. Descripción de los datos y Registro

Los datos empleados en este proyecto fueron adquiridos por la empresa NTE. Éstos se
componen de la señal EEG registrada en 84 adultos sanos, con edades comprendidas entre
los 18 y 30 años. La selección de los sujetos siguió unos criterios de exclusión basados en
el historial psiquiátrico, tanto de los sujetos como de sus familiares, además de un análisis
sobre posibles abusos de drogas, discapacidades f́ısicas o lesiones cerebrales. El registro
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se realizó durante una sesión (o trial) continua de unos 3 a 5 minutos de duración, en
la cual el sujeto se encontraba en condiciones de reposo, con los ojos cerrados y sentado
cómodamente en una habitación silenciosa, con luz tenue. El protocolo de montaje junto
con el registro de señal EEG fue llevado a cabo por NTE (en el anexo B.3 se detalla de
forma más extensa la infraestructura de montaje utilizado). Para la adquisición de señal
EEG se utilizaron 19 electrodos cuya colocación siguió el estándar prescrito por el Sistema
Internacional 10-20.(FP1, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1, O2). Se realizó un montaje bipolar, en el cual, la señal de referencia es adquiri-
da en los lóbulos de las orejas, denominado ‘linked-ears reference’. Se comprobó que la
impedancia de los electrodos estuviera por debajo de 5 Kohmios asegurando una relación
señal a ruido apropiada. El amplificador diferencial utilizado es el sistema de adquisición-
24 NeuroSearch empleando un conversor de 12-bit Analógico-Digital (Lexicor Medical
techology, Inc., bouder, CO). El cual permite un filtrado analógico para eliminar la in-
terferencia debido al ruido ambiental que proviene de las lámparas fluorescentes y otros
dispositivos que emiten ruido a través de ondas de 60Hz, utilizando un filtro elimina-banda
tipo Notch. En el sistema de digitalización (previo a la conversión Analógico-Digital) se
realizó un prefiltrado mediante un filtro antialiasing: filtro paso bajo con frecuencia de
corte de 50Hz. Se seleccionó una fM de sampleo de 128 Hz para garantizar que la fM es
superior a dos veces la máxima frecuencia presente en la señal continua y aśı satisfacer el
Teorema de Muestreo de Nyquist:

fM > 2fmax (2.1)

2.4. Procesado de señal

2.4.1. Filtrado de artefactos

La señal EEG se caracteriza por su reducida magnitud (del orden de las decenas de uV),
por lo que es fácilmente contaminada por ruido e interferencias. De tal manera, un aspecto
especialmente importante en el tratamiento de señal EEG consiste en la eliminación de
ruido y artefactos para mejorar la relación señal a ruido (en inglés Signal to Noise Ratio
SNR o S/N). Un correcto filtrado de artefactos permite, además de eliminar señales no
deseadas, minimizar la variabilidad interpersonal del EEG. Este es un aspecto cŕıtico en
el desarrollo de una Base Normativa, dado que en definitiva una BN agrupa señales EEG
provenientes de diferentes sujetos con el objetivo de definir un patrón de referencia.

Un artefacto es un registro de actividad no cerebral que aparece dentro del EEG
alterando en gran medida la señal adquirida debido a que su amplitud suele ser mucho
mayor que la propia actividad cerebral. Los artefactos se presentan inevitablemente en
todo registro de EEG pudiendo tener un origen biológico, instrumental o medioambiental.
Para más información ver el anexo ??. El filtrado de artefactos requiere de un importante
conocimiento y experiencia. Este proceso consiste en un exhaustivo reconocimiento de
artefactos mediante la ayuda de un software de visualización, procediendo manualmente
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a eliminar aquellos epochs afectados por un posible artefacto. Como consecuencia, la
longitud de señal EEG original se ve sensiblemente reducida. El filtrado de artefactos
realizado por Nova Tech EEG se compone de dos fases. La primera de ellas, consiste en una
inspección visual del EEG digitalizado en una pantalla de alta-resolución para identificar
los epochs que contengan artefactos visibles. A continuación, se procede a un filtrado más
exhaustivo mediante la aplicación Eureka 2, ayuda a la identificación de artefactos más
sutiles la cual necesita siempre la intervención humana para la eliminación.

2.4.2. Extracción de patrones

Una Base Normativa recoge un conjunto de patrones para caracterizar el EEG de un
sujeto sano. La extracción de patrones relevantes es particularmente crucial cuando el
propósito es diseñar un sistema que permita discriminar entre un EEG ’normal’ y uno pa-
tológico, como es una de las aplicaciones de este proyecto. Una vez la señal EEG está libre
de artefactos se prosigue con un tratamiento más espećıfico para la extracción de carac-
teŕısticas de la señal. Los patrones más utilizados en las investigaciones mediante EEG
se clasifican en patrones espectrales y patrones de conectividad. Los primeros se definen
a partir del análisis del espectro de frecuencias en una ventana temporal y describen la
intensidad del campo electromagnético de esa localización. Los patrones de conectividad
son medidas más complejas que consideran caracteŕısticas espacio-temporales, que impli-
can varias localizaciones simultáneamente y describen la intensidad de la conexión entre
esas regiones cerebrales.

Los patrones de señal EEG más comunes desde un punto de vista cĺınico son los
patrones espectrales de frecuencia. El tratamiento frecuencial de EEG comienza con el
cálculo de la densidad espectral de potencias (PSD). La PSD de la señal EEG se ha llevado
a cabo mediante el estimador espectral de potencia, denominado periodograma. El cálculo
del periodograma asume que la señal es estacionaria3 y periódica, es decir, que se puede
identificar un patrón que se va repitiendo con cierta periodicidad (a estos segmentos se les
denomina epochs). Se seleccionó una longitud de epoch igual a un segundo, coincidiendo
con la duración elegida en la limpieza de artefactos. Además, esta longitud es usada
habitualmente en anteriores estudios que analizan la estacionariedad del EEG. Debido a
la propiedad no estacionaria del EEG, se asume en su análisis que el EEG está compuesto
por segmentos consecutivos con propiedades estacionarias.

El procesado se realizó sobre las 19 señales EEG filtradas de artefactos por el proceso
descrito en la subsección anterior. La estimación del PSD se llevó a cabo mediante el
periodograma modificado, en el cual cada una de las señales es enventanada en segmentos
de un segundo. Se utilizó la ventana de Tukey, o coseno alzado truncado, cuya expresión
se define para una longitud L:

2Aplicación para el análisis y filtrado de artefactos en la señal EEG, de Nova Tech EEG.
3Señal estacionaria: señal cuyos parámetros estad́ısticos permanecen constantes sobre el tiempo.
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El valor de longitud de ventana L se tomó igual a 128 puntos, los cuales representan
un segundo de la señal EEG en tiempo muestreada a una frecuencia de 128 Hz. El cálculo
de la Transformada Discreta de Fourier (Discrete Fourier Transform, DFT) se llevó a
cabo mediante la aplicación de zero-padding4, lo que permitió emplear un total de 2048
puntos en el cálculo de la DFT. Obteniéndose una resolución frecuencial de:

Mf=
Fs

N
=

128Hz

2048muestras
= 0,0625Hz/muestra (2.3)

La densidad espectral de potencias del EEG se caracteriza por la forma representada
en la figura 2.2. Aproximadamente el 98 % de la potencia en la señal se distribuye dentro
del intervalo 0.5 y 30Hz, por lo que éste intervalo es el analizado en este proyecto.

Figura 2.2: Periodograma t́ıpico de una señal EEG, el cual representa la distribución de la potencia de la
señal sobre el dominio frecuencial. A través del código de colores se representan las bandas de frecuencia
t́ıpicas del espectro de EEG: Delta, Theta, Alpha y Beta.

En general, la densidad espectral de potencia de EEG es fuertemente variable de
forma intrapersonal, es decir, la distribución de potencia en el dominio frecuencial vaŕıa
dependiendo de cada persona. Por este motivo, no resulta útil en términos de comparación
tomar un patrón o (parámetro) de señal EEG extráıdo de una única frecuencia o bin del
espectograma ,sino que usualmente se agrupan en bandas frecuenciales. Tradicionalmente
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Delta Theta Alfa Beta
Intervalo [0.5-3.5 Hz] [3.5- 7 Hz] [7-13 Hz] [13-30 Hz]

Tabla 2.1: Definición bandas frecuenciales del espectro en la señal EEG.

se han definido cuatro bandas frecuencia, mostradas en la tabla 2.1.

A pesar de que estas bandas de frecuencia han sido estudiadas durante décadas y la
gran mayoŕıa de trabajos con el EEG están descritos en base a ella, no existe consenso
absoluto respecto a los ĺımites exactos de estos ritmos frecuenciales. Como resultado,
existe pluralidad en la definición tanto del número de bandas frecuenciales como de las
frecuencias limı́trofes. En este proyecto, se emplean las bandas definidas anteriormente,
las cuales han sido definidas en anteriores Bases Normativas [1].

Para determinar los parámetros de señal que recogen la Base Normativa de este proyec-
to, se estudiaron los diferentes patrones patológicos conocidos en el EEG [8]. Finalmente,
se determinó por su relevancia en la caracterización mayoritaria de las patoloǵıas estudi-
adas, la potencia absoluta. La potencia absoluta (PA) se define como la cantidad media de
potencia (en uV 2) en una banda frecuencial y es calculada como el área representada bajo
la curva de PSD en el intervalo definido por dicha banda. En la figura 2.3 se representa el
área correspondiente a la potencia absoluta de cada banda frecuencial. En consecuencia,

Figura 2.3: Potencias Absolutas frecuenciales sobre el periodograma de EEG

cada epoch de un canal de EEG es analizado en el dominio frecuencial para la extracción
de la potencia absoluta en cada una de las bandas: delta, theta, alpha y beta. Como
resultado se obtienen 4 conjuntos de valores por cada cálculo de potencia en los canales
EEG, es decir, 19*4=76 variables de potencia por sujeto.

En las próximas secciones se tomará la siguiente nomenclatura:

4Zero-Padding: consiste en rellenar con ceros la señal en tiempo a partir de su último valor hasta
alcanzar el tamaño deseado para mejorar la resolución espectral en su Transformada de Fourier.
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P i
δ : Variable de potencia en la banda δ, del canal i.

P i
θ : Variable de potencia en la banda θ, del canal i.

P i
α: Variable de potencia en la banda α, del canal i.

P i
β: Variable de potencia en la banda β, del canal i.

{PEEG} = {P 1
δ , P

1
θ , P

1
α, P

1
β , ..., P

n
β }: Representa el conjunto de las variables de po-

tencia absoluta, con n=19 canales.
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3. Fiabilidad

3.1. Introducción

Este caṕıtulo describe el estudio sobre la fiabilidad de la señal EEG adquirida en
cada sujeto, (fiabilidad intra-personal). La fiabilidad se define como la consistencia de
un conjunto de medidas realizadas sobre el mismo fenómeno. Por tanto, la fiabilidad
es un indicador sobre la calidad y reproducibilidad de una medida. En este caṕıtulo se
estudiará si los datos EEG adquiridos sobre el mismo sujeto, {PEEG}, mantienen una
coherencia a lo largo de la sesión registrada. En la literatura, la fiabilidad de la señal
EEG ha sido ampliamente estudiada, empleándose los métodos de Test-Retest y Split &
Half. La sección 3.2 detalla el método de Test-Retest y modificaciones empleadas parara
su adaptación el presente contexto. Sin embargo los resultados obtenidos no consiguieron
alcanzar unos valores aceptables en cuanto a fiabilidad lo que se achaca principalmente
a la adaptación necesaria dado que no se cumplen de forma estricta las condiciones de
aplicación Test-Retest. En la sección 3.3 se plantea un segundo método (Split & Half)
con el que si que se tienen las condiciones de aplicabilidad. Aunque con este método se
obtuvieron resultados de fiabilidad acordes a la literatura no se alcanzan los resultados
deseados. Esto es debido a que Split & Half es un método sensible a la longitud de la señal
y la cantidad de datos disponibles {PEEG} es relativamente reducida. Para paliar este
problema,en la sección 3.4 se propone una técnica para aumentar la longitud de {PEEG}
y mejorar de este modo la fiabilidad de los mismos. Para ello se diseña un algoritmo que
permite aumentar el número de valores de señal. Con un efecto no apreciable en el rango
de frecuencia de interés que permite aumentar la fiabilidad. Como resultado se obtuvo
una fiabilidad del conjunto de distribuciones de potencia {PEEG} en torno al 89 %.
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3.2. Método 1: Test-Retest

La mayoŕıa de estudios sobre fiabilidad coinciden en estudiar el método denominado
Test-Retest, en el cual se administra el mismo test sobre un item en dos ocasiones de
tiempo. La cantidad de tiempo transcurrido entre tests es cŕıtica, debido a que cuando se
realiza una medida sobre el mismo item dos veces, la correlación entre las dos observaciones
dependerá en parte del tiempo transcurrido entre ellas.

Figura 3.1: Representa el estudio de fiabilidad mediante la técnica de Test-Retest. Este método consiste
en comparar las medidas resultantes de aplicar un test sobre el mismo item en dos instantes de tiempo
diferentes.

La fiabilidad viene cuantificada a través de una medida de correlación dada por el
coeficiente de correlación de Pearson o el coeficiente de correlación de Spearman:

El coeficiente de correlación de Pearson (r) es un ı́ndice que mide el grado de aso-
ciación lineal entre dos variables X e Y. Viene definido por el cociente:

r =
σxy
σxσy

(3.1)

donde σxy indica la covarianza de (X, Y ), σx y σy representan las desviaciones t́ıpicas
de las distribuciones marginales.

El coeficiente de correlación de Spearman (ρ) es una medición no paramétrica de
correlación, asume una función monótona arbitraria para describir la relación entre
dos variables sin hacer ninguna asunción sobre la distribución de frecuencia de las
variables X e Y . Para calcular ρ, los datos son ordenados previamente. Su cálculo
viene dado por:

ρ = 1− 6
∑
D2

N(N2 − 1)
(3.2)

siendo D la diferencia entre los correspondientes valores de x − y. N es el tamaño
de la muestra expresada en parejas.
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3.2.1. Resultados

Anteriores estudios han demostrado la fiabilidad intra-personal de las potencias es-
pectrales en la señal EEG mediante la técnica de Test-Retest en condiciones de reposo
y sobre señales adquiridas en la misma persona en diferentes momentos de tiempo [9]
y con una separación de varios meses o incluso años [10]. En estos estudios hacen uso
tanto del coeficiente de correlación de Pearson como el de Spearman [11]. Además otros
estudios describen resultados altos de fiabilidad incluso con muestras de señal EEG de du-
ración menor a las empleadas con anterioridad [12], lo cual demuestra valores de fiabilidad
alrededor del 92 % en muestras de señal de 60 segundos.

En relación al estudio de fiabilidad en este proyecto, existe unas limitaciones impuestas
por la metodoloǵıa del experimento, dado que consistió en la adquisición de una única
sesión de EEG por participante. Bajo esta restricción, no es posible satisfacer las condi-
ciones para aplicar la técnica de Test-Retest al no poder analizar dos señales de EEG
adquiridas en dos instantes de tiempo diferentes. Como alternativa, se plantearon dos
soluciones:

1. Técnica I: Dividir la sesión adquirida de EEG en dos mitades y calcular la correlación
existente entre ellas. De esta manera, se estudia la fiabilidad entre la señal EEG del
comienzo y final de la sesión.

2. Técnica II: Segmentar la sesión de EEG, agrupar los fragmentos pares e impares
en dos conjuntos y calcular la correlación de las dos agrupaciones. Esta solución
estudia la fiabilidad de forma más global a lo ocurrido en la sesión adquirida.

Se aplicaron ambas propuestas combinadas con los dos coeficientes de correlación Pearson
y Spearman. En el cálculo de ambos coeficientes se tomó como resultado su valor absoluto
de éstos dado que únicamente se requiere el grado de correlación (sin tener en cuenta si la
correlación es positiva o negativa). Es decir, los valores r y ρ toman valores en el intervalo
[0,1], siendo el valor de 0 (fiabilidad igual a 0) el resultado de correlación nula y el valor
de 1 correspondiente a la correlación máxima (fiabilidad igual al 100 %). Como resultado
se obtuvieron cuatro técnicas en la aplicación de Test-Retest cuyos resultados se muestran
en la tabla 3.1

Técnica I Técnica II
Pearson 0.1255 0.1658
Spearman 0.1270 0.1631

Tabla 3.1: Muestra los valores de fiabilidad calculados aplicando la técnica Test-Retest mediante el pro-
mediado del coeficiente de correlación en los 84 participantes.

La Figura 3.2 describe los resultados de fiabilidad por participante para cada una de
las técnicas de Test-Retest aplicadas. Notar que los resultados mostrados corresponden al
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promedio de los coeficientes de correlación resultantes en cada una de las 76 distribuciones
de potencia que componen {PEEG}.

Figura 3.2: Representa los resultados de fiabilidad obtenidos mediante las cuatro técnicas de Test-Retest
por participante. Para cada participante se muestra el valor medio de los coeficientes de correlación
resultantes en cada variable de potencias absolutas.

Los resultados en términos de correlación no superan el 0.4 en ningún caso (30 % de
fiabilidad) encontrándose muy alejados en comparación a los conseguidos por los autores
mencionados. Los motivos se relacionan por un lado con la longitud de señal EEG con
la que se trabaja, y por otro, por no satisfacer las condiciones en las cuales se aplica la
técnica de Test-Retest.

3.3. Método 2: Split&Half

Debido a que el estudio previo no alcanza unos resultados de fiabilidad satisfactorios
como lo han logrado otros autores, se planteó otro estudio de fiabilidad denominado Split
&Half basado en la consistencia interna de un experimento. Este método juzga la fiabilidad
de un experimento estimando cómo de consistentes son los resultados para diferentes
segmentos de la medida. La Figura 3.3 representa el cálculo Split &Half, que consiste en
segmentar el experimento en items, reordenarlos de forma aleatoria para después dividir
en dos mitades y calcular la correlación entre éstas. La correlación de las dos agrupaciones
resultantes de una medida X, viene dada por el siguiente cociente:

rxx =
S2
1

S2
2

(3.3)
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3. Fiabilidad 3.3 Método 2: Split&Half

Figura 3.3: Representa el procedimiento para la aplicación del estudio de fiabilidad mediante el método
Split & Half sobre un experimento realizado. Éste consiste en la segmentación del propio experimento en
items, para después reordenarlos de forma aleatoria y dividirlos en dos mitades. El resultado de fiabilidad
viene dado por la correlación de las dos mitales.

donde S2
1 es la estimación de la varianza para la medida en el bloque uno, mientras que

S2
2 es la varianza de la medida en el bloque dos. El coeficiente de fiabilidad representa la

proporción de varianza obtenida que es válida o fiable.

3.3.1. Resultados

Resultados anteriores [13] han alcanzado valores de fiabilidad entre el 93 % y 98 % me-
diante la aplicación de Split & Half sobre la potencia en las distintas bandas frecuenciales
de la señal EEG registrada en condiciones de reposo.

En la aplicación de la técnica de Split & Half en este problema, un item de la medida
se corresponde con el valor de potencia extráıdo en un fragmento de señal EEG, epoch. La
duración de un epoch se determinó previamente, consistiendo en un segundo de adquisición
de EEG. El resultado de fiabilidad Split & Half depende de las mitades resultantes al
aleatorizar los datos y dividir la señal en dos. Para eliminar esta dependencia, se propone
la siguiente alternativa: recomputar el algoritmo Split & Half un número determinado
de repeticiones y promediar el coeficiente de correlación resultante en cada iteración.
Obteniéndose como resultado final el valor de fiabilidad dado por:

r̄xx =

∑M
i=1 r

i
xx

M
(3.4)

donde rixx representa el coeficiente de correlación de la iteración i. Y M es el número
de veces que se recomputa el coeficiente de correlación. Para determinar el número de
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3. Fiabilidad 3.3 Método 2: Split&Half

iteraciones (M) se analizó la influencia de este valor con el resultado final de correlación,
r̄xx de forma experimental. En la figura 3.4 se representa la variación de r̄xx en función
del número de iteraciones (M) del algoritmo de Split & Half, en las distribuciones de
potencia de las cuatro bandas frecuenciales calculadas sobre un sujeto en el canal Cz. Se
puede observar como r̄xx tiende a estabilizarse en torno a 800 iteraciones r̄xx en las cuatro
bandas frecuenciales.

Figura 3.4: Representa el resultado del coeficiente de correlación r̄xx en función del número de iteraciones
aplicadas en el método de Split & Half. Muetra el restultado obtenido en las distribuciones de potencia
de las cuatro bandas frecuenciales: Delta, Theta, Alpha y Beta, de la señal EEG adquirida en el canal
Cz del sujeto número 4.

Para determinar de forma anaĺıtica el valor del parámetro M, que resultara adecuado
de forma generalizada para las señales {PEEG} de cada participante, se definió la siguiente
métrica: E(i) que cuantifica el error entre dos valores de r̄xx para un número de iteraciones
i = n e i = n− 1.

E(i) =

√√√√ 19∑
c=1

[rcdd(i)–r
c
dd(i–1)]2 + [rctt(i)–r

c
tt(i–1)]2 + [rcaa(i)–r

c
aa(i–1)]2 + [rcbb(i)–r

c
bb(i–1)]2

(3.5)
siendo:

c: El canal de la señal EEG.

i: El número de iteraciones computado del algoritmo Split&Half.

rcδδ(i),r
c
θθ(i),r

c
αα(i),rcββ(i): Los coeficientes de correlación de la potencia en las bandas:

δ, θ, α y β respectivamente, en la iteración i.

Se fijó un error máximo de umbral Emax = 0,005, el cual representa un error global
en el cálculo de fiabilidad por participante. La correspondencia con el error cometido en
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3. Fiabilidad 3.3 Método 2: Split&Half

cada una de las 76 distribuciones de potencia que caracterizan a un participante, seŕıa la
siguiente: denotando Er = rcxx(i) − rcxx(i − 1) la diferencia del coeficiente de correlación
r̄xx como resultado de computar Split&Half con i e i − 1 iteraciones sobre una variable
banda-canal denotada por x:

E(i) =
√

19[E2
r + E2

r + E2
r + E2

r ] (3.6)

E(i) =
√

76 ∗ E2
r (3.7)

Siendo Emax(i)=0.005:

Er <

√
0,0052

76
= 0,0081 (3.8)

Es decir, este valor de error impone una cota máxima de la diferencia del coeficiente
de correlación r̄xx como resultado de computar Split&Half con i e i− 1 iteraciones sobre
una variable banda-canal denotada por x por ebajo de las milésimas.

A continuación se muestran los resultados del cálculo de la fiabilidad. La figura 3.5
representa el valor del parámetro E(i) en función del número de iteraciones del algoritmo
Split & Half superponiendo de la solución de cada participante. Las ĺıneas rojas represen-
tan el valor de error máximo admisible Emax = 0,005. Éste valor se cumple entre las 800
y 1000 iteraciones para el conjunto de participantes. Por tanto, se toma como parámetro
M del algoritmo de la ecuación 3.4 el valor de 1000 iteraciones.

En la figura 3.6 se muestra los resultados de fiabilidad de cada participante. En la cual
se represnta la distribución de los valores de rxx resultante en las 76 variables de potencia
absoluta. Se concluye que los resultados de fiabilidad se encuentran en torno a rxx = 0,7.
A diferencia de los resultados anteriores, se consigue aumentar significativamente el valor
de fiabilidad, obteniéndose una fiabilidad ajustada con la literatura.

Sin embargo, los resultados obtenidos no alcanzan un nivel de fiabilidad admisible en
aplicaciones cĺınicas. Por tanto, se requiere de una técnica que favorezca esta fiabilidad.
Teóricamente la fiabilidad viene limitada gravemente por la duración de la señal analizada.
En particular, el presente análisis trabaja con datos de longitud muy reducida (entre 60
y 120 muestras, epochs de un segundo). En consecuencia, la longitud de la señal EEG es
un valor cŕıtico y determinante en lo que a fiabilidad se refiere.
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3. Fiabilidad 3.3 Método 2: Split&Half

Figura 3.5: Representa el valor del parámetro E(i) en función el número de iteraciones i, el cual define
el error cometido en el computo del algoritmo Split & Half al tomar i − 1 iteraciones en vez de i. Las
ĺıneas verticales rojas representan el valor de error máximo admisible Emax = 0,0005. En ella se ha
superpuesto la función E(i) junto con la cota Emax para cada uno de los 84 participantes.

Figura 3.6: Representa los resultados de fiabilidad al aplicar Split & Half con un valor del parámetro
M igual a 1000 iteraciones. Los resultados se representan mediante el diagrama estad́ıstico denominado
Box-Plot. El cual es un gráfico representativo la distribución de la variable rho calculada sobre cada
participante. La caja central indica el rango en el que se concentra el 50 % central de los datos, sus
extremos son el primer y tercer cuartil de la distribución y la ĺınea central en la caja es la mediana. Los
extremos delimitan el 95 % central de los datos, y las muescas en rojo representan los datos considerados
como espurios en la distribución.
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3. Fiabilidad 3.4 Ampliación de señal EEG

3.4. Ampliación de señal EEG

Debido a una restricción en la longitud de la señal EEG adquirida y por tanto del
número de epochs, los resultados de fiabilidad obtenidos no fueron los deseados. Por
tanto, fue necesario encontrar una estrategia para aumentar la duración de la señal EEG
de cada uno de los participantes añadiendo epochs ‘virtuales’con el objetivo de mejorar
los valores de fiabilidad intra-personal.

Un primer diseño contemplaba el uso de ventanas temporales deslizantes de un se-
gundo de duración aplicando un porcentaje de solapamiento entre ventanas consecutivas.
De este manera, se obtiene un valor de potencia por cada ventana aplicada. Al fijar la
longitud de ventana junto con el porcentaje de solapamiento entre ellas, el número de
ventanas resultantes queda limitado por la duración de la señal temporal en segundos.
Este primer diseño fue abandonado porque el número de epochs ’virtuales’ resultantes
quedaba limitado a un número insuficiente para su aplicación.

Se diseñó una segunda técnica donde los ĺımites descritos por el método anterior qued-
aban resueltos. Para ello, se añadió una reordenación aleatoria de la señal original segmen-
tada en epochs de un segundo de duración. Un epoch ’virtual’ resulta de unir dos mitades
de epochs consecutivos de la señal original reordenada, en consecuencia se obtienen n− 1
epochs ’virtuales’ sobre una señal de duración n. Este procedimiento se recomputa hasta
conseguir una señal con una fiabilidad deseada calculada mediante la técnica de Split &
Half. En la Figura 3.7 se representa el algoritmo diseñado, el cual está descrito por el
siguiente algoritmo iterativo:

1. Reordenar la secuencia original: permutar los epochs iniciales aleatoriamente.

2. Agrupar pares de epochs consecutivos de dos en dos.

Ejemplo: [EPOCHi − EPOCHi+1].

3. Dividir cada pareja en cuatro fragmentos cortando cada epoch por la mitad.

Ejemplo: [EPOCHi(a)− EPOCHi(b)− EPOCHi+1(a)− EPOCHi+1(b)].

4. Crear el nuevo epoch ‘virtual’seleccionando aleatoriamente entre las siguientes casos:
uniendo la segunda mitad del primer ıepoch con la primera mitad del segundo, la
primera mitad del primer epoch con la segunda mitad del segundo.

Ejemplo: [EPOCHi(b)− EPOCHi+1(a]) o bien [EPOCHi(a)− EPOCHi+1(b)].

5. Volver al punto 1 hasta alcanzar un valor de fiabilidad estipulado, en cada una de
las caracteŕısticas extráıdas por separado.

Este procedimiento no altera la distribución de la señal en el tiempo, debido a que
la adquisición se produce en un estado continuo de reposo. Además, como resultado del
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3. Fiabilidad 3.4 Ampliación de señal EEG

filtrado de artefactos se introducen discontinuidades de tiempo, debido a la eliminación
de epochs alterados con artefactos, obteniéndose una secuencia de epochs con discon-
tinuidades de tiempo entre ellos.

3.4.1. Resultados

En el diseño del algoritmo se determinó como criterio de parada el mı́nimo valor de
fiabilidad obtenido en las potencias de las cuatro bandas frecuenciales de los 19 canales
que componen los parámetros de EEG. Se fijó un valor del coeficiente de correlación
mı́nimo de rxx = 0,8 (umbral mı́nimo para estudios cĺınicos). Es decir, en cada una de
las 76 señales de potencias que caracterizan el EEG se obtuvo una fiabilidad de al menos
el 80 %. En la figura 3.8 se muestra el resultado de fiabilidad obtenido por participante
en cada una de las 76 distribuciones en particular. Como resultado se ha obtenido una
fiabilidad media de rxx = 0,894.

A continuación, se describen estudios relacionados con la aplicación de este método.
El algoritmo se aplicó en cada participante por separado, como resultado se obtuvo unas
señales ampliadas diferentes para da participante. La figura 3.10 muestra la ampliación
resultante para el conjunto de participantes. El método utilizado fue diseñado con el ob-
jetivo de mejorar fiabilidad. Éste debe cumplir el propósito para el cual fue diseñado, sin
modificar la distribución de la señal original. En un primer análisis, se comprobó gráfica-
mente la variación que sufre la media para diferentes longitudes de señal. En la figura 3.11
se muestra esta variación para longitudes N=56, 606 y 1101 epochs. Además, se realizó un
análisis estad́ıstico sobre la distribución de las caracteŕısticas antes y después del proceso
de ampliación de epochs, mediante el análisis estad́ıstico K-S. La gráfica 3.9 muestra el
número de distribuciones de potencia por participante que mantienen su distribución. Se
observa unos resultados positivos, de las 76 distribuciones de potencia que componen una
participante en la mayoŕıa de participantes se mantiene su 90 % de sus distribuciones.

En resumen, en este caṕıtulo se ha alcanzado unos resultados de fiabilidad sobre los
datos de potencias en las bandas frecuenciales : Delta, Theta, Alpha y Beta, para los
19 canales adquiridos por encima del 80 %. Estos resultados demuestran una fiabilidad
intrapersonal aceptables en un contexto cĺınico.

23



3. Fiabilidad 3.4 Ampliación de señal EEG

Figura 3.7: Algoritmo para añadir epochs virtuales al conjunto inicial.
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Figura 3.8: Resultados de Split & Half para todo el conjunto de participantes. Cada fila representa la
potencia banda-canal, de arriba a bajo: P1

D ,P1
T ,P1

A,P1
B ,P2

D ...P1
B9

Figura 3.9: Representa el número de variables de las 76 que componen: {PEEG} que mantienen su
distribución estad́ıstica tras la aplicación del método de ampliación mediante epochs ’virtuales’ en cada
uno de los participantes. La ĺınea horizontal en verde muestra la cota máxima de esta gráfica situada en
el valor 76
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Figura 3.10: Muestra la longitud de la señal EEG en número de epochs adquirida en dada uno de los
sujetos, junto con el número de epochs resultantes tras la aplicación del método de ampliación mediante
epochs ’virtuales’, empleado para conseguir un valor de fiabilidad de Split & Half superior a 0.8.

Figura 3.11: Representa la la media en las cuatro variables de potencia en cada uno de los 19 canales,
de las siguientes tres señales EEG: el EEG original adquirido en el participante número uno de duración
56 epochs; la señal anterior ampliada con una longitud de 606 epochs y la anterior señal ampliada hasta
1101 epochs. De este modo, se puede estudiar si la media de las distribuciones vaŕıan mediante la técnica
de ampliación mediante epochs ’virtuales’.
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4. Análisis Estad́ıstico

Una vez alcanzados unos niveles aceptables sobre la fiabilidad en las caracteŕısticas
extráıdas en la señal EEG, el siguiente proceso consiste en analizar estad́ısticamente los
patrones espectrales extráıdos. El objetivo es conocer la función de distribución de las
mismas y facilitar en la medida que sea posible los siguientes procesos.

En sección 4.1 se describe la distribución de probabilidad de los datos de partida. Las
potencias absolutas en las diferentes bandas frecuenciales. Para ello se realiza un análisis
estad́ıstico del periodograma, y en particular para cada una de las potencias absolutas,
concluyendo que una distribución que no son modeladas a través de ninguna distribución
conocida. Con el objetivo de facilitar los cálculos posteriores y alinearse con los actuales
estándares en Bases Normativas [14] es ajustar las distribuciones de potencias a la dis-
tribución gaussiana. El proceso de aproximación de cada una de las distribuciones hacia
una gaussiana se lleva a cabo en dos etapas: la primera consiste en una transformación
de los datos de partida (sección 4.2), y la segunda un filtrado de los datos que acerque la
distribución a la gaussianidad mediante un algoritmo genético diseñado ad hoc (sección
4.3). Como resultado, se obtiene para cada participante, un conjunto de 76 distribuciones
normales unidimensionales, (definidas por los 19 canales, y 4 bandas frecuenciales).

4.1. Análisis estad́ıstico del Periodograma

Cuando se hace uso de una señal estocástica como el EEG, una de las principales
cuestiones es identificar la función de densidad de distribución (PDF, Probability Density
Function) que permita una caracterización adecuada de la señal. En particular, en este
eṕıgrafe se analiza la PDF de las caracteŕısticas extráıdas a partir de la densidad espectral
de potencia del EEG. Estas caracteŕısticas están formadas por las potencias absolutas y
relativas de las cuatro bandas de frecuencias δ, θ, α y β. Tal y como se describe en la
sección 2.4.2, una potencia absoluta es el área representada bajo la curva de PSD en una
banda frecuencial. El cálculo de la PA se ha llevado a cabo integrando de forma trapezoidal
la función PSD en un intervalo de frecuencias.

El espectro de potencia (PSD) es no negativo por definición y según estimadores
espectrales de señales estocásticas no está normalmente distribuido. Ha sido demostrado
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teóricamente que la parte real e imaginaria de la DFT de una señal y(t) estacionaria
pueden ser considerados independientes y modelados como una distribución gaussiana de
media cero. Por tanto, el módulo de la DFT (periodograma) puede ser modelado como
la suma de estas variables al cuadrado. Bajo esta asunción cada bin del periodograma
|Y (λ, k)|2 está distribuido por una función Chi-Cuadrado con dos grados de libertad, χ2(2)
(Para una información más detallada consultar el anexo C). Esta distribución puede ser
interpretada como una distribución exponencial:

f|Y (λ,k)|2(x) =
U(x)

σ2
Y (λ, k)

exp(−x/σ2
Y (λ, k)) (4.1)

Debido a la ampliación de la señal EEG realizada mediante epochs virtuales, se estudió de
forma experimental si los bins de los periodogramas resultantes cumpĺıan la distribución
caracterizada por una función χ2(2). Para ello, se hizo uso de la prueba de bondad de
ajuste de Kolmogórov-Smirnov (K-S) mediante la cual se comprobó la distribución χ2(2)
en cada bin de frecuencia de 0.5 a 30 Hz.

Una vez caracterizados los bins de la PSD, se procede a estudiar la distribución es-
tad́ıstica de los patrones espectrales en particular, es decir, de cada una de las potencias
en las cuatro bandas frecuenciales calculadas en cada canal EEG. Tal y como se ha indi-
cado anteriormente, cada una de las potencias calculadas, resultan de integrar de forma
trapezoidal la curva PSD en una banda frecuencial determinada. La distribución de las
potencias no se conoce de forma directa. En consecuencia, el objetivo siguiente se centra
en modelar las distribuciones de potencia mediante una distribución conocida.

Con el objetivo de facilitar los cálculos posteriores y alinearse con los actuales estándares
en Bases Normativas se ha optado por ajustar las distribuciones de potencias a la distribu-
ción gaussiana. En la práctica es muy frecuente buscar la gaussianidad en datos resultantes
de una medición. Debido a la premisa básica de que la mayoŕıa de los fenómenos tienen
una distribución normal. El teorema Central de Ĺımite es una evidencia teórica sobre
este supuesto cuando se suman un conjunto de variables independientes. Aunque no es
aplicable en el caso de potencias porque son definidas positivas. Dadao que no se conoce
la distribución real de las potencias, se eligió la gaussianidad como distribución objetivo
a alcanzar, por su simplicidad y porque facilita la aplicación de numerosas herramientas
matemáticas (notar que el segundo objetivo en la construcción de una Base Normativa
es proporcionar las herramientas matemáticas para poder comparar sujetos frente a la
Base Normativa). Además, la importancia de aproximar parámetros de señal EEG hacia
la normalidad ha sido enfatizada anteriormente por varios autores [15],[16]. Para alcanzar
la distribución gaussiana se estudió transformar los datos originales, como se verá en la
siguiente sección.
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4.2. Transformación

El asunto de alcanzar distribuciones normales en un conjunto de observaciones de
distribución desconocida, ha sido usualmente resuelto mediante la transformación de los
mismos. Esta opción tiene la propiedad de que las conclusiones obtenidas con los datos
transformados también se aplican a los datos originales siempre y cuando la transforma-
ción sea invertible. Este proceso requiere el conocimiento a priori sobre la distribución de
partida para determinar el tipo de transformación más adecuada.

En primer lugar, se analizó gráficamente el comportamiento estad́ıstico de las dis-
tribuciones de potencias en cada banda frecuencial. A modo de ejemplo, la Figura 4.1
representa el histograma de la potencia absoluta en la banda Delta en el canal F3 de
un participante, de la señal original (izquierda), y de la señal ampliada (derecha). La
distribución representada se caracteriza por una fuerte asimetŕıa positiva (las frecuencias
más altas se encuentran en el lado izquierdo de la media, mientras que en el derecho hay
frecuencias más pequeñas)

Figura 4.1: El histograma de la izquierda representa la distribución de la potencia absoluta en la banda δ
calculada sobre el canal F3 de la señal EEG adquirida en el sujeto número 4. El histograma de la derecha
representa la distribución de la potencia en la banda δ calculada sobre la señal ampliada mediante epochs
’virtuales’ sobre el canal F3 del sujeto número 4.

En conclusión a los resultados obtenidos gráficamente, la función de transformación
aplicada sobre estas distribuciones de datos, tiene que corregir la fuerte asimetŕıa posi-
tiva con el objetivo de aproximar la distribución a una simétrica como la normal. En la
literatura existen diversas funciones de transformación usadas en parámetros de la señal
EEG [17]. Para el caso de distribuciones de datos con asimetŕıa positiva se utilizan las
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siguientes transformaciones: log(x), log(x+a),
√

x , 3
√
x, 1/

√
x . Algunos autores enfatizan

que la distribución más empleada es la logaŕıtmica [15]. Además de las transformaciones
nombradas anteriormente que pueden corregir espećıficamente la falta de normalidad en
distribuciones con asimetŕıa positiva existe un método denominado Box-Cox útil en la
búsqueda de gaussianidad. El Box-Cox ofrece un método simple para elegir la transfor-
mación más apropiada sobre un conjunto de datos para alcanzar la gaussianidad, mediante
el método de máxima verosimilitud (se estima el parámetro λ, que define la transforma-
ción). La familia de transformaciones viene dada por:

yλ =


yλ−1
λ

si λ 6= 0

ln(y) si λ = 0

(4.2)

En la aplicación de Box-Cox, el valor λ depende de la propia distribución de los
datos, de tal forma se obtiene un valor diferente según para los de cada sujeto. Para
determinar una única transformación para cada distribución unidimensional de la potencia
absoluta en una banda y canal determinado, se estudió la variación del valor de λip que
resulta al aplicar el método Box-Cox en el participante p, en la distribución de potencias
i, definida por una banda canal (ver figura 4.2). Para obtener un valor único de cada
una de las 76 distribuciones para toda la Base Normativa donde N=84 es el número
de participantes, se optó por calcular el promedio de los valores λip resultantes para el
conjunto de participantes:

λim =

∑N
p=1 λ

i
p

N
(4.3)

En consecuencia, se obtienen 76 valores de lambda diferentes, λim, uno para cada
distribución de potencia absoluta determinada por su banda y canal. De este modo, se
determina una transformación diferente en cada potencia-banda-canal.

Una vez obtenida la transformación se decide evaluar la proximidad de los datos re-
sultantes a la gaussianidad. El nivel de gaussianidad se cuantificó mediante el test de
gaussianidad Anderson-Darling,(AD). El test AD es una prueba de bondad de ajuste que
determina si una serie de datos sigue una distribución conocida, en particular se puede
aplicar para una distribución gaussiana. Su elección frente al conjunto de pruebas de bon-
dad utilizadas para este propósito se debió a las ventajas demostradas sobre ellas [18].
Este resultado se comprobó experimentalmente por medio de una comparativa entre las
transformaciones más populares en estudios anteriores aplicadas a los presentes datos. Los
resultados se muestran en la gráfica 4.3, donde se representa la media a través de todos
las participantes y la proporción en % de distribuciones gaussianas de las 76 variables
descritas por las cuatro bandas frecuenciales y 19 canales. Como se puede observar en la
gráfica 4.4, los resultados más favorables en general se obtienen mediante la transforma-
ción Box-Cox, dado que aproximadamente consigue que un 50 % de distribuciones para
el test de gaussianidad.
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Figura 4.2: Describe la distribución de los valores del parámetro λ en la transformación Box-Cox aplicada
sobre las distribuciones de potencias absolutas en las cuatro bandas frecuenciales δ, θ, α y β sobre los
19 canales de señal EEG. La distribución se representa mediante el diagrama estad́ıstico denominado
Box-Plot. El cual es un gráfico representativo la distribución de la variable rho calculada sobre cada
participante. La caja central indica el rango en el que se concentra el 50 % central de los datos, sus
extremos son el primer y tercer cuartil de la distribución y la ĺınea central en la caja es la mediana. Los
extremos delimitan el 95 % central de los datos, y las muescas en rojo representan los datos considerados
como espurios en la distribución.

En resumen se ha demostrado que la transformación Box-Cox es la más adecuada con
el objetivo de mejorar la gaussianidad de los datos. Notar que en esta transformación
hay una dependencia de los datos con la transformación paramétrica, de tal forma los
76 valores de λ resultantes son únicos para esta Base Normativa. La ventaja es que
la transformación está adaptada a los datos para favorecer la gaussianidad. En el caso
de que se deseara añadir un nuevo sujeto a la Base Normativa, estos valores deben ser
recalculados.
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Figura 4.3: Representa una comparativa sobre las siguientes funciones de transformación: (a) familia de
transformaciones Box-Cox, (b) y = Log(x), (c) y = 1/x, (d) y =

√
x aplicadas sobre las 76 distribuciones

de potencias absolutas en cada participante. Para cada participante se describe la proporción en % de las
distribuciones de potencias con un valor positivo tras aplicar el test de gaussianidad Anderson-Darling.

Figura 4.4: Describe una comparativa sobre las funciones de transformación:(a) familia de transforma-
ciones Box-Cox, (b) y = Log(x), (c) y = 1/x, (d) y =

√
x mediante los resultados medios sobre el

conjunto de participantes de la Base Normativa. Se representa el porcentaje medio de distribuciones que
han resultado positivas mediante el test de gaussianidad Anderson-Darling.
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4.3. Algoritmo Genético

Como se ha detallado en la sección anterior, tras aplicar la transformación Box-Cox
se ha conseguido obtener gaussianidad alrededor del 50 % de distribuciones gaussianas
de entre las 76 que componen el conjunto de datos de un participante. Sin embargo, el
objetivo final es alcanzar gaussianidad en la totalidad de los datos para todos los sujetos
que componen la Base Normativa. El problema a resolver tiene como objetivo para cada
uno de los participantes seleccionar los epochs para los cuales sus valores correspondi-
entes de potencia sigan distribuciones gaussianas (para todas las bandas frecuenciales y
cada canal simultáneamente). Es por tanto un problema compuesto por 76 subproblemas
unidimensionales.

La estrategia a estudiar deb́ıa contemplar la eliminación de datos ’espurios’ en térmi-
nos de gaussianidad (aquellos que empeoran la gaussianidad en la distribución). Es decir,
seŕıa necesario la eliminación de aquellos datos que no forman parte de la distribución
gaussiana que la caracteriza. En un primer estudio, se propuso eliminar aquellos datos
con mayor desviación con respecto a la media para descartar los datos más discordantes
en la distribución. Sin embargo, se rechazó esta propuesta porque no asegura alcanzar
distribuciones gaussianas. De tal forma se buscó una técnica para filtrar los datos ’espu-
rios’ de forma que maximicen la gaussianidad de la distribución resultante. Este problema
planteado carece de un método anaĺıtico para resolverlo. Para ello, se plantea aplicar algo-
ritmos de búsqueda heuŕısticos que permitan encontrar la solución al problema propuesto.
Entre los métodos de búsqueda heuŕıstica se encuentran: el recocido simulado, la búsqueda
tabú y las estrategias evolutivas entre otros.

Se eligió aplicar un Algoritmo Genético diseñado ad-hoc. Los Algoritmos Genéticos son
algoritmos de búsqueda heuŕıstica inspirados en la evolución natural de poblaciones. Los
algoritmos evolutivos son métodos robustos de búsqueda que permiten tratar problemas
que minimizan o maximizan una función de adaptación (fitness). Estos algoritmos operan
con una población de individuos P(t)={x′1,...,x′n}para la iteración t, donde cada individuo
xi se evalúa según una función de adaptación f(xi). Esta función permite ordenar del
mejor al peor los individuos de la población en un continuo de grados de adaptación. La
población inicial evoluciona sucesivamente hacia mejores regiones del espacio de búsqueda
mediante procesos probabiĺısticos de: (a) selección de los individuos más adaptados en la
población a mayor grado de adaptación mayor probabilidad de dejar descendencia) y
(b) modificación por recombinación y/o mutación de los individuos seleccionados. La
estructura del algoritmo evolutivo se describe en la Figura 4.5.

Para aplicar este esquema se necesita una codificación o representación del problema
que resulte adecuada al mismo. Además se requiere de una función adaptación al proble-
ma, la cual determina la capacidad de adaptación de cada individuo. Durante la ejecución
del algoritmo, es necesario seleccionar parejas de individuos para la reproducción, a con-
tinuación dichos padres seleccionados se cruzarán generando un individuo, sobre el que
actuará la mutación. El resultado de la combinación de las anteriores funciones seŕıa un
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conjunto de individuos (posibles soluciones al problema), los cuales en la evolución del
Algoritmo Genético formaŕıan parte de la siguiente población. Para trasladar el problema
presente el problema actual en primer lugar es necesario identificar el modo de codifi-
cación de los sujetos que forman la población, además de una función de fitness que se
desea maximizar o minimizar. Dado que el objetivo de aplicar el Algoritmo Genético
es realizar un filtrado de muestras para alcanzar la gaussianidad de los mismos, la fun-
ción fitness vendrá determinada por el nivel de gaussianidad de los datos y un individuo
será codificado mediante los valores de potencias absolutas medidas sobre una banda fre-
cuencial y un canal de señal EEG. Notar que se aplicará un Algoritmo Genético por cada
sujeto de la Base Normativa. En particular, cada sujeto se caracteriza por 76 distribu-
ciones unidimensionnales, en las cuales se desea alcanzar gaussianidad simultáneamente.
A continuación se describe el diseño del Algoritmo Genético, la función de fitness que
sustenta el algoritmo y los resultados finales.

Figura 4.5: Representa la estructura de un Algoritmo Genético general.

4.3.1. Diseño del Algoritmo Genético

4.3.1.1. Codificación

Cada individuo de la población representa las 76 distribuciones de potencias unidi-
mensionales que caracterizan a un sujeto de la Base Normativa en particular. Para ello, el
individuo (x′i) es codificado como una serie de ı́ndices {i1, i2, i3, ...iN} con i = 1..N(siendo
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N el número de epochs de la señal EEG) que determinan la ordenación de los epochs de
la secuencia original de la señal EEG. Por tanto, la población de individuos P = x ′1 , ..., x

′
n

está formada por distintas ordenaciones de la secuencia original de epochs. La población
está compuesta por un número de individuos (M), este valor se definió a partir del número
de epochs siendo M = N/2.

Figura 4.6: Codificación de un individuo de la población mediante una secuencia de ı́ndices que determina
la ordenación de los epochs de la señal EEG adquirida en un sujeto de la Base Normativa.

4.3.1.2. Parámetros

Los parámetros necesarios para el diseño del Algoritmo Genético son:

Tamaño de la población (M): Número de individuos que forman la población.

Porcentaje de Elitistas (Nelite): Número de elitistas en la población. Los elitistas son
los individuos con mayor capacidad de adaptación. Su adaptación viene cuantificada
por la función de fitness.

Porcentaje de supervivencia ’buenos’ (Nsuper): Número de individuos ’buenos’ que
conforman la población. Los ’buenos’ son los individuos con capacidad de adaptación
por debajo de los elitistas.

Porcentaje de supervivencia ’malos’ (Nmalos): Número de individuos ’malos’ que
conforman la población. Los ’malos’ son los individuos con peor capacidad de
adaptación.

Tamaño del individuo(N): Longitud de epochs de la señal EEG, permanece constante
durante el algoritmo.

Porcentaje de cruce (Pc): Porcentaje de individuos a los cuales se les aplicará el
operador de cruce.

Porcentaje de mutación (Nmutación): Porcentaje de individuos a los cuales se les
aplicará el operador de mutación.

Número de mutaciones (Ṕındies): Número de mutaciones que se producen sobre un
individuo.

Porcentaje de espurios ( %Esp): Porcentaje de espurios en relación al número de
epochs (N).
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4.3.1.3. Operadores

Los operadores de un Algoritmo Genético son empleados para obtener la población de
la siguiente generación a partir de la población actual. Éstos son: la selección, el cruce y
la mutación. A continuación se describe el diseño llevado a cabo para cada uno de ellos.

Selección: La selección consiste en la elección de los individuos de la población
para efectuar el operador de cruce y posteriormente la mutación. En este diseño,
la selección viene determinada por el concepto de elitismo, que consiste en la idea
de que los (Nelite) mejores individuos de la actual generación pasen a la siguiente
generación sin modificarse por los operadores de cruce o mutación. Por el contrario,
los (Nmalos) peores individuos de la población no pasarán a la siguiente generación.
Sobre el resto de la población se seleccionan de forma aleatoria cada pareja de padres
para llevar a cabo el operador de cruce.

Cruce: Crea una generación de individuos nuevos a partir de la información de sus
ancestros: padre y madre. El individuo resultante se forma aplicando la siguiente
técnica: de forma alternada se copian un ı́ndice del padre y un ı́ndice de la madre,
comenzando por el extremo izquierdo de la secuencia del padre y por el extremo
derecho de la secuencia de la madre. De tal forma se va completando la secuencia
del hijo resultante, quedando la primera mitad de la secuencia del padre junto con
la segunda mitad de la secuencia de la madre (Figura 4.7). Notar que la secuencia
resultante no admite la repetición del mismo ı́ndice, en el caso de intentar copiar un
ı́ndice ya incluido en la secuencia del hijo, se procede a copiar el ı́ndice consecutivo.

Figura 4.7: Operador de cruce que determina a partir de dos individuos de la población seleccionada un
individuo nuevo. Para ello se toma la información de los dos individuos y se copia para el nuevo hijo,
tomando la primera mitad de la secuencia del padre y la primera mitad de la secuencia de la madre.

Mutación: Se aplica a cada hijo de manera individual y consiste en el intercambio de
posiciones de dos ı́ndices seleccionados aleatoriamente (Figura 4.8). El número de
mutaciones que se aplica a cada individuo se selecciona de forma aleatoria en cada
iteración (Pindices). Todos los hijos resultantes del cruce tienen la misma probabilidad
de mutación, la cual viene dada por el parámetro global Nmutación.

Notar que los operadores de cruce y mutación no alteran la longitud de la secuencia
que codifica a un individuo, únicamente reordenan los ı́ndices de la secuencia original
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Figura 4.8: Operador de mutación que se realiza sobre los hijos resultantes del operador de cruce. El indi-
viduo mutado resulta del intercambio de una pareja de ı́ndices seleccionados aleatoriamente. El número
de mutaciones que se realiza sobre el mismo sujeto viene determinado aleatoriamente en cada iteración
del Algoritmo por Pindices.

de epochs. El operador de cruce explota las buenas propiedades de los individuos, y sus
efectos decrecen con la convergencia del Algoritmo Genético. Por el contrario, la mutación
permite escapar de óptimos locales explorando el espacio de búsqueda.

4.3.2. Función objetivo

La función objetivo representa la capacidad de adaptación para cada individuo de-
volviendo un número real proporcional a su nivel de adaptación. El Algoritmo Genético
diseñado tiene como objetivo obtener gaussianidad en las distribuciones de potencias que
caracterizan a un sujeto de la Base Normativa, mediante el filtrado de un conjunto de
epochs de la señal EEG. En primer lugar, es necesario definir un filtro de ’espurios’ (desde
el punto de vista de la gaussianidad) y a continuación diseñar el cálculo de la función
objetivo.

Dado que un individuo es codificado por una secuencia de ı́ndices que determina la
ordenación de los epochs de la señal EEG, el filtrado de epochs es aplicado directamente
sobre cada individuo de la población. El filtro es representado por una máscara centrada
en la secuencia de ı́ndices (Figura 4.9). La longitud de la máscara es constante en cada
generación de individuos, cuyo valor es igual a la longitud de la secuencia que codifica a
cada individuo N (igual al número de epochs de la señal EEG) menos el valor de %Esp*N,
el cual representa el número de epochs que se desean filtrar. Por tanto, a cada lado de la
máscara se encuentra la mitad de los ı́ndices sin seleccionar N ∗ %Espurios/2.

El filtrado de ı́ndices conlleva un filtrado de epochs sobre la señal EEG. A partir de
cada epoch se ha determinado 76 variables que representan sobre cada canal la potencia
absoluta en las cuatro bandas frecuenciales. Por lo tanto, un epoch determina una variable
multidimensional de 76 dimensiones. En esta sentido, la búsqueda de gaussianidad queda
reflejado por la búsqueda de una distribución multigaussiana de 76 dimensiones. Debido
al elevado número de dimensiones y por tanto a la complejidad que conlleva alcanzar esta
distribución, se decidió simplificar el problema en 76 variables unidimensionales, sin violar
la dependencia que existe entre ellos. Es decir, un epoch eliminado sobre una distribución
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Figura 4.9: Filtro sobre la secuencia de ı́ndices. Está determinado por una máscara central sobre la
secuencia. El número de ı́ndices que no son seleccionados sobre la secuencia viene determinado por
N ∗ %Espurios, quedando en los extremos de la máscara la mitad de éstos.

unidimensional de potencias conlleva la eliminación de éste sobre las 75 distribuciones
marginales restantes. De este modo se consigue alcanzar gaussianidad simultáneamente
en cada una de las distribuciones marginales.

Para cuantificar la gaussianidad sobre la secuencia de epochs filtrados se hace uso del
test de bondad Anderson-Darling, el cual devuelve un p-valor que indica la aproximación
a una distribución gaussiana. Un p-valor igual o superior a 0.05 indica gaussianidad a
un nivel de significancia del 95 %. El test Anderson-Darling es aplicado en cada una de
las 76 distribuciones unidimensionales que determina la secuencia de epochs filtrados que
resultan al aplicar la máscara sobre una secuencia de ı́ndices.

La función objetivo se diseñó con el propósito de maximizar la gaussianidad de las
distribuciones unidimensionales de potencias, que se traduce a maximizar los 76 p-valores
resultantes del test Anderson-Darling aplicado sobre cada una de las variables de potencia.
En un primer diseño, se determinó como función objetivo la suma de los 76 p-valores
para maximizar la gaussianidad de cada una simultáneamente. Esta función maximiza el
resultado global ponderando cada p-valor de forma equitativa. Sin embargo, el objetivo
de este Algoritmo no es aumentar la suma de los p-valores, sino que cada uno de ellos
alcance al menos un valor igual a 0.05 (umbral que determina la gaussianidad al 95 % de
significancia). Por tanto, se diseñó otro función que contemplara este valor umbral para
cada uno de los p-valores. La función objetivo a maximizar consiste en la suma de los
p-valores por separado potenciando aquellas distribuciones con un p-valor por debajo del
valor umbral de 0.05. Para ello se diseñó la función objetivo representada en la Figura
4.10, en la cual aquellas variables unidimensionales gaussianas (con un p-valor≥ 0,05) se
establece su p-valor igual a un valor constante P . Por el contrario si la distribución no es
gaussiana (su p-valor < 0,05) se mantiene su p-valor inicial. El valor de P se fijó por el
valor máximo que puede tomar la función objetivo si todas las distribuciones menos una
han alcanzado la gaussianidad, es decir 0.05*3.75, en la práctica se tomó P = 4.

La convergencia del Algoritmo Genético se determina cuando se obtiene una solución
óptima. Por tanto se define un criterio de parada definido por la gaussianidad de las 76
variables de potencias unidimensionales, es decir, cuando el resultado de la función obje-
tivo es ≥ 4∗76. Como resultado se obtiene una secuencia de epochs ’virtuales’ que definen
76 distribuciones de potencias modeladas por una distribución gaussiana unidimensional.
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Figura 4.10: Función Objetivo obtenida por el análisis de gaussianidad en cada una de las 76 distribuciones
de potencias. La función viene determinada por la suma de los p-valores resultantes al aplicar el test de
gaussianidad Anderson-Darling. Si un p-valor es ≥ 0,05 se fija su valor a 4, si por el contrario es < 0,05
su valor permanece constante.

4.3.3. Resultados

El diseño del Algoritmo Genético sufrió diferentes cambios como resultado del estu-
dio de sus parámetros. En particular se estudió la influencia del parámetro %Esp, por su
relevancia en el factores como: la velocidad de evolución del algoritmo o tiempo de proce-
sado de cada iteración. En las pruebas iniciales se estudiaron valores de %Esp iguales al
15 %, 25 %, 35 % y 45 %. Además, se analizó la estabilidad del Algoritmo Genético. Para
ello se recomputó el algoritmo sobre el mismo sujeto, y se compararon las distribuciones
obtenidas mediante el análisis estad́ıstico K-S, para comprobar la consistencia del mismo.
Como resultado se obtuvo las mismas distribuciones gaussianas en las 76 variables de
potencias, por tanto se concluyó que el Algoritmo Genético diseñado ad hoc resultaba
consistente.

Como resultado final se obtuvo una convergencia en los Algoritmos Genéticos en 61
sujetos de los 84 que forman la Base Normativa. Los Algoritmos Genético que no han
conseguido converger durante la ejecución del algoritmo durante tres meses. Para estos
sujetos se podŕıa aplicar una modificación del algoritmo, como podŕıa ser la modificación
del parámetro Nmutación que representa la probabilidad de mutación, debido a que au-
mentando este porcentaje se evita el estado de stagnation, problema que ocurre cuando
la solución se estanca en un mı́nimo local. De este modo, se asegura una suficiente ex-
ploración del espacio de búsqueda favoreciendo la convergencia del Algoritmo Genético.
Esta modificación queda determinada para un trabajo futuro de este proyecto.
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5. Clusterización

5.1. Introducción

El presente caṕıtulo propone el desarrollo de técnicas de clusterización para resolver el
problema actual que se enfrentan las Bases Normativas sobre la variabilidad interpersonal
del EEG. Dicha variabilidad ha sido relacionado con aspectos fisiológicos como la edad
del sujeto, y por tanto con propiedades de maduración del volumen conductor del cerebro.
En consecuencia, los estudios actuales se centran en determinar la variabilidad del EEG
causada por la edad del sujeto, mediante técnicas de regresión por grupos de edades. Los
cuales han resultado útiles en el caso de Bases Normativas en adultos, al contrario que en
el caso de aplicaciones de Bases Normativas en niños. Este hecho se debe a que en la etapa
de niñez la maduración del cerebro vaŕıa de forma considerable. A este inconveniente se
suma que la variabilidad intrapersonal de EEG no se debe únicamente al factor de la
edad del sujeto por lo que los parámetros de regresión han de ser modificados mediante la
intervención humana. Como alternativa a los métodos de regresión utilizados actualmente,
se propone realizar una estratificación de sujetos de la Base Normativa que tenga en
cuenta expĺıcitamente los cambios significativos en su EEG. La técnica de estratificación
requiere de unas herramientas matemáticas que determinen un criterio de separación. La
clusterización da soporte al uso de estas herramientas matemáticas en la clasificación de
los sujetos de la Base Normativa de EEG, ofreciendo un método de separación automática.

En este caṕıtulo se detalla el diseño de la técnica de clusterización basada en cambios
significativos del EEG para solventar el problema de variabilidad de la señal EEG en
Bases Normativas. La sección 5.2 introduce el concepto de clusterización como una técnica
de separación de los datos de una distribución, aśı como los métodos estudiados y se
justifica la selección del método jerárquico como la técnica de clusterización elegida. Esta
sección también recoge estudios relacionados con la medida de la distancia del propio
método de clusterización, aśı como el método para seleccionar el punto de corte del gráfico
dendogrma.
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5.2. Clusterización y Métodos

La clusterización permite a partir de una serie de observaciones determinar si existen
clases en las que dichas observaciones puedan ser agrupadas. De forma genérica la clus-
terización es un método de separación no supervisado en el que no se conoce a priori ni
el número de clases ni la pertenencia de las observaciones a éstos (en el caso de que se
conozca el número de clases el problema se simplifica y si además se conocen las etiquetas
que caracterizan cada clase el problema es trivial). El método de clusterización permite
resolver la siguiente situación: dado un conjunto de sujetos (de N elementos) caracteri-
zados por la información de n variables Xj , (j = 1, 2, ..., n), se plantea clasificarlos de
manera que los individuos pertenecientes a un grupo (cluster) sean tan similares entre
śı como sea posible.

El problema de clusterización sobre el desarrollo de una Base Normativa consiste en
separar los sujetos de la misma, los cuales están formados por N elementos determinados
por el número de epochs de EEG de cada uno de ellos. Cada epoch está caracterizado por
el conjunto de 76 variables de potencias. Por tanto, el problema se presenta mediante una
clusterización de sujetos de acuerdo a 76 variables unidimensionales.

Entre las herramientas existentes para desarrollar clusterización se encuentran: méto-
dos basados en particiones, métodos jerárquicos, métodos basados en densidades, etc.
Entre los métodos mencionados se estudiaron aquellos elegidos por su aproximación al
presente problema. En primer lugar es estudió un método basado en particiones denomi-
nado k-medias, el cual está basado en la agrupación de observaciones según la proximidad
a unos centros de clusters definidos inicialmente, los cuales vaŕıan en el proceso de de-
sarrollo. Esta técnica fue desarrollada en cada variable unidimensional, sin embargo los
resultados no fueron favorables, dado que los clusters resultantes no eran consistentes sobre
las dimensiones. En un segundo estudio, se desarrolló el método de mezclas de gaussianas
(en inglés Gaussian Mixture Model, GMM). El cual supone que los datos se han generado
a partir de una mezcla de k distribuciones multigaussianas. Debido a no poseer variables
multigaussianas se realizó una prueba de GMM a partir de una variable de potencias (para
una banda y canal determinado), la cual es modelada por una gaussiana unidimensional.
Como resultado no se obtuvo una solución consistente, es decir, en cada ejecución de la
técnica GMM variaba la agrupación de sujetos resultantes. Para solucionar la falta de
fiabilidad de los resultados se decidió aplicar el método de remuestreo bootstraping. En
la cual se recomputaba la técnica GMM N veces, y el resultado de la clusterización vino
dada por la grupación con mayor moda de las N repeticiones. Esta técnica se repitió para
el resto de variables de potencias absolutas resultando diferentes clusterizaciones. Para
evitar este problema se estudió reducir la dimensionalidad de los datos mediante la técnica
de śıntesis de información: análisis de componentes principales (en inglés, Principal Com-
ponent Analysis PCA). Esta técnica se rechazó porque una reducción de dimensionalidad
produce inevitablemente una pérdida indeseada de información.

Finalmente, se decidió la aplicación del clustering ascendente jerárquico por su simpli-
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cidad y porque no requiere elección del número de clusters a diferencia de los anteriores
estudiados. En el clustering ascendente jerárquico se pretende ir agrupando en cada paso
aquellos dos objetos (o conglomerados) más cercanos, para de esta forma ir construyendo
una estructura conocida como dendograma o árbol de clasificación. El dendograma es-
tablece una relación ordenada de los grupos previamente definidos y la longitud de sus
ramas es una representación de la distancia entre los distintos nodos del mismo (Figura
5.1) El dendograma posibilita la obtención de distintas particiones, simplemente variando
el nivel de corte de dicha estructura. El diseño del método de clustering esta unido la
elección de una medida de la distancia de similitud entre clusters y a la definición de un
umbral que permita cortar el dendrograma para determinar los clusters resultantes.

Figura 5.1: Ejemplo de un árbol de clasificación o dendograma resultante al aplicar un método de clus-
terización jerárquico.

5.2.1. Distancia de similitud

La medida de similitud indica la fuerza de la relación entre dos observaciones. La
elección de la medida de similitud proporciona el criterio de agrupación entre sujetos de
la Base Normativa. A continuación se detallan los estudios realizados para la selección de
la medida de distancia para llevar a cabo el clustering ascendente jerárquico.

El primer estudio se realizó en términos de inferencia estad́ıstica, mediante la aplicación
de una prueba de hipótesis. Entre las pruebas de hipótesis, se barajaron las siguientes
pruebas: el Z-test y el contraste para la diferencia de medias de dos poblaciones normales
con datos independientes. Para información más detallada consultar el apartado D.2. Sin
embargo, ambas métricas fueron rechazadas por su carácter estad́ıstico, cuyos resultados
depend́ıan fuertemente de la muestra de población utilizada.

Un segundo diseño contempló el uso de la distancia de Bhattacharyya, la cual mide
la semejanza de dos distribuciones de probabilidad discretas y es usada generalmente
para medir la posibilidad de separación de clases en la clasificación. Este coeficiente es
un número comprendido entre cero y uno que expresa la similitud entre dos histogramas.
Concretamente es una medida de aproximación de la cantidad de solapamiento entre
dos funciones de distribución. Para una descripción más detallada consultar el anexo D.5.
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Para aplicar esta distancia al problema de clusterización presente fue necesario definir una
distancia global DB, que reuniera la distancia de Bhattacharyya aplicada en cada una de
las distribuciones unidimensionales. Dada DBij, la distancia marginal de Bhattacharyya
para el conjunto de potencias del canal i en la banda j , la distancia global viene dada
por:

DB =

√√√√ 19∑
i=1

4∑
j=1

DB2
ij (5.1)

Se eligió esta métrica entre otras alternativas como pod́ıan ser la mediana, media, o
máxima de las distancias marginales, por ser robusta ante espurios además de favorecer
la contribución de las distancias marginales DBij de mayor valor sobre la distancia global
DB. Es decir, las distancias DBij con valores altos contribuirán en mucha mayor medida
que las de valores bajos.

5.3. Resultados

A continuación se detallan los resultados obtenidos de aplicar el método del codo
en la selección del punto de corte del dendograma. Además, se describen los resultados
obtenidos mediante la clusterización de los sujetos que conforman la Base Normativa.

Se realizó un estudio para determinar el punto de corte del dendograma resultante
en la aplicación de método de clusterización ascendente jerárquico sobre los sujetos de la
Base Normativa, que define las agrupaciones de los sujetos en clusters. El único criterio
para determinar el punto de corte sobre el dendograma es la función que representa
la distancia máxima entre clusters frente al número de clusters. Ésta es una función
monótona creciente, sobre la cual se podŕıa definir una función de coste. Sin embargo, se
propone una alternativa que permite calcular el umbral de forma automática. El método
consiste en calcular el codo de dicha función. El codo de una curva se puede definir como el
punto con mayor gradiente dentro de una curva monótona. Sin embargo, en la práctica se
trabaja con curvas poco o nada suavizadas, con una gran cantidad de picos y en algunas
ocasiones la curva no es monótona en todos sus puntos. Determinar el codo de una curva
no es un procedimiento trivial, debido a su definición ambigua. Partiendo de un método
desarrollado en la literatura [19] se realizaron pequeñas modificaciones para adaptarlo a
funciones crecientes. Este método tiene en cuenta la tendencia global de la curva y no
únicamente la diferencia entre valores sucesivos en la curva. Dada la función F(m) el codo
se determina siguiendo el siguiente método:

1. Calcular la diferencia de pendientes consecutivas, teniendo la siguiente función:
DiffFun(m)=F (m−1)+F (m+1)−2F (m), donde DiffFun es la función diferencia.

2. Detectar los n cambios locales significantes en DiffFun, seleccionando los n máximos
locales de la función DiffFun(m). Una vez localizado estos máximos, ordenarlos de
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forma descendente en función del valor de DiffFun(m).

3. Calcular el ángulo que forma la curva F(m) en cada uno de los n máximos locales
calculados anteriormente. En la figura 5.2 se muestra el cálculo este ángulo como la
suma de α1 y α2 siguiendo la expresión:

Angle(m) = arctan(1/|F (m)− F (m− 1)|) + arctan(1/|F (m+ 1)− F (m)| (5.2)

4. El valor del codo viene dado por el primer mı́nimo de la función Angle(m).

Figura 5.2: Cálculo del ángulo que forma la curva F (m) descrita en el punto 3 del método de cálculo del
codo.

La Figura 5.3 muestra el resultado de aplicar el cálculo del codo sobre la función que
describe la distancia entre clusters en función de la distancia entre clusters, resultante en
la aplicación del método de clusterización ascendente jerárquico. El codo se sitúa en el
punto [3, 8.107], éste representa el punto de corte del dendograma en una distancia de
BC=8.107 resultando tres clusters sobre la Base Normativa. Definido el punto de corte
a BC=8.107 sobre el dendograma la Figura 5.4 representa el dendograma resultante en
forma circular. Como solución se han obtenido tres clusters representados por los colores
(rojo, azul y verde).

En consecuencia mediante la clusterización jerárquica ha sido posible realizar una
estratificación sobre los sujetos de la Base Normativa desarrollada mediante los cambios
significativos en los parámetros de potencias absolutas de la señal EEG. Como resultado
se ha obtenido un total de tres clusters sobre los 61 sujetos que han sido sometidos al
método de clusterización.
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Figura 5.3: Función distancia entre clusters en función de los clusters resultantes del método clusterización
ascendente jerárquica aplicado sobre la Base Normativa. El punto en rojo muestra el codo de dicha función.

Figura 5.4: Dendograma circular resultante del método de clusterización ascendente jerárquico aplicado
sobre la Base Normativa compuesta por 61 sujetos. El corte de dicho dendograma se ha realizado sobre
el punto 8.107 resultante de aplicar el método del codo.
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6. Validación

Este caṕıtulo describe el estudio de la validación de la Base Normativa de EEG de-
sarrollada y de las herramientas matemáticas empleadas para determinar los parámetros
que caracterizan la normalidad en el EEG. Como resultado se estudia de forma indirecta
la validez del conjunto de técnicas desarrolladas en las etapas anteriores en el desarrollo
de la Base Normativa.

En la sección 6.1 se realiza un estudio de la fiabilidad del método de clusterización
diseñado mediante la técnica de validación cruzada. Además, se detallan los resultados
de fiabilidad obtenidos mediante el cálculo de la sensibilidad. En la sección 6.2 se detalla
un caso de uso de la Base Normativa mediante datos de EEG cuasi-sintéticos obtenidos
directamente de la Base Normativa y modificados con el propósito de simular datos de
EEG caracterizados por la patoloǵıa del Trastorno de Déficit de Atención. De esta forma
se analiza la fiabilidad de la Base Normativa aplicada como una prueba de diagnóstico de
una patoloǵıa neurológica.

6.1. Estudio de la Fiabilidad

Para estudiar la fiabilidad de la Base Normativa desarrollada se requiere de la señal
EEG adicional adquirida en sujetos sanos bajo las mismas condiciones de registro y apli-
carle las mismas técnicas empleadas para el desarrollo de la Base Normativa. Debido a la
falta de datos de EEG reales adquiridos en sujetos sanos, se emplean los mismos partici-
pantes de la Base Normativa para realizar el análisis de la fiabilidad de la misma. Para ello,
se aplica el método de validación cruzada (Cross-Correlation), el cual ofrece un resultado
robusto para juzgar el funcionamiento de un test como predictor, por su similitud en la
evaluación del test en condiciones reales de prueba. La evaluación de este método consiste
en desarrollar el clasificador con una muestra del registro total obtenido y evaluarlo con
el resto del registro que no se usó para el desarrollo. Dada la reducida longitud de la Base
Normativa no es posible dividirla en un conjunto de entrenamiento y uno de test, se ha
empleado la técnica Leave One-Out Cross-Validation, LOOCV (dejar uno fuera). Ésta
consiste en quitar un sujeto del conjunto de entrenamiento, entrenar el clasificador con
el resto de sujetos y clasificar el que se ha extráıdo, que constituye el conjunto de test,
evaluando si ha sido clasificado correctamente o no. Este proceso se repite para todos los
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6. Validación 6.1 Estudio de la Fiabilidad

sujetos del conjunto de entrenamiento cada vez sujeto diferente, de forma que al final se
computa el porcentaje de sujetos correctamente.

La aplicación de LOOCV sobre la Base Normativa implica repetir todo el desarrollo
de la misma extrayendo un sujeto para compararlo frente a la nueva Base Normativa
desarrollada con el resto de sujetos y repetirlo para cada uno de los 61 sujetos que forman
la BN. En este sentido, se realizaŕıa una validación global de todo el proceso llevado a cabo.
En particular, las primeras etapas como la extracción de caracteŕısticas o el cálculo de la
fiabilidad intrapersonal son independientes de los sujetos que intervengan en el proceso.
Sin embargo, la transformación de los datos mediante la técnica Box-Cox śı depende de
los sujetos para determinar la función de transformación (definida por el valor λ). Por
tanto, el proceso de LOOCV debeŕıa recomputarse a partir de esta etapa. En la práctica,
se recomputó únicamente la etapa de clusterización, dado que la variación que supone
la eliminación de un sujeto en el cálculo del valor λ no es significativo. Además hay que
sumar, la carga computacional y temporal que supone recomputar al Algoritmo Genético
para desarrollar 61 Bases Normativas compuestas por 60 sujetos, el número de ejecuciones
se elevaŕıa a 3660.

6.1.1. Resultados

A continuación se muestran los resultados obtenidos sobre el estudio de la fiabilidad
mediante el método de LOOCV. Como resultado al proceso de LOOCV aplicado sobre el
método de clusterización pueden obtenerse dos soluciones: (a) el sujeto excluido enfrentado
sobre la nueva Base Normativa no pertenece a la misma, es decir, no pertenece a ninguno
de los clusters definidos por la clusterización (False Negative FN); (b) el sujeto excluido
enfrentado sobre la nueva Base Normativa śı pertenece a la misma, dado que forma parte
de uno de los clusters resultantes por la clusterización (True Positive TP ). La fiabilidad
es determinada mediante el ı́ndice de sensibilidad dado por:

Sensibilidad =
TN

TN + FP
(6.1)

La sensibilidad indica la proporción de sujetos pertenecientes de la Base Normativa que
han sido resultantes positivas (pertenecientes a la misma) mediante la técnica de validación
cruzada. El resultado obtenido en términos de fiabilidad global resultó Sensibilidad =
91,3793 %. Asimismo, se realizó una validación más espećıfica para comprobar la correcta
clusterización. Es lo que se denominó Sensibilidad Parcial en la cual se verifica si el sujeto
se clasifica correctamente en el cluster correspondiente. Sobre los resultados positivos de
la prueba anterior se mide el nivel de fiabilidad en cada uno de los clusters. La tabla 6.1
muestra la matriz de confusión sobre los resultados de sensibilidad parcial Sobre los 91 %
de los sujetos que han verificado estar dentro de la Base Normativa (TP) resultantes en
el análisis de la sensibilidad global, se ha medido la sensibilidad parcial en cada uno de
los clusters, obteniéndose 100 % para los clusters 2 y 3. Dentro del 91 % de los sujetos
que han verificado estar dentro de la Base Normativa, todos aquellos pertenecientes a los
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Solución Test
Cluster 1 Cluster 2 Cluster 3

Cluster 1 88.88 0 0
Cluster 2 11.11 100 0
Cluster 3 0 0 100

Tabla 6.1: Resultados de la sensibilidad parcial aplicada en la Base Normativa mediante validación
cruzada.

clusters 2 y 3 han permanecido en el mismo cluster. Sin embargo, el cluster 1 presenta
una fiabilidad del 88.88 %, es decir, el 11.11 % de los sujetos del cluster 1 que verificaban
estar dentro de la Base Normativa se identificaron con el cluster 2 en vez del cluster 1.
En resumen el método de clusterización diseñado posee un nivel de fiabilidad del 91 %.

6.2. Estudio del Análisis del Diagnóstico

En esta sección se detalla un caso de uso de la Base Normativa que consiste en primer
lugar en la obtención de una señal EEG cuasi-sintética adquirida mediante la modificación
de la señal EEG de un sujeto sano perteneciente a la Base Normativa. A continuación se
emplean las técnicas diseñadas en este proyecto para comparar el EEG patológico obtenido
frente a la Base Normativa con el objetivo de verificar la precisión del diagnóstico. Se
seleccionó el EEG del sujeto número 4 de la Base Normativa y se modificó el canal Cz
multiplicando por un factor igual a 4 la variable que describe la potencia absoluta en
la θ, caracterizando un sujeto patológico. Con el propósito de imitar el comportamiento
de un EEG bajo la patoloǵıa del Trastorno de Déficit de Atención (TDAH). Mediante
la técnica de clusterización diseñada se realiza una segmentación de la Base Normativa
junto con el sujeto patológico para realizar un diagnóstico de éste. Como resultado de la
clusterización se obtiene la distancia del sujeto patológico a cada uno de los clusters de la
Base Normativa. Dado que cada una de ellas superan el umbral de BC=8.107, el sujeto
patológico queda fuera de la base. En las Figuras 6.1, 6.2 y 6.3 se muestran los resultados
de las distancias parciales de el sujeto a los tres clusters. La parte superior de cada figura
muestra cuatro matrices, una referida a cada banda frecuencial. Éstas matrices representan
las distancias parciales del sujeto patológico a cada uno de los sujetos agrupados en un
cluster (por filas) y los 19 canales de EEG (columnas). Gráficamente se puede observar
sobre la matriz correspondiente a la banda theta una ĺınea vertical de color rojizo sobre
el canal Cz. Esta situación se repite para cada uno de los clusters. De tal forma queda
identificada la distribución patológica, indicando la banda y el canal donde se produce.

En consecuencia, se afirma que ha sido posible diagnosticar la patoloǵıa impuesta sobre
el sujeto cuasi-sintético. De esta forma se demuestra la eficiencia de la Base Normativa
desarrollada en este proyecto para una aplicación de diagnóstico en la para la patoloǵıa
de TDAH.
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Figura 6.1: Resultados de la prueba de diagnóstico sobre los datos cuasi-sintéticos que representan una
patoloǵıa sobre el canal Cz y banda θ frente al cluster número 1 de la Base Normativa.

Figura 6.2: Resultados de la prueba de diagnóstico sobre los datos cuasi-sintéticos que representan una
patoloǵıa sobre el canal Cz y banda θ frente al cluster número 2 de la Base Normativa.

Figura 6.3: Resultados de la prueba de diagnóstico sobre los datos cuasi-sintéticos que representan una
patoloǵıa sobre el canal Cz y banda θ frente al cluster número 3 de la Base Normativa.49



7. Conclusiones y ĺıneas futuras

En el presente proyecto se ha diseñado un conjunto de técnicas para el desarrollo de
una Base Normativa EEG basal en adultos. Dado que no se ha encontrado constancia de
ninguna Base Normativa desarrollada en la misma ĺınea, la comparación no es directa.
Únicamente ha sido posible contrastar los resultados en el desarrollo de cada etapa del
proceso por separado. Se han estudiado: (a) la fiabilidad intrapersonal en la señal EEG
mediante el método Split&Half y (b) la normalidad en los parámetros espectrales de
potencia de la Base Normativa. Ambos resultados se encuentran en concordancia con la
literatura.

Este proyecto propone una alternativa a la estratificación de la señal EEG por edades,
la cual está basada en la aplicación de una técnica de clusterización de individuos en
función de un conjunto de caracteŕısticas de señal extráıdas sobre el EEG. La gran ventaja
de este método es que permite la automatización completa del proceso de generación de
la Base Normativa.

El presente proyecto aporta una nueva técnica en el desarrollo de Bases Normativas
EEG, y abre el camino a nuevos trabajos de investigación, entre los que se puede incluir:

Replicar las técnicas diseñadas en otras métricas de la señal EEG en el dominio
temporal tales como la coherencia, fase, simetŕıa.

Desarrollar una Base Normativa más espećıfica en términos de patoloǵıa. Determi-
nando una nueva métrica que únicamente recogiera las caracteŕısticas más discrim-
inantes (eliminando información redundante) en la clasificación de sujetos sanos y
patológicos para una enfermedad en particular.

Validar la Base Normativa mediante el uso de señal EEG real adquirida en sujetos
patológicos.

Replicar las técnicas diseñadas sobre una población infantil. El EEG en la niñez
sufre importantes cambios producidos por la maduración fisiológica del cerebro pro-
duciendo una alta variabilidad intrapersonal entre la señal EEG de diferentes sujetos
en la edad infantil. En esta ĺınea se podŕıa continuar el trabajo que se llevó a cabo
en paralelo con este proyecto, que consistió en el diseño y la realización de experi-
mentos con 45 niños con edades comprendidas entre los 12 y 18 años. Cuyos datos
fueron procesados y filtrado de artefactos. Este trabajo no se continuó debido a la
dificultad que conlleva el filtrado de artefactos para el desarrollo de una BN.
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